Shilov Boundary, Dynamics and Entropy in C?

Stefan-M. Heinemann *'
Institut fiir Mathematische Stochastik
Universitit Gottingen
D-37083 Gottingen

9th March 1999

Abstract

For domains in C? which are defined by consideration of the dynamics
of a holomorphic endomorphism T : C?> — C? we investigate the Shilov
boundary dgy K (T) of their closure K (T). We show that the complement
of the Shilov boundary in the topological boundary 0K (T') foliates into
complex analytic sets. Moreover, the Shilov boundary is identified as the
Julia set J(T) of the defining endomorphism, equals the closure of the
set of repelling periodic points of T' and also the support of the unique
measure of maximal entropy (namely log(deg(T'))) of T. We do neither
need any assumption on the smoothness of the boundary of K(7T') nor that
T extends to the two-dimensional complex projective space P2.
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1 Introduction

Recall that the Shilov boundary of a bounded domain G C C", its closure K := G,
resp., is usually defined in the following way (see [2]). One considers the algebra
Ay (K) of functions which are holomorphic on some neighbourhood of K. Let
A(K) := Ay (K) be its closure (in the algebra C(K) of continuous functions with
the topology of uniform convergence). In the space A(K) of maximal ideals of
A(K) there exists a unique, minimal closed determining set, which is called the
Shilov boundary Osg K. In the case of K being polynomially convex A(K) and K
are isomorphic (the maximal ideals of A(K') are precisely sets of functions which
vanish in a point of K), and the Shilov boundary can be interpreted directly as
a subset of the topological boundary 0K of K. A point z € K is in dsy K if and
only if for each neighbourhood U > z there exists a function ¢y € A(K) such
that |py| has its maximum in U but takes only smaller values on CU.

Let us recall a classical result of Séerbina’s.

Theorem 1.1

[10] For G C C? a domain of holomorphy whose boundary is C* such that K := G
has a basis of Stein neighbourhoods, the non-Shilov part of 0K has an analytic
structure, namely, it foliates into analytic curves. 0]

1.1 Statement of Results

We shall show, that in a dynamical context, i.e. where one is able to define the set
K (T) by iteration of a holomorphic map T : C> — C?> much stronger statements
than theorem 1.1 hold, even if one does not enforce any a priori conditions on the
smoothness of 0K . In particular, this enables us to calculate the Shilov boundary
numerically with arbitrary precision (w.r.t. Hausdorff metric dy). We state the
theorem for a class of endomorphisms of C?, so-called doughnut maps T (first
defined in [6]). As K(T) we define the set of points z € C? whose T-orbit is
bounded, i.e.

K(T) := {z € C* : limsup ||T"(2)|| < oo} :
k—o00

Theorem 1.2 (Theorem A)

Let T : C* — C* be a doughnut map. Then the Shilov boundary dsg K (T) of
K(T) equals the closure of the set of repelling periodic points of T'. Furthermore,
the complement of the Shilov boundary in the topological boundary foliates into
complex analytic sets (of dimension 1). O

This is actually a direct consequence of the following more general theorem.

Theorem 1.3 (Theorem B)
For a doughnut type map T, we have the equality for the following five charac-
terisations of the Julia set J(T').



1. J(T) equals the set N(T') of points in C where the sequence of iterates of
T is not weakly normal;

2. J(T) can be described as the Shilov boundary S(T) := 0sy K (T) of the set
K(T) of points with bounded forward orbit under iteration of T

3. J(T) is the closure R(T) of the set of repelling periodic points of T

4. J(T) is obtained as the limit P(T) of the pull-backs T~ *0shiion By, where
B, is any bi-disk with r > Ry;

5. J(T) equals the support M (T') of the unique measure pr of maximal entropy
for T, which is log(deg(T')), where deg(T) denotes the mapping degree of
T.

