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Abstrat

Let P denote the p..f. self-similar set de�ned by mapping the regular pentagon into itself by

�ve self-similarities eah leaving one vertex �xed. We de�ne the anonial Markov hain for P

and denote its Markov operator by P . We show that its Martin boundaryM is homeomorphi

to P . The assoiated Dirihlet problem (P � I)f = 0 and f = g on P has a unique solution

suh that f(�) = P

�

for � 2 P . We obtain an integral representation for kernel funtions on P

(Poisson integral type).
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Chapter I. Preliminaries

x1. Introdution

Classial potential theory has its origins in Coulomb's law. It states that two

harges attrat eah other with a fore in the diretion of their onneting line

whose magnitude is proportional to the quotient of the produt of the two harges

and the square of their distane.

Another observation made in the 19th entury plays an important role in the

understanding of potential theory. In 1826 the botanist Brown observed that

mirosopi partiles, when left alone in a liquid, are seen to move onstantly in

the uid along errati paths. Muh later Einstein investigated this movement as

a statistial law whih desribes how a large number of partiles spread over a

period of time. His preditions were veri�ed in experiment.

The above two ideas are linked by the Laplae operator. The deep onnetion

between the two theories was �rst revealed in the papers of Doob [7℄, Ka [19℄,

Kakutani [20℄ and Knapp [23℄. This an be expressed by the fat that the har-

moni measures whih our in the solution of the Dirihlet problem are hitting

distributions for Brownian motion or, equivalently, that the positive hyperhar-

moni funtions for the Laplae equation are the exessive funtions of the Brow-

nian semigroup. This equivalene allows potential theoreti results and notions

to be given a probabilisti meaning.

Therefore, harmoni funtions play a entral role in the analysis to understand

the above-mentioned phenomena from a probabilisti viewpoint. These funtions

are haraterised in di�erent ways.

Let U be a bounded open domain in R

d

with boundary �U . The Laplae oper-

ator � :=

P

d

i=1

�

2

=�x

2

i

ats on twie di�erentiable funtions on U ; by de�nition,

its kernel onsists of the harmoni funtions . Apart from this desription of

harmoni funtions f , that is by �f � 0, it is a well known fat that harmoni

funtions an be haraterised by geometrially de�ned averaging properties.

Let a 2 U and denote by B(a; r)(� U) the open ball entred at a with radius

r > 0, the boundary �B(a; r) is the sphere S(a; r) of radius r > 0 entred at a.

Let �

a;r

denote the uniform probability measure on S(a; r). With this notation

we are able to de�ne the averaging operator H

a;r

on �

a;r

-integrable funtions

de�ned on B(a; r) by

H

a;r

f(x) =

Z

S(a;r)

r

2

� jx� aj

2

jx� yj

d

r

d�2

f(y)d�

a;r

(y):
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Then it is known that a funtion f 2 C

2

(U) is harmoni if and only if for all

a 2 U and r > 0; f j

B(a;r)

is a �xed point of H

a;r

.

The Dirihlet problem an be stated as follows. One has to �nd a ontinuous

funtion on U whih is harmoni in U and takes presribed boundary values on

�U , i.e. we have a boundary ondition f � g on �U where g 2 C(�U).

Let f : S(a; r) ! R be a Borel measurable funtion whih is bounded from

below.

(1) If f is �

a;r

-integrable, then H

a;r

f is harmoni on B(a; r).

(2) If f is ontinuous at z 2 S(a; r), then

lim

x!z

H

a;r

f(x) = f(z):

We briey disuss the onnetions with stohasti proesses.

Let X = (X

t

)

t>0

denote the Brownian motion on R

d

, i.e. it is given by the

transition density semigroup

p

t

(x; y) =

�

1

p

2�t

�

d

exp

�

�

jx� yj

2

2t

�

whih is onsidered as a Markov proess with respet to the distributions P

x

when

starting in x 2 R

d

.

Sine X has ontinuous paths, it leaves a bounded open domain U within a

�nite time �

u

, one it started in U . We set

�

U

(y) = infft > 0jX

t

(y) 2 U



g:

Let f be a bounded measurable funtion. Then the theory of Brownian motion

asserts that

H

0

U

f(x) :=

Z

fy2
j�

U

(y)<1g

f ÆX(�

U

(y))dP

x

(y)

is harmoni in U (in partiular, we also have that f 2 C

2

(U)).

Also, if f is ontinuous at z 2 fs 2 �U jP

s

(�

U

= 0) = 1g, then it follows that

lim

x!z

x2U

H

0

U

f(x) = f(z):

The geometri averaging property of harmoni funtions is not restrited to

the struture given by the Brownian motion or averaging on spheres, as well as

the abstrat properties of the Laplae operator are not restrited to its spei�

de�nition. In fat, this onept has a diret extension to Markov proesses. Let

P denote a Markov operator, and all a funtion f de�ned on the state spae

harmoni if Pf = f , so that the Laplaian is de�ned by �f = (P � I)f . In order

to turn this onept into a Dirihlet problem one needs to assign a boundary �E
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to E. Denker/Sato (see [6℄) solved this problem in the speial ase of the word

spae (f. Setion 2 of Chapter 3), that is,

Let E be a ountable set, alled word spae, and �E denote the Martin bound-

ary (assoiated in Dynkin [9℄) of E. For a real valued ontinuous funtion g on

�E,

�

([P � I℄f)(x) = 0; x 2 E

lim

x!�

f(x) = g(�); � 2 �E

has a unique solution f in the spae of harmoni uniformly ontinuous funtions

on E, given by

f(x) =

Z

�E

k(x; y)g(y)d�(y)

where � denotes some �nite measure and k kernel funtion.

Lately there have been made attempts to de�ne the onept of the Laplae

operator and the Dirihlet problem for p..f. self-similar sets.

A p..f. self-similar set K is de�ned by a family f

i

: R

d

! R

d

of ontrations

whih satisfy

K =

m

[

i=1

f

i

(K):

It is known (see [15,17℄) that a family f

i

always de�nes a unique self-similar set.

P..f. self-similar means that f

i

(K)\f

j

(K) is �nite for all 1 � i 6= j � m. Kigami

[21,22℄ has de�ned a method of geometri averaging in orresponding fratals of

this type and also desribed the Laplae operator. He showed that the Dirihlet

problem for the Poisson equation on K, whih onsists in, for given real valued

ontinuous funtion h on K, �nding a real valued ontinuous funtion f on K

suh that

�

�f = 0

f = h on �K;

has a unique solution f . Details will be given below.

On the other hand, a few years ago, Denker/Sato [4℄ have initiated the study

of the relation between one of the best known examples for a fratal set, the

Sierpi�nski gasket, and a Martin exit boundary; that is to say, the Sierpi�nski gasket

is represented as the Martin boundary of a Markov hain and harmoni funtions

have an integral representation using the Martin kernel of a ertain anonial

random walk and Dynkin's theorem [9℄. In addition, Denker and Koh [3℄ proved

a Poisson formula for bounded harmoni funtions on the Sierpi�nski gasket as an

appliation of [4℄. These results may be onsidered as a new approah in harmoni

analysis and Martin boundary theory.
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In this paper we onnet the extension to the mod 5 Markov hain and Denker-

Sato's approah. We show that the Pentakun (the self-similar Pentagon) sug-

gested by Kumagai agrees with the Martin boundary of an appropriately hosen

Markov hain.

x2. Martin boundaries

Here we reall some fats about Martin boundaries whih are needed and ex-

plain the bakground of our investigation.

It is one of the main goals to identify Martin boundaries (whih always exist [9℄).

Clearly, the Martin boundary may be trivial (i.e. onsisting of one point) whih

ours for a reurrent Markov Chain. One of the �rst examples of a nontrivial

Martin boundary is due to Ney and Spitzer [27℄ (see Woess [33℄). We begin by

desribing the neessary notation and de�nitions.

The Martin boundary for the state spae of a disrete Markov hain was intro-

dued by Doob [8℄, Dynkin [9℄, Feller [11℄ and Hunt [16℄, among others. In this

hapter, we use the notation of Dynkin [9℄ who uses Hunt's probabilisti approah.

We onsider a sub-Markovian kernel on a ountable set as starting point.

De�nition 1.1. Let E be a ountable set. We all p : E � E ! [0; 1℄ a

sub-Markovian Kernel, if

(1:1)

X

y2E

p(x; y) � 1

for every x 2 E.

De�nition 1.2. Let f be a non-negative funtion on E. The assoiated

Markov operator P is de�ned by

(1:2) (Pf)(x) =

X

y2E

p(x; y)f(y) (x 2 E)

and f is alled P -exessive if Pf � f and P -harmoni if Pf = f where we admit

the value +1.

Let � be a measure on E. The assoiated dual Markov operator P

�

is de�ned

by

(1:2)

0

(�P

�

)(y) =

X

x2E

�(x)p(x; y) (y 2 E)

and � is alled P

�

-exessive if �P

�

� � and P

�

-harmoni if �P

�

= P

�

.
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Iterating the proedure in (1.2) and (1:2)

0

we obtain

(1:3)

8

>

>

<

>

>

:

(P Æ P Æ � � � Æ P

| {z }

n-times

f)(x) =

X

y2E

p(n; x; y)f(y) x 2 E

(�P

�

Æ P

�

Æ � � � Æ P

�

| {z }

n-times

)(y) =

X

x2E

�(x)p(n; x; y) y 2 E;

where p(n; x; y) is de�ned reursively by

8

<

:

p(0; x; y) = Æ

x;y

p(n; x; y) =

X

z2E

p(n� 1; x; z)p(z; y);

where Æ

x;y

is the Kroneker delta.

Introduing the absorbing state 1 and setting

p(x;1) = 1�

X

y2E

p(x; y) and p(1;1) = 1

we may de�ne a Markov hain (X

n

)

n2N

0

with state spae E [ f1g where N

0

=

N [ f0g. Denote

T = minfn 2 N

0

jX

n

=1g:

Then fT =1g means that X

n

is never absorbed by 1.

De�nition 1.3. The Green funtion g on E is de�ned by

(1:4) g(x; y) =

1

X

n=0

p(n; x; y)

whenever the series onverges for all x; y 2 E.

In addition, we suppose that a �nite standard measure  on E (in the sense

that

P

y2E

(y) <1 and (z) > 0 for any z 2 E) exists. Then we de�ne

�(x) :=

X

y2E

(y)g(y; x) > 0

for eah x 2 E.

De�nition 1.4. The Martin kernel (for g and ) is de�ned by

(1:5) k(x; y) =

g(x; y)

�(y)

(x; y 2 E)

whenever g(x; y) and �(y) exist.
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We all a funtion l : E ! N suh that l(x

n

) ! 1 as n ! 1, an index or a

terminal moment.

In this hapter, we suppose that

(1:6) a(x) := sup

y2E

k(x; y) <1:

We de�ne a metri � on E by

(1:7) �(x; y) = j2

�l(x)

� 2

�l(y)

j+

X

z2E

jk(z; x)� k(z; y)j

a(z)f1 + jk(z; x)� k(z; y)jg

:

Using (1.7), we an assume that E is a metri spae (E; �) and an onstrut

the �-ompletion of E, denoted by E. Note that E is an open set. The next

Lemmas 1.5 and 1.6 will give a deeper insight into the topologial struture of E.

Lemma 1.5. The map k(z; �) is uniformly ontinuous in the metri �.

Proof. It is obvious from the fat that a sequene fx

n

g

n2N

� E is Cauhy

if and only if the sequene of real numbers fk(z; x

n

)g

n2N

is Cauhy.

By the above lemma, the map k(z; �) and the metri (1.7) extend to E, respe-

tively. Therefore, the extension is also denoted by k and �, respetively.

Lemma 1.6. E is a ompat metri spae.

Proof. Let fx

n

g

n2N

� E. First note that the sequene fk(z; x

n

)g

n2N

is

bounded for �xed z 2 E. Hene we an hoose subsequene fx

N(n)

g

n2N

� E

suh that fk(z; x

N(n)

)g

n2N

is Cauhy. Then by (1.7), it follows that fx

N(n)

g

n2N

is

Cauhy in E and thus E is sequentially ompat.

De�nition 1.7. E is alled the Martin spae assoiated to p. The boundary

of E, that is, �E = E n E

Æ

= E n E is alled Martin boundary and is denoted by

M . Note that M is a ompat metri spae.

