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1 Introduction

In their first Rings of Operators paper from 1936 Murray and von Neu-
mann not only introduced those algebras which are nowadays known as von
Neumann algebras but they also considered for the first time a notion of
dimension which is not necessarily integer valued [63]. Since then this idea
has found a lot of applications. In particular in 1976, studying indices of el-
liptic operators on coverings, Atiyah was led to define the so called L2-Betti
numbers which are a priori real valued [1]. It turned out later that these num-
bers are in fact topological and even homotopy invariants [24]. Meanwhile
they admit of a definition completely analogous to the usual Betti numbers
[52]. The only difference is that whereas usual Betti numbers are ranks of Z-
modules the L2-Betti numbers are dimensions of modules over the group von
Neumann algebra NΓ. Here Γ can for example be the fundamental group.
In order to compute the usual Betti numbers it is often easier to pass to
rational homology and to compute vector space dimensions. In this thesis
we investigate a similar passage for von Neumann algebras. The algebra of
operators UΓ affiliated to the von Neumann algebra NΓ, which was already
introduced by Murray and von Neumann [63], plays the role of a quotient
field for NΓ. We will show that there is a notion of dimension for arbitrary
UΓ-modules which is compatible with the NΓ-dimension developed by Lück
in [52].
Moreover, the algebras UΓ are large enough to host similar quotient fields
DΓ for the group algebras CΓ. Linnell made use of this idea to prove refined
versions of the zero divisor conjecture for a large class of groups [48]. It also
leads to a natural explanation of the fact that in all known cases the L2-
Betti numbers are rational numbers. Investigating these intermediate rings
we show a kind of universal coefficient theorem for L2-homology and obtain
information about Euler characteristics of groups. We also try to clarify the
relationship to the Isomorphism Conjecture in algebraic K-theory [27].
We will now explain the results in greater detail. Let Γ be a group and let
CΓ be the complex group ring. We investigate the following commutative
square of rings, where all maps are unit-preserving embeddings of subrings.
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CΓ ✲ NΓ

DΓ
❄

✲ UΓ
❄

One should think of the upper horizontal map as a completion and of the
vertical maps as localizations. We start at the upper right corner: Let l2Γ
be a complex Hilbert space with orthonormal basis the set Γ. This Hilbert
space carries a natural Γ-action and this yields an embedding of the complex
group ring CΓ into the algebra B(l2Γ) of bounded linear operators.

Definition 1.1. The group von Neumann algebra NΓ is the closure of CΓ
in B(l2Γ) with respect to the weak operator topology.

We consider NΓ as a ring extension of CΓ. In particular we can study
CΓ-modules by applying the functor − ⊗CΓ NΓ in order to treat them in
the category of NΓ-modules. This may seem unwise at first glance, but we
even go a step further and consider a larger ring containing also unbounded
operators.

Definition 1.2. The algebra UΓ of operators affiliated to the group von
Neumann algebra NΓ consists of all closed, densely defined (unbounded)
operators which commute with the right action of Γ on l2Γ.

For details see Section 2 and Appendix I. The algebra UΓ is an Ore localiza-
tion of NΓ, see Proposition 2.8. From the ring theoretical point of view it is
a beautiful ring, namely it is a von Neumann regular ring (see 2.4), i.e. its
Tor-dimension vanishes. In particular the category of finitely generated pro-
jective UΓ-modules is abelian. In Theorem 3.12, we show the following.

Theorem 1.3. There is a well-behaved notion of dimension for arbitrary
UΓ-modules which is compatible with the NΓ-dimension studied in [52].

The advantage of working with modules in the algebraic sense in contrast to
Hilbert spaces is that all tools and constructions from (homological) algebra,
like for example spectral sequences or arbitrary limits and colimits, are now
available. The L2-Betti numbers can be read from the homology with twisted
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coefficients in UΓ, see Proposition 4.2. More generally we will show that the
natural map

K0(NΓ) → K0(UΓ)

is an isomorphism, see Theorem 3.8. Finer invariants like the Novikov-Shubin
invariants (see [67], [25], [54]) do not survive the passage from NΓ to UΓ.
Twisted homology with coefficients in UΓ is therefore the algebraic analogue
of the reduced L2-homology in the Hilbert space set-up, where the homology
groups are obtained by taking the kernel modulo the closure of the image
of a suitable chain complex of Hilbert spaces.
One of the main open conjectures about L2-homology goes back to a question
of Atiyah in [1].

Conjecture 1.4 (Atiyah Conjecture). The L2-Betti numbers of the uni-
versal covering of a compact manifold are all rational numbers.

More precisely, these numbers should be related to the orders of finite sub-
groups of the fundamental group, see 5.1. We will give an algebraic reformu-
lation of this conjecture in Section 5 and work out how it is related to the
isomorphism conjecture in algebraic K-theory [27].
In [48] Linnell proves this conjecture for a certain class C of groups which
contains free groups and is closed under extensions by elementary amenable
groups. He examines an intermediate ring DΓ of the ring extension CΓ ⊂ UΓ.

Definition 1.5. Let DΓ be the division closure of CΓ in UΓ, i.e. the smallest
division closed intermediate ring, compare Definition 13.14.

Linnell shows that for groups in the class C which have a bound on the orders
of finite subgroups these rings are semisimple. We will examine his proof in
detail in Section 6 and Section 8. We will emphasize that for groups in the
class C the ring DΓ is a localization of CΓ, see Theorem 8.3 and Theorem 8.4.
But for non-amenable groups one has to replace the Ore localization by a
universal localization in the sense of Cohn, compare Appendix III. Contrary
to Ore localization universal localization need not be an exact functor. In
Theorem 9.1, we will show the following result.

Theorem 1.6. For groups in the class C with a bound on the orders of finite
subgroups we have

TorCΓp (−;DΓ) = 0 for p ≥ 2.
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This leads to a universal coefficient theorem for L2-homology (Corollary 9.2)
and to the following result, compare Corollary 9.3.

Corollary 1.7. The group Euler characteristic for groups in the class C with
a bound on the orders of finite subgroups is nonnegative.

In Section 7 we will investigate the class C and show that it is closed under
certain processes, e.g. under taking free products. For instance PSL2(Z)
belongs to the class C. In Section 10 we will collect results about the algebraic
K-theory of our rings CΓ, DΓ, NΓ and UΓ. In particular we compute K0 of
the category of finitely presented NΓ-modules, see Proposition 10.10. Several
Appendices which collect material mostly from ring theory will hopefully
make the results more accessible to readers with a different background.
To give the reader an idea we will now examine the easiest non-trivial exam-
ples.

Example 1.8. Let Γ = Z be an infinite cyclic group. We can identify
the Hilbert space l2Γ via Fourier transformation with the space  L2(S1, µ)
of square integrable functions on the unit circle S1 with respect to the usual
measure. If we think of S1 as embedded in the complex plane we can iden-
tify the group algebra CZ with the algebra of Laurent polynomials C [z±1]
considered as functions on S1. A polynomial operates on  L2(S1, µ) by mul-
tiplication. The von Neumann algebra can be identified with the algebra
 L∞(S1, µ) of (classes of) essentially bounded functions. The algebra of affili-
ated operators is in this case the algebra  L(S1) of (classes of) all measurable
functions. The division closure of C [z±1] in  L(S1) is the field C(z) of rational
functions. The diagram on page 2 becomes in this case

C
[

z±1
]

✲  L∞(S1, µ)

C(z)
❄

✲  L(S1).
❄

Note that the inverse of a Laurent polynomial which has a zero on S1 is not
bounded, but of course it is a measurable function. We obtain C(z) from
C [z±1] by inverting all non-zerodivisors, i.e. all nontrivial elements.

Example 1.9. Let Γ = Z ∗ Z be the free group on two generators. This
example is already much more involved. It will turn out that DΓ again is

4



a skew field. The proof of this fact uses Fredholm module techniques and
will be presented in Section 6, compare also Theorem 5.16. This time DΓ
is a universal localization (and even a universal field of fractions) of CΓ in
the sense of Cohn [15], compare Appendix III. The functor − ⊗CΓ DΓ is no
longer exact.

1.1 Notations and Conventions

All our rings are associative and have a unit. Ring homomorphisms are
always unit-preserving. For a ring R we denote by R× the group of invertible
elements in the ring. M(R) denotes the set of matrices of arbitrary (but
finite) size. GL(R) is the set of invertible matrices. We usually work with
right-modules since these have the advantage that matrices which represent
right linear maps between finitely generated free modules are multiplied in
the way the author learned as a student. An idempotent in a ring R is an
element e with e2 = e. We talk of projections only if the ring is a ∗-ring. They
are by definition elements p in the ring with p = p2 = p∗. A non-zerodivisor
in a ring R is an element which is neither a left- nor a right-zerodivisor. A
union

⋃

i∈I Mi is called directed if for i and j in I there always exists a k ∈ I
such that Mi ∪Mj ⊂ Mk. More notations can be found in the glossary on
page 140.
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2 The Algebra of Operators Affiliated to a

Finite von Neumann Algebra

We will now introduce one of our main objects of study: The algebra UΓ of
operators affiliated to the group von Neumann algebra NΓ. We will show
that UΓ is a von Neumann regular ring and that it is a localization of NΓ.
Even though we are mainly interested in these algebras associated to groups it
is convenient to develop a large part of the following more generally for finite
von Neumann algebras. Let B(H) be the algebra of bounded operators on the
Hilbert space H. A von Neumann algebra is a ∗-closed subalgebra of B(H)
which is closed with respect to the weak (or equivalently the strong) operator
topology. The famous double commutant theorem of von Neumann says that
one could also define a von Neumann algebra as a ∗-closed subalgebra with
the property A′′ = A. Here M ′ for a subset M ⊂ B(H) is the commutant

M ′ = {a ∈ B(H) | am = ma for all m ∈M}.

Recall that a von Neumann algebra A is finite if and only if there is a normal
faithful trace, i.e. a linear function trA : A → C, so that trA(ab−ba) = 0 and
trA(a∗a) = 0 implies a = 0. Normality means that the trace is continuous
with respect to the ultraweak topology. Equivalently given an increasing net
pλ of projections limλ trA(pλ) = trA(limλ pλ). This is the non-commutative
analogue of the monotone convergence theorem in integration theory. Note
that an increasing net of projections pλ converges strongly to the projection
onto the closure of the subspace generated by the pλ(H), and since a von
Neumann algebra is strongly closed this projection lies in A. This continuity
property of the trace will be crucial later, when we develop a dimension
function for arbitrary U -modules. Note that the trace is not unique. However
if A = NΓ is a group von Neumann algebra we will always use the trace given
by a 7→< ae, e > where e ∈ Γ ⊂ l2Γ is the unit of Γ.

Definition 2.1. Given a finite von Neumann algebra A we denote by U
be the set of all (unbounded) operators a = (a, dom(a)) which satisfy the
following three conditions:

(i) a is densely defined, i.e. dom(a) is dense in H.

(ii) a is closed, i.e. its graph is closed in H ⊕H.
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(iii) a is affiliated, i.e. for every operator b ∈ A′ we have

ba ⊂ ab.

If A = NΓ is a group von Neumann algebra we write UΓ instead of U .

Here c ⊂ d means that the domain of the operator c is contained in the
domain of d, and restricted to this smaller domain the two coincide. For more
information on bounded and unbounded operators we refer to Appendix I.
Note that an operator a ∈ U which is bounded lies in A by the double
commutant theorem. Therefore A is a subset of U . We define the sum and
product of two operators a, b ∈ U as the closure of the usual sum and product
of unbounded operators. It is not obvious that these closures exist and lie in
U , but in fact even much more holds.

Theorem 2.2. The set U together with these structures is a ∗-algebra which
contains the von Neumann algebra A as a ∗-subalgebra.

Proof. This is already proven in the first Rings of Operators paper by Murray
and von Neumann [63]. We reproduce a proof in Appendix I.

Example 2.3. Let X ⊂ R be a closed subset. Let A =  L∞(X,µ) be the
von Neumann algebra of essentially bounded functions on X with respect to
the Lebesgue measure µ. This algebra acts on the Hilbert space  L2(X,µ) of
square integrable functions by multiplication. The associated algebra U of
affiliated operators can be identified with the algebra  L(X;µ) of all (classes
of) measurable functions on X [73, Chapter 5, Proposition 5.3.2].

Note that on U there is no reasonable topology anymore. So U does not fit
into the usual framework of operator algebras. The following tells us that we
have gained good ring theoretical properties.

Proposition 2.4. The algebra U is a von Neumann regular ring, i.e. for
every a ∈ U there exists b ∈ U so that aba = a.

Proof. Every a ∈ U has a unique polar decomposition a = us where u is a
partial isometry in A and s ∈ U is nonnegative and selfadjoint. We have
u∗us = s, compare Proposition 11.5 and Proposition 11.9. So if we can solve
the equation sts = s with some t ∈ U we are done because with b = tu∗ we
get

aba = ustu∗us = usts = us = a.
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Define a function f on the real half line by

f(λ) =

{

0 if λ = 0
1
λ

if λ > 0
.

The function calculus 11.4 tells us that sf(s)s = s.

This simple fact has a number of consequences. In Appendix II we collect
several alternative definitions of von Neumann regularity and a few of the
most important properties. From homological algebra’s point of view von
Neumann regular rings constitute a distinguished class of rings. They are
exactly the rings with vanishing weak- (or Tor-) dimension.

Note 2.5. A ring R is von Neumann regular if and only if every module is
flat, i.e. for every R-module M the functor −⊗R M is exact.

Proof. Compare 12.1.

Passing from A to U more operators become invertible since unbounded
inverses are allowed.

Lemma 2.6. Let a ∈ U be an operator. The following statements are equiv-
alent.

(i) a is invertible in U .

(ii) a is injective as an operator, i.e. ker(a : dom(a) → H) = 0.

(iii) a has dense image, i.e. im(a) = a(dom(a)) = H.

(iv) la : U → U given by b 7→ ab is an isomorphism of right U-modules.

If moreover a ∈ A ⊂ U the above statements are also equivalent to:

(v) a is a non-zerodivisor in A.

(vi) la : A → A, b 7→ ab is injective.

Proof. (i) ⇔ (ii) ⇔ (iii): We only show (ii) ⇒ (i) and (iii) ⇒ (i). Let a = us
be the polar decomposition of a. Here u is a partial isometry and hence
p = u∗u and q = uu∗ are projections. We have

im(a) = im(u) = im(uu∗) = im(q), and

ker(a) = ker(u) = ker(u∗u) = ker(p).
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Now if im(a) = H, then q = id and 0 = trA(id)− trA(q) = trA(id)− trA(p) =
trA(id− p). Since the trace is faithful this implies p = id and therefore u is a
unitary operator and in particular invertible. In the case ker(a) = 0 we argue
similarly. Now since ker(s) = ker(u) = 0 we can use the function calculus
(Proposition 11.4) to define an inverse f(s)u∗ with f(λ) = 1

λ
for λ 6= 0.

(i) ⇔ (iv) is clear.
(i) ⇒ (v) and (v) ⇒ (vi) are easy. It remains to show (vi) ⇒ (ii). Suppose
the bounded operator a ∈ A has a nontrivial kernel. If pker(a) denotes the
projection onto the kernel we have apker(a) = 0 and we see that la is not
injective.

An operator with these properties is also called a weak isomorphism. The
function calculus also allows us to write every operator as a fraction.

Lemma 2.7. Every b ∈ U can be written in the form

b = at−1

with a, t ∈ A and t invertible in U .

Proof. Let b = us be the polar decomposition of b (compare Proposition 11.5).
We want to replace s by an invertible operator and use the function calculus.
Let p be the projection 1 − u∗u. Since uu∗u = u we have b = us = u(p+ s).
Since ker(s) = ker(us) = ker(u∗u) the projection onto the kernel of s is p.
In particular s′ = p + s is a selfadjoint positive operator with trivial kernel.
Now take for instance

f(λ) =

{

λ λ ≤ 1
1 λ > 1

and g(λ) =

{

1 λ ≤ 1
1
λ

λ > 1
.

Then f(s′) and g(s′) are bounded operators affiliated to A and

us = us′ = uf(s′)g(s′)−1

with uf(s′), g(s′) ∈ A and g(s) invertible in U .

Now we show that U is an Ore localization of A. For the relevant definitions
we refer to the first subsection of Appendix III.

Proposition 2.8. An operator in A is a non-zerodivisor if and only if it
is invertible in U . The ring A satisfies both Ore conditions with respect to
the set T of all non-zerodivisors and the (classical) ring of fractions AT−1 is
isomorphic to the algebra of affiliated operators U .
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Proof. The first statement was already shown in Lemma 2.6. Now suppose
(a, t) ∈ A × T is given. By the preceding Lemma we can write t−1a ∈ U as
a′t′−1 with (a′, t′) ∈ A× T . This implies the right Ore condition for the pair
(A, T ). Applying the anti-isomorphism ∗ : U → U yields the right handed
version. Now since the inclusion A ⊂ U is T -inverting, the universal property
of AT−1 gives us a map AT−1 → U . Using again Lemma 2.7 one verifies
that this map is an isomorphism, compare Proposition 13.17(ii).

Corollary 2.9. The ring U is flat over A, i.e. the functor −⊗A U is exact.

Proof. Ore localization is an exact functor. Compare 13.6.

In the next section we will need the following strengthening of von Neumann
regularity.

Proposition 2.10. The algebra U of operators affiliated to a finite von Neu-
mann algebra is a unit regular ring, i.e. for every element a ∈ U there exists
a unit b ∈ U× with aba = a.

Proof. We have to modify the proof given for von Neumann regularity above
(2.4). Let a = us be the polar decomposition. Let p be the projection
uu∗ and q = u∗u. By definition, this means that p and q are Murray von
Neumann equivalent (p ∼MvN q). Note that p, q, u and u∗ are bounded and
therefore in A. In a finite von Neumann algebra p ∼MvN q implies 1−p ∼MvN

1−q. Compare [82, Chapter V, Proposition 1.38]. (This follows also because
one knows that p ∼MvN q holds if and only if trZ(A)(p) = trZ(A)(q), where
trZ(A) denotes the center valued trace [41, Proposition 8.4.8 on page 532].)
Therefore there exists a partial isometry v with 1− p = vv∗ and 1− q = v∗v.
Now u∗ + v∗ is an isometry and in particular invertible since

(u∗ + v∗)(u+ v) = u∗u+ v∗u+ u∗v + v∗v = q + 1 − q = 1

and similar for (u+ v)(u∗ + v∗). Here we used the orthogonal decomposition
H = pH ⊕ (1 − p)H = im u ⊕ ker v∗ = ker u∗ ⊕ im v to check that v∗u =
u∗v = 0. Moreover we have (u∗ + v∗)u = u∗u and we get with b = t(u∗ + v∗)

aba = ust(u∗ + v∗)us = usts.

It remains to be found an invertible t ∈ U with sts = s. So take

f(λ) =

{

1 if λ = 0
1
λ

if λ > 0
.
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The function calculus implies sf(s)s = s.

Another useful refinement of von Neumann regularity which is very natural
in the context of operator algebras is ∗-regularity.

Note 2.11. The ∗-algebra U is a ∗-regular ring, i.e. it is a von Neumann
regular ∗-ring in which a∗a = 0 implies a = 0.

Proof. If a is densely defined and closed the domain of a∗a is a common core
for a and a∗a, i.e. a can be reconstructed (as the closure) from its restriction
to dom(a∗a). Therefore 0 =< a∗a(x), x >=< a(x), a(x) >= |a(x)|2 for all
x ∈ dom(a∗a) implies a = 0. Compare [73, Theorem 5.1.9].

For more on unit regular and ∗-regular rings see Appendix II.
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3 Dimensions

The main aim of this section is to prove that there is a well-behaved notion of
dimension for arbitrary U -modules (Theorem 3.12), and that −⊗AU induces
an isomorphism in K0 (Theorem 3.8). As in the preceding section A denotes
a finite von Neumann algebra and U the algebra of operators affiliated to A.

3.1 A-modules, U-modules and Hilbert A-modules

On our way to a dimension for arbitrary modules we start with finitely gener-
ated ideals of the ring U itself, pass to finitely generated projective modules,
then to finitely generated modules and finally to arbitrary modules. In this
subsection we mainly deal with the first step. But it is also preparatory for
the passage to finitely generated modules. The results for finitely generated
projective modules can also be formulated in terms of A-modules or of so
called Hilbert A-modules. To clarify the relation between these different
approaches we systematically deal with all of them.
It is convenient to organize all submodules of a given finitely generated pro-
jective module in one object: The lattice of submodules.
A lattice is a partially ordered set (L,≤) in which any two elements {x, y}
have a least upper bound and a greatest lower bound. A lattice is called
complete if for every subset S ⊂ L there exists the least upper bound
denoted by sup(S) ∈ L and the greatest lower bound inf(S) ∈ L. Let L
and L′ be complete lattices. Suppose f : L → L′ is an order isomorphism
of partially ordered sets, then it is also a lattice isomorphism in the sense
that f(sup(S)) = sup(f(S)) and f(inf(S)) = inf(f(S)).
Before we give some examples let us recall the definition of a Hilbert A-
module: The left regular representation for group von Neumann algebras
has an analogue for an arbitrary finite von Neumann algebra. Let l2(A) =
l2(A; tr) be the Hilbert space completion of A with respect to the inner
product given by

< a, b >= tr(b∗a).

(This is known as the GNS construction.). There are natural left and right
A-module structures on l2(A) which give rise to embeddings

A → B(l2(A)) and Aop → B(l2(A)).
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It turns out that with respect to these embeddings A′ = Aop and (Aop)′ = A.
We will always consider A as a subalgebra of B(l2(A)). So for us l2(A) is the
defining Hilbert space for A.

Definition 3.1. A finitely generated Hilbert A-module is a Hilbert space H
together with a continuous right A-module structure such that there exists a
right A-linear isometric embedding of H onto a closed subspace of l2(A)n for
some n ∈ N. A morphism of Hilbert A-modules is a bounded right A-linear
map.

Here is now the list of examples of lattices:

(i) The lattice LProj(A) of projections in a von Neumann algebra
A with order given by p ≤ q iff qp = p. This partial order coincides
with the usual order on positive operators ([62, Theorem 2.3.2]). It is
well known that this lattice is complete ([82, Chapter V, Poposition
1.1])

(ii) For an arbitrary ∗-ring R the set of projections is only a partially
ordered set.

(iii) Let M be a finitely generated Hilbert-A-module. Then the set of
closed Hilbert A-submodules ordered by inclusion forms a lat-
tice LHilb(M). If M = l2(A) is the defining Hilbert space for the von
Neumann algebra A, then this lattice is known as the lattice of Hilbert
subspaces affiliated to A, i.e K ⊂ l2(A) is affiliated if the corresponding
projection pK belongs to A (operating from the left).

(iv) Given an arbitrary ring R and a right module MR one can consider
the lattice of all submodules Lall(MR). This lattice is complete.
Supremum and infimum correspond to sum respectively intersection of
modules.

(v) Let R be a coherent ring (compare 14.5) and let PR a finitely generated
projective right R-module. Then the set Lfg(PR) of all finitely gen-
erated submodules forms a sublattice of the lattice Lall(PR). So
sup{M,N} and inf{M,N} again correspond to sum and intersection
of modules. The important point here is, that over a coherent ring the
intersection of two such finitely generated submodules is again finitely
generated, compare [81, Chapter I, Proposition 13.3]. In particular, all
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this applies to a von Neumann regular ring. In that case all finitely
generated submodules are direct summands. If R is a semihereditary
ring (e.g. A) all finitely generated submodules are projective, compare
14.5. Such a lattice may not be complete. But even if it is complete
the two notions of sup{Mi | i ∈ I} for infinite families of finitely gen-
erated submodules may differ when considered in Lfg(PR) respectively
in Lall(PR). This phenomenon occurs in example 3.20.

(vi) If R is a ring and PR a finitely generated projective right R-module,
then the set Lds(PR) of submodules which are direct summands
is a priori only a partially ordered set. Of course, if R is von Neu-
mann regular, then Lds(PR) = Lfg(PR). But for a semihereditary ring
(for example a finite von Neumann algebra) we have in general only
Lds(PR) ⊂ Lfg(PR). The next theorem tells us that Lds(AA) is order
isomorphic to a lattice and therefore it is a lattice. But note that it is
not clear what the operations sup and inf are in terms of A-modules.

For more information on lattices and further examples see [81, Chapter III].

Proposition 3.2. Given a finite von Neumann algebra A and its algebra
of affiliated operators U , all partially ordered sets in the following commuta-
tive diagram are complete lattices, and all maps are order isomorphisms and
therefore lattice isomorphisms.

LHilb(l
2(A)) ✛ LProj(A) ✲ Lds(AA)

LProj(U)
❄

✲ Lfg(UU)
❄

The maps are given as follows:

LProj(A) → LHilb(l
2(A)) p 7→ im(p : l2(A) → l2(A))

LProj(A) → LProj(U) p 7→ p
LProj(A) → Lds(AA) p 7→ pA
LProj(A) → Lfg(UU) p 7→ pU
Lds(AA) → Lfg(UU) I 7→ IU .

Here IU is the right U-module generated by I in U .
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Proof. Commutativity of the diagram is obvious. That all lattices are com-
plete follows once we have proven that they are all isomorphic from the
completeness of LProj(A). In order to prove that a map is a lattice isomor-
phism it is sufficient to show that it is an order isomorphism. That sending
p to im(p : l2(A) → l2(A)) yields a bijection LProj(A) → LHilb(l

2(A)) is
well known. One verifies that this bijection is an order isomorphism. By
commutativity of the square it is sufficient to deal only with three maps in
the square. Since projections in U are bounded operators they already lie in
A, so the lattices LProj(A) and LProj(U) coincide. Given a finitely generated
right ideal IU in the ∗-regular ring U there is a unique projection p ∈ U such
that pU = IU , compare 12.5. This leads to the bijection LProj(U) → Lfg(UU).
If p ≤ q, then multiplying pU ⊂ U from the left by q leads to pU ⊂ qU . Note
that in general an order preserving bijection need not be an order isomor-
phism. But of course if pU ⊂ qU , then multiplying from the left by 1 − q
yields p ≤ q. It remains to prove that LProj(A) → Lds(AA) is surjective;
then injectivity follows from the commutativity of the diagram. So given
a right ideal I in A which is a direct summand, there is an idempotent e
such that eA = I. We have to replace the idempotent by a projection. The
following lemma finishes the proof. That the lemma applies is the content of
11.2.

Lemma 3.3. In a ∗-ring R where every element of the form 1 + a∗a is
invertible the following holds: Given an idempotent e there always exists a
projection p, such that pR = eR.

Proof. Set z = 1 − (e∗ − e)2 = 1 + (e∗ − e)∗(e∗ − e). Then z = z∗ and
ze = ez = ee∗e and also z−1e = ez−1. If we now set p = ee∗z−1 then p is a
projection and pe = e and ep = p. This leads to pR = eR.

We are not primarily interested in these lattices of submodules, but rather
in the set of isomorphism classes of such modules. This is the first step
in passing from embedded submodules to abstract finitely generated projec-
tive modules and then later to arbitrary modules. The point is that over
a unit-regular ring isomorphism of submodules can be expressed in lattice
theoretic terms. Note that a direct sum decomposition P = M ⊕ N can be
characterized by inf{M,N} = 0 and sup{M,N} = P .

Lemma 3.4. Let R be a unit-regular ring and let RR be the ring considered
as a right R-module. Two finitely generated submodules L and M are isomor-
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phic if and only if they have a common complement in RR, i.e. a submodule
N exists with RR = M ⊕N and RR = L⊕N .

Proof. Compare Corollary 4.4 and Theorem 4.5 in [30].

We obtain the following refined information on the diagram in Proposi-
tion 3.2.

Proposition 3.5. The lattice isomorphisms in Proposition 3.2 induce bijec-
tions of isomorphism classes, where isomorphism of projections p ∼= q means
there exist elements x and y in A respectively U such that p = xy and q = yx.

Proof. Again we only have to deal with four of the five maps. The state-
ment for the map Lds(AA) → Lfg(UU) will follow from the commutativ-
ity of the square. We begin with the maps LProj(A) → Lds(AA) and
LProj(U) → Lfg(UU). Let R be an arbitrary ring. If p = xy and q = yx, then
left multiplication by x respectively y yield mutually inverse homomorphisms
between pR and qR. On the other hand given such mutually inverse homo-
morphisms the image of p respectively q under these homomorphisms are
possible choices for x and y. Next we handle the map LProj(A) → LProj(U).
The only difficulty is to show that if p and q are isomorphic (alias alge-
braically equivalent) inside U , then they are already isomorphic in A. The
converse is obviously true. From Lemma 3.4 above we know that isomorphic
finitely generated ideals in U have a common complement. We have thus
expressed isomorphism in lattice theoretic terms. Since we already know
from Proposition 3.2 that the map is a lattice isomorphism, p and q have
a common complement in LProj(A). The following lemma, which is due to
Kaplansky, finishes the proof for the map LProj(A) → LProj(U) since partial
isometries are bounded and therefore in A.
The lemma also tells us that projections p and q in A are isomorphic or
algebraically equivalent if and only if they are Murray von Neumann equiv-
alent. Remains to be examined the map LProj(A) → LHilb(l

2(A)). That
isomorphic affiliated subspaces of l2(A) correspond to Murray von Neumann
equivalent projections was the original motivation for the definition of this
notion of equivalence. On the one hand the partial isometry gives an isomor-
phism between affiliated subspaces. On the other hand one has to replace an
arbitrary isomorphism by an isometry using the polar decomposition.

Lemma 3.6. If two projections p and q in a von Neumann algebra A have
a common complement in the lattice of projections LProj(A), then they are
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already Murray von Neumann equivalent, i.e. there is a partial isometry u ∈
A such that p = u∗u and q = uu∗.

Proof. See [42, Theorem 6.6(b)]. There it is proven more generally for AW ∗-
algebras.

Since Mn(A) is again a finite von Neumann algebra and its algebra of affil-
iated operators is isomorphic to Mn(U) one can apply the above results to
matrix algebras.

Corollary 3.7. There is a commutative diagram of complete lattices and
lattice isomorphisms, where all the maps are compatible with the different
notions of isomorphism for the elements of the lattices.

LHilb(l
2(A)n) ✛ LProj(Mn(A)) ✲ Lds(Mn(A)Mn(A)) ✲ Lds(An

A)

LProj(Mn(U))
❄

✲ Lfg(Mn(U)Mn(U))
❄

✲ Lfg(Un
U )

❄

There are stabilization maps

LHilb(l
2(A)n) → LHilb(l

2(A)n+1)

LProj(Mn(A)) → LProj(Mn+1(A))

. . .

Lfg(Un
U ) → Lfg(Un+1

U )

and these maps are compatible with the above lattice isomorphisms and the
different notions of isomorphism for the elements of the lattices.

Proof. The map Lds(Mn(A)Mn(A)) → Lds(An
A) is given by −⊗Mn(A) An

A fol-
lowed by the map induced from the natural isomorphism of right A modules
Mn(A) ⊗Mn(A) An

A
∼= An

A. Morita equivalence tells us that − ⊗A An
Mn(A)

followed by a natural isomorphism is an inverse of this map. The same ar-
gument applies to U . The vertical map on the right is given by mapping
a submodule M ⊂ An to the U -module it generates inside Un. Since the
diagram commutes, this map is also a lattice isomorphism.

For a ring R let Proj(R) denote the abelian monoid of isomorphism classes
of finitely generated projective modules. An immediate consequence of the
above is the following.
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Theorem 3.8. The functor −⊗A U induces an isomorphism of monoids

Proj(A) → Proj(U).

In particular the natural map

K0(A) → K0(U)

is an isomorphism.

Proof. The maps Lds(An
A) → Lfg(Un

U ) are compatible with isomorphism,
stabilization and direct sums.

For more on the algebraic K-theory of A and U the reader should consult
Section 10.

3.2 A Notion of Dimension for U-modules

Let us now look at dimension functions. Given a faithful normal trace
trA : A → C we obtain a map

dim : LProj(A) → R p 7→ trA(p).

Extending the trace to matrices by

trMn(A)((ai,j)) =
∑

trA(ai,i)

yields maps

dim : LProj(Mn(A)) → R

which are compatible with the stabilization maps. Of course we normalize the
traces such that trMn(A)(1n) = n. Because of the trace property dim is well-
defined on isomorphism classes of projections. Given a finitely generated
projective module over A or U there is always an isomorphic module M
which is a direct summand in An respectively Un for some n ∈ N. Similarly
a finitely generated Hilbert A-module is isomorphic to a closed submodule
of l2(A)n for some n ∈ N. Sending these modules through the diagram of
3.7 to their corresponding projections in Mn(A) and taking the trace gives a
real number: The dimension of M . Of course for Hilbert A-modules this is
the dimension considered for example in [14], [10], [11]. For an overview of
possible applications see [54]. For A-modules we get the notion of dimension
considered in [51]. The following proposition formulates the corresponding
result for finitely generated projective U -modules.
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Proposition 3.9. There is a well-defined additive real valued notion of di-
mension for finitely generated projective U-modules. More precisely: Given
a finitely generated projective U-module M we can assign to it a real number
dimU(M), such that:

(i) dimU(M) depends only on the isomorphism class of M .

(ii) dimU(M ⊕N) = dimU(M) + dimU(N).

(iii) dimU(M ⊗A U) = dimA(M) if M is a finitely generated projective A-
module.

(iv) M = 0 if and only if dimU(M) = 0.

Proof. (i) and (iii) follow immediately from 3.7. Up to isomorphism and
stabilization a direct sum of modules corresponds to the block diagonal sum
of projections, this yields (ii). Faithfulness of the trace implies (iv).

