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Abstract

We present an elementary proof of Rokhlin’s Lemma, for measurable
endomorphisms of separable spaces which are aperiodic with respect to
an invariant Borel probability measure. As an application we explicitely
compute the Rokhlin sets for classes of interval maps and Bernoulli shifts.

1 Introduction

Rokhlin’s Lemma which was originally (cf. [Rok63]) proved for bi-measurable
aperiodic automorphisms 7' of Polish spaces X is an important tool in ergodic
theory. It states that for an automorphism of the above type which is invariant
with respect to a Borel probability measure y, any n € N* and € > 0 one finds a
measurable set F' (a so-called (n,s)-Rokhlin set) such that, for j =0,...,n —1,
the sets T/ (F) are pairwise disjoint and exhaust X with exception of a remainder
set, whose mass is smaller then €. In particular, Rokhlin’s Lemma is indispensable
for the canonical construction of generators. Here the most natural setting is that
of a measurable endomorphism 7' which is not necessarily forward measurable.
Since the usual proof ([Hal56, ps 70-72]) quoted in standard textbooks on ergodic
theory (e.g. [DGST76],[Fri70],[Pet89]) uses a Kakutani tower type construction
and thus forward measurability!, we felt obliged to provide an elementary proof
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which does not rely on this assumption. In fact, our most ‘sophisticated’ tool is
Poincaré’s Recurrence Theorem. Moreover, the setting is generalised from Polish
spaces (which allow to construct (local) measurable inverses [Roy70, ch. 15.4]) to
separable metric spaces, i.e. we consider a surjective measurable endomorphisms
T : X — X of separable metric spaces such that the maps T are aperiodic with
respect to invariant Borel probability measures .

In the second part we explicitely describe how to construct the Rokhlin sets
for dynamical systems which are semi-conjugate to any full shift.

2 Rokhlin’s Lemma

Throughout this paragraph we assume that X is a separable metric space. More
precisely, we find a metric d : X x X — R, on X which defines the topology
and there exists a countable sequence (z;);en of points of X which are dense
in the space. We denote with B the Borel o-algebra on X. Furthermore, let
T : X — X be a surjective measurable, but not necessarily bi-measurable map
with respect to B and let p be a T-invariant Borel probability measure on (X, B),
i.e., for all A € B, we have that pu(T7'(A4)) = u(A). Finally, T is supposed to
be p-a.e. aperiodic, that is, for all n € N* the set of points x € X such that
T"(x) = = has p-measure 0.

We derive two lemmata which make use of the aperiodicity of T

Lemma 2.1 (Disjoint Inverse Images)
Let X, B, T, i be as above. For any n € N*, we find a measurable set F' of
positive measure such that

w(T™(F)NF)=0. (1)
Proof: Assume that we cannot determine a Borel set F' of positive measure such
that (1) holds. This implies that, in particular, for all e-balls B.(z;) centred at
the points z;, we have that

p(T7"(Be(:)) \ Be(w:)) = 0.
As an immediate consequence we derive the following relation.
pw({x: T"(r) € B(x;), d(x,T"(x)) > 3-¢}) =0.
Note that, for any £ > 0, the union of the B.(z;) covers X. Thus, we obtain that
p{z: TM(z) € X, d(x,T"(x)) > 3-¢c})

= ©u (U{:}:: T"(z) € Bu(x;), d(z,T"(z)) > 3-g}>
< Zu({x: T"(x) € B.(x:), d(z,T"(x)) = 3-¢€})
= 0.



Letting ¢ tend to 0 we deduce that
p({z: T"(z) € X, d(z, T"(x)) > 0}) =0,
hence
p{a: T'(x) € X, 2 =T"(2)}) =1,
in contradiction to the assumption that 7' is aperiodic. O

Definition 2.2 (Measurable n-Chains)
A measurable set F' of strictly positive pi-measure which fulfils relation (1) for
n=1,...,m — 1 induces an m-chain (F),,, which we define to be the m-tuple

(F)m = (F, T HF),..., T "™ D(F)).