The main theorem in this setion (proved in Dynkin [9℄) is the following.

Theorem 1.8. There exists a Borel set B � M , alled the spae of exits,

suh that the following holds:

(1) The funtion k(�; z) is P -harmoni on E for every z 2 B.
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(2) For every -integrable P -exessive funtion h � 0 there exists a unique

�nite measure �

h

on E suh that

h(x) =

Z

E[B

k(x; z)d�

h

(z) and �

h

(M nB) = 0:

(3) z 2 B if and only if �

k(�;z)

(x) = Æ

x;z

.

(4) For every -integrable P -harmoni funtion h � 0 there exists a unique

�nite measure �

h

on E suh that

h(x) =

Z

B

k(x; y)d�

h

(y):

(5) For every bounded P -harmoni funtion h � 0, �

h

is absolutely ontinuous

with respet to �

1

with bounded Radon-Nikodym derivative

d�

h

d�

1

suh that

h(x) =

Z

B

k(x; y)

d�

h

d�

1

(y)d�

1

(y)

lim

n!1

h(X

n

) =

d�

h

d�

1

(X

1

) Pr

x

-a.e. on fT =1g 8x 2 E

9X

1

3 h(x) = E

x

�

d�

h

d�

1

(X

1

)

�

8x 2 E:

Here fX

n

jn 2 N

0

g denotes the assoiated Markov hain and Pr

x

is the probability

measure onentrated on the paths starting from x given by

Pr

x

[X

0

= x

0

; X

1

= x

1

; :::; X

n

= x

n

℄ = Æ

x;x

0

p(x

0

; x

1

)p(x

1

; x

2

) � � � p(x

n�1

; x

n

):

(6) Statement (5) holds for every bounded P -harmoni funtion if P is onser-

vative, i.e. P1 = 1 (Reall that p is a Markovian kernel.).

(7) If f is a non-negative �

1

-integrable funtion on M then

(1:10) h

f

(x) :=

Z

B

k(x; y)f(y)d�

1

(y)

is P -harmoni on E and

f(X

1

) = lim

n!1

h

f

(X

n

) Pr

x

-a.e. on fT =1g 8x 2 E:

The identi�ation problem is investigated by many authors (see [28,33℄ et.).

We mention some aspets of the theory whih are onneted with our researh.

Random walks on in�nite graphs and (as a speial ase) groups are among the

most interesting topis. The de�nition of a random walk adopted here is that

of a time-homogeneous Markov hain whose transition probabilities are adapted

in some way (whih has to be spei�ed more preisely) to a graph struture of

the underlying disrete state spae. It goes without saying that a graph an be

assoiated with any time-homogeneous Markov hain on a ountable state spae,
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so that one ould say that this notion of random walks oinides with that of

arbitrary Markov hains.

We suppose that E is an in�nite graph; we onsider the non-oriented edge set

as a symmetri subset of E � E and write x � y if x and y are neighbours. The

degree of x 2 E, denoted by deg(x), is the number of neighbours of x. A path of

length n from x to y is a sequene x = x

0

; x

1

; :::; x

n

= y of distint verties suh

that x

i�1

� x

i

. We now assume that E is in�nite and loally �nite, i.e. for every

x; y 2 E there exists a �nite path from x to y. The distane (x; y) between two

verties x and y is the minimal length of a path onneting the two.

De�nition 1.9. A random walk on E is de�ned by a transition matrix

P = (p(x; y))

x;y2E

whih desribes the one-step transition of a Markov hain (X

n

)

n2N

0

with state

spae E.

To model X

n

, we onsider the trajetory spae E

N

0

, equipped with the usual

produt sigma-algebra arising from n-th projetion E

N

0

! E. This desribes the

random walk starting at x 2 E, if E

N

0

is equipped with the probability measure

Pr

x

given in Theorem 1.1.

It is lear that p(n; x; y) = Pr

x

[X

n

= y℄. This is the (x; y)-entry of P

n

, with

P

0

= I, the identity matrix over E.

We also assume that (X

n

)

n2N

0

is irreduible, that is, for every x; y 2 E there

exists some n 2 N

0

suh that p(n; x; y) > 0.

Irreduibility alone is, of ourse, not enough to say that the random walk is well

adapted to the underlying graph struture. Thus we now present some onditions

whih will serve to meet this requirement in some form.

The random walk has �nite range if fyjp(x; y) > 0g is a �nite set for every

x 2 E. In partiular, the random walk has bounded range if supf(x; y)jp(x; y) >

0g <1.

x3. Self-similar fratals

In this setion, we review the theory of self-similar sets and analysis in p..f

self-similar sets.

We begin with a desription of a general onstrution for fratals (see [15,17℄).

Examples are the Cantor set, the von Koh urve and the von Koh island.

Let D be a losed subset of R

d

. A mapping S : D ! D is alled a ontration

on D if there exists some  with 0 <  < 1 suh that jS(x)�S(y)j � jx�yj for all

x; y 2 D. If equality holds, then S maps sets to geometrially similar ones, and

we all S a similarity and  its similitude ratio. Aording to [10,15,17℄, families
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of ontrations, or iterated funtion shemes as they are sometimes alled, de�ne

unique non-empty ompat invariant sets. That is,

Theorem 1.10. [10,15,17℄ Let ff

i

g

1�i�m

be ontrations on D � R

d

. Then

there exists a unique non-empty ompat set K that satis�es

K =

m

[

i=1

f

i

(K):

Moreover, if we de�ne a transformation of f on the lass T of non-empty om-

pat sets by

f(K

0

) =

m

[

i=1

f

i

(K

0

);

then

(1:11) K =

1

\

n=1

f Æ f Æ � � � Æ f

| {z }

n-times

(K

0

)

for any K

0

2 T suh that f

i

(K

0

) � K

0

for eah i.

We all K a fratal set. In (1.11), taking K

0

as a simplex in R

d

and f

i

the

three appropriate similarities with similitude ratio 1=2, we have that K is the

Sierpi�nski gasket in R

d

originated from Sierpi�nski's work [30℄. The term was later

introdued by Mandelbrot [25℄.

Moreover, by the following de�nition we an understand that a self-similar

struture is an abstration of topologial features from the onepts of the self-

similar sets studied in [15,17℄.

Let K be a ompat metri spae, A a �nite set, A

1

the spae of one-

sided in�nite sequenes, W the word spae generated by A. For eah a 2 A, let

F

a

: K ! K be a ontinuous injetion and !

a

: A

1

! A

1

the map de�ned

by !

a

(w) = aw where a 2 A. Then (K;A; fF

a

g

a2A

) is said to be a self-similar

struture on K (or simply, K is a self-similar set) if there exists a ontinuous

surjetion � : A

1

! K satisfying

� Æ !

w

1

Æ !

w

2

Æ � � � Æ !

w

n

= F

w

1

Æ F

w

2

Æ � � � Æ F

w

n

Æ �

for any w

1

w

2

� � �w

n

2W. In partiular, F

;

is the identity map of K.

For fratal sets K the geometry has been investigated for quite some time. More

reently, one has investigated the onnetion between multifratal spetrum and

harmoni analysis [2℄.

Here, we are interested in the notion of Brownian motion in harmoni analysis.
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Goldstein [14℄ and Kusuoka [24℄ independently onstruted a Brownian motion

on the Sierpi�nski gasket. Barlow/Pelkins [1℄ obtained a remarkable estimate on its

transition probability density with respet to an appropriate Hausdor� measure.

This investigation may be viewed as the part orresponding to the point of view

originating from Brownian motion. In fat, Fukushima/Shima [13℄ and Shima [29℄

determined the eigenvalues of the Laplaian on Sierpi�nski gasket.

As mentioned before, Kigami [21℄ studied the problem from the averaging view-

point. He found the diret and natural de�nition of the Laplae operator on the

Sierpi�nski gasket as the limit of di�erene operators and then established a theory

whih solved the assoiated Dirihlet problem for the Poisson equation, Gauss-

Green's formula and so on. He later expanded the theory to a lass of self-similar

sets alled p..f. self-similar sets using the theory of Dirihlet forms [22℄.

We would like to mention that in [26℄ a suitable lass of "harmoni funtions" on

the Sierpi�nski gasket is onstruted suh that these funtions satisfy a minimum

priniple and Harnak's inequality. Furthermore, in [31℄ and [32℄, a dynamial

approah is taken using modi�ed Cayley graphs and dynamial zeta funtions.

There is also an approah using fratal di�erentiation [12℄. In addition, as an

appliation of [4℄, a Poisson formula for P -harmoni funtions is established by

appliation of the �bre dynamial property [3℄.

We onsider the disrete approximation of a p..f. self-similar set by averages

of its "boundary". The orresponding Markov hains are reurrent so that the

Martin boundaries are trivial. In order to get a non trivial Martin boundary it is

neessary to de�ne Markov hains more suitable to represent harmoni funtions

on the p..f. self-similar sets. This means that there exists a Markov hain with

disrete state spae suh that K is homeomorphi to the Martin boundary of the

Markov hain. Note that the oding � : A

1

! K is a oding by the spae of

ends, i.e. an equivalene lass of in�nite paths. In the Pentakun ase, two paths

are equivalent if they di�er by only �nitely many verties, and in general there

exists an analogous de�nition for the equivalene lasses. However, in general, it

is not neessary to onsider the spae of ends.

We introdue the Pentakun P.

Let p

i

2 R

2

for i = �2;�1; 0; 1; 2 in a Eulidean spae and

j

����!

p

�2

p

�1

j = j

���!

p

�1

p

0

j = j

��!

p

0

p

1

j = j

��!

p

1

p

2

j = j

���!

p

2

p

�2

j = 1

then

�(p

�2

; :::; p

2

) :=

0

[

j=�2

fxj

��!

p

�2

x = s

j

���!

p

�2

p

j

+ t

j

����!

p

�2

p

j+2

: s

j

; t

j

� 0; 0 � s

j

+ t

j

� 1g

is alled a regular simplex if the vetors

����!

p

�2

p

�1

and

���!

p

�2

p

2

are linearly independent.
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For �2 � i; j � 2, we de�ne the points

p

ij

=

3�

p

5

2

p

i

+

p

5� 1

2

p

j

and for �2 � ` � 2 we let

F

`

: �(p

�2

; :::; p

2

)! �(p

�2

; :::; p

2

)

denote the aÆne mappings onto the simplex generated by p

j`

and satisfying

F

`

(p

j

) = p

j`

. It is lear that p

`

is a �xed point of F

`

.

Let A = f�2;�1; 0; 1; 2g be the alphabet of �ve letters equipped with a module

struture with the additive operation � modulo 5. Let A

n

denote the olletion

of words onsisting of n symbols and A

1

the spae of one-sided in�nite sequenes.

In partiular, A

0

= f;g where ; denotes the empty word. Then, for w 2W[A

1

,

we de�ne the onjugate w

#

of w by

(1:12) w

#

=

�

w

0

(a� d=2)(a��d=2) if w = w

0

a(a� d)

k

; d 2 f�2; 2g

w otherwise

and an equivalene relation � on W [ A

1

by x = y or x

#

= y where W =

S

1

n=0

A

n

; k 2 N [ f1g; a 2 A and w

0

2W.

For x 2 A

n

we de�ne

F

x

=

�

F

x

1

Æ F

x

2

Æ � � � Æ F

x

n

if x = x

1

x

2

� � �x

n

identity if x = ;

and

�(x) = F

x

(�(p

�2

; :::; p

2

)):

The Pentakun P is de�ned as

P =

1

\

m=0

[

x2A

m

�(x):

It is lear that P is a ompat metri spae with the Eulidean distane in R

2

restrited to P.

It is known that for the Sierpi�nski gasket [4℄ and the Pentakun P (private

ommuniation of M. Denker, see the below theorem) the fratal K in (1.11) is

homeomorphi to a quotient spae A

1

=�.

Theorem 1.11. The spae A

1

=� and the Pentakun P are bi-Lipshitz

equivalent.
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 1

2

-1

-2

0

    

        

1(-1) 11

121(-2)

020(-2)

01

00

0(-1)

(-1)1

(-1)2(-1)(-2)

(-1)(-1)

(-1)0

(-2)0

(-2)(-1) (-2)1

(-2)(-2)

20

2(-1) 21

222(-2)

10

 (-2)2

Idea of proof. We introdue the metri

d(x; y) =

1

X

j=1

 

3�

p

5

2

!

j

(1� Æ

x

j

;y

j

)

on A

1

.

