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Abstract

For domains in C

2

which are de�ned by consideration of the dynamics

of a holomorphic endomorphism T : C

2

! C

2

we investigate the Shilov

boundary @

SH

K(T ) of their closure K(T ). We show that the complement

of the Shilov boundary in the topological boundary @K(T ) foliates into

complex analytic sets. Moreover, the Shilov boundary is identi�ed as the

Julia set J(T ) of the de�ning endomorphism, equals the closure of the

set of repelling periodic points of T and also the support of the unique

measure of maximal entropy (namely log(deg(T ))) of T . We do neither

need any assumption on the smoothness of the boundary of K(T ) nor that

T extends to the two-dimensional complex projective space P

2

.
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1 Introduction

Recall that the Shilov boundary of a bounded domainG � C

n

, its closureK := G,

resp., is usually de�ned in the following way (see [2]). One considers the algebra

A

0

(K) of functions which are holomorphic on some neighbourhood of K. Let

A (K) := A

0

(K) be its closure (in the algebra C(K) of continuous functions with

the topology of uniform convergence). In the space A(K) of maximal ideals of

A (K) there exists a unique, minimal closed determining set, which is called the

Shilov boundary @

SH

K. In the case of K being polynomially convex A(K) and K

are isomorphic (the maximal ideals of A (K) are precisely sets of functions which

vanish in a point of K), and the Shilov boundary can be interpreted directly as

a subset of the topological boundary @K of K. A point z 2 K is in @

SH

K if and

only if for each neighbourhood U 3 z there exists a function '

U

2 A (K) such

that j'

U

j has its maximum in U but takes only smaller values on {U .

Let us recall a classical result of

�

S�cerbina's.

Theorem 1.1

[10] For G � C

2

a domain of holomorphy whose boundary is C

1

such that K := G

has a basis of Stein neighbourhoods, the non-Shilov part of @K has an analytic

structure, namely, it foliates into analytic curves. �

1.1 Statement of Results

We shall show, that in a dynamical context, i.e. where one is able to de�ne the set

K(T ) by iteration of a holomorphic map T : C

2

! C

2

much stronger statements

than theorem 1.1 hold, even if one does not enforce any a priori conditions on the

smoothness of @K. In particular, this enables us to calculate the Shilov boundary

numerically with arbitrary precision (w.r.t. Hausdor� metric d

H

). We state the

theorem for a class of endomorphisms of C

2

, so-called doughnut maps T (�rst

de�ned in [6]). As K(T ) we de�ne the set of points z 2 C

2

whose T -orbit is

bounded, i.e.

K(T ) :=

�

z 2 C

2

: lim sup

k!1





T

k

(z)





<1

�

:

Theorem 1.2 (Theorem A)

Let T : C

2

! C

2

be a doughnut map. Then the Shilov boundary @

SH

K(T ) of

K(T ) equals the closure of the set of repelling periodic points of T . Furthermore,

the complement of the Shilov boundary in the topological boundary foliates into

complex analytic sets (of dimension 1). �

This is actually a direct consequence of the following more general theorem.

Theorem 1.3 (Theorem B)

For a doughnut type map T , we have the equality for the following �ve charac-

terisations of the Julia set J(T ).
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1. J(T ) equals the set N(T ) of points in C where the sequence of iterates of

T is not weakly normal ;

2. J(T ) can be described as the Shilov boundary S(T ) := @

SH

K(T ) of the set

K(T ) of points with bounded forward orbit under iteration of T ;

3. J(T ) is the closure R(T ) of the set of repelling periodic points of T ;

4. J(T ) is obtained as the limit P (T ) of the pull-backs T

�k

@

Shilov

B

r

, where

B

r

is any bi-disk with r � R

T

;

5. J(T ) equals the supportM(T ) of the uniquemeasure �

T

of maximal entropy

for T , which is log(deg(T )), where deg(T ) denotes the mapping degree of

T .

Furthermore we have that

i. J(T ) is completely invariant, i.e. J(T ) = T (J) = T

�1

(J(T ));

ii. T restricted to J(T ) gives a mixing repeller ;

iii. @K(T ) n @

SH

K(T ) foliates into one-dimensional complex analytic sets C

z

.

�

1.2 Dynamical Context

Let us recall some notation for the iteration theory of endomorphisms of C

n

(see

[4, ch. 2]). With k � k we denote the maximum norm on C

n

and introduce the

following abbreviation concerning the growth behaviour of maps f; g : C

n

! C

n

.

