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UAV Flight Height Impacts on Wheat Biomass
Estimation via Machine and Deep Learning

Wanxue Zhu , Ehsan Eyshi Rezaei , Hamideh Nouri , Zhigang Sun , Jing Li, Danyang Yu ,
and Stefan Siebert

Abstract—Optical unmanned aerial vehicle (UAV) remote sens-
ing is widely prevalent to estimate crop aboveground biomass
(AGB). Nevertheless, limited knowledge of the UAV flight height
(mainly characterized by different image numbers and spatial
resolutions) influences the crop AGB estimation accuracy across
diverse sensing datasets and machine-/deep-learning models. This
article assessed the impacts of flight height and integration of
multiscale sensing information on wheat AGB estimation. The
multispectral UAV flight missions with 30, 60, 90, and 120 m heights
were conducted at the wheat grain filling phase in 2018 and 2019. To
estimate AGB, we used the UAV-based crop surface model (CSM),
spectral, texture indices, and their combinations along with a deep
convolutional neural network (DCNN with AlexNet architecture),
random forest, and support vector machine models. Results showed
the CSM and textures exhibit sensitivity to flight height, with
estimation accuracy declining by 48% and 41%, respectively, as the
flight height increased from 30 to 120 m. Spectral indices displayed
lesser sensitivity with accuracy decrease of 25%. Integrating data
from different heights exhibited better performances in texture and
spectral indices while reducing performance when CSM was input.
The DCNN performed best particularly at high spatial image scales,
whereas more sensitive to flight height, as the AGB estimation
accuracy decreased by 30% and 47% from 30 to 120 m for machine
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learning and DCNN, respectively. Integrating texture and spectral
information derived from images with moderate spatial resolutions
(4–6 cm), and the integration of multiscale textures, are optimal for
grain-filling wheat AGB estimation.

Index Terms—Agriculture, image resolution, image texture
analysis, remote sensing, spectral analysis.

I. INTRODUCTION

IN TEMPERATE zones, wheat (Triticum aestivum L.) is the
most important staple crop among cereals. Accurately map-

ping the spatial pattern of wheat aboveground biomass (AGB)
is attractive for agronomists who concerns with optimizing crop
management for improving grain yield [1]. AGB is defined as the
total dry weight of the organic matter aboveground, including
leaves, grains, and stems. Destructive sampling is the standard
and direct method for AGB measurement. Still, it requires con-
siderable effort and fails to reproduce within-field variability
in the biomass caused by soil heterogeneity, topography, and
different management or plant diseases [2]. In such a situa-
tion, remote sensing, a nondestructive, real-time, and prompt
approach, is recognized as a promising alternative for destructive
AGB measurement [3], [4]. The classic satellite remote sensing
method is mainly devoted to global or regional observations (>1
m resolution), whereas ground-based remote sensing focuses
on the individual plant level (<0.01 m resolution) [5], [6]. In
terms of precision agriculture, the emergence of unmanned aerial
vehicle (UAV) remote sensing provides an opportunity to fill this
spatial scale gap, as UAVs can obtain centimeter-level imageries
at the field scale via their flexible flight missions [7], [8].

UAV-mounted sensors can capture a wide range of spectral
and spatial information about crop canopies [9], [10]. The spec-
tral reflectance of vegetation to specific wavelengths is captured
from a broad range of optical cameras. This spectral information
which feeds into the machine- and deep-learning algorithms,
is the most broadly used data input into the AGB estimation
across the environments [11]. However, spectral indices derived
from optical images might lose the capability to detect changes
in crop growth after canopy closure [3]. Complementary re-
motely sensed indices have been developed to overcome this
challenge and to improve the accuracy of biomass estimations.
Optical-based grey level co-occurrence matrix (GLCM) texture
is an effective method to characterize the spatial information of
canopies, representing the distance and angular spatial relation-
ship over an image subregion of a specific window [12]. The
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GLCM texture has been widely integrated with spectral infor-
mation for feature classification [13], estimating crop biomass
and yield of rice [14], oilseed rape [4], wheat [3], and maize [15].

Recently, the use of the Structure-from-Motion (SfM) ap-
proach via the multiangular imaging of UAV systems has been
promoted as another complementary source of information
for biomass estimation [16]. The SfM uses highly redundant
bundling adjustments based on matching features in multiple
overlapping and offsets images solving camera pose and scene
geometry [17]. In crop monitoring, SfM develops a crop surface
model (CSM)—a raster layer used to extract spatial features
of canopy height, which correlates positively with biomass.
Several studies have applied CSM and spectral integration data
to biomass estimation in maize [2], barley [16], sugarcane [18],
and wheat [8]. Precision agriculture experts prefer robust and
straightforward approaches for biomass estimation, so it is
fundamental to compare the potential of UAV-based CSM and
texture datasets in AGB estimation accuracy.

In addition to the fusion of data sources, such as the combina-
tion of CSM or textures with spectral data [14], [16], the integra-
tion of multiscale data (the “scale” in this article mainly refers
to the image spatial resolutions caused by different UAV flight
heights) is a potential approach for enhancing the accuracy of
crop monitoring, as objects may reflect different features across
varying spatial scales [19]. Previous articles have investigated
multiscale remote sensing data for wheat monitoring by spatial
resampling of images [15]. However, while spatial resampling of
images can capture multiscale spectral and texture information,
it may not be effective for generating multiscale CSM. This
is because CSM is determined not only by spatial resolutions
but also by other factors, such as the number of images or
image overlap. Spatial resampling cannot add details that were
not captured in the original image, which may be critical for
accurate biomass estimation. Additionally, due to the spatial
heterogeneity of ground features, the scale transformation of
remote sensing images might not be appropriate to represent the
spatial variability of the field [20]. On the other hand, texture
generated by different moving window sizes constitutes another
form of multiscale information [3] and has demonstrated its
efficacy in enhancing object classification and crop phenotyping
accuracy [15], [19].