So far we have not used the fact that the lattices are complete. We will see
that this will enable us to extend the notion of dimension to arbitrary U -
modules. The following definition is completely analoguous to the definition
of the dimension for A-modules given in [52].

Definition 3.10. Let M be an arbitrary U -module. Define dim′
U(M) ∈

[0,∞] as

dim′
U(M) = sup{dimU(P ) |P ⊂M,P fin. gen. projective submodule}.

The next lemma is the main technical point in proving that this dimension
is well-behaved and of course it uses the completeness of the lattices.
If K is a submodule of the finitely generated projective module M we define

K =
⋂

K⊂Q⊂M

Q ⊂ M,

where the intersection is over all finitely generated submodules Q of M , which
contain K.

Lemma 3.11. Let K be a submodule of Un. Since the lattice Lfg(Un
U ) is

complete the supremum of the set {P |P ⊂ K, P finitely generated} exists.
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(i) We have

K = sup{P |P ⊂ K, P finitely generated}

and this module is finitely generated and therefore projective.

(ii) We have

dim′
U(K) = dimU(K).

Proof. (i) Let {Pi | i ∈ I} be the system of finitely generated submodules
and {Qj | j ∈ J} be the system of finitely generated modules containing K.
Since every element of K generates a finitely generated submodule of K we
know that K ⊂ sup{Pi | i ∈ I}. Since the lattice is complete sup{Pi | i ∈ I}
is one of the finitely generated modules containing K in the definition of K.
We get K ⊂ sup{Pi | i ∈ I}. Since Pi ⊂ Qj for i, j arbitrary it follows that
sup{Pi | i ∈ I} ⊂ Qj for all j ∈ J and therefore sup{Pi | i ∈ I} ⊂ K.
(ii) From (i) we know that K is finitely generated projective. Let p be the
projection corresponding to K and pi be those corresponding to the Pi, then
p is the limit of the increasing net pi and normality of the trace implies the
result.

Theorem 3.12. Let dimA be the dimension for A-modules considered in
[52]. The dimension dim′

U defined above has the following properties.

(i) Invariance under isomorphisms: dim′
U(M) depends only on the isomor-

phism class of M .

(ii) Extension: If Q is a finitely generated projective module, then

dim′
U(Q) = dimU(Q).

(iii) Additivity: Given an exact sequence of modules

0 →M0 →M1 →M2 → 0

we have

dim′
U(M1) = dim′

U(M0) + dim′
U(M2).
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(iv) Cofinality: Let M =
⋃

i∈I Mi be a directed union of submodules (i.e.given
i, j ∈ I there always exists an k ∈ I, such that Mi,Mj ⊂Mk) then

dim′
U(M) = sup{dim′

U(Mi) | i ∈ I}.

These four properties determine dim′
U uniquely. Moreover the following holds.

(v) If M is an A-module, then dim′
U(M ⊗A U) = dimA(M).

(vi) If M is finitely generated projective, then dim′
U(M) = 0 if and only if

M = 0.

(vii) Monotony: M ⊂ N implies dim′
U(M) ≤ dim′

U(N).

Notation 3.13. After having established the proof we will write dimU in-
stead of dim′

U . This is justified by (ii).

Proof. (i) Invariance under isomorphisms: This follows from the definition
and the corresponding property 3.9 (i) for finitely generated projective mod-
ules.
(ii) Extension property: Let P be a finitely generated projective submodule
of the finitely generated projective module Q, then since U is von Neumann
regular P is a direct summand of Q. The additivity for finitely generated
projective modules 3.9 (ii) implies that dimU(P ) ≤ dimU(Q). The claim
follows.
(iv) Cofinality: Let M =

⋃

i∈I Mi be a directed union. It is obvious from the
definition that dim′

U(Mi) ≤ dim′
U(M) and therefore sup{dim′

U(Mi) | i ∈ I} ≤
dim′

U(M). Let now P ⊂M be finitely generated projective. Since the system
is directed there is an i ∈ I such that Mi contains all generators of P and
therefore P itself. It follows that dimU(P ) ≤ dim′

U(Mi) ≤ sup{dim′
U(Mi) | i ∈

I} and finally

sup{dimU(P ) |P ⊂M,P fin. gen. projective} ≤ sup{dim′
U(Mi) | i ∈ I}.

(vii) Monotony: M ⊂ N implies dim′
U(M) ≤ dim′

U(N), since on the left one
has to take the supremum over a smaller set of numbers.
(iii) Additivity: Let

0 →M0
i✲ M1

p✲ M2 → 0
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be an exact sequence. For every finitely generated projective submodule
P ⊂M2 there is an induced sequence

0 →M0 → p−1(P ) → P → 0

which splits. So p−1(P ) ∼= M0 ⊕ P . From

{Q⊕ P |Q ⊂M0, Q f.g.proj.} ⊂ {Q′ |Q′ ⊂M0 ⊕ P, Q′ f.g.proj. }

it follows that dim′
U(M0)+dimU(P ) ≤ dim′

U(M0⊕P ). The monotony implies
dim′

U(M0) + dimU(P ) ≤ dim′
U(p−1(P )) ≤ dim′

U(M1). Taking the supremum
over all P leads to dim′

U(M0) + dim′
U(M2) ≤ dim′

U(M1). Now to the reverse
inequality: Let Q ⊂M1 be a finitely generated projective submodule. There
are two exact sequences:

0 → i(M0) ∩Q → Q→ p(Q) → 0

0 → i(M0) ∩Q → Q→ Q/i(M0) ∩Q→ 0

Because of 3.11 (i) the second one is an exact sequence of finitely generated
projective modules and hence by 3.9 we already know that

dim′
U(Q) = dim′

U(i(M0) ∩Q) + dim′
U(Q/i(M0) ∩Q).

Using 3.11 (ii)

dim′
U(Q) = dim′

U(i(M0) ∩Q) + dim′
U(Q/i(M0) ∩Q)

follows. Now there is a split epimorphism p(Q) → Q/i(M0) ∩Q yielding
dim′

U(p(Q)) ≥ dim′
U(Q/i(M0) ∩Q) by monotony. So

dim′
U(Q) ≤ dim′

U(i(M0) ∩Q)) + dim′
U(p(Q))

and monotony gives

dim′
U(Q) ≤ dim′

U(M0) + dim′
U(M2).

Taking the supremum over all finitely generated submodules Q ⊂M1 finally
gives dim′

U(M1) ≤ dim′
U(M0) + dim′

U(M2).
(vi) Was already proven in 3.9.
Let us now prove uniqueness. This is done in several steps.
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Step1: The extension property determines dim′
U uniquely on finitely gener-

ated projective modules.
Step2: Let now K ⊂ Q be a submodule of a finitely generated projective
module. The module K is the directed union of its finitely generated sub-
modules K =

⋃

i∈I Ki. Since U is von Neumann regular the Ki are projective
(semihereditary would be sufficient here). Now dim′

U(K) is uniquely deter-
mined by cofinality and Step1.
Step3: If M is finitely generated there is an exact sequence 0 → K →
Un → M → 0. Additivity together with Step2 implies the result for finitely
generated modules.
Step4: An arbitrary module is the directed union of its finitely generated
submodules and again one applies cofinality.
(v) The proof follows the same pattern as the proof of uniqueness. Note
that it is shown in [52] that the dimension dimA for A-modules also has the
properties (i) to (iv).
Step1: For finitely generated projective A-modules this is the content of
3.9(iii).
Step2: A submodule K of a finitely generated projective A-module is the
directed union of its finitely generated submodules Ki which are projective
since A is semihereditary. Since −⊗AU is exact and commutes with colimits
K ⊗A U is the directed union of the Ki ⊗A U . Now apply cofinality of dimA

and dim′
U and use Step1.

Step3: For a finitely generated module M applying − ⊗A U to the exact
sequence 0 → K → An → M → 0 yields an exact sequence. Now use Step2
and the additivity of dimA respectively dim′

U .
Step4: An arbitrary module is the directed union of its finitely generated
submodules. Proceed as in Step2 and use Step3.

Note that this proof is independent of that one for dimA in [52] which uses
properties of the functor ν constructed in [51]. One could therefore take
dimA(M) = dimU(M ⊗A U) as a definition.

3.3 The Passage from A-modules to U-modules

Thinking of U as a localization of A it is no surprise that on the one hand we
lose information by passing to U -modules, but on the other hand U -modules
have better properties. For example, every finitely presented U -module is
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finitely generated projective and the category of finitely generated projective
U -modules is abelian. We will now investigate this passage systematically.

Definition 3.14. For an A-module M we define its torsion submodule tM
as

tM = ker(M →M ⊗A U).

A module M is called a torsion module if M ⊗A U = 0 or equivalently
tM = M . A module is called torsionfree if tM = 0.

This is consistent with the terminology for example in [81, page 57] because U
is isomorphic to the classical ring of fractions of A. An element m ∈M lies in
tM if and only if it is a torsion element in the following sense: There exists a
non-zerodivisor s ∈ A, such that ms = 0. Compare [81, Chapter II, Corollary
3.3]. The module M/tM is torsionfree since ms = ms = 0 ∈M/tM implies
the existence of s′ with mss′ = 0 and therefore m ∈ tM .
On the other hand, following [52, page 146] we make the following definition.

Definition 3.15. Let M be an A-module, then

TM =
⋃

N,

where the union is over all N ⊂M with dimA(N) = dimU(N ⊗AU) = 0. We
denote by PM the cokernel of the inclusion TM ⊂M .

This is indeed a submodule because for two submodules N , N ′ ⊂ M with
dimA(N) = dimA(N ′) = 0 the additivity of the dimension together with

N +N ′/N ∼= N ′/N ′ ∩N

implies dimA(N +N ′) = 0. Note that dimA(TM) = 0 by cofinality and TM
is the largest submodule with vanishing dimension.

Note 3.16. Both t and T are left exact functors.

Proof. Under a module homomorphism torsion elements are mapped to tor-
sion elements and a homomorphic image of a zero-dimensional module is
zero-dimensional by additivity. If L ⊂M is a submodule, then tL = L∩ tM
and TL = L ∩TM since L ∩TM has vanishing dimension as a submodule
of TM . This implies left exactness.
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We will now investigate the relation between tM and TM and the question
to what degree the U -dimension is faithful.
Finitely generated projective modules. If we restrict ourselves to finitely
generated projective modules, we have seen in 3.8 that isomorphism classes of
A- and U -modules are in bijective correspondence via −⊗AU , and by adding
a suitable complement one verifies that the natural map M → M ⊗A U is
injective. A finitely generated projective module over A or U is trivial if and
only if its dimension vanishes by 3.9. Therefore tM = TM = 0 for finitely
generated projective A-modules.
Finitely presented modules. Let us now consider finitely presented A-
modules. This category of modules was investigated in [51]. Since the ring A
is semihereditary it is an abelian category. (This is more generally true iff the
ring is coherent.) Recall that Proj(R) denotes the monoid of isomorphism
classes of finitely generated projective modules over R.

Proposition 3.17. Let M be a finitely presented A-module. Then

(i) M ⊗A U is finitely generated projective.

(ii) TM = tM .

(iii) M is a torsion module if and only if dimA(M) = 0. Every torsion
module is the cokernel of a weak isomorphism.

(iv) PM = M/TM is projective and M ∼= PM ⊕TM .

(v) Under the isomorphism Proj(A) → Proj(U), respectively K0(A) →
K0(U) the class [PM ] corresponds to [M ⊗A U ].

Proof. (i) By right exactness of the tensor product M ⊗A U is finitely pre-
sented. Over the von Neumann regular ring U this implies being finitely
generated projective. (iv) is proven in [51]. Now M ⊗A U ∼= PM ⊗A U ⊕
TM ⊗A U ∼= PM because TM ∼= coker(f) for some weak isomorphism
f : An → An and by 2.6 and right exactness of the tensor product we get
TM ⊗A U ∼= coker(f) ⊗A U ∼= coker(f ⊗A idU) ∼= 0. The rest follows.

Arbitrary modules. In general tM and TM differ. Counterexamples
can already be realized by finitely generated modules. More precisely the
following holds.

Proposition 3.18. Let M be an A-module.
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(i) tM ⊂ TM and torsion modules have vanishing dimensions.

(ii) There exists a finitely generated A-module with tM = 0 and TM = M .

(iii) M is a torsion module if and only if it is the directed union of quotients
of finitely presented torsion modules.

(iv) If M is finitely generated PM = M/TM is projective and M ∼= PM ⊕
TM .

(v) There exists a finitely generated module M with

dimA(M) = dimU(M ⊗A U) = 0

but M ⊗A U 6= 0.

Proof. (i) It suffices to show that dimA(tM) = dimU(tM⊗AU) = 0. Now tM
consists of torsion elements and therefore tM ⊗A U = 0. (v) follows from (ii)
and we will give an example of such a module below. (iv) was proven in [52].
Let us prove (iii): A quotient of a torsion module is a torsion module, and
a directed union of torsion modules is again a torsion module. On the other
hand suppose M is a torsion module. M =

⋃

i∈I Mi is the directed union of
its finitely generated submodules. Since any submodule of a torsion module
is a torsion module it remains to be shown that a finitely generated torsion
module N is always a quotient of a finitely presented torsion module. Choose
a surjection p : An → N and let K = ker(p) be the kernel. Since N ∼= An/K
is a torsion module, for every a ∈ An there exists a non-zerodivisor s ∈ A
such that as ∈ K. Let ei = (0, . . . , 1, . . . , 0)tr be the standard basis for An

and choose si with eisi ∈ K. Note that

diag(0, . . . , si, . . . , 0)ei = eisi.

Here diag(b1, . . . , bn) denotes the diagonal matrix with the corresponding en-
tries. SinceK is a right A-module we have for an arbitrary vector (a1, . . . , an)tr

in An that

diag(s1, . . . , sn)(a1, . . . , an)tr =
∑

eisiai ∈ K.

Let S denote the right linear map An → An corresponding to the diagonal
matrix diag(s1, . . . , sn), then im(S) ⊂ K and N ∼= An/K is a quotient of
the finitely presented module An/im(S). Moreover An/im(S) ∼=

⊕A/siA
is a torsion module by Proposition 3.17(iii) and 2.6.
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Note 3.19. In [55, Definition 2.1] we defined a module to be cofinal-measurable
if all its finitely generated submodules are quotients of finitely presented
zero-dimensional modules. By Proposition 3.17(iii) and 3.18(iii) we see that
a module is cofinal-measurable if and only if it is a torsion module.

Example 3.20. We will now give two counterexamples to finish the proof of
the above proposition. Both examples follow the same pattern. Let Ii, i ∈ I
be a directed family of right ideals in A such that each Ii is a direct summand,
dimA(Ii) < 1 and supi∈I(dimA(Ii)) = 1. Note that I =

⋃

i∈I Ii 6= A, because
1 ∈ Ii for some i would contradict dimA(Ii) < 1. Since Ii is a direct summand
A/Ii → (A/Ii) ⊗A U is injective. Using that −⊗A U is exact and commutes
with colimits one verifies that

A/I → (A/I) ⊗A U ∼= A⊗A U/I ⊗A U ∼= A⊗A U/
⋃

(Ii ⊗A U)

is injective as well. Therefore t(A/I) = 0. On the other hand additivity
and cofinality of the dimension imply dimA(A/I) = dimU((A/I) ⊗A U) = 0.
Here are two concrete examples where such a situation arises.

(i) Take A =  L∞(S1, µ), the essentially bounded functions on the unit
circle with respect to the normalized Haar measure µ on S1. Let Xi,
i ∈ N be an increasing sequence of measurable subsets of S1 such that
µ(Xi) < 1 and supi∈N(µ(Xi)) = 1. The corresponding characteristic
functions χXi

generate ideals in A with the desired properties, since
dimA(χXi

A) = µ(Xi).

(ii) Let Γ be an infinite locally finite group, i.e. every finitely generated
subgroup is finite. Take A as NΓ. Let I denote the set of finite
subgroups. For every H ∈ I let ǫH : CH → C denote the augmentation
∑

ahh 7→ ∑

ah. Since H is finite the augmentation ideal ker(ǫh) is a
direct summand of CH. Since CH = NH and −⊗NH NΓ is exact and
compatible with dimensions we get that ker(ǫH) ⊗CH NΓ is a direct
summand of NΓ and

dimNΓ(ker(ǫH) ⊗CH NΓ) = 1 − 1

|H| .

The system is directed because for finite subgroups H and G with
H ⊂ G we have ker(ǫH) ⊗CH CG ⊂ ker(ǫG). If we tensor the exact
sequence

⋃

H

ker(ǫH) ⊗CH CΓ → CΓ → C⊗CΓ CΓ → 0
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with NΓ and use compatibility with colimits and right exactness we
get

HΓ
0 (EΓ;NΓ) ∼= C⊗CΓ NΓ ∼= NΓ/

⋃

H

ker(ǫH) ⊗CH NΓ.

So we can even realize the counterexample as the homology of a space.
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4 New Interpretation of L2-Invariants

We will now briefly summarize how the notions developed in the last section
apply in order to provide alternative descriptions of L2-invariants. Recall
the following definitions from [52, Section 4]. Let Γ be a group. Given an
arbitrary Γ-space X one defines the singular homology of X with twisted
coefficients in the ZΓ-module NΓ as

HΓ
p (X;NΓ) = Hp(C

sing
∗ (X) ⊗ZΓ NΓ),

where Csing
∗ (X) is the singular chain complex of X considered as a complex of

right ZΓ-modules. Here HΓ
p (X;NΓ) is still a right NΓ-module and therefore

b(2)p (X) = dimA(HΓ
p (X;NΓ))

makes sense. This definition extends the definition of L2-Betti numbers via
Hilbert NΓ-modules for regular coverings of CW-complexes of finite type to
arbitrary Γ-spaces. Completely analoguous we make the following definition.

Definition 4.1. Let X be a Γ-space, then

HΓ
p (X;UΓ) = Hp(C

sing
∗ (X) ⊗ZΓ UΓ).

Proposition 4.2. Let X be an arbitrary Γ-space.

(i) HΓ
p (X;NΓ) ⊗NΓ UΓ ∼= HΓ

p (X;UΓ) as UΓ-modules.

(ii) b
(2)
p (X) = dimU(HΓ

p (X;UΓ)).

(iii) tHΓ
p (X;NΓ) = ker(HΓ

p (X;NΓ) → HΓ
p (X;UΓ)).

If X is a regular covering of a CW-complex of finite type, then

(iv) HΓ
p (X;NΓ) is finitely presented, HΓ

p (X;UΓ) is finitely generated pro-
jective and under the isomorphism Proj(NΓ) → Proj(UΓ), respec-
tively K0(NΓ) → K0(UΓ) the class

[

PHΓ
p (X;NΓ)

]

corresponds to
[

HΓ
p (X;UΓ)

]

.

(v) tHΓ
p (X;NΓ) = THΓ

p (X;NΓ) = ker(HΓ
p (X;NΓ) → HΓ

p (X;UΓ)).
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Proof. Since −⊗NΓUΓ is exact it commutes with homology. If X is a regular
covering of finite type the singular chain complex is quasi-isomorphic to the
cellular chain complex which consists of finitely generated free ZΓ-modules.
Since finitely presented NΓ-modules form an abelian category the homology
modules HΓ

p (X;NΓ) are again finitely presented. The rest follows from the
preceding results about t, T and the dimension.

As far as dimension is concerned one can therefore work with U -modules.
Tensoring with U is the algebraic analogue of the passage from unreduced
to reduced L2-homology in the Hilbert space set-up. If one is interested in
finer invariants like the Novikov-Shubin invariants the passage to U -modules
is too harsh. The torsion submodule tHΓ

p (X;NΓ) carries the information
of the Novikov-Shubin invariants in case X is a regular covering of a CW-
complex of finite type and seems to be the right candidate to carry similar
information in general. Compare [55] and Note 3.19.
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5 The Atiyah Conjecture

5.1 The Atiyah Conjecture

As already mentioned in the introduction one of the main motivations to
study the algebras CΓ, DΓ, RΓ, NΓ and UΓ is the following conjecture,
which goes back to a question of Atiyah in [1]. We denote by Fin(Γ) the set
of finite subgroups of Γ and 1

|FinΓ|
Z is the additive subgroup of R generated

by the set of rational numbers { 1
|H|

|H a finite subgroup of Γ}. In particular
1

|FinΓ|
Z = Z if Γ is a torsionfree group and if there is a bound on the order of

finite subgroups 1
|FinΓ|

Z = 1
l
Z, where l is the least common multiple of these

orders. In general 1
|FinΓ|

Z ⊂ Q.

Conjecture 5.1 (Atiyah Conjecture). If M is a closed manifold with fun-
damental group Γ and universal covering M̃ , then

b(2)p (M̃) ∈ 1

|FinΓ|Z for all p ≥ 0.

There is a topological and a purely algebraic reformulation of this conjecture.

Proposition 5.2. Let Γ be a finitely presented group.The following state-
ments are equivalent.

(i) For every finitely presented ZΓ-module M

dimUΓ(M ⊗ZΓ UΓ) ∈ 1

|FinΓ|Z.

(ii) For every ZΓ-linear map f between finitely generated free ZΓ-modules

dimUΓ(ker(f ⊗ZΓ idUΓ)) ∈ 1

|FinΓ|Z.

(iii) If X is a connected CW-complex of finite type with fundamental group
Γ, then

b(2)p (X̃) ∈ 1

|FinΓ|Z for all p ≥ 0.
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(iv) If M is a closed manifold with fundamental group Γ, then

b(2)p (M̃) ∈ 1

|FinΓ|Z for all p ≥ 0.

Proof. Using the additivity of the dimension we verify that in the statement
of (ii) one can replace the kernel of the map f ⊗ZΓ idUΓ by the image or the
cokernel. Since tensoring is right exact coker(f ⊗ZΓ idUΓ) ∼= coker(f) ⊗ZΓ

UΓ and we see that (i) and (ii) are equivalent. Let us now prove that (ii)
implies (iii). The cellular chain complex (C∗, d∗) = (Ccell

∗ (X̃), d∗) of X̃ is a

complex of finitely generated free right ZΓ-modules. By definition b
(2)
p (X̃) =

dimUΓHp(C∗ ⊗ZΓ UΓ). The exact sequences

0 → ker(dn ⊗ idUΓ) → Cn ⊗ UΓ → im(dn ⊗ idUΓ) → 0

0 → im(dn+1 ⊗ idUΓ) → ker(dn ⊗ idUΓ) → Hn(C∗ ⊗ UΓ) → 0

together with (ii) and additivity of dimension imply (iii). Since (iv) is a
special case of (iii) it remains to be shown that (iv) implies (ii). Since Γ is
finitely presented there is a finite 2-complex with fundamental group Γ. Now
attach m 3-cells with a trivial attaching map and n 4-cells in such a way that
the differential d4 realizes f . Embed this finite CW-complex X in RN and
take M as the boundary of a regular neighbourhood. There is a 5-connected
map M → X and therefore H4(M̃,UΓ) = H4(X̃,UΓ) = ker(f ⊗ idUΓ).

It is convenient to formulate the algebraic version of the Atiyah conjecture not
only for the integral group ring but also for group rings with other coefficients.

Conjecture 5.3 (Atiyah Conjecture with Coefficients). Let R ⊂ C be
a subring of the complex numbers. For every finitely presented RΓ-module
M

dimUΓ(M ⊗RΓ UΓ) ∈ 1

|FinΓ|Z.

The conjecture with coefficients R ⊂ C implies the conjecture with integer
coefficients. In fact the results obtained by Linnell, which we will discuss
later, all hold even for complex coefficients. Conversely we have at least:

Lemma 5.4. Let R ⊂ C be a subring and denote by Q(R) the subfield of C
generated by R. The Atiyah conjecture with R-coefficients implies the Atiyah
conjecture with Q(R)-coefficients. In particular the genuine Atiyah conjecture
implies the Atiyah conjecture with Q-coefficients.
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Proof. The field Q(R) is the localization RS−1, where S = R−{0}. Given a
map f : RΓn → RΓm we interpret it as a matrix and multiply by a suitable
s ∈ S to clear denominators. This does not change the dimension of the
kernel or the image of f⊗idUΓ since multiplication by s is an isomorphism.

Another easy observation is that the conjecture is stable under directed
unions.

Lemma 5.5. Suppose Γ =
⋃

i∈I Γi is the directed union of the subgroups Γi

and the Atiyah conjecture with R-coefficients holds for each Γi, then it also
holds for Γ.

Proof. Every entry of a matrix representing f : RΓn → RΓm involves only
finitely many group elements. Since the union is directed we can find an
i ∈ I such that f is a matrix over RΓi. Now

dimUΓ(coker(f ⊗ idUΓ)) = dimUΓ(coker(f ⊗ idUΓi
)) ⊗UΓi

UΓ

= dimUΓi
(coker(f ⊗ idUΓi

)) ∈ 1

|FinΓi|
Z ⊂ 1

|FinΓ|Z

since the dimension behaves well with respect to induction and tensoring is
right exact.

Similarly, at least for torsionfree groups, the conjecture is stable under pas-
sage to subgroups.
The Atiyah conjecture is related to the zero divisor conjecture.

Conjecture 5.6 (Zero Divisor Conjecture). The rational group ring QΓ
of a torsion free group contains no zero divisors.

The converse of this statement is true, since given a finite subgroup H ⊂ Γ
the norm element 1

|H|

∑

h∈H h is an idempotent and therefore a zerodivisor.
Of course this conjecture could also be stated with other coefficients.

Note 5.7. The Atiyah conjecture implies the zero divisor conjecture.

Proof. Suppose a ∈ QΓ is a zerodivisor. Left multiplication with a is a ZΓ-
linear map and therefore dimUΓ ker(a ⊗ idUΓ) ∈ Z by the Atiyah conjecture
with rational coefficients. Since ker(a⊗ idUΓ) is a submodule of ZΓ⊗ZΓUΓ ∼=
UΓ, we have that dimUΓ(ker(a ⊗ idUΓ)) is either 0 or 1. In the second case
a = 0. In the first case ker a ⊂ ker(a⊗ idUΓ) = 0 because ker(a⊗ idUΓ) is a
finitely generated projective module and such a module vanishes if and only
if its dimension is zero.
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We will briefly discuss how the Atiyah conjecture is related to questions
about Euler characteristics of groups. If a group Γ has a finite model for its
classifying space BΓ, then its Euler characteristic χ(Γ) = χ(BΓ) is defined.
Note that such a group is necessarily torsionfree. If Γ′ ⊂ Γ is a subgroup of
finite index we have

χ(Γ′) = [Γ : Γ′] · χ(Γ).

This is the fundamental property which allows to extend the definition to not
necessarily torsionfree groups. A group Γ is said to have virtually a finite
classifying space if a subgroup Γ′ of finite index admits a finite classifying
space. In that case we define

χvirt(Γ) =
1

[Γ : Γ′]
χ(Γ′).

This idea goes back to Wall [84]. It is possible to extend the definition further
to groups Γ which are of finite homological type. For the definition of groups
of finite homological type and more details we refer to Capter IX in [8]. The
following Theorem was conjectured by Serre and proven by Brown [7].

Theorem 5.8 (Serre’s Conjecture). If Γ is of finite homological type, then

χvirt(Γ) ∈ 1

|FinΓ|Z.

Proof. See Theorem 9.3 on page 257 in [8] and page 246 in the same book
for the definition of finite homological type.

Now if we consider the passage to a subgroup of finite index the L2-Betti
numbers behave like the Euler characteristic. Namely let Y be a Γ-space and
Γ′ be a subgroup of finite index, then

b(2)p (Y ; Γ) =
1

[Γ : Γ′]
b(2)p (Y ; Γ′).

Therefore the L2-Euler characteristic

χ(2)(Γ) =
∞
∑

p=0

(−1)pb(2)p (EΓ),

which is known to coincide with the ordinary Euler characteristic in the
case of a finite complex, coincides with the virtual Euler characteristic if Γ
virtually admits a finite classifying space. For more details we refer to [11]
and [53].
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Note 5.9. The Atiyah conjecture implies

χ(2)(Γ) ∈ 1

|FinΓ|Z.

Therefore the theorem of Brown above gives further evidence for the Atiyah
conjecture.

5.2 A Strategy for the Proof

The main objective of this section is the following strategy for a proof of the
above mentioned conjectures.

Theorem 5.10. Let Γ be a discrete group. Suppose there is an intermediate
ring CΓ ⊂ SΓ ⊂ UΓ such that

(A) The ring SΓ is von Neumann regular.

(B) The map iΓ induced by the natural induction maps

iΓ :
⊕

K∈FinΓ

K0(CK) → K0(SΓ)

is surjective.

Then the Atiyah conjecture with complex coefficients is true for the group Γ.

Proof. Suppose M is a finitely presented CΓ-module. It does not define
a class in K0(CΓ), but since every finitely presented module over the von
Neumann regular ring SΓ is projective, M ⊗CΓ SΓ defines a class in K0(SΓ).
Now the surjectivity of iΓ implies that there is an element ([NK ]− [LK ])K ∈
⊕

K∈FinΓK0(CK) which maps to [M ⊗CΓ SΓ]. Here NK and LK are finitely
generated projective CK-modules. Since the Γ-dimension behaves well with
respect to induction, and for finite groups it coincides with the complex
dimension divided by the group order, we have

dimUΓ(ker(f ⊗ idSΓ) ⊗ UΓ) =
∑

K

dimUΓ([NK ⊗ UΓ] − [LK ⊗ UΓ])

=
∑

K

dimCK(NK) − dimCK(LK)

=
∑

K

1

|K| (dimC(NK) − dimC(LK)) ,

which is obviously in the subgroup 1
|FinΓ|

Z.
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Roughly speaking condition (A) says that we have to make our ring large
enough to have good ring theoretical properties (remember that at least UΓ
itself is von Neumann regular). Condition (B) says we cannot make it too big
because otherwise its K-theory becomes too large. Here are some remarks
on the proof.

(i) The same proof applies if we replace the set FinΓ of finite subgroups
in condition (B) by any set F(Γ) of subgroups for which the Atiyah
conjecture is already known, because then we have for K ∈ F(Γ) and
[NK ] ∈ K0(CK) that dimUK(NK) ∈ 1

|FinK|
Z ⊂ 1

|FinΓ|
Z. For example

one could take the virtually cyclic subgroups of Γ.

(ii) Of course we can formulate a similar statement for other than complex
coefficients. This might be an advantage for verifying (B), compare
the next section.

(iii) Note that we actually proved that (A) and (B) implies

im(K0(SΓ) → K0(UΓ)
dim✲ R) =

1

|FinΓ|Z.

(iv) Working with the kernel instead of the cokernel of a map f between
finitely generated free CΓ-modules one verifies that instead of von Neu-
mann regularity it would be sufficient that the ring SΓ is semihereditary
and UΓ is flat as an SΓ-module. Remember that a ring is semihered-
itary if every finitely generated submodule of a projective module is
projective. This would imply that im(f ⊗ idSΓ) and therefore also
ker(f ⊗ idSΓ) is finitely generated projective. In fact it would be suf-
ficient to ensure that one of these modules has a finite resolution by
finitely generated projective modules.

(v) It seems that every reasonable construction of a ring SΓ leads to a ring
which is closed under the ∗-operation. We therefore expect SΓ to be a
∗-closed subring of UΓ.

Later, when we discuss Linnell’s results on the Atiyah conjecture, we will
actually find an SΓ which is not only von Neumann regular but semisim-
ple. Nevertheless we believe that in general the above should be the right
formulation for the following reasons.
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Example 5.11. Let Γ be an infinite locally finite group (every finitely gener-
ated subgroup is finite), as for example Γ′ =

⊕

n∈N Z/nZ. Then Γ =
⋃

i∈I Γi

is the directed union of its finite subgroups. Using the elementwise crite-
rion for von Neumann regularity (compare 12.1(i)) one verifies that CΓ =
⋃

i∈I CΓi is von Neumann regular. Also (B) holds. Therefore we conclude
from the above remark that im(K0(CΓ) → K0(UΓ) → R) = 1

|FinΓ|
Z. This

group is not finitely generated (for Γ′ it is Q). Suppose SΓ is a semisimple
intermediate ring, then K0(SΓ) is finitely generated and the above map to
R factorizes over K0(SΓ). A contradiction.

We see that in general we cannot expect a semisimple intermediate ring SΓ.
On the other hand, when 1

|FinΓ|
Z is a discrete subgroup of R semisimplicity

already follows from (A) and (B):

Proposition 5.12. Suppose the intermediate ring SΓ fulfills the conditions
(A) and (B) and there is a bound on the orders of finite subgroups of Γ, then
SΓ is semisimple.

Proof. By assumption we know that

im(K0(SΓ) → K0(UΓ) → R) =
1

|FinΓ|Z =
1

l
Z

for a positive integer l. We will see that there can be no strictly increasing
chain I1 ⊂ I2 ⊂ . . . ⊂ Ir ⊂ SΓ of right ideals with r > l. With 12.3(iii) this
implies the result. Choose xi ∈ Ii \ Ii−1 and let Ji be the ideal generated
by x1, . . . xi, then the Ji form a strictly increasing chain of finitely generated
ideals of the same length. Since SΓ is von Neumann regular Jr is a direct
summand of SΓ and Ji−1 is a direct summand of Ji. We see that dimUΓ(Ji−1⊗
UΓ) is strictly smaller than dimUΓ(Ji ⊗ UΓ). Here we are using the fact
that for finitely generated projective SΓ-modules the dimension function
dimUΓ(− ⊗ UΓ) is faithful. Simply represent a finitely generated projective
module P over SΓ by an idempotent e ∈ M(SΓ) and verify that the same
idempotent considered as a matrix over M(UΓ) represents P ⊗SΓ UΓ. Now
since dimUΓ is faithful dimUΓ(P ⊗ UΓ) = 0 implies that P ⊗ UΓ = 0 and
therefore also the idempotent e is trivial. Now dimUΓ(Ji ⊗ UΓ) ∈ [0, 1] ∩ 1

l
Z

since Ji ⊗ UΓ is a submodule of UΓ. Therefore the chain can at most have
length l.