For x = x

1

x

2

� � � 2 A

1

de�ne x

n

= x

1

x

2

� � �x

n

and � : A

1

! P by

�(x) = lim

n!1

�(x

n

):

Sine

j�(x)� �(y)j � (2 +

p

5)d(x;y)

we have that � is Lipshitz ontinuous and onto. Moreover, �(x) = �(y) if and

only if x � y.
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Figure 1. P :Pentakun

De�ne � : (A

1

=�)! P by

�(~x) = �(x) for x 2 ~x 2 A

1

=� :

This map is well de�ned by the Lipshitz ontinuity of �. It is also a bijetion

by general topology theory.

De�ne for x; y 2 A

1

d

0

(x; y) =

�

d(x; y) if x 6� y

0 if x � y;
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and for ~x; ~y 2 A

1

=�

~

d(~x; ~y)

= inf

(

m

X

j=1

d

0

(w

j�1

; w

j

)

�

�

�

�

�

m 2 N : w

0

2 ~x; w

1

2 A

1

; :::; w

m�1

2 A

1

; w

m

2 ~y

)

:

By some disussions, we obtain the following properties:

(1)

~

d is a metri, that is, A

1

=� is metrizable with respet to the metri

~

d.

(2) j�(~x)� �(~y)j < (3 +

p

5)

~

d(~x; ~y) whenever ~x 6= ~y.

(3)

~

d(�

�1

(�); �

�1

(�

0

)) < (5�

p

5)j� � �

0

j whenever � 6= �

0

.

x4. Outline of the method

The main goal of this paper is to prove that P an be represented as the Martin

boundary of a anonial Markov hain whih is not irreduible and does not have

bounded range struture. This an be aomplished by de�ning the Martin kernel,

and in fat the n-step transition probabilities.

Consider a �nite alphabet A and the spaeW of �nite words. Suppose we have

already de�ned an equivalene relation � on A

1

, so that A

1

=� is homeomorphi

to the fratal. This extends toW by de�ning wa � vb if wa

1

� vb

1

(see (1.12)).

A natural Markov hain for the fratal is given by a Markov hain with state

spae W and positive transition probabilities. Furthermore, it has a following

properties:

� w is suessor of v or its equivalent (dual) word.

� Transition probabilities are uniformly.

Consider a fratal whih is totally disonneted. With N = #A we hoose the

transition probabilities p(w;wa) = 1=N . In this ase p(n;w;v) = N

�n

beause

there exists only one anestor for eah word u. In ase (A

1

=�)

�

=

Sierpi�nski

gasket there are exatly two anestors (exept "boundary" word u, see [4℄). Thus

there exists a simple formula for p(n;w;v). In the Pentakun ase we have a

mixture of both phenomena. We now give a desription of the estimate for the

Green funtion of the natural modulo 5 fratal Markov hains.

We denote by (X

n

)

n2N

0

the Markov hain with state spae W and stationary

transition probabilities

(1:13) p(w;wa) = p(w;w

#

a) =

8

>

<

>

:

1

10

if w 6= w

#

; a 2 A

1

5

if w = w

#

; a 2 A:
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The Green funtion g(v;w) on W is given by

(1:14) g(v;w) = p(l(w)� l(v);v;w) :=

X

u2W

p(l(w)� l(v)� 1;v;u)p(u;w)

where l(w) denotes the length of w and where g(v;w) = Æ

v;w

whenever l(v) =

l(w).

As a onsequene of the above de�nitions (1.13) and (1.14), we beame aware

that the key to the estimation of the Green funtion is the behaviour of the

di�erene of the last two di�erent letters in a word, in partiular, whether they

are 2 (or �2) or not. The investigation is based upon this interesting disovery.

Super�ially, the Pentakun is similar to the Sierpi�nski gasket as a geometri

struture in R

2

, but in reality they are radially di�erent in the behaviour of their

ritial sets as p..f. self-similar sets.

The struture of the Martin kernel k(v; �) (i.e. the normalised Green funtion

in rough sense, see (1.5)) is suh that it resembles the word spae metri. If

v ! �, then k(v; �) vanishes outside a neighbourhood U(v) also ontrating to

�. This immediately gives the �nal result that the Martin boundary is equal to

A

1

=�.

The organisation of this paper is as follows. In setion II we �rst give basi

de�nitions and de�ne the Martin funtion, alled the Martin kernel. Next, we

de�ne the onjugate area and the non-onjugate area for one �xed word and

derive the �rst result whih is the estimation of the Martin kernels of the natural

mod 5 Markov hain by onsidering the di�erene between two letters and the

determination of a p-partial for the anestor of a word. In setion III we show

that P is homeomorphi to the Martin boundary and also a spae of exits using

our result in setion II. Finally, as a orollary to [5,6℄, we desribe the assoiated

Dirihlet problem for P � I on W using Dynkin's Theorem (Theorem 1.8).
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Chapter II. The natural mod 5 Markov hain

x1. The Pentakun graph

In this setion we study the symboli representation of the Pentakun. We de�ne

the state spae for the natural Markov hain and derive basi properties.

De�nition 2.1. Let A be an alphabet of �ve letters whih are denoted

f�2;�1; 0; 1; 2g and let N

0

= N [ f0g. We onsider A as a module with addition

mod 5, denoted by �.

The following de�nitions give some basi onepts and notation.

(1) Let A

1

be the spae of one-sided in�nite sequenes.

(2) For n 2 N

0

, let A

n

be the olletion of words onsisting of n symbols. In

partiular, A

0

= f;g where ; denotes the empty word. Then the word spae is

de�ned by

W =

[

n2N

0

A

n

:

We onsider (W;O

1

) as a topologial spae where O

1

is a disrete topology.

(3) For n 2 N

0

[f1g, the length of a word is de�ned by l(x) = n where x 2 A

n

.

(4) The produt of two words is de�ned by xy = x

1

x

2

� � �x

n

y

1

y

2

� � � where

x = x

1

x

2

� � �x

n

2W and y = y

1

y

2

� � � 2W [ A

1

.

(5) Let w = w

1

w

2

� � �w

n

2W n f;g. Then we de�ne

w

�

=

�

w

1

w

2

� � �w

n

if n � 2

; if n = 1:

(6) For �xed p 2 A, we de�ne the funtion �

p

: A! A by �

p

(a) = a� p.

Next, we de�ne the onjugate of a word using a kind of involution.

De�nition 2.2. Let A = G

Æ

[G

#

where G

Æ

= f�1; 0; 1g and G

#

= f�2; 2g.

(1) Let w 2W [ A

1

. Then the onjugate w

#

of w is de�ned by

(2:1) w

#

=

�

w

0

�

d=2

(a)�

�d=2

(a)

k

if w = w

0

a�

d

(a)

k

; d 2 G

#

w otherwise;

where k 2 N [ f1g; a 2 A and w

0

2W.

For example, sine �2 = �

2

(1), we have

(w

0

1(�2)

k

)

#

= (w

0

1�

2

(1)

k

)

#

= w

0

�

1

(1)�

�1

(1)

k

= w

0

20

k
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whih implies

(w

0

1(�2)

k

)

##

= (w

0

20

k

)

#

= (w

0

2�

�2

(2)

k

)

#

= w

0

�

�1

(2)�

1

(2)

k

= w

0

1(�2)

k

:

(2) De�ne the funtion � of x 2W by

�(x) =

�

1 if x

#

6= x

2 if x

#

= x:

We de�ne the relation � on W [ A

1

by

x � y () x = y or x = y

#

:

The next lemma is an immediate onsequene.

Lemma 2.3. The relation � is an equivalene relation on W [ A

1

.

Hene we an de�ne the Modulo 5 fratal by A

1

=�.

For a �xed alphabet A = f�2;�1; 0; 1; 2g the Markov hain will be de�ned by

the following transition probabilities p(�; �) on W�W, so it has state spae W.

De�nition 2.4.

(1) We denote by (X

n

)

n2N

0

the Markov hain state spae W and de�ne the

transition probabilities

(2:2) p(w;wa) = p(w;w

#

a) =

�(w)

10

where w 2W and a 2 A.

We all X = (X

n

)

n2N

0

the natural Markov hain for the Pentakun.

(2) The n-th step transition probabilities on W are de�ned reursively by

(2:3)

8

<

:

p(0;v;w) = Æ

v;w

p(n;v;w) =

X

u2W

p(n� 1;v;u)p(u;w) v;w 2W; n 2 N :

Lemma 2.5. Let v;w 2 W. Then we have p(n;v;w) > 0 only if n =

l(w)� l(v).
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Proof. We shall prove this lemma by indution over n. If p(1;v;w) > 0,

then by (2.3) we have

P

u2W

p(0;v;u)p(u;w) > 0 whih ours only if

�

v = u

w = ua or u

#

a for some a 2 A

and hene l(w) � l(v) = l(u) + 1 � l(u) = 1. This argument also gives the

indution step.

De�nition 2.6. The non-oriented edge set as a symmetri subset ofW�W,

that is,

�

edges [x;y℄jx;y 2W : y = xa or y = x

#

a; a 2 A

	

is alled the Pentakun graph.

Let x;y 2W. A path from x to y is a olletion fu

1

;u

2

; :::;u

s

g �W suh that

l(u

i

) = l(u

i�1

) + 1;u

1

= x;u

s

= y and p(u

i

;u

i+1

) > 0 for all 1 � i < s. De�ne

n(x;y) =

�

the number of paths from x to y if p(l(y)� l(x);x;y) > 0

0 otherwise:

Lemma 2.7. The Pentakun graph is onneted, i.e. for every x;y 2 W

there exists a �nite path from x to y.

Proof. Obvious.

x2. The Green funtion and the Martin kernel

The objet of this setion is to estimate the Martin kernel de�ned in (2.5). The

key to the estimation is the di�erene between two letters and the determination

of a p-partial for the anestor of a word.

We �rst de�ne the Green funtion and the Martin kernel.

By Lemma 2.5, we have

1

X

n=0

p(n;v;w) = p(l(w)� l(v);v;w)

and hene by (1.4), the Green funtion on W is de�ned as follows.
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De�nition 2.9. The Green funtion on W is given by

(2:4) g(v;w) = p(l(w)� l(v);v;w)

and v is alled an anestor of w if g(v;w) > 0. In partiular, if g(v;w) > 0 and

l(w) � l(v) = k, then w is alled k-anestor of w. We denote the olletion of

k-anestors of w by An

k

[w℄.

Lemma 2.10. Let x;y 2W suh that l(x) � l(y) and let a 2 A. Then we

have

g(x;ya) =

1

10

fg(x;y) + g(x;y

#

)g:

Proof. Note that l(y) = l(y

#

) for all y 2W. By (2.2) and (2.4), we have

g(x;ya)

= p(l(y) + 1� l(x);x;ya)

=

X

u2W

p(l(y)� l(x);x;u)p(u;ya)

=

8

>

<

>

:

1

5

� p(l(y)� l(x);x;y) if y = y

#

1

10

� p(l(y)� l(x);x;y) +

1

10

� p(l(y

#

)� l(x);x;y

#

) if y 6= y

#

=

8

>

<

>

:

1

5

� g(x;y) if y = y

#

1

10

� g(x;y) +

1

10

� g(x;y

#

) if y 6= y

#

;

and hene the lemma follows.

Lemma 2.11. Let x 2W. Then we have g(;;x) = 1=5

l(x)

.

Proof. Using indution over l(x), the assertion follows immediately. In

the ase of l(x) � 1, the lemma is an immediate onsequene of (2.4). We now

assume g(;;x) = 1=5

l(x)

. Let y 2W suh that l(y) = l(x) and let a 2 A. Then

by Lemma 2.10 we have

g(;;ya) =

1

10

� g(;;y) +

1

10

� g(;;y

#

)

=

1

10

�

1

5

l(y)

+

1

10

�

1

5

l(y

#

)

=

1

5

l(y)+1

:

The lemma is proved.
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Referring [4℄, (1.5) and the above lemma, the Martin kernel onW is de�ned as

follows.

De�nition 2.12. The Martin kernel (for g) on W is de�ned by

(2:5) k(v;w) =

g(v;w)

g(;;w)

= 5

l(w)

g(v;w):

Note that if l(w) > l(v), then we have

k(v;w) = 5

l(w)�l(v)

 (v)g(v;w)

where  (v) := 5

l(v)

�(v).

