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Abstrat

We present an elementary proof of Rokhlin's Lemma for measurable

endomorphisms of separable spaes whih are aperiodi with respet to

an invariant Borel probability measure. As an appliation we expliitely

ompute the Rokhlin sets for lasses of interval maps and Bernoulli shifts.

1 Introdution

Rokhlin's Lemma whih was originally (f. [Rok63℄) proved for bi-measurable

aperiodi automorphisms T of Polish spaes X is an important tool in ergodi

theory. It states that for an automorphism of the above type whih is invariant

with respet to a Borel probability measure �, any n 2 N

�

and " > 0 one �nds a

measurable set F (a so-alled (n; ")-Rokhlin set) suh that, for j = 0; : : : ; n� 1,

the sets T

�j

(F ) are pairwise disjoint and exhaustX with exeption of a remainder

set whose mass is smaller then ". In partiular, Rokhlin's Lemma is indispensable

for the anonial onstrution of generators. Here the most natural setting is that

of a measurable endomorphism T whih is not neessarily forward measurable.

Sine the usual proof ([Hal56, ps 70-72℄) quoted in standard textbooks on ergodi

theory (e.g. [DGS76℄,[Fri70℄,[Pet89℄) uses a Kakutani tower type onstrution

and thus forward measurability

1

, we felt obliged to provide an elementary proof
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(de�nition of E on p. 72) and a slight gap (proof of lemma 1 on p. 70)
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whih does not rely on this assumption. In fat, our most `sophistiated' tool is

Poinar�e's Reurrene Theorem. Moreover, the setting is generalised from Polish

spaes (whih allow to onstrut (loal) measurable inverses [Roy70, h. 15.4℄) to

separable metri spaes, i.e. we onsider a surjetive measurable endomorphisms

T : X ! X of separable metri spaes suh that the maps T are aperiodi with

respet to invariant Borel probability measures �.

In the seond part we expliitely desribe how to onstrut the Rokhlin sets

for dynamial systems whih are semi-onjugate to any full shift.

2 Rokhlin's Lemma

Throughout this paragraph we assume that X is a separable metri spae. More

preisely, we �nd a metri d : X � X ! R

+

on X whih de�nes the topology

and there exists a ountable sequene (x

i

)

i2N

of points of X whih are dense

in the spae. We denote with B the Borel �-algebra on X. Furthermore, let

T : X ! X be a surjetive measurable, but not neessarily bi-measurable map

with respet to B and let � be a T -invariant Borel probability measure on (X;B),

i.e., for all A 2 B, we have that �(T

�1

(A)) = �(A). Finally, T is supposed to

be �-a.e. aperiodi, that is, for all n 2 N

�

the set of points x 2 X suh that

T

n

(x) = x has �-measure 0.

We derive two lemmata whih make use of the aperiodiity of T .

Lemma 2.1 (Disjoint Inverse Images)

Let X, B, T , � be as above. For any n 2 N

�

, we �nd a measurable set F of

positive measure suh that

�(T

�n

(F ) \ F ) = 0: (1)

Proof: Assume that we annot determine a Borel set F of positive measure suh

that (1) holds. This implies that, in partiular, for all "-balls B

"

(x

i

) entred at

the points x

i

, we have that

�(T

�n

(B

"

(x

i

)) nB

"

(x

i

)) = 0:

As an immediate onsequene we derive the following relation.

�(fx : T

n

(x) 2 B

"

(x

i

); d(x; T

n

(x)) � 3 � "g) = 0:

Note that, for any " > 0, the union of the B

"

(x

i

) overs X. Thus, we obtain that

�(fx : T

n

(x) 2 X; d(x; T

n

(x)) � 3 � "g)

= �

 

[

i2N

fx : T

n

(x) 2 B

"

(x

i

); d(x; T

n

(x)) � 3 � "g

!

�

X

i2N

�(fx : T

n

(x) 2 B

"

(x

i

); d(x; T

n

(x)) � 3 � "g)

= 0:
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Letting " tend to 0 we dedue that

�(fx : T

n

(x) 2 X; d(x; T

n

(x)) > 0g) = 0;

hene

�(fx : T

n

(x) 2 X; x = T

n

(x)g) = 1;

in ontradition to the assumption that T is aperiodi. �

De�nition 2.2 (Measurable n-Chains)

A measurable set F of stritly positive �-measure whih ful�ls relation (1) for

n = 1; : : : ,m� 1 indues an m-hain (F)

m

, whih we de�ne to be the m-tuple

(F)

m

:=




F; T

�1

(F ); : : : ; T

�(m�1)

(F )

�

:

Lemma 2.3 (Existene of Measurable n-Chains)

Let X, B, T , � be as above. For any n 2 N

�

, there exists a set F whih indues

an n-hain.

