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Blood transcriptome analysis 
in a buck‑ewe hybrid points 
towards an nuclear factor‑kappa B 
lymphoproliferative autoimmune 
disorder
Clemens Falker‑Gieske 1,2* & Jens Tetens 1,2

Mammal hybridization is a speciation mechanism and an evolutionary driver. Goat‑sheep, especially 
buck‑ewe hybrids, are very rare with only one case reported in 2016, which is the subject of the 
work presented here. Blood transcriptome analysis revealed that the hybrid largely deviated from 
imprinting schemes previously described in sheep and other mammals. Furthermore, transcriptome 
regulation seems to differ from the parent transcriptomes, which is most likely a product of partially 
incompatible imprinting mechanisms from two closely related species. To gain a deeper understanding 
of hybridization in mammals we re‑analyzed the RNA sequencing data of the buck‑ewe hybrid and 
its parents. We found parent‑of‑origin‑specific expression of genes that functionally clustered, which 
we explain with the Dobzhansky–Muller incompatibility (DMI) model. According to the DMI model, 
proteins which interact have a high probability of being barrier loci and hence are prone to monoallelic 
expression. We discovered enrichment of genes uniquely expressed by the buck‑ewe hybrid, which 
implicate that it suffered from an NF‑κB lymphoproliferative autoimmune disorder. Similar findings 
were reported in the F1 generation of hybrid mice. We propose that hybridization of two related 
species may lead to an autoimmune phenotype, due to immunoglobulin incompatibilities and 
incomplete silencing of barrier loci.

Goat-sheep hybrids (geeps) are rare and most of the described cases were offspring of rams mating with  does1–3. 
Hybridization in mammals, however, is a common phenomenon and occurs at so-called hybrid zones, where 
phylogenetically related species come into  contact4,5. Most hybrid animals are sterile, which is caused by chro-
mosomal incompatibilities of the parental genomes. This leads to failure of gamete formation during  meiosis6, 
which is most likely caused by divergent evolution leading to different structural variation patterns between 
closely related  species7. Copy number variants (CNVs) caused by deletions and  insertions8 as well as  inversions9 
have been discussed to be causative. Other factors preventing gene flow and consequently speciation events are 
barrier  loci10. In the special case of goat-sheep hybrid embryos, hemolytic disease caused by an immune reaction 
of the mother against fetal red blood cells has been identified to prevent the development of hybrid  embryos11. 
In the rare case of successful conception by a hybrid, the resulting offspring is considered a new  species12, which 
makes hybrid speciation a mechanism of  evolution13. The study presented here focuses on the analysis of the 
blood transcriptomes of a geep and its parents. The geep under investigation was born near Göttingen (Lower 
Saxony, Germany) in March 2014 as the result of the mating between a buck and an ewe. The geep died in 2018 
due to polyhydramnios during pregnancy. It was pregnant with two fetuses at advanced developmental stages. 
The cytogenetics of the geep revealed that it had an intermediate karyotype of 57 chromosomes, whereas the 
buck had 60 and the ewe 54  chromosomes14. An in-depth analysis of the blood transcriptomes of the geep and 
its parents revealed abnormal imprinting patterns, which we concluded is a compensation mechanism for disad-
vantageous  alleles15. Since this study was conducted using reference genome versions, which are now outdated, 
we re-analyzed the transcriptomes of the geep and its parents and found strong evidence for an NF-κB (nuclear 
factor ’kappa-light-chain-enhancer’ of activated B-cells) autoimmune lymphoproliferative disorder in the geep.
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Results
In this study, the blood transcriptomes of a buck-ewe hybrid and its  parents15 were re-analyzed to elucidate if the 
usage of the most recent reference genome assemblies of Ovis aries (O. aries) and Capra hircus (C. hircus) reveal 
new insights to the biology of a mammal hybrid. A prerequisite for the analysis of RNAseq data from a hybrid 
animal is species discrimination of sequencing reads. To achieve that, the state-of-the-art sequence alignment 
software  HISAT216 was used to map the reads of all three individuals to the O. aries and C. hircus genomes. The 
program HyScore, which we developed in our previous  study15, was applied to the HISAT2 output to assign 
RNAseq reads unambiguously to one reference genome. This led to an exon coverage of about 18–26 × in all 
three animals (Table 1).