Despite the extensive use of machine-learning regression for
AGB estimation, previous articles have primarily relied on cal-
culating crop canopy features using fixed indices and employed
plot average values of each index to represent crop growing con-
ditions [8]. The implementation of a machine-learning model for
crop monitoring requires meticulous feature selection that con-
siders specific attributes, such as crop types, growth phases, and
ambient conditions. It is imperative to acknowledge that the uti-
lization of feature selection may result in some information loss
compared to the raw imagery obtained from UAVs [10], [21].
In comparison, the utilization of deep convolutional neural net-
works (DCNNs) has demonstrated superior performance in crop
phenotyping compared to traditional machine-learning tech-
niques. This is due to the capability of DCNNs to effectively
extract abundant features from raw images of crop canopies [7],
[22]. However, the impact of image spatial scale on the accuracy
of deep learning in AGB estimation is yet to be determined.

On the other side, a low UAV flight height resulted in more
imageries and higher ground spatial resolutions, contributing to
more feature points and accurately detailed information about
observed objects. Therefore, the flight height determines the
generation and accuracy of CSM and texture images, thereby
affecting the UAV-based remotely sensed canopy features [23].
The high ground spatial resolution of images with dense SfM
point clouds leads to higher biomass estimation accuracy [24],
[25]. However, a high percentage of across-track overlap and
ground spatial resolution of images will increase the flight
duration, which has significant implications for data capture
and processing costs. Therefore, it is critical to balance the
reasonable accuracy of UAV-based monitoring and required
costs incorporated with computing/data processing power and
time. Liu et al. [23] conducted a series of UAV flight missions
with five spatial resolutions (0.4–2.0 cm) to estimate potato
biomass. They concluded that the high spatial resolution of
images contributed to the better performance of GLCM textures
for biomass estimation. It is worth noting that the effects of
distinct image resolutions on UAV data performance differed
among crops, as crops have different canopy characteristics
and cultivation conditions (e.g., ridge and plant density) [26].
Furthermore, most studies combined the remote sensing data to
improve machine- and deep-learning models’ accuracy in esti-
mating biomass targeting the satellite–UAV combinations [27].
However, whether the integration of multiscale UAV images
could improve AGB estimation remains to be elucidated.

This article aims to answer the following research questions:
1) How much does flight height (different ground spatial res-
olutions of images) affect the wheat AGB estimation accuracy
across various UAV datasets (i.e., CSM, texture, spectral, and
their combinations)? 2) What is the impact of image spatial scale
on the performance of deep learning and machine learning for
AGB estimation? 3) Can integration of multiscale UAV data
improve the AGB estimation accuracy?

II. MATERIALS AND METHODS

A. Study Area and Experimental Plots

This article was conducted over three experimental sites at
the Yucheng Comprehensive Experiment Station of the Chinese
Academy of Sciences (36.83° N, 116.57 ° E), northwestern
Shandong Province in the North China Plain (Fig. 1). The
Yucheng station is located in a temperate monsoon climate,
with average precipitation and air temperature of 582.0 mm and
13.10 °C per year, respectively. The rainy season is between July
and September. The cropping pattern is characterized by the
double cropping of winter wheat and summer maize. Wheat is
sown in early October and harvested in July of the following year.

Three experimental fields were selected for this article. At
the nutrient balance experimental site (NBES, Fig. 1), wheat
was grown under different nitrogen (N), potash, and phosphate
fertilizer supplies and distinct residue management. NBES plots
were irrigated at the same level (150–200 mm, adjusted accord-
ing to the actual rainfall) for each crop season. NBES has 25
plots, each with a size of 5 × 6 m. The experimental site for
water–nitrogen–crop relation (WNCR) consists of N-supply and
irrigation treatments, including five N levels (N0, N70, N140,
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Fig. 1. Location of the Yucheng Comprehensive Experiment Station (YCES) in China (a); overview of the three experimental sites and the sampling points of CT
site (b); and specific treatments of experimental sites (c): the nutrient balance experimental site—NBES (CK is no fertilizer; N, P, and K are nitrogen, phosphate,
and potash fertilizer supply, respectively; S is returning all residual to the plot) and the water nitrogen crop relation site—WNCR (N0, N70, N140, N210, and N280
are 0, 70, 140, 210, and 280 kg N ha–1 for each crop season, respectively; L and H are low—100 mm and high—140 mm irrigation treatments, respectively); the
tillage treatment of CT site is the same as that of NBES NPKS plot.

N210, and N280; N70 denotes 70 kg N ha–1 for each crop
season) and two irrigation levels (140 and 100 mm for high and
low irrigation levels, respectively). WNCR has 32 plots, each
with a size of 5 × 10 m. Another experimental site conducted
conventional tillage without nutrient or irrigation treatments
(denoted as CT site), which is about 60 m × 200 m; we set
the size of CT plots as 10 × 10 m. The row spacing of wheat
planting for all experimental plots was 20 cm.

B. Data Acquisition

The workflow of this article consisted of four major sections
(Fig. 2). The data acquisition and preprocessing section include
the ground measurement of AGB (Section II-C), acquisition
of UAV multispectral images, generation of spectral orthoim-
ages, and digital surface model (DSM) images (Section II-D).
Then, generating three UAV datasets, including the spectral,
texture, and CSM (derived from DSM) datasets. Extracting
spectral, texture, and CSM images of each plot from orthoimages
(Section III-A). Next, preparing input data for different algo-
rithms. The clipped images of each plot were used as inputs

of the DCNN model with AlexNet architecture (Section III-B).
As for machine learning, the average values of each clipped
image were calculated, then the Pearson correlation analysis
was conducted to filter highly correlated UAV indicators to avoid
multicollinearity (Section II-D). The remaining UAV indicators
of each plot were used as inputs of machine-learning models
(Section III-B). In this article, random forest (RF) and support
vector regression (SVR) were utilized, as these two methods
are commonly used and have demonstrated robust performance
in previous articles [22], [24]. Running the DCNN, RF, and
SVR models to estimate AGB using single-scale (images cap-
tured at 30, 60, 90, and 120 m, separately; research question
1) and multiscale (integration of images captured at four heights;
research question 3) UAV data, then assessing and analyzing the
AGB estimation performance across UAV datasets and models
(research question 2, Section III-C).