Proof: For n = 1 there is nothing to prove, we an take F = X. We proeed by

indution. Let us assume that we found F 2 B with �(F ) > 0 whih indues an

(n� 1)-hain. There must be a measurable subset G � F of positive �-measure

suh that �(T

�(n�1)

(G) nG) > 0. If this is not the ase, then the proof of lemma

2.1 implies that on F we have that �-a.e. T

n�1

(x) = x in ontradition to the

aperiodiity of T . Clearly, G n T

�(n�1)

(G) indues an n-hain. �

From now on we shall skip the attribute `�-a.e.' and neglet �-null-sets. Further-

more, we use the symbol

U

for disjoint unions.

Remark 2.4

If F 2 B indues an n-hain, then, for any k 2 N, also the inverse image T

�k

(F )

indues an n-hain.

Theorem 2.5 (Rokhlin's Lemma)

Let X, B, T , � be as above. For any n 2 N

�

and any " > 0, there exists a

measurable set E 2 B whih indues an n-hain (E)

n

2

suh that

�((E)

n

) := �

 

n�1

℄

`=0

T

�`

(E)

!

> 1� ":

Proof: We hoose m 2 N suh that m � n and

1=m < "=(n� 1):

2

also alled an (n; ")-Rokhlin tower

3



Aording to lemma 2.3, the set of m-hains (F)

m

is not empty. We equip this

set, the family of induing sets, resp., with a partial ordering, by de�ning

F <

�

F

0

:() (F � F

0

) ^ (�(F ) < �(F

0

)) :

Zorn's Lemma then provides maximal elements. Let F be suh a maximal indu-

ing set and denote with (F)

m

the induedm-hain. We use the following notation.

For k 2 N, we denote the k-th bakward image of F with F

k

:= T

�k

(F ). Note

that �(F

k

) = �(F ) � 1=m.

From Poinar�e's Reurrene Theorem we dedue that

1

[

k=0

F

k

= X:

Namely, the omplement U of

S

1

k=0

F

k

is a measurable set whih is forward

invariant, i.e. T (U) � U . It is also bakward invariant, beause, aording to

Poinar�e's Reurrene Theorem, any point z from T

�1

(U)\

S

1

k=0

F

k

is mapped to

F

0

for in�nitely many times under forward iteration. But we have that T (z) 2 U ,

hene all forward iterates stay in U . Then, beause of the maximality of (F)

m

,

we onlude that �(U) = 0. If this did not hold, then we would �nd an n-hain

(G)

m

in U , whose union with (F)

m

would yield an m-hain stritly bigger than

(F)

m

, whih was assumed to be maximal.

In partiular, we have that eah point x 2 X eventually lands in F

0

under

forward iteration of T .

We de�ne the measurable sets

F

k

:= F

k

n

k�1

[

j=0

F

j

;

whih ful�l the following relation

z 2 F

k

() k = min

`2N

�

T

`

(z) 2 F

0

	

:

Thus, we dedue that

F

k+1

= T

�1

(F

k

) n F

0

and, for j 2 N,

F

k+j

� T

�j

(F

k

) � F

k+j

_

[

j�1

℄

`=0

F

`

: (2)

From the de�nition of the F

k

we derive that the F

k

are pairwise disjoint and

1

℄

k=0

F

k

= X:
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Let us show that

E :=

1

℄

k=1

F

kn�1

indues an n-hain. For this, it is suÆient to prove that, for j = 0; : : : ; n � 1,

we have that

E \ T

�j

(E) = ;:

If we assume that, for p; q 2 N

�

,

z 2 F

pn�1

\ T

�j

(F

qn�1

)

then the fat that the F

k

are pairwise disjoint implies that

z 2 T

�j

(F

qn�1

) n F

qn�1+j

:

Due to (2) we obtain that

z 2

j�1

[

i=0

F

i

�

n�2

[

i=0

F

i

=

n�2

[

i=0

F

i

:

Then, by de�nition of E, we have that

z 2

n�2

[

i=0

F

i

\ E = ;:

Thus, E indues an n-hain (E)

n

. Its measure is estimated by

�

 

n�1

[

j=0

T

�j

(E)

!