Genes with a Fragments per kilobase million (FPKM) value > 1 were considered expressed, which led to the 
discovery of 863 genes expressed in geep blood, which were assigned to the maternal genome and 1100 genes 
assigned to the paternal genome. In total 659 genes were expressed in the blood of the hybrid but in neither 
parent blood transcriptomes. These are referred to in the following text as “uniquely expresses geep genes”. Gene 
cluster enrichment analysis with clusterProfiler revealed a clear differentiation of gene clusters, depending on the 
parental origin of genes expressed in the blood of the geep (graphical results in Supplementary File S1, tabular 
results in Supplementary File S2). For instance, biological processes driven by sheep-specific gene expression 
were ATP and amino acid metabolism, whereas catabolic and cell cycle processes are dominated by expression 
from the goat’s genome. Regarding cellular components, terms involving proton-transporting ATP synthase 
complex were enriched in the genes of maternal origin. Biological processes terms related to the degradation 
of molecules were of paternal origin. Surprisingly, numerous disease-related KEGG pathways were discovered, 
mostly of maternal origin. These almost exclusively comprised neurodegenerative disorders. The most striking 
finding, however, was the enrichment of uniquely expressed geep genes for biological processes belonging to the 
immune system (Fig. 1). These included lymphocyte differentiation, regulation of NF-κB signaling, and type I 
interferon production.

In a text mining approach with  String17, we discovered 146 peer-reviewed papers linking 45 genes, which 
were uniquely expressed in the geep, to autoimmune diseases (Supplementary File S3). Of those studies, 17 
focused on the lymphatic system, which is responsible for adaptive immunity. Multiple sclerosis and systemic 
lupus were detected four times. Numerous genes were detected multiple times (Table 2), with BCL2, CD28, and 
FASLG having more than 50 hits.

We detected strong expression of LTA, TTC4 and UBE2N from the maternal genome and moderate expres-
sion of numerous other genes (Fig. 2) involved in autoimmunity, based on “PubMed” enrichment analysis with 
 STRING17. Some of those genes were strongly expressed from both parental genomes at similar levels, e.g. 
RUNX3, LAG3, DDIT4, and IL15.

Protein–protein interaction (PPI) analysis of uniquely expressed geep genes assigned to immune sys-
tem GO terms with  String17 revealed an extensive network of interacting proteins (Fig. 3; PPI enrichment P 
value: < 1 ×  10–16, number of nodes: 74, number of edges: 154, expected number of edges: 45, average node degree: 
4.16, avg. local clustering coefficient: 0.466). UBE2N, the gene with the highest expression among unique geep 
genes, was located at the core of the PPI network connected to multiple interaction partners. Furthermore, CD28, 
which was linked to autoimmunity in 64 peer-reviewed articles, was strongly interconnected in the PPI network.

Discussion
One mechanism, which was proposed to explain the reproductive barrier between sheep and goats is hemolytic 
disease caused by an immune reaction of the mother against fetal red blood  cells11. The cause of death of the 
geep was polyhydramnios, a condition often presenting with fetal hemolytic  anemia18,19. In a recent review Col-
lins et al. discussed the function of immunoglobulin genes in reproductive  isolation20. The authors came to the 
conclusion that coordination of evolution between heavy- and light-chain genes is crucial to avoid autoimmunity 
in vertebrate hybrids, which could lead to incompatibilities between hybrids and their offspring. They base their 
assumptions on the Dobzhansky–Muller incompatibility (DMI) model, which assumes genes encoding proteins 
that interact, are potential barrier loci because the interaction of gene products between different species would 
be too low in the hybrid  offspring21,22. Genes encoding the antibody repertoire of a population change rapidly 
under selection pressure, which explains their high level of incompatibility between closely related species. 
Hence, monoallelic expression of genes from one parental genome is a mechanism to overcome these barrier 
loci. We found evidence for this mechanism in our previous study, where we showed that advantageous alleles 
were expressed in a monoallelic fashion in the blood of the  geep15. In the study presented here, we show a clear 
functional clustering of genes by parental origin, which provides further evidence for the DMI model and as 
a result a disturbed immune system in the geep. Our results suggest that genes involved in autoimmunity are 
upregulated in the blood of the buck-ewe hybrid under investigation. This might not only help to understand 

Table 1.  Mapping and filtering results of RNAseq data of the buck-ewe hybrid (geep) and its parents. Results 
highlighted in bold were used for further analyses.