C. Field Measurements of Wheat

Ground sampling was carried out on the same day after the
UAV flight missions. Optimal agronomic management (e.g.,
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Fig. 2. Flowchart of this article [UAV = unmanned aerial vehicle; MS = multispectral; AGB = aboveground biomass of wheat; CSM = crop surface model
(raster data); DSM = digital surface model (raster data); DEM = digital elevation model (raster data); GLCM = grey level co-occurrence matrix; RF = random
forest; SVR = support vector regression; DCNN = deep convolutional neural networks; Q = quantile; and RQ = research question].

weed control) was implemented, focusing on study treatments.
Sowing dates for NBES wheat were 15 Oct. 2017 and 7 Oct.
2018, and for WNCR wheat were 9 Oct. 2017 and 12 Oct.
2018. CT wheat sowing was 3 days earlier than NBES. Ground
measurements were performed on all WNCR and NBES plots.
For CT, 40 and 60 plots were selected for AGB measurement
in 2018 and 2019, respectively, with central locations recorded
using GPS. Wheat plants in a row of 0.5 m were destructively
harvested for lab-based measurement of AGB. These samples
were taken at a minimum distance of 50 cm from the plot border
to minimize border effects. All the harvested wheat plants were
put into envelopes and sent to the laboratory immediately. These
samples were dried in an oven at a temperature of 105 °C for 2 h
to inactivate enzymes and then at 75 °C to remove the plant
moisture until the weight remained constant. For each growing
season, 97 and 117 samples of AGB (t·ha–1) were obtained in
2018 and 2019, respectively (Fig. 3).

D. UAV Flight Missions and Data Preprocessing

A MicaSense RedEdge-M multispectral camera (MicaSense,
Seattle, WA, USA) onboard a DJI M100 four-rotator UAV (SZ
DJI Technology Company, Shenzhen, China) system was used
to collect multispectral images. MicaSense has five spectral

channels centered at 465–485 nm (blue), 550–570 nm (green),
663–673 nm (red), 712–722 nm (red edge, RE), and 820–860
nm (near-infrared, NIR). The front and side overlaps of the
data were 85% and 75%, respectively. Before each flight, the
reflectance of spectral panels (with known reflectance) was
collected for the subsequent radiation calibration. Two UAV
flight missions were executed during the grain filling stage of
winter wheat, i.e., 15 May in 2018 and 16 May in 2019. All
flight missions were carried out between 11:00 and 13:00 under
a clear sky with low wind speed (<5 m·s–1). For each exper-
iment, flight missions with different heights were conducted,
including 30, 60, 90, and 120 m, with corresponding spatial
resolutions of 2, 4, 6, and 8 cm (1280× 960 pixels), respectively;
hereafter, these datasets were denoted as H30, H60, H90, and
H120, respectively.

UAV flight was controlled by the Pix4D Capture (Pix4D,
S.A., Lausanne, Switzerland). The preprocessing of MicaS-
ense images was performed using Pix4D Mapper (Pix4D S.A.,
Lausanne, Switzerland). The initial step involved the evalua-
tion of image quality to ensure adherence to standards. Sub-
sequently, point clouds and mesh were generated to produce
three-dimensional SfM point clouds. The final stages included
the creation of a DSM in raster format, orthoimages, and spectral
indices. A filtering approach was applied to minimize noise and
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Fig. 3. Box plots of ground measured aboveground biomass (AGB) of wheat
in different experimental sites: WNCR with different nitrogen (a) and irrigation
(b) levels; NBES (c); CT (d) (the line in each box is the median values of AGB).

improve the smoothness of the DSM. Spectral panel images
were integrated into the initial processing step to calibrate the
radiometric values of the generated orthoimages.

III. MODELING FRAMEWORK

A. UAV Dataset Generation and Indicator Screening

Spectral and texture datasets were derived from spectral ortho-
mosaics. The CSM dataset was derived from the DSM images,
and calculated as follows:

CSM = DSM − DEM (1)

where DEM is the digital elevation model (raster), representing
the altitude of the soil surface at the experimental site. Based
on the supervisory classification, around 100 ground points
were selected to extract the values of pixels in the DSM. These
selected ground points in DSM were used to generate the DEM
using the Kriging interpolation in the QGIS 3.16 (QGIS.org,
2022). Kriging is a regression algorithm for spatial interpolation
of stochastic processes based on covariance functions [28].
Then, the CSM [raster, Figs. 2 and 4(a)] could be obtained by
subtracting DEM from DSM. The negative values of CSM pixels
were set to Null to remove the impact of errors. The use of a
consistent UAV image processing chain in this article ensured
that the spatial resolution of the CSM remained constant at 20
cm for all four UAV flight heights.