� �

 

1

℄

i=n�1

F

i

!

= 1� �

 

n�2

℄

i=0

F

i

!

� 1� (n� 1)=m

> 1� "

�

Setting G = E

n�1

in the above theorem, we obtain the lassial form of Rokhlin's

Lemma.

Corollary 2.6 (Classial Rokhlin's Lemma)

Let X, B, T , � be as above. For any n 2 N

�

and any " > 0, there exists a

measurable set G 2 B suh that the sets G; T

1

(G); : : : ; T

n�1

(G) are measurable

and pairwise disjoint, moreover, we have that

�

 

n�1

℄

`=0

T

`

(G)

!

> 1� ":

�
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3 Canonial Rokhlin-Partitions for Cirle Maps

In this paragraph we use Rokhlin's lemma in order to investigate the dynamis of

an important lass of examples. More preisely, we onsider the following three

families of mappings whih are equivalent from the measure theoretial point of

view.

3.1 De�nition of Cirle Maps

Example 3.1

For an integer d > 1, we onsider the map

e

T

d

: S

1

! S

1

whih is given by

exp(2�it) 7! exp(2�idt); (3)

for t 2 R. Clearly, together with the normalised Lebesgue measure � on S

1

,

e

T

d

indues an aperiodi measurable endomorphism.

By onsideration of (3) we obtain a dynamial system on the half open unit

interval.

Example 3.2

We de�ne a pieewise linear interval map on T

d

: [0; 1)! [0; 1) by setting

T

d

(t) = T

d;k

(t) := d(t� k=d); for t 2 [k=d; (k + 1)=d):

Its inverse branhes are given by

T

�1

d;k

(t) = t=d+ k=d: (4)

The orresponding invariant measure is the Lebesgue measure � on [0; 1).

Reall that the d-adi oding for t 2 [0; 1) is unique (with the exeption of the

null set of d-rationals) and indues a measurable isomorphism between [0; 1) and

the shift spae �

d

de�ned below. Thus we get a third equivalent representation.

Example 3.3

Let �

d

be the spae of one-sided in�nite sequenes in the symbols f0; : : : ; d� 1g,

i.e. x = (x

1

x

2

: : : ) with x

i

2 f0; : : : ; d� 1g, and denote with �

d

the shift on �

d

�

d

((x

1

x

2

x

3

: : : )) := (x

2

x

3

x

4

: : : ):

As invariant measure �

d

we have the (1=d; : : : ; 1=d) Bernoulli measure (f. [DGS76℄)

on �

d

whih assigns mass 1=d

k

to k-ylinders

Z(x

�

1

; : : : ; x

�

k

) := fx 2 �

d

: x

1

= x

�

1

; : : : ; x

k

= x

�

k

g:
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In the following we use the representation given in example 3:2 in order to on-

strut n-hains for the systems introdued above. Thus, we onsider (f. theorem

2.5) X = [0; 1), T = T

d

and � the Lebesgue measure on [0; 1).

We onstrut a maximal m-hain by taking as F = F

0

an open interval

assoiated to the minimal periodi point '

m

:= 1=(d

m

� 1) of prime period

m. More preisely, we alulate maximal values �

m

; �

m

suh that the interval

I

m

:= ('

m

� �

m

; '

m

+ �

m

) indues an m-hain.

In order to do so it is suÆient to ensure that I

m

does not interset any of

its pre-images of order 1 to m� 1. The pre-images whih ome losest to I

m

are

T

�(m�2)

d;0

T

�1

d;1

(I

m

) (from the right) and T

�1

d;0

(I

m

) (from the left). This leads to the

following equations for the maximal values �

m

, �

m

.

'

m

+ �

m

= ('

m

� �

m

+ 1)=(d

m�1

)

'

m

� �

m

= ('

m

+ �

m

)=d:

The solution of this pair of equations is given by �

m

= 0 and �

m

= (d�1)=(d

m

�1).