Lemma 2.3 (Existence of Measurable n-Chains)

Let X, B, T, i be as above. For any n € N*, there exists a set F' which induces
an n-chain.

Proof: For n =1 there is nothing to prove, we can take F' = X. We proceed by
induction. Let us assume that we found F' € B with u(F) > 0 which induces an
(n — 1)-chain. There must be a measurable subset G C F' of positive p-measure
such that (T~ (G)\ G) > 0. If this is not the case, then the proof of lemma
2.1 implies that on F' we have that p-a.e. T" '(x) = z in contradiction to the
aperiodicity of T. Clearly, G \ T~ Y(G) induces an n-chain. O

From now on we shall skip the attribute ‘u-a.e.” and neglect p-null-sets. Further-
more, we use the symbol [# for disjoint unions.

Remark 2.4
If F € B induces an n-chain, then, for any k € N, also the inverse image T—%(F')
induces an n-chain.

Theorem 2.5 (Rokhlin’s Lemma)
Let X, B, T, i be as above. For any n € N* and any ¢ > 0, there exists a
measurable set F € B which induces an n-chain (£),? such that

w((E)n) = (Lﬂ T‘E(E)> >1— e

Proof: We choose m € N such that m > n and

I/m<e/(n—1).

2also called an (n,e)-Rokhlin tower




According to lemma 2.3, the set of m-chains (F),, is not empty. We equip this
set, the family of inducing sets, resp., with a partial ordering, by defining

F<,F = (FcCF)AuPF) < u(F)).

Zorn’s Lemma then provides maximal elements. Let F' be such a maximal induc-
ing set and denote with (F),, the induced m-chain. We use the following notation.
For k € N, we denote the k-th backward image of F with F}, :== T~(F). Note
that u(Fy) = p(F) < 1/m.

From Poincaré’s Recurrence Theorem we deduce that

G F,=X.
k=0

Namely, the complement U of |J;-, F; is a measurable set which is forward
invariant, i.e. T(U) C U. It is also backward invariant, because, according to
Poincaré’s Recurrence Theorem, any point z from T H(U) N, Fi is mapped to
Fy for infinitely many times under forward iteration. But we have that T'(z) € U,
hence all forward iterates stay in U. Then, because of the maximality of (F),,,
we conclude that p(U) = 0. If this did not hold, then we would find an n-chain
(G)m in U, whose union with (F),, would yield an m-chain strictly bigger than
(F)m, which was assumed to be maximal.

In particular, we have that each point x € X eventually lands in Fy under
forward iteration of 7.
We define the measurable sets

k-1
F* =R\ JF,
j=0

which fulfil the following relation
k o ¢
2 € F" <= k—rgé%l{T(z)eFo}.
Thus, we deduce that
Fk+1 — T—l(Fk) \ FO

and, for j € N,

j—1
F*9 C T7(F*) C FFHU 4] P (2)
£=0

From the definition of the F* we derive that the F* are pairwise disjoint and

L:j FF=X.
k=0

4



Let us show that

oo

E = |H F!
k=1
induces an n-chain. For this, it is sufficient to prove that, for j = 0,... ,n — 1,
we have that
ENT(E)=0.

If we assume that, for p,q € N*,
z € PPN T I(F™ 1)
then the fact that the F* are pairwise disjoint implies that
z € TH(F™M 1)\ Fr1Hi,
Due to (2) we obtain that

j—1 n—2 n—2
zelJrcJR=JF"
=0 =0 =0

Then, by definition of E, we have that
n—2
zel|JFPnE=0.
i=0

Thus, E induces an n-chain (£),,. Its measure is estimated by

(Gren) (97

R 2
1=0

> 1—(n—1)/m
> 1—c¢

¥ i

O

Setting G = E,, 1 in the above theorem, we obtain the classical form of Rokhlin’s
Lemma.

Corollary 2.6 (Classical Rokhlin’s Lemma)

Let X, B, T, u be as above. For any n € N* and any ¢ > 0, there exists a
measurable set G € B such that the sets G,T'(G),... ,T" '(G) are measurable
and pairwise disjoint, moreover, we have that

W (UTQG)) >1—e.