Similarly we have for torsionfree groups:
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Proposition 5.13. If Γ is torsionfree and SΓ is an intermediate ring of
CΓ ⊂ UΓ, then conditions (A) and (B) hold for SΓ if and only if SΓ is a
skew field.

Proof. Suppose SΓ fulfills (A) and (B). Since 1
|FinΓ|

Z = Z we can take l = 1
in the proof above. So we have a semisimple ring which has no nontrivial
ideals. On the other hand a skew field is von Neumann regular and K0(SΓ) =
Z generated by [SΓ] if SΓ is a skew field and therefore (B) is obviously
satisfied.

We have seen in the preceding section that the Atiyah conjecture is stable
under directed unions. It is therefore reassuring that conditions (A) and
(B) also show this behaviour. At the same time the following generalizes
Example 5.11.

Proposition 5.14. Suppose Γ =
⋃

i∈I Γi is a directed union and there are
intermediate rings SΓi with SΓi ⊂ SΓj for Γi ⊂ Γj which all fulfill the
conditions (A) and (B), then the ring SΓ =

⋃

i∈I SΓi also fulfills (A) and
(B).

Proof. A directed union of von Neumann regular rings is von Neumann reg-
ular and K-theory is compatible with colimits.

An intermediate ring SΓ is by no means uniquely determined by (A) and
(B).

Example 5.15. Let Γ = Z be an infinite group. We know that in this case
we can identify the rings CΓ and UΓ with the ring of Laurent polynomials
C [z±1] and the ring  L(S1) of (classes of) measurable functions on the unit
circle S1, where we embed the circle in the complex plane and z denotes
the standard coordinate. One possible choice for SΓ is in this case the field
of rational functions C (z). But one could equally well take the field of
meromorphic functions of any domain of the complex plane which contains
S1. We see that there is a continuum of possible choices.

But in fact there are two natural candidates for the ring SΓ: the rational
closure R(CΓ ⊂ UΓ) of CΓ in UΓ and the division closure D(CΓ ⊂ UΓ) of
CΓ in UΓ. They constitute a kind of minimal possible choice for SΓ. We
will discuss these rings in detail in Section 8 and in Appendix III.
Finally we should mention the following result which is implicit in [48].
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Theorem 5.16. Suppose Γ is torsionfree, then the Atiyah conjecture with
coefficients in R holds for Γ if and only if the division closure D(RΓ ⊂ UΓ)
of RΓ in UΓ is a skew field.

Proof. This will be proven as Proposition 8.30 in Section 8.

5.3 The Relation to the Isomorphism Conjecture in
Algebraic K-theory

The map iΓ in condition (B) of Theorem 5.10 factorizes as follows:

⊕

H∈FinΓ

K0(CH)
iΓ✲ K0(SΓ)

colimH∈FinΓK0(CH)
❄ jΓ✲ K0(CΓ)

✻

The map on the left is (by construction) always surjective. In this subsection
we will explain why a variant of the isomorphism conjecture in algebraic
K-theory ([27], [19]) implies that the bottom map is an isomorphism.
To form the colimit we understand FinΓ as a category with morphisms
given by inclusions K ⊂ H and conjugation maps cg : H → gH, h 7→ ghg−1

with g ∈ Γ. These maps induce ring homomorphisms of the corresponding
group algebras and K0(C ? ) can be considered as a functor from FinΓ to the
category of abelian groups.
Equivalently we could work with the orbit category: The orbit category
OrΓ has as objects the homogeneous spaces Γ/H, and morphisms are Γ-
equivariant maps. Let Or(Γ,Fin) be the full subcategory whose objects are
the homogeneous spaces Γ/H with H finite. There is an obvious bijection
between the set of objects of FinΓ and Or(Γ,Fin) but the morphisms differ.
This difference vanishes on the level of K-theory since an inner automorphism
ch : H → H with h ∈ H induces the identity map on K0.

colimFinΓK0(C ? ) = colimOr(Γ,Fin)K0(C ? ).

One possible formulation of the isomorphism conjecture is as follows:
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Conjecture 5.17. The assembly map

KCOrΓ
∗ (E(Γ,Fin))

Ass✲ K∗(CΓ)

is an isomorphism.

We will not explain the construction of the assembly map. The interested
reader should consult [19]. But let us say a few words about the source and
target of the assembly map to get an idea what it is about.
The target: The target of the assembly map consists of the algebraic K-
groups Kn(CΓ), n ∈ Z of the group ring CΓ. The isomorphism conjecture
should be seen as a means to compute these groups.
The source: KCOrΓ

∗ (− ) is a generalized equivariant homology theory sim-
ilar to Bredon homology (see [6]), but with more complicated coefficients.
E(Γ,Fin) is the classifying space for the family of finite subgroups [23, I.6],
i.e. it is a Γ-CW complex which is uniquely determined up to Γ-equivariant
homotopy by the following property of its fixed point sets.

E(Γ,Fin)H =

{

∅ H /∈ FinΓ
contractible H ∈ FinΓ

.

There is an equivariant version of an Atiyah-Hirzebruch spectral sequence
[19, Section 4] which helps to actually compute the source of the assembly
map.

Hp(C∗(E(Γ,Fin)?)) ⊗ZOrΓ Kq(C ? )) ⇒ KCOrΓ
∗ (E(Γ,Fin)).

Here C∗(E(Γ,Fin)?) is the cellular chain complex of the space E(Γ,Fin)
viewed as a functor from the category OrΓ to the category of chain complexes
by sending Γ/H to the cellular chain complex of the fixed point set. The
tensor product is a tensor product over the orbit category [50, 9.12 on page
166]. In analogy to ordinary group homology one should think of the ZOrΓ-
chain complex as a free resolution of the ZOrΓ-module ZFin( ? ) which is
given by

ZFin(H) =

{

0 H /∈ FinΓ
Z H ∈ FinΓ

.

We see that since E(Γ,Fin)H = ∅ for infinite H only the K∗(CH) for H
finite enter the computation. So the isomorphism conjecture is a device to
compute K∗(CΓ) from the knowledge of the K-theory of the finite subgroups.
How this information is assembled is encoded in the space E(Γ,Fin).
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Note 5.18. Suppose the isomorphism conjecture 5.17 is true. Then

(i) The negative K-groups K−i(CΓ) vanish.

(ii) There is an isomorphism colimK∈FinΓK0(CK)
∼=→ K0(CΓ).

Proof. For a finite group H the group algebra CH is semisimple, and in
particular it is a regular ring. (Here regular does not mean von Neumann
regular!). It is known that the negative K-groups for such rings vanish [74,
page 154]. We see that the above spectral sequence becomes a first quadrant
spectral sequence and in particular K−i(CΓ) = 0. Moreover at the origin
(p, q) = (0, 0) there are no differentials and no extension problems to solve.
We see that

K0(CΓ) ∼= H0(C∗(E(Γ,Fin)?) ⊗ZOrΓ K0(C ? )).

Since the ZOrΓ-chain complex C∗(E(Γ,Fin)?) is a free resolution of ZFin( ? )
and the tensor product is right exact [50, 9.23 on page 169] we get

H0(C∗(E(Γ,Fin)?) ⊗ZOrΓ K0(C ? )) ∼= ZFinΓ( ? ) ⊗ZOrΓ K0(C ? ).

From the definition of the tensor product over the orbit category we get

ZFinΓ( ? ) ⊗ZOrΓ K0(C ? ) = colimFinΓK0(C ? ).

The map which gives the isomorphism in 5.18(ii) should coincide with the
natural map jΓ above.

Proposition 5.19. The map

jΓ : colimK∈FinΓK0(CK) → K0(CΓ)

is always rationally injective, i.e. jΓ ⊗ idQ is injective.

Proof. The proof uses the Hattori-Stallings rank which is also known as the
Bass trace map. For a ring R denote by [R,R] the subgroup of the additive
group of R generated by commutators, i.e. elements of the form ab − ba. If
R is a C-algebra this subgroup is a complex vector space. Every additive
map f out of R which has the trace property f(ab− ba) = 0 factorizes over
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HC0(R) = R/ [R,R]. The natural map R → HC0(R), a 7→ a extends to
matrices via

(aij) 7→
∑

i

aii.

This extension still has the trace property and is compatible with stabiliza-
tion. It leads therefore to a map

ch0 : K0(R) → HC0(R).

This is the Hattori-Stallings rank, which can also be considered as a Chern
character [49, Section 8.3]. HC0 is functorial and ch0 is a natural transfor-
mation. We obtain a commutative diagram

colimH∈FinΓK0(CH)
jΓ✲ K0(CΓ)

colimH∈FinΓHC0(CH)

f

❄
✲ HC0(CΓ)

❄

Note that it is sufficient to show that jΓ ⊗ C is injective. We claim that
the bottom map in the above diagram is injective and the complex linear
extension fC of f is an isomorphism. Given a group G we denote by conG
the set of conjugacy classes of G. The natural quotient map G → conG
induces a map of free vector spaces CG → CconG. One checks that the
kernel of this map is [CG,CG] and therefore HC0(CG) can be naturally (!)
identified with CconG. Since the functor free vector space is left adjoint to
the forgetful functor it commutes with colimits. Therefore, in order to show
that the bottom map is injective it is sufficient to show that the map

colimK∈FinΓconK → conΓ

is injective. Given two elements h and k with h = gkg−1 for some g ∈ Γ
the conjugation map cg is a map in the category FinΓ and therefore the
corresponding conjugacy classes are already identified in the colimit.
To show that fC is an isomorphism it is sufficient to show that for every finite
group H the map

ch0(H)C : K0(CH) ⊗Z C → HC0(CH)
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is an isomorphism because

colimH∈FinΓ (K0(CH) ⊗Z C) ∼= colimH∈FinΓ (K0(CH)) ⊗Z C.

A finitely generated projective CH-module is a finite dimensional complex
H-representation. K0(CH) can be identified with the complex representation
ring and mapping a representation V to its character χV gives a map

K0(CH) → CconH.

Now the projection corresponding to an isotypical summand W of the left
regular representation is given by

pW =
dimCW

|H|
∑

h∈H

χW (h)h ∈ CH,

compare [79]. The χW are integer multiples of a basis of the free abelian group
K0(CH). The above formula tells us that up to a base change g 7→ g−1 and
constants, the class [W ] is mapped to χW under the Hattori-Stallings rank
ch0(H). It is well known that the χW constitute a basis of CconH. We see
that ch0(H)C is an isomorphism.

Note that the map f in the proof above is in general not injective. In fact
there are examples of groups where jΓ is known to be surjective, but K0(CΓ)
contains torsion [44]. In these cases injectivity of f would imply that jΓ
is an isomorphism, but f maps to a vector space and can therefore not be
injective.
The original isomorphism conjecture [27] deals with the integral group ring
ZΓ. In that case the family of finite subgroups has to be replaced by the
larger family of virtually cyclic subgroups. It seems that much more is known
about the isomorphism conjecture for ZΓ because the K-groups of integral
group rings are more directly related to topology.
In our case the following gives some evidence for the isomorphism conjecture.
The first statement is a special case of Moody’s induction theorem.

Theorem 5.20. (i) Let Γ be a polycyclic-by-finite group, then the natural
map

jΓ : colimH∈FinΓK0(CH) → K0(CΓ)

is surjective and rationally injective.
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(ii) The same holds for virtually free groups.

Proof. (i) For a virtually polycyclic group Γ the group ring is noetherian
(see 8.12) and of finite global dimension [77, Theorem 8.2.20]. Therefore the
category of finitely generated modules coincides with the category of modules
which admit a resolution of finite length by finitely generated projective
modules. By the resolution theorem [74, 3.1.13] we get that the natural
map K0(CΓ) → G0(CΓ) is an isomorphism. Now the above follows from the
general formulation of Moody’s induction theorem, see Theorem 8.22, and
the above Proposition 5.19.
(ii) See [48, Lemma 4.8.]. Note that a virtually free group is always a finite
extension of a free group.
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6 Atiyah’s Conjecture for the Free Group on

Two Generators

In this section we will prove the Atiyah conjecture in the case where Γ = Z∗Z
is a free group on two generators. The proof uses the notion of Fredholm
modules which in this form goes back to Mishchenko [59]. The first example
in Connes’s programme for a non-commutative geometry in [17] is a new
conceptional proof of the Kadison conjecture for the free group using Fred-
holm modules. The geometry of the particular Fredholm module used in
that case was clarified by Julg and Valette in [39]. The Kadison conjecture
says that the reduced C∗-algebra C∗

red(Γ) of a torsionfree group has no non-
trivial projections. In [48] Linnell observed that the same technique applies
to give a proof of Atiyah’s conjecture. We will start with some notions from
non-commutative geometry.

6.1 Fredholm Modules

LetH be a Hilbert space and B(H) be the algebra of bounded linear operators
on that Hilbert space. We denote by L0(H) and L1(H) the ideal of operators
of finite rank respectively the ideal of trace class operators. For p ∈ [1,∞)
we have the Schatten ideals Lp(H). The usual trace of a trace class operator
a ∈ L1(H) is denoted by tr(a). The ideal of compact operators is denoted
by K. Let B be a ∗-algebra. A B-representation on H is by definition a
∗-homomorphism ρ : B → B(H). We explicitly allow that ρ(1) 6= idH .
For our purposes we use a slightly modified notion of Fredholm modules. To
stress the difference let us start with a definition which is ideal for theoretical
purposes, but unfortunately not very realistic.

Definition 6.1. A (1-summable) Fredholm module (H, ρ+, ρ−) consists of
two representations ρ± : B → B(H), such that ρ+(b) − ρ−(b) ∈ L1(H) for all
b ∈ B.

For us a Fredholm module for B is basically a tool designed to produce a
homomorphism τ : K0(B) → R. Namely one verifies (see 6.3 below) that

τ : K0(B) → R p = (pij) 7→
∑

i

tr(ρ+(pii) − ρ−(pii))

defines such a homomorphism. It may be hard or even impossible to construct
a nontrivial Fredholm module in this sense for B = C∗

redΓ or B = NΓ,
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compare [18]. To attack the Kadison conjecture one is more modest and
restricts oneself to a dense subalgebra B ⊂ C∗

redΓ which is closed under
holomorphic function calculus, because for such an algebra it is known that
K0(B) = K0(C

∗
redΓ).

For purposes of the Atiyah conjecture we do not need B to be in any sense
dense in NΓ, but we have to make sure that we can apply τ to all the
projections we are interested in, namely those of the form pker a for a ∈ ZΓ.
The following definition is therefore suitable for our purposes. We will see
later that 0-summability is crucial in order to show that we can handle the
relevant projections.

Definition 6.2. Let A be a von Neumann algebra and B ⊂ A an arbitrary
∗-closed subalgebra. A p-summable (A,B)-Fredholm module (H, ρ+, ρ−) con-
sists of two A-representations ρ± : A → B(H), such that ρ+(a) − ρ−(a) ∈
Lp(H) for all a ∈ B.

In the next subsection we will construct a 0-summable (NΓ,CΓ)-Fredholm
module. Note that the task of finding a p-summable module becomes more
difficult when p becomes smaller. But once we have such a module the
following holds.

Proposition 6.3. Let ρ± : A → B(H) be a p-summable (A,B)-Fredholm
module.

(i) For q ∈ {0} ∪ [1;∞) the set Aq = {a ∈ A | ρ+(a) − ρ−(a) ∈ Lq(H)} is
a ∗-subalgebra of A and we have inclusions A0 ⊂ A1 ⊂ Aq ⊂ Aq′ ⊂ A
for q ≤ q′.

(ii) If the Fredholm module is p-summable, then B ⊂ Ap.

(iii) The linear map

τ : A1 → C a 7→ tr(ρ+(a) − ρ−(a))

has the trace property τ(ab) = τ(ba) for all a, b ∈ A1.

(iv) Tensoring the (A,B)-Fredholm module ρ± with the standard represen-
tation ρ0 of Mn(C) on Cn yields an (Mn(A),Mn(B))-Fredholm module.
We have Mn(Ap) ⊂ Mn(A)p and ρ± ⊗ ρ0 is again p-summable.
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(v) The map τ extends to matrix algebras by

τ : Mn(A1) → C (aij) 7→
∑

i

τ(aii)

and yields a homomorphism

τ : K0(A1) → R, p 7→ τ(p).

Proof. Since Lp(H) is an ideal the first statement follows from

ρ(ab) − ρ−(ab) = ρ+(a) [ρ+(b) − ρ−(b)] + [ρ+(a) − ρ−(a)] ρ−(b).

If we now apply tr to this equation and use that tr(cd) = tr(dc) for a trace
class operator c ∈ L1(H) we see that τ indeed has the trace property. The
statement about matrix algebras follows from Lp(H)⊗Mn(C) ⊂ Lp(H⊗Cn)
and the definitions.

Since we want to show that certain numbers are integers the following obser-
vation about the difference of projections will become a key ingredient.

Lemma 6.4. Let p and q ∈ B(H) be two projections for which p−q ∈ L1(H),
then tr(p− q) is an integer.

Proof. The key observation is that there is a selfadjoint compact operator
which commutes with p and q at the same time, namely (p− q)2. Let

H =
⊕

λ 6=0

Eλ ⊕ ker(p− q)2

be a decomposition of H into the Hilbert sum of eigenspaces of (p − q)2.
Since p and q commute with (p− q)2 they both respect this decomposition.
We will now compute the trace of (p − q) with respect to a basis which is
compatible with the above decomposition. Since ker(p − q) = ker(p − q)2

only the eigenspaces Eλ for eigenvalues λ 6= 0 contribute. Since they are all
finite dimensional we get

tr(p− q) =
∑

λ 6=0

tr((p− q)|Eλ
) =

∑

λ 6=0

tr(p|Eλ
) − tr(q|Eλ

).

On the right hand side we have differences of dimensions of vector spaces
and therefore integers. Since the left hand side is finite, only finitely many
of these differences can be nonzero.
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In our situation we get:

Corollary 6.5. If (H, ρ+, ρ−) is a Fredholm module and if p ∈ A1 is a pro-
jection, then τ(p) is an integer. The image of τ : K0(A1) → R lies in Z.

Proof. ρ+(p) and ρ−(p) are projections, and by definition of A1 the difference
ρ+(p) − ρ−(p) is a trace class operator. The above lemma applies.

For an operator a ∈ B(H) denote the orthogonal projection onto its kernel by
pker a. The passage from a to pker a is of particular importance for the Atiyah
conjecture. The following lemma explains why we are so much interested in
0-summable Fredholm modules.

Lemma 6.6. Let a, b ∈ B(H) be operators with a − b ∈ L0(H), then also
pker a − pker b ∈ L0(H).

Proof. Let K = ker(a− b) and let K⊥ be the orthogonal complement in H.
We have a|K = b|K and ker a∩K = ker b∩K and therefore also pker a|ker a∩K =
pker b|ker a∩K . Now let K ′ be an orthogonal complement of ker a ∩ K in K,
then K ′ is perpendicular to ker a and ker b, and thus we have pker a|K′ = 0 =
pker b|K′ . We see that pker a and pker b differ only on the space K⊥ which is
finite dimensional by assumption. In particular pker a − pker b ∈ L0(H).

6.2 Some Geometric Properties of the Free Group

Let Γ = Z ∗ Z =< s, t | > be a free group on two generators s and t. The
Cayley graph with respect to this set of generators is a tree. The group Γ
operates on this tree. On the set of vertices V the operation is free and
transitive, on the set E of edges the operation is also free but there are
as many orbits as there are generators. Therefore there are isomorphisms
V ∼= Γ and E ∼= Γ ⊔ Γ of Γ-sets. The tree is turned into a metric space by
identifying each edge with a unit interval. As a metric space this tree has
the pleasant property, that given any two distinct points x 6= y there exists a
unique geodesic joining the two. We will denote this geodesic symbolically by
x→ y. Now given a geodesic x→ y there is a unique edge Init(x→ y) ∈ E,
the initial edge, which meets the geodesic and x at the same time. This
allows us to define the following map

f : V → E ⊔ {pt}
x 7→ Init(x→ x0) if x 6= x0

x0 7→ pt.
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Here x0 ∈ V is an arbitrary but fixed vertex. This map is a bijection and it
is almost Γ-equivariant in the following sense:

Lemma 6.7. For a fixed g ∈ Γ there is only a finite number of vertices
x 6= x0 with gf(x) 6= f(gx). The number of exceptions equals the distance
from x to gx0.

Proof. Since we are dealing with a tree we have gInit(x → x0) = Init(gx →
gx0) 6= Init(gx→ x0) if and only if gx ∈ (gx0 → x0).

It is shown in [22] that free groups are the only groups which admit maps
with properties similar to those of the map f above.

6.3 Construction of a Fredholm Module

We will now use the map f : V → E ⊔ {pt} from the preceding subsection
to construct a 0-summable (NΓ,CΓ)-Fredholm module for which the trace
τ coincides with the standard trace on NΓ we are interested in.
Let l2V and l2E be the free Hilbert spaces on the sets V and E. From the pre-
ceding subsection we know that we have isomorphisms of CΓ-representations
l2V ∼= l2Γ and l2E ∼= l2Γ ⊕ l2Γ. Therefore both representations extend to
NΓ-representations. Let C denote the very trivial one-dimensional represen-
tation with ax = 0 for all a ∈ NΓ and x ∈ C. If we consider the map f
above as a bijection of orthonormal bases (where {pt} is the basis for C) we
get an isometric isomorphism of Hilbert spaces

F : l2V → l2E ⊕ C.

Let ρ+ : NΓ → B(l2V ) be the representation on l2V and ρ be the one on
l2E ⊕ C. We define ρ+ as the pull back of ρ to l2V via F , i.e. ρ−(a) =
F−1ρ(a)F .

Proposition 6.8. (i) The representations ρ+ and ρ− define a 0-summable
(NΓ,CΓ)-Fredholm module.

(ii) For all a ∈ NΓ we have

trNΓ(a) =
∑

x∈V

< (ρ+(a) − ρ−(a))x, x > .

(iii) For a ∈ Mn(NΓ1) we have trNΓ(a) = τ(a).
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Proof. We start with the second statement. Since Γ operates freely on V
and E we get for g ∈ Γ

< [ρ+(g) − ρ−(g)] x0, x0 > = < ρ+(g)x0, x0 > − < ρ(g)f(x0), f(x0) >

= δg,e = trNΓ(g)

and for x ∈ V with x 6= x0

< [ρ+(g) − ρ−(g)] x, x > = < ρ+(g)x, x > − < ρ(g)f(x), f(x) >

= δg,e − δg,e = 0.

Summing over x ∈ E we get the claim first for g ∈ Γ and then by lin-
earity for a ∈ CΓ. The claim follows if we can show that trNΓ(a) and
< [ρ+(a) − ρ−(a)] x, x > are continuous functionals with respect to the weak
(operator) topology on NΓ, because NΓ is the weak closure of CΓ. Now
trNΓ(a) =< ae, e > is weakly continuous, since | < . e, e > | is one of
the defining seminorms for the weak topology. One easily verifies that ρ+
and ρ and therefore also ρ− and ρ+ − ρ− are weak-weak continuous. Since
| < . x, x > | is again a defining seminorm for the weak topology the claim
follows.
For the first statement we have to show that for every a ∈ CΓ the operator
ρ+(a)−ρ−(a) has finite rank. By linearity it is sufficient to treat ρ+(g)−ρ−(g)
for g ∈ Γ. By Lemma 6.7 we have

ρ+(g)x = gx = f−1(gf(x)) = (F−1 ◦ ρ(g) ◦ F )x = ρ−(g)x

for x ∈ V with finitely many exceptions.
The last statement follows immediately from the second.

We need one further lemma.

Lemma 6.9. If a lies in NΓ0, then also the projection pker a lies in NΓ0.

Proof. By definition of NΓ0 we know that ρ+(a) − ρ−(a) is a finite rank
operator. From 6.6 we know that also pker ρ+(a) − pker ρ−(b) is of finite rank.
Since up to the degenerate summand C we are dealing with direct sums of
the left regular representation we get

ρ+(pker a) = pker ρ+(a) respectively ρ−(pker a) + pC = pker ρ−(a)

where pC is the projection onto C. The claim follows.

50



Theorem 6.10. Let Γ = Z ∗ Z be the free group on two generators and
a ∈ Mn(CΓ). Let pker a denote the orthogonal projection onto ker a ⊂ l2Γn,
then trΓ(pker a) is an integer.

Proof. By 0-summability we know CΓ ⊂ NΓ0 and therefore

Mn(CΓ) ⊂ Mn(NΓ0) ⊂ Mn(NΓ)0.

Let a be in Mn(CΓ). From the matrix analogue of the preceding lemma we
know that pker a ∈ Mn(NΓ)0. By Proposition 6.8 we know that trNΓ(pker a) =
τ(pker a) which is an integer by Corollary 6.5.

Corollary 6.11. The Atiyah conjecture with complex coefficients holds for
the free group on two generators.

Proof. We have dimU(ker(a⊗ idUΓ)) = trA(pker a) by definition of dimU .
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7 Classes of Groups and Induction Principles

The Atiyah conjecture is proven in [48] for groups in a certain class C (Defi-
nition 7.5), which in addition have a bound on the orders of finite subgroups.
In this section we will review the class C and prove that it is closed under cer-
tain processes (Theorem 7.7). The class C contains the class of elementary
amenable groups. So we begin by collecting some facts about elementary
amenable groups and the related class of amenable groups.

7.1 Elementary Amenable Groups

Definition 7.1. The class EG of elementary amenable groups is the smallest
class of groups with the following properties:

(i) EG contains all finite groups and all abelian groups.

(ii) EG is closed under directed unions: If Γ =
⋃

i∈I Γi, where the Γi, i ∈ I
form a directed system of subgroups (given i, j ∈ I there exists k ∈ I,
such that Γi ⊂ Γk and Γj ⊂ Γk ) and each Γi belongs to EG, then Γ
belongs to EG.

(iii) EG is closed under extensions: If 1 → H → Γ → G → 1 is a short
exact sequence such that H and G are in EG, then Γ is in EG.

(iv) EG is closed under taking subgroups.

(v) EG is closed under taking factor groups.

It is shown by Chou in [12] that the first three properties suffice to char-
acterize the class EG. That EG is closed under taking subgroups and factor
groups follows from the other properties. Chou also gives a description of the
class of elementary amenable groups via transfinite induction. Following [43]
we will give a similar description below. But first we need some notation.
If X and Y are classes of groups, let XY denote the class of X -by-Y groups,
that means the class of those groups Γ, for which there is an exact sequence
1 → H → Γ → G → 1 with H in X and G in Y . Similarly let LX denote
the class of locally-X -groups: A group Γ is in LX if every finitely generated
subgroup of Γ is in X .
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Proposition 7.2. The class of elementary amenable groups has the follow-
ing description via transfinite induction: Let B denote the class of finitely
generated abelian-by-finite groups and let for every ordinal α the class Dα be
defined inductively as follows:

• D0 = 1.

• Dα = (LDα−1)B if α is a successor ordinal.

• Dα =
⋃

β<αDβ if α is a limit ordinal.

The class of elementary amenable groups EG coincides with
⋃

α≥0 Dα. More-
over every class Dα is subgroup closed and closed under extensions by finite
groups.

Proof. See Lemma 3.1 in [43].

Whenever one wants to prove a statement about elementary amenable groups
one can use such a description to give an inductive proof. It is therefore
desirable to have small induction steps. On the other hand it might be
useful if the intermediate classes Dα have good properties, as for example
being subgroup-closed or being closed under extensions by finite groups. In
easy cases such an inductive proof comes down to the following.

Proposition 7.3 (Induction Principle for EG). Suppose P is a property
of groups such that:

(I) P holds for the trivial group.

(II) If 1 → H → Γ → A → 1 is an exact sequence, where A is finitely
generated abelian-by-finite and P holds for H, then it also holds for Γ.

(III) If Γ =
⋃

i∈I Γi is the directed union of the subgroups Γi and P holds
for all the Γi, then P holds for Γ.

Then P holds for all elementary amenable groups. Instead of (II) it would
also be sufficient to verify:

(II)’ If 1 → H → Γ → A → 1 is an exact sequence, where A is finite or
cyclic, and P holds for H, then it also holds for Γ.
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Proof. This follows easily via transfinite induction from the description of the
class given in Proposition 7.2. Since one extension by a finitely generated
abelian-by-finite group can always be replaced by finitely many extensions
by infinite cyclic groups followed by one extension by a finite group (II)’
implies (II).

Before we go on and introduce Linnell’s class C, we will discuss the class of
amenable groups.

Definition 7.4. A group Γ is called amenable, if there is a Γ-invariant linear
map µ : l∞(Γ,R) → R, such that

inf{f(γ)|γ ∈ Γ} ≤ µ(f) ≤ sup{f(γ)|γ ∈ Γ} for f ∈ l∞(Γ).

Here l∞(Γ,R) is the space of bounded real valued functions on Γ. The map
µ is called an invariant mean. The class of amenable groups is denoted by
AG.

The class of amenable groups AG has the five properties that were used to
define the class of elementary amenable groups [20], therefore EG ⊂ AG.
The simplest example of a group which is not amenable is the free group
on two generators [71, p.6]. Let NF denote the class of groups which do
not contain a free subgroup on two generators. Since AG is subgroup closed
AG ⊂ NF . Day posed the question whether EG = AG or AG = NF . The
question remained open for a long time. Meanwhile there are examples of
groups (even finitely presented) showing EG 6= AG due to Grigorchuk [32].
Examples by Olshanski [68] show AG 6= NF . These examples are finitely
generated. Whether there is a finitely presented group which is not amenable,
but does not contain a free subgroup on two generators, is an open question.
There are many other characterizations of amenable groups. In particular
it seems that amenability of a group Γ has a strong impact on the different
algebras of operators associated to the group. Here are some facts. For more
details and references see [71].

(i) The invariant mean in the definition of amenability can as well be
characterized as a Γ-invariant bounded linear functional µ on l∞(Γ,C)
equipped with supremum-norm, such that µ(1) = 1 and µ(f) ≥ 0 for
every f ≥ 0. In the language of operator algebras such a µ is called a
(Γ-invariant) state on the commutative C∗-algebra l∞(Γ,C).
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(ii) There is the so called Fölner criterion which characterizes amenability
of a group in terms of the growth of its Cayley graph, see [28] and [3,
Theorem F.6.8, p.308].

(iii) The natural map C∗
max(Γ) → C∗

red(Γ) from the maximal C∗-algebra to
the reduced C∗-algebra of the group is an isomorphism if and only if
the group Γ is amenable, see [72, Theorem 7.3.9, p. 243].

(iv) There is a notion of amenability for von Neumann algebras and C∗-
algebras. Group von Neumann algebras and group C∗-algebras of
amenable groups are special examples ([71, 1.31 and 2.35]).

(v) If Γ is amenable the group von Neumann algebra NΓ is very close to
being flat over the group ring CΓ, namely it is shown in [52, Theo-
rem 5.1] that dimNΓ TorpCΓ(NΓ,M) = 0 for all p ≥ 1. Compare also
Theorem 8.4.

7.2 Linnell’s Class C
In [48] Linnell introduced the following class of groups:

Definition 7.5. Let C denote the smallest class of groups, with the following
properties:

(i) C contains all free groups.

(ii) C is closed under extensions by elementary amenable groups: If there
is a short exact sequence 1 → H → Γ → G→ 1 with H in C and G in
EG, then Γ belongs to C.

(iii) C is closed under directed unions: If Γ =
⋃

i∈I Γi, where the Γi, i ∈ I
form a directed system of subgroups (given i, j ∈ I there exists k ∈ I,
such that Γi ⊂ Γk and Γj ⊂ Γk ) and each Γi belongs to C, then Γ
belongs to C.

The class of groups in C which have a bound on the orders of finite subgroups
will be denoted by C ′.

Again there is an inductive description of this class of groups. Concerning
notation compare the remarks following Definition 7.1.
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Proposition 7.6. The class C has the following description via transfinite
induction: Let B denote the class of finitely generated abelian-by-finite
groups and let for every ordinal α the class Cα be defined inductively as fol-
lows:

• C0 is the class of free-by-finite groups.

• Cα = (LCα−1)B if α is a successor ordinal.

• Cα =
⋃

β<α Cβ if α is a limit ordinal.

The class C coincides with
⋃

α≥0 Cα. Moreover, every class Cα is subgroup
closed and closed under extensions by finite groups.

Proof. See [48].

Given a concrete group it is often difficult to tell whether or not it belongs
to the class C. It is therefore useful to know that C is closed under other
processes than the defining ones.

Theorem 7.7. (i) The class C is closed under taking subgroups.

(ii) If Γ is a group in C and A is an elementary amenable normal subgroup,
then the quotient Γ/A is in C.

(iii) If 1 → Z → Γ → G → 1 is an exact sequence of groups where G is in
C and Z is finite or cyclic, then Γ is in C. More generally, this holds
if Z is any elementary amenable group whose automorphism group is
also elementary amenable.

(iv) The class C is closed under taking arbitrary free products: If Γi, i ∈ I
is any collection of groups in C, then the free product

Γ := ∗i∈IΓi

also lies in C. If all the factors have a bound on the orders of finite
subgroups (Γi ∈ C ′) and if there are only finitely many factors, then Γ
is in C ′.

This allows us to give some concrete examples of interesting groups in the
class C.
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Example 7.8. It is well known that PSL2(Z) ∼= Z/2Z∗Z/3Z. Theorem 7.7
immediately yields that PSL2(Z) lies in the class C and also that SL2(Z)
and GL2(Z) are in C.

