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Abstra
t

We present an elementary proof of Rokhlin's Lemma for measurable

endomorphisms of separable spa
es whi
h are aperiodi
 with respe
t to

an invariant Borel probability measure. As an appli
ation we expli
itely


ompute the Rokhlin sets for 
lasses of interval maps and Bernoulli shifts.

1 Introdu
tion

Rokhlin's Lemma whi
h was originally (
f. [Rok63℄) proved for bi-measurable

aperiodi
 automorphisms T of Polish spa
es X is an important tool in ergodi


theory. It states that for an automorphism of the above type whi
h is invariant

with respe
t to a Borel probability measure �, any n 2 N

�

and " > 0 one �nds a

measurable set F (a so-
alled (n; ")-Rokhlin set) su
h that, for j = 0; : : : ; n� 1,

the sets T

�j

(F ) are pairwise disjoint and exhaustX with ex
eption of a remainder

set whose mass is smaller then ". In parti
ular, Rokhlin's Lemma is indispensable

for the 
anoni
al 
onstru
tion of generators. Here the most natural setting is that

of a measurable endomorphism T whi
h is not ne
essarily forward measurable.

Sin
e the usual proof ([Hal56, ps 70-72℄) quoted in standard textbooks on ergodi


theory (e.g. [DGS76℄,[Fri70℄,[Pet89℄) uses a Kakutani tower type 
onstru
tion

and thus forward measurability

1

, we felt obliged to provide an elementary proof
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whi
h does not rely on this assumption. In fa
t, our most `sophisti
ated' tool is

Poin
ar�e's Re
urren
e Theorem. Moreover, the setting is generalised from Polish

spa
es (whi
h allow to 
onstru
t (lo
al) measurable inverses [Roy70, 
h. 15.4℄) to

separable metri
 spa
es, i.e. we 
onsider a surje
tive measurable endomorphisms

T : X ! X of separable metri
 spa
es su
h that the maps T are aperiodi
 with

respe
t to invariant Borel probability measures �.

In the se
ond part we expli
itely des
ribe how to 
onstru
t the Rokhlin sets

for dynami
al systems whi
h are semi-
onjugate to any full shift.

2 Rokhlin's Lemma

Throughout this paragraph we assume that X is a separable metri
 spa
e. More

pre
isely, we �nd a metri
 d : X � X ! R

+

on X whi
h de�nes the topology

and there exists a 
ountable sequen
e (x

i

)

i2N

of points of X whi
h are dense

in the spa
e. We denote with B the Borel �-algebra on X. Furthermore, let

T : X ! X be a surje
tive measurable, but not ne
essarily bi-measurable map

with respe
t to B and let � be a T -invariant Borel probability measure on (X;B),

i.e., for all A 2 B, we have that �(T

�1

(A)) = �(A). Finally, T is supposed to

be �-a.e. aperiodi
, that is, for all n 2 N

�

the set of points x 2 X su
h that

T

n

(x) = x has �-measure 0.

We derive two lemmata whi
h make use of the aperiodi
ity of T .

Lemma 2.1 (Disjoint Inverse Images)

Let X, B, T , � be as above. For any n 2 N

�

, we �nd a measurable set F of

positive measure su
h that

�(T

�n

(F ) \ F ) = 0: (1)

Proof: Assume that we 
annot determine a Borel set F of positive measure su
h

that (1) holds. This implies that, in parti
ular, for all "-balls B

"

(x

i

) 
entred at

the points x

i

, we have that

�(T

�n

(B

"

(x

i

)) nB

"

(x

i

)) = 0:

As an immediate 
onsequen
e we derive the following relation.

�(fx : T

n

(x) 2 B

"

(x

i

); d(x; T

n

(x)) � 3 � "g) = 0:

Note that, for any " > 0, the union of the B

"

(x

i

) 
overs X. Thus, we obtain that

�(fx : T

n

(x) 2 X; d(x; T

n

(x)) � 3 � "g)

= �

 

[

i2N

fx : T

n

(x) 2 B

"

(x

i

); d(x; T

n

(x)) � 3 � "g

!