To onlude that I

m

indues a maximal m-hain (F)

m

, we onsider the losure

of

�

m

:=

m�1

[

`=0

T

�`

d;0

I

m

[ T

�(m�2)

d;0

T

�1

d;1

(I

m

)

whih is a losed interval of length

1

d

m�1

+

�

m

d

m�1

:

Noting that T

m�1

d

orresponds to multipliation by d

m�1

we see that T

m�1

d

(�

m

)

overs X, hene,

T

m�1

d

 

m�1

[

`=0

F

`

!

= X:

Thus, we annot �nd E suh that

T

�(m�1)

d

(E) \

m�1

[

`=0

F

`

= ;:

Also, F

0

:= I

m

and its �rst m� 1 forward images

T

k

d

(F

0

) = (d

k

=(d

m

� 1); d

k+1

=(d

m

� 1));

for k = 1; : : : ; m� 2 and

T

m�1

d

(F

0

) = [0; 1=(d

m

� 1))

_

[(d

m�1

=(d

m

� 1); 1)

are pairwise disjoint. Moreover, we have that �(F

0

) = (d� 1)=(d

m

� 1) � 1=m.
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0

1

2

3

X

Figure 1: F

0

, : : : , F

m

for d = 3 and m = 3.

3.2 Properties of the sequene (F

k

)

We exploit the topologial struture of our lass of maps in order to obtain two

re�nements of relation (2).

Lemma 3.4

For j 2 N, let F

�

= (a; b) := T

�1

d;k

j

Æ : : : Æ T

�1

d;k

1

(F

0

) be a onneted omponent of

T

�j

d

(F

0

). Then we have that either F

�

is ontained in F

0

or the intersetion of

F

�

and F

0

is empty.

Proof: Let us assume that F

�

and F

0

have non-empty intersetion but that F

�

is not ontained in F

0

. This either implies that a < 1=(d

m

� 1) < b or that

a < d=(d

m

� 1) < b. Note that under T

j

d

the interval F

�

is mapped to F

0

. As T

j

d

is order-preserving, it follows that either

1=(d

m

� 1) < T

j

(1=(d

m

� 1)) < d=(d

m

� 1)

or

1=(d

m

� 1) < T

j

(d=(d

m

� 1)) < d=(d

m

� 1):

This annot be the ase beause T

j

(1=(d

m

� 1)) = d

(j mod m)

=(d

m

� 1). �

Lemma 3.5

Let F

�

be as in the preeding lemma. Denote with T

m

d

(F

�

) the disjoint union

of the intervals in

S

m�1

j=0

T

�j

d

(F

�

). Then there is a unique interval G

�

2 T

m

d

(F

�

)

suh that G

�

� F

0

. We refer to this interval as the hit marker of F

�

.
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0

1

2

X

Figure 2: T

0

(F

0

), : : : , T

m�1

(F

0

) for d = 3 and m = 3.

Proof: Due to the maximality of (F)

m

, for any interval F

�

we have that

T

m

d

(F

�

) \ F

0

6= ;. Let us assume that we an �nd two di�erent sets G

1

; G

2

in T

m

d

(F

�

) suh that G

1

� T

�j

d

(F

�

) \ F

0

and G

2

� T

�k

d

(F

�

) \ F

0

, where we

have that 0 � j; k � m � 1. The fat that G

1

� F

0

implies that F

�

� T

j

d

(F

0

),

the ondition on G

2

gives that F

�

� T

k

d

(F

0

). Aording to the remark at the

end of paragraph 3.1, this an only happen if j = k. For this ase we note that

equation (4) implies that the minimal distane of two intervals in T

�j

d

(F

�

) is

1=d

j

� (d� 1)=(d

j

(d

m

� 1)) � �

m

. �

We note that F

k

onsists of �nitely many intervals of length �

m

=d

k

. In the

following paragraph we use this fat to determine the mass of (E)

n

.

3.3 The mass of (E)

n

Let us denote the number of intervals in F

k

with !

k

. We have that

�(F

k

) = !

k

� �

m

=d

k

:

Thus, in order to ompute the mass of (E)

n

, it is suÆient to know the sequene

(!

k

). Clearly, as F

0

indues an m-hain, we have that, for k = 0; : : : ; m� 1,

!

k

= d

k

:

The ardinalities !

k+m�1

, for k � 1, an be omputed applying lemma 3.5.