Furthermore we have that
i. J(T) is completely invariant, i.e. J(T)=T(J) =T Y(J(T));
ii. T restricted to J(T) gives a mizing repeller;

iii. OK(T) \ 0sg K (T) foliates into one-dimensional complex analytic sets C,.
U

1.2 Dynamical Context

Let us recall some notation for the iteration theory of endomorphisms of C" (see
[4, ch. 2]). With || - || we denote the maximum norm on C" and introduce the
following abbreviation concerning the growth behaviour of maps f,¢g: C* — C".
For p,q € R we use the notation

fr=yg (1)

in order to indicate that there is a radius Z» 4« € R and strictly positive constants
ki, ks € R such that, for all z € C*, with ||z|| > Ry» 4, it holds that

k- IF NP < ks - [lg ()]

We shall also use (1) if the range of z is only a subset of C". In the cases p =1,
q = 1, respectively, we will skip the exponent. In dimension one it is well-known
that the fact that an entire map f : C — C is proper is closely related to its
growth behaviour. Namely, 27 < f, for p € R, implies that f is a polynomial
of degree at least p if p € N, [p] + 1, else. f < z? implies that f is a polynomial
of degree at most [p]. Thus, the following lemma characterises polynomials (and
hence, proper maps in C) by their growth behaviour.



Lemma 1.4
[8, p. 11] An entire mapping f : C — C is a polynomial of degree p € N* if and
only if

P < f =P

An immediate generalisation is given by the following definition.

Definition 1.5 (Strict Polynomial)
([3, ch. 1]) An entire mapping f : C* — C" is called a strict polynomial of degree
p € N* if and only if

2P L f(z) 2 2P

Recall that, in dimension one, for a (strict) polynomial f, the minimal growth
exponent ¢ for a growth majorant of the form 2% and the maximal growth expo-
nent p for a minorant 2 have to be equal. In C", n > 1, this is not the case as
the example of product maps, i.e. vectors f of polynomial maps f; of one variable
of the form

fi(z1)
f(z) = . :
fo(zn)
shows. Clearly, we get p = min;—, _, deg(f;) and ¢ = max;—,__, deg(f;) which
do not have to be equal. Moreover, it is even possible to obtain non-integer (max-

imal) growth exponents for the growth minorant. This motivates the following
definition.

Definition 1.6 ((p, q)-regular map)
([4, ch. 2]) An entire map f : C* — C" is called (p, q)-regular if and only if, for

pEQ+,q€N,
2 < f(z) =20

We shall restrict our interest to (p, ¢)-regular maps with p > 1. For a discussion
of their properties cf. [5, ch. 1]. We shall only note that one can always find an
escape radius for a (p, g)-regular map T which is defined to be Ry € R such that
|zIl > Ry implies that

1T (2)[] > =]l
A possible choice is

Ry := max {RZP,T, ks /kl} :
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where the constants stem from 2 < 7T'. Obviously, one has that
K(T)=(T7" (Bg,) #0.
k=0

It has turned out that the ‘right type’ of convergence for (p,¢)-regular maps is
weak normal convergence which takes into consideration that, for n > 1, there
are different ‘levels’ of convergence.

Definition 1.7 (weak normal convergence)
([3]) A family {fx} of holomorphic maps f; : U — C" on a domain U C C" is
called weakly normal in a point z* € U if there is

e an open neighbourhood V' 3 z*;

e a family of at least one-dimensional (complex) analytic sets C, indexed by
the points z € V

such that
e cach z is contained in the corresponding analytic set C,;

e for each z € V, the family {f;} restricted to C, NV is normal in the usual
sense (including convergence to infinity).

This leads to the following definition.

Definition 1.8 (Julia set of a (p, q)-regular map)
([3]) The Julia set J(f) of a (p,q)-regular map is the set of points N(T') where
the family {T*} of iterates of T is not weakly normal.

It is easy to see that for n = 1 ‘weakly normal” and ‘normal’ are equivalent, hence,
in this case, one gets the usual Julia sets for polynomials.

2 Doughnut Maps

In this section we discuss the class of doughnut maps T : C> — C? and prove
theorems A and B. We first investigate a very simple kind of maps which serve as
‘toy model’. Then we discuss arbitrary hyperbolic skew products of polynomials
in C?, and in particular skew products whose Julia sets are families of Jordan
curves. Finally we analyse in detail the Julia sets of doughnut maps, in partic-
ular their unique measure of maximal entropy which is supported on the Shilov
boundary of K (T).