�

X

i2N

�(fx : T

n

(x) 2 B

"

(x

i

); d(x; T

n

(x)) � 3 � "g)

= 0:

2



Letting " tend to 0 we dedu
e that

�(fx : T

n

(x) 2 X; d(x; T

n

(x)) > 0g) = 0;

hen
e

�(fx : T

n

(x) 2 X; x = T

n

(x)g) = 1;

in 
ontradi
tion to the assumption that T is aperiodi
. �

De�nition 2.2 (Measurable n-Chains)

A measurable set F of stri
tly positive �-measure whi
h ful�ls relation (1) for

n = 1; : : : ,m� 1 indu
es an m-
hain (F)

m

, whi
h we de�ne to be the m-tuple

(F)

m

:=




F; T

�1

(F ); : : : ; T

�(m�1)

(F )

�

:

Lemma 2.3 (Existen
e of Measurable n-Chains)

Let X, B, T , � be as above. For any n 2 N

�

, there exists a set F whi
h indu
es

an n-
hain.

Proof: For n = 1 there is nothing to prove, we 
an take F = X. We pro
eed by

indu
tion. Let us assume that we found F 2 B with �(F ) > 0 whi
h indu
es an

(n� 1)-
hain. There must be a measurable subset G � F of positive �-measure

su
h that �(T

�(n�1)

(G) nG) > 0. If this is not the 
ase, then the proof of lemma

2.1 implies that on F we have that �-a.e. T

n�1

(x) = x in 
ontradi
tion to the

aperiodi
ity of T . Clearly, G n T

�(n�1)

(G) indu
es an n-
hain. �

From now on we shall skip the attribute `�-a.e.' and negle
t �-null-sets. Further-

more, we use the symbol

U

for disjoint unions.

Remark 2.4

If F 2 B indu
es an n-
hain, then, for any k 2 N, also the inverse image T

�k

(F )

indu
es an n-
hain.

Theorem 2.5 (Rokhlin's Lemma)

Let X, B, T , � be as above. For any n 2 N

�

and any " > 0, there exists a

measurable set E 2 B whi
h indu
es an n-
hain (E)

n

2

su
h that

�((E)

n

) := �

 

n�1

℄

`=0

T

�`

(E)

!

> 1� ":

Proof: We 
hoose m 2 N su
h that m � n and

1=m < "=(n� 1):

2

also 
alled an (n; ")-Rokhlin tower
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A

ording to lemma 2.3, the set of m-
hains (F)

m

is not empty. We equip this

set, the family of indu
ing sets, resp., with a partial ordering, by de�ning

F <

�

F

0

:() (F � F

0

) ^ (�(F ) < �(F

0

)) :

Zorn's Lemma then provides maximal elements. Let F be su
h a maximal indu
-

ing set and denote with (F)

m

the indu
edm-
hain. We use the following notation.

For k 2 N, we denote the k-th ba
kward image of F with F

k

:= T

�k

(F ). Note

that �(F

k

) = �(F ) � 1=m.

From Poin
ar�e's Re
urren
e Theorem we dedu
e that

1

[

k=0

F

k

= X:

Namely, the 
omplement U of

S

1

k=0

F

k

is a measurable set whi
h is forward

invariant, i.e. T (U) � U . It is also ba
kward invariant, be
ause, a

ording to

Poin
ar�e's Re
urren
e Theorem, any point z from T

�1

(U)\

S

1

k=0

F

k

is mapped to

F

0

for in�nitely many times under forward iteration. But we have that T (z) 2 U ,

hen
e all forward iterates stay in U . Then, be
ause of the maximality of (F)

m

,

we 
on
lude that �(U) = 0. If this did not hold, then we would �nd an n-
hain

(G)

m

in U , whose union with (F)

m

would yield an m-
hain stri
tly bigger than

(F)

m

, whi
h was assumed to be maximal.