9



Proposition 3.6

The number !

k+m�1

of intervals in F

k+m�1

, for k � 1 is equal to

!

k+m�1

= (d� 1) �

m�2

X

j=0

!

k+j

: (5)

Proof: We make use of relation (2) with j = m�1. The set T

�(m�1)

d

(F

k

) onsists

of d

m�1

� !

k

intervals. We have to remove all the intervals whih are ontained

in

U

m�2

`=0

F

`

. This is equivalent to eliminating the predeessors of the hit markers

in T

m

d

(F

�

) for all F

�

2 F

k

. The number of eliminated intervals depends on

the position of the hit markers G

�

in the T

m

d

(F

�

). More preisely, the fat that

G

�

� T

�`

d

(F

�

) enfores the subtration of d

m�1�`

intervals.

By lemma 3.5 we know that, for eah of the !

k

intervals F

�

� F

k

, the

olletion T

m

d

(F

�

) ontains a unique hit marker G

�

. First, let us assume that all

hit markers G

�

are ontained in T

m�1

d

(F

�

) for the orresponding F

�

. This gives

the estimate (d

m�1

� 1) � !

k

for !

k+m�1

. In order to alulate the exat value

we have to determine the numbers of hit markers whih are ontained in T

�`

F

�

,

for 1 � ` � m � 2. For eah of these markers we have to orret our estimate

by �d

m�1�`

for the number of intervals whih are atually `shadowed' by the hit

marker and by +1 for the one interval whih we had subtrated assuming that

the hit marker was ontained in T

�(m�1)

(F

�

). The number of these hit markers

is easily seen to be equal to d � !

k+`�1

� !

k+`

. Thus we obtain that

!

k+m�1

= (d

m�1

� 1) � !

k

�(d

m�2

� 1) � (d � !

k

� !

k+1

)

�(d

m�3

� 1) � (d � !

k+1

� !

k+2

)

� : : :

�(d

2

� 1) � (d � !

k+m�4

� !

k+m�3

)

�(d

1

� 1) � (d � !

k+m�3

� !

k+m�2

)

= (d� 1) �

m�2

X

j=0

!

k+j

:

�

With the aid of the generating funtion 
(z) :=

P

1

`=0

!

`

z

`

it is possible to trans-

form the reursive representation of (!

`

) given in (5) into an expliite form.

Proposition 3.7

The generating funtion for the sequene (!

`

) is given by


(z) =

1� z

m

(d� 1) � z

m

� (d z � 1)

: (6)
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Proof: We take equation (5) and multiply it by the monomial z

k+m�1

. Summing

up over all k � 1 yields

1

X

k=1

(d� 1) �

m�2

X

j=0

!

k+j

z

k+m�1

=

X

k=1

!

k+m�1

z

k+m�1

:

If we express this relation in terms of 
(z) then we obtain the following equation

(d� 1) �

m�2

X

j=0

z

m�1�j

 


(z)�

j

X

`=0

d

`

z

`

!

= 
(z) �

m�1

X

j=0

d

j

z

j

;

whose solution yields (6). �

For m = 2 and m = 3 we alulate the !

k

expliitely.

Example 3.8

For m = 2, we have that


(z) =

1 + z

1� (d� 1) � z

:

The geometri series expansion for the denominator yields

(1� (d� 1) � z)

�1

=

1

X

k=0

(d� 1)

k

z

k

;

thus, we have that


(z) = (1 + z) �

1

X

k=0

(d� 1)

k

z

k

= 1 +

1

X

k=1

d � (d� 1)

k�1

z

k

For the mass of the hain (E)

n

we obtain from

�

�

F

0

�

= 1=(d+ 1)

and, hene, for k � 1,

�

�

F

k

�

=

�

d� 1

d

�

k�1

,

(d+ 1)

11



that

�((E)

n

) = 2 �

1

X

k=1

�

�

F

2k

�

=

2

d+ 1

�

1

X

k=1

�

d� 1

d

�

2k�1

=

2 � (d� 1)

d � (d+ 1)

�

1

X

k=0

�

d� 1

d

�

2k

=

d � (d� 1)

(d+ 1) � (d� 1=2)

:

Example 3.9

For m = 3, we have that


(z) =

1 + z + z

2

d� (d� 1) � (1 + z + z

2

)

:

The zeros of the denominator are

�

�

=

(d� 1)�

p

(d� 1) � (d+ 3)

2 � (1� d)

;

thus, we have that


(z) =

1 + z + z

2

1� d

�

1

(z � �

+

) � (z � �

�

)

=

1 + z + z

2

(d� 1) � (�

+

� �

�

)

�

�

1

�

+

�

1

1� z=�

+

�

1

�

�

�

1

�z=�

�

�

=

1 + z + z

2

(d� 1) � (�

+

� �

�

)

�

1

X

k=0

�

�

�(k+1)

+

� �

�(k+1)

�

�

� z

k

= 1 + d z +

1

X

k=2

 

�

�(k+1)

+

� �

�(k+1)

�

+ �

�k

+

� �

�k

�

+ �

�(k�1)

+

� �

�(k�1)

�

(d� 1) � (�

+

� �

�

)

!