For p; q 2 R we use the notation

f

p

� g

q

(1)

in order to indicate that there is a radius R

f

p

;g

q

2 R and strictly positive constants

k

1

; k

2

2 R

�

+

such that, for all z 2 C

n

, with kzk > R

f

p

;g

q

, it holds that

k

1

� kf(z)k

p

� k

2

� kg(z)k

q

:

We shall also use (1) if the range of z is only a subset of C

n

. In the cases p = 1,

q = 1, respectively, we will skip the exponent. In dimension one it is well-known

that the fact that an entire map f : C ! C is proper is closely related to its

growth behaviour. Namely, z

p

� f , for p 2 R

�

+

, implies that f is a polynomial

of degree at least p if p 2 N , [p] + 1, else. f � z

p

implies that f is a polynomial

of degree at most [p]. Thus, the following lemma characterises polynomials (and

hence, proper maps in C ) by their growth behaviour.
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Lemma 1.4

[8, p. 11] An entire mapping f : C ! C is a polynomial of degree p 2 N

�

if and

only if

z

p

� f � z

p

:

�

An immediate generalisation is given by the following de�nition.

De�nition 1.5 (Strict Polynomial)

([3, ch. 1]) An entire mapping f : C

n

! C

n

is called a strict polynomial of degree

p 2 N

�

if and only if

z

p

� f(z) � z

p

:

Recall that, in dimension one, for a (strict) polynomial f , the minimal growth

exponent q for a growth majorant of the form z

q

and the maximal growth expo-

nent p for a minorant z

p

have to be equal. In C

n

, n > 1, this is not the case as

the example of product maps, i.e. vectors f of polynomial maps f

i

of one variable

of the form

f(z) =

0

@

f

1

(z

1

)

: : :

f

n

(z

n

)

1

A

;

shows. Clearly, we get p = min

i=1;::: ;n

deg(f

i

) and q = max

i=1;::: ;n

deg(f

i

) which

do not have to be equal. Moreover, it is even possible to obtain non-integer (max-

imal) growth exponents for the growth minorant. This motivates the following

de�nition.

De�nition 1.6 ((p;q)-regular map)

([4, ch. 2]) An entire map f : C

n

! C

n

is called (p; q)-regular if and only if, for

p 2 Q

+

, q 2 N ,

z

p

� f(z) � z

q

:

We shall restrict our interest to (p; q)-regular maps with p > 1. For a discussion

of their properties cf. [5, ch. 1]. We shall only note that one can always �nd an

escape radius for a (p; q)-regular map T which is de�ned to be R

T

2 R such that

kzk > R

T

implies that

kT (z)k > kzk:

A possible choice is

R

T

:= max

n

R

z

p

;T

;

p�1

p

k

2

=k

1

o

;
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where the constants stem from z

p

� T . Obviously, one has that

K(T ) =

1

\

k=0

T

�k

�

B

R

T

�

6= ;:

It has turned out that the `right type' of convergence for (p; q)-regular maps is

weak normal convergence which takes into consideration that, for n > 1, there

are di�erent `levels' of convergence.

De�nition 1.7 (weak normal convergence)

([3]) A family ff

k

g of holomorphic maps f

k

: U ! C

n

on a domain U � C

n

is

called weakly normal in a point z

�

2 U if there is

� an open neighbourhood V 3 z

�

;

� a family of at least one-dimensional (complex) analytic sets C

z

indexed by

the points z 2 V

such that

� each z is contained in the corresponding analytic set C

z

;

� for each z 2 V , the family ff

k

g restricted to C

z

\ V is normal in the usual

sense (including convergence to in�nity).

This leads to the following de�nition.

De�nition 1.8 (Julia set of a (p;q)-regular map)

([3]) The Julia set J(f) of a (p; q)-regular map is the set of points N(T ) where

the family fT

k

g of iterates of T is not weakly normal.

It is easy to see that for n = 1 `weakly normal' and `normal' are equivalent, hence,

in this case, one gets the usual Julia sets for polynomials.