Texture variables [Figs. 2 and 4(b)] were calculated using the
GLCM [29] via the r.texture tool in the QGIS. Thirteen texture
variables were calculated for each band: the first-order statistics
in the spatial domain calculated seven texture variables, includ-
ing the sum average, entropy, difference entropy, sum entropy,

Fig. 4. Examples of the CSM map for the NBES site (a) and the blue band-
based variance textures in a fertilized plot of NBES (b) captured at UAV flight
heights of 30, 60, 90, and 120 m in the year 2019.

variance, difference variance, and sum variance; the second-
order statistics calculated six texture variables, including the
angular second moment, inverse difference moment, contrast,
correlation, information measures of correlation, and maximal
correlation coefficient. The moving window for texture calcula-
tion was set to 3 × 3 (default). The spectral dataset includes the
reflectance values of the five bands and their vegetation indices
calculated from the reflectance (Table I). Considering the spec-
tral channels of the MicaSense camera, 12 commonly used veg-
etation indices of each pixel were calculated using Python 3.9.

Since UAV flights at four heights were conducted, each dataset
has four subdatasets generated from images captured at each
height. Considering plot sizes and border areas, squares of 4.48
m × 4.48 m were selected for the extraction of UAV indicators
(e.g., 224 × 224 pixels for UAV data with 2 cm as spatial resolu-
tion) using the ROI tool of ENVI 5.5 (Exelis Visual Information
Solutions, Boulder, CO, USA).

In total, 1, 65, and 17 types of CSM, texture, and spectral
images were generated in this article for deep-learning inputs,
respectively. As for the machine-learning approach, the mean
values of each selected region were calculated to represent the
plot-level indicators. The statistical variables of CSM pixels
within a plot were calculated using Python 3.9, including the
minimum, mean, maximum, standard deviation, coefficient of
variation, and quantile values (mean values of the top 95%,
90%, …, 5%, denoted as Q95, Q90, … Q5). Then, the Pearson
correlation analysis was carried out to filter highly correlated
UAV variables (|r| > 0.95, p < 0.01) of each dataset using the
findCorrelation functions of the R language [11]. The number
of variables retained from the UAV dataset after filtering at
various flight heights was 10, 31, and 8 for spectral, texture,
and CSM datasets, respectively. The machine-learning approach
utilized these retained variables as inputs to ensure consistency
in estimation across various flight heights.

B. Models for Aboveground Biomass Estimation

Deep learning: A DCNN using AlexNet architecture was
employed in this article [32], and DCNN has been proven
effective in estimating crop AGB in our previous articles [22].
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TABLE I
VEGETATION INDICES USED IN THIS ARTICLE

Fig. 5. Architecture of the AlexNet DCNN (FC is the fully connected layer;
Conv is the convolutional layer; taking the input size of 224 × 224 pixels as an
example).

The AlexNet has five convolutional, three maxpool, and three
fully connected layers (Fig. 5). AlexNet uses the nonsaturating
ReLU activation function, overperforming the Tanh and Sigmoid
approaches regarding model training. The dimension of input
images is affected by spatial resolution and dataset channels.
As deep learning needs no feature filtering, the channels equal
1, 17, and 65 for CSM, spectral, and texture datasets, respec-
tively. Here, although more CSM variables were calculated in
Section III-A, these CSM variables are not raster images but
the average values of each plot, which cannot be the DCNN
inputs. Therefore, the channel of the CSM dataset was set to
one. As for the spectral + CSM dataset, the channel should be
the sum of 17 and 1, and other integration datasets follow this
rule (Fig. 5). The DCNN was implemented using the PyTorch
deep-learning framework.

Machine learning: Before modeling, all UAV indicators were
normalized to mean and standard deviation values of 0 and 1,
respectively, using the scale function in R. The RF is a classifier
consisting of a collection of tree-structured classifiers where the
values of a random vector are sampled independently, and all
the trees have the same distribution. The tree predictor takes on
numerical values to achieve the regression, and the correct type
of randomness injection makes RF an accurate regressor [33].

This article carried out the RF model using the randomForest
R package, including two critical parameters, i.e., mtry and
ntree. The mtry is the number of variables randomly sampled
as candidates at each split, set to 3 (default). The ntree is the
number of trees to grow, and the minimum error determines its
optimal values [34].

Support vector machine solves binary classification problems
by formulating them as convex optimization problems, which
entails finding the maximum margin separating the hyperplane
(support vectors) while correctly classifying as many training
points as possible. The generation of support vector machine
to SVR is accomplished by introducing an ε-tube which is an
intensive region around the function. SVR is characterized by
kernels, sparse solution, and Vapnik–Chervonenkis control of
the margin and the number of support vectors [35]. This article
carried out the SVR modeling via the e1071 R package.

C. Modeling and Accuracy Assessment

The AGB estimation of this article includes three sections us-
ing: 1) spectral, texture, and CSM datasets captured at different
heights; 2) the data integrated datasets: spectral + CSM and
spectral + texture captured at different flight heights; and 3) the
scale-integrated datasets, i.e., the integration of H30, H60, H90,
and H120 datasets. To investigate the transferability of models
across years for better serving generalization of results across
various environments, as well as considering sampling size, the
data from 2019 and 2018 were utilized for model training and
validation, respectively. The validation was quantified by three
statistical indicators, including the coefficient of determination
(R2), root mean square error (RMSE, t·ha–1), and mean absolute
percentage error (MAPE, %) using the following equations:

R2 =

{[
n∑

i=1

(
Yi − Ȳ

) (
Ei − Ē

)]/
[√∑n

i=1

(
Yi − Ȳ

)2√∑n

i=1

(
Ei − Ē

)2]}2

(2)
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TABLE II
ACCURACY ASSESSMENT OF WHEAT AGB ESTIMATION (VALIDATION, N = 97) USING UAV SENSING SPECTRAL, TEXTURE, AND CSM DATASETS CAPTURED AT

FOUR FLIGHT HEIGHTS

RMSE =

√∑n

i=1
(Yi − Ei)

2/n (3)

MAPE = 100%×
(

n∑
i=1

|Yi − Ei| /Yi

)
/n (4)

where i is the sequence number of the array, Yi is the AGB value
(t·ha–1) of the measured AGB array, Ei is the AGB value of
the estimated AGB array, Ȳ represents the average value of the
measured AGB array, and Ē is the average value of the estimated
AGB array.