In parti
ular, we have that ea
h point x 2 X eventually lands in F

0

under

forward iteration of T .

We de�ne the measurable sets

F

k

:= F

k

n

k�1

[

j=0

F

j

;

whi
h ful�l the following relation

z 2 F

k

() k = min

`2N

�

T

`

(z) 2 F

0

	

:

Thus, we dedu
e that

F

k+1

= T

�1

(F

k

) n F

0

and, for j 2 N,

F

k+j

� T

�j

(F

k

) � F

k+j

_

[

j�1

℄

`=0

F

`

: (2)

From the de�nition of the F

k

we derive that the F

k

are pairwise disjoint and

1

℄

k=0

F

k

= X:
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Let us show that

E :=

1

℄

k=1

F

kn�1

indu
es an n-
hain. For this, it is suÆ
ient to prove that, for j = 0; : : : ; n � 1,

we have that

E \ T

�j

(E) = ;:

If we assume that, for p; q 2 N

�

,

z 2 F

pn�1

\ T

�j

(F

qn�1

)

then the fa
t that the F

k

are pairwise disjoint implies that

z 2 T

�j

(F

qn�1

) n F

qn�1+j

:

Due to (2) we obtain that

z 2

j�1

[

i=0

F

i

�

n�2

[

i=0

F

i

=

n�2

[

i=0

F

i

:

Then, by de�nition of E, we have that

z 2

n�2

[

i=0

F

i

\ E = ;:

Thus, E indu
es an n-
hain (E)

n

. Its measure is estimated by

�

 

n�1

[

j=0

T

�j

(E)

!

� �

 

1

℄

i=n�1

F

i

!

= 1� �

 

n�2

℄

i=0

F

i

!

� 1� (n� 1)=m

> 1� "

�

Setting G = E

n�1

in the above theorem, we obtain the 
lassi
al form of Rokhlin's

Lemma.

Corollary 2.6 (Classi
al Rokhlin's Lemma)

Let X, B, T , � be as above. For any n 2 N

�

and any " > 0, there exists a

measurable set G 2 B su
h that the sets G; T

1

(G); : : : ; T

n�1

(G) are measurable

and pairwise disjoint, moreover, we have that

�

 

n�1

℄

`=0

T

`

(G)

!

> 1� ":

�
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3 Canoni
al Rokhlin-Partitions for Cir
le Maps

In this paragraph we use Rokhlin's lemma in order to investigate the dynami
s of

an important 
lass of examples. More pre
isely, we 
onsider the following three

families of mappings whi
h are equivalent from the measure theoreti
al point of

view.

3.1 De�nition of Cir
le Maps

Example 3.1

For an integer d > 1, we 
onsider the map

e

T

d

: S

1

! S

1

whi
h is given by

exp(2�it) 7! exp(2�idt); (3)

for t 2 R. Clearly, together with the normalised Lebesgue measure � on S

1

,

e

T

d

indu
es an aperiodi
 measurable endomorphism.

By 
onsideration of (3) we obtain a dynami
al system on the half open unit

interval.

Example 3.2

We de�ne a pie
ewise linear interval map on T

d

: [0; 1)! [0; 1) by setting

T

d

(t) = T

d;k

(t) := d(t� k=d); for t 2 [k=d; (k + 1)=d):

Its inverse bran
hes are given by

T

�1

d;k

(t) = t=d+ k=d: (4)

The 
orresponding invariant measure is the Lebesgue measure � on [0; 1).

Re
all that the d-adi
 
oding for t 2 [0; 1) is unique (with the ex
eption of the

null set of d-rationals) and indu
es a measurable isomorphism between [0; 1) and

the shift spa
e �

d

de�ned below. Thus we get a third equivalent representation.