O. aries (ARS-UI_Ramb_
v2.0) C. hircus (ARS1.2) HyScore O. aries HyScore C. hircus No. of reads Exon coverage

Geep 68.93% 68.42% 9.00% 8.00% 16.4 mio 21.8 x

Sheep 74.59% 64.34% 17.00% 2.00% 15.5 mio 18.4 x

Goat 66.14% 77.30% 2.00% 18.00% 16.9 mio 26.4 x
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its unexpected death during pregnancy but may also provide important insight into the immune biology of a 
mammal hybrid and the consequences on individual fitness. We indeed found several links to hemolytic dis-
eases just by looking at the genes which were uniquely expressed in the blood of the hybrid. BCL2, for instance, 
is a pharmacological target in autoimmune hemolytic anemia (AIHA)23. Furthermore, AIHA patients have a 
significantly higher frequency and absolute count of CD28 null T helper, which also negatively correlates to the 

Figure 1.  Gene cluster enrichment results for GO biological processes with genes uniquely expressed in the 
blood of the buck-ewe hybrid.

Table 2.  Text mining results for genes linked to immune system GO biological processes terms, which were 
uniquely expressed in the buck-ewe hybrid. Peer-reviewed publications listed in NCBI PubMed were mined 
with STRING (accessed October 2022). The list contains genes linked to autoimmunity by more than 10 peer-
reviewed studies.

Gene Symbol Linked to autoimmunity in # publications

BCL2 68

CD28 64

FASLG 53

BCL2L1 47

GATA3 42

IL15 37

GPR29 29

LAG3 28

CHUK 21

TRAF5 17

HIF1A 16

IFIH1 16

NOD2 16

CR2 15

FADD 14

RUNX3 13

TRIM21 12
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Figure 2.  Heatmap of fragments per kilo base million (FPKM) values of genes uniquely expressed in the blood 
of the buck-ewe hybrid, which were linked to autoimmunity, in comparison to gene expression in its parents. 
The heatmap was constructed with the Enhanced Heat Map function from the R package gplots (version 3.1.3, 
https:// github. com/ talga lili/ gplots).

https://github.com/talgalili/gplots
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hemoglobin  levels24. FASLG was linked to the syndrome of hemolysis, elevated liver enzymes, and low platelets 
(HELLP)25. Pro-inflammatory properties in HELLP were also attributed to NOD226.

While this evidence is rather descriptive, a text mining approach led to the identification of a significant 
number of genes linked to lymphoproliferative and other autoimmune disorders involving lymphocytes. Immu-
noglobulins are essential for the correct assembly of  lymphocytes27 and defective antibody gene rearrangements 
were found in individuals suffering from autoimmune diseases, like systemic  lupus28. Genes that have been 
linked to lymphocytic disorders by more than three studies were BCL2, FASLG, CD28, FADD, IL15, and BCL2L1. 
Another disease captured by text mining was systemic lupus. Symptomatic resemblance to systemic lupus in 
mice was described over 50 years ago in the F1 hybrids of New Zealand black (NZB) and New Zealand white 
(NZW)  mice29. CD28 was connected to systemic lupus by three  studies30–32 and FASLG30,32 as well as  TRAF531,32 
by two studies. While these lines of evidence put CD28, FASLG, and BCL2 into the main focus of an autoimmune 
phenotype in mammal hybrids, our data suggest that UBE2N plays a major role in regulation of the syndrome. 
With the highest expression among all uniquely expressed genes in the hybrid and its central position in the 
PPI network (Figs. 2 and 3), it interacts with eight proteins in the map. Yamamoto et al. demonstrated that the 
E2 ubiquitin-conjugating enzyme UBE2N (Ubc13 in mice) tags target proteins, which ultimately results in the 
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Figure 3.  Protein–protein interaction map of genes uniquely expressed in the blood of the buck-ewe hybrid.
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activation of the transcription factor NF-κB33, one of the top pathways identified by gene cluster enrichment 
analysis (Fig. 1). Indeed, the direct interaction partners IRAK2, TRAF5, CHUK, and TAB3 belong to the STRING 
local network cluster CL:18492 (false discovery rate = 0.01, https:// string- db. org/ cgi/ netwo rk? taskId= bvmXR 
veD5a lc& sessi onId= btqaa LV5T8 VE, accessed October 2022), an NF-κB signaling protein interaction cluster.