The changes in AGB estimation accuracy comparison are
calculated as follows:

CEA = 100%× (X/X0 − 1) (5)

where CEA is the changes in AGB estimation accuracy (%); X
and X0 are the target and reference AGB estimation accuracy
indicators, respectively, i.e., R2, RMSE, and MAPE. To assess
the impact of image spatial scale on AGB estimation, X and X0

were used as accuracy indicators for the H120 and H30 datasets,
respectively. The integration of texture or CSM with spectral
datasets was analyzed by comparing the efficiency indicators X
and X0 for spectral + texture (or + CSM) and spectral datasets,
respectively. The contribution of image spatial scale integration
on AGB estimation was evaluated by comparing the accuracy
indicators X and X0 for the scale-integrated and H30 datasets,
respectively.

IV. RESULTS

A. Aboveground Biomass Estimation Using UAV Single
Datasets at Different Scales

The accuracy of AGB estimation across different UAV
datasets showed that R2 were 0.61–0.78, 0.48–0.74, and 0.34–
0.75; RMSE were 1.85–2.66, 2.0–3.04, and 2.0–3.17 t·ha–1; and
MAPE were 22%–31%, 21%–33%, and 20%–58% for spectral,
texture, and CSM datasets, respectively (Table II). As exempli-
fied by the results from the DCNN, AGB was overestimated

in low values and underestimated in high values using CSM
datasets at H90 and H120, whereas the spectral and texture data
did not exhibit such tendencies (Fig. 6). From H30 to H120
datasets, the average R2 values of spectral, texture, and CSM-
based estimation decreased by 15%, 30%, and 50%; RMSE
increased by 25%, 41%, and 48%; and MAPE increased by
25%, 25%, and 162%, respectively (Table III). These findings
demonstrate that the performance of the spectral dataset was
less impacted by variations in image spatial scale, while the
performance of the CSM dataset was the most sensitive to
changes in image scale.

Comparing models, the RMSE values of RF, SVM, and
DCNN-based estimation were 2.08–3.17, 2.15–3.11, and 1.85–
3.04 t·ha–1, respectively, with corresponding R2 values of 0.34–
0.72, 0.38–0.73, and 0.39–0.78, respectively (Table II). The
results showed that the H30 scale was the most accurate when
comparing machine-learning and DCNN methods, and the out-
performance of DCNN over machine learning was obvious
at the H30 scale. However, the three models showed similar
performance at H120. The superiority of DCNN at high image
spatial resolution could not overcome the limitations of coarse
spatial resolution images, and DCNN was more sensitive to
image scales than RF and SVM methods. The RMSE changes
between H30 and H120 were 49%, 32%, and 33% for DCNN,
SVM, and RF methods, respectively (Table III).

B. Aboveground Biomass Estimation Using UAV Combined
Datasets at Different Scales

As shown in Table IV and Fig. 7, the integration of spectral
data with textures was superior to that with CSM. The integration
of spectral data with textures showed a decrease of 16.6% in R2,
an increase of 24.1% in RMSE, and an increase of 29.1% in
MAPE from H30 to H120 datasets (Table V). Conversely, the
integration of spectral data with CSM showed a decrease of
36.6% in R2, an increase of 48.1% in RMSE, and an increase of
78.0% in MAPE from H30 to H120 datasets (Table V). These
results demonstrated that the high spatial resolution of UAV
images contributed to AGB estimation, and the image scales



7478 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 6. Ground measured versus estimated wheat AGB (t·ha–1) using UAV spectral datasets at H30 (a), H60 (b), H90 (c), and H120 (d); using texture datasets at
H30 (e), H60 (f), H90 (g), and H120 (h); and using CSM datasets at H30 (i), H60 (j), H90 (k), and H120 (l) [train and test are the accuracy assessment of training
(data in 2019) and testing (data in 2018) models, respectively].

TABLE III
CHANGES OF AGB ESTIMATION ACCURACY USING UAV SENSING SPECTRAL, TEXTURE, AND CSM DATA FROM H30 TO H1201

had more influence on the performance of spectral + CSM than
spectral + texture datasets in AGB estimation, which can also
be observed from Fig. 7.

Comparing dataset integration performance, the RMSE of
spectral+ texture-based estimation decreased by 3.13%–15.4%,
and MAPE decreased by 0.31%–27.2%, suggesting the inte-
gration of texture into spectral datasets could improve AGB
estimation accuracy at four flight heights (Table VI). As for

the integration of CSM and spectral, the AGB estimation ac-
curacy increased at H30 with higher R2, lower RMSE and
MAPE values; while in H60, H90, and H120 datasets, the R2

decreased by 3.12%–26.0% and MAPE increased by 1.6%–
47.3% (except for DCNN at H60, Table VI). These results
indicated that integrating CSM derived from images with high
(2 cm in this article) resolution into spectral could improve
AGB estimation accuracy, while integrating CSM from medium
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Fig. 7. Ground measured versus estimated wheat AGB (t·ha–1) using UAV spectral + CSM datasets at H30 (a), H60 (b), H90 (c), and H120 (d); using spectral
+ texture datasets at H30 (e), H60 (f), H90 (g), and H120 (h).

TABLE IV
ACCURACY ASSESSMENT OF WHEAT AGB ESTIMATION (VALIDATION, N = 97)

USING UAV SENSING SPECTRAL + TEXTURE DATASET CAPTURED AT FOUR

FLIGHT HEIGHTS

to coarse images (4–8 cm in this article) would decrease
model accuracy.