Example 3.3

Let �

d

be the spa
e of one-sided in�nite sequen
es in the symbols f0; : : : ; d� 1g,

i.e. x = (x

1

x

2

: : : ) with x

i

2 f0; : : : ; d� 1g, and denote with �

d

the shift on �

d

�

d

((x

1

x

2

x

3

: : : )) := (x

2

x

3

x

4

: : : ):

As invariant measure �

d

we have the (1=d; : : : ; 1=d) Bernoulli measure (
f. [DGS76℄)

on �

d

whi
h assigns mass 1=d

k

to k-
ylinders

Z(x

�

1

; : : : ; x

�

k

) := fx 2 �

d

: x

1

= x

�

1

; : : : ; x

k

= x

�

k

g:
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In the following we use the representation given in example 3:2 in order to 
on-

stru
t n-
hains for the systems introdu
ed above. Thus, we 
onsider (
f. theorem

2.5) X = [0; 1), T = T

d

and � the Lebesgue measure on [0; 1).

We 
onstru
t a maximal m-
hain by taking as F = F

0

an open interval

asso
iated to the minimal periodi
 point '

m

:= 1=(d

m

� 1) of prime period

m. More pre
isely, we 
al
ulate maximal values �

m

; �

m

su
h that the interval

I

m

:= ('

m

� �

m

; '

m

+ �

m

) indu
es an m-
hain.

In order to do so it is suÆ
ient to ensure that I

m

does not interse
t any of

its pre-images of order 1 to m� 1. The pre-images whi
h 
ome 
losest to I

m

are

T

�(m�2)

d;0

T

�1

d;1

(I

m

) (from the right) and T

�1

d;0

(I

m

) (from the left). This leads to the

following equations for the maximal values �

m

, �

m

.

'

m

+ �

m

= ('

m

� �

m

+ 1)=(d

m�1

)

'

m

� �

m

= ('

m

+ �

m

)=d:

The solution of this pair of equations is given by �

m

= 0 and �

m

= (d�1)=(d

m

�1).

To 
on
lude that I

m

indu
es a maximal m-
hain (F)

m

, we 
onsider the 
losure

of

�

m

:=

m�1

[

`=0

T

�`

d;0

I

m

[ T

�(m�2)

d;0

T

�1

d;1

(I

m

)

whi
h is a 
losed interval of length

1

d

m�1

+

�

m

d

m�1

:

Noting that T

m�1

d


orresponds to multipli
ation by d

m�1

we see that T

m�1

d

(�

m

)


overs X, hen
e,

T

m�1

d

 

m�1

[

`=0

F

`

!

= X:

Thus, we 
annot �nd E su
h that

T

�(m�1)

d

(E) \

m�1

[

`=0

F

`

= ;:

Also, F

0

:= I

m

and its �rst m� 1 forward images

T

k

d

(F

0

) = (d

k

=(d

m

� 1); d

k+1

=(d

m

� 1));

for k = 1; : : : ; m� 2 and

T

m�1

d

(F

0

) = [0; 1=(d

m

� 1))

_

[(d

m�1

=(d

m

� 1); 1)

are pairwise disjoint. Moreover, we have that �(F

0

) = (d� 1)=(d

m

� 1) � 1=m.
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0

1

2

3

X

Figure 1: F

0

, : : : , F

m

for d = 3 and m = 3.

3.2 Properties of the sequen
e (F

k

)

We exploit the topologi
al stru
ture of our 
lass of maps in order to obtain two

re�nements of relation (2).

Lemma 3.4

For j 2 N, let F

�

= (a; b) := T

�1

d;k

j

Æ : : : Æ T

�1

d;k

1

(F

0

) be a 
onne
ted 
omponent of

T

�j

d

(F

0

). Then we have that either F

�

is 
ontained in F

0

or the interse
tion of

F

�

and F

0

is empty.