3 Canonical Rokhlin-Partitions for Circle Maps

In this paragraph we use Rokhlin’s lemma in order to investigate the dynamics of
an important class of examples. More precisely, we consider the following three
families of mappings which are equivalent from the measure theoretical point of
view.

3.1 Definition of Circle Maps

Example 3.1
For an integer d > 1, we consider the map

j:d : Sl — Sl
which is given by
exp(2mit) — exp(2midt), (3)

for t € R. Clearly, together with the normalised Lebesgue measure A on S?, T,
induces an aperiodic measurable endomorphism.

By consideration of (3) we obtain a dynamical system on the half open unit
interval.

Example 3.2
We define a piecewise linear interval map on Ty : [0,1) — [0, 1) by setting

Ty(t) = Tyr(t) :==d(t — k/d), for t € [k/d, (k+1)/d).
Its inverse branches are given by
T () =t/d+k/d. (4)
The corresponding invariant measure is the Lebesgue measure p on [0, 1).

Recall that the d-adic coding for ¢ € [0,1) is unique (with the exception of the
null set of d-rationals) and induces a measurable isomorphism between [0, 1) and
the shift space ¥, defined below. Thus we get a third equivalent representation.

Example 3.3
Let X4 be the space of one-sided infinite sequences in the symbols {0, ... ,d—1},
i.e. z = (z122...) with z; € {0,... ,d — 1}, and denote with o4 the shift on ¥,

og((r12973...)) 1= (22374 ... ).

As invariant measure v; we have the (1/d, ... ,1/d) Bernoulli measure (cf. [DGS76])
on ¥, which assigns mass 1/d* to k-cylinders

Z(ajT; ,:1:;;) = {a}EEd:a}l:x’{,___,xk:xz}_



In the following we use the representation given in example 3.2 in order to con-
struct n-chains for the systems introduced above. Thus, we consider (cf. theorem
2.5) X =[0,1), T =T, and pu the Lebesgue measure on [0, 1).

We construct a maximal m-chain by taking as F' = F{ an open interval
associated to the minimal periodic point ¢, = 1/(d™ — 1) of prime period
m. More precisely, we calculate maximal values «,,, 3,, such that the interval
I = (¢m — Qm, ©m + Bm) induces an m-chain.

In order to do so it is sufficient to ensure that I,, does not intersect any of
its pre-images of order 1 to m — 1. The pre-images which come closest to I,,, are
Tdtomﬂ)Till(Im) (from the right) and T, (I;,) (from the left). This leads to the
following equations for the maximal values «,,, (.

Om+ B = (Om — up + 1)/(dm_1)
Om— m = (Pm+ Bm)/d.

The solution of this pair of equations is given by «,,, = 0 and 3, = (d—1)/(d™—1).
To conclude that I,,, induces a maximal m-~chain (F),,, we consider the closure
of
m—1
A= | Td L U T " 2T, (1)
=0

which is a closed interval of length

1 B
qdm-1 + dm—1 :

Noting that 77"~ corresponds to multiplication by d™~! we see that T7"~'(A,,)
covers X, hence,

m—1
Tmt (U F4> = X.

=0

Thus, we cannot find E such that
m—1
Tdf(mfl)(E) N U Ff — @
=0
Also, Fy := I,,, and its first m — 1 forward images
Tf(FO) = (dk/(dm - 1)7 dk+1/(dm - 1))7
fork=1,...,m—2 and

Ty (Fo) = [0,1/(d™ = 1)U(d™ 1 /(d™ — 1), 1)

are pairwise disjoint. Moreover, we have that u(Fy) = (d —1)/(d™ —1) < 1/m.
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Figure 1: F°, ..., F™ for d = 3 and m = 3.

3.2 Properties of the sequence (F¥)

We exploit the topological structure of our class of maps in order to obtain two
refinements of relation (2).

Lemma 3.4

For j € N, let F* = (a,b) := Td_’klj o...0 Td_’kll(FO) be a connected component of
T, 7(F°). Then we have that either F* is contained in F° or the intersection of
F* and F° is empty.