2.1 The Model

For a map o4, for d,e € N, d,e > 2, of simple product type given by

X fL’d
Odye y — ye ,

we easily see that the different characterisations of theorem B hold. First of all,
we have that

K(Ud,e) - F1;
and, clearly, by definition of weak normality,
N(O’d’e) = Sl X Sl,

which settles B.1. It is well known that the Shilov boundary of product sets is
the product of the Shilov boundaries of the factors, hence

S(o4) = St x S,
which gives equivalence to B.2. For B.4, we fix any r > 1 and see that
P(o4.) = S* x S

The statement that N(o4.) is the support of the unique measure of maximal
entropy requires a little more work. It is obvious that (N(7'),T) is a mixing
repeller, hence carries a unique measure of maximal entropy, which is easily iden-
tified as the (normalised) Lebesgue measure on S' x S! (the maximal entropy
being log(d) + log(e)). The question remains if there is any other measure with
entropy at least log(d) + log(e). But the only compact invariant sets disjoint
from N(o4,.) are {oo} (which yields topological entropy 0), {0} x S (which gives
log(e)) and S' x {0} (which gives log(d)) or subsets of the latter ones. This settles
B.5.

The fact that the repelling periodic points of o4, are exactly the points
(exp(2mik/(d® — 1)), exp(2mil/(e' — 1))), where s,t € N*, 0 < k < d* — 1 and
0</?<e—1shows B.3.

The statement B.i is a direct consequence of the definition of the Julia set
using weak normality. B.ii follows from the fact that both components of the
product are mixing. The set 0K (04.) \ S(04.) equals B x S U S! x B which
shows B.iii.

That theorem B implies theorem A is obvious.



2.2 Skew Products and Hyperbolicity

A skew product in C? is constructed from a polynomial ¢ : C — C in one variable
and a second polynomial p : C* — C in two variables. We will write p, () instead
of p(z,y) in order to stress that we view p as a polynomial in x whose coefficients
depend on y. We obtain the skew product map T : C? — C? by setting

()-8
y q(y)

The action of T" induces several types of dynamics. The base map q acts on the
fibres

C, :=Cx{y}

by mapping C, to C,(,). Within the fibres we have the action of the fibre maps p,.
For every y, the projection m; to the first coordinate yields a family of holomorphic
functions

Py = {Dy; Py(y) © Py> Pg2(y) © Py(y) © Pys - - - |

on m(Cy). We denote with P} the composition pgn-1(,) o+« 0 pyy) © py and,
analogously, particular inverse branches

-n . —1 -1 —1
Py 5= Pye © Py © 77 0 Pyni )

For each family P,, we can compute the usual Julia set as the subset of C,
(m1(Cy), respectively), where P, is not normal. We call this set .J;. There is also
the intersection of J := J(T) and C,, which we denote with J,. We define K, as
intersection of K := K (T) and C, and note that

O(mi (Ky)) = m(Jy)-

From definition 1.7 we immediately deduce that

7C | Ty x{y}

yEK(q)

In view of B.5 one should actually expect

JC | ;=< {y}

y€J(q)

If the action of T on

Jr = U Jy x{y}

y€J(q)
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is hyperbolic, then (cf. [5, Th. 3.2]) this set is closed, and T acts mixingly on it,
hence one should even have

J=|J 75 x{y}. (2)

y€J(q)

We shall show that (2) does hold if one only knows that the P, for y € J(q) lead
to hyperbolic Julia sets J(P,). In order to simplify the calculations, we will treat
the case where T' leads to J(¢) and, each for y € .J(q), the J(P,) being hyperbolic
Jordan curves.

By hyperbolicity of .J, T', respectively, we mean, of course, the hyperbolicity of
the action of T" as two-dimensional map on J. Fortunately, the following theorem
shows that we can use the hyperbolicity of ¢ on J(¢) and P, on the J(P,) in
order to establish the hyperbolicity of T on .J*.

Theorem 2.1

If the actions of ¢ on J(g) and, for each y € J(q), P, on the J(P,) are hyperbolic,
then also the action of T on J*.