Proof: Let us assume that F

�

and F

0

have non-empty interse
tion but that F

�

is not 
ontained in F

0

. This either implies that a < 1=(d

m

� 1) < b or that

a < d=(d

m

� 1) < b. Note that under T

j

d

the interval F

�

is mapped to F

0

. As T

j

d

is order-preserving, it follows that either

1=(d

m

� 1) < T

j

(1=(d

m

� 1)) < d=(d

m

� 1)

or

1=(d

m

� 1) < T

j

(d=(d

m

� 1)) < d=(d

m

� 1):

This 
annot be the 
ase be
ause T

j

(1=(d

m

� 1)) = d

(j mod m)

=(d

m

� 1). �

Lemma 3.5

Let F

�

be as in the pre
eding lemma. Denote with T

m

d

(F

�

) the disjoint union

of the intervals in

S

m�1

j=0

T

�j

d

(F

�

). Then there is a unique interval G

�

2 T

m

d

(F

�

)

su
h that G

�

� F

0

. We refer to this interval as the hit marker of F

�

.
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0

1

2

X

Figure 2: T

0

(F

0

), : : : , T

m�1

(F

0

) for d = 3 and m = 3.

Proof: Due to the maximality of (F)

m

, for any interval F

�

we have that

T

m

d

(F

�

) \ F

0

6= ;. Let us assume that we 
an �nd two di�erent sets G

1

; G

2

in T

m

d

(F

�

) su
h that G

1

� T

�j

d

(F

�

) \ F

0

and G

2

� T

�k

d

(F

�

) \ F

0

, where we

have that 0 � j; k � m � 1. The fa
t that G

1

� F

0

implies that F

�

� T

j

d

(F

0

),

the 
ondition on G

2

gives that F

�

� T

k

d

(F

0

). A

ording to the remark at the

end of paragraph 3.1, this 
an only happen if j = k. For this 
ase we note that

equation (4) implies that the minimal distan
e of two intervals in T

�j

d

(F

�

) is

1=d

j

� (d� 1)=(d

j

(d

m

� 1)) � �

m

. �

We note that F

k


onsists of �nitely many intervals of length �

m

=d

k

. In the

following paragraph we use this fa
t to determine the mass of (E)

n

.

3.3 The mass of (E)

n

Let us denote the number of intervals in F

k

with !

k

. We have that

�(F

k

) = !

k

� �

m

=d

k

:

Thus, in order to 
ompute the mass of (E)

n

, it is suÆ
ient to know the sequen
e

(!

k

). Clearly, as F

0

indu
es an m-
hain, we have that, for k = 0; : : : ; m� 1,

!

k

= d

k

:

The 
ardinalities !

k+m�1

, for k � 1, 
an be 
omputed applying lemma 3.5.
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Proposition 3.6

The number !

k+m�1

of intervals in F

k+m�1

, for k � 1 is equal to

!

k+m�1

= (d� 1) �

m�2

X

j=0

!

k+j

: (5)

Proof: We make use of relation (2) with j = m�1. The set T

�(m�1)

d

(F

k

) 
onsists

of d

m�1

� !

k

intervals. We have to remove all the intervals whi
h are 
ontained

in

U

m�2

`=0

F

`

. This is equivalent to eliminating the prede
essors of the hit markers

in T

m

d

(F

�

) for all F

�

2 F

k

. The number of eliminated intervals depends on

the position of the hit markers G

�

in the T

m

d

(F

�

). More pre
isely, the fa
t that

G

�

� T

�`

d

(F

�

) enfor
es the subtra
tion of d

m�1�`

intervals.