The rest of this section will be concerned with the proof of Theorem 7.7.
Part (i) follows immediately from the fact that all the Cα in Proposition 7.6
are closed under taking subgroups. The proof of (ii), (iii) and (iv) is based
on the following induction principle which will be used repeatedly.

Proposition 7.9 (Induction Principle for C). Suppose P is a property
of groups such that:

(I) P holds for free groups.

(II) If there is a short exact sequence 1 → H → Γ → A → 1 with A
elementary amenable and if the property holds for H, then it is also
holds for Γ.

(III) If Γ is the directed union of subgroups Γi and the property holds for
every Γi, then it holds for Γ.

In this case P holds for every group in the class C. Instead of (II) it is also
sufficient to check one of the following statements:

(II)’ If there is a short exact sequence 1 → H → Γ → A→ 1 with A finitely
generated abelian-by-finite and if the property holds for H, then it also
holds for Γ.

(II)” If there is a short exact sequence 1 → H → Γ → A → 1 with A finite
or infinite cyclic and if the property holds for H, then then it also holds
for Γ.

Proof. This follows in the (II)’-case by transfinite induction from the de-
scription of the class C given in Proposition 7.6. Since (II) is stronger than
(II)’ it remains to be shown that also (II)” is sufficient. This follows from
the fact that one can split an extension by one finitely generated abelian-by-
finite group into finitely many extensions by infinite cyclic groups followed
by one extension by a finite group.

Proof of 7.7(ii). We use the induction principle. Let P (Γ) be the follow-
ing statement: For every elementary amenable normal subgroup A ⊳ Γ the
quotient Γ/A is in C.
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(I) Let Γ be a free group. Since any subgroup of a free group is free, an
elementary amenable subgroup A must be either trivial or infinite cyclic.
Suppose A is infinite cyclic. Since every finitely generated normal subgroup
of a free group has finite index ([57, Chapter I, Proposition 3.12.]), the group
Γ/A is finite and therefore in C.
(II) Let 1 → H → Γ → A′ → 1 be an exact sequence with A′ elementary
amenable and suppose P (H) holds. Let A be an elementary amenable normal
subgroup of Γ. The following diagram is commutative and has exact rows
and columns.

A ∩H ⊂ ✲ H ✲✲ H/A ∩H

A
❄

∩

⊂ ✲ Γ
❄

∩

✲✲ Γ/A
❄

∩

A′

❄❄
= A′

❄❄

As a subgroup of A, the group A ∩ H is elementary amenable. By P (H)
the group H/A ∩ H is in C. Since Γ/A is an extension of H/A ∩ H by the
elementary amenable group A′ we see, that Γ/A is in C.
(III) Let Γ =

⋃

i∈I Γi be a directed union, suppose P (Γi) holds for all i ∈ I
and let A ⊳ Γ be an elementary amenable normal subgroup. The quotient
Γ/A is the directed union of the Γi/A ∩ Γi which are in C since A ∩ Γi is
elementary amenable as a subgroup of A and P (Γi) holds by assumption.
This completes the proof of 7.7 (ii).

Proof of Theorem 7.7(iii). The proof of is very similar. Let now P (G) be

the statement: If 1 → Z → Γ
p✲ G → 1 is an exact sequence with Z and

if Aut(Z) is elementary amenable, then Γ is in C.
(I) If G is a free group, then the sequence splits. A section determines a
homomorphism α : G→ Aut(Z) and Γ is a semidirect product Γ ∼= Z ⋊α G.
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In the commutative diagram

im(α)

�
�
�
�
�

α ◦ p
✒✒

Z ⊂ ✲ Γ
p ✲✲ G

α

✻✻

Z ⊂ ✲ ker(α ◦ p)
∪

✻

✲ ker(α)
∪

✻

the group ker(α ◦ p) is a direct product of Z and the free group ker(α) and
is therefore in C. Now Γ is an extension of ker(α ◦ p) by im(α) ⊂ Aut(Z),
which is by assumption elementary amenable. We conclude that Γ is in C.
(II) Let 1 → H → G → A → 1 be an exact sequence with A elementary
amenable and suppose P (H) holds. In the commutative diagram

Z = Z

p−1(H)
❄

∩

⊂ ✲ Γ
❄

∩

✲✲ A

H

❄❄
⊂ ✲ G

❄❄
✲✲ A

the group p−1(H) is in C because P (H) holds, and Γ is an extension of this
group by an elementary amenable group. Therefore Γ is in C and P (G) holds.
(III) Let G be the directed union of the groups Gi, i ∈ I. In the exact
sequence 1 → Z → p−1(Gi) → Gi → 1 the middle group is in C by the
assumption P (Gi). Now Γ is the directed union of the p−1(Gi) and is therefore
in C. This finishes the proof of 7.7 (iii).

We will now go on to prove the statement (iv) about free products in Theorem
7.7. We need the following observation about extensions of free products.
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Lemma 7.10. Let 1 → K → G
p−→ Q → 1 be a short exact sequence of

groups and let {gq, q ∈ Q} ⊂ G be a fixed set of representatives for the
cosets. Then for any group H the kernel of the homomorphism

G ∗H p∗1−→ Q

is the free product

(∗q∈QHgq) ∗K.

Here Hg is the conjugate of H by g in G ∗ H. In particular, we have an
extension

1 → (∗q∈QH) ∗K → G ∗H → Q→ 1

Proof. Note that by definition of a free product every element x ∈ G∗H can
be written uniquely as a word x = g1h1g2h2 · . . . ·gnhn with letters from G and
H, where g2, . . . , gn 6= 1 and h1, . . . , hn−1 6= 1. Every element g ∈ G can be
written uniquely as g = kgq for some k ∈ K and q ∈ Q. Define inductively ki
and qi such that g1 = k1gq1 , gq1g2 = k2gq2 , . . . , gqn−1

gn = kngqn . This allows
us to rewrite x as follows:

x = k1(gq1h1g
−1
q1

)k2(gq2h2g
−1
q2

)k3 · . . . · kn(gqnhng
−1
qn

)gqn .

Now suppose x is in the kernel of p ∗ 1. Since p ∗ 1(x) = gqn = 1 we see that
x can be written as a word with letters in the Hgq and in K as proposed
by the brackets. Suppose there is another such spelling of x as a word with
letters in the Hgq and in K

x = (k′1gq′1)h
′
1(g

−1
q′
1

k′2gq′2)h
′
2(g

−1
q′
2

k′3gq′3) · . . . · h
′
m(g−1

q′m
).

Reading this as indicated by the brackets as a word with letters in G and
H and using the above mentioned uniqueness yields m = n and g1 = k′1gq′1 ,

h′1 = h1, g2 = g−1
q′
1

k′2gq′2 , h
′
2 = h2, . . . , h

′
n = hn, g−1

q′n
= 1. Uniqueness of the

spelling as a word with letters in the Hgq and K follows inductively from
this, making use of the uniqueness of the ki and qi. This proves that the
kernel is the free product ∗q∈QHgq ∗K.

Lemma 7.11. Let Γ be in C and F be any free group. Then Γ ∗ F is in C.
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Proof. We use the induction principle. (I) The statement is clear if Γ is a
free group. (II) Now take an extension 1 → H → Γ → A → 1 where A
is elementary amenable and H ∗ F ′ belongs to C for any free group F ′. By
Proposition 7.10 we get an extension 1 → ∗a∈AF ∗ H → Γ ∗ F → A → 1.
Since F ′ := ∗a∈AF is again free, this is an extension of a group of C by an
elementary amenable group, therefore Γ ∗ F is in C. (III) Let Γ =

⋃

i∈I Γi

be a directed union of subgroups and suppose Γi ∗ F ∈ C for all i ∈ I. Then
Γ ∗F =

⋃

i∈I Γi ∗F belongs to C since C is closed under directed unions.

Lemma 7.12. Suppose G is in C, and let I be any index set. Then GI :=
∗i∈IG is in C.

Proof. Proposition 7.10 with p = idZ shows that there is an extension 1 →
∗z∈ZG → G ∗ Z → Z → 1. By Lemma 7.11 the group G ∗ Z belongs to
the class C. Since C is subgroup closed ∗z∈ZG is in C. Again using that C
is subgroup closed we see that the free product of finitely many copies of
G belongs to C. Since GI = ∗i∈IG is the directed union of free products of
finitely many copies of G we are done.

Lemma 7.13. Fix a group Γ ∈ C. Let I be any index set and GI := ∗i∈IG.
If G is in C, then also Γ ∗GI .

Proof. Again we use the induction principle. (I) If Γ is a free group, the
statement follows from Lemma 7.12 and lemma 7.11. (II) Suppose 1 → H →
Γ → A → 1 is an exact sequence of groups with A elementary amenable.
Then we get an extension 1 → H ∗ GI′ → Γ ∗ GI → A → 1 with GI′ :=
∗a∈A(∗i∈IG) another free product of copies of G. If the statement holds for
H, then H ∗GI′ is in C since we did not specify the index set. But then also
Γ ∗GI belongs to C. (III) If Γ is a directed union Γ =

⋃

j∈J Γj and Γj ∗GI

is in C for all j ∈ J , then Γ ∗ GI belongs to C since it is the directed union
of the Γj ∗GI .

Now we are prepared to finish the proof of Theorem 7.7.

Proof of Theorem 7.7(iv). Since C is closed under taking subgroups 7.13 im-
plies that a free product with two factors lies in C if the factors do. Ordinary
induction shows that any finite free product of groups of C belongs to C. Since
an arbitrary product ∗i∈IΓi is the directed union of the subgroups ∗i∈JΓi with
J ⊂ I finite, the group ∗i∈IΓi lies in C.
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8 Linnell’s Theorem

We will now discuss in detail the following result due to Linnell [48].

Theorem 8.1. If Γ is a group in the class C which has a bound on the orders
of finite subgroups, then the Atiyah conjecture with complex coefficients (see
5.3) holds for Γ.

For the proof we will follow the strategy outlined in Section 5.2. So our task
is to find intermediate rings of the extension CΓ ⊂ UΓ with good properties.
By definition the class C is closed under taking extensions by finite and
infinite cyclic groups. On the ring theoretical side an extension corresponds
to a crossed product, see Appendix IV. One should think of this as a process
which makes the ring worse, e.g. it raises the homological dimension. The
technique to ameliorate the ring will be localization. In a large part of the
following we will therefore investigate what happens if one combines and
iterates these processes. Directed unions of groups correspond to directed
unions of rings and are much easier to handle.
The candidates for the intermediate rings are the division closure and the
rational closure of CΓ in UΓ. The reader who is not familiar with the concepts
of division and rational closure should first read the first three subsections
of Appendix III. In particular the situation of Proposition 13.17 will occur
again and again. We denote by DΓ = D(CΓ ⊂ UΓ) the division closure of
CΓ in UΓ and by RΓ = R(CΓ ⊂ UΓ) the rational closure of CΓ in UΓ.
Since a von Neumann regular ring is division closed and rationally closed
(see 13.15) these rings constitute a minimal possible choice for the ring SΓ
we are looking for.

Note 8.2. If the intermediate ring SΓ is von Neumann regular, then we
have DΓ ⊂ RΓ ⊂ SΓ.

We should mention that in all known cases DΓ and RΓ coincide. We denote
the set of elements of CΓ which become invertible in UΓ by T(Γ) = T(CΓ ⊂
UΓ) = CΓ∩UΓ×. Similarly the set of those matrices over CΓ which become
invertible over UΓ is denoted by Σ(Γ) = Σ(CΓ ⊂ UΓ). The set of non-
zerodivisors of CΓ is denoted NZD(CΓ).
Here is now a precise statement of the result that will be proven. Combined
with Theorem 5.10 this implies the above Theorem.

Theorem 8.3. Let Γ be a group in the class C which has a bound on the
orders of finite subgroups, then the following holds.

62



(A) The ring DΓ is semisimple, and the inclusion CΓ ⊂ RΓ is universal
Σ(Γ)-inverting.

The semisimplicity of DΓ implies DΓ = RΓ, compare 13.16.

(B) The natural map

colimK∈Fin(Γ)K0(CK) → K0(DΓ)

is surjective.

With little extra effort we prove the following statement which appears al-
ready in [46].

Theorem 8.4. If moreover Γ is elementary amenable and has a bound on
the orders of finite subgroups, the following holds.

(C) The set of non-zerodivisors NZD(CΓ) equals T(Γ), i.e. every non-
zerodivisor of CΓ becomes invertible in UΓ. The pair (CΓ,T(Γ)) satis-
fies the Ore condition. The Ore localization is semisimple and isomor-
phic to the division closure:

DΓ ∼= (CΓ)T(Γ)−1.

In particular, in this case CΓ ⊂ DΓ is not only universal Σ(Γ)-inverting, but
also universal T(Γ)-inverting. An Ore localization with respect to the set of
all non-zerodivisors is called a classical ring of fractions.

Of course these theorems are proven via transfinite induction. Compare 7.6
and 7.9. Before we give the details of the proof we will discuss the main
ingredients and difficulties. The table below might help the reader to follow
the proof. The statements proven below are labelled according to this table.
Recall that, given classes of groups X and Y , we denote by XY the class
of X -by-Y groups and by LX the class of locally-X -groups. The subclass
X ′ ⊂ X consists of those groups which have a bound on the orders of finite
subgroups. The class of finite groups is denoted by {finite}. Similarly for
other classes of groups. The statement of (A) above for the group Γ is
abbreviated to (A)Γ. Similarly (A)X , if (A) holds for all groups in the class
X . With this shorthand notation we can summarize the statements proven
in the following subsection as follows:
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AIa) (A){free}

BIb) (B){free}{finite}

AIIa) (A)Y ⇒ (A)Y{infinite cyclic}

AIIb) (A)Y ⇒ (A)Y{finite}

BIIa)+b)
(

Y{finite} = Y , (A)Y and (B)Y
)

⇒ (B)Y{f.g. abelian-by-finite}

AIII) (A)Y ′ and (B)Y ′ ⇒ (A)(LY)′

BIII) (B)Y ⇒ (B)LY .

We will verify below (page 66) that Theorem 8.3 follows via transfinite in-
duction. Note that the strong hypothesis in BIIa) + b) forces us to start
the induction with a class of groups which is closed under finite extensions.
Therefore it is not enough to prove (A) and (B) for free groups to start the
induction.

(A) (B)
I. Starting the
induction.

a) Γ free on two
generators.
b) Γ free by fi-
nite.

II. Induction
step Y → YB:
Extensions by
H.

a) H infinite
cyclic.

b) H finite.
a) + b) H
finitely gener-
ated abelian-by-
finite.

III. Induction
step Y → LY :
Directed unions.

One might wonder whether one could separate the (A)-part from the (B)-
part, but the proof of AIII) uses the (B)-part of the induction hypothesis.
The (B)-part depends of course heavily on the (A)-part.
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That CΓ ⊂ RΓ is universal Σ(Γ)-inverting is only important for the proof of
BIb). If one is only interested in the Atiyah conjecture one could therefore
proceed with the induction steps without this extra statement. We have
included it in the induction since it is interesting in its own right and leads
for example to exact sequences in K-theory, compare Note 10.9. We have
tried to give versions of the statements which use as little hypothesis as
possible.
The following remarks summarize where deeper results enter the proof.

AIa) The major part of the work has already been done in Section 6 and
relies on the Fredholm module techniques described there. It is easy
to see that DΓ is a skew field, but to show that CΓ ⊂ DΓ is universal
Σ(Γ)-inverting requires further results about the group ring of the free
group.

BIa) This is trivial once we know DΓ is a skew field since K0(DΓ) = Z.

AIb) Extensions by finite groups cause no problems for the (A)-part.

BIb) Here it is required that CΓ ⊂ DΓ is universal Σ(Γ)-inverting to apply
results of Schofield [78] about the K-theory of universal localizations.

AIIa) This is again easy.

AIIb) This part uses Goldie’s theorem and the structure theory of semisimple
rings. To verify the hypothesis of Goldie’s theorem we have to go back
to operators and functional analysis and use a result of Linnell [47].

AIIa)+b) Combine the two previous parts.

BIIa)+b) Here it does not seem to be possible to prove BIIa) and BIIb) sepa-
rately. Moody’s induction theorem is the main ingredient in this part.
Moreover this, part forces us to start the induction with a class of
groups that is closed under extensions by finite groups.

AIII) This part is straightforward, but the hypothesis about the bound on
the orders of finite subgroups enters the proof.

BIII) This is easy.
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Proof of Theorem 8.3. We use the description of the class C given in Propo-
sition 7.6: Let Γ be in C ′. Choose a least ordinal α such that Γ ∈ Cα, and sup-
pose (A) and (B) hold for all C ′

β with β < α. There are three cases: If α = 0,
then Cα = C0 = {free-by-finite} and the result follows from AIa), AIIb) and
BIb). If α is a limit ordinal there is nothing to prove since Cα =

⋃

β<α Cβ.
If α = β + 1 for some ordinal β we have Cα = (LCβ){f.g. abelian-by-finite}
and by assumption (A)C′

β
and (B)C′

β
hold. Now AIII) and BIII) yield

(A)(LCβ)′ and (B)(LCβ)′ . Here we used that (LY)′ ⊂ L(Y ′) for arbitrary
classes Y . Now, since one extension by a finitely generated abelian-by-
finite group can always be replaced by finitely many extensions by infi-
nite cyclic groups followed by one extension by a finite group we get from
AIIa), AIIb) and (Y{f.g. abelian-by-finite})′ = Y ′{f.g. abelian-by-finite}
that (A)C′

α
holds. From Proposition 7.6 we know that Cβ{finite} = Cβ. For

an arbitrary class Y{finite} = Y implies (LY){finite} = LY and we al-
ways have Y ′{finite} = (Y{finite})′. Therefore BIIa)+b) applies and yields
(B)C′

α
.

We will see that it is relatively easy to prove the following refinements.

CIIa) (C)Y ⇒ (C)Y{infinite cyclic}

CIIb) (C)Y ⇒ (C)Y{finite}

CIII) (C)Y ′ and (B)Y ′ ⇒ (C)(LY)′ .

Theorem 8.4 follows using the induction principle for elementary amenable
groups 7.3. Note that (C) is false for the free group on two generators since
this would imply that DΓ is flat over CΓ and therefore (DΓ is semisimple)
UΓ is flat over CΓ. But this cannot be true since we know that H1(Γ;UΓ)
does not vanish.

8.1 Induction Step: Extensions - The (A)-Part

In this section we consider an exact sequence of groups

1 → G→ Γ → H → 1.

The ring DΓ will be built up in two steps out of DG. We first consider a
crossed product DG ∗H, and we will show that under certain circumstances
DΓ is an Ore localization of DG ∗H.
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First we collect what we have to know about the behaviour of localizations
with respect to crossed products. For the definition of a crossed product
and our conventions concerning notation we refer to Appendix IV. A ring
extension R ∗ G ⊂ S ∗ G is called compatible with the crossed product
structures if the inclusion map is a crossed product homomorphism. We
emphasize again that Proposition 13.17 is the starting point for most of the
considerations below.

Proposition 8.5 (Crossed Products and Localization). Let R ∗ G ⊂
S ∗G be a compatible ring extension of crossed products. The crossed product
structure map on both rings will be denoted by µ : G→ R ∗G ⊂ S ∗G

(i) The intermediate ring generated by D(R ⊂ S) and µ(G) carries a
crossed product structure such that both inclusions

R ∗G ⊂ D(R ⊂ S) ∗G ⊂ S ∗G

are compatible with the crossed product structures.

(ii) Similarly the ring generated by R(R ⊂ S) and µ(G) in S ∗ G is a
compatible crossed product.

(iii) Let Σ be a set of matrices over (or elements of) R which is invari-
ant under the conjugation maps cµ(g). Let i : R → RΣ be universal
Σ-inverting, then RΣ ∗ G exists together with a crossed product homo-
morphism

i ∗G : R ∗G→ RΣ ∗G.

This map is universal Σ-inverting.

(iv) If R ⊂ D(R ⊂ S) is universal T(R ⊂ S)-inverting, then

R ∗G ⊂ D(R ⊂ S) ∗G

is universal T(R ⊂ S)-inverting.

(v) If R ⊂ R(R ⊂ S) is universal Σ(R ⊂ S)-inverting, then

R ∗G ⊂ R(R ⊂ S) ∗G

is universal Σ(R ⊂ S)-inverting.
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(vi) Let T ⊂ R be a multiplicatively closed subset which is invariant un-
der the conjugation maps cµ(g). Suppose (R, T ) fulfills the right Ore
condition, then (R ∗G, T ) fulfills the right Ore condition and

RT−1 ∗G ∼= (R ∗G)T−1.

Proof. (i) Let µ : G→ S ∗G denote the crossed product structure of S ∗G.
By assumption it differs from the one of R ∗G only by the inclusion R ∗G ⊂
S ∗ G. We have to show that the conjugation maps cµ(g) can be restricted
to D = D(R ⊂ S) and that the ring generated by D and µ(G) is a free
D-module with basis µ(G). For τ there is nothing to be done. By definition
D = D(R ⊂ S) is division closed in S, i.e. D ∩ S× ⊂ D×. Let α : S → S be
an automorphism with α(R) = R. One verifies that α(D) is division closed
in S and contains R. Since D is the smallest ring with these properties we
have D ⊂ α(D), and arguing with α−1 we get equality. In particular this
applies to cµ(g). Using this one can write every element in the ring generated
by D and µ(G) in the form

∑

g∈G dgµ(g) with dg ∈ D. Since S ∗ G is a free
S-module with basis µ(G) this representation is unique.
(ii) The proof is more or less identical with the proof above starting this time
with M(R(R ⊂ S)) ∩ GL(S) ⊂ GL(R(R ⊂ S)).
(iii) Let i : R → RΣ be universal Σ-inverting. By a assumption cµ(g)(Σ) ⊂ Σ
and therefore the composition i ◦ cµ(g) : R → R → RΣ is Σ-inverting. The
universal property gives us a unique extension cµ(g) : RΣ → RΣ of cµ(g). We
define a multiplication on the free RΣ-module with basis the symbols µ(g)
with g ∈ G by

r µ(g) · r′ µ(g′) = r cµ(g)(r
′) τ(g, g′) µ(gg′) (1)

for r, r′ ∈ RΣ. Here τ(g, g′) = µ(g)µ(g′)µ(gg′)−1 ∈ R× and τ = i ◦ τ . For
associativity we have to check (compare 14.2)

τ(g, g′) · τ(gg′, g′′) = cµ(g)(τ(g′, g′′)) · τ(g, g′g′′) (2)

cτ(g,g′) ◦ cµ(gg′) = cµ(g) ◦ cµ(g′) (3)

The first equation follows from associativity in R ∗G and the fact that cµ(g)
extends cµ(g). For the second equation note that cτ(g,g′) = cµ(g)◦cµ(g′)◦c−1

µ(gg′) :
R → R also leaves Σ invariant and has by the universal property an extension
cτ(g,g′) : RΣ → RΣ which by uniqueness coincides with cτ(g,g′) : RΣ → RΣ.
Arguing with the universal property we verify the second equation. Now as
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RΣ ∗ G exists as a ring it makes sense to consider cµ(g) : RΣ ∗ G → RΣ ∗ G.
One checks that cµ(g) restricts to RΣ and cµ(g) = cµ(g). Similarly the notation
τ is unambiguous, i.e. (i ◦ τ)(g, g′) = τ(g, g′) = µ(g)µ(g′)µ(gg′)−1.
The map i ∗ G : R ∗ G → RΣ ∗ G given by

∑

rgµ(g) 7→ ∑

i(rg)µ(g) is a
Σ-inverting ring homomorphism and compatible with the crossed product
structures. Remains to be verified that it is also universal Σ-inverting. Let
f : R ∗ G → S be a given Σ-inverting homomorphism. Denote by j : R →
R ∗ G and jΣ : RΣ → RΣ ∗ G the natural inclusion. The universal property
of i : R → RΣ applied to the composition f ◦ j : R → R ∗ G → S gives a
homomorphism φ0 : RΣ → S with φ0 ◦ i = f ◦ j. Now a ring homomorphism
φ : RΣ ∗ G → S with φ ◦ (i ∗ G) = f and φ ◦ jΣ = φ0 necessarily has to
be defined by φ(jΣ(r)µ(g)) = φ0(r)f(µ(g)). One ensures that this indeed
defines a ring homomorphism.
(iv) Denote by i : R → RT the universal T inverting homomorphism and
by j : R → D(R ⊂ S) the inclusion. By assumption the homomorphism
φ : RT → D(R ⊂ S) given by the universal property is an isomorphism. By
(iii) i ∗ G exists and is universal T -inverting. From (i) we know that j ∗ G
exists and is T -inverting. The universal property applied to this yields φ ∗G
which is an isomorphism.
(v) The same argument as in (iii).
(vi) The assumption says that given (ag, s) ∈ (R, T ) there exist (bg, tg) ∈
(R, T ) such that agtg = sbg, which becomes s−1ag = bgt

−1
g in RT−1. Moreover

finitely many fractions, e.g. (1, cµ(g)−1(tg)) ∈ (R, T ) can be brought to a com-
mon denominator. So there exist (dg, t) ∈ (R, T ) such that cµ(g)−1(tg)

−1 =
dgt

−1. Using this one turns

s−1
[

∑

agµ(g)
]

=
∑

bgt
−1
g µ(g)

=
∑

bgµ(g)cµ(g)−1(tg)
−1 =

[

∑

bgµ(g)dg

]

t−1

into a proof by avoiding denominators. The Ore localization (R ∗ G)T−1 is
universal T -inverting. From (iii) we know that RT ∗ G ∼= RT−1 ∗ G is also
universal T -inverting. Therefore the two rings are isomorphic.

In particular, we obtain in our situation:

Proposition 8.6 (Extensions and Localization). Let 1 → G → Γ →
H → 1 be an exact sequence of groups and let µ be a set theoretical section
µ : H → Γ.
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(i) The ring DG ∗H generated by DG and µ(H) in UΓ has a compatible
crossed product structure. The ring generated by RG and µ(H) has a
compatible crossed product structure.

(ii) The crossed product CGT(G) ∗H exists together with a map

CG ∗H → CGT(G) ∗H.

This map is universal T(G)-inverting. Similarly the map

CG ∗H → CGΣ(G) ∗H

exists, is compatible and universal Σ(G)-inverting.

(iii) If CG ⊂ DG is universal T(G)-inverting, then

CG ∗H ⊂ DG ∗H

is universal T(G)-inverting. If CG ⊂ RG is universal Σ(G)-inverting,
then

CG ∗H ⊂ RG ∗H

is universal Σ(G)-inverting.

(iv) If (CG, T (G)) fulfills the Ore condition and D(G) ∼= (CG)T (G)−1, then
the pair (CG ∗H,T(G)) fulfills the Ore condition, CG ∗H ⊂ DG ∗H
is universal T(G)-inverting and

DG ∗H ∼= (CG ∗H)T(G)
∼= (CG ∗H)T(G)−1

is an Ore localization.

Proof. Apply the previous proposition.

The next step is the passage from DG ∗H to DΓ. We will show that under
certain circumstances this is an Ore localization. Finally we are interested
in combining these two steps. It is therefore important to gather informa-
tion on iterated localizations. Note that an analogue of (ii) in the following
proposition for elements instead of matrices does not hold.

Proposition 8.7 (Iterated Localization). Let R ⊂ S be a ring extension.
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(i) The division closure and rational closure are in fact closure operations,
namely

D(D(R ⊂ S) ⊂ S) = D(R ⊂ S),

and R(R(R ⊂ S) ⊂ S) = D(R ⊂ S).

(ii) Let Σ ⊂M(R) be a set of matrices with Σ ⊂ Σ(R ⊂ S). Let R → RΣ be
universal Σ-inverting and RΣ → (RΣ)Σ(RΣ→S) be universal Σ(RΣ → S)-
inverting, then the composition of these maps is universal Σ(R ⊂ S)-
inverting. A little less precise

(RΣ)Σ(RΣ→S)
∼= RΣ(R⊂S).

(iii) Let T ⊂ T(R ⊂ S) be a multiplicatively closed subset. Suppose the pair
(R, T ) and the pair (RT−1,T(RT−1 ⊂ S)) both satisfy the right Ore
condition, then also (R,T(R ⊂ S)) satisfies the right Ore condition
and RT(R ⊂ S)−1 ∼= (RT−1)(T(RT−1 ⊂ S))−1. Both rings can be
embedded into S and hence

R ⊂ (RT−1)(T(RT−1 ⊂ S))−1 = RT(R ⊂ S)−1 ⊂ S.

(iv) If moreover T(RT−1 ⊂ S) = NZD(RT−1), then T(R ⊂ S) = NZD(R)
and RT(R ⊂ S)−1 is a classical ring of right fractions.

Proof. (i) If R is division closed in S, then D(R ⊂ S) = R. Since D(R ⊂ S) is
by definition division closed in S the claim follows. Similarly for the rational
closure.
(iii) We start with (a, s) ∈ R × T(R ⊂ S) and have to show that a right
fraction s−1a can be written as a left fraction. Since R × T(R ⊂ S) ⊂
RT−1×T(RT−1 ⊂ S) and the assumption yields elements (b, t) ∈ R×T and
(c, u) ∈ R× T with cu−1 ∈ T(RT−1 ⊂ S) such that (symbolically)

s−1a = (bt−1)(cu−1)−1 = b(cu−1t)−1.

Note that cu−1 ∈ T(RT−1 ⊂ S) implies c ∈ T(R ⊂ S) and therefore
(b, cu−1t) ∈ R × T(R ⊂ S). This is turned into a proof by avoiding in-
verses which not yet exist. Once RT(R ⊂ S)−1 exists we know that R →
RT(R ⊂ S)−1 is universal T(R ⊂ S)-inverting. Similarly for R → RT−1 and
RT−1 → (RT−1)T(RT−1 ⊂ S)−1. Now apply (ii).
(iv) It is sufficient to check NZD(R) ⊂ T(R ⊂ S). Let r ∈ NZD(R) be a
non-zerodivisor in R. Using the Ore condition for RT−1 one verifies that
r ∈ NZD(RT−1) = T(RT−1 ⊂ S). So r becomes invertible in S.
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For the proof of 8.7 (ii) we need some preparations. Two matrices (or ele-
ments) a, b ∈ M(R) are called stably associated over R if there exist matrices
c, d ∈ GL(R), such that

c

(

a 0
0 1n

)

d−1 =

(

b 0
0 1m

)

with suitable m and n. Note that this is an equivalence relation and this
relation respects the property of being invertible. Given a set of matrices
Σ ⊂ M(R) we denote by Σ̃ the set of all matrices which are stably associated
to a matrix in Σ. The first statement of the following lemma is also known
as Cramer’s rule.

Lemma 8.8. (i) Let Σ ⊂ M(R) be a set of matrices and f : R → RΣ

be universal Σ-inverting. Every matrix a ∈ M(RΣ) is stably associated
over RΣ to a matrix f(b) with b ∈ M(R).

(ii) Let Σ = f−1(GL(RΣ)) be the so called saturation of Σ, then f : R → RΣ

is universal Σ-inverting and similarly with Σ̃ instead of Σ. For purposes
of the universal localization we can always replace Σ by Σ̃ or Σ.

(iii) Let Σ, Σ′ ⊂ M(R). Let f : R → RΣ be universal Σ-inverting and
let RΣ → (RΣ)f(Σ′) be universal f(Σ′)-inverting, then the composition
g ◦ f : R → (RΣ)f(Σ′) is universal Σ ∪ Σ′-inverting and therefore

(RΣ)f(Σ′)
∼= RΣ∪Σ′ .

Proof. (i) This can be deduced from a generator and relation construction of
RΣ. Compare [78, page 53].
(ii) By definition of Σ the map f : R → RΣ is Σ-inverting. One verifies that
it also has the corresponding universal property. Similarly for Σ̃.
(iii) Suppose h : R → S is Σ ∪ Σ′-inverting. The universal property of
f : R → RΣ gives a unique map φ : RΣ → S which is f(Σ′)-inverting.
The universal property of g : RΣ → (RΣ)f(Σ′) yields the desired unique
Φ : (RΣ)f(Σ′) → S.

Now we are prepared to complete the proof of Proposition 8.7.

Proof of Proposition 8.7(ii). Let a be a matrix in Σ(RΣ → S). From 8.8
we know that a (as every matrix over RΣ) is stably associated to a matrix
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f(b) with b ∈ R. For purposes of the universal localization we can therefore
replace Σ(RΣ → S) by f(Σ′) for a suitable set of matrices Σ′ ⊂ R. Compare
8.8. Now by 8.8 we get

(RΣ)Σ(RΣ→S)
∼= (RΣ)f(Σ′)

∼= RΣ∪Σ′ .

One verifies that Σ ∪ Σ′ ⊂ Σ(R → S), i.e R → RΣ(R→S) is Σ ∪ Σ′-inverting.
An application of 8.9 yields RΣ∪Σ′

∼= RΣ(R→S).

The next lemma tells us that in some cases the different localizations coincide.

Lemma 8.9. Let R ⊂ S be a ring extension.

(i) Let Σ ⊂ Σ′ and R → RΣ be universal Σ-inverting. If R → RΣ is
Σ′-inverting, then it is universal Σ′-inverting.

(ii) Suppose R ⊂ D(R ⊂ S) is universal T(R ⊂ S)-inverting and von
Neumann regular, then D(R ⊂ S) = R(R ⊂ S) and R ⊂ R(R ⊂ S) is
universal Σ(R ⊂ S)-inverting.

Proof. (i) Note that f has the universal property.
(ii) A von Neumann regular ring is division closed and rationally closed in
every overring, compare 13.15. Therefore D(R ⊂ S) = R(R ⊂ S). Since
R → R(R ⊂ S) = D(R ⊂ S) is Σ(R ⊂ S)-inverting an application of (i)
with Σ = T (R ⊂ S) and Σ′ = Σ(R ⊂ S) yields the result.