Proof: The derivative of T' in a point zy = (o, ¥) is given by a triangular
matrix the form (cf. [5, Th. 3.2])

(T &)-re

We set, with z, := T"(2),

hence

We have that

furthermore, for n € N*,

Bn = An—IBn—l + Bn—lcn—l-

8



In order to show that T is hyperbolic it suffices to show that, for some n € N,
uniformly in all z € J*, for some A < 1, we get that

liy @ < (3)

We compute that

O e i |

by assumption (if needs be, after change to a suitable metric) we have that, for
some v > 1, for all n € N, uniformly in 2z € J*,

|Anl, |Cal > 7,

hence

[1/An], [1/Cu] <1/,
and, thus,

1/ Aul, [1/Cal < 1/7".
Furthermore, by compactness of J*, for some © € R, we get that, for 2y € J*,

|Bo| < ©.
We see that, for z € J*, with, for n € N*,
tin 1= By /(AnCp)|

and

we have that

< Kp—1 + ‘ anl
Kn >
|Cn71| Anflcnfl

/1A ()

Obviously, we get that

< n
Fn = fynJrl

qC)
holds, since this true for n = 0, and

K1 < ——
v

Y

)
fy .

9



and (4) imply that

(n_l)e © / n—1
Kn < - + Y
Y v

n-0
fyn—i—l'

Clearly, for n big enough such that
y4+n-0 <y

(3) holds on J* and, by continuity of (7™)’, on all of .J*. O

2.3 Skew Products and (p, q)-regularity

In the following we shall investigate the dynamics of maps of the form
T z? + k(y) )
T — , 5)
< y ) < vt ! ®)

d,e €N, d,e> 2,

where

and k(y) is an arbitrary polynomial in y whose degree is denoted c¢. Maps of this
type fit in our framework of (p, ¢)-regular maps.

Theorem 2.2

Skew products of the form (5) are (p, ¢)-regular.

Proof: It is easy to see that the mapping degree of such a map T is d - e, not
depending on c¢. The growth behaviour depends on k, ¢, respectively, namely in
the case of ¢ < d we see that, with

Clearly,

which implies that

(Pmin(d,e) <To o < SOm;aux(d,e)

10



and, thus, that

Zmin(d,e) <T < Zmax(d,e)

Clearly, the growth exponents are maximal, minimal, respectively, as, for z =
(z,y) such that ¢ + k(y) = 0, we have that

26 <T < 2°
whereas, for z = (z,0),
24 < T =< 2%

In case of ¢ > d we define the auxiliary maps

and

We have that

and

Clearly,

277 2 poTop = 2%
We deduce that

P < poTop =<,
and, that

2 <o T < 5.

We combine the formulae

20 < o T < Tmax(er)
and

Tmin(c,e) < ,[7/} oT < 2°¢

11



in order to deduce that
d-e

o max(c,e) < T < Zmax(c,e).
These inequalities are sharp because we have, for z = (0, y), that

Zmax(c,e) <T < Zmax(c,e)‘
Furthermore, if ¢ < e, we see, for z = (x,0), that

22T =2

if ¢ > e, then 2 = (z,y), where 2¢ + k(y) = 0, yields

d-e

d-e
ze T <Xz,

0]
We know that
mi(Jy) = 0(mi (Ky)).
In view of B.4 we recall that, for each y € J(q), we have
o(mi(Ky)) = lim P;"(dsuBr,). (6)

n—o0

(Here, we mean Bg, C C!) We define

FZ = P;"(@SHB—RJC)

With respect to theorem 2.1 we can assume that (3) actually holds in a neigh-
bourhood V of .J* in C x J(q). First of all, by definition of the escape radius we
have that FZ“ is contained in the bounded component of EFZ in C,, moreover,
for all n € N the maps

":Jg — PO,
y = Ty,

are continuous if we equip P(C) with the Hausdorff metric dg. Second, in view
of (6), there is ng such that, for n > ny,

U Ty x{y}ccw
yeJ(q)

Clearly, by continuity of I'”, for any fixed n € N, we have that

A= sup dy (T, T7) < oo,
yed(a)

12



where, for dj; > dy, we measure distances along rectifiable paths in V', VN C,,
respectively. Clearly, this implies that the convergence in (6) is uniform in y €
J(q), hence, for any &, we can find n; such that, for n > ny,

du(ly, J,) <e/3.
The I'™ are continuous, hence we find ¢ such that dy,y’) < ¢ implies that
di (L, Ty) <e/3.
This gives that
du(J,,Ty) <e.
We have shown the following theorem.

Theorem 2.3
If T is hyperbolic on J*, then

U % x{w=U 7 < {u}

y€J(q) y€J(q)

2.4 Jordan Curves

Let us from now on assume that the action of T on J* = J* is hyperbolic, J(q)
is a Jordan curve, and {.J;}, y € J(q), is a family of continuously varying Jordan
curves.