The following proposition will play an important role throughout this paper.

It states that the anestor of an arbitrary �nite word lies in the neighbourhood

of its �rst letter.

Proposition 2.13. Let x;y

`

2 W suh that y

`

= xa

1

a

2

� � �a

`

a

`+1

where

a

j

2 A; j = 1; 2; :::; `; `+ 1 and ` 2 N . Then we have

(2:6) An

`

[y

`

℄ [An

`

[y

#

`

℄ �

[

p2G

Æ

fx�

p

(a

1

); (x�

p

(a

1

))

#

g:

Proof. We shall prove the proposition by indution over `. We set a

2

=

a

1

� d

1

. In the ase ` = 1, by (2.3) and (2.4),

(2:7)

0 < g(v;y

1

)

= p(1;v;y

1

)

= p(0;v;xa

1

)p(xa

1

;y

1

) + p(0;v; (xa

1

)

#

)p((xa

1

)

#

;y

1

)

whih implies An

1

[y

1

℄ = fxa

1

; (xa

1

)

#

g. On the other hand, by (2.1)

y

#

1

=

�

y

1

if d

1

2 G

Æ

x�

d

1

=2

(a

1

)�

�d

1

=2

(a

1

) if d

1

2 G

#

and by the same argument as above, we have

An

1

[y

#

1

℄ =

�

fxa

1

; (xa

1

)

#

g if d

1

2 G

Æ

fx�

d

1

=2

(a

1

); (x�

d

1

=2

(a

1

))

#

g if d

1

2 G

#

:

Sine d

1

=2 2 G

Æ

whenever d

1

2 G

#

, we obtain that (2.6) is true for ` = 1.

Assume that (2.6) is true for `. Then for a

`+2

2 A, by the indution hypothesis
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and (2.3),

An

`+1

[y

`+1

℄ = An

`

[y

`

℄ [An

`

[y

#

`

℄

�

[

p2G

Æ

fx�

p

(a

1

); (x�

p

(a

1

))

#

g

and

(2:8) An

`

[((xa

1

)a

2

a

3

� � �a

`+1

a

`+2

)

#

℄ �

[

p2G

Æ

f(xa

1

)�

p

(a

2

); ((xa

1

)�

p

(a

2

))

#

g:

Hene by (2.8), we have for a

2

= �

q

(a

1

)

An

`+1

[y

#

`+1

℄ =

[

z2An

`

[y

#

`+1

℄

An

1

[z℄

�

[

p2G

Æ

fAn

1

[xa

1

�

p�q

(a

1

)℄ [An

1

[(xa

1

�

p�q

(a

1

))

#

℄g

=

8

>

>

<

>

>

:

[

p2f0;qg

fx�

p

(a

1

); (x�

p

(a

1

))

#

g if q 2 G

Æ

[

p2G

Æ

fx�

p

(a

1

); (x�

p

(a

1

))

#

g if q 2 G

#

;

and thus the proposition follows.

Consequently, we have

g(xa;u)

=

X

z2An

k

[u℄

p(`� k;xa; z)p(k; z;u)

=

X

p2G

Æ

fg(xa;xa

1

a

2

� � �a

`�k

�

p

(a

`�k+1

))g(xa

1

a

2

� � �a

`�k

�

p

(a

`�k+1

);u)

+ g(xa; (xa

1

a

2

� � �a

`�k

�

p

(a

`�k+1

))

#

)g((xa

1

a

2

� � �a

`�k

�

p

(a

`�k+1

))

#

;u)g

for any u 2

S

q2G

Æ

fy

�

`

�

q

(a

`+1

); (y

�

`

�

q

(a

`+1

))

#

g and 1 � k � `.

This leads us to the de�nition of a p-partial and the neighbourhood of a word.

De�nition 2.14. Let x 2 W and a 2 A. Then a p-partial of xa is de�ned

by

U

p

(xa) := fx�

p

(a); (x�

p

(a))

#

g:

Furthermore, the neighbourhood of xa is de�ned by

U(xa) :=

[

p2G

Æ

fx�

p

(a); (x�

p

(a))

#

g =

[

p2G

Æ

U

p

(xa):
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For a

k

2 A; k 2 N we de�ne d

k

= a

k+1

� a

k

. d

k

is alled the di�erene between

letters a

k

and a

k+1

. Note that d

k

is also A-valued.

De�nition 2.15. Let x 2W suh that x = a

1

a

2

� � �a

`

a

`+1

where a

j

2 A; j =

1; 2; :::; `; `+1 and ` 2 N . The part of x from a

`

1

to a

`

1

+`

2

is alled onjugate area

(resp. non-onjugate area) if d

k

2 G

#

(resp. d

k

2 G

Æ

) for `

1

� 8k � `

1

+ `

2

� 1

where `

1

; `

2

2 f1; 2; :::; `g with `

1

+ `

2

� `+ 1.

x is always divided into two parts of area whenever x 2

S

1

n=2

A

n

. For example,

let x 2W suh that

x = 1(�2)(�1)2021 =: a

1

a

2

a

3

a

4

a

5

a

6

a

7

:

Sine d

1

; d

3

; d

4

; d

5

2 G

#

and d

2

; d

6

2 G

Æ

, we have that the onjugate area of x

is from a

1

to a

2

and a

3

to a

6

and that the non-onjugate area of x is from a

2

to

a

3

and a

6

to a

7

.

The following Lemma 2.16 is the ornerstone of our disussion in the onjugate

area. This lemma states that one fundamental di�erene between two letters is

the sequene in whih 2 and �2 appear alternately.

We set d

�

= d=2 for d 2 G

#

.

Lemma 2.16. Let x;y

`

2 W suh that y

`

= xa

1

a

2

� � �a

`

a

`+1

where a

j

2

A; j = 1; 2; :::; `; `+ 1; d

k

2 G

#

; k = 1; 2; :::; ` and ` 2 N .

(1) If d

k

= d

1

(�1)

k�1

, then we have

An

`

[y

`

℄ =

[

p2f0;d

�

1

(1�Æ

1;`

)g

U

p

(xa

1

)

and

An

`

[y

#

`

℄ =

[

p2fd

�

1

Æ

1;`

;d

�

1

(1�Æ

2;`

)g

U

p

(xa

1

):

Consequently we have

(2)

An

`

[y

`

℄ =

8

>

>

>

>

<

>

>

>

>

:

[

p2f0;d

�

1

(1�Æ

1;`

)g

U

p

(xa

1

) if ` = 1; 2

`�2

[

k=1

[

p2f0;d

�

1

;�d

�

1

Æ

d

k

;d

k+1

g

U

p

(xa

1

) if ` � 3
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and

An

`

[y

#

`

℄ =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

U

d

�

1

(xa

1

) if ` = 1

[

p2f0;�d

�

1

Æ

d

1

;d

2

g

U

p

(xa

1

) if ` = 2

[

p2f0;d

�

1

;�d

�

1

(Æ

d

2

;d

3

�Æ

d

1

;d

2

)g

U

p

(xa

1

) if ` = 3

`�3

[

k=1

[

p2f0;d

�

1

;�d

�

1

Æ

d

k

;d

k+1

;�d

�

1

(Æ

d

`�1

;d

`

�Æ

d

`�2

;d

`�1

)g

U

p

(xa

1

) if ` � 4:

Proof. We begin with the proof of (1). We only show the ase where ` � 3.

Note that y

3

= xa

1

�

d

1

(a

1

)a

1

�

d

1

(a

1

) whene y

#

3

= xa

1

�

d

1

(a

1

)�

d

�

1

(a

1

)�

�d

�

1

(a

1

). In

the ase ` = 3, by the same argument as that in (2.7), we an onstrut the

following diagram:

y

3

y

#

3

" - "

(xa

1

�

d

1

(a

1

)a

1

)

#

= xa

1

�

d

�

1

(a

1

)�

�d

1

(a

1

)

xa

1

�

d

1

(a

1

)a

1

xa

1

�

d

1

(a

1

)�

d

�

1

(a

1

)

" " %- "

xa

1

�

d

�

1

(a

1

) xa

1

�

d

1

(a

1

)

(xa

1

�

d

1

(a

1

))

#

= x�

d

�

1

(a

1

)�

�d

�

1

(a

1

)

" %- " %-

xa

1

(xa

1

)

#

x�

d

�

1

(a

1

) (x�

d

�

1

(a

1

))

#

(2:9) transition diagram for ` = 3; d

1

= �2 and d

2

= �2;

whih orresponds to (1) for ` = 3. Assume that (1) is true for `(� 3). Then by

the indution hypothesis,

An

`

[xa

2

a

3

� � �a

`+1

a

`+2

℄ = An

`

[(xa

2

a

3

� � �a

`+1

a

`+2

)

#

℄ =

[

p2f0;d

�

2

g

U

p

(xa

2

);

so that we have

An

`

[y

`+1

℄ = An

`

[y

#

`+1

℄ =

[

p2f0;d

�

2

g

U

p

(y

1

);

and sine d

1

= �d

2

and

An

`+1

[y

`+1

℄ = An

1

[An

`

[y

`+1

℄℄;
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we have

An

`+1

[y

`+1

℄ = An

`+1

[y

#

`+1

℄

=

[

z2fy

1

;y

#

1

;y

�

1

�

d

�

2

(a

2

);(y

�

1

�

d

�

2

(a

2

))

#

g

An

1

[z℄

=

[

z2fy

�

1

�

d

1

(a

1

);y

�

1

�

d

�

1

(a

1

);x�

d

�

1

(a

1

)�

�d

�

1

(a

1

)g

An

1

[z℄

=

[

p2f0;d

�

1

g

U

p

(xa

1

)

whih implies (1). By (1), for the remaining parts of the proof it suÆes to show

that if there exists p 2 f1; 2; :::; `� 2g suh that d

p

= d

p+1

, then we have

(2:10) An

`

[y

`

℄ = U(xa

1

):

We assume ` � 3. In the ase ` = 3 and d

1

= d

2

, by the disussion following

(2.9), we obtain the following diagram:

y

3

= xa

1

�

d

1

(a

1

)�

�d

�

1

(a

1

)�

d

�

1

(a

1

)

% -

xa

1

�

d

1

(a

1

)�

�d

�

1

(a

1

)

(xa

1

�

d

1

(a

1

)�

�d

�

1

(a

1

))

#

= xa

1

�

�d

1

(a

1

)�

d

�

1

(a

1

)

" - % "

(xa

1

�

d

1

(a

1

))

#

= x�

d

�

1

(a

1

)�

�d

�

1

(a

1

)

xa

1

�

d

1

(a

1

) xa

1

�

�d

1

(a

1

)

(xa

1

�

�d

1

(a

1

))

#

= x�

�d

�

1

(a

1

)�

d

�

1

(a

1

)

%- " %- " %-

x�

d

�

1

(a

1

) (x�

d

�

1

(a

1

))

#

xa

1

(xa

1

)

#

x�

�d

�

1

(a

1

) (x�

�d

�

1

(a

1

))

#

transition diagram for ` = 3; d

1

= d

2

= �2:

Suppose that (2.10) is true for ` (� 3). Then, by the indution hypothesis and

(1), we have that if d

1

= d

2

; d

k

= d

2

(�1)

k�2

(k � 2), then

An

`

[y

`+1

℄ =

[

p2f0;d

�

2

g

U

p

(y

1

)

and if d

k

0

= d

k

0

+1

for some k

0

2 f2; 3; :::; `� 1g, then

An

`

[y

`+1

℄ = U(y

1

):

In either ase, we obtain An

`+1

[y

`+1

℄ = U(xa

1

) and thus the lemma follows.

The next lemma gives an anestor of the non-onjugate area.
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Lemma 2.17. Let x;y

`

2 W suh that y

`

= xa

1

a

2

� � �a

`

a

`+1

where a

j

2

A; j = 1; 2; :::; `; `+ 1; d

k

2 G

Æ

; k = 1; 2; :::; ` and ` 2 N . Then we have

(1) An

`

[y

`

℄ = An

`

[y

#

`

℄ = U

0

(xa

1

):

(2) An

`

[(y

�

`

�

d

`

(a

`+1

))

#

℄ =

8

>

<

>

:

[

p2fd

1

Æ

1;`

;d

1

g

U

p

(xa

1

) if d

k

� d

1

( 6= 0)

U

0

(xa

1

) otherwise:

Proof. We only have to show (2). By the disussion following (2.9), we

know that the lemma holds for ` = 1; 2.