2 Doughnut Maps

In this section we discuss the class of doughnut maps T : C

2

! C

2

and prove

theorems A and B. We �rst investigate a very simple kind of maps which serve as

`toy model'. Then we discuss arbitrary hyperbolic skew products of polynomials

in C

2

, and in particular skew products whose Julia sets are families of Jordan

curves. Finally we analyse in detail the Julia sets of doughnut maps, in partic-

ular their unique measure of maximal entropy which is supported on the Shilov

boundary of K(T ).
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2.1 The Model

For a map �

d;e

, for d; e 2 N , d; e � 2, of simple product type given by

�

d;e

:

�

x

y

�

7!

�

x

d

y

e

�

;

we easily see that the di�erent characterisations of theorem B hold. First of all,

we have that

K(�

d;e

) = B

1

;

and, clearly, by de�nition of weak normality,

N(�

d;e

) = S

1

� S

1

;

which settles B.1. It is well known that the Shilov boundary of product sets is

the product of the Shilov boundaries of the factors, hence

S(�

d;e

) = S

1

� S

1

;

which gives equivalence to B.2. For B.4, we �x any r > 1 and see that

P (�

d;e

) = S

1

� S

1

:

The statement that N(�

d;e

) is the support of the unique measure of maximal

entropy requires a little more work. It is obvious that (N(T ); T ) is a mixing

repeller, hence carries a unique measure of maximal entropy, which is easily iden-

ti�ed as the (normalised) Lebesgue measure on S

1

� S

1

(the maximal entropy

being log(d) + log(e)). The question remains if there is any other measure with

entropy at least log(d) + log(e). But the only compact invariant sets disjoint

from N(�

d;e

) are f1g (which yields topological entropy 0), f0g�S

1

(which gives

log(e)) and S

1

�f0g (which gives log(d)) or subsets of the latter ones. This settles

B.5.

The fact that the repelling periodic points of �

d;e

are exactly the points

(exp(2�ik=(d

s

� 1)); exp(2�i`=(e

t

� 1))), where s; t 2 N

�

, 0 � k < d

s

� 1 and

0 � ` < e

t

� 1 shows B.3.

The statement B.i is a direct consequence of the de�nition of the Julia set

using weak normality. B.ii follows from the fact that both components of the

product are mixing. The set @K(�

d;e

) n S(�

d;e

) equals B � S

1

[ S

1

� B which

shows B.iii.

That theorem B implies theorem A is obvious.

6



2.2 Skew Products and Hyperbolicity

A skew product in C

2

is constructed from a polynomial q : C ! C in one variable

and a second polynomial p : C

2

! C in two variables. We will write p

y

(x) instead

of p(x; y) in order to stress that we view p as a polynomial in x whose coe�cients

depend on y. We obtain the skew product map T : C

2

! C

2

by setting

T :

�

x

y

�

7!

�

p

y

(x)

q(y)

�

:

The action of T induces several types of dynamics. The base map q acts on the

�bres

C

y

:= C � fyg

by mapping C

y

to C

q(y)

. Within the �bres we have the action of the �bre maps p

y

.

For every y, the projection �

1

to the �rst coordinate yields a family of holomorphic

functions

P

y

:= fp

y

; p

q(y)

� p

y

; p

q

2

(y)

� p

q(y)

� p

y

; : : :g

on �

1

(C

y

). We denote with P

n

y

the composition p

q

n�1

(y)

� � � � � p

q(y)

� p

y

and,

analogously, particular inverse branches

P

�n

y�

:= p

�1

y�

� p

�1

q(y)�

� � � � � p

�1

q

n�1

(y)�

:

For each family P

y

, we can compute the usual Julia set as the subset of C

y

(�

1

(C

y

), respectively), where P

y

is not normal. We call this set J

�

y

. There is also

the intersection of J := J(T ) and C

y

, which we denote with J

y

. We de�ne K

y

as

intersection of K := K(T ) and C

y

and note that

@(�

1

(K

y

)) = �

1

(J

�

y

):

From de�nition 1.7 we immediately deduce that

J �

[

y2K(q)

J

�

y

� fyg:

In view of B.5 one should actually expect

J �

[

y2J(q)

J

�

y

� fyg:

If the action of T on

J

�

:=

[

y2J(q)

J

�

y

� fyg

7



is hyperbolic, then (cf. [5, Th. 3.2]) this set is closed, and T acts mixingly on it,

hence one should even have

J =

[

y2J(q)

J

�

y

� fyg: (2)

We shall show that (2) does hold if one only knows that the P

y

for y 2 J(q) lead

to hyperbolic Julia sets J(P

y

). In order to simplify the calculations, we will treat

the case where T leads to J(q) and, each for y 2 J(q), the J(P

y

) being hyperbolic

Jordan curves.