By lemma 3.5 we know that, for ea
h of the !

k

intervals F

�

� F

k

, the


olle
tion T

m

d

(F

�

) 
ontains a unique hit marker G

�

. First, let us assume that all

hit markers G

�

are 
ontained in T

m�1

d

(F

�

) for the 
orresponding F

�

. This gives

the estimate (d

m�1

� 1) � !

k

for !

k+m�1

. In order to 
al
ulate the exa
t value

we have to determine the numbers of hit markers whi
h are 
ontained in T

�`

F

�

,

for 1 � ` � m � 2. For ea
h of these markers we have to 
orre
t our estimate

by �d

m�1�`

for the number of intervals whi
h are a
tually `shadowed' by the hit

marker and by +1 for the one interval whi
h we had subtra
ted assuming that

the hit marker was 
ontained in T

�(m�1)

(F

�

). The number of these hit markers

is easily seen to be equal to d � !

k+`�1

� !

k+`

. Thus we obtain that

!

k+m�1

= (d

m�1

� 1) � !

k

�(d

m�2

� 1) � (d � !

k

� !

k+1

)

�(d

m�3

� 1) � (d � !

k+1

� !

k+2

)

� : : :

�(d

2

� 1) � (d � !

k+m�4

� !

k+m�3

)

�(d

1

� 1) � (d � !

k+m�3

� !

k+m�2

)

= (d� 1) �

m�2

X

j=0

!

k+j

:

�

With the aid of the generating fun
tion 
(z) :=

P

1

`=0

!

`

z

`

it is possible to trans-

form the re
ursive representation of (!

`

) given in (5) into an expli
ite form.

Proposition 3.7

The generating fun
tion for the sequen
e (!

`

) is given by


(z) =

1� z

m

(d� 1) � z

m

� (d z � 1)

: (6)

10



Proof: We take equation (5) and multiply it by the monomial z

k+m�1

. Summing

up over all k � 1 yields

1

X

k=1

(d� 1) �

m�2

X

j=0

!

k+j

z

k+m�1

=

X

k=1

!

k+m�1

z

k+m�1

:

If we express this relation in terms of 
(z) then we obtain the following equation

(d� 1) �

m�2

X

j=0

z

m�1�j

 


(z)�

j

X

`=0

d

`

z

`

!

= 
(z) �

m�1

X

j=0

d

j

z

j

;

whose solution yields (6). �

For m = 2 and m = 3 we 
al
ulate the !

k

expli
itely.

Example 3.8

For m = 2, we have that


(z) =

1 + z

1� (d� 1) � z

:

The geometri
 series expansion for the denominator yields

(1� (d� 1) � z)

�1

=

1

X

k=0

(d� 1)

k

z

k

;

thus, we have that


(z) = (1 + z) �

1

X

k=0

(d� 1)

k

z

k

= 1 +

1

X

k=1

d � (d� 1)

k�1

z

k

For the mass of the 
hain (E)

n

we obtain from

�

�

F

0

�

= 1=(d+ 1)

and, hen
e, for k � 1,

�

�

F

k

�

=

�

d� 1

d

�

k�1

,

(d+ 1)

11



that

�((E)

n

) = 2 �

1

X

k=1

�

�

F

2k

�

=

2

d+ 1

�

1

X

k=1

�

d� 1

d

�

2k�1

=

2 � (d� 1)

d � (d+ 1)

�

1

X

k=0

�

d� 1

d

�

2k

=

d � (d� 1)

(d+ 1) � (d� 1=2)

:

Example 3.9

For m = 3, we have that


(z) =

1 + z + z

2

d� (d� 1) � (1 + z + z

2

)

:

The zeros of the denominator are

�

�

=

(d� 1)�

p

(d� 1) � (d+ 3)

2 � (1� d)

;

thus, we have that


(z) =

1 + z + z

2

1� d

�

1

(z � �

+

) � (z � �

�

)

=

1 + z + z

2

(d� 1) � (�

+

� �

�

)

�

�

1

�

+

�

1

1� z=�

+

�

1

�

�

�

1

�z=�

�

�

=

1 + z + z

2

(d� 1) � (�

+

� �

�

)

�

1

X

k=0

�

�

�(k+1)

+

� �

�(k+1)

�

�

� z

k

= 1 + d z +

1

X

k=2

 

�

�(k+1)

+

� �

�(k+1)

�

+ �

�k

+

� �

�k

�

+ �

�(k�1)

+

� �

�(k�1)

�

(d� 1) � (�

+

� �

�

)

!