Proof: Let us assume that F* and F° have non-empty intersection but that F*
is not contained in F°. This either implies that ¢ < 1/(d™ — 1) < b or that
a < d/(d™—1) < b. Note that under T the interval F** is mapped to F°. As T}
is order-preserving, it follows that either

1/(d™—1) < T(1/(d™ — 1)) < d/(d™ - 1)
1/(d™ —1) <T(d/(d™ — 1)) < d/(d™ —1).
This cannot be the case because T7(1/(d™ — 1)) = dU med™) /(g™ — 1), O

Lemma 3.5

Let F* be as in the preceding lemma. Denote with T7'(F*) the disjoint union
of the intervals in U;’:OI T;7(F*). Then there is a unique interval G* € T7"(F*)
such that G* C F°. We refer to this interval as the hit marker of F*.
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Figure 2: T°(F°), ..., T™ (F°) for d =3 and m = 3.

Proof: Due to the maximality of (F),,, for any interval F* we have that
T7(F*) N F° # 0. Let us assume that we can find two different sets Gy, G
in T7(F*) such that G; C T;”(F*) N F* and Gy C T;*(F*) N F°, where we
have that 0 < j,k < m — 1. The fact that G; C F, implies that F* C T (Fy),
the condition on Gy gives that F* C TF(Fp). According to the remark at the
end of paragraph 3.1, this can only happen if 7 = k. For this case we note that
equation (4) implies that the minimal distance of two intervals in ;7 (F*) is
1 — (d = 1) /(@ (d™ = 1)) > . .

We note that F* consists of finitely many intervals of length f3,/d*. In the
following paragraph we use this fact to determine the mass of (£),,.

3.3 The mass of (£),

Let us denote the number of intervals in F* with w;. We have that
W(F*) = wy - B /d".

Thus, in order to compute the mass of (£),, it is sufficient to know the sequence
(wg). Clearly, as F° induces an m-chain, we have that, for k =0,... ,m — 1,

W = dk

The cardinalities wgy,,_1, for £ > 1, can be computed applying lemma 3.5.



Proposition 3.6
The number wy,—; of intervals in F*¥+™1 for k > 1 is equal to

m—2
Wegmo1 = (A= 1)+ > wp. (5)
=0

Proof: We make use of relation (2) with j = m—1. The set Tdf(mfl)(Fk) consists
of d™ ! . wy intervals. We have to remove all the intervals which are contained
in Lﬂ,’}:o? F*. This is equivalent to eliminating the predecessors of the hit markers
in T7(F*) for all F* € F*. The number of eliminated intervals depends on
the position of the hit markers G* in the T''(F™*). More precisely, the fact that
G* C T;*(F*) enforces the subtraction of d™'~* intervals.

By lemma 3.5 we know that, for each of the wj intervals F* C F*, the
collection T'7"(F™*) contains a unique hit marker G*. First, let us assume that all
hit markers G* are contained in T;"'(F*) for the corresponding F*. This gives
the estimate (d™ ' — 1) - wy for wpim_1. In order to calculate the exact value
we have to determine the numbers of hit markers which are contained in T *F*,
for 1 < ¢ < m — 2. For each of these markers we have to correct our estimate
by —d™'~¢ for the number of intervals which are actually ‘shadowed’ by the hit
marker and by +1 for the one interval which we had subtracted assuming that
the hit marker was contained in 7-(™1(F*). The number of these hit markers
is easily seen to be equal to d - wyp—1 — wrie. Thus we obtain that

Weim-1 = (@™ =1)-wy
—(dm_2 - 1) . (d W — wk+1)
—(d™? = 1) - (d - Wps1 — Wita)

d " Weym—4 — Wktm—3)

(@ = 1)
d"— ) : (d *Wk4tm—3 — WkerfZ)

(
= (d-1)- Zwarj'

J=0

—_ =

O

With the aid of the generating function Q(z) := >, w2z’ it is possible to trans-
form the recursive representation of (wy) given in (5) into an explicite form.