By hyperbolicity of J , T , respectively, we mean, of course, the hyperbolicity of

the action of T as two-dimensional map on J . Fortunately, the following theorem

shows that we can use the hyperbolicity of q on J(q) and P

y

on the J(P

y

) in

order to establish the hyperbolicity of T on J

�

.

Theorem 2.1

If the actions of q on J(q) and, for each y 2 J(q), P

y

on the J(P

y

) are hyperbolic,

then also the action of T on J

�

.

Proof: The derivative of T

1

in a point z

0

= (x

0

; y

0

) is given by a triangular

matrix the form (cf. [5, Th. 3.2])

�

A

0

B

0

0 C

0

�

:= T

0

(z

0

):

We set, with z

n

:= T

n

(z

0

),

�

A

n

B

n

0 C

n

�

:= T

0

(z

n

);

hence

�

A

n

B

n

0 C

n

�

:= (T

n

)

0

(z

0

)

=

�

A

n�1

B

n�1

0 C

n�1

�

� � � � �

�

A

0

B

0

0 C

0

�

:

We have that

A

n

=

n�1

Y

k=0

A

k

;

C

n

=

n�1

Y

k=0

C

k

;

furthermore, for n 2 N

�

,

B

n

= A

n�1

B

n�1

+B

n�1

C

n�1

:

8



In order to show that T is hyperbolic it su�ces to show that, for some n 2 N

�

,

uniformly in all z 2 J

�

, for some � < 1, we get that







[(T

n

)

0

(z)]

�1







� �: (3)

We compute that

[(T

n

)

0

(z)]

�1

=

�

1=A

n

�B

n

=(A

n

C

n

)

0 1=C

n

�

;

by assumption (if needs be, after change to a suitable metric) we have that, for

some  > 1, for all n 2 N , uniformly in z 2 J

�

,

jA

n

j; jC

n

j > ;

hence

j1=A

n

j ; j1=C

n

j � 1=;

and, thus,

j1=A

n

j ; j1=C

n

j � 1=

n

:

Furthermore, by compactness of J

�

, for some � 2 R, we get that, for z

0

2 J

�

,

jB

0

j � �:

We see that, for z 2 J

�

, with, for n 2 N

�

,

�

n

:= jB

n

=(A

n

C

n

)j

and

�

0

:= 0;

we have that

�

n

�

�

n�1

jC

n�1

j

+

�

�

�

�

B

n�1

A

n�1

C

n�1

�

�

�

�

�

jA

n�1

j: (4)

Obviously, we get that

�

n

�

n



n+1

��

holds, since this true for n = 0, and

�

1

�

�

 � 

;
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and (4) imply that

�

n

�

(n� 1) ��



n

� 

+

�

 � 

�



n�1

=

n ��



n+1

:

Clearly, for n big enough such that

 + n �� < 

n+1

;

(3) holds on J

�

and, by continuity of (T

n

)

0

, on all of J

�

. �

2.3 Skew Products and (p;q)-regularity

In the following we shall investigate the dynamics of maps of the form

T :

�

x

y

�

7!

�

x

d

+ k(y)

y

e

+ f

�

; (5)

where

d; e 2 N ; d; e � 2;

and k(y) is an arbitrary polynomial in y whose degree is denoted c. Maps of this

type �t in our framework of (p; q)-regular maps.

Theorem 2.2

Skew products of the form (5) are (p; q)-regular.

Proof: It is easy to see that the mapping degree of such a map T is d � e, not

depending on c. The growth behaviour depends on k, c, respectively, namely in

the case of c � d we see that, with

' :

�

x

y

�

7!

�

x

e

y

d

�

;

the composition T � ' is (d � e)-strict, hence

z

d�e

� T � ' � z

d�e

:

Clearly,

z

min(d;e)

� ' � z

max(d;e)

;

which implies that

'

min(d;e)

� T � ' � '

max(d;e)

10



and, thus, that

z

min(d;e)

� T � z

max(d;e)

:

Clearly, the growth exponents are maximal, minimal, respectively, as, for z =

(x; y) such that x

d

+ k(y) = 0, we have that

z

e

� T � z

e

;

whereas, for z = (x; 0),

z

d

� T � z

d

:

In case of c > d we de�ne the auxiliary maps

' :

�

x

y

�

7!