� z

k

:

With

�

�

F

0

�

= 1=(d

2

+ d+ 1)

and, for k � 2,

�

�

F

k

�

=

�

�(k+1)

+

� �

�(k+1)

�

+ �

�k

+

� �

�k

�

+ �

�(k�1)

+

� �

�(k�1)

�

(d

3

� 1) � d

k

� (�

+

� �

�

)

12



we obtain that

�((E)

n

) = 3 �

1

X

k=1

�(F

3k

)

=

3

d

3

(d

3

� 1) � (�

+

� �

�

)

�

 

(�

�2

+

+ �

�3

+

+ �

�4

+

) �

1

X

k=0

�

�

�3

+

d

3

�

k

�(�

�2

�

+ �

�3

�

+ �

�4

�

) �

1

X

k=0

�

�

�3

�

d

3

�

k

!

:

=

3

(d

3

� 1) � (�

+

� �

�

)

�

�

�

+

+ 1 + �

�1

+

d

3

�

3

+

� 1

�

�

�

+ 1 + �

�1

�

d

3

�

3

�

� 1

�

=

3 � (d� 1) � d � (d

4

+ d

3

+ d� 1)

3 d

6

+ 3 d

4

� 3 d

3

+ d

2

� 2 d+ 1

:

For the reader's 
onvenien
e we show how to 
onstru
t the F

k

if one uses the

point of view of example 3.3. We de�ne m-words as �nite sequen
es (x

1

: : : x

m

)

of m symbols from f0; : : : ; d � 1g and use the following notation. For ea
h

p 2 f0; : : : ; d

m

� 1g let p be the uniquely determined m-word (x

1

: : : x

m

) su
h

that p =

P

m

i=1

x

i

d

m�i

. The fa
t that t 2 I

m

, i.e.

1=(d

m

� 1) < t < d=(d

m

� 1)

then 
orresponds to the following 
ondition on x 2 �

d

.

(111 : : :1 : : :) < x < (ddd : : :d : : :);

where we use the lexi
ographi
al order on �

d

. Thus we have that

x =

8

>

>

>

>

>

<

>

>

>

>

>

:

(1 : : :1

| {z }

k times

p : : : ); where k � 1 and 2 � p � d

m

� 1;

(p : : : ); where 2 � p � d� 1;

(d : : :d

| {z }

k times

p : : : ); where k � 1 and 0 � p � d� 1:

It turns out that we 
an des
ribe the sets F

k

entirely by 
onditions on the leading

d-adi
 digits of the x. From (2) we derive the following lemma whi
h gives the

equivalent to the hit markers in proposition 3.6.

Lemma 3.10

For ` � 1 we have that t 2 T

�1

(F

`�1

) n F

`

� F

0

if and only if the 
orresponding

x ful�ls the following 
ondition

(10 : : :) � x � (d[d� 1℄: : :) :

�

13



Corollary 3.11

Let T : X ! X be a dynami
al system su
h that the d-shift (�

d

; �

d

) is a mea-

surable fa
tor. Then there exist (n; ")-Rokhlin sets with respe
t to the invariant

measure whi
h is indu
ed by the pullba
k of �

d

to X. �

The transfer to the setting of example 3.1 is easily done using the measurable

map z 7! exp(2�i � z).

An important spe
ial 
ase is the invariant harmoni
 measure supported on the


onne
ted Julia-set J(f) of a moni
 polynomial f of degree d � 2. On obtains a


onjugation (by the Riemann map of CnK(f)) between

e

T

d

extended to CnB

1

(0)

and f on C nK(f), where K(f) denotes the set of points with bounded forward

orbit under iteration of f . The harmoni
 measure then is de�ned as the pullba
k

of � (
f. [PUZ89℄).

Corollary 3.12

There exist (n; ")-Rokhlin sets with respe
t to the harmoni
 measure of the 
on-

ne
ted Julia sets of polynomials of degree d � 2. �
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