Proposition 2.4
In the above mentioned case we can find, for y € J(¢), a family of continuously
varying real-analytic Jordan domains

U, cC K,,
such that, for all y € J(q),
py(Uy) CcC Uq(y). (7)
Proof: We fix V' like above and consider, for a suitable metric,
OB.(J,;) N Ky,
where we choose € > 0 small enough such that

B.(Jy,)) €C T(B.(J;) cC V.

13



for all y € J(g), and each component 0B, (.J;) N K, is a Jordan curve. Obviously,
if ¢ is small enough, then the critical points Crit, due to p;, for y € J(g), namely,

Crit, == | {0} x {y},
yeJ(9)
are contained in the Uy, which we define to be the bounded components of 0B, (J;)
in C,. UJ
What is more important, also the converse holds.

Theorem 2.5

Let T be a skew product of the form (5), where ¢ is chosen such that J(q) is
a hyperbolic Jordan curve. If one finds, for y € J(¢), a family of continuously
varying real-analytic Jordan domains U, such that, for all y € J(g), we have that

py(Uy) CC Ug(y)
then
Jr=J

and the J; are continuously varying Jordan curves such that 7" acts hyperbolically
on J*.
Proof: We establish a hyperbolic metric on

U CT, x {}.
y€J(q)

Clearly, the Riemann maps
by :B—=C\T,

such that 1(0) = oo can be chosen to vary in a continuous way. We use the
restrictions

py: B = C\T,
in order to transport the Poincaré metric from B* to the sets
Asoy :=C\ ﬁy’

where we denote the induced metric coefficients with ),. We obtain that, for
y' € ¢ '(y), that each branch of p, is well-defined on A, moreover, for x € A,
we have that

Ay (p,' (@)

1.
Ay() <

p, ()] -

14



Clearly, on the compact invariant set
U (B, \py" (Uaw))) -
yeJ(q)
we even get, for some A > 1, that
Ay (P! ()
Ay(7)

The same reasoning as in theorem 2.1 finishes the proof. 0

v, (z)] - < 1/A.

2.5 Julia sets of Doughnut type

Definition 2.6

([6, ch. 2]) We call a skew product T of the form (5) a doughnut type map if f is
chosen such that J(q) is a hyperbolic Jordan curve and, for y € J(q), there exists
a continuously varying family of real-analytic Jordan domains U, such that, for

each y € J(q),
py(Uy) CC Uyy).-

Corollary 2.7
For a doughnut type map, we have that

Jr =T
O

We still have to show that J* is already the ‘true’ Julia set J of T (cf. (2)).
In order to do so, we have to rule out that (T%) is not weakly normal at any
point z = (x,y), for y € K(¢g). We do so by establishing the existence of C,
from definition 1.7, for any z of this type. We will make use of a theorem of
Rutishauser’s.

Theorem 2.8

([9, S. 2]) A family of complex-analytic sets of fixed dimension in a domain
B cC C" whose sheet-numbers (or areas) in B are uniformly bounded is normal
in B in that sense that one can extract a subsequence which converges in B to a
complex-analytic set of the same dimension. O

It is a simple, but remarkable fact that, if the points of C'rit, behave in a ‘tame’
way, i.e. do not escape to infinity under iteration of 7', then this also holds for

(0,9), y € K(q).

15



Lemma 2.9

For a doughnut type map the forward orbits of (0,y), y € K(q), stay bounded.
Proof: Regard the holomorphic functions (in y) P, (0), which take their maximal
modulus on 0K (q), hence on J(q), namely, for all n € N, we have that

P57 0)]] ¢y < max {|z] : x € U,} = u < oo.

O

This shows that if we take connected components of inverse images of analytic
sets of type {r} x K(gq), where |z| > Ry, under the maps P,/, then these are

one-sheeted analytic sets over K(q). This implies the following theorem.

Theorem 2.10
For a doughnut type map,

J=J".