Proposition 3.7

The generating function for the sequence (wy) is given by
1—2m

(d—1)-2m—(dz—1)

Qz) =

10



Proof: We take equation (5) and multiply it by the monomial z¥¥™~1, Summing
up over all k£ > 1 yields

00 m—2

k+m—1 __ k+m—1
E (d—1)- E Wht42 = E Whim-12 )
k=1 §=0 k=1

If we express this relation in terms of Q(z) then we obtain the following equation

(d—1)- 3 2m1d (Q(z) - dezf> =0(:) - )_d',

§=0 =0

3

whose solution yields (6). O
For m = 2 and m = 3 we calculate the wy explicitely.

Example 3.8
For m = 2, we have that

1+2

=TTy

The geometric series expansion for the denominator yields

(- (d-1)-2)7" =3 (d- 1k,

k=0

o0

thus, we have that

For the mass of the chain (£), we obtain from

p(F°) =1/(d+1)

p(FF) = (%)k_l/ (d+1)

and, hence, for k£ > 1,
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that

Example 3.9
For m = 3, we have that

142+ 22

Q@):d—(w_n.u+z+%y

The zeros of the denominator are

(d—1)£\/(d—1)-(d+3)

G = 2. (1—d) ’
thus, we have that
142+ 22 1
0 — .
N e E e
_ 1t .(l.__i___lﬁ 1 )
Cd=1)- (G —¢) G+ 1—=2/¢ ¢ —z/¢
B 1+ 2+ 22 . N (et kDY Lk
= o e (G-
00 C;(k-H) . C:(k-l-l) + CJ:k _ C:k + C;(k—l) _ C:(k_D N
— d A
” *Z( @=1)- & — ) )
With
p(F°) =1/(d®>+d+1)
and, for k > 2,

L I e L T e I o)
k) — >+ + +
w (") (3 —1)-d* (. — ()
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we obtain that

wl(E)n) = 3-)  u(F™)

i:ozo C,g k
P+ +¢H (ﬁ) )
k=0
B 3 .<§++1+§+1_C+1+4_1>
(B -1)- (- ) 43¢ —1 d3¢3 —1

3-(d—1)-d-(d*+d*+d—1)
3d6+3d*—3d3+d2—-2d+1

For the reader’s convenience we show how to construct the F* if one uses the
point of view of example 3.3. We define m-words as finite sequences (x1 ... xy,)
of m symbols from {0,...,d — 1} and use the following notation. For each
p € {0,...,d™ — 1} let p be the uniquely determined m-word (x; ...x,,) such
that p = > z;d™". The fact that ¢ € I,,,, i.e.

1/(d"—1)<t<d/(d™—1)

then corresponds to the following condition on x € X,.
(111...1...) <z < (ddd...d...),
where we use the lexicographical order on ;. Thus we have that

(((1...1p...), wherek>1land2<p<d™—1;

k times

(p...), where 2 <p<d-1;

(d...dp...), wherek>1land0<p<d-1.

\ k£ times

It turns out that we can describe the sets F'* entirely by conditions on the leading
d-adic digits of the z. From (2) we derive the following lemma which gives the
equivalent to the hit markers in proposition 3.6.

Lemma 3.10
For £ > 1 we have that t € T-!(F* ')\ F* C Fj if and only if the corresponding
x fulfils the following condition

(10..) <z < (dd-1]...).



Corollary 3.11

Let T : X — X be a dynamical system such that the d-shift (X4, 04) is a mea-
surable factor. Then there exist (n,e)-Rokhlin sets with respect to the invariant
measure which is induced by the pullback of v, to X. 0]

The transfer to the setting of example 3.1 is easily done using the measurable
map z — exp(27i - 2).

An important special case is the invariant harmonic measure supported on the
connected Julia-set J(f) of a monic polynomial f of degree d > 2. On obtains a
conjugation (by the Riemann map of C\ K (f)) between T extended to ©\ B, (0)
and f on C\ K(f), where K(f) denotes the set of points with bounded forward
orbit under iteration of f. The harmonic measure then is defined as the pullback
of A (cf. [PUZ89]).

Corollary 3.12
There exist (n,e)-Rokhlin sets with respect to the harmonic measure of the con-
nected Julia sets of polynomials of degree d > 2. O
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