For ` � 2 and d

k

� d

1

( 6= 0), we assume

An

`

[(y

�

`

�

d

`

(a

`+1

))

#

℄ =

[

p2f0;d

1

g

U

p

(xa

1

)

whih implies for a

`+2

= �

d

`+1

(a

`+1

)

An

`

[(xa

2

a

3

� � �a

`

a

`+1

�

d

`+1

(a

`+2

))

#

℄ =

[

p2f0;d

2

g

U

p

(xa

2

)

and therefore we have

An

`

[(y

`+1

�

d

`+1

(a

`+2

))

#

℄ = fy

1

;y

�

1

�

d

2

(a

2

); (y

�

1

�

d

2

(a

2

))

#

g

= fy

1

;y

�

1

�

2d

1

(a

1

);x�

d

1

(a

1

)�

�d

1

(a

1

)g:

In all other ases, we may assume that there exists some p 2 f1; 2; :::; `g suh

that

�

d

p

= f�d

p+1

; 0g

d

k

� d

p+1

(p+ 1 � k � `)

where d

p+1

2 f�1; 1g. Then we obtain

An

`�p

[(y

�

`

�

d

`

(a

`+1

))

#

℄ =

[

q2f0;d

p+1

g

U

q

(y

p

)

=

�

fy

�

p

a

p

; (y

�

p

a

p

)

#

;y

�

p

�

d

p+1

(a

p

)g if d

p

= 0

fy

�

p

a

p

; (y

�

p

a

p

)

#

;y

�

p

�

�d

p+1

(a

p

)g if d

p

= �d

p+1

:

and hene the lemma follows.

Next, we shall alulate the Martin kernel on W. In the last two lemmas, we

have already onstruted anestors. Hene the following disussion assumes their

existene.

Lemma 2.18. Let x;y

`

2 W suh that y

`

= xa

1

a

2

� � �a

`

a

`+1

where a

j

2

A; j = 1; 2; :::; `; `+1; d

k

= d

1

(�1)

k�1

; d

1

2 G

#

; k = 1; 2; :::; ` and ` 2 N . Then we
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have for q 2 G

Æ

and v 2 U

q

(xa

1

)

(1) k(v;y

`

) =

 (v)

6

�

1 + '(d

�

1

q � 1) +

2'(d

�

1

q + 1)(�1)

`

2

`

�

:

(2) k(v;y

#

`

) =

 (v)

6

�

1 + '(d

�

1

q � 1)�

4'(d

�

1

q + 1)(�1)

`

2

`

�

:

(3) k(v; (y

�

`

�

d

�

`

(a

`+1

))

#

)

=

 (v)

6

�

1 + '(d

�

1

q � 1) +

f3� (�1)

`

g'(d

�

1

q + 1) + 6'(d

�

1

q)

2

`

�

:

Proof. By (1) of Lemma 2.16 we have

An

`

[y

`

℄ [An

`

[y

#

`

℄ =

[

p2f0;d

�

1

g

U

p

(xa

1

):

It is easy to hek that the following reursion formula holds

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

k(v;y

1

) =

 (v)

6

f1 + '(d

�

1

q � 1)� '(d

�

1

q + 1)g

k(v;y

#

1

) =

 (v)

6

f1 + '(d

�

1

q � 1) + 2'(d

�

1

q + 1)g

k(v;y

`+1

) =

1

2

fk(v;y

`

) + k(v;y

#

`

)g

k(v;y

#

`+1

) = k(v;y

`

)

and we have proved (1) and (2). Sine d

`�1

= d

`

� d

�

`

, we have by (2) of Lemma

2.14

An

`

[(y

�

`

�

d

�

`

(a

`+1

))

#

℄ =

8

>

<

>

:

[

p2f�d

�

1

;�d

�

1

(1�Æ

2;`

)g

U

p

(xa

1

) if ` = 1; 2

U(xa

1

) if ` � 3:

A straightforward omputation using (1) and (2) yields

8

>

<

>

:

k(v; (y

�

1

�

d

�

1

(a

2

))

#

) =

 (v)

6

f1 + '(d

�

1

q + 1) + 2'(d

�

1

q)g

k(v; (y

�

`+2

�

d

�

`+2

(a

`+3

))

#

) =

1

4

fk(v; (y

�

`

�

d

�

`

(a

`+1

))

#

) + 1g

and hene the lemma is proved.

Heneforth we will take G

Æ

as the representative element of Z=3Z when no

onfusion an arise.
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De�ne the map ' : G

Æ

! G

Æ

by '(`) := �`. Sine the projetion Z onto

G

Æ

is well-de�ned, we may assume that the domain of ' is Z. For example,

'(2) = '(�1) = 1; '(�5) = '(1) = �1, et.

We now de�ne the sequenes for words of �xed length.

Let k

(i)

j

; `

(i)

j

2 N

0

; j = 1; 2; :::; p; p 2 N ; m

i

2 N

0

and i 2 N

0

. Con�ning ourselves

to Martin kernels, we assoiate the quantities K

i

; L

i

;L

i

;L; �

m

i

; �

+

m

i

, �

�

m

i

; �

m

i

and

�

i;j;r

. They are de�ned as follows:

(2:11)

� K

i

(p) =

P

p

j=1

k

(i)

j

;

� L

i

(p) =

P

p

j=1

`

(i)

j

with the onvention L

i

(0) = 0;

� L

i

= K

i

(L

i

(m

i

) + 1);

� L(p) =

P

p

i=1

L

i

with the onvention L(0) = 0;

� �

m

i

(q) = (�1)

k

(i)

L

i

(m

i

)+1

	

(i)

m

i

('(�q � 1)(�1)

k

(i)

1

));

� �

�

m

i

(q) = 	

(i)

m

i

('(�q � 1)(�1)

k

(i)

1

� (�1)

m

i

);

� �

m

i

(q) = �

+

m

i

(q)� �

�

m

i

(q);

� �

i;j;r

(q) = '(j +	

(i)

r�1

('((�1)

r

+ '(q + 1)(�1)

k

(i)

1

)))

where q 2 G

Æ

and where

	

(i)

m

i

(x) =

�

x if m

i

= 0

'(`

(i)

m

i

+ '(`

(i)

m

i

�1

+ � � �+ '(`

(i)

2

+ '(`

(i)

1

+ x)) � � � )) if m

i

2 N :

Let a

j

2 A; j = 1; 2; :::;L(p);L(p) + 1 where L(p) is de�ned in (2.11). Then we

de�ne H

p

p�1

= fqjL(p� 1) + 1 � q � L(p)� 1 : d

q

= d

q+1

g.

Lemma 2.19. Let k

(0)

j

; `

(0)

j

; K

0

; L

0

and L

0

be de�ned as in (2.11). Let

x;y 2 W satisfying y = xa

1

a

2

� � �a

L

0

a

L

0

+1

where a

k

2 A; k = 1; 2; :::;L

0

;L

0

+

1; d

k

2 G

#

; k = 1; 2; :::;L

0

and `

(0)

1

6= 0. Moreover, we suppose that

H

1

0

= fK

0

(1); K

0

(2); :::; K

0

(L

0

(m

0

))g

and if m

0

� 2, then d

K

0

(L

0

(t�1)+1)

6= d

K

0

(L

0

(t)+1)

whenever t = 1; 2; :::; m

0

� 1.

Then we have for q 2 G

Æ

and v 2 U

q

(xa

1

)

(1) k(v;y) =

 (v)

6

0

�

1 + '(d

�

1

q � 1) +

m

0

X

r=1

`

(0)

r

X

j=1

�

0;j;r

(d

�

1

q)

2

K

0

(L

0

(r�1)+j)

�

2�

m

0

(d

�

1

q)

2

L

0

1

A

:
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(2) k(v;y

#

) =

 (v)

6

0

�

1 + '(d

�

1

q � 1) +

m

0

X

r=1

`

(0)

r

X

j=1

�

0;j;r

(d

�

1

q)

2

K

0

(L

0

(r�1)+j)

+

4�

m

0

(d

�

1

q)

2

L

0

1

A

:

(3) k(v; (y

�

�

d

�

L

0

(a

L

0

+1

))

#

)

=

 (v)

6

0

�

1 + '(d

�

1

q � 1) +

m

0

X

r=1

`

(0)

r

X

j=1

�

0;j;r

(d

�

1

q)

2

K

0

(L

0

(r�1)+j)

+

�

m

0

(d

�

1

q) + 3�

m

0

(d

�

1

q)

2

L

0

1

A

:

Proof. De�ne

K

r#

j

=

1

 (v)

k(v; (xa

1

a

2

� � �a

K

0

(j)

�

r

(a

K

0

(j)+1

))

#

)

K

r

j

=

1

 (v)

k(v;xa

1

a

2

� � �a

K

0

(j)

�

r

(a

K

0

(j)+1

))

K

j

=

t

[K

d

�

K

0

(j)

#

j

;K

0

j

;K

0#

j

℄

where

t

X is the transposed matrix of X.

Note that (2.1) and d

K

0

(j)

� (�d

�

K

0

(j)

) 2 G

Æ

whene K

�d

�

K

0

(j)

#

j

= K

0

j

. Hene by

Lemma 2.18, we have for 1 � j � L

0

(m

0

)

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

K

d

�

K

0

(j+1)

#

j+1

=

1

6

�

1�

(�1)

k

(0)

j+1

+3

2

k

(0)

j+1

�

K

d

�

K

0

(j)

#

+

�

1

2

+

1

2

k

(0)

j+1

�

K

0

j

+

1

6

�

2 +

(�1)

k

(0)

j+1

�3

2

k

(0)

j+1

�

K

0#

j

K

0

j+1

=

1

6

�

1 +

2(�1)

k

j+1

2

k

(0)

j+1

�

K

d

�

K

0

(j)

#

j

+

1

2

K

0

j

+

1

3

�

1�

(�1)

k

(0)

j+1

2

k

(0)

j+1

�

K

0#

j

K

0#

j+1

=

1

6

�

1�

4(�1)

k

j+1

2

k

(0)

j+1

�

K

d

�

K

0

(j)

#

j

+

1

2

K

0

j

+

1

3

�

1 +

2(�1)

k

(0)

j+1

2

k

(0)

j+1

�

K

0#

j

;

it follows

t

[K

d

�

K

0

(j+1)

#

j+1

;K

0

j+1

;K

0#

j+1

℄ =

�

A

j+1

2

k

(0)

j+1

+B

�

t

[K

d

�

K

0

(j)

#

j

;K

0

j

;K

0#

j

℄

where

(2:12) A

j+1

=

2

6

6

6

4

�

(�1)

k

(0)

j+1

+3

6

1

(�1)

k

(0)

j+1

�3

6

(�1)

k

(0)

j+1

3

0 �

(�1)

k

(0)

j+1

3

�

2(�1)

k

(0)

j+1

3

0

2(�1)

k

(0)

j+1

3

3

7

7

7

5

and B =

1

6

2

4

1 3 2

1 3 2

1 3 2

3

5

;
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so that we obtain

K

L

0

(m

0

+1)

=

L

0

(m

0

)

Y

j=1

 

A

L

0

(m

0

)+2�j

2

k

(0)

L

0

(m

0

)+2�j

+B

!

K

1

:

Now de�ne the matries M

1

and M

2

for the ase where k

(0)

j+1

is odd and even in

(2.12) respetively, that is,

M

1

=

2

4

�1=3 1 �2=3

�1=3 0 1=3

2=3 0 �2=3

3

5

and M

2

=

2

4

�2=3 1 �1=3

1=3 0 �1=3

�2=3 0 2=3

3

5

:

Note that by some linear algebra one an show

M

n�1

1

=

1

3

2

4

2'(n+ 1)� '(n) 2'(n)� '(n� 1) 2'(n� 1)� '(n+ 1)

'(n� 1) '(n+ 1) '(n)

�2'(n� 1) �2'(n + 1) �2'(n)

3

5

and for j 2 f1; 2; 3g

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(M

`

(0)

s

�1

1

M

2

M

`

(0)

s�1

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

)

1j

=

2

3

	

(0)

s

('(j � 1)� (�1)

s

)

�

1

3

	

(0)

s

('(j � 1))

(M

`

(0)

s

�1

1

M

2

M

`

(0)

s�1

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

)

2j

=

1

3

	

(0)

s

('(j � 1) + (�1)

s

)

(M

`

(0)

s

�1

1

M

2

M

`

(0)

s�1

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

)

3j

= �

2

3

	

(0)

s

('(j � 1) + (�1)

s

)

where X

ij

is the (i; j)-entry of X.