The R2 values were 0.48–0.76, 0.47–0.74, and 0.49–0.80
and corresponding RMSE were 1.96–2.82, 2.0–2.95, and 1.78–
2.79 t·ha–1 for RF, SVR, and DCNN, respectively (Table IV).
DCNN was superior to machine-learning methods at high spatial
resolution (H30), with R2, RMSE, and MAPE of 0.80, 1.79
t·ha–1, and 19% compared to 0.75, 2.0 t·ha–1, and 23% for
machine-learning methods. However, at H90 and H120 scales,

TABLE V
CHANGES OF AGB ESTIMATION ACCURACY USING UAV SENSING SPECTRAL

+ TEXTURE AND SPECTRAL + CSM DATASETS FROM 30 TO 120 M

the performance of the three models was comparable. The results
suggest that DCNN is more sensitive to image spatial scales than
RF and SVM, and algorithm superiority cannot compensate for
shortcomings in image spatial scales.

C. Aboveground Biomass Estimation Using Scale-Integrated
UAV Datasets

The results of the scale-integrated spectral, texture, and spec-
tral + texture datasets showed a high level of accuracy in esti-
mating AGB, as evidenced by the R2 values ranging from 76% to
80%, 71% to 80%, and 77% to 84%, respectively (Table VII). On
the other hand, the performance of the scale-integrated CSM and
spectral + CSM datasets was moderate, with R2 values ranging
around 0.60. Among all the datasets, the spectral + texture
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TABLE VI
CHANGES OF AVERAGE AGB ESTIMATION ACCURACY AFTER INTEGRATING

CSM OR TEXTURE INTO THE SPECTRAL DATASET

TABLE VII
ACCURACY ASSESSMENT OF WHEAT AGB ESTIMATION (VALIDATION, N = 97)

USING SCALE-INTEGRATED UAV SENSING DATASETS

TABLE VIII
CHANGES OF AGB ESTIMATION ACCURACY (%) AFTER INTEGRATING

MULTISCALE UAV DATA

datasets showed the best performance in AGB estimation, with a
DCNN-based R2 value of 0.84, RMSE of 1.68 t·ha–1, and MAPE
of 16.6% (Table VII).

Comparing the scale-integrated and H30 datasets, the inte-
gration of multiscale images improved the estimation accuracy
of the spectral, texture, and spectral + texture datasets, as
their R2 increased by 2.5%–7.9%, 3.2%–8.3%, and 4.6%–8.0%,
respectively, and MAPE decreased by around 7%, 20%, and

15%, respectively (Table VIII). However, scale integration de-
creased the estimation accuracy of CSM and spectral + CSM
datasets, as their RMSE values increased by around 30% and
25%, respectively. Additionally, the DCNN model showed a
slightly improved performance in comparison to the RF and SVR
algorithms when utilizing the scale-integrated UAV datasets.
However, there were no substantial variations observed in the
accuracy of AGB estimation among the models.

V. DISCUSSION

A. Factors Affecting the Performance of UAV Datasets

CSM performance—The accuracy of SfM point clouds de-
termines the performance of CSM in AGB estimation. The SfM
is mainly affected by UAV flight design (e.g., image overlap,
flight height, and route), sensor quality and calibration, algo-
rithms of SfM generation, georeferencing strategy, and illumi-
nation changes [36], [37]. In flight design, the front/forward
overlap of images plays a vital role in SfM point cloud pen-
etration and accuracy. The 90% stereo overlaps could detect
forest ground in the canopy gaps, while the 60% overlap could
roughly detect half the depth into canopy gaps [17], [38]. Al-
though high image overlap ensures a stable image connection
for the subsequent aerial triangulation, which contributes to
accurate vegetation height and biomass detection [17], [25], the
excessive overlap of images decreases the monitoring coverage
and increases the computation burden. This tradeoff should be
carefully evaluated to fit the purpose of agroapplications.

This article focused more on the flight height that the users
usually set according to specific purposes. As elevated objects
observed under distinct view angles have different radiometric
features [36], low flight height captures more images with vary-
ing view angles within the region of interest, providing accurate
information in feature matching. On the other hand, high spatial
resolution with low flight height provides pure pixels vital for
detecting objects’ features, which is also recognized in previous
articles [39], [40]. Therefore, the number of involved images
captured from different angles and their spatial resolutions play
vital roles in SfM quality, leading to the high sensitivity of CSM
performance to UAV flight height in AGB estimation.

The performance of CSM is influenced by several factors,
including the relationship between AGB and the information
derived from CSM. CSM can capture the vertical structure of the
canopy, making it widely used for estimating vegetation height
and crown diameter. Crop height has been found to have a strong
correlation with AGB, which allows for accurate estimation
using SfM point clouds-generated CSM [24]. Although the
biomass of wheat plants is proportional to the intercepted pho-
tosynthetically active radiation, which is influenced by multiple
factors, primarily canopy architecture, and vegetation greenness
[41], [42], [43]. Consequently, it is challenging to estimate
crop biomass using the single aspect of crop height conveyed
in CSM, especially under environmental stress conditions. As
demonstrated in Table IX, the correlations (|r| values) between
CSM variables and AGB declined by approximately 50% when
comparing the distances of 30 and 120 m. This observation helps
to explain the aforementioned issue.
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TABLE IX
RELATIONSHIPS (|R| VALUES, N = 214) BETWEEN AGB AND UAV VARIABLES1

ACROSS SPATIAL SCALES

Texture performance—The texture is produced from a lo-
cal neighborhood of pixels in the spectral orthoimages, and is
related to the spatial distribution of vegetation, shadow, and soil
pixels [6]. Textural information can enhance the detection of
spatial information independently of tone, thereby facilitating
the identification of canopy structures, such as plant density and
leaf area index [44], [45]. This has the potential to increase the
detection of AGB [46]. While previous article on image textures
has largely focused on forest biomass estimation using satellite
images, the properties of textures make them highly appropriate
for agricultural applications. The UAV-derived images provide
remarkable information on the number and distribution of dark
(vegetation and shadow pixels) and bright areas (soil pixels)
with high spatial resolutions [47], and the high spatial resolution
enables finer structural details can be detected [48]. Hence, the
UAV-based textures with centimeter-level spatial resolution have
the potential to accurately estimate crop biomass [10], [15].