� z

k

:

With

�

�

F

0

�

= 1=(d

2

+ d+ 1)

and, for k � 2,

�

�

F

k

�

=

�

�(k+1)

+

� �

�(k+1)

�

+ �

�k

+

� �

�k

�

+ �

�(k�1)

+

� �

�(k�1)

�

(d

3

� 1) � d

k

� (�

+

� �

�

)

12



we obtain that

�((E)

n

) = 3 �

1

X

k=1

�(F

3k

)

=

3

d

3

(d

3

� 1) � (�

+

� �

�

)

�

 

(�

�2

+

+ �

�3

+

+ �

�4

+

) �

1

X

k=0

�

�

�3

+

d

3

�

k

�(�

�2

�

+ �

�3

�

+ �

�4

�

) �

1

X

k=0

�

�

�3

�

d

3

�

k

!

:

=

3

(d

3

� 1) � (�

+

� �

�

)

�

�

�

+

+ 1 + �

�1

+

d

3

�

3

+

� 1

�

�

�

+ 1 + �

�1

�

d

3

�

3

�

� 1

�

=

3 � (d� 1) � d � (d

4

+ d

3

+ d� 1)

3 d

6

+ 3 d

4

� 3 d

3

+ d

2

� 2 d+ 1

:

For the reader's onveniene we show how to onstrut the F

k

if one uses the

point of view of example 3.3. We de�ne m-words as �nite sequenes (x

1

: : : x

m

)

of m symbols from f0; : : : ; d � 1g and use the following notation. For eah

p 2 f0; : : : ; d

m

� 1g let p be the uniquely determined m-word (x

1

: : : x

m

) suh

that p =

P

m

i=1

x

i

d

m�i

. The fat that t 2 I

m

, i.e.

1=(d

m

� 1) < t < d=(d

m

� 1)

then orresponds to the following ondition on x 2 �

d

.

(111 : : :1 : : :) < x < (ddd : : :d : : :);

where we use the lexiographial order on �

d

. Thus we have that

x =

8

>

>

>

>

>

<

>

>

>

>

>

:

(1 : : :1

| {z }

k times

p : : : ); where k � 1 and 2 � p � d

m

� 1;

(p : : : ); where 2 � p � d� 1;

(d : : :d

| {z }

k times

p : : : ); where k � 1 and 0 � p � d� 1:

It turns out that we an desribe the sets F

k

entirely by onditions on the leading

d-adi digits of the x. From (2) we derive the following lemma whih gives the

equivalent to the hit markers in proposition 3.6.

Lemma 3.10

For ` � 1 we have that t 2 T

�1

(F

`�1

) n F

`

� F

0

if and only if the orresponding

x ful�ls the following ondition

(10 : : :) � x � (d[d� 1℄: : :) :

�

13



Corollary 3.11

Let T : X ! X be a dynamial system suh that the d-shift (�

d

; �

d

) is a mea-

surable fator. Then there exist (n; ")-Rokhlin sets with respet to the invariant

measure whih is indued by the pullbak of �

d

to X. �

The transfer to the setting of example 3.1 is easily done using the measurable

map z 7! exp(2�i � z).

An important speial ase is the invariant harmoni measure supported on the

onneted Julia-set J(f) of a moni polynomial f of degree d � 2. On obtains a

onjugation (by the Riemann map of CnK(f)) between

e

T

d

extended to CnB

1

(0)

and f on C nK(f), where K(f) denotes the set of points with bounded forward

orbit under iteration of f . The harmoni measure then is de�ned as the pullbak

of � (f. [PUZ89℄).

Corollary 3.12

There exist (n; ")-Rokhlin sets with respet to the harmoni measure of the on-

neted Julia sets of polynomials of degree d � 2. �
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