Suppose that m

0

� 2 and `

(0)

1

� 2. Sine A

j+1

B = 0; B

2

= B;M

1�1

1

M

2

= M

2

and for j � 2

k

(0)

j

=

�

even if j = L

0

(1) + 1; L

0

(2) + 1; L

0

(3) + 1; :::; L

0

(m

0

� 1) + 1

odd otherwise;

we have

(2:13)

L

0

(m

0

)

Y

j=1

 

A

L

0

(m

0

)+2�j

2

k

(0)

L

0

(m

0

)+2�j

+B

!

= B +

`

(0)

1

X

j=2

BM

j�1

1

2

k

(0)

2

+���+k

(0)

j

+

m

0

�1

X

s=1

`

(0)

s+1

X

j=1

BM

j�1

1

M

2

M

`

(0)

s

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

2

k

(0)

2

+���+k

(0)

L

0

(s)+j

+

A

L

0

(m

0

)+1

M

`

(0)

m

0

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

2

k

(0)

2

+���+k

(0)

L

0

(m

0

)+1

:
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We have already onstruted K

1

in Lemma 2.18 and thus the result follows.

Similar alulations show the remaining part of the lemma.

Here is an example of Lemma 2.19 with

y = x1(�2)1(�2)1(�1)1(�1)1(�2)0(�2)1(�2)0(�2)1(�1):

Sine d

4

= d

5

= �2, we have by (2) of Lemma 2.16

An

17

[y℄ = U(x1) = fx1; (x1)

#

;x0; (x0)

#

;x2; (x2)

#

g;

so that by (2.11) we an set

8

>

<

>

:

k

(0)

1

= 4; k

(0)

2

= 4; k

(0)

3

= 1; k

(0)

4

= 2; k

(0)

5

= 2; k

(0)

6

= 2; k

(0)

7

= 1; k

(0)

8

= 1;

`

(0)

1

= 1; `

(0)

2

= 2; `

(0)

3

= 1; `

(0)

4

= 1; `

(0)

5

= 2;

H

1

0

= fK

0

(1); K

0

(2); :::; K

0

(L

0

(5))g = f4; 8; 9; 11; 13; 15; 16g

and obtain

k(x1;y) = k((x1)

#

;y)

=

 (x1)

6

0

�

2 +

5

X

r=1

`

(0)

r

X

j=1

�

0;j;r

(0)

2

K

0

(L

0

(r�1)+j)

�

2�

5

(0)

2

17

1

A

=

 (x1)

6

 

2 +

1

X

j=1

'(j � 1)

2

K

0

(j)

+

2

X

j=1

'(j � 1)

2

K

0

(1+j)

+

1

X

j=1

'(j + 1)

2

K

0

(3+j)

+

1

X

j=1

'(j)

2

K

0

(4+j)

+

2

X

j=1

'(j + 1)

2

K

0

(5+j)

+

2

2

K

0

(7+1)

!

=

 (x1)

6

�

2�

1

2

K(3)

+

1

2

K(4)

�

1

2

K(5)

+

1

2

K(6)

+

2

2

K(8)

�

=

 (x1)

6

�

2�

1

2

9

+

1

2

11

�

1

2

13

+

1

2

15

+

2

2

17

�

=

 (x1)

6

�

261942

2

17

=

 (x1)� 43657

2

17

:

A similarly alulation yields

k(x2;y) = k((x2)

#

;y) =

 (x2)�20565

2

17

k(x0;y) = k((x0)

#

;y) =

 (x0)�1314

2

17

:
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Lemma 2.20. Let x;y

`

2 W suh that y

`

= xa

1

a

2

� � �a

`

a

`+1

where a

j

2

A; j = 1; 2; :::; `; `+ 1; d

k

2 G

Æ

; k = 1; 2; :::; ` and ` 2 N. Then we have for q 2 G

Æ

and v 2 U

q

(xa

1

)

(1) k(v;y

`

) = k(v;y

#

`

) =

Æ

q;0

 (v)

2

:

(2) k(v; (y

�

`

�

d

`

(a

`+1

))

#

) =

8

>

>

<

>

>

:

 (v)

�

Æ

0;q

2

+

�(q)

2

`

�

if d

k

� d

1

( 6= 0)

Æ

0;q

 (v)

2

otherwise

where �(q) = '(d

1

q + 1).

Proof. We only have to show (2) in the ase where d

k

� d

1

( 6= 0) for

1 � k � `. Note that

An

`

[(y

�

`

�

d

`

(a

`+1

))

#

℄ =

[

p2fd

1

Æ

1;`

;d

1

g

U

p

(xa

1

)

by Lemma 2.15. Let a

`+2

2 A suh that a

`+2

= a

`+1

� d

1

. It is easy to hek that

the following reursion formula holds

8

<

:

k(v; (y

�

1

�

d

1

(a

2

))

#

) =

 (v)

2

(Æ

0;q

+ �(q))

2 � k(v; (y

�

`+1

�

d

`+1

(a

`+2

))

#

) = k(v; (y

�

`

�

d

`

(a

`+1

))

#

) + k(v;y

`

):

This together with the fat that k(v;y

`

) = Æ

0;q

 (v)=2 implies the result.

x3. The estimation of the Martin kernel

In this setion we shall prove the following theorem.

Theorem A. Let k

(i)

j

; `

(i)

j

; K

i

; L

i

;L

i

and L be as in (2.11). Let x;y 2 W

satisfying

y = xa

1

a

2

� � �a

L(2N+1)

a

L(2N+1)+1

where a

k

2 A; k = 1; 2; :::;L(2N + 1);L(2N + 1) + 1 and N 2 N .

(1) If v 62 U(xa

1

) (i.e. v 2 U

p

(xa

1

); p 2 G

#

), then

k(v;y) = k(v;y

#

) = 0:

(2) If v 2 U(xa

1

), then the Martin kernel k has the form:
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� If d

1

2 G

#

, then there exist sequenes

� s

j

= s

j

(v;y) 2 G

Æ

with

P

v2U(xa

1

)

s

j

= 0

� p

j

=

�

p

1

(v;y) with 0 � p

1

� 3 and

P

v2U(xa

1

)

p

1

= 6 if j = 1

p

j

(y) with 0 � p

j

� 1 if 2 � j � N + 1

and � 2 G

Æ

suh that

k(v;y) =

 (v)

6

 

p

1

+

N+1

X

j=2

s

1

s

2

� � � s

j�1

2

L(2j�2)

p

j

+

6s

1

s

2

� � � s

N

�

2

L(2N+1)+1

!

k(v;y

#

) =

 (v)

6

 

p

1

+

N+1

X

j=2

s

1

s

2

� � � s

j�1

2

L(2j�2)

p

j

�

6s

1

s

2

� � � s

N

�

2

L(2N+1)+1

!

:

� If d

1

2 G

Æ

, then there exist sequenes

� s

j

2 G

Æ

� p

j

= p

j

(y) with 0 � p

j

� 1

� t = t(v) 2 G

Æ

with

P

v2U(xa

1

)

t = 0

and � 2 G

Æ

suh that

k(v;y) =

 (v)

6

(

3Æ

0;q

+ t(v)

 

N+1

X

j=1

s

1

s

2

� � � s

j�1

2

L(2j�2)

p

j

+

6s

1

s

2

� � � s

N

�

2

L(2N+1)+1

!)

k(v;y

#

) =

 (v)

6

(

3Æ

0;q

+ t(v)

 

N+1

X

j=1

s

1

s

2

� � � s

j�1

2

L(2j�2)

p

j

�

6s

1

s

2

� � � s

N

�

2

L(2N+1)+1

!)

:

We give the exat formula in the following proposition.

Proposition 2.21. Let k

(i)

j

; `

(i)

j

; K

i

; L

i

;L

i

and L be as in (2.11). Let x;y; z 2

W satisfying

y = xa

1

a

2

� � �a

L(2N)

a

L(2N)+1

and z = xa

1

a

2

� � �a

L(2N+1)

a

L(2N+1)+1

where a

k

2 A; k = 1; 2; :::;L(2N + 1);L(2N + 1) + 1 and N 2 N .

Moreover, we suppose that if d

k

2 G

#

for L(i� 1) + 1 � 8k � L(i), then

H

i

i�1

= fK

i

(1) + L(i� 1); K

i

(2) + L(i� 1); :::; K

i

(L

i

(m

i

)) + L(i� 1)g

with the onvention H

i

i�1

= ; whenever m

i

= 0.

(1) If d

k

2

�

G

Æ

for L(2t� 1) + 1 � k � L(2t); t = 1; 2; :::; N

G

#

for L(2t� 2) + 1 � k � L(2t� 1); t = 1; 2; :::; N;N + 1;

then there exists a sequene fs

(q)

j

g

j

� G

Æ

satisfying

P

q2G

Æ

s

(q)

1

s

(q)

2

� � � s

(q)

j

= 0 for
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any j suh that

k(v;y) = k(v;y

#

)

=

8

>

>

>

<

>

>

>

:

 (v)

6

p

1

(d

�

1

q) if N = 1

 (v)

6

 

p

1

(d

�

1

q) +

N

X

j=2

s

(q)

1

s

(q)

2

� � � s

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

!

if N � 2;

k(v; z)

=

 (v)

6

 

p

1

(d

�

1

q) +

N+1

X

j=2

s

(q)

1

s

(q)

2

� � � s

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

+

6s

(q)

1

s

(q)

2

� � � s

(q)

N

�

m

2N+1

(1)

2

L(2N+1)+1

!

;

k(v; z

#

)

=

 (v)

6

 

p

1

(d

�

1

q) +

N+1

X

j=2

s

(q)

1

s

(q)

2

� � � s

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

�

6s

(q)

1

s

(q)

2

� � � s

(q)

N

�

m

2N+1

(1)

2

L(2N+1)+1

!

for q 2 G

Æ

and v 2 U

q

(xa

1

).

(2) If d

k

2

�

G

#

for L(2t� 1) + 1 � k � L(2t); t = 1; 2; :::; N

G

Æ

for L(2t� 2) + 1 � k � L(2t� 1); t = 1; 2; :::; N;N + 1;

then there exists a sequene fs

j

g

j

� G

Æ

suh that

k(v;y) =

 (v)

6

(

3Æ

0;q

+ �(q)

 

N

X

j=1

s

1

s

2

� � � s

j

p

2j

(1)

2

L(2j�1)

+

6s

1

s

2

� � � s

N

�

m

2N

(1)

2

L(2N)+1

!)

;

k(v;y

#

) =

 (v)

6

(

3Æ

0;q

+ �(q)

 

N

X

j=1

s

1

s

2

� � � s

j

p

2j

(1)

2

L(2j�1)

�

6s

1

s

2

� � � s

N

�

m

2N

(1)

2

L(2N)+1

!)

;

k(v; z) = k(v; z

#

) =

 (v)

6

 

3Æ

0;q

+ �(q)

N

X

j=1

s

1

s

2

� � � s

j

p

2j

(1)

2

L(2j�1)

!

for q 2 G

Æ

and v 2 U

q

(xa

1

), where � is de�ned in Lemma 2.20 and p

j

is de-

�ned as follows:

p

j

(q) =

8

>

>

<

>

>

:

1 + '(q � 1)� '(q + 1)(�1=2)

L

j

if H

j

j�1

= ;

1 + '(q � 1) +

m

j

X

v=1

`

(j)

v

X

w=1

�

j;w;v

(q)

2

K

j

(L

j

(v�1)+w)

+

�

m

j

(q)

2

L

j

if H

j

j�1

6= ;:

Proof. We show (1) in several steps. For 1 � ` � L(2N + 1), we set

x

r

`

= xa

1

a

2

� � �a

`

�

r

(a

`+1

).