It remains uncertain which textures and their combinations of-
fer the greatest potential, due to the complexity and variability of
textures across objects of interest, physiographic conditions, and
the choice of window size [46]. The geometric characteristics of
the remote sensing images taken from UAV cameras have geo-
metric distortions, such as scale variation and displacement of
terrain features [49], so the image overlap and spatial resolution
affect the quality of orthoimages and thereby the texture features.
The size of the moving window and the spatial resolution of UAV
images are two factors that might affect the GLCM calculation.
As the textures performed well in this article, spatial resolution
might be the primary factor [15]. We suggest that texture shows
higher resilience to variations in image quantity and spatial
scales present in the UAV flight height compared to the CSM.
As a result, the texture was found to provide more accurate AGB
estimates at flight heights ranging from 4–8 cm in this article,
compared to CSM. The relationships between texture variables
and AGB across spatial scales also proved textures were lower
sensitive to UAV flight height than CSM (Table IX).

Spectral performance—Spectral indices are built based on
the understanding of complicated radiation and vegetation inter-
actions. Leaf reflectance is relatively low in the visible ranges
(400–700 nm) owing to the strong absorption by the photo-
synthetic pigments particularly the chlorophylls, whereas high
reflectance exists in the NIR ranges because of internal leaf scat-
tering and no absorption [50], [51]. The reflection of radiation
from the surfaces of leaves does not provide any information
about the interior of the leaves but may vary based on the species
of vegetation and growing conditions [52]. The properties of
leaves play a significant role in shaping important ecological
processes related to the exchange of energy and matter, such
as evapotranspiration, respiration, and photosynthesis activities
[53], [54]. In addition to leaf properties, spectral indices are
also impacted by canopy features, as the structure of the canopy
affects the amount of incoming radiation through multiple scat-
tering, absorption, and escape [55]. In comparison to textures
and CSM, spectral indices possess a more comprehensive rep-
resentation of vegetation properties at both the leaf and canopy
levels, leading to more stable and accurate estimates of AGB,
which can be also demonstrated in Table IX.

B. Design of Optimal UAV Observation Schemes

This article demonstrated that texture + spectral outper-
formed CSM + spectral, which could be explained by the better
performance of textures than CSM in AGB estimation. However,
this article only considered the effects of flight height on CSM
generation, while other approaches could be alternatives to
improve the performance of the CSM dataset, such as the lower
flight height to obtain detailed information, increasing image
overlaps [56], optimizing SfM algorithms [57], and conducting
multidirection flight to mitigate the effects of shading problems
[36]. Nevertheless, it should be highlighted that the textures
exhibited a more robust performance than CSM in AGB esti-
mation, which is preferred in practical applications. We inferred
that the better performance of textures could be due to their
ability to provide more features and details of objects than CSM.
Generally, CSM is highly correlated with values and spatial
variations of canopy height [9], so the CSM indicators contain
rather monotonous crop information. However, textures have
more indicators to characterize object features. For example, the
entropy texture depicts the diversity of pixels within each plot
and is very sensitive to clumpiness [58]; the mean and correlation
textures are good at classification, and dissimilarly texture serves
well for edge detection [59], [60].

Several studies have successfully applied optical-based struc-
ture information on crop parameter estimation, concluding that
CSM/texture information boosted the estimation accuracy [4],
consistent with this article. This is because spectral indices and
textures or CSM information respond differently to the vege-
tation canopy structure characteristics, so their complementary
information can improve AGB estimation [15]. For instance,
Maimaitijiang et al. [9] used a Mapir Survey2 camera to generate
CSMs for estimating soybean yield; it showed that canopy
texture contributed to more accurate yield estimation. Yue et al.
[15] used an RGB camera with a ground spatial resolution of
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1 cm to generate various scale canopy textures via spatial resam-
pling. Their results demonstrated that textures were insensitive
to ground spatial resolution, and the integration of canopy tex-
ture and spectral information boosted estimation accuracy. The
studies of Han et al. [2] and Bending et al. [16] demonstrated that
integrating CSM into spectral data could also improve biomass
estimation. Due to our primary focus on the effects of UAV
flight height on AGB estimation and the observed decreased
performance of the CSM derived from higher flight missions, we
did not examine the impact of combining UAV spectral, texture,
and CSM variables at different scales on AGB estimation.

Our results showed that the integration of multiscale data
improved the performance of the spectral, texture, and their
integrated dataset in AGB estimation, and the texture + spectral
exhibited the best performance. UAV flight missions at multiple
heights can provide more features of objects because the spatial
pattern is scale-dependent, and the dominant factors might not
keep consistent at distinct scales [61]. Although high spatial
resolution can provide intricate details of objects, it also tends to
include more environmental noise originating from factors, such
as soil, weeds, and shadows. These additional elements have the
potential to impact the spatial patterns and spectral characteris-
tics of canopies as observed through UAV-based imaging. The
elimination of these noises through the combination of data from
different flight heights is likely the primary reason behind the
improved performance of the texture and spectral indices. Pixels
at coarse spatial resolutions might contain shadow and other
elements, thus decreasing the reflectivity of shadow [36]. On
the other side, observations at multiple flight heights are indirect
multiangular measurements, which offer an approach to charac-
terizing the anisotropy of reflectance [5]. Under such a context,
the performance of the texture dataset could be improved via
the integration of multiscale images. However, for CSM, errors
from too coarse spatial resolutions and limited images could not
be compensated by the data integration superiority.