Proof: We assume y € K(q). If 2 ¢ K, then there is an open neighbourhood of
z = (x,y) which can be used as C,. if v € K, the we take K, x{y} as C,. For
points in J; = 0K, we find a sequence of components

C: =P, " ({wn,} x K(q)),
where |z,,,| = R > Ry, such that C¥ contains points (Z,, ,y), where

n .
koo F

Clearly, any limit C; of (CF) is a one-dimensional analytic set which contains z
and is contained in 0K, hence its forward iterates under T stay bounded, which
yields that we can set C, = C}. O

Thus, we have succeeded in calculating explicitly the set from B.1. We recall
that B.i is true by definition of weak normal convergence. Now we can harvest
the fruits of our labour. We recall the notation of J*-continuous maps from [7,
ch. 3].

Corollary 2.11
A doughnut type map is J*-continuous. 0]

This implies

Corollary 2.12
The action of T" on J is topologically mixing. U

This is statement B.ii.

16



Corollary 2.13
Repelling periodic points are dense in .J, actually

J = R(T)
and we have shown B.3. O

Corollary 2.14
J equals the Shilov boundary of K, hence

J=58(T),
which settles B.2. O

We see the following.

Proposition 2.15
The Julia set can be computed by inverse iteration,

J = P(T).
Proof: For the bi-disk B,, r > Ry, we deduce from the fact, that

lim ¢ "(0sgmi(By)) = J(q)

n—o0

and the construction in 2.10 that actually

J = lim T"(8sB,).

n—o0

This implies B.4.

2.6 Entropy of Doughnuts

For basic definitions, see [11, ch. 7], for entropy theory for holomorphic maps, cf.
[1]. The statement of the existence of a measure of maximal entropy is simple.

Proposition 2.16

A measure pr of maximal entropy log(d - ) (for T'|;, so far) is supported on .J.
Proof: Clearly, (J,T) gives a mixing repeller. It is easy to find a (minimal)
generating Markov partition with d - e elements. 0

More interesting is the following fact.

17



Theorem 2.17

J is the support of the unique measure of maximal entropy for 7.

Proof: We have to check for other invariant sets under iteration of 7', disjoint
from .J. Clearly, the projection to the second coordinate of such a set must also be
invariant under iteration of q. Hence, we get the following possibilities. The first
candidate {oo} yields entropy zero. Second, on C,, where « is the unique finite
(super-)attracting fixedpoint of ¢, we have the action of p,, which is a polynomial
of degree d, hence yields entropy log(d). Any other invariant sets disjoint from
J must be in (J,¢ ;) €, x {y}. The only possible choice disjoint from J must be
contained in

y€J(q

X= ] T, x{y}

y€J(q)

We define

n—oo

Q:= lim T"(X) = ﬁ T"(X).

Clearly, by the contraction of 7" on the Uy, also

Q = lim T"(Crit,).

n—o0

For the notation cf. theorem 2.1. We have that, for some A, A > 1, p,# € R,

[ An| < p/A", (8)

|Cp| > 6 -\
and, by compactness of ;X and mT(X),

sup B, =¥ < oc.
20€T(X),neN

This implies that, for zy € €2, n big enough, we have that
1(T") (z0)[] < |Cal. (9)

In particular, this implies that if we want to find an (n, ¢)-spanning set on Crit,,
for the iteration of T, then it is sufficient to find an (n,¢)-spanning set on .J(q)
for the iteration of g. We know that, if we denote the minimal cardinality of an
(n,e)-spanning set on J(g) with r, ., then we get the following connection with
the entropy log(e) of ¢ using Bowen’s definition (cf. [11, § 7.2]), namely

log(e) = lli% lim%sup Tpe /M.

18



If we define ngy(g) as the minimal integer such that
p-u/A™ < e/3,

then it is easy to see that any (ng(¢) + n,e/3)-spanning set for Crit,, its ny()-
th images, respectively, is/are (n,e)-spanning for Q. Now, if we compute the
entropy, then we obtain

htop(T|Q) < lim lim sSup Tno(e)-l—n,e/?)/n = log(e)

=0 pooo

OJ

This proves B.5. For the remaining statement B.iii, we consider the sets C, for
z € OK \ S(T). There are two types of C,. On the one hand, if y € J(q), then
one can take C, of the form K, x{y}, clearly this implies C, ¢ K \ S(T). On
the other hand, if y € I%(q), then one can apply theorem 2.10 and also finds
C., Cc 0K \ S(T).

Figure 1 shows the Julia set of the doughnut map

( T ) ( 2% —42/10 + 10iy — 1/10 )
y )™ y?

— this may explain the name of this family of maps ...
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