38

(First step) For any p 2 f1; 2; :::; Ng and w

L(2p+1)

2 U(x

0

L(2p+1)

), we have

(2:14)

k(v;w

L(2p+1)

) =

1

2

fk(v;x

0

L(2p�1)

) + k(v;x

0#

L(2p�1)

)g

+

5

L

2p+1

�

(q)

p

 (v)

2

L(2p)

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

where

(2:15) �

(q)

p

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

2

L(2p�1)

 (v)

fk(v;x

d

�

L(2p�1)

#

L(2p�1)

)� k(v;x

0#

L(2p�1)

)g

if

(

x

d

L(2p)

L(2p)

2 An

L(2N+1)�L(2p)

[z℄;

d

j

� d

�

L(2p�1)

for L(2p� 1) + 1 � j � L(2p)

2

L(2p�1)

 (v)

fk(v;x

0

L(2p�1)

)� k(v;x

0#

L(2p�1)

)g

if

(

x

d

L(2p)

L(2p)

2 An

L(2N+1)�L(2p)

[z℄;

d

j

� �d

�

L(2p�1)

for L(2p� 1) + 1 � j � L(2p)

0 otherwise:

Indeed, we an prove (2.14) by the following way.

Suppose that

(2:15:1)

(

x

d

L(2p)

#

L(2p)

2 An

L(2N+1)�L(2p)

[z℄;

d

j

� d

�

L(2p�1)

for L(2p� 1) + 1 � j � L(2p):

By the de�nition of the transition probability

k(v;w

L(2p+1)

) =

X

t2U(x

0

L(2p)

)

k(v; t)p(L

2p+1

; t;w

L(2p+1)

):

Hene by (2.15.1) and Lemma 2.20, we have

k(v;w

L(2p+1)

)

=

X

t2U

0

(x

0

L(2p�1)

)

k(v; t)

�

1

2

�

1

2

L

2p

�

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

+

X

t2U

d

�

L(2p�1)

(x

0

L(2p�1)

)

k(v; t)

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

2

L

2p
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+

X

t2U

0

(x

0

L(2p�1)

)

k(v; t)

1� 5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

2

=

k(v;x

0

L(2p�1)

) + k(v;x

0#

L(2p�1)

)

2

�

k(v;x

0

L(2p�1)

) + k(v;x

0#

L(2p�1)

)

2

L

2p

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

+

k(v;x

d

�

L(2p�1)

#

L(2p�1)

) + k(v;x

d

�

L(2p�1)

L(2p�1)

)

2

L

2p

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

=

k(v;x

0

L(2p�1)

) + k(v;x

0#

L(2p�1)

)

2

+

k(v;x

d

�

L(2p�1)

#

L(2p�1)

)� k(v;x

0#

L(2p�1)

)

2

L

2p

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

whih is (2.14).

(Seond step) We shall prove

(2:16) �

(q)

p

2 G

Æ

and

X

q2G

Æ

�

(q)

p

= 0 for any p 2 f1; 2; :::; Ng:

Sine

P

q2G

Æ

�

(q)

p

= 0 follows from (2.15), we only have to show that �

(q)

p

2 G

Æ

.

Using indution over p, the assertion follows immediately. If p = 1, then by

Lemmas 2.18 and 2.19 we have

�

(q)

1

2

�

'(d

�

1

q + 1)(�1)

L

1

;

(d

�

1

q + 1)(1 + (�1)

L

1

) + 2(�1)

L

1

'(d

�

1

q)

2

;

� �

m

1

(d

�

1

q);

�

m

1

(d

�

1

q)� �

m

1

(d

�

1

q)

2

�

:

Noting that

�

m

i

(d

�

1

q)� �

m

i

(d

�

1

q) = 2(�1)

k

(i)

L

i

(m

i

)+1

	

(i)

m

i

((�1)

k

(i)

L

i

(m

i

)+1

+m

i

� '(d

�

1

q + 1)(�1)

k

(i)

1

);

this implies that (2.16) is true for p = 1. Suppose that (2.16) is true for p. By

(2.14), we obtain

2

L(2p+1)

 (v)

fk(v;x

d

�

L(2p+1)

#

L(2p+1)

)� k(v;x

0#

L(2p+1)

)g

=

10

L

2p+1

�

(q)

p

2

L(2p)

fp(L

2p+1

;x

d

L(2p)

#

L(2p)

;x

d

�

L(2p+1)

#

L(2p+1)

)� p(L

2p+1

;x

d

L(2p)

#

L(2p)

;x

0#

L(2p+1)

)g:
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On the other hand, by Lemmas 2.18 and 2.19 again

5

L

2p+1

fp(L

2p+1

;x

d

L(2p)

#

L(2p)

;x

d

�

L(2p+1)

#

L(2p+1)

)� p(L

2p+1

;x

d

L(2p)

#

L(2p)

;x

0#

L(2p+1)

)g

2

�

(�1)

L

2p+1

� 1

2

L

2p+1

+1

;

�

m

2p+1

(1)� �

m

2p+1

(1)

2

L

2p+1

+1

�

;

so that

(2:17)

�

(q)

p+1

2

�

(�1)

L

2p+1

�

(q)

p

;

(�1)

L

2p+1

� 1

2

�

(q)

p

;

� �

m

2p+1

(1)�

(q)

p

;

�

m

2p+1

(1)� �

m

2p+1

(1)

2

�

(q)

p

�

and we have proved (2.16).

(Third step) Now by (2.14)

k(v; z) =

X

t2U

0

(x

0

L(2N�1)

)

k(v; t)

2

+

 (v)

6

 

�

(q)

N

p

2N+1

(1)

2

L(2N)

+

6�

(q)

N

�

2N+1

(1)

2

L(2N+1)+1

!

:

Using (2.14) again, we have

X

t2U

0

(x

0

L(2N�1)

)

k(v; t)

2

=

X

t2U

0

(x

0

L(2N�3)

)

k(v; t)

2

+

X

t2U

0

(x

0

L(2N�1)

)

5

L

2N�1

�

(q)

N�1

2

L(2N�2)+1

p(L

2N�1

;x

d

�

L(2N�2)

#

L(2N�2)

; t):

This together with the fat that

X

t2U

0

(x

0

L(2N�1)

)

5

L

2N�1

p(L

2N�1

;x

d

�

L(2N�2)

#

L(2N�2)

; t) = 2p

2N�1

(1)

implies

k(v; z) =

X

t2U

0

(x

0

L(2N�3)

)

k(v; t)

2

+

 (v)

6

 

N+1

X

j=N

�

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

+

6�

(q)

N

�

2N+1

(1)

2

L(2N+1)+1

!

:

Repeating this proess, we have

k(v; z) =

 (v)

6

 

p

1

(d

�

1

q) +

N+1

X

j=2

�

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

+

6�

(q)

N

�

2N+1

(1)

2

L(2N+1)+1

!

:

By onstrution of �

(q)

N

in (2.17), there exists a sequene fs

(q)

j

g

j

� G

Æ

suh that

�

(q)

N

= s

(q)

1

s

(q)

2

� � � s

(q)

N

, and hene the theorem follows.
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Remark 2.22. This is an additional remark to Proposition 2.21.

(1) If d

k

2 G

#

or d

k

2 G

Æ

for any k, then we ome to the onlusions that

Lemmas 2.19 (or 2.18) or 2.20 hold, respetively.

(2) Let M

1

;M

2

and B be de�ned as in Lemma 2.19. It is easy to see that

M =

8

<

:

M

�

�

�

�

�

�

M = [m

1

; m

2

; m

3

℄ : m

1

; m

2

; m

3

2

8

<

:

t

[�1=3;�1=3; 2=3℄

t

[�2=3; 1=3;�2=3℄

t

[1; 0; 0℄

9

=

;

9

=

;

where M is the olletion of onsisting of �nite arbitrary produt M

1

and M

2

.

Furthermore, we de�ne M

0

= fM jM = BM

0

:M

0

2Mg. By the same argument

as above, we have

M

0

=

8

<

:

M

�

�

�

�

�

�

M = [m

1

; m

2

; m

3

℄ : m

1

; m

2

; m

3

2

8

<

:

t

[�1=6;�1=6;�1=6℄

t

[1=6; 1=6; 1=6℄

t

[0; 0; 0℄

9

=

;

9

=

;

:

Then by (2.13), it follows that there exists a sequene f

(j;q)

k

g

k

� G

Æ

and

onstant 

(j;q)

2 G

Æ

satisfying the ondition

P

q2G

Æ



(j;q)

k

=

P

q2G

Æ



(j;q)

= 0 suh

that

(2:18) p

j

(q) =

8

>

>

<

>

>

:

1 + '(q � 1)� '(q + 1)(�1=2)

L

j

if H

j

j�1

= ;

1 + '(q � 1) +

X

k2H

j

j�1



(j;q)

k

2

k�L(j�1)

+



(j;q)

2

L

j

if H

j

j�1

6= ;:

We also have that

�

(q)

p+1

2 f'(q + 1)(�1)

L

2p+1

�

(q)

p

;�'(q + 1)(�1)

L

2p+1

�

(q)

p

;

'(q+1)f1�(�1)

L

2p+1

g+2'(q)

2

�

(q)

p

;

'(q+1)f�1+(�1)

L

2p+1

g�2'(q)

2

�

(q)

p

;

'(q+1)f1+(�1)

L

2p+1

g+2'(q)

2

�

(q)

p

;

'(q+1)f�1�(�1)

L

2p+1

g�2'(q)

2

�

(q)

p

g:

Compare this result with (2.17).

(3) It is lear that

k(v;y); k(v;y

#

); k(v; z); k(v; z

#

) �

 (v)

2

for any v 2 U(xa

1

). In partiular, by elementary omputations, we have for any

v 2 U

0

(xa

1

)

(2:19)

 (v)

4

� k(v;y); k(v;y

#

); k(v; z); k(v; z

#

) �

 (v)

2

:
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Chapter III. Pentakun as a Martin boundary

x1. The Martin boundary of X

In this setion we identify the Pentakun P with the Martin boundary M of

the transition probability funtion de�ned in (2.2). Sine by Theorem 1.11 the

Modulo 5 fratal A

1

=� and the Pentakun P are bi-Lipshitz equivalent, it suÆes

to show the existene of a homeomorphism

T : (A

1

=�)!M:

We de�ne the map � :W�W! R

+

(3:1) �(x;y) =

�

�

r

l(x)

� r

l(y)

�

�

+

X

u2W

a(u)

jk(u;x)� k(u;y)j

1 + jk(u;x)� k(u;y)j

where r =

3�

p

5

2

and fa(u);u 2 Wg is some �xed sequene of stritly positive

numbers suh that

P

u2W

a(u) = 1.

Lemma 3.1. The map � is a metri on W.

Proof. We assume that �(x;y) = 0. Then by (3.1) we have

l(x) = l(y) and k(u;x) = k(u;y) for all u 2W:

Taking u = x and by (2.5), we obtain x = y. The remaining parts are obvious.

This metri has its soure in (1.7) and is alled Martin metri [5,9℄. By (3) of

Remark 2.22, the Martin kernel de�ned in (2.5) satis�es (1.6). Hene by the same

disussion as in Setion 2 of Chapter 1, we an onsider (W;O

2

) as a topologial

spae where O

2

is a natural topology.

The �-ompletion of W is alled the Martin spae assoiated to p where p is

de�ned in (2.2), denoted by W. The boundary of W, that is, �W = W nW

Æ

=

W nW is alled the Martin boundary and is denoted by M. M is a ompat

metri spae (see (1.8) and (1.9)). Reall that O

1

is de�ned in (2) of De�nition

2.1. The next lemma is an immediate onsequene.

Lemma 3.2. O

1

= O

2

.

Sine p is a Markovian kernel, we an also de�ne the Markov operator on W.
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Let f be a non-negative funtion on W. The assoiated Markov operator P is

de�ned by

(Pf)(w) =

X

v2W

p(w;v)f(v)

and f is alled P -exessive if Pf � f and P -harmoni if Pf = f .

Let � be a measure on W. The assoiated dual Markov operator P

�

is de�ned

by

(�P

�

)(v) =

X

w2W

�(w)p(w;v)

and � is alled P

�

-exessive if �P

�

� � and P

�

-harmoni if �P

�

= �.

Theorem B. A

1

=� is the Martin boundary M of a ertain, naturally

de�ned the mod 5 Markov hain X (in De�nition 2.4).

In order to prove the theorem, it is enough to establish a map T : (A

1

=�)!M

with the following Lemmas 3.3 through 3.7.

Lemma 3.3. Let x = fx

k

g be an in�nite sequene of letters and de�ne

x

`

= x

1

x

2

� � �x

`

x

`+1

and ` 2 N . Then T

0

(x) = fx

`

g is a Cauhy sequene in

(W; �).