Now we apply the above to our situation. The second statement of the
following proposition is the abstract set-up for the most difficult part of the
induction. The last statement will be applied later only in the case where Γ
is elementary amenable.

Proposition 8.10. Let 1 → G → Γ → H → 1 be an exact sequence of
groups.

(i) We have

D(DG ∗H ⊂ UΓ) = DΓ,

and R(RG ∗H ⊂ UΓ) = RΓ.

73



(ii) Suppose CG→ RG is universal Σ(G)-inverting and the pair

(RG ∗H,T(RG ∗H ⊂ UΓ))

fulfills the Ore condition. Then

D(RG ∗H ⊂ UΓ) ∼= (RG ∗H)T(RG ∗H ⊂ UΓ)−1.

If this ring is von Neumann regular it coincides with RΓ, and in this
case CΓ ⊂ RΓ is universal Σ(Γ)-inverting.

(iii) If CΓ ⊂ DΓ is universal T(Γ)-inverting and DΓ is von Neumann reg-
ular, then DΓ = RΓ and CΓ ⊂ DΓ is also universal Σ(Γ)-inverting.

(iv) Suppose (CG,T(G)) satisfies the Ore condition and one can show that
(DG ∗H,T(DG ∗H ⊂ UΓ)) satisfies the Ore condition, then

DΓ ∼= (CΓ)T(Γ)−1

is an Ore localization and universal T(Γ)-inverting. If moreover T(DG∗
H ⊂ UΓ) = NZD(DG ∗H) then T(Γ) = NZD(CΓ).

Proof. (i) Since UΓ is von Neumann regular it is division closed, and from
the definition of the division closure we get DG = D(CG ⊂ UG) = D(CG ⊂
UΓ) ⊂ D(CΓ ⊂ UΓ) = DΓ. Since D∗G is the subring generated by DG and
H we have D ∗G ⊂ DΓ. Now the result follows from 8.7 (i).
(ii) From 8.6 (iii) and the assumption we know that f : CG ∗H ⊂ RG ∗H is
universal Σ(G)-inverting. As always the Ore localization RG ∗H → (RG ∗
H)T(RG ∗H ⊂ UΓ)−1 is universal T(RG ∗H ⊂ UΓ)-inverting and the map
to D(RG ∗ H ⊂ UΓ) given by the universal property is an isomorphism,
compare 13.17. If this ring is von Neumann regular we can apply 8.9 (ii) and
see that

g : RG ∗H → R(RG ∗H ⊂ UΓ) = D(RG ∗H ⊂ UΓ)

is universal Σ(RG ∗H ⊂ UΓ)-inverting. Now g ◦ f is an iterated localization
as in 8.7 (ii) and the result follows.
(iii) This is 8.9 (ii).
(iv) Apply 8.7 (iii) with R = CG ∗H, S = UΓ and T = T(G). The second
statement is 8.7 (iv).
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Remember that we want to prove not only von Neumann regularity but
semisimplicity for the rings DΓ. The following criterion tells us that it is
sufficient to check the ascending chain condition. Note that taking division
and rational closures in our situation always leads to ∗-closed subrings of UΓ.

Lemma 8.11 (∗-Closed Subrings of UΓ). Let Γ be any group.

(i) Every ∗-closed subring of UΓ is semiprime.

(ii) A ring which is semiprime and artinian is semisimple.

Proof. (i) Let a be an operator in UΓ. Since a is densely defined and
closed, the closure of the graph of a|dom(a∗a) is the graph of a. Now for
x ∈ dom(a∗a) ⊂ dom(a) we have < a∗ax, x >= |ax|2 and therefore a∗a = 0
implies a = 0. Now given an ideal I 6= 0 we have to show that I2 6= 0. Let
a ∈ I be nontrivial, then 0 6= a∗a ∈ I and 0 6= (a∗a)∗(a∗a) = (a∗a)2 ∈ I2.
(ii) See Theorem 2.3.10 on page 169 in [76].

Lemma 8.12 (Crossed Products and Chain Conditions). Let R ∗ G
be a crossed product.

(i) If R is artinian and if G is finite, then R ∗G is artinian.

(ii) If R is noetherian and if G is finite,infinite cyclic or more generally
polycyclic-by-finite, then R ∗G is noetherian. If R is noetherian and if
G ∼= Z is infinite cyclic, then R ∗G is noetherian.

(iii) If R is semisimple of characteristic 0 and if G is arbitrary, then R ∗G
is semiprime.

(iv) If R is semisimple of characteristic 0 and G finite, then R ∗ G is
semisimple.

Proof. If G is finite, a chain of ideals in R ∗ G can be considered as a chain
of R-modules in the finitely generated R-module R ∗ G which is artinian
respectively noetherian as an R-module. This proves (i) and (ii) if G is
finite.
(ii) Let G = Z be infinite cyclic. Let µ : Z → R ∗ G be the crossed product

structure map, compare 14.1. Set ˜µ(n) = (µ(1))n. This defines a new crossed
product structure on R∗Z which has the advantage that µ̃ and therefore n 7→
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cµ̃(n) is a group homomorphism and the corresponding twisting τ̃ is trivial.
With this new crossed product structure R ∗Z is a skew-Laurent polynomial
ring. Now we first treat the corresponding skew-polynomial ring with the
non-commutative analogue of the Hilbert basis theorem ([76, Prop.3.5.2 on
page 395]). The skew-Laurent-polynomial ring is then an Ore localization of
the skew polynomial ring and therefore again noetherian by [76, Prop. 3.1.13.
on page 354]. A polycyclic-by-finite group (by definition, see [77][page 310])
can be obtained by iterated extensions by infinite cyclic groups followed by an
extension by a finite group. Therefore an iterated use of the above arguments
finishes the proof.
(iii) This is a particular case of Theorem I in [69] since a semisimple ring
contains no nilpotent ideals.
(iv) Combine (i), (ii) and 8.11(ii).

Now we are ready to prove

AIIa) (A)Y ⇒ (A)Y{finite}

CIIa) (C)Y ⇒ (C)Y{finite}.

Or in words:

Proposition 8.13 ( AIIa) and CIIa) ). Let

1 → G→ Γ → H → 1

be an exact sequence of groups with H finite.
If DG is semisimple and universal Σ(G)-inverting, then

DΓ = DG ∗H

is semisimple and universal Σ(Γ)-inverting.
If moreover T(G) = NZD(G) and if the pair (CG,T(G)) satisfies the Ore
condition, then T(Γ) = NZD(Γ), the pair (CΓ,T(Γ)) satisfies the Ore condi-
tion and DΓ is a classical ring of fractions for CΓ.

Proof. From the last lemma we know that DG ∗ H is semisimple and in
particular von Neumann regular and division closed (compare 13.15), hence
DG ∗H = D(DG ∗H ⊂ UΓ) = DΓ by 8.10 (i) and moreover T(DG ∗H ⊂
UΓ) = (DG ∗H)×. Again, by semisimplicity DG = RG and DΓ = RΓ, and

76



an application of 8.10 (ii) with T(DG∗H ⊂ UΓ) = (DG∗H)× (nothing needs
to be inverted) yields the result. Similarly the second statement follows from
8.10 (iv).

We now turn to the case where H is infinite cyclic. The crossed products
which occur in this case are particularly simple, they are so-called skew-
Laurent polynomial rings. From Lemma 8.12 about crossed products and
chain conditions we know that DG ∗ Z is noetherian, ∗-closed and therefore
semiprime 8.11(i). The following theorem is therefore very promising.

Theorem 8.14 (Goldie’s Theorem). Let R be a right noetherian semiprime
ring. Let T = NZD(R) be the set of all non-zerodivisors in R, then (R, T )
satisfies the right Ore condition and the ring RT−1 is semisimple.

Proof. See section 9.4 in [16].

The crux of the matter is that we do not know that all non-zerodivisors
become invertible in UΓ. A priori we only have T(DG∗Z ⊂ UΓ) ⊂ NZD(DG∗
Z). Therefore even though we know that the Ore localization

DG ∗ Z → (DG ∗ Z)NZD(DG ∗ Z)−1

exists, is semisimple, and is as always universal NZD(DG ∗Z)-inverting, it is
not clear that there is a map from this localization to UΓ. Our next aim is
therefore to prove the equality T(DG ∗ Z ⊂ UΓ) = NZD(DG ∗ Z).
At this point we have to use more than abstract ring theoretical arguments
and investigate the situation again in terms of functional analysis. The key
point is the following theorem of Linnell.

Theorem 8.15. Let 1 → G → Γ → Z → 1 be an exact sequence of groups.
Choose a section µ : Z → Γ which is a group homomorphism. Set z = µ(1).
Suppose the first non-vanishing coefficient of the Laurent polynomial f(z) ∈
NG ∗ Z is a non-zerodivisor in NG, then f(z) is a non-zerodivisor in NΓ.

Proof. Theorem 4 in [47] proves a more general statement.

This enables us to prove that non-zerodivisors in UG ∗ Z of a very special
kind become invertible in UΓ.

Corollary 8.16. Suppose f(z) ∈ UG ∗ Z is of the form f(z) = 1 + a1z +
. . .+ anz

n, then it is invertible in UΓ.
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Proof. Remember that UG is a left and a right ring of fractions of NG
(Proposition 2.8). Since there is a common denominator for the a1, . . . , an
we can find an s ∈ T(NG ⊂ UG) = NZD(NG) and a g(z) ∈ NG ∗ Z such
that f(z) = s−1g(z). The first non-vanishing coefficient of g(z) is s and the
above theorem applies. We get g(z) ∈ NZD(NΓ) = T(NΓ ⊂ UΓ) ⊂ UΓ×

and therefore f(z) = s−1g(z) ∈ UΓ×.

Now we have to use the structure theory of semisimple rings to deduce the
desired result. This is done in several steps.

Proposition 8.17. Suppose R ∗ Z ⊂ S is a crossed product and one knows
that polynomials of the form f(z) = 1 + a1z + . . . + anz

n ∈ R ∗ Z become
invertible in S. Then if

(i) R is a skew field,

(ii) R is a simple artinian ring,

(iii) R is a semisimple ring,

then we have NZD(R ∗ Z) = T(R ∗ Z ⊂ S), and the Ore localization

(R ∗ Z)NZD(R ∗ Z)−1

embeds into S as the division closure

D(R ∗ Z ⊂ S).

Proof. We have already discussed above in 8.12 that R∗Z with R semisimple
is noetherian and semiprime. So indeed Goldie’s theorem applies, and once
we know that every non-zerodivisor becomes invertible in S the Ore local-
ization embeds into S as the division closure by Proposition 13.17(ii). In
fact, with little effort one could improve the proof given below and reprove
Goldie’s theorem in this special case.
(i) One verifies that up to a unit in R and multiplication by zn every nonzero
element of R ∗ Z can be written as f(z) above. The Ore localization in this
case is a skew field.
(ii) Step1: We will first change the crossed product structure on the ring
R ∗ Z to obtain one with better properties. Let R = Mn(Z) ⊗Z D with D
a skew field be a simple artinian ring. Let µ denote the crossed product
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structure map for the ring R ∗Z. Every automorphism c : R → R splits into
an inner automorphism and an automorphism of the form

id ⊗ θ : Mn(Z) ⊗Z D → Mn(Z) ⊗Z D,

where θ is an automorphism of D, compare [38, page 237]. In particular
cµ(1) = cu ◦ (id ⊗ θ) for some invertible element u ∈ R = Mn(Z) ⊗Z D. If we
now set µ̃(1) = u−1µ(1) and µ̃(n) = (µ̃(1))n we get a new crossed product
structure map µ̃ such that

cµ̃(n) : Mn(Z) ⊗Z D → Mn(Z) ⊗Z D

restricts to

cµ̃(n) : Z · 1n ⊗Z D → Z · 1n ⊗Z D

and the corresponding twisting τ̃ is identically 1. We see that with respect to
this new crossed product structure the subring (or left Z · 1n ⊗Z D-module)
generated by Z · 1n ⊗Z D and µ̃(Z) is a sub-crossed product of (R ∗ Z, µ̃),
i.e. the inclusion is a crossed product homomorphism. We denote this ring
by ((Z · 1n ⊗Z D) ∗ Z, µ̃). Note that the assumption about polynomials is
invariant under this base change since µ(n) and µ̃(n) differ by an invertible
element in R. There is a natural isomorphism

Mn(Z) ⊗Z ((Z · 1n ⊗Z D) ∗ Z) → (Mn(Z) ⊗Z D) ∗ Z.

From now on we will write D instead of Z · 1n ⊗Z D, and via the above
isomorphism we consider

Mn(Z) ⊗Z (D ∗ Z) ⊂ S

as a subring of S.
Step2: If we apply (i) to the inclusion Z · 1n ⊗Z (D ∗ Z) ⊂ S we see that
Z · 1n ⊗Z (D ∗ Z) fulfills the Ore condition with respect to the set T of all
nonzero elements. The Ore localization is a skew field K and embeds into S
as the division closure

K = (Z · 1n ⊗Z (D ∗ Z))T−1 = D (Z · 1n ⊗Z (D ∗ Z) ⊂ S) ⊂ S.
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Since K is an Ore localization the following diagram is a push-out diagram
by Corollary 13.8.

Z · 1n ⊗Z (D ∗ Z) ✲ Z · 1n ⊗Z K

Mn(Z) ⊗Z (D ∗ Z)
❄

✲ Mn(Z) ⊗Z K.
❄

Since Z · 1n ⊗ZK embeds into S and Mn(Z)⊗Z (D ∗Z) embeds into S there
is an induced homomorphism

Φ : Mn(Z) ⊗Z K → S.

Since D(Mn(Z)⊗Z (D ∗Z) ⊂ S) contains Mn(Z)⊗Z (D ∗Z) and Z ·1n⊗ZK it
must contain im(Φ). Since im(Φ) is a homomorphic image of a the semisimple
ring Mn(Z) ⊗Z K it is semisimple and therefore division closed. We get
equality. We claim that Φ is injective. The entries of a matrix in Mn(Z)⊗ZK
can always be brought to a common denominator. Injectivity follows from
the above pushout diagram and the fact that the Mn(Z) ⊗Z (D ∗ Z) → S is
injective. So we have that

Mn(Z) ⊗Z K ∼= D (Mn(Z) ⊗Z (D ∗ Z) ⊂ S) ⊂ S.

Remains to be proven that all non-zerodivisors in Mn(Z)⊗Z (D ∗Z) become
invertible in S. Let a be an element in Mn(Z) ⊗ Z(D ∗ Z). Now a either
becomes a zerodivisor or invertible in the semisimple ring Mn(Z)⊗ZK. From
Proposition 13.7 we know that

Mn(Z) ⊗Z K ∼= (Mn(Z) ⊗Z (D ∗ Z)) (T · 1n)−1

is an Ore localization. Using this we verify that a must have been a zerodi-
visor from the beginning if it becomes a zerodivisor in Mn(Z) ⊗Z K.
(iii) Let 1 =

∑

ei be a decomposition of the unit in R into central primitive
orthogonal idempotents. Every automorphism of R permutes the ei. There-
fore we can find an m ∈ N with cmµ(1)(ei) = ei, and the product structure

induced on the subring R ∗ (mZ) ⊂ R ∗ Z respects the decomposition of R
into simple artinian rings, i.e. the ei are still central orthogonal idempotents
for R ∗mZ

R ∗mZ = (⊕iRei) ∗mZ = ⊕i(R ∗mZ)ei.
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The hypothesis implies that every f(z) ∈ (R ∗mZ)ei with leading term ei is
invertible in eiSei. From (ii) we therefore get

NZD(R ∗mZei) = T(R ∗mZei ⊂ eiSei).

One checks that an element f ∈ R ∗mZ is invertible in eiSei if and only if
every fei is invertible in eiSei, and it is a non-zerodivisor in R ∗mZ if and
only if all fei are non-zerodivisors in R ∗mZei. Therefore

NZD(R ∗mZ) = T(R ∗mZ ⊂ S).

Goldie’s Theorem yields that

D(R ∗mZ ⊂ S) = (R ∗mZ)T(R ∗mZ ⊂ S)−1

is semisimple. Note that R∗Z = (R∗mZ)∗Z/mZ and D(R∗mZ ⊂ S)∗Z/mZ

is semisimple by 8.12 (iv) and therefore division closed. So T(R ∗ Z ⊂ S) =
T(R ∗ Z ⊂ D(R ∗mZ ⊂ S) ∗ Z/mZ). By 8.5 (vi) we have that

(R ∗mZ) ∗ Z/mZ ⊂ D(R ∗mZ ⊂ S) ∗ Z/mZ

= (R ∗mZ)T(R ∗mZ ⊂ S)−1 ∗ Z/mZ

= ((R ∗mZ) ∗ Z/mZ)T(R ∗mZ ⊂ S)−1

is universal T(R ∗mZ ⊂ S)-inverting. Since it is also T(R ∗Z ⊂ S)-inverting
it is universal T(R ∗ Z ⊂ S)-inverting because one easily checks the corre-
sponding universal property, compare 8.9(i). Therefore it is isomorphic to
the Ore localization given by Goldie’s theorem.

It would be very interesting to have a similar statement if R is von Neumann
regular, but of course the proof given here relies heavily on the structure
theory for semisimple rings.
Combining the above results we get

AIIb) (A)Y ⇒ (A)Y{infinite cyclic}

CIIb) (C)Y ⇒ (C)Y{infinite cyclic}.

Or in words:
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Proposition 8.18 ( AIIb) and CIIb) ). Let 1 → G→ Γ → Z → 1 be an
exact sequence of groups. If DG is semisimple and if CG ⊂ DG is universal
Σ(G)-inverting, then

DΓ = (DG ∗ Z)T(DG ∗ Z ⊂ UΓ)−1

is semisimple and CΓ ⊂ DΓ is universal Σ(Γ)-inverting.
If moreover T(G) = NZD(CG) and if DG ∼= (CG)T(G)−1 is a classical ring
of fractions for G, then T(Γ) = NZD(CΓ) and

DΓ ∼= (CΓ)T(Γ)−1

is a classical ring of quotients for CΓ.

Proof. From the above discussion we know that DG∗Z is semiprime noethe-
rian and T(DG ∗ Z ⊂ UΓ) = NZD(DG ∗ Z). Therefore the Ore localization

(DG ∗ Z)T(DG ∗ Z ⊂ UΓ)−1

exists, is semisimple according to Goldie’s Theorem and isomorphic to the
division closure D(DG ∗ Z ⊂ UΓ) = DΓ. That CΓ ⊂ DΓ is universal Σ(Γ)-
inverting now follows from 8.10 (ii), where we identify DG and DΓ with RG
and RΓ by 8.10 (iii). The last statement is 8.10 (iv).

One extension by a finitely generated abelian-by-finite group can always be
replaced by finitely many extensions by an infinite cyclic group followed by
one extension by a finite group. If we now combine AIIa) and AIIb) and
similarly CIIa) and CIIb) we immediately get the following:

AIIa)+b) (A)Y ⇒ (A)Y{f.g. abelian by finite}

CIIa)+b) (C)Y ⇒ (C)Y{f.g. abelian by finite}.

The statement (A) only cares about the ring extension CΓ ⊂ DΓ. But we
have also obtained information about the intermediate extension DG ∗H ⊂
DΓ which we will need again in the (B)-part. We record a corresponding
statement in the following Lemma.

Lemma 8.19. Let 1 → G → Γ → H → 1 be an exact sequence of groups
with H finitely generated abelian-by-finite.
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If DG is semisimple, then

T(DG ∗H ⊂ UΓ) = NZD(DG ∗H),

the pair (DG ∗H,T(DG ∗H ⊂ UΓ)) satisfies the Ore condition,

DΓ ∼= (DG ∗H)T(DG ∗H ⊂ UΓ)−1

is a classical ring of fractions for DG ∗H and semisimple.

Proof. In the proof of AIIb) we have already seen the corresponding state-
ment for H = Z. Since an extension by a finitely generated abelian-by-finite
group can be replaced by finitely many extensions by infinite cyclic groups
followed by an extension by a finite group it remains to be verified that we
can iterate. Apply 8.7 (iv) and 8.5 (vi).

8.2 Induction Step: Extensions - The (B)-Part

We now turn to the (B)-part of the induction step. Remember that our task is
to prove the surjectivity of the map colimK∈Fin(Γ)K0(CK) → K0(DΓ). If we
combine 8.19 with the following proposition we can handle the passage from
DG∗H to DΓ if H is finitely generated abelian-by-finite. Remember that for
a ring R the abelian group G0(R) is the free abelian group on isomorphism
classes of finitely generated modules modulo the usual relations which come
from exact sequences.

Proposition 8.20. (i) Suppose that T ⊂ R is a set of non-zerodivisors
and that the pair (R, T ) satisfies the right Ore condition, then the map
R → RT−1 induces a surjection

G0(R) → G0(RT
−1).

(ii) If the ring R is semisimple, then the natural map K0(R) → G0(R) is
an isomorphism.

Proof. (i) Let M be a finitely generated RT−1-module. We have to find a
finitely generated R-module N with N ⊗R RT

−1 ∼= M . Choose an epimor-
phism p : (RT−1)n → M . Let i : Rn → (RT−1)n be the natural map. Now

83



N = p ◦ i(Rn) is a finitely generated R-submodule of M . Let j : N → M
denote the inclusion. Now apply −⊗R RT

−1 to the diagram

Rn ✲ N

(RT−1)n

i

❄
✲ M.

j

❄

Since localizing is exact j⊗ idRT−1 is injective. For every RT−1-module L we
have that L ⊗R RT

−1 ∼= L. In particular i ⊗ idRT−1 is an isomorphism and
therefore also j⊗RT−1 is an isomorphism and N ⊗R RT

−1 ∼= M .
(ii) Over a semisimple ring all modules are projective.

Our target DΓ as well as our sources CK (where K is finite) are semisimple
rings, and thus we can pass to G-theory instead of K-theory during the proof.

Proposition 8.21. Suppose DG is semisimple and H is finitely generated
abelian-by-finite, then the map

G0(DG ∗H) → G0(DΓ) = K0(DΓ)

is surjective.

Proof. Combine 8.19 and 8.20.

Before we go on let us explain why the naive approach of proving BIIa) and
BIIb) separately would fail. In fact it is possible to prove a statement like

BIIb) (A)Y and (B)Y ⇒ (B)Y{infinite cyclic}.

Given an extension 1 → G→ Γ → Z → 1, every finite subgroup of Γ already
lies in the subgroup G, and we are left with the task of proving that the
map G0(DG) → G0(DG ∗ Z) is surjective. This is possible. Unfortunately
extensions by finite groups are much more complicated. The map G0(DG) →
G0(DG ∗H) is of course in general not surjective if H is finite and G0(DG ∗
H) really depends on the crossed product structure (take for example the
trivial group for G). The ring theoretical structure of DG and the abstract
knowledge of H is not sufficient. Fortunately we have the following theorem.
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Theorem 8.22 (Moody’s Induction Theorem). Let R be a noetherian
ring and H be a group which is a finite extension of a finitely generated
abelian group. Then the natural map

colimK∈Fin(H)G0(R ∗K) → G0(R ∗H)

is surjective.

Proof. This is due to Moody [60] and [61]. See also [13], [26] and Chapter 8
of [70].

In our situation we get in particular.

Proposition 8.23. Let 1 → G→ Γ → H → 1 be an exact sequence with H
finitely generated abelian-by-finite. Suppose DG is semisimple, then the map

colimL∈Fin(H)G0(DG ∗ L) → G0(DG ∗H)

is surjective.

Combining this with the induction hypothesis we finally get:

BIIa)+b)
(

Y{finite} = Y , (A)Y and (B)Y
)

⇒ (B)Y{f.g. abelian-by-finite}.

In words:

Proposition 8.24 ( BIIa)+b) ). Let Y be a class of groups which is closed
under finite extensions. Let 1 → G → Γ → H → 1 be an exact sequence
with G ∈ Y and let H be finitely generated abelian-by-finite. Suppose DG is
semisimple and we know that

colimL∈FinGK0(CL) → K0(DG)

is surjective for all groups G in Y. Then the map

colimK∈FinΓK0(CK) → K0(DΓ)

is surjective.
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Proof. Let p : Γ → H be the quotient map. All maps in the following
diagram are either isomorphisms or surjective.

colimM∈FinΓK0(CM)
∼=→ colimK∈FinHcolimL∈Finp−1(K)K0(CL) (1)

→ colimK∈FinHK0(Dp−1(K)) (2)
∼=→ colimK∈FinHG0(Dp−1(K)) (3)
∼=→ colimK∈FinHG0(DG ∗K) (4)

→ G0(DG ∗H) (5)

→ G0(DΓ) (6)
∼=→ K0(DΓ) (7)

We start at the bottom. (7) is an isomorphism by 8.20 (ii) since we know
from AIIa)+b) that DΓ is semisimple. Map (6) is surjective by 8.21, map
(5) by Moody’s induction theorem. (4) Since K is finite and DG semisimple
we know from AIIa) that Dp−1(K) = DG ∗K. (3) This follows from 8.20
(ii). (2) By assumption the class Y is closed under extension by finite groups.
Therefore p−1(K) is again in Y and we know that

colimL∈Finp−1(K)K0(CL) → K0(Dp−1(K))

is surjective. Since every M ∈ FinΓ occurs as M ∈ Fin(p−1(p(M))) with
p(M) ∈ FinH we get (1).

8.3 Induction Step: Directed Unions

This step is much easier than the preceding one. But the extra hypothesis
about the orders of finite subgroups enters the proof. First we collect what
we have to know about directed unions and localizations.

Proposition 8.25 (Directed Unions and Localization). Let Ri ⊂ Si ⊂
S be subrings for all i ∈ I. Let R =

⋃

i∈I Ri and
⋃

i∈I Si be directed unions.
Suppose all the rings Si are von Neumann regular.

(i) A directed union of von Neumann regular rings is von Neumann regu-
lar.
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(ii) We have

T(R ⊂ S) =
⋃

i∈I

T(Ri ⊂ Si)

Σ(R ⊂ S) =
⋃

i∈I

Σ(Ri ⊂ Si),

and the unions are directed.

(iii) We have

D(R ⊂ S) =
⋃

i∈I

D(Ri ⊂ Si)

R(R ⊂ S) =
⋃

i∈I

R(Ri ⊂ Si),

and the unions are directed.

(iv) If all the D(Ri ⊂ Si) are universal T(Ri ⊂ Si)-inverting, then D(R ⊂
S) is universal T(S)-inverting.

(v) If all the R(Ri ⊂ Si) are universal Σ(Ri ⊂ Si)-inverting, then R(R ⊂
S) is universal Σ(S)-inverting.

(vi) Suppose all the pairs (Ri,T(Ri ⊂ Si)) satisfy the right Ore condition,
then (R,T(R ⊂ S)) satisfies the right Ore condition.

(vii) If NZD(Ri) = T(Ri ⊂ Si) for all i ∈ I, then NZD(R) = T(R ⊂ S).

(viii) If D(Ri ⊂ Si) is a classical ring of right quotients for Ri, then D(R ⊂
S) is a classical ring of right quotients for R.

Proof. (i) This follows immediately if one makes use of the fact that a ring
R is von Neumann regular if and only if for every x ∈ R there exists a y ∈ R
such that xyx = x.
(ii) Suppose x ∈ R becomes invertible in S, then since in the von Neumann
regular ring Si an element is either invertible or a zerodivisor (see 12.3(i)) it
is already invertible in Si. The other inclusion is clear. The argument for
Σ(R ⊂ S) is similar using that matrix rings over von Neumann regular rings
are again von Neumann regular.
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(iii) Since Si is von Neumann regular we have D(Ri ⊂ Si) = D(Ri ⊂ S) ⊂
D(R ⊂ S) and therefore

⋃

i∈I D(Ri ⊂ Si) ⊂ D(R ⊂ S). On the other hand
⋃

i∈I D(Ri ⊂ Si) =
⋃

i∈I D(Ri ⊂ S) is division closed in S. Similar for the
rational closure.
(iv) Given a T(R ⊂ S)-inverting homomorphism R → R′. The composition
Ri → R → R′ is T(Ri ⊂ Si)-inverting and the universal property gives
a unique map φi : D(Ri ⊂ Si) → R′. Using that the union is directed
and each φi is unique one verifies that these maps determine a unique map
D(R ⊂ S) =

⋃

i∈I D(Ri ⊂ Si) → R′.
(v) is similar to (iv).
(viii) follows from (vi) and (vii) which are easy.

If we apply this to our situation we get:

Proposition 8.26. If Γ =
⋃

i∈I Γi is a directed union of groups the following
holds.

(i) The ring DΓ is the directed union of the subrings DΓi and RΓ is the
directed union of the RΓi.

(ii) Suppose CΓi ⊂ DΓi is universal T(Γi)-inverting for every i ∈ I. Then
CΓ ⊂ DΓ is universal T(Γ)-inverting.

(iii) Suppose CΓi ⊂ RΓi is universal Σ(Γi)-inverting for every i ∈ I. Then
CΓ ⊂ RΓ is universal Σ(Γ)-inverting.

(iv) Suppose for all i ∈ I that NZD(CΓi) = T(Γi) and suppose DΓi is a
classical ring of quotients for CΓi, then NZD(CΓ) = T(Γ) and DΓ is a
classical ring of fractions for CΓ.

(v) If all the DΓi are von Neumann regular, then DΓ is von Neumann
regular.

(vi) If all the RΓi are von Neumann regular, then RΓ is von Neumann
regular.

We now start with the (B)-part.

BIII) (B)Y ⇒ (B)LY .

Somewhat more precisely:
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Proposition 8.27 (BIII)). Let Γ be the directed union of the Γi, and sup-
pose that all the maps colimK∈Fin(Γi)K0(CK) → K0(DΓi) are surjective.
Then also the map

colimK∈Fin(Γ)K0(CK) → K0(DΓ)

is surjective.

Proof. From the preceding proposition we know that DΓ is the directed union
of the DΓi. Since K-theory is compatible with colimits and K ∈ FinΓ lies
in some FinΓi the result follows.

We now turn to the (A)-part. In our situation the DΓi are semisimple and
hence von Neumann regular. Note that the above proposition only yields
that DΓ is von Neumann regular. We have already seen in example 5.11
that without the assumption on the orders of finite subgroups semisimplicity
need not hold. But since we have already established the (B)-part we can
apply 5.12 to get

AIII) (A)Y ′ and (B)Y ′ ⇒ (A)(LY)′

CIII) (C)Y ′ and (B)Y ′ ⇒ (C)(LY)′ .

In words:

Proposition 8.28 (AIII) and CIII)). Let Γ be the directed union of the
Γi. Suppose all the DΓi are semisimple and universal Σ(Γi)-inverting. Sup-
pose all the maps

colimK∈Fin(Γi)K0(CK) → K0(DΓi)

are surjective. If there is a bound on the orders of finite subgroups of Γ, then
DΓ is semisimple and universal Σ(Γ)-inverting.
If moreover NZD(CΓi) = T(Γi) and all the pairs (CΓi,T(Γi)) satisfy the Ore
condition, then NZD(CΓ) = T(Γ) and the pair (CΓ,T(CΓ)) satisfies the Ore
condition.

Proof. The first part has been explained above. The second part is 8.26
(iv).
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8.4 Starting the Induction - Free Groups

We begin with the promised proof of Theorem 5.16. Because of the following
we need not distinguish between the rational and the division closure in the
case of a torsionfree group.

Note 8.29. The ring DΓ is a skew field if and only if RΓ is a skew field,
and in this case the two rings coincide.

Proof. Suppose DΓ is a skew field. Then it is not only division closed but also
rationally closed by 13.15 and therefore DΓ = RΓ is a skew field. Conversely,
if RΓ is a skew field, then DΓ is a division closed subring of a skew field and
therefore itself a skew field.

Proposition 8.30. Let Γ be a torsionfree group and let R ⊂ C be a subring.
The Atiyah conjecture with R-coefficients holds if and only if D(RΓ ⊂ UΓ)
is a skew field.

Proof. Suppose DΓ = D(RΓ ⊂ UΓ) is a skew field. Let M be a finitely
presented RΓ-module, then M ⊗RΓ DΓ is a finite dimensional vector space
and dimUΓ(M ⊗RΓ DΓ ⊗DΓ UΓ) is an integer.
On the other hand suppose the Atiyah conjecture holds. Let x be a nontrivial
element in the rational closure RΓ = R(RΓ ⊂ UΓ). We will show that x
is invertible in UΓ. Since RΓ is rationally closed and in particular division
closed the inverse x−1 lies in RΓ and we see that this ring is a skew field. By
the note above also DΓ is a skew field. Let 0 6= x ∈ RΓ. The following lemma
tells us that x is stably associated over RΓ (over UΓ would be sufficient) to
a matrix A over RΓ. Interpreting all matrices as matrices over UΓ we get
an isomorphism of UΓ-modules im(x) ⊕ ⊕n

i=1 UΓ ∼= im(A). By the Atiyah
conjecture dim(im(A)) has to be an integer and therefore dim im(x) is either
0 or 1. Additivity of the dimension and von Neumann regularity of UΓ
implies that x is either 0 or invertible.

Lemma 8.31. Let R ⊂ S be a ring extension. Then every matrix over
R(R ⊂ S) is stably associated over R(R ⊂ S) to a matrix over R.

Proof. We deduce this from the corresponding statement for the universal
localization. Let R → RΣ(R⊂S) be universal Σ(R ⊂ S)-inverting. We know
that the map RΣ(R⊂S) → R(R ⊂ S) given by the universal property is
surjective. So we lift the matrix to RΣ(R⊂S) use 8.8 (i) and map everything
back to R(R ⊂ S).
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We have already seen that the Atiyah conjecture holds for the free group on
two generators. Since the conjecture is stable under taking subgroups we get
from the preceding proposition.