�

x

c

y

d

�

and

 :

�

x

y

�

7!

�

x

e

y

c

�

:

We have that

z

d

� ' � z

c

and

z

min(c;e)

�  � z

max(c;e)

:

Clearly,

z

c�d�e

�  � T � ' � z

c�d�e

:

We deduce that

'

d�e

�  � T � ' � '

c�e

;

and, that

z

d�e

�  � T � z

c�e

:

We combine the formul�

z

d�e

�  � T � T

max(c;e)

and

T

min(c;e)

�  � T � z

c�e

11



in order to deduce that

z

d�e

max(c;e)

� T � z

max(c;e)

:

These inequalities are sharp because we have, for z = (0; y), that

z

max(c;e)

� T � z

max(c;e)

:

Furthermore, if c � e, we see, for z = (x; 0), that

z

d

� T � z

d

;

if c > e, then z = (x; y), where x

d

+ k(y) = 0, yields

z

d�e

c

� T � z

d�e

c

:

�

We know that

�

1

(J

�

y

) = @(�

1

(K

y

)):

In view of B.4 we recall that, for each y 2 J(q), we have

@(�

1

(K

y

)) = lim

n!1

P

�n

y

(@

SH

B

R

f

): (6)

(Here, we mean B

R

f

� C !) We de�ne

�

n

y

:= P

�n

y

(@

SH

B

R

f

):

With respect to theorem 2.1 we can assume that (3) actually holds in a neigh-

bourhood V of J

�

in C � J(q). First of all, by de�nition of the escape radius we

have that �

n+1

y

is contained in the bounded component of {�

n

y

in C

y

, moreover,

for all n 2 N the maps

�

n

: J(q) ! P(C );

y 7! �

n

y

;

are continuous if we equip P(C ) with the Hausdor� metric d

H

. Second, in view

of (6), there is n

0

such that, for n � n

0

,

[

y2J(q)

�

n

y

� fyg �� V:

Clearly, by continuity of �

n

, for any �xed n 2 N , we have that

� := sup

y2J(q)

d

�

H

(�

n+1

y

;�

n

y

) <1;

12



where, for d

�

H

� d

H

, we measure distances along recti�able paths in V , V \ C

y

,

respectively. Clearly, this implies that the convergence in (6) is uniform in y 2

J(q), hence, for any ", we can �nd n

1

such that, for n � n

1

,

d

H

(�

n

y

; J

�

y

) < "=3:

The �

n

are continuous, hence we �nd � such that d

(

y; y

0

) < � implies that

d

H

(�

n

y

;�

n

y

0

) < "=3:

This gives that

d

H

(J

�

y

;�

�

y

0

) < ":

We have shown the following theorem.

Theorem 2.3

If T is hyperbolic on J

�

, then

[

y2J(q)

J

�

y

� fyg =

[

y2J(q)

J

�

y

� fyg:

�

2.4 Jordan Curves

Let us from now on assume that the action of T on J

�

= J

�

is hyperbolic, J(q)

is a Jordan curve, and fJ

�

y

g, y 2 J(q), is a family of continuously varying Jordan

curves.

Proposition 2.4

In the above mentioned case we can �nd, for y 2 J(q), a family of continuously

varying real-analytic Jordan domains

U

y

��

�

K

y

;

such that, for all y 2 J(q),

p

y

(U

y

) �� U

q(y)

: (7)

Proof: We �x V like above and consider, for a suitable metric,

@B

"

(J

�

y

) \

�

K

y

;

where we choose " > 0 small enough such that

B

"

(J

�

q(y)

) �� T (B

"

(J

�

y

)) �� V;

13



for all y 2 J(q), and each component @B

"

(J

�

y

)\

�

K

y

is a Jordan curve. Obviously,

if " is small enough, then the critical points Crit

x

due to p

0

y

, for y 2 J(q), namely,

Crit

x

:=

[

y2J(q)

f0g � fyg;

are contained in the U

y

, which we de�ne to be the bounded components of {B

"

(J

�

y

)

in C

y

. �

What is more important, also the converse holds.