In summary, the evidence presented here points towards an NF-κB autoimmune disorder involving the 
lymphatic system in the buck-ewe hybrid, which is most likely caused by the incomplete silencing of barrier 
loci and immunoglobulin incompatibilities. We assume that the disorder is induced by high UBE2N expression, 
which in turn might lead to ubiquitination of TAB3, as outlined by Ruland et al.34, and ultimately to the release of 
NF-κB. NF-κB has been linked to various autoimmune diseases in humans (reviewed by Barnabei et al.35). Among 
those is a condition termed RELA Haploinsufficiency, which is an autoimmune lymphoproliferative  syndrome36. 
Cause of the disease is a de-novo heterozygous nonsense mutation in the RELA gene, which encodes the tran-
scription factor p65. It is possible that genomic rearrangements in the buck-ewe hybrid due to chromosomal 
incompatibility of the parent genomes during  meiosis6 led to a heterozygous deleterious mutation in RELA or 
one parental copy has been silenced. However, since the geep was evidently healthy (it was not closely medi-
cally monitored), our findings provide rationale for the development of polyhydramnios during pregnancy: an 
autoimmune phenotype of the hybrid might have been sufficient to lead to an immune reaction against fetal red 
blood cells. Autoimmune diseases in humans increase miscarriage risks but also reduce female fertility (reviewed 
by Gleicher et al.37). We strongly suggest, that this mechanism should be considered in future research focusing 
on the reproductive barrier between related species. This line of evidence will be subject of future studies, which 
will focus on the genome assembly of the buck-ewe hybrid, its parents and the fetus.

Material and methods
Transcriptome analysis. Reads were aligned to the most recent O. aries and C. hircus genomes (O. aries: 
ARS-UI_Ramb_v2.0 GCF_016772045.1, C. hircus: ARS1.2 GCF_001704415.2) using HiSat2 version 2.1.0 with 
default  settings16. Splice sites were derived from the Gene transfer format (GTF) files. Mapped reads were fil-
tered by determining the best alignment result using  HyScore15. FPKM values were calculated with Cufflinks 
version 2.2.138. Genes with an FPKM value > 1 were considered expressed. The heatmap was constructed with 
the Enhanced Heat Map function from the R package gplots (version 3.1.3, https:// github. com/ talga lili/ gplots).

Functional analyses. Gene cluster comparison and visualization was performed with the R package clus-
terProfiler (version 4.2.2)39. Gene symbols were converted to ensemble IDs with the clusterProfiler Biological 
Id Translator (bitr) using the org.Hs.eg.db database. GO term analyses were performed with enrichGO (set-
tings: pAdjustMethod = "fdr", pvalueCutoff = 1, qvalueCutoff = 0.25, readable = TRUE, minGSSize = 10). KEGG 
 pathway40 analysis was done with enrichKEGG (settings: pvalueCutoff = 1, pAdjustMethod = "BH", minGS-
Size = 10, maxGSSize = 500, qvalueCutoff = 0.25, use_internal_data = FALSE). Plots were created with the dotplot 
function. Genes with an enrichment P value < 0.001 for immune system related GO biological processes terms 
were used for downstream analyses. PPI analysis and NCBI PubMed text mining were performed with STRING 
(version 11.0)17 using default settings.

Data availability
The raw sequencing data is accessible via BioProject ID PRJNA588993 (https:// www. ebi. ac. uk/ ena/ brows er/ 
view/ PRJNA 588993).
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