Proposition 8.32. If Γ is a free group, then DΓ is a skew field.

Proof. The group Γ is the directed union of its finitely generated subgroups
⋃

i∈I Γi. Every finitely generated free group is a subgroup of the free group on
two generators. Since the Atiyah conjecture is stable under taking subgroups
the preceding proposition yields, that all the DΓi are skew fields. By 8.26
DΓ =

⋃

i∈I DΓi. One easily verifies that a directed union of skew fields is
again a skew field.

The hard part is now to verify that CΓ ⊂ DΓ is universal Σ(Γ)-inverting.
Unfortunately we have to introduce a new concept: the universal field of
fractions of a given ring R. This should not be confused with any of the
other notions introduced so far (universal Σ-inverting ring homomorphism,
universal T -inverting ring homomorphism, classical ring of fractions). As
the name suggests, the universal field of fractions is defined by a universal
property, but unfortunately it does not have to exist. For more details the
reader is referred to Appendix III.

Proposition 8.33. Let R be a semifir, then the universal field of fractions
R → K exists and is universal Σ(R → K)-inverting.

Proof. See Appendix III Proposition 13.20.

The group ring CΓ of a free group is the standard example of a fir [16][Section
10.9]. In particular it is a semifir. We still have to recognize DΓ as a universal
field of fractions for CΓ. From Corollary 13.25 we know that it is sufficient to
show that CΓ ⊂ DΓ is Hughes-free. By definition this means the following:
Given any finitely generated subgroup G ⊂ Γ and a t ∈ G together with a
homomorphism pt : G → Z which maps t to a generator, the set {ti | i ∈ Z}
is D(C ker pt ⊂ UΓ)-left linearly independent. But we know from the exact
sequence

1 → ker pt → G→ Z → 1

and Proposition 8.5(i) that the ring generated by

D(C ker pt ⊂ UΓ) = D(C ker pt ⊂ U ker pt) = D(ker pt)
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and G as a subring of U(ker pt) ∗ Z is itself a crossed product D(ker pt) ∗ Z.
In particular it is a free D(ker pt)-module with basis {ti | i ∈ Z}.

Proposition 8.34 (AIa)). If Γ is a free group, then DΓ is a skew field and
CΓ ⊂ DΓ is universal Σ(Γ)-inverting.

Note that once we know DΓ is a skew field the (B)-part is trivially verified
since K0(DΓ) ∼= Z.

8.5 Starting the Induction - Finite Extensions of Free
Groups

We now turn to the case of finite extensions of a free groups. We already
know from AIIa) that extensions by finite groups cause no problems for the
(A)-part.

Proposition 8.35 (AIb)). Let Γ be a finite extension of a free group, then
DΓ is semisimple and CΓ ⊂ DΓ is universal Σ(Γ)-inverting.

The (B)-part remains to be proven. This time we really follow the philosophy
outlined in Subsection 5.3 and begin with the statement that would follow
from the isomorphism conjecture in algebraic K-theory.

Proposition 8.36. Let Γ be a finite extension of a free group, then the map

colimK∈Fin(Γ)K0(CK) → K0(CΓ)

is surjective.

Proof. See [48][Lemma 4.8].

We still have to show surjectivity of the map K0(CΓ) → K0(DΓ). Since we
already know that CΓ ⊂ DΓ is universal Σ(Γ)-inverting we can use results of
Schofield [78] about the K-theory of universal localizations. Again we have
to introduce a few new concepts which we discuss in Appendix III.

Proposition 8.37. Let R be a hereditary ring with faithful projective rank
function ρ : K0(R) → R and let Σ be a set of full matrices with respect to ρ,
then the universal Σ-inverting homomorphism R → RΣ induces a surjection

K0(R) → K0(RΣ).
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Proof. This is a simplification of Theorem 5.2 of [78]. Note that by Lemma
1.1 and Theorem 1.11 in the same book the projective rank function is au-
tomatically a Sylvester projective rank function and by Theorem 1.16 there
are enough left and right full maps.

Let us explain how this applies in our situation. Let Γ be finitely generated
and let G be a free subgroup of finite index. Then Γ operates with finite
isotropy on a tree, and the CΓ-module C admits of a 1-dimensional projective
resolution. Compare [21][Chapter IV, Corollary 3.16 on page 114]. This
implies that every CΓ-module has a 1-dimensional projective resolution (see
[77][Proposition 8.2.19 on page 315]), and in particular CΓ is hereditary. Now
the dimension function for UΓ gives us a faithful projective rank function
ρ = dimUΓ(−⊗CΓ UΓ). We check in Lemma 13.30 that Σ(CΓ ⊂ UΓ) is a set
of full maps with respect to ρ. Let us record the result.

Proposition 8.38. If Γ is a finite extension of a finitely generated free
group, then the map K0(CΓ) → K0(DΓ) is surjective.

Since K-theory is compatible with colimits and DΓ is the directed union of
the DΓi for the finitely generated subgroups Γi of Γ we finally get our result.

Proposition 8.39 (BIb)). If Γ is a finite extension of a free group, then
the map

colimK∈Fin(Γ)K0(CK) → K0(DΓ)

is surjective.

This finishes the proof of Theorem 8.3 and Theorem 8.4.
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9 Homological Properties and Applications

In this section we will apply our careful investigation of the rings DΓ to
obtain homological information about our rings. We have already mentioned
that for non-amenable groups we cannot expect that the functor − ⊗CΓ UΓ
is exact. The following gives a precise result for groups in the class C.

Theorem 9.1. (i) Let Γ be in the class C with a bound on the orders of
finite subgroups, then

TorCΓp (−;DΓ) = 0 for all p > 1.

(ii) If moreover Γ is elementary amenable, then

TorCΓp (−;DΓ) = 0 for all p > 0,

i.e. the functor −⊗CΓ DΓ is exact.

Note that for these groups DΓ is semisimple and therefore the functor −⊗DΓ

UΓ is exact. The functor − ⊗ZΓ CΓ is always exact. Therefore we immedi-
ately get the corresponding statements for TorCΓp (−;UΓ), TorZΓp (−;DΓ) and

TorZΓp (−;UΓ). This has consequences for L2-homology.

Corollary 9.2. Let Γ be in C with a bound on the orders of finite subgroups.
Then there is a universal coefficient theorem for L2-homology: Let X be a
Γ-space whose isotropy groups are all finite, then there is an exact sequence

0 → Hn(X;Z) ⊗ZΓ UΓ → HΓ
n (X;UΓ) → Tor1(Hn−1(X;Z);UΓ) → 0.

Proof. If X has finite isotropy, then the set of singular simplices also has
only finite isotropy groups. If H is a finite subgroup of Γ, then C [Γ/H] ∼=
CΓ ⊗CH C is induced from the projective CH-module C and therefore pro-
jective. We see that the singular chain complex with complex coefficients
C∗ = Csing

∗ (X;C) is a complex of projective CΓ-modules. The E2-term of
the Künneth spectral sequence (compare Theorem 5.6.4 on page 143 in [85])

E2
pq = TorCΓp (Hq(C∗);DΓ) ⇒ Hp+q(C∗ ⊗DΓ) = Hp+q(X;DΓ)

is concentrated in two columns. The spectral sequence collapses, and we get
exact sequences

0 → Hn(X;C) ⊗CΓ DΓ → Hn(X;DΓ) → TorCΓ1 (Hn−1(X;C);DΓ) → 0.

Applying the exact functor −⊗DΓ UΓ yields the result.
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If we apply Theorem 9.1 to the trivial CΓ-module C we get:

Corollary 9.3. If Γ belongs to C and has a bound on the orders of finite
subgroups, then

Hp(Γ;UΓ) = TorCΓp (C;UΓ) = 0 for all p ≥ 2.

In particular, if the group is infinite we have b
(2)
0 (Γ) = 0 and therefore

χ(2)(Γ) ≤ 0,

since b
(2)
1 (Γ) is the only L2-Betti number which could possibly be nonzero.

As we have discussed in Section 5, the L(2)-Euler characteristic coincides with
the virtual or the usual Euler-characteristic whenever these are defined.
The proof of Theorem 9.1 depends on the following Lemma.

Lemma 9.4. (i) Let R∗G ⊂ S ∗G be a compatible ring extension. Let M
be an R∗G-module. There is a natural isomorphism of right S-modules

TorR∗G
p (M ;S ∗G) ∼= TorRp (resR∗G

R M ;S)

for all p ≥ 0.

(ii) Suppose R ⊂ S is a ring extension and R =
⋃

i∈I Ri is the directed
union of the subrings Ri. Let M be an R-module. Then there is a
natural isomorphism of right S-modules

TorRp (M ;S) ∼= colimi∈ITorRi
p (resRRi

M ;Si) ⊗Si
S

for all p ≥ 0.

Proof. (i) We start with the case p = 0. As usual we denote the crossed
product structure map by µ. Define a map

hM : resR∗G
R M ⊗R S →M ⊗R∗G S ∗G

by m ⊗ s 7→ m ⊗ s. Obviously h is a natural transformation from the
functor resR∗G

R (−) ⊗R S to − ⊗R∗G S ∗ G. If M = R ∗ G the map h−1
R∗G :

R∗G⊗R∗GS ∗G ∼= S ∗G→ resR∗G
R R∗G⊗R S given by sµ(g) 7→ g⊗ c−1

g (s) is
a well-defined inverse. Since h is compatible with direct sums we see that hF
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is an isomorphism for all free modules F . Now if M is an arbitrary module
choose a free resolution F∗ →M of M and apply both functors to

F1 → F0 →M → 0 → 0.

Both functors are right exact, therefore an application of the five lemma
yields the result for p = 0. Now let P∗ →M be a projective resolution of M ,
then

TorRp (resR∗G
R M ;S) = Hp(resR∗G

R P∗ ⊗R S)
∼=→ Hp(P∗ ⊗R∗G S ∗G)

= TorRp (M ;S ∗G).

(ii) Again we start with the case p = 0. The natural surjections resRRi
M ⊗Ri

S →M ⊗R S induce a surjective map

hM : colimi∈IresRRi
M ⊗Ri

S →M ⊗R S

which is natural in M . Suppose the element of the colimit represented by
∑

kmk ⊗ sk ∈ resRRi
M ⊗Ri

S is mapped to zero in M ⊗R S. By construction
the tensor product M ⊗R S is the quotient of the free module on the set
M × S by a relation submodule. But every relation involves only finitely
many elements of R, so we can find a j ∈ I such that

∑

kmk ⊗ sk = 0
already in resRRj

M ⊗Rj
S. We see that hM is an isomorphism. Now let

P∗ → M be a projective resolution. Since the colimit is an exact functor it
commutes with homology and we get

colimi∈ITorRi
p (M ;S) = colimi∈IHp(resRRi

P∗ ⊗Ri
S)

= Hp(colimi∈I(resRRi
P∗ ⊗Ri

S))
∼=→ Hp(P∗ ⊗R S)

= TorRp (M ;S).

Proof of Theorem 9.1. (i) The proof works via transfinite induction over the
group as explained in 7.9. (I) We first verify the statement for free groups.
Let Γ be the free group generated by the set S. The cellular chain complex
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of the universal covering of the obvious 1-dimensional classifying space gives
a projective resolution of the trivial module of length one

0 →
⊕

S

CΓ → CΓ → C → 0.

Now if M is an arbitrary CΓ-module we apply −⊗CM to the above complex
and get a projective resolution of length 1 for M (diagonal action), compare
Proposition 8.2.19 on page 315 in [77]. In particular we see that

TorCΓp (M ;DΓ) = 0 for p > 1.

(II)” The next step is to prove that the statement remains true under ex-
tensions by finite groups. So let 1 → G→ Γ → H → 1 be an exact sequence
with H finite. From Proposition 8.13 we know that DΓ = DG ∗ H. Let
M be a CΓ-module, then with Lemma 9.4 and the induction hypothesis we
conclude

TorCΓp (M ;DΓ) = TorCG∗H
p (M ;DG ∗H)

∼= TorCGp (resCG∗H
CG M ;DG)

= 0 for p > 1.

The case H infinite cyclic is only slightly more complicated. This time we
know from Proposition 8.18 (AIIb)) that DΓ = (DG ∗ H)T−1 is an Ore
localization. Since Ore localization is an exact functor we get

TorCΓp (M ;DΓ) = TorCG∗H
p (M ; (DG ∗H)T−1)

∼= TorCG∗H
p (M ;DG ∗H) ⊗DG∗H DΓ

and conclude again with Lemma 9.4 that this module vanishes if p > 1.
(III) The behaviour under directed unions remains to be checked. Let Γ =
⋃

i∈I Γi be a directed union, then we know from Proposition 8.26 that DΓ =
⋃

i∈I DΓi, and Lemma 9.4 gives

TorCΓp (M ;DΓ) ∼= colimi∈ITorCΓi
p (resCΓCΓi

M ;DΓ)

= colimi∈ITorCΓi
p (resCΓCΓi

M ;DΓi) ⊗DΓi
DΓ

= 0 for p > 1.

(ii) The proof is exactly the same, except that this time we start with the
trivial group and hence we can extend the vanishing results to p > 0, compare
7.3.
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10 K-theory

In this section we collect information about the algebraic K-theory of our
rings CΓ, DΓ, NΓ and UΓ. Moreover, we compute K0 of the category of
finitely presented NΓ-torsion modules.
Every von Neumann algebra can be decomposed into a direct sum of algebras
of type I, II1, II∞ and III, compare [82, Chapter V, Theorem 1.19]. Since a
group von Neumann algebra is finite only the types I and II1 can occur. So
a priori for a group Γ we have NΓ = NΓI ⊕NΓII1 . Remember that a group
is called virtually abelian if it contains an abelian subgroup of finite index.

Proposition 10.1. Let Γ be a finitely generated group.

(i) If Γ is virtually abelian, then NΓ = NΓI is of type I and can be written
as a finite direct sum

NΓ = ⊕k
n=1NΓIn ,

where NΓIn is an algebra of type In.

(ii) If Γ is not virtually abelian, then NΓ = NΓII1 is of type II1.

If Γ is not finitely generated mixed types can occur.

Proof. See page 122 in [36] and the references given there.

A von Neumann algebra of type In is isomorphic to Mn( L∞(X;µ)) for some
measure space (X,µ). Note thatK-theory is Morita invariant and compatible
with direct sums.

10.1 K0 and K1 of A and U
Let us start with K0. As usual we fix a normalized trace trA on A. We
denote the center of A by Z(A). The center valued trace for A is a linear
map

trZ(A) : A → Z(A),

which is uniquely determined by trZ(A)(ab) = trZ(A)(ba) for all a, b ∈ A
and trZ(A)(c) = c for all c ∈ Z(A), see [41, Proposition 8.2.8, p.517]. Our
fixed trace trA : A → R factorizes over the center valued trace, i.e. we have
trA(a) = trA(trZ(A)(a)) for all a ∈ A, compare [41, Proposition 8.3.10, p.525].
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Proposition 10.2. Let A be a finite von Neumann algebra with center Z(A)
and let U be the associated algebra of affiliated operators. Let Z(A)sa denote
the vector space of selfadjoint elements in Z(A) and let Z(A)pos denote the
cone of nonnegative elements. Remember that Proj(A) denotes the monoid
of isomorphism classes of finitely generated projective A-modules.

(i) The natural map A → U induces an isomorphism

K0(A)
∼=✲ K0(U).

(ii) There is a commutative diagram

Proj(A) ✲ K0(A)

❅
❅
❅
❅
❅

dimA

❘

Z(A)pos
❄

✲ Z(A)sa

dimZ(A)

❄
✲ R.

The map dimZ(A) is induced by the center valued trace. All maps in
the square are injective.

(iii) If A is of type II1, then dimZ(A) is an isomorphism.

(iv) If A = Mn( L∞(X;µ)), then the image of dimZ(A) consists of all mea-
surable step functions on X with values in 1

n
Z, where we identify the

center of A with  L∞(X;µ).

Proof. (i) This has already been proven in Theorem 3.8.
(ii) In Section 3 we normalized the traces trMn(A) such that trMn(A)(1n) = n.
We extend the center valued trace to matrices by setting

trn : Mn(A) → Z(A), (aij) 7→
∑

trZ(A)(aii).

These maps are compatible with the stabilization maps Mn(A) → Mn+1(A).
Since 1

n
trn has the characteristic properties of a center valued trace if we

identify Z(A) with Z(Mn(A)) we have

trn = n · trZ(Mn(A)).
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Two projections p and q are Murray von Neumann equivalent and therefore
isomorphic (compare Proposition 3.5) if and only if trZ(A)(p) = trZ(A)(q).
The center valued trace of a projection is nonnegative and selfadjoint, see
[41, Theorem 8.4.3, p.532]. Therefore we get injective maps

LProj(Mn(A))/∼= → Z(A)pos

which are compatible with the stabilization maps. This gives an injective
map Proj(A) → Z(A)pos. Since the block sum of projections corresponds
to an ordinary sum of traces we see that it is a map of monoids and that
Proj(A) satisfies cancellation. Therefore the map to Proj(A) → K0(A) is
injective. This implies that also the induced map dimZ(A) : K0(A) → Z(A)+
is injective.
(iii) By [41, Theorem 8.4.4 (i), p.533] we know that the image of the center
valued trace in the case of a type II1 algebra is the set

{a ∈ Z(A) | a selfadjoint, nonnegative, |a| < 1}.

Because of the factor n in trn we get the result.
(iii) This follows from [41, Theorem 8.4.4 (ii), p.533].

In [56] the algebraic K1-groups of von Neumann algebras are determined. Of
course they depend on the type of the von Neumann algebra. Moreover, the
authors compute a modified K1-group Kw

1 (A). Let us recall its definition.

Definition 10.3. Let R be a ring. Let Kinj
1 (R) be the abelian group gener-

ated by conjugation classes of injective endomorphisms of finitely generated
free R-modules modulo the following relations:

(i) [f ] = [g]+[h] if there is a short exact ladder of injective homomorphisms

0 ✲ L ✲ M ✲ N ✲ 0

0 ✲ L

g

❄
✲ M

f

❄
✲ N

h

❄
✲ 0.

(ii) [f ◦ g] = [f ] + [g] if f and g are endomorphisms of the same module.

(iii) [idM ] = 0 for all modules M .
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If R = A is a von Neumann algebra, then we define Kw
1 (A) = Kinj

1 (A).

Here w stands for weak isomorphism, compare Lemma 2.6. Note that if
one replaces the word injective endomorphism by isomorphism one gets a
possible definition of K1(R). It turns out that the group Kw

1 (A) admits a
very natural interpretation.

Proposition 10.4. There is a natural isomorphism

Kw
1 (A)

∼=✲ K1(U).

Proof. If we apply Lemma 2.6 to matrix algebras we see, that an endomor-
phism f between finitely generated free A-modules is injective if and only if
f ⊗ idU is an isomorphism. Therefore f 7→ [f ⊗ idU ] gives a well-defined map
since the relations analogous to (i)–(iii) hold in K1(U). To define an inverse
we change the point of view and consider K1(U) as GL(U)ab. Let C be an in-
vertible matrix over U . Let T ⊂ A be the set of non-zerodivisors in A. From
Proposition 13.7 we know that Mn(U) = Mn(A)(T · 1n)−1 and therefore we
can find a matrix A over A and s ∈ A such that C = As−11n. Note that A
and s1n have to be injective endomorphisms because they become invertible
over U . We want to show that the map

C 7→ [A] − [s1n]

is well-defined. Suppose C = Bt−11n is another decomposition of the matrix.
The defining equivalence relation for the Ore localization tells us that there
must exist matrices u1n and v1n over R such that Au1n = Bv1n, s1nu1n =
t1nv1n and s1nu1n = t1nv1n ∈ T · 1n, compare 13.3. Since u and v have
to be weak isomorphisms one verifies, using relation (ii), that the map is
well-defined. Since Kw

1 (A) is abelian the map factorizes over K1(U). That
the maps are mutually inverse follows from the relations (i)–(iii).

An invertible operator a ∈ GLn(A) has a gap in the spectrum near zero,
therefore we can define the Fuglede-Kadison determinant via the function
calculus as

detFK(a) = exp

(

1

2
trZ(A) (log(a∗a))

)

.

The results from [56] can now be rephrased as follows.
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Proposition 10.5. Let A be a finite von Neumann algebra and let U be the
associated algebra of affiliated operators.

(i) If A is of type II1, then

K1(U) = 0

and the Fuglede Kadison determinant gives an isomorphism

detFK : K1(A)
∼=✲ Z(A)×pos,

where Z(A)×pos denotes the group of positive invertible elements in the
center of A.

(ii) If A = Mn( L∞(X;µ)) is of type In, then U = Mn( L(X;µ)) and we have
the following commutative diagram

K1(A) ✲ K1(U)

 L∞(X;µ)×

det

❄
✲  L(X;µ)×,

det

❄

where the vertical maps are isomorphisms.

Proof. See [56].

Let R be a ring. Sending an invertible element a ∈ R× to the class of the
corresponding 1 × 1-matrix in K1(R) gives a map

(R×)ab → K1(R).

Here (R×)ab is the abelianized group of units.

Proposition 10.6. Let A be a finite von Neumann algebra and let U be the
associated algebra of affiliated operators. The maps

(A×)ab → K1(A) and (U×)ab → K1(U)

are isomorphisms.

Proof. For the first map this is proven more generally for finite AW ∗-algebras
in [35, Theorem 7]. Since we know that U is a unit-regular ring the statement
for the second map follows from [58] and [33].
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10.2 Localization Sequences

Localizations yield exact sequences in K-theory. We will use such a sequence
to compute K0 of the category of finitely presented A-torsion modules. For
commutative rings or central localization the exact sequence already appears
in [2]. The case of an Ore localization is treated for example in [5]. Schofield
was able to generalize the localization sequence to universal localizations
[78]. Since CΓ ⊂ DΓ is a universal localization for groups in C with a
bound on the order of finite subgroups we treat the localization sequence in
this generality.
Let R be a ring and let Σ be a set of maps between finitely generated pro-
jective R-modules. Let Σ be the saturation of Σ, compare page 123.

Definition 10.7. Given an injective universal localization R → RΣ we de-
fine TR→RΣ

to be the full subcategory of R-modules which are cokernels of
maps from Σ.

In the case of an Ore localization this category has a different description.

Note 10.8. If RT−1 is an Ore localization, then the category TR→RT−1 is
equivalent to the category of finitely presented torsion modules of projective
dimension 1.

Proof. Suppose M is a finitely presented torsion module of projective dimen-
sion 1. Then there is a short exact sequence 0 → P → Rn →M → 0 with P
finitely generated projective. Since −⊗RRT

−1 is exact and M ⊗RRT
−1 = 0

the map P → Rn is in Σ. On the other hand let f : P → Q be a map
in Σ. Since R → RΣ is injective f must be injective and therefore gives
a 1-dimensional resolution of coker(f) by finitely generated projective R-
modules.

Proposition 10.9 (Schofield’s Localization Sequence). Let R be a ring
and let Σ be a set of maps between finitely generated projective R-modules.
Let R → RΣ be a universal Σ-inverting ring homomorphism which is injec-
tive. Then there is an exact sequence of algebraic K-groups

K1(R) → K1(RΣ) → K0(TR→RΣ
) → K0(R) → K0(RΣ).

Proof. We will only explain the maps. For a proof see [78, Theorem 4.12].
The simpler case of an Ore localization is also treated in [5]. Let a be an
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invertible matrix over RΣ. The equality given in Proposition 13.11 induces
the equality

[a] = [b] − [s]

in K1(RΣ) with s ∈ Σ̂ and b a matrix over R. Note that since a is invertible
also b is invertible over RΣ and therefore b ∈ Σ. Therefore it makes sense to
define

[a] 7→ [coker(s)] − [coker(b)] .

This gives the map K1(RΣ) → K0(TR→RΣ
). Now suppose M = coker(f :

P → Q) with f ∈ Σ, then one defines

[M ] 7→ [Q] − [P ] .

This gives the map K0(TR→RΣ
) → K0(R). The other maps are the natural

maps induced by the ring homomorphism R → RΣ.

More information on localization sequences in algebraic K-theory can be
found in [29], [31], [9], [80], [86], [83] and [5].
If we apply this to a finite von Neumann algebra A we can compute K0 of the
category of finitely presented A-torsion modules, compare Subsection 3.3.

Proposition 10.10. Let A be a finite von Neumann algebra and let U be
the associated algebra of affiliated operators.

(i) The category TA→U is equivalent to the abelian category of finitely pre-
sented A-torsion modules.

(ii) If A is of type II1, then K0(TA→U) = 0.

(iii) If A = Mn( L∞(X;µ)) is of type In, then

K0(TA→U) =  L(X;µ)/ L∞(X;µ).

Proof. (i) Over the semihereditary ring A every finitely presented module
has projective dimension 1.
(ii) This follows from the localization sequence since K0(A) → K0(U) is an
isomorphism by Theorem 3.8 and K0(U) = 0 by Proposition 10.5(i).
(iii) Similarly with Proposition 10.5(ii).
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Of course we can also apply the above sequence to the ring extension CΓ ⊂
DΓ in the cases where we know that this is a universal localization.

Note 10.11. Let Γ be a group in the class C with a bound on the order of
finite subgroups. Then there is an exact sequence

K1(CΓ) → K1(DΓ) → K0(TCΓ→DΓ) → K0(CΓ) → K0(DΓ) → 0.

Proof. We have proven in Section 8 that for these groups the map

colimK∈FinΓK0(CK) → K0(DΓ)

is surjective. This map factorizes over K0(CΓ) and therefore the last map is
surjective.

Examples show that in general the map K0(CΓ) → K0(DΓ) is not even
rationally injective. We also have an example of a group Γ which is not
virtually abelian with K1(DΓ) 6= 0.
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11 Appendix I: Affiliated Operators

The aim of this section is to prove that on the set U of closed densely defined
operators affiliated to the finite von Neumann algebra A there is a well-
defined addition and multiplication which turns U into an algebra. This fact
goes back to the first Rings of Operators paper of Murray and von Neumann
from 1936 [63]. The proof given below essentially follows their proof.
For convenience we first collect a few facts about unbounded operators and
fix notation. Let H be a Hilbert space. An unbounded operator a : H ⊃
dom(a) → H will simply be denoted by a. If b is an extension of a we write
a ⊂ b, i.e. dom(a) ⊂ dom(b) and the restriction of b to dom(a) coincides
with a. Given a, its graph is Γa = {(x, a(x))|x ∈ dom(a)} ⊂ H ⊕ H. An
operator is closed if its graph is closed in H ⊕ H. An operator is closable
if the closure of its graph is the graph of an operator. This operator is the
minimal closed extension of a and will be denoted by [a]. If a is densely de-
fined a∗ can be defined as usual with domain dom(a∗) = {x ∈ H| < a(.), x >
is a continuous linear functional on dom(a)}. If one adds or composes un-

bounded operators the domains of definition usually shrink:

dom(a+ b) = dom(a) ∩ dom(b) dom(ab) = b−1(dom(a)).

Here is a set of rules for unbounded operators.

Proposition 11.1. Let a,b and c be (unbounded) operators.

(i) (a+ b)c = ac+ bc.

(ii) a(b+ c) ⊃ ab+ ac, and equality holds if and only if a is bounded.

(iii) (ab)c = a(bc).

(iv) (a+ b) + c = a+ (b+ c).

(v) If a ⊂ b, then ac ⊂ bc and ca ⊂ cb.

(vi) If a ⊂ b and c ⊂ d, then a+ c ⊂ b+ d.

(vii) If a is densely defined, then a∗ exists and is closed but not necessarily
densely defined.

(viii) If a is densely defined and closed, then a∗ exists and is densely defined
and closed.
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(ix) Let a be densely defined. In order to show that a is closable it suffices
to prove a∗ to be densely defined, because then a∗∗ is the desired closed
extension.

(x) Let a be densely defined. Every extension b ⊃ a is densely defined and
b∗ ⊂ a∗.

(xi) Let a, b and ba be densely defined, then a∗b∗ ⊂ (ba)∗, and equality holds
if b is bounded.

(xii) Let a, b and a+ b be densely defined, then a∗ + b∗ ⊂ (a+ b)∗.

A densely defined operator is called symmetric if s ⊂ s∗, it is called selfad-
joint if s = s∗. Note that by 11.1.(vii) a selfadjoint operator is automatically
closed (and densely defined by definition). If a is densely defined and closed,
then a∗a is selfadjoint and the closure of the graph of a : dom(a∗a) → H
coincides with the graph Γa of a. One says dom(a∗a) is a core for a.

Lemma 11.2. If a is densely defined and closed, then the operator 1 + a∗a
has a bounded inverse.

Proof. See [40, Theorem 2.7.8, p.158].

Given an operator a one defines the resolvent set as the set of those complex
numbers λ for which a bounded operator b (the resolvent) exists with b(λ−
a) ⊂ (λ − a)b = idH . The complement of the resolvent set is the spectrum
spec(a) of the operator a. As for bounded selfadjoint operators there is a
spectral decomposition and a function calculus.

Proposition 11.3 (Spectral Decomposition). Let s be a selfadjoint op-
erator (not necessarily bounded). Then spec(s) ⊂ R and there exists a unique
projection valued measure, i.e. a map es : Bspec(s) → B(H) from the Borel-σ-
algebra to B(H) with the following properties:

(i) For every Borel subset Ω ⊂ spec(s) the operator es(Ω) is a projection.

(ii) es(∅) = 0 and es(spec(s)) = idH .

(iii) For Borel sets Ω and Ω′ we have es(Ω ∩ Ω′) = es(Ω)es(Ω′).
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(iv) es is strongly σ-additive, i.e. for a countable collection of pairwise dis-
joint Borel sets (Ωn)n∈N with Ω =

⋃

n∈N Ωn we have

lim
N→∞

es(
N
⋃

n=1

Ωn)x = es(Ω)x

for all x ∈ H.

(v) A vector x ∈ H is in the domain dom(s) if and only if

∫

R

|λ|2 < es(dλ)x, x > < ∞,

where dλ denotes the Lebesgue measure on R.

(vi) For x ∈ dom(s) and arbitrary y ∈ H we have

< s(x), y > =

∫

R

λ < es(dλ)x, y > .

One often defines esλ = es((−∞, λ]), and passing to a Stieltjes integral the
last fact is symbolically written as

s =

∫ ∞

−∞

λdesλ

and called the spectral decomposition of s.

The representation of s as an integral can be used to define new operators
which are functions of s.

Proposition 11.4 (Function Calculus). Given a selfadjoint operator s and
a Borel measurable function f : spec(s) → R∪{±∞} such that es(f−1({±∞}) =
0, there exists a closed and densely defined operator f(s) with the following
properties.

(i) The vector x ∈ H is in the domain dom(f(s)) if and only if

∫

R

|f(λ)|2 < es(dλ)x, x > < ∞.
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(ii) For every x ∈ dom(f(s)) and arbitrary y ∈ H we have

< f(s)x, y >=

∫

R

f(λ) < es(dλ)x, y > .

The assignment f 7→ f(s) is an essential homomorphism, i.e. it is a homo-
morphism of complex algebras if we define sum and product of (unbounded)
operators as the closure of the usual sum and product.

Proof. Compare [73, Section 5.3].

As an application one derives the polar decomposition for unbounded oper-
ators.

Proposition 11.5 (Polar Decomposition). Let a be densely defined and
closed, then there is a unique decomposition

a = us,

where u is a partial isometry and s is a nonnegative selfadjoint operator.
More precisely s =

√
a∗a in the sense of function calculus, ker u = ker a,

u∗us = s, u∗a = s and uu∗a = a.

Proof. [73, p.218]

Let now A ⊂ B(H) be a von Neumann algebra. We assume that 1A = idH .

Definition 11.6. If a is an operator and b ∈ B(H) is a bounded operator
we say that a and b commute if ba ⊂ ab. An operator a is affiliated to A
if it commutes with all bounded operators from the commutant A′. A closed
subspace K ⊂ H is called affiliated to A if the corresponding projection pK
belongs to A. Given a set M of operators we define the commutant M ′ to
be the set of all bounded operators commuting with all operators in M .

Note that there is no condition concerning the domain of definition of an
affiliated operator. Given a selfadjoint operator s it turns out that {s}′ is a
von Neumann algebra and that s is affiliated to the von Neumann algebra
W ∗(s) = {s}′′. Similarly, if the closed and densely defined operator a is
not selfadjoint W ∗(a) = ({a}′ ∩ {a∗}′)′ is a von Neumann algebra (see [73,
p.206]).
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Proposition 11.7. Let s be a selfadjoint operator. All spectral projections
es(Ω) lie in W ∗(s) and all operators f(s) obtained via the function calculus
are affiliated to W ∗(s).

Note that if s is affiliated to the von Neumann algebra A, then A′ ⊂ {s}′
and therefore W ∗(s) ⊂ A. The following lemma facilitates to verify whether
a given operator is affiliated.

Lemma 11.8. Let a be an operator and let M be a ∗-closed set of bounded
operators such that the algebra generated by M is dense in A′ with respect to
the weak topology. The following statements are equivalent.

(i) a is affiliated to A.

(ii) For all unitary operators u ∈ A′ we have ua ⊂ au.

(iii) For all unitary operators u ∈ A′ we have ua = au.

(iv) For all operators m ∈M we have ma ⊂ am.