Theorem 2.5

Let T be a skew product of the form (5), where q is chosen such that J(q) is

a hyperbolic Jordan curve. If one �nds, for y 2 J(q), a family of continuously

varying real-analytic Jordan domains U

y

such that, for all y 2 J(q), we have that

p

y

(U

y

) �� U

q(y)

;

then

J

�

= J

�

and the J

�

y

are continuously varying Jordan curves such that T acts hyperbolically

on J

�

.

Proof: We establish a hyperbolic metric on

[

y2J(q)

{U

y

� fyg:

Clearly, the Riemann maps

 

y

: B ! C n U

y

such that  (0) = 1 can be chosen to vary in a continuous way. We use the

restrictions

'

y

: B

�

! C n U

y

in order to transport the Poincar�e metric from B

�

to the sets

A

1y

:= C n U

y

;

where we denote the induced metric coe�cients with �

y

. We obtain that, for

y

0

2 q

�1

(y), that each branch of p

y

0

is well-de�ned on A

1y

, moreover, for x 2 A

1y

,

we have that

�

�

p

�1

y

0

(x)

�

�

�

�

y

0

(p

�1

y

0

(x))

�

y

(x)

< 1:

14



Clearly, on the compact invariant set

[

y2J(q)

�

B

R

f

n p

�1

y

�

U

q(y)

��

;

we even get, for some � > 1, that

�

�

p

�1

y

0

(x)

�

�

�

�

y

0

(p

�1

y

0

(x))

�

y

(x)

< 1=�:

The same reasoning as in theorem 2.1 �nishes the proof. �

2.5 Julia sets of Doughnut type

De�nition 2.6

([6, ch. 2]) We call a skew product T of the form (5) a doughnut type map if f is

chosen such that J(q) is a hyperbolic Jordan curve and, for y 2 J(q), there exists

a continuously varying family of real-analytic Jordan domains U

y

such that, for

each y 2 J(q),

p

y

(U

y

) �� U

q(y)

:

Corollary 2.7

For a doughnut type map, we have that

J

�

= J

�

:

�

We still have to show that J

�

is already the `true' Julia set J of T (cf. (2)).

In order to do so, we have to rule out that (T

k

) is not weakly normal at any

point z = (x; y), for y 2

�

K(q). We do so by establishing the existence of C

z

from de�nition 1.7, for any z of this type. We will make use of a theorem of

Rutishauser's.

Theorem 2.8

([9, S. 2]) A family of complex-analytic sets of �xed dimension in a domain

B �� C

n

whose sheet-numbers (or areas) in B are uniformly bounded is normal

in B in that sense that one can extract a subsequence which converges in B to a

complex-analytic set of the same dimension. �

It is a simple, but remarkable fact that, if the points of Crit

x

behave in a `tame'

way, i.e. do not escape to in�nity under iteration of T , then this also holds for

(0; y), y 2

�

K(q).
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Lemma 2.9

For a doughnut type map the forward orbits of (0; y), y 2 K(q), stay bounded.

Proof: Regard the holomorphic functions (in y) P

n

y

(0), which take their maximal

modulus on @K(q), hence on J(q), namely, for all n 2 N , we have that





P

n

y

(0)





K(q)

� max

y2J(q)

fjxj : x 2 U

y

g =: u <1:

�

This shows that if we take connected components of inverse images of analytic

sets of type fxg �

�

K(q), where jxj > R

f

, under the maps P

n

y

, then these are

one-sheeted analytic sets over

�

K(q). This implies the following theorem.

Theorem 2.10

For a doughnut type map,

J = J

�

:

Proof: We assume y 2

�

K(q). If x =2 K

y

, then there is an open neighbourhood of

z = (x; y) which can be used as C

z

. if x 2

�

K

y

, the we take

�

K

y

�fyg as C

z

. For

points in J

�

y

= @K

y

, we �nd a sequence of components

C

k

z

:= P

�n

k

y

(fx

n

k

g �

�

K(q));

where jx

n

k

j � R > R

f

, such that C

k

z

contains points (~x

n

k

; y), where

lim

k!1

~x

n

k

= x:

Clearly, any limit C

�

z

of (C

k

z

) is a one-dimensional analytic set which contains z

and is contained in @K, hence its forward iterates under T stay bounded, which

yields that we can set C

z

= C

�

z

. �

Thus, we have succeeded in calculating explicitly the set from B.1. We recall

that B.i is true by de�nition of weak normal convergence. Now we can harvest

the fruits of our labour. We recall the notation of J

�

-continuous maps from [7,

ch. 3].