As for practical conditions, overall, texture + spectral indices
with moderate ground resolution (4–6 cm) are recommended for
biomass estimation at the grain filling stage of wheat. However,
another light optical sensor—the commercial RGB camera is
often used in practice. It should be noted that RGB cameras have
an extra-high spatial resolution, but they lack the RE and NIR
bands which are vital spectral information for crop monitoring.
In such a context, it is of great significance to explore how to
compensate for this disadvantage of RGB cameras. Based on
the results of this article, an alternative might be the multiscale
textures, which exhibited satisfying AGB estimation accuracy.
On the other hand, the multiscale data can lead to an augmented
workload for image acquisition, especially for regions with a
large area. While it should be noted that the multiscale data are
not generally required under field conditions. Considering the
current state and technologies of UAV remote sensing systems,
multiscale textures might be more suited for monitoring vegeta-
tion on a smaller area or for crops with higher economic value.

In addition, both the data source and modeling algorithms
determined a reliable estimation; the data source was explained
by 69% of the observed variance for estimated variables and the
model type only 28% [62]. Although the variables utilized in

machine and deep learning may differ, both rely on the same
original data source, but albeit with distinct approaches to anal-
ysis and modeling. The inputs of RF and SVR are the average
values of all pixels within a selected region of each plot, which
may lead to distorting the properties of pure pixels whereas re-
ceiving the mixed signal of canopies, shadows, soil background,
and other components on the land surface [56]. Furthermore,
the machine-learning inputs should be initially filtered manually
[10]. Consequently, model robustness and generalization might
be reduced. In DCNN, the role of convolution and pooling
layers is to find patterns in the input source, and the dense
layers classify these features into appropriate categories [63]. No
precalculation of features is needed for DCNN models since the
convolutional layers of networks can automatically conduct the
feature extraction operation, and optimal features are obtained
in model training to alleviate biases in specific feature selection
[64]. In addition, the raw images used in DCNN convey more
information on crop growth status within pure pixels [7], [22].
Therefore, the DCNN model outperforms RF and SVR at high
spatial scales, and DCNN was more sensitive to image spatial
resolutions than RF and SVR. Nevertheless, it is challenging to
give a general conclusion about which algorithm outperforms
others, because complex factors should be considered together
in practical applications, such as computing costs and model
complexity.

C. Summary of Limitations

There were some limitations in the flight height and field scale
due to technical limits or legislative restrictions. In particular, the
restricted airspace range limited this article to four flight heights.
Future articles should aim to explore the findings of this article
at broader spatial scales by conducting investigations at higher
UAV flight heights. We selected small-scale farmland to conduct
the UAV experiment; this choice allowed us to have accurate
and detailed field data (e.g., irrigation and fertilizer treatments)
to represent the reality, which led to different crop biomass.
However, the destructive harvest was relatively small because of
the limited size of plots (0.5 m of a row). Thus, there are some
uncertainties concerning the ground measurement of AGB. To
facilitate sustainable agriculture and promote commercial uses
of optimal UAV monitoring, research on practical large-scale
farmland is needed to optimize flight height and monitoring
ranges. In contrast, working with small-scale farmland can help
alleviate uncertainties resulting from varying external environ-
mental conditions, such as variations in sunlight angles and
wind speeds, typically encountered during multiple UAV flight
missions. This is because the flight missions can be completed
within a relatively brief time frame. However, for larger farmland
areas, an alternative solution to this challenge could be the
implementation of simultaneous multi-UAV flight missions.

Additionally, it is worth noting that the UAV monitoring in
this article was specifically conducted during the grain filling
stage of wheat, a period when the crop height remains relatively
constant while the AGB continues to increase. Consequently,
UAV variables that primarily capture crop height-related fea-
tures, such as the CSM used in this article, may exhibit reduced
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sensitivity to AGB and consequently demonstrate relatively
poorer performance. It has been indicated in previous articles
that the applicability of UAV-based indicators varies depending
on the stage of crop development [10]. To further validate our
findings, it is recommended to encompass UAV monitoring
throughout different phenological stages of the crop, allowing
for a comprehensive assessment of our findings.

VI. CONCLUSION

This article assessed the impact of changes in flight height
and integration of multiscale sensing information on estimating
wheat AGB. According to our findings, the following conditions
hold:

1) The effects of UAV flight height on AGB estimation
performance were different across UAV datasets; the sen-
sitivity of dataset performance to UAV flight height was
CSM > textures > spectral indices, as the RMSE values
of spectral, texture, CSM, texture + spectral, and CSM +
spectral dataset-based estimation using datasets at 120 m
decreased by around 25%, 41%, 48%, 24%, and 48% of
those using datasets at 30 m, respectively.

2) DCNN performed better than two machine-learning ap-
proaches (RF and SVR) in AGB estimation, particularly at
the high spatial resolution of images. At the same time, the
DCNN was more sensitive to UAV flight height; from 30 to
120 m, the RMSE values increased by around 32%, 31%,
and 47% for RF, SVR, and DCNN models, respectively.

3) Integration of multiscale UAV data improved the AGB
estimation accuracy of the spectral, texture, and spectral
+ texture datasets while decreasing the performance of
CSM and CSM + spectral datasets.

4) Two UAV dataset strategies are recommended for wheat
AGB estimation at the grain filling stages in practical
applications, i.e., UAV texture + spectral derived from
images with moderate spatial resolutions (4–6 cm) and
the integrated multiscale textures. This straightforward
optical-based UAV agromonitoring scheme can help farm-
ers and farm managers reduce agronomic monitoring costs
and optimize practical management.
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