Proof. (iv) ⇒ (i): Since M is ∗-closed one can verify using 11.1(x) and
11.1(xi) that also A∗ commutes with all elements of M . Hence M ⊂ {a}′ ∩
{a∗}′ and since {a}′ ∩ {a∗}′ is a von Neumann algebra A′ ⊂ {a}′ ∩ {a∗}′.
(i) ⇒ (ii), (i) ⇒ (iv) and (iii) ⇒ (ii) are obvious.
Since every operator can be written as a linear combination of four unitary
operators (see [82, Proposition 4.9, p.20]) (ii) is a special case of (iv).
It remains to be shown that (ii) implies (iii). Suppose u is a unitary operator
and we have ua ⊂ au and u−1a ⊂ au−1. With 11.1(iii) and 11.1(v) we
conclude a ⊂ u−1au and u−1au ⊂ a and therefore a = u−1au

In particular we see that in the case of a group von Neumann algebra NΓ an
operator on l2Γ is affiliated to NΓ if it commutes with the right action of Γ
on l2Γ. It is occasionally convenient to have the following reformulations of
the fact that an operator is affiliated.

Proposition 11.9. Let A ⊂ B(H) be a von Neumann algebra. Let a be a
closed densely defined operator on H. The following statements are equiva-
lent.

(i) a is affiliated to A.

(ii) Let a = us be the polar decomposition, then u ∈ A and s ∈ U .
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(iii) Let a = us be the polar decomposition, then u ∈ A and all spectral
projections es(Ω) of the operator s are in A.

Proof. We only show that (i) implies (ii). Let a be affiliated to A. Let
a = us be the polar decomposition. If v is a unitary operator in A′ then
vav−1 = vuv−1vsv−1. Since vuv−1 is unitary and vsv−1 is selfadjoint it
follows from the uniqueness of the polar decomposition that vuv−1 = u and
vsv−1.

We now come back to our main object of study.

Definition 11.10 (The Algebra of Affiliated Operators). Let A be a
finite von Neumann algebra. The set U is defined as the set of all operators
a with the following properties.

(i) a is densely defined.

(ii) a is closed.

(iii) a is affiliated to A.

As already mentioned, the aim of this section is to prove that there is a well-
defined addition, multiplication and involution on U , such that U becomes
a complex ∗-algebra that contains A as a ∗-subalgebra. The only obvious
algebraic operation in U is the involution:

Proposition 11.11. If a ∈ U , then a∗ ∈ U .

Proof. According to 11.1.(viii) a∗ is closed, densely defined and for every
b ∈ A′, ba ⊂ ab implies b∗a∗ ⊂ (ab)∗ ⊂ (ba)∗ ⊂ a∗b∗ and therefore a∗ is
affiliated to A since A′ is ∗-closed.

To deal with the addition and composition one has to ensure that the domains
remain dense. At this point it is crucial that the von Neumann algebra A is
finite and one has a notion of dimension. So let us fix a trace tr. Remember
that a closed linear subspace P ⊂ H is called affiliated to A if the projection
p onto that subspace is affiliated to A. For closed affiliated subspaces there
is a dimension given by dim(P ) = tr(p).

Definition 11.12. Define for an arbitrary linear subspace L ⊂ H

dim(L) = sup{dim(P ) |P ⊂ H is closed and affiliated}
A linear subspace L ⊂ H is called essentially dense if dim(L) = 1.
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This notion of dimension extends the usual notion of dimension if P ⊂ H
is closed and affiliated. One verifies that a subspace L is essentially dense if
and only if there is a sequence P1 ⊂ P2 ⊂ P3 ⊂ . . . ⊂ L of closed affiliated
subspaces, such that limi→∞ dimPi = dimH = 1. This follows from the
monotony of the dimension for closed affiliated subspaces. The continuity
property of the dimension implies that an essentially dense subset is dense.

Lemma 11.13. The intersection of countably many essentially dense sub-
spaces is again essentially dense.

Proof. Let Lα, α = 1, 2, 3, . . . be a sequence of essentially dense subspaces
and let L =

⋂

Lα. Let N > 0 be given. We will show that there ex-
ists a closed affiliated subspace P ⊂ L with dim(P ) ≥ 1 − 1/2N . Choose
Pα ⊂ Lα such that dimP⊥

α ≤ 1/2N+α. We will show by induction that
dim(

⋂

α≤n Pα)⊥ ≤ ∑n

α=1 1/2N+α. There is a decomposition into orthogonal

subspaces
⋂

α<n Pα =
[
⋂

α<n Pα ∩ Pn

]

⊕
[
⋂

α<n Pα ∩ (P⊥
n )

]

which implies

dim
⋂

α≤n

Pα = dim
⋂

α<n

Pα − dim
⋂

α<n

Pα ∩ (P⊥
n )

≥ (1 −
n−1
∑

α=1

1/2N+α) − 1/2N+n

= 1 −
n

∑

α=1

1/2N+α,

and hence

dim(
⋂

α≤n

Pα)⊥ ≤
n

∑

α=1

1/2N+α = 1/2N

n
∑

α=1

1/2α ≤ 1/2N .

Note that
⋂

α Pα is closed and affiliated. Since (
⋂

α Pα)⊥ is the directed
union of the (

⋂

α≤n Pα)⊥ we conclude from the continuity property of the

dimension that dim(
⋂

α Pα)⊥ ≤ 1/2N . Since
⋂

α Pα ⊂ ⋂

α Lα and N was
chosen arbitrarily we see that dim

⋂

α Lα = 1.

Lemma 11.14. If a ∈ U and L ⊂ H is essentially dense, then a−1(L) is
essentially dense. Moreover dom(a) is essentially dense for every a ∈ U .

112



Proof. Using the polar decomposition a = us one can treat the cases a =
u bounded and a = s selfadjoint separately. So let a be bounded. For
every closed affiliated subspace P ⊂ L, the subspace a−1(P ) ⊂ a−1(L) is
closed since a is continuous and affiliated. (It is sufficient to ensure that
u(a−1(P )) ⊂ a−1(P ) for all unitary operators u from the commutant A′.).
Moreover, dim(a−1(P )) ≥ dim(P ) and we see that dim(a−1(L)) = 1.
Now let a = s be selfadjoint and nonnegative. Let s =

∫

λdeλ be the spectral
decomposition of s. Note that eλH ⊂ dom(s) and seλ is a bounded operator.
The argument above shows that given ǫ1 > 0 we can find a closed affiliated
subspace P ⊂ L with dim(seλ)−1(P ) ≥ 1 − ǫ1. On the other hand given
any ǫ2 > 0 we can find λ such that dim(eλH)⊥ ≤ ǫ2. Now the orthogonal
decomposition (seλ)−1(P ) = (seλ)−1(P )∩eλH⊕(seλ)−1(P )∩(eλH)⊥ implies
that dim(seλ)−1(P ) ∩ eλH ≥ 1 − (ǫ1 + ǫ2). Since (seλ)−1(P ) ∩ eλH is closed,
affiliated and a subspace of s−1(P ) we see that dim(s−1(P )) = 1.
Let us now prove the second statement. If a = us is the polar decomposition,
then dom(a) = dom(s). Since eλ converges strongly to idH for λ → ∞ we
see that dim(dom(s)) = 1.

Lemma 11.15. If a ∈ U and b ∈ U , then a+ b and ab are densely defined.

Proof. This follows immediately from the above lemmata.

Proposition 11.16. If a ∈ U and b ∈ U , then a + b and ab are affiliated
and closable. Moreover the closures [a+ b] and [ab] are in U .

Proof. Using the list of rules 11.1 one checks that a+ b is affiliated. Because
of 11.11 we know that a∗ and b∗ are in U . The previous proposition shows
that a∗ + b∗ and therefore (a + b)∗ ⊃ a∗ + b∗ is densely defined. So a + b
is closable by 11.1.(ix). Remains to be verified that the closure [a+ b] is
again affiliated to A. Now the condition ca ⊂ ac for a bounded operator c is
equivalent to (c⊕ c)(Γa) ⊂ Γa. Since c⊕ c is continuous (c⊕ c)(Γa) ⊂ Γa and
it follows that the closure of an affiliated operator is again affiliated. The
argument for ab is similar.

So far we have a well-defined addition and multiplication. We still have to
check the axioms of an algebra with involution. The crucial point is that
a closed extension lying in U is unique. To prove this one first deals with
symmetric operators. Again it is important to have a well behaved notion of
dimension. Let us first collect a few facts about the Cayley transform of an
operator.
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Proposition 11.17 (Cayley Transform). Let s be a densely defined sym-
metric operator. Then the Cayley transform κ(s) is the operator (s− i)(s+
i)−1 with domain dom(κ(s)) = (s + i)dom(s) and range im(κ(s)) = (s −
i)dom(s). This operator is an isometry (on its domain). Moreover κ(s) − 1
is injective and im(κ(s) − 1) = dom(s). If in addition s is closed the sub-
spaces (s ± i)dom(s) are closed. The operator s is selfadjoint if and only if
(s+ i)dom(s) = H and (s− i)dom(s) = H.

Proof. Compare [73, pages 203-205].

Proposition 11.18. Suppose that s is densely defined, closed, symmetric
and affiliated to A. Then s is already selfadjoint.

Proof. First note that all ingredients in the Cayley transform, namely κ(s),
dom(κ(s)) and im(κ(s)) are again affiliated to A. From the previous propo-
sition we know that im(κ(s) − 1) = dom(s). Let p = pdom(κ(s)) be the pro-
jection onto dom(κ(s)) = (s+ i)dom(s), then im(κ(s) − 1) = im(κ(s)p− p).
From (κ(s)p − p)∗ = p∗(κ(s)p − p)∗ = p(κ(s)p − p)∗ we conclude that
im((κ(s)p− p)∗) ⊂ im(p) and therefore

dim((s+ i)dom(s)) = dim(dom(κ(s))) = dim(im(p))

≥ dim(im(κ(s)p− p)∗) = dim(im(κ(s)p− p))

= dim(dom(s)) = 1.

Here we use the fact that dom(s) is essentially dense. Since we also know
that im((s + i)dom(s)) is a closed subspace it follows that this space is the
whole Hilbert space. Since κ(s) is an isometry and affiliated one can also
verify that dim(im(κ(s))) = 1. But im(κ(s)) is also closed and therefore it is
the whole Hilbert space. This means κ(s) is a unitary operator and therefore
s is selfadjoint.

Proposition 11.19 (Unique Closure). Let a ⊂ b be two operators in U ,
then a = b. In particular, if c is a closable operator whose closure [c] lies in
U , then [c] is the only closed extension of c lying in U .

Proof. Let b = us be the polar decomposition of b and set s′ = u∗a ⊂ u∗b = s.
Since u∗ is bounded s′ is still closed, densely defined and affiliated. It follows
that s′ ⊂ s = s∗ ⊂ s′∗, i.e. s′ is symmetric. Now the previous proposition
implies s′ = s = s∗ = s′∗ and therefore dom(a) = dom(s′) = dom(s) =
dom(b) and a = b. The second assertion follows from the first. Note that [c]
is the minimal closed extension of c.
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Theorem 11.20. Endowed with these structures U becomes a complex ∗-
algebra that contains A as a ∗-subalgebra.

Proof. One has to show that U with this addition multiplication and ∗-
operation fulfills the axioms of a ∗-algebra. As an example we will check
the distributivity law [a[bc]] = [[ab] + [ac]]. First one verifies similar to 11.15
and 11.16 that ab+ ac is densely defined and closable with closure afilliated
to A. Now the rules for unbounded operators imply ab + ac ⊂ [ab] + [ac]
and ab + ac ⊂ a(b + c) ⊂ a[b + c]. Taking the closure leads to [a[b + c]] ⊃
[ab+ac] ⊂ [[ab]+[ac]]. The above proven uniqueness of a closure in U implies
the desired equality.
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12 Appendix II: von Neumann Regular Rings

In the first Rings of Operators paper from 1936 [63] Murray and von Neumann
studied the lattice of those subspaces of a Hilbert space which are affiliated
to a von Neumann algebra (ring of operators). Already in that paper they
introduced what we called the algebra of operators affiliated to a finite von
Neumann algebra. About the same time von Neumann axiomatized the
system of all linear subspaces of a given (projective) space in what he called
a continuous geometry [64]. The main new idea was that the notion of
dimension (points, lines, planes, ...) need not be postulated but could be
proven from the axioms and that dimensions need not be integer valued any
more. Of course, the lattice of affiliated subspaces was the main motivating
example. He realized that the algebra of affiliated operators gave a completely
algebraic description of this lattice in terms of ideals and idempotents. He
singled out a class of rings which should play the same role for an abstract
continuous geometry and called these rings regular [64] [65] [66].
There is an extensive literature on von Neumann regular rings, but for con-
venience we will collect some results in this section. More details and further
references can be found in [30].

Definition 12.1. A ring R satisfying one of the following equivalent condi-
tions is called von Neumann regular.

(i) For every x ∈ R there exists a y ∈ R, such that xyx = x.

(ii) Every principal right (left) ideal of R is generated by an idempotent.

(iii) Every finitely generated right (left) ideal of R is generated by an idem-
potent.

(iv) Every finitely generated submodule of a finitely generated projective
module is a direct summand.

(v) Every right (left) R-module is flat.

(vi) TorRp (M,R) = 0 for p ≥ 1 and an arbitrary right R-module M (R has
weak- (or Tor-) dimension zero.

(vii) Every finitely presented module is projective.

Proof. Compare [75, Lemma 4.15, Theorem 4.16, Theorem 9.15].
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Several processes do not lead out of the class of von Neumann regular rings:

Proposition 12.2. (i) If R is von Neumann regular, then the matrix ring
Mn(R) is von Neumann regular.

(ii) The center of a von Neumann regular ring is von Neumann regular.

(iii) A directed union of von Neumann regular rings is von Neumann regu-
lar.

Proof. (iii) follows from 12.1(i). For (i) and (ii) see [30, Theorem1.7, Theorem
1.14].

In connection with localization the following properties of von Neumann
regular rings are of importance.

Proposition 12.3. Let R be a von Neumann regular ring.

(i) Every element a ∈ R is either invertible or a zerodivisor.

(ii) A von Neumann regular ring is division closed and rationally closed in
every overring.

(iii) If a von Neumann regular ring satisfies a chain condition, i.e. if it is
artinian or noetherian, then it is already semisimple.

Proof. (i) and (ii) are treated in 13.15. For (iii) see [30, p.21].

If our ring is a ∗-ring we can make the idempotent in Definition 12.1(ii)
unique if we require it to be a projection.

Definition 12.4. A von Neumann regular ∗-ring in which a∗a = 0 implies
a = 0 is called ∗-regular.

The most important property of a ∗-regular ring is the following:

Proposition 12.5. In a ∗-regular ring

(i) Every principal right (left) ideal is generated by a unique projection.

(ii) Every finitely generated right (left) ideal is generated by a unique pro-
jection.

Proof. See [66, Part II, Chapter IV, Theorem 4.5].
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Fortunately, in our situation we do not have to care to much about the
additional requirement in Definition 12.4.

Proposition 12.6. Let U be the algebra of operators affiliated to a finite
von Neumann algebra A. Any subring R of U which is ∗-closed and von
Neumann regular is already ∗-regular.

Proof. We only have to ensure that a∗a = 0 implies a = 0. The proof is
identical to the one for 2.11.

Another refinement of the notion of von Neumann regularity that is used in
Section 3 is unit regularity. One should think of this condition as a finiteness
condition, compare [30, Section 4].

Definition 12.7. A ring R is unit regular, if for every x ∈ R there exists a
unit u ∈ R such that xux = x.

The following proposition due to Handelman characterizes unit regular rings
among all von Neumann regular rings.

Proposition 12.8. Let R be a von Neumann regular ring, then R is unit
regular if and only if the following holds: If L, P and Q are finitely generated
projective modules, then

P ⊕ L ∼= Q⊕ L implies P ∼= Q.

Proof. See [34].

In particular for such a ring the map from the semigroup of isomorphism
classes of finitely generated projective modules to K0(R) is injective.
There seems to be no example of a ∗-regular ring which is not unit regular,
compare [30, p.349, Problem 48].
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13 Appendix III: Localization of Non-commutative

Rings

In this section we will discuss different concepts of localizations for non-
commutative rings.

13.1 Ore Localization

Let R be a ring and let X ⊂ R be any subset. A ring homomorphism
f : R → S is called X-inverting if f(x) is invertible in S for every x ∈ X.

Definition 13.1. An X-inverting ring homomorphism R → RX is called
universal X-inverting if it has the following universal property: Given any
X-inverting ring homomorphism f : R → S there exists a unique ring homo-
morphism φ : RX → S such that the following diagram commutes.

RX

�
�
�
�
�

i
✒

R
f ✲ S.

φ

❄

As usual this implies that RX is unique up to a canonical isomorphism.
One checks existence by writing down a suitable ring using generators and
relations. Given a ring homomorphism R → S we denote by T(R → S)
the set of all elements in R which become invertible in S. This set is mul-
tiplicatively closed. In particular we have the multiplicatively closed set
X = T(R → RX). Obviously X ⊂ X and one verifies that RX and RX are
naturally isomorphic. Without loss of generality we can therefore restrict
ourselves to the case where X is multiplicatively closed, and in that case we
usually write T instead of X. Moreover, we will assume that T contains no
zerodivisors since this will be sufficient for our purposes and facilitates the
discussion.
If the ring R is commutative it is well known that there is a model for
RT whose elements are fractions, or more precisely, equivalence classes of
pairs (a, t) ∈ R × T . If the ring is non-commutative the situation is more
complicated. The main difficulty is that once we have decided to work for
example with right fractions we have to make sense of a product like

at−1a′t′−1.
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Definition 13.2 (Ore Condition). Let T be a multiplicatively closed sub-
set of R. The pair (R, T ) satisfies the right Ore condition if given (a, s) ∈
R× T there always exists (b, t) ∈ R× T such that at = sb.

A somewhat sloppy way to remember this is: For every wrong way (left)
fraction s−1a there exists a right fraction bt−1 with s−1a = bt−1.

Proposition 13.3. Let R be a ring and let T ⊂ R be a multiplicatively closed
subset which contains no zerodivisors. Suppose the pair (R, T ) satisfies the
right Ore condition, then there exists a ring RT−1 and a universal T -inverting
ring homomorphism i : R → RT−1 such that every element of RT−1 can be
written as i(a)i(t)−1 with (a, t) ∈ R × T . The ring RT−1 is called a ring of
right fractions of R with respect to T .

Proof. Elements in RT−1 are equivalence classes of pairs (a, t) ∈ R×T . The
pair (a, t) is equivalent to (b, s) if there exist elements u, v ∈ R such that
au = bv, su = tv and su = tv ∈ S. For details of the construction and more
information see Chapter II in [81].

To avoid confusion we will usually call such a ring an Ore localization.
There is of course a left handed version of the above proposition. If both
the ring of right and the ring of left fractions with respect to T exist they
are naturally isomorphic since both fulfill the universal property. Since we
assumed that T contains no zerodivisors the map i is injective and we usually
omit it in the notation. We will frequently make use of the following fact.

Note 13.4. Finitely many fractions in RT−1 can be brought to a common
denominator.

Often one considers the case where T = NZD(R) is the set of all non-
zerodivisors in R. In that case, if the ring RT−1 exists, it is called the
classical ring of fractions (sometimes also the total ring of fractions) of
R.

Example 13.5. Let Γ be the free group generated by {x, y}. The group
ring CΓ does not satisfy the Ore condition with respect to the set NZD(CΓ)
of all non-zerodivisors: Let Z ⊂ Γ be the subgroup generated by x. Now
x − 1 is a non-zerodivisor since it becomes invertible in UZ and therefore
in the overring UΓ of CΓ. (In fact every nontrivial element in CΓ is a non-
zerodivisor since we know from Section 6 that we can embed CΓ in a skew
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field.) The Ore condition would imply the existence of (a, t) ∈ CΓ×NZD(CΓ)
with (y − 1)t = (x− 1)a alias

(x− 1)−1(y − 1) = at−1.

This implies that (−a, t)tr is in the kernel of the map (x− 1, y − 1) : CΓ2 →
CΓ. But this map is the nontrivial differential in the cellular chain complex
Ccell

∗ (EΓ) where we realize BΓ as the wedge of two circles. Since EΓ is
contractible the map must be injective. A contradiction.

For us one of the most important properties of an Ore localization is the
following.

Proposition 13.6. Let RT−1 be an Ore localization of the ring R, then the
functor −⊗R RT

−1 is exact, i.e. RT−1 is a flat R-module.

Proof. The functor is right exact. On the other hand there is a similar
localization functor for modules which is naturally isomorphic to −⊗RRT

−1

and which can be verified as being left exact. For more details see page 57
in [81].

We close this section with a statement about the behaviour of an Ore local-
ization under the passage to matrix rings.

Proposition 13.7. Suppose the pair (R, T ) satisfies the right Ore condition,
then also the pair (Mn(R), T · 1n) fulfills the right Ore condition and there is
a natural isomorphism

Mn(R)(T · 1m)−1 ∼= Mn(RT−1).

Proof. Let ((aij), t · 1n) ∈ Mn(R) × T · 1n be given. Since (R, T ) satisfies
the Ore condition and finitely many fractions in RT−1 can be brought to a
common denominator we can find ((bij), s · 1n) ∈ Mn(R) × T · 1n such that
in Mn(RT−1) we have

(s−1 · 1n)(aij) = (s−1aij) = (bijt
−1) = (bij)t

−1 · 1n.

We see that (Mn(R), T · 1n) fulfills the Ore condition. Now since

Mn(R) → Mn(RT−1)
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is T · 1n-inverting the universal property gives us a map

Mn(R)(T · 1n)−1 → Mn(RT−1).

Since every matrix in Mn(RT−1) can be written as (aij)(t
−1 ·1n) with (aij) ∈

Mn(R) the map is surjective and injective.

Corollary 13.8. The diagram

R · 1n

j✲ RT−1 · 1n

Mn(R)

i

❄
✲ Mn(RT−1)

❄

is a push-out in the category of rings and (unit preserving) ring homomor-
phisms.

Proof. Suppose we are given maps f : Mn(R) → S and g : RT−1 · 1n → S
such that the resulting diagram commutes, then since f◦i(T ·1n) = g◦j(T ·1n)
we see that f is T · 1n inverting. The universal property gives us a unique
map

Mn(RT−1) ∼= Mn(R)(T · 1n)−1 → S.

One verifies that the resulting diagram commutes.

13.2 Universal Localization

Instead of inverting a subset of the ring one can also invert a given set of
matrices or more generally some set of maps between R-modules. This shifts
attention from the ring itself to the additive category of its modules or some
suitable subcategory.
Let Σ be a set of homomorphisms between right R-modules. A ring homo-
morphism R → S is called Σ-inverting if for every map α ∈ Σ the induced
map α⊗R idS is an isomorphism.

Definition 13.9. A Σ-inverting ring homomorphism i : R → RΣ is called
universal Σ-inverting if it has the following universal property: Given any
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Σ-inverting ring homomorphism R → S there exists a unique ring homomor-
phism ψ : RΣ → S, such that the following diagram commutes.

RΣ

�
�
�
�
�

i
✒

R
f

✲ S.

ψ

❄

Note that given a ring homomorphism R → S the class Σ(R → S) of all
those maps between R-modules which become invertible over S need not
be a set. In the following we will therefore always restrict to the category
FR of finitely generated free R-modules or the category PR of finitely
generated projective R-modules. These categories have small skeleta, and
we will always work with those. In the first case we take the set of matrices
as such a skeleton where the object set is taken to be the natural numbers. In
the second case we take as objects pairs (n, P ) with n a natural number and
P an idempotent n× n-matrix. If we now look at the set Σ = Σ(R → RΣ),
the so-called saturation of Σ, we of course have again that RΣ and RΣ are
naturally isomorphic. The same holds for every set Σ̂ with Σ ⊂ Σ̂ ⊂ Σ.

Proposition 13.10. The universal Σ-inverting ring homomorphism exists
and is unique up to canonical isomorphism.

Proof. Uniqueness is clear. In the case where Σ is a set of matrices existence
can be proven as follows. We start with the free R-ring generated by the set
of symbols {aij | (aij) = A ∈ Σ} and divide out the ideal generated by the
relations given in matrix form by AA = AA = 1 where of course A = (aij). If
Σ is a set of morphisms between finitely generated projectives see Section 4
in [78].

A set of matrices is lower multiplicatively closed if 1 ∈ Σ and a, b ∈ Σ implies

(

a 0
c b

)

∈ Σ

for arbitrary matrices c of suitable size. We denote by Σ̂ the lower multiplica-
tive closure of a given set Σ. Note that Σ ⊂ Σ̂ ⊂ Σ and therefore RΣ

∼= RΣ̂.
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Two matrices (or elements) a, b ∈ M(R) are called stably associated over R
if there exist invertible matrices c, d ∈ GL(R), such that

c

(

a 0
0 1n

)

d−1 =

(

b 0
0 1m

)

with suitable m and n. There is a similar definition for maps between finitely
generated projective modules. The following Proposition has a lot of inter-
esting consequences.

Proposition 13.11 (Cramer’s Rule). Let R be a ring and let Σ be a set
of matrices between finitely generated projective R-modules. Every matrix a
over RΣ satisfies an equation of the form

s

(

1 0
0 a

)(

1 x
0 1

)

= b

with s ∈ Σ̂, x ∈ M(RΣ) and b ∈ M(R). In particular every matrix over RΣ

is stably associated to a matrix over R.

Proof. See [78, Theorem 4.3].

Example 13.12. In the case of a commutative ring the universal localization
gives nothing new: Let R be a commutative ring and let Σ be a set of matrices
over R. Then RΣ = Rdet(Σ), where det(Σ) is the set of determinants of the
matrices in Σ, because by Cramer’s rule, which is valid over any commutative
ring, a matrix is invertible if and only if its determinant is invertible.

Note 13.13. In general universal localization need not be an exact functor.

13.3 Division Closure and Rational Closure

Given a ring S and a subring R ⊂ S we denote by T(R ⊂ S) the set of all
elements in R which become invertible over S and by Σ(R ⊂ S) the set of
all matrices which become invertible over S. Both sets are multiplicatively
closed. One can consider abstractly the universal localizations RT(R⊂S) and
RΣ(R⊂S). The question arises whether these rings can be embedded in S.
Unfortunately this is not always possible. The intermediate rings in the
following definition serve as potential candidates for embedded versions of
RT(R⊂S) and RΣ(R⊂S).
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Definition 13.14. Let S be a ring.

(i) A subring R ⊂ S is called division closed in S if

T(R ⊂ S) = R×,

i.e. for every element r ∈ R which is invertible in S the inverse r−1

already lies in R.

(ii) A subring R ⊂ S is called rationally closed in S if

Σ(R ⊂ S) = GL(R),

i.e. for every matrix A over R which is invertible over S the entries of
the inverse matrix A−1 are all in R.

(iii) Given a subring R ⊂ S the division closure of R in S denoted by
D(R ⊂ S) is the smallest division closed subring containing R.

(iv) Given a subring R ⊂ S the rational closure of R in S denoted by
R(R ⊂ S) is the smallest rationally closed subring containing R.

Note that the intersection of division closed intermediate rings is again di-
vision closed, and similarly for rationally closed rings. In [15, Chapter 7,
Theorem 1.2] it is shown that the set

{ai,j ∈ S | (ai,j) invertible over S, (ai,j)
−1 matrix over R }

is a subring of S and that it is rationally closed. Since this ring is contained
in R(R ⊂ S) the two rings coincide. From the definitions we see immedi-
ately that the division closure is contained in the rational closure. The next
proposition is very useful if one has to decide whether a given ring is the
division closure respectively the rational closure.

Proposition 13.15. A von Neumann regular ring R is division closed and
rationally closed in every overring.

Proof. Suppose a ∈ R is not invertible in R, then the corresponding right
R-linear map la : R → R is not an isomorphism. Therefore the kernel or
the cokernel is nontrivial. Both split off as direct summands because the
ring is von Neumann regular. The corresponding projection on the kernel
or cokernel is given by left-multiplication with a suitable idempotent. This
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idempotent shows that a must be a zerodivisor. A zerodivisor cannot become
invertible in any overring. We see that R is division closed. A matrix ring
over a von Neumann regular ring is again von Neumann regular. Hence the
same reasoning applied to the matrix rings over R yields that R is rationally
closed in every overring. Since the division closure is contained in the rational
closure the last statement follows.

Note 13.16. In particular we see that once we know that the division closure
D(R ⊂ S) is von Neumann regular it coincides with the rational closure
R(R ⊂ S).

The following proposition relates the division closure respectively the rational
closure to the universal localizations RT(R⊂S) and RΣ(R⊂S).

Proposition 13.17. Let R ⊂ S be a ring extension.

(i) The map φ : RT(R⊂S) → S given by the universal property factorizes
over the division closure.

RT(R⊂S)

�
�
�
�
�✒

R ⊂ ✲ D(R ⊂ S)

Φ

❄
⊂✲ S

(ii) If the pair (R,T(R ⊂ S)) satisfies the right Ore condition, then Φ is
an isomorphism.

(iii) The map ψ : RΣ(R⊂S) → S given by the universal property factorizes
over the rational closure.

RΣ(R⊂S)

�
�
�
�
�✒

R ⊂ ✲ R(R ⊂ S)

Ψ

❄
⊂ ✲ S

The map Ψ is always surjective.
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Proof. (i) All elements of T(R ⊂ S) are invertible in D(R ⊂ S) by definition
of the division closure. Now apply the universal property. (ii) Note that
T(R ⊂ S) always consists of non-zerodivisors. Thus we can choose a ring of
right fractions as a model for RT(R⊂S). Every element in imφ is of the form
at−1. Such an element is invertible in S if and only if a ∈ T(R ⊂ S). We
see that imφ is division closed and Φ is surjective. On the other hand the
abstract fraction at−1 ∈ RT(R ⊂ S)−1 is zero if and only if a = 0 because
T(R ⊂ S) contains no zero divisors, so Φ is injective. (iii) That the map
ψ factorizes over R(R ⊂ S) follows again immediately from the universal
property. By Cohn’s description of the rational closure R(R ⊂ S) we need
to find a preimage for ai,j where (ai,j) is a matrix invertible over S whose
inverse lives over R. The generator and relation construction of the universal
localization given above immediately yields such an element.

In general it is not true that the map Ψ is injective. In 13.21 we give a
counterexample where S is even a skew field.

13.4 Universal R-Fields

We describe in this subsection a very special case of ring extensions, where the
rational closure R(R ⊂ S) is indeed isomorphic to the universal localization
RΣ(R⊂S). Again the main ideas are due to Cohn [15].
Given a commutative ring R without zerodivisors there is always a unique
field of fractions. It is characterized by the fact that it is a field which
contains R as a subring and is generated as a field by R. One possibility for
a non-commutative analogue is the following definition. Note that following
Cohn we use the terms field, skew field and division ring interchangeably.

Definition 13.18. Let R be an arbitrary ring. A ring homomorphism R →
K with K a skew field is called an R-field. It is called an epic R-field if
K is generated as a skew field by the image of R. An epic R-field is called a
ring of fractions for R if the homomorphism is injective.

The problem with this definition is that a ring of fractions is not unique.
In 13.21 we will see that the non-commutative polynomial ring C < x, u >
admits several non isomorphic rings of fractions. Let us again look at the
commutative case. The ring R = Z admits other epic R-fields than Q, namely
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the residue fields Z → Fp. The diagram

RΣ(R→K)

�
�
�
�
�✒

R ✲ K
❄

becomes in this special case

Z(p)

�
�
�
�
�✒

Z ✲ Fp,
❄

where Z(p) is the local ring ZT−1 with T = Z− (p). One interprets the map
Z(p) → Fp as a morphism from the Z-field Q to the Z-field Fp in a suitable
category, a so called specialization. There is a unique specialization from
the Z-field Q to every other epic Z-field. The next definition takes these
observations as a starting point.

Definition 13.19. A local homomorphism from the R-field K to the
R-field L is an R-ring homomorphism f : K0 → L where K0 ⊂ K is an R-
subring of K and K0−ker f = K×

0 . The ring K0 is a local ring with maximal
ideal ker f . Two local homomorphisms from K to L are equivalent if they
restrict to a common homomorphism which is again local. An equivalence
class of local homomorphisms is called a specialization. An initial object
in the category of epic R-fields and specializations is called a universal R-
field. If moreover the map R → K is injective it is called a universal field
of fractions.

A universal R-field is unique up to isomorphism, but even if there exists a
field of fractions for R there need not exist a universal R-field ([15, p.395,
Exercise 10]). On the other hand, if a universal R-field exists the map need
not be injective, i.e. it need not be a universal field of fractions. Now given
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a ring of fractions for R one can ask whether in the diagram

RΣ(R⊂K)

�
�
�
�
�✒

R
ψ

✲ K

Ψ

❄

Ψ is an isomorphism. Note that if we have a ring extension R ⊂ K with K
a skew field, then D(R ⊂ K) is the subfield generated by R in K, and from
Proposition 13.15 we know that D(R ⊂ K) = R(R ⊂ K). In particular, since
a field of fractions is an epic R-field we have K = D(R ⊂ K) = R(R ⊂ K).
As we already know from the discussion in the last subsection Ψ is surjective.
One might hope that Ψ is an isomorphism:

(i) For every field of fractions R → K.

(ii) At least for universal fields of fractions R → K.

Unfortunately there are counterexamples in both cases. It is claimed in
[4, p.332] that there exists a counterexample to (ii). We give a concrete
counterexample to (i) in 13.21. After all these bad news about the non-
commutative world now a positive result due to Cohn. A ring is a semifir
if it has invariant basis number and every finitely generated submodule of a
free module is free.

Proposition 13.20. Let R be a semifir, then there exists a universal field
of fractions and the map RΣ(R→K) → K is an isomorphism.