Corollary 2.11

A doughnut type map is J

�

-continuous. �

This implies

Corollary 2.12

The action of T on J is topologically mixing. �

This is statement B.ii.
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Corollary 2.13

Repelling periodic points are dense in J , actually

J = R(T )

and we have shown B.3. �

Corollary 2.14

J equals the Shilov boundary of K, hence

J = S(T );

which settles B.2. �

We see the following.

Proposition 2.15

The Julia set can be computed by inverse iteration,

J = P (T ):

Proof: For the bi-disk B

r

, r > R

f

, we deduce from the fact, that

lim

n!1

q

�n

(@

SH

�

1

(B

r

)) = J(q)

and the construction in 2.10 that actually

J = lim

n!1

T

�n

(@

SH

B

r

):

�

This implies B.4.

2.6 Entropy of Doughnuts

For basic de�nitions, see [11, ch. 7], for entropy theory for holomorphic maps, cf.

[1]. The statement of the existence of a measure of maximal entropy is simple.

Proposition 2.16

A measure �

T

of maximal entropy log(d � e) (for T j

J

, so far) is supported on J .

Proof: Clearly, (J; T ) gives a mixing repeller. It is easy to �nd a (minimal)

generating Markov partition with d � e elements. �

More interesting is the following fact.
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Theorem 2.17

J is the support of the unique measure of maximal entropy for T .

Proof: We have to check for other invariant sets under iteration of T , disjoint

from J . Clearly, the projection to the second coordinate of such a set must also be

invariant under iteration of q. Hence, we get the following possibilities. The �rst

candidate f1g yields entropy zero. Second, on C

�

, where � is the unique �nite

(super-)attracting �xedpoint of q, we have the action of p

�

, which is a polynomial

of degree d, hence yields entropy log(d). Any other invariant sets disjoint from

J must be in

S

y2J(q)

C

y

�fyg. The only possible choice disjoint from J must be

contained in

X :=

[

y2J(q)

U

y

� fyg:

We de�ne


 := lim

n!1

T

n

(X) =

1

\

n=0

T

n

(X):

Clearly, by the contraction of T on the U

y

, also


 = lim

n!1

T

n

(Crit

x

):

For the notation cf. theorem 2.1. We have that, for some �; � > 1, �; � 2 R

+

,

jA

n

j � �=�

n

; (8)

jC

n

j � � � �

n

and, by compactness of �

1

X and �

1

T (X),

sup

z

0

2T (X);n2N

jB

n

j = 	 <1:

This implies that, for z

0

2 
, n big enough, we have that

k(T

n

)

0

(z

0

)k � jC

n

j: (9)

In particular, this implies that if we want to �nd an (n; ")-spanning set on Crit

x

for the iteration of T , then it is su�cient to �nd an (n; ")-spanning set on J(q)

for the iteration of q. We know that, if we denote the minimal cardinality of an

(n; ")-spanning set on J(q) with r

n;"

, then we get the following connection with

the entropy log(e) of q using Bowen's de�nition (cf. [11, x 7.2]), namely

log(e) = lim

"!0

lim sup

n!1

r

n;"

=n:
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If we de�ne n

0

(") as the minimal integer such that

� � u=�

n

0

� "=3;

then it is easy to see that any (n

0

(") + n; "=3)-spanning set for Crit

x

, its n

0

(")-

th images, respectively, is/are (n; ")-spanning for 
. Now, if we compute the

entropy, then we obtain

h

top

(T j




) � lim

"!0

lim sup

n!1

r

n

0

(")+n;"=3

=n = log(e):

�

This proves B.5. For the remaining statement B.iii, we consider the sets C

z

for

z 2 @K n S(T ). There are two types of C

z

. On the one hand, if y 2 J(q), then

one can take C

z

of the form

�

K

y

�fyg, clearly this implies C

z

� @K n S(T ). On

the other hand, if y 2

�

K(q), then one can apply theorem 2.10 and also �nds

C

z

� @K n S(T ).

Figure 1 shows the Julia set of the doughnut map

�

x

y

�

7!

�

x

2

� y

2

=10 + 10iy � 1=10

y

2

�

{ this may explain the name of this family of maps : : :
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