Proof. By definition of a semifir every finitely generated projective module is
free and has a well-defined rank. A map Rn → Rn between finitely generated
free modules is called full if it does not factorize over a module of smaller
rank. Now [15, Chapter 7, 5.11] says that there is a universal field of fractions
R → K such that every full matrix (alias map between finitely generated
projectives) becomes invertible over K. Since non full matrices can not
become invertible over K we see that the set of full matrices over R coincides
with Σ(R → K). Now [15, Chapter 7, Proposition 5.7 (ii)] yields that the
map RΣ(R→K) → K is injective.
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The main examples of semifirs are non-commutative polynomial rings over a
commutative field and the group ring over a field of a finitely generated free
group [16, Section 10.9]. These rings are even firs. Before we go on, here the
promised counterexample. Compare [4].

Example 13.21. Let C < x, y, z > and C < x, u > be non-commutative
polynomial rings. The map defined by x 7→ x, y 7→ xu and z 7→ xu2 is
injective. Since C < x, u > is a semifir there is a universal field of fractions
C < x, u >→ K. Now the division closure D of the image of C < x, y, z >
in K is a field of fractions for C < x, y, z >. Consider the diagram

C < x, y, z >Σ(C<x,y,z>⊂D)

�
�
�
�
�✒

C < x, y, z >
ψ

✲ D

Ψ

❄

given by the universal property. The map Ψ is not injective since, for exam-
ple, the element y−1z − x−1y is mapped to zero. From Proposition 13.20 we
know that for the universal field of fractions of C < x, y, z > the correspond-
ing map is an isomorphism. So D is not the universal field of fractions for
C < x, y, z >, and in particular we have found two non-isomorphic fields of
fractions for C < x, y, z >.

13.5 Recognizing Universal Fields of Fractions

Let Γ be the free group on two generators. From the preceding subsection
we know that the group ring CΓ, which is a semifir, admits a universal field
of fractions. The following gives a criterion to decide whether a given field
of fractions for CΓ, as for example D(CΓ ⊂ UΓ), is the universal field of
fractions. First we need some more notation. Let Γ be a group and let G
be a finitely generated subgroup. We say that G is indexed at t ∈ G if there
exists a homomorphism pt : G → Z which maps t to a generator. In that
situation we have an exact sequence

1 → ker pt → G→ Z → 1

together with a homomorphic section given by 1 7→ t. Therefore the group
ring RG ⊂ RΓ has the structure of a skew polynomial ring.

RG = (R ker pt) ∗ Z.
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Definition 13.22. Let Γ be a free group. An embedding CΓ ⊂ D into
a skew field (e.g. a CΓ-field of fractions) is called Hughes-free if for every
finitely generated subgroup G and every t ∈ G at which G is indexed we
have that the set {ti | i ∈ Z} is D(C ker pt ⊂ D)-left linearly independent.

A particular case of the main theorem in [37] states:

Proposition 13.23. Any two CΓ-fields of fractions which are Hughes-free
are isomorphic as CΓ-fields.

This is useful since Lewin shows in [45] the following proposition.

Proposition 13.24. The universal field of fractions of the group ring CΓ of
the free group on two generators is Hughes-free.

Combining these results with Proposition 13.20 we get:

Corollary 13.25. Let Γ be a free group. If CΓ ⊂ D is a Hughes-free CΓ-
field of fractions, then it is a universal CΓ-field of fractions, and it is also a
universal localization with respect to Σ(CΓ ⊂ D).

13.6 Localization with Respect to Projective Rank Func-
tions

So far we were mostly interested in universal localizations RΣ(R⊂S) where
a ring extension R ⊂ S was given. But there are other ways to describe
reasonable sets Σ one would like to invert. We are following Schofield [78].

Definition 13.26. Let R be a ring. A projective rank function for R is
a homomorphism ρ : K0(R) → R such that for every finitely generated
projective R-module P we have ρ([P ]) ≥ 0 and ρ([R]) = 1. The rank function
is called faithful if ρ([P ]) = 0 implies P = 0.

Note that such a rank function is in general not monotone, i.e. P ⊂ Q does
not imply ρ(P ) ≤ ρ(Q) as it is the case for the dimensionfunction discussed
in Section 3. Given a projective rank function we define the inner rank of a
map α : P → Q between finitely generated projectives as

ρ(α) = inf{ρ(P ′) |α factorizes over the f.g. projective module P ′}.

Definition 13.27. A map α : P → Q is called right full if ρ(α) = ρ(Q) and
left full if ρ(α) = ρ(P ). It is called full if it is left and right full.
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Note 13.28. If R is semihereditary and the rank function is monotone, then
ρ(α) = ρ([imα]). If R is von Neumann regular, then every rank function is
monotone and could be called a dimension function if it is also faithful. In
that case the notions right full, left full and full correspond to surjective,
injective and bijective.

Again it is the free group which shows that in general these notions give
something new.

Example 13.29. Let Γ be the free group on two generators x and y. Take
ρ as the composition

ρ : K0(CΓ) → K0(UΓ)
dim→ R.

Now look at the map

CΓ2 (x−1,y−1)−→ CΓ.

This is the differential in the cellular chain complex of the universal covering
of BΓ = S1∨S1. This map is right full, but not surjective, and it is injective,
but not left full with respect to ρ.

It is reasonable to invert universally all matrices (or maps between finitely
generated projective modules) which are full with respect to a given projec-
tive rank function ρ. The following lemma tells us that in one of our standard
situations we get nothing new.

Lemma 13.30. Let R → S be a ring homomorphism with S von Neumann
regular and suppose there is a faithful projective rank function dim : K0(S) →
R for S. Let

ρ : K0(R) → K0(S) → R

be the induced projective rank function for R. Then a map α : P → Q which
becomes an isomorphism over S is a full map.

Proof. Suppose α⊗R idS is an isomorphism. If α factorizes over the finitely
generated projective module P ′, then in the induced factorization after ten-
soring we have

ρ(α) ≤ ρ(P ) = dim(P ⊗R S) ≤ dim(P ′ ⊗R S).

Taking the infimum over all P ′ gives ρ(α) = ρ(P ) = ρ(Q). The map is
full.
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The following theorem of Schofield is very useful for our purposes:

Theorem 13.31. Let R be semihereditary and let ρ : K0(R) → R be a
faithful projective rank function such that every map between finitely gen-
erated projectives factors as a right full followed by a left full map. If Σ
is a collection of maps that are full with respect to the rank function, then
K0(R) → K0(RΣ) is surjective.

Proof. See [78, Theorem 5.2]. Note that over a semihereditary ring all
rank functions are automatically Sylvester projective rank functions by [78,
Lemma 1.1, Theorem 1.11].

The interesting example of this situation is not the extension NΓ ⊂ UΓ,
but the extension CΓ ⊂ UΓ in the case where Γ is a free group or a finite
extension of a free group. Over a hereditary ring the condition about the
factorization is always fulfilled ([78, Corollary 1.17]). In general the following
observation sheds some light on this condition.

Note 13.32. Let R be semihereditary and ρ : K0(R) → R be a projective
rank function with im(ρ) ⊂ 1

l
Z for some integer l. Every map between finitely

generated projectives factors as a right full followed by a left full map.

Proof. Let α : P → Q be a map between finitely generated projectives. Over
a semihereditary ring ρ(α) = inf{ρ(P ′) | imα ⊂ P ′ ⊂ P, P ′ f.g. projective}
since the map from an abstract P ′ to its image is always split. So there
must be a finitely generated projective submodule P ′ with im(α) ⊂ P ′ ⊂ Q
such that ρ(P ′) = ρ(α) = inf{ρ(P ′)|im(α) ⊂ P ′ ⊂ Q}. In the factorization
P → P ′ → Q the first map is right full and the second is left full.

Let us summarize what we can achieve in this abstract set-up.

Corollary 13.33. Let R ⊂ S be a semihereditary subring of the von Neu-
mann regular ring S. Suppose there is a faithful dimension function K0(S) →
1
l
Z for some integer l. Then the diagram

K0(RΣ(R⊂S))

�
�
�
�
�

i∗

✒

K0(R) ✲ K0(R(R ⊂ S))

Ψ∗

❄
✲ K0(S) → 1

l
Z ⊂ R

is commutative and the map i∗ is surjective.
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Unfortunately it is not clear whether or not Ψ∗ is surjective.
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14 Appendix IV: Further Concepts from the

Theory of Rings

14.1 Crossed Products

If H is a normal subgroup of the group Γ, the group ring CΓ can be described
in terms of the ring CH and the quotient G = Γ/H. This situation is
axiomatized in the notion of a crossed product. For a first understanding of
the following definition one should consider the case where the ring R is CG,
the ring S is CΓ and the map µ is a set theoretical section of the quotient
map Γ → G = Γ/H followed by the inclusion Γ ⊂ CΓ.

Definition 14.1 (Crossed Product). A crossed product R ∗ G = (S, µ)
of the ring R with the group G consists of a ring S which contains R as a
subring together with an injective map µ : G → S× such that the following
holds.

(i) The ring S is a free R-module with basis µ(G).

(ii) For every g ∈ G conjugation map

cµ(g) : S → S, s 7→ µ(g)sµ(g)−1

can be restricted to R.

(iii) For all g, g′ ∈ G the element

τ(g, g′) = µ(g)µ(g′)µ(gg′)−1

lies in R×.

In this definition we consider a crossed product as an additional structure on
the given ring S = R ∗G. Alternatively one can consider a crossed product
as a new ring constructed out of a given ring R, a group G and some twisting
data. This will be the content of Proposition 14.2 below.
The first condition in the above definition tells us that every element of R∗G
can be written in the form

∑

g∈G

rgµ(g), with rg ∈ R,
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where only finitely many of the rg are nonzero. The multiplication is deter-
mined by

rµ(g) · r′µ(g′) = rcµ(g)(r
′)τ(g, g′)µ(gg′).

By associativity [rµ(g) · r′µ(g′)] ·r′′µ(g′′) = rµ(g) · [r′µ(g′) · r′′µ(g′′)]. Writing
this out yields the following equation in R

rcµ(g)(r
′)
[

(cτ(g,g′) ◦ cµ(gg′))(r′′)
]

τ(g, g′)τ(gg′, g′′) =

rcµ(g)(r
′)
[

(cµ(g) ◦ cµ(g′))(r′′)
]

cµ(g)(τ(g′, g′′))τ(g, g′g′′).

Setting r = r′ = r′′ = 1 yields

τ(g, g′) · τ(gg′, g′′) = cµ(g)(τ(g′, g′′)) · τ(g, g′g′′).

Setting r = r′ = 1 and cancelling the τ ’s yields

cτ(g,g′) ◦ cµ(gg′) = cµ(g) ◦ cµ(g′).

On the other hand these two equations imply the above. This leads to the
following proposition.

Proposition 14.2 (Construction of a Crossed Product). Given a ring
R, a group G and maps

c : G→ Aut(R), g 7→ cµ(g), τ : G×G→ R×,

such that

τ(g, g′) · τ(gg′, g′′) = cµ(g)(τ(g′, g′′)) · τ(g, g′g′′)

cτ(g,g′) ◦ cµ(gg′) = cµ(g) ◦ cµ(g′)
holds, we can construct a ring R∗τ ,cG together with a map µ : G → R∗τ ,cG
such that µ is a crossed product structure on R∗τ ,cG and cµ(g) = cµ(g) and
τ = τ .

Proof. Take the free R-left module on symbols µ(g) and define a multiplica-
tion as above. The conditions make sure that this multiplication is associa-
tive.

Usually one omits τ , c and µ in the notation. According to the situation we
will write R ∗ G, (R ∗ G, µ) or R∗τ,cG. The following proposition describes
homomorphisms out of a crossed product.
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Proposition 14.3. Let R∗τ,cG be a crossed product and let S be a ring.
Suppose we are given a ring homomorphism f : R → S and a map ν : G →
S× such that

G×G
τ ✲ R R ✲ S

❅
❅
❅
❅
❅

τν
❘

and

S
❄

R

cµ(g)

❄
✲ S

cν(g)

❄

commute. Then there exists a unique ring homomorphism

F : R∗τ,cG→ S

such that F extends f and F ◦µ = ν. Conversely a homomorphism R∗τ,cG→
S determines f and ν (and therefore τν and cν).

In particular if we apply this to the case where S is a crossed product we get
the notion of a crossed product homomorphism. Again we can either consider
such a crossed product homomorphism f ∗G : R ∗G→ R̃ ∗G as a usual ring
homomorphism with additional properties or as a new ring homomorphism
built out of f : R → R̃.

Proposition 14.4 (Crossed Product Homomorphism). Let (R ∗G, µ)
and (R̃∗G, µ̃) be crossed products. A ring homomorphism F : R∗G→ R̃∗G
is called a crossed product homomorphism if

(i) The following diagram commutes

R ∗G

�
�
�
�
�

µ
✒

G
µ̃✲ R̃ ∗G.

F

❄

(ii) The map F restricts to a map R → R̃.
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On the other hand, given a ring homomorphism f : R → R̃ such that

G×G
τ ✲ R R ✲ R̃

❅
❅
❅
❅
❅

τ̃
❘

and

R̃

f

❄

R

cµ(g)

❄
✲ R̃

c̃ν̃(g)

❄

commute, there exists a unique crossed product homomorphism

f ∗G : R∗τ,cG→ R̃∗τ̃ ,c̃G

which extends f .

The following propositions in the main text also deal with crossed products:
Proposition 8.5 on page 67 (Crossed products and localizations), Proposi-
tion 8.12 on page 75 (Crossed products and chain conditions) and Lemma 9.4
on page 95.

14.2 Miscellaneous

In this subsection we collect some definitions from ring theory which are used
throughout the text.

Definition 14.5. Let R be a ring and f : Rn → Rm be any R-linear map
between finitely generated free right R-modules. The following can be taken
as a definition of the notions coherent, semihereditary, semifir, von Neumann
regular.

(i) R is coherent, if im(f) is always finitely presented.

(ii) R is semihereditary, if im(f) is always projective.

(iii) R is a semifir, if im(f) is always a free module and the ring has
invariant basis number.

(iv) R is von Neumann regular, if im(f) is always a direct summand of
Rm.

A ring R has invariant basis number if every finitely generated R-module
has a well-defined rank, i.e. Rn ∼= Rm implies n = m.
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Definition 14.6. (i) A ring R is called prime if there are no zerodivisors
on the level of ideals, i.e. if I and J are two sided ideals then IJ = 0
implies I = 0 or J = 0.

(ii) A ring R is called semiprime if there are no nilpotents on the level of
ideals, i.e. if I is a two sided (or one sided) ideal, then In = 0 implies
I = 0. It is sufficient to check the case n = 2.

A semiprime ring is a subdirect product of prime rings [76, p.164]. The
remarks on page 186 in [76] might help to relate semiprimeness to other
ring theoretical concepts. For the notions of artinian, noetherian and
semisimple rings we recommend pages 495–497 in [76] where one finds a
list with characterizations and basic properties of these notions.
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Glossary of Notations

(A) and (B) see 5.10 and 8.3
(C) see 8.4

Groups
Γ ’generic’ group
G ’generic’ subgroup of Γ
H ’generic’ quotient of Γ
g,h or k ’generic’ element of a group
e unit of a group
G ∗H free product of groups
Aut(G) automorphism group of G

1
|FinΓ|

Z see page 31

X or Y ’generic’ class of groups
EG class of elementary amenable

groups, see Definition 7.1
C Linnell’s class of groups, see Def-

inition 7.5
C ′ groups in C with a bound on the

order of finite subgroups
NF class of groups not containing Z ∗

Z

Rings
R or S ’generic’ ring
R ⊂ S ’generic’ ring extension
R× multiplicative group of units
Mn(R) ring of n× n matrices over R
GLn(R) group of invertible n×n-matrices

over R
e or f ’generic’ idempotent
p or q ’generic’ projection in a ∗-ring
T ’generic’ multiplicatively closed

subset of R
NZD(R) set of all non-zerodivisors in R
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T(R → S) see remarks after Definition 13.1
T(R ⊂ S) special case with R → S embed-

ding of a subring
Σ ’generic’ set of matrices over R
Σ(R → S) see remarks after Definition 13.9
Σ(R ⊂ S) special case with R → S embed-

ding of a subring
RX universal X-inverting ring, see

Definition 13.1
RT see remarks after Definition 13.1
RΣ universal Σ-inverting ring, see

Definition 13.9
D(R ⊂ S) division closure of R in S, see Def-

inition 13.14
R(R ⊂ S) ratioonal closure of R in S, see

Definition 13.14
R ∗G crossed product of R with G, see

Definition 14.1
µ crossed product structure map,

see Definition 14.1
cr conjugation map x 7→ rxr−1

τ(g, g′) see Definition 14.1
f ∗G crossed product homomorphism,

see 14.4

Specific rings
CΓ group ring with complex coeffi-

cients
RΓ group ring with R-coefficients, see

Conjecture 5.3
A ’generic’ von Neumann algebra,

see page 6
NΓ group von Neumann algebra, see

page 2
U algebra of operators affiliated to a

A, see Definition 11.10
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UΓ algebra of operators affiliated to
NΓ, see 2.1

SΓ see Theorem 5.10
T(Γ) see page 62
Σ(Γ) see page 62
D(Γ) see page 62
R(Γ) see page 62
B(H) algebra of bounded operators
M ′ commutant, see page 6
M ′′ double commutant
W ∗(s) see page 110
 L∞(X,µ) algebra of essentially bounded

functions
 L(X,µ) =  L(X) algebra of measurable functions,

see Example 2.3

Modules
M ’generic’ module
P or Q ’generic’ finitely generated mod-

ule
tM torsion submodule, see Defini-

tion 3.14
TM largest zero-dimensional submod-

ule, see Definition 3.15
PM see Definition 3.15

Homology
HΓ

p (X;NΓ) see page 29
HΓ

p (X;UΓ) see Definition 4.1

b
(2)
p (Γ) L2-Betti numbers, see page 29
χ(Γ) Euler characteristic of BΓ
χvirt(Γ) virtual Euler characteristic, see

page 34
χ(2)(Γ) L2-Euler characteristic, see

page 34
TorRp (−;M) derived functors of −⊗R M
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K-Theory
K0(R) Grothendieck group of isomor-

phism classes of f.g. proj. R-
modules

G0(R) see page 83
K1(R) see Definition 10.3

Kinj
1 (R) see Definition 10.3

Kw
1 (A) see Definition 10.3

colimK∈FinΓK0(CK) see 5.3

Lattices
L ’generic’ lattice, see page 12
LProj(A) lattice of projections in a von

Neumann algebra
LHilb(M) lattice of closed Hilbert A-

submodules of M
Lall(MR) lattice of all submodules of M
Lfg(PR) set of all finitely generated sub-

modules of PR

Lds(PR) set of all submodules of PR which
are direct summands

Miscellaneous
E(Γ,Fin) see page 39
HC0(R) see proof of Proposition 5.19
H ’generic’ Hilbert space
< x, y > scalar product on a Hilbert space
l2X Hilbert space with orthonormal

basis X
l2(A) see page 13
 L2(X;µ) Hilbert space of square integrable

functions
L0(H) ideal of finite rank operators in

B(H)
L1(H) ideal of trace class operators
Lp(H) Schatten ideals, see page 45
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tr(a) trace of a trace class operator
ρ, ρ± see Definition 6.1
Ap see Proposition 6.3
NΓ0 see Proposition 6.3
NΓp see Proposition 6.3
trA trace of a finite von Neumann al-

gebra, see page 6
trZ(A) center valued trace, see page 98
trMn(A) see page 18
dimU see Proposition 3.9 and Theo-

rem 3.12
dim′

U see Definition 3.10
detFK Fuglede-Kadison determinant,

see page 102
TR→RΣ

see Definition 10.7
p ∼MvN q Murray von Neumann equiv-

alence of projections, see
Lemma 3.6

dom(a) domain of an operator
a ⊂ b b is an extension of a, see page 106
spec(a) spectrum of an operator, see

page 107
κ(s) Cayley transform of s, see Propo-

sition 11.17
Proj(R) monoid of isomorphism classes of

f.g. proj. R-modules
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Index

AW ∗-algebra, 14
K1 of, 84

G-theory, 69
G0

and K0, 69
of an Ore localization, 69

K-theory, 81
and localization, 85
negative, 34

K0

and G0, 69
of algebra of affiliated opera-

tors, 81
of finitely presented torsion mod-

ules, 86
of unit regular ring, 97
of von Neumann algebra, 81

K1

of AW ∗-algebra, 84
of algebra of affiliated opera-

tors, 84
of injective endomorphisms, 83
of unit regular ring, 84
of von Neumann algebra, 84

L2-Euler characteristic, 29
L2-homology, 24

universal coefficient theorem for,
77

R-field, 105
epic, 105

X-inverting ring homomorphism, 98
Γ-space, 24

with finite isotropy, 77
Σ-inverting ring homomorphism, 101
∗-closed

subrings of UΓ, 62
∗-regular ring, 9

definition of, 96

abelianized group of units, 84
affiliated

operator, 89
subspace, 89

affiliated operator
characterization of, 90

algebra
AW ∗, 14
matrix, 14
von Neumann, 5

algebra of affiliated operators
K0 of, 81
K1 of, 84
definition of, 91

almost equivariant, 40
amenable

group, 44
von Neumann algebra, 45

amenable group
characterization of, 45
Folner criterion, 45

arbitrary module, 21
dimension for, 17

artinian ring, 62, 114
and crossed product, 62

assembly map, 33
Atiyah conjecture, 26

and directed unions, 27
and division closure, 32
and subgroups, 28
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for the free group on two gen-
erators, 42

for torsionfree groups, 32
iff DΓ skew field, 74
strategy for, 29
with coefficients, 27

Atiyah-Hirzebruch spectral sequence,
33

Bass trace map, 35
Bredon homology, 33

category
of finitely generated free mod-

ules, 101
of finitely generated projective

modules, 101
of finitely presented torsion mod-

ules, 85
orbit, 33

Cayley
graph, 39, 45
transform, 93

center
of von Neumann regular ring,

95
valued dimension, 82
valued trace, 81

chain condition
and von Neumann regular rings,

96
Chern character, 35
classes of groups, 43
classical ring of fractions

definition of, 99
of CΓ, 53

classifying space
for a family, 33

closed
extension of an operator, 87
operator, 87

closure
division, 32, 52, 103
rational, 32, 52, 103

cofinal-measurable, 22
coherent ring, 11, 20

definition of, 114
common complement, 13
commutant, 5, 89
commutative ring

field of fractions of, 104
commute, 89
complement

common, 13
complete lattice, 10, 11, 16
composition

of unbounded operators, 87
condition

Ore, 8
conjecture

Atiyah, 26
Atiyah with coefficients, 27
isomorphism, 33
Kadison, 37
Serre’s, 28
zero divisor, 28

construction
GNS, 10

core of an operator, 88
counterexample

AG 6= NF , 45
EG 6= AG, 45
SΓ not semisimple, 31
SΓ not unique, 32
field of fractions not universal,

106
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injective but not left full, 108
non-isomorphic fields of fractions,

106
nontrivial module with vanish-

ing dimension, 22
right full but not surjective, 108
to Ψ injective, 106
to Ψ injective for universal field

of fractions, 106
to Ore condition, 99

Cramer’s rule, 60, 85, 102
crossed product

and artinian rings, 62
and localization, 56
and noetherian rings, 62
and polycyclic-by-finite groups,

62
and semiprime rings, 62
construction of, 112
definition of, 111
homomorphism, 113
semisimple, 63

dense
essentially, 91

determinant
Fuglede-Kadison, 84

dimension, 15
additivity of, 17
center valued, 82
cofinality of, 17
of affiliated subspace, 91
of arbitrary U -module, 17
of finitely generated projective

A-module, 15
of finitely generated projective

U -module, 15
of Hilbert A-module, 15

projective, 85
Tor-, 6
weak-, 6

directed union, 4, 71
and Atiyah conjecture, 27

division closed
definition of, 102

division closure, 32, 52
and Atiyah conjecture, 32
definition of, 103

division ring, 105
domain

of an operator, 87
double commutant theorem, 5

elementary amenable groups, 43
and TorCΓp (−;DΓ), 77
and Ore localization, 53

elements
stably associated, 60

epic R-field, 105
equivalent

Murray von Neumann, 13
equivariant

almost, 40
essential

homomorphism, 89
essentially bounded function, 3, 6
essentially dense, 91
Euler characteristic, 28

L2-, 29
for groups in C, 78
virtual, 28

exact functor, 8, 99
example

Ψ not injective, 106
SΓ not semisimple, 31
SΓ not unique, 32
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field of fraction not universal,
106

for AG 6= NF , 45
for EG 6= AG, 45
group in C, 46
infinite cyclic group, 3
injective but not left full, 108
non-isomorphic fields of fractions,

106
nontrivial module with vanish-

ing dimension, 22
not satisfying Ore condition, 99
of semifirs, 106
right full but not surjective, 108
universal localization of com-

mutative ring, 102
extension

and localization, 58
of an operator, 87

faithful trace, 5, 15
field, 105
field of fractions

of a commutative ring, 104
universal, 105

finite homological type, 28
finite trace, 5
finitely generated projective mod-

ule, 20
finitely presented module, 20
finitely presented torsion modules,

85
K0 of, 86

flat, 8, 30, 45, 99
fraction

of operators, 7
Fredholm module, 37, 38

p-summable, 38

construction of, 40
free

Hughes-, 107
free group, 74

and DΓ, 74
finite extensions of, 75

free group on two generators, 37,
99

Atiyah conjecture for, 42
geometric properties of, 39
not amenable, 44

free product, 49
Fuglede-Kadison determinant, 84
full, 108
function

essentially bounded, 3, 6
measurable, 6
square integrable, 6
step, 82

function calculus, 89
functor

exact, 8, 99
left exact, 20

Fölner criterion, 45

GNS construction, 10
Goldie’s theorem, 64
graph

Cayley, 39
of an operator, 87

group
amenable, 44
elementary amenable, 43
free, 74
free on two generators, 37
infinite cyclic, 3
infinite locally finite, 31
of units, 84
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torsionfree, 26, 31
virtually abelian, 81
virtually cyclic, 36

group von Neumann algebra, 1
of infinite cyclic group, 3
operators affiliated to, 90
type of, 81

groups
X -by-Y , 43, 53
classes of, 43
locally-X -, 43, 53

Hattori-Stallings rank, 35
hereditary ring, 76, 109
Hilbert A-module, 10
Hilbert A-modules

lattice of, 11
homological type

finite, 28
homology

L2-, 24
Bredon, 33
generalized equivariant, 33
reduced L2-, 24
unreduced L2-, 24
with twisted coefficients, 24

homomorphism
crossed product, 113
essential, 89
local, 105

Hughes-free, 107

idempotent, 4, 12, 28
induction

set-up, 61
transfinite, 43, 46

induction map, 29
induction principle

for C, 47
for EG, 44

induction theorem
Moody’s, 36, 70

infinite cyclic group, 3
infinite locally finite group, 31
invariant basis number, 114
invariant mean, 44, 45
invertible operator, 7
isomorphism

lattice, 10, 11
weak, 7, 83

isomorphism classes of projections,
15

isomorphism conjecture, 33, 76
consequences of, 34

isomorphism of projections, 13
iterated localization, 59

K-theory, 14
Kadison conjecture, 37
Künneth spectral sequence, 77

lattice, 10
complete, 10, 11, 16
of projections, 11

lattice isomorphism, 10, 11
lattice of Hilbert A-modules, 11
Laurent polynomial ring, 3

skew-, 63, 64
left exact functor, 20
left full

definition of, 108
left regular representation, 10
Linnell

’s class of groups, 45
Linnell’s class of group, 45
Linnell’s class of groups
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and DΓ, 52
and RΓ, 52
and TorCΓp (−;DΓ), 77
and Euler characteristics, 78
and free products, 46
examples, 46

Linnell’s theorem, 52
local homomorphism, 105
localization

and K-theory, 85
and crossed products, 56
and extensions, 58
iterated, 59
Ore, 8, 64
sequence, 85

lower multiplicatively closed, 101

map
stabilization, 14

matrices
stably associated, 60

matrix algebra, 14
matrix ring

and Ore localization, 100
of a von Neumann regular ring,

95
mean

invariant, 44
measurable function, 6
module, 4

arbitrary, 21
finitely generated projective, 20
finitely presented, 20
Fredholm, 37, 38
Hilbert A-, 10
torsion, 19, 21, 22, 85
torsionfree, 19

modules

finitely generated free, 101
finitely generated projective, 101

Moody’s induction theorem, 36, 70
Murray von Neumann equivalent,

13

negative K-theory, 34
noetherian ring, 64, 114

and crossed products, 62
non-zerodivisor, 4, 7

in UG ∗ Z, 64
non-zerodivisors

of CΓ, 52
normal trace, 5, 15
normalization of the trace, 15
Novikov-Shubin invariants, 25

operator
affiliated, 89
closed, 87
core of, 88
domain of, 87
finite rank, 37
graph of, 87
invertible, 7, 84
selfadjoint, 88
spectrum of, 88
symmetric, 88
trace class, 37
unbounded, 87
unique closure of, 94

operators
affiliated to a group von Neu-

mann algebra, 90
orbit category, 33

tensor product over, 34
Ore

condition, 8
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localization, 8
Ore condition

definition of, 98
for CΓ, 53

Ore localization
and G-theory, 69
and matrix rings, 100
and noetherian semiprime rings,

64
definition of, 99
is exact, 99
of CΓ, 53

polar decomposition, 89
polycyclic-by-finite group

and crossed product, 62
polynomial

Laurent, 3
prime ring

definition of, 114
processes

C closed under, 46
product

free, 49
of unbounded operators, 6, 87

projection, 4, 12, 13
valued measure, 88

projections
isomorphism classes of, 15
isomorphism of, 13
lattice of, 11
Murray von Neumann equiva-

lence of, 13
projective dimension, 85
projective rank function, 76

definition of, 108
push-out

of rings, 66, 100

rank
Hattori-Stallings, 35

rank function
faithful, 108
monotone, 108
over semihereditary ring, 109
projective, 76, 108
Sylvester projective, 76

rational closure, 32, 52
definition of, 103

rationally closed
definition of, 103

reduced L2-homology, 24
representation

left regular, 10
very trivial, 40

resolvent set, 88
right full

definition, 108
ring, 4

∗-regular, 9
artinian, 62, 114
coherent, 11, 20, 114
division, 105
hereditary, 76, 109
homomorphism, 4
noetherian, 64, 114
prime, 114
semihereditary, 11, 20, 30, 114
semiprime, 62, 64, 114
semisimple, 31, 62, 114
unit regular, 8, 13
von Neumann regular, 6, 11,

29, 95, 114
ring homomorphism

X-inverting, 98
Σ-inverting, 101
universal Σ-inverting, 101
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universal X-inverting, 98
ring of fractions, 99

classical, 99
definition of, 105

rule
Cramer’s, 60, 85, 102

saturation, 101
Schatten ideals, 37
selfadjoint operator, 88
semifir, 75, 106

and universal field of fractions,
75

definition of, 114
examples of, 106
universal field of fractions of,

106
semihereditary ring, 11, 20, 30

and finitely presented modules,
86

definition of, 114
semiprime

subring of UΓ, 62
semiprime ring, 62, 64

definition of, 114
semiprime rings

and crossed products, 62
semisimple ring, 31, 62, 114

structure theory of, 64
Serre’s conjecture, 28
skew field, 105
skew-Laurent polynomial ring, 63,

64
specialization, 105
spectral sequence

Atiyah-Hirzebruch, 33
Künneth, 77

spectrum

gap in, 84
of an operator, 88

square integrable function, 6
stabilization map, 14
stably associated, 60, 102
step function, 82
Stieltjes integral, 89
strong topology, 5
subrings

∗-closed, 62
subspace

affiliated, 89
essentially dense, 91

sum
of unbounded operators, 6, 87

summability
of Fredholm module, 38

symmetric operator, 88

tensor product over orbit category,
34

theorem
Goldie’s, 64

topology
strong, 5
ultraweak, 5
weak, 5

Tor-dimension, 6
torsion

module, 19
torsion element, 20
torsion module, 21, 22
torsionfree group, 26, 31

and Atiyah conjecture, 32
torsionfree module, 19
trace, 5, 91

center valued, 81, 82
faithful, 5, 15
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finite, 5
normal, 5, 15
normalization of, 15
of a group von Neumann alge-

bra, 5
transfinite induction, 43, 46
tree, 39

ultraweak topology, 5
unbounded operator

commuting with bounded, 89
definition of, 87
domain of, 87
extension of, 87
graph of, 87
spectrum of, 88

unbounded operators
composition of, 87
product of, 87
sum of, 87

union
directed, 4, 71

unit regular ring, 8, 13
K0 of, 97
K1 of, 84
definition of, 96

units
abelianized group of, 84

universal
Σ(Γ)-inverting, 52
T(Γ)-inverting, 53

universal Σ-inverting ring homomor-
phism, 101

universal R-field
definition of, 105

universal coefficient theorem
for L2-homology, 77

universal field of fractions

definition of, 105
of a semifir, 75, 106
recognizing, 107

universal localization
K-theory of, 76
and K-theory, 85
of a commutative ring, 102

unreduced L2-homology, 24

very trivial representation, 40
virtual Euler characteristic, 28
virtually abelian group, 81
virtually cyclic group, 36
von Neumann algebra, 5

K0 of, 81
K1 of, 84
amenable, 45
center of, 81
finite, 5
of a group, 1
of the group Z, 3
of type In, 81
of virtually abelian group, 81
type of, 81

von Neumann regular ring, 6, 11,
29, 114

and chain conditions, 96
and directed union, 71, 95
and matrix ring, 95
and zerodivisors, 96
center of, 95
definition of, 95
is division closed, 103
is rationally closed, 103

weak dimension, 6
weak isomorphism, 7, 83
weak topology, 5
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zero divisor conjecture, 28
zerodivisor, 4, 98

conjecture, 28
in von Neumann regular ring,

96
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