Proof. Let v 2 W. If v 62 U(x

l(v)

), then by Proposition 2.13 we have

k(v;x

`

) = 0 for all `, so that we may assume without loss of generality that

` � l(v) and v 2 U(x

l(v)

).

Reall that K

i

; L

i

;L

i

and L are de�ned in (2.11). We may set

x

`+1

x

`+2

� � �x

`

0

x

`

0

+1

= x

`+1

x

`+2

� � �x

`+L(2N+1)

x

`+L(2N+1)+1

;

d

k

2

�

G

Æ

if `+ L(2t� 1) + 1 � k � `+ L(2t)

G

#

if `+ L(2t� 2) + 1 � k � `+ L(2t� 1);

t = 1; 2; :::; N;N + 1 and N 2 N .

If d

`

2 G

Æ

, then by Proposition 2.21 we have

jk(v;x

`

0

)� k(v;x

`

)j �

 (v)

6

�

�

�

�

�

N+1

X

j=1

p

2j�1

(1)

2

`+L(2j�2)

+

6�

m

2N+1

(1)

2

`+L(2N+1)+1

�

�

�

�

�

:
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If d

`

2 G

#

, then by replaing ` � n

0

by K

0

(L

0

(m

0

) + 1) in Lemma 2.19 and

Proposition 2.21 again, we have

jk(v;x

`

0

)� k(v;x

`

)j

�

 (v)

6

�

�

�

�

�

N+1

X

j=2

p

2j�1

(1)

2

`+L(2j�2)

+

6�

m

2N+1

(1)

2

`+L(2N+1)+1

+

1

2

n

0

0

�

6

2

K

0

(L

0

(m

0

)+1)+1

+

m

1

X

q=1

`

(1)

q

X

j=1

1

2

K

1

(L

1

(q�1)+j)+`�n

0

+

1

2

`+L(1)�n

0

1

A

�

�

�

�

�

�

�

 (v)

6

�

�

�

�

�

N+1

X

j=2

1

2

`+L(2j�2)

+

6

2

`+L(2N+1)+1

+

6

2

`+1

+

m

1

X

q=1

`

(1)

q

X

j=1

1

2

K

1

(L

1

(q�1)+j)+`

+

1

2

`+L(1)

�

�

�

�

�

�

where n

0

= maxfnjl(v) � n < `; d

n

2 G

Æ

g.

In either ase, we obtain

jk(v;x

`

0

)� k(v;x

`

)j �

 (v)

2

`

1

X

n=0

1

2

n

! 0 as `!1:

The remaining parts an be shown analogously.

Lemma 3.4. If fx

`

g is a Cauhy sequene inW, then fx

#

`

g is also a Cauhy

sequene. fx

#

`

g is equivalent to fx

`

g if l(x

`

)!1.

Proof. Let v 2 U(x

l(v)

). By the triangle inequality:

�(x

`

;x

`

0

) � �(x

`

;x

#

`

) + �(x

#

`

;x

#

`

0

) + �(x

#

`

0

;x

`

0

)

and by (3.1), it suÆes to show that

lim

`!1

jk(v;x

`

)� k(v;x

#

`

)j = 0:

If lim

`!1

l(x

`

) < 1, then the sequene x

`

is eventually onstant, so is x

#

`

,

hene it is also a Cauhy sequene. Thus, by Proposition 2.21 we have

jk(v;x

`

)� k(v;x

#

`

)j �

 (v)

2

`

! 0 as `!1:

Lemma 3.5. If T

0

(x) = T

0

(y) for x = x

1

x

2

� � � and y = y

1

y

2

� � � 2 A

1

, then

we have x � y.
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Proof. Let x; y 2 A

1

satisfying x 6= y. Then there exists w 2W suh that

x = wx

1

x

2

x

3

� � � ; y = wy

1

y

2

y

3

� � � and x

1

6= y

1

:

Assume that T

0

(x) = T

0

(y) and de�ne x

m

= wx

1

x

2

� � �x

m

and y

m

= wy

1

y

2

� � � y

m

.

Note that by the de�nition of � and T

0

, we have for any t 2W

(3:2) lim

m!1

k(t;x

m

) = k(t; x) = k(t; y) = lim

m!1

k(t;y

m

):

Taking t = x

1

in (3.2), we have by (2.19)

0 < lim

m!1

k(x

1

;x

m

) = lim

m!1

k(x

1

;y

m

)

and hene by Proposition 2.13 we obtain fx

1

g \ U(y

1

) 6= ; whih implies y

1

=

�

d

(x

1

) where d 2 f�1; 1g. Taking t = x

2

in (3.2) and the same argument as

above, we have fx

2

g \ U(y

2

) 6= ; and hene y

2

= �

�d

(x

1

) and x

2

= �

2d

(x

1

).

We de�ne X = fk � 3jx

k

6= �

2d

(x

1

)g;Y = fk � 3jy

k

6= �

�d

(x

1

)g and denote `

and `

0

by ` = minX and `

0

= minY if X 6= ; and Y 6= ;, respetively. We shall

prove

(3:3) X = Y = ;:

If X 6= ; and Y = ;, then by taking t = x

`

in (3.2), it follows that fx

`

g\U(y

`

) =

; whih is a ontradition. Interhanging x and y, the remaining parts of the proof

for (3.3) suÆe in onsidering the ase where X 6= ; and Y 6= ;. Notie that we

may automatially assume ` = `

0

. However, we obtain

fx

`

g \ U(y

`

) = fx

`

g \ U(x

#

`�1

y

`

) = ;

implies (3.3) and thus x

#

= y.

Consequently, by Lemma 3.4, we an de�ne the map T : (A

1

=�)!M by

T (~x) = fx

`

j` 2 Ng

�

where x = (x

`

)

`2N

and fx

`

j` 2 Ng

�

denotes the equivalene lass of the Cauhy

sequene fx

`

j` 2 Ng.

Lemma 3.6. The map T : (A

1

=�)!M is surjetive.

Proof. Let fw

n

g

n2N

� W be a Cauhy sequene. Then, sine A is a

�nite set, there exists a subsequene fw

n(1;k)

g

k2N

suh that the �rst letter of all

w

n(1;k)

; k 2 N , is x

1

2 A. Next we an extrat a subsequene fw

n(2;k)

g

k2N

(�

fw

n(1;k)

g

k2N

) suh that the seond letter of all w

n(2;k)

; k 2 N , is x

2

2 A. Similarly

we an extrat a subsequene fw

n(j+1;k)

g

k2N

(� fw

n(j;k)

g

k2N

) suh that the (j+1)-

th letter of allw

n(j+1;k)

; k 2 N is x

j+1

2 A. De�ne fw

0

k

g

k2N

= fw

n(k;k)

g

k2N

. Then,
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sine fw

0

k

g

k2N

is a subsequene of fw

n

g

n2N

, it is a Cauhy sequene equivalent to

fw

n

g

n2N

.

De�ne x = x

1

x

2

� � �x

n

� � � 2 A

1

and x

k

= x

1

x

2

� � �x

k

. Then we have T

0

(x) =

fx

k

g

k2N

and by onstrution, for any n 2 N the �rst n letters ofw

0

n

are x

1

x

2

� � �x

n

.

For any �xed v 2W, by the same argument as that in Lemma 3.3 and Propo-

sition 2.21, we have

lim

n!1

jk(v;w

0

n

)� k(v;x

n

)j = 0:

Lemma 3.7. T : (A

1

=�)!M is a homeomorphism.

Proof. By Lemmas 3.5 and 3.6, we have that the map T is bijetive. The

ontinuity of T follows from the ontinuity of T

0

, whih is an easy onsequene of

Theorem A and (3.1). The ontinuity of T

�1

follows from this and sine A

1

=�

and M are ompat.

Remark 3.8. It goes without saying that we an also prove Theorem B

using p

j

whih is de�ned in (2.18).

x2. The Dirihlet Problem

In this setion, as a orollary to [5,6℄, we shall solve the assoiated Dirihlet

problem:

Let g be a ontinuous funtion on M. Then

�

([P � I℄f)(w) = 0; w 2W

lim

w!�

f(w) = g(�); � 2 M(= (A

1

=�) = P)

has a unique solution in the lass of uniformly ontinuous harmoni funtion spae

over W, denoted by H

C

u

(W).

The notion of a spae of exits de�ned in Theorem 1.8 will play an important

role in the proving the assoiated Dirihlet problem. Using the next orollary we

�rst prove that A

1

=� (= P) oinides with a spae of exits.

By Theorem B and (2) of Theorem 1.8, we obtain
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Corollary 3.9. There exists a Borel set B � M, alled the spae of exits,

suh that the following holds:

(1) The funtion k(�; z) is P -harmoni funtion on W for every z 2 B.

(2) For every P -exessive funtion h � 0 there exists a unique �nite measure

�

h

on W suh that

(3:4) h(v) =

Z

W[B

k(v; y)d�

h

(y) and �

h

(MnB) = 0:

(3) y 2 B if and only if �

k(�;y)

(x) = Æ

x;y

.

Note that the funtion v 7! k(v; y) is P -exessive for every y 2 A

1

=�.

Theorem C.

(1) The funtion v 7! k(v; y) is P -harmoni on W for every y 2 A

1

=�.

(2) (A

1

=�) = B.

Proof.

(1) Let y 2 A

1

=� be �xed. Then, by Fubini's theorem, we have for any v 2W

Pk(v; y) =

X

u2W

p(v;u)k(v; y)

=

X

u2W

p(v;u)� lim

w!y

g(u;w)

g(;;w)

=

X

u2W

lim

w!y

 

1

X

n=0

p(v;u)p(n;u;w)=g(;;w)

!

= lim

w!y

 

1

X

n=0

p(n+ 1;v;w)=g(;;w)

!

= lim

w!y

g(v;w)� Æ

v;w

g(;;w)

= k(v; y):

(2) Let y 2 A

1

=�. Sine k(�; y) is P -harmoni on W, by (3) of Corollary 3.9,

the measure �

k(�;y)

has its support in A

1

=�. Therefore it suÆes to show that

(A

1

=�) n fyg =

[

v2W;k(v;y)=0

f� 2 A

1

=� jk(v; �) > 0g:
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Indeed, if v 2W and k(v; y) = 0, then by (3.4) we have

0 = k(v; y) =

Z

W[(A

1

=�)

k(v; �)d�

k(v;y)

(�);

so that �

k(v;y)

(f� 2Wjk(v; �) > 0g) = 0 and thus �

k(v;y)

((A

1

=�) n fyg) = 0.

Let �; y 2 A

1

=� suh that � 6= y. Then we may assume that � and y have a

representation

� = u�

1

�

2

� � � ; y = uy

1

y

2

� � �

where u 2 W and �

1

6= y

1

. By Proposition 2.13, we have �

1

= �

d

(y

1

) where

d 2 f�1; 1g. If y

2

6= y

m

for some m � 3, then the �rst letter of y

#

is y

1

and hene

fu�

1

�

2

� � � �

m

g \ U(uy

1

y

2

� � � y

m

) = ;

whih implies k(w�

1

�

2

� � � �

m

; y) = 0. In addition, if y

2

2 U(y

1

), then by Lemma

2.17 we have An

m

[uy

1

y

m

2

℄ = U

0

(uy

1

); so that we may assume y = uy

1

�

2d

(y

1

)

1

.

On the other hand, if there exists n � 2 suh that �

n

6= �

�d

(y

1

), then

fu�

1

�

2

� � � �

n

g \ U(uy

1

y

2

� � � y

n

) = ;:

Thus we have

� = u�

1

�

2

� � � = u�

d

(y

1

)�

�d

(y

1

)

1

= (uy

1

�

2d

(y

1

)

1

)

#

= y

#

;

whih implies � = y in A

1

=�. This is a ontradition.

Therefore by Theorem 1.8 we also have shown

Corollary 3.10.

(1) For every bounded P -harmoni funtion h � 0, �

h

is absolutely ontinuous

with respet to �

1

with Radon-Nikodym derivative

d�

h

d�

1

suh that

h(v) =

Z

A

1

=�

k(v; �)

d�

h

d�

1

(�)d�

1

(�)

lim

n!1

h(X

n

) =

d�

h

d�

1

(X

1

) Pr

v

-a.e. 8v 2W

9X

1

3 h(v) = E

v

�

d�

h

d�

1

(X

1

)

�

8v 2W:

Here fX

n

jn 2 N

0

g denotes the assoiated Markov hain and Pr

x

is the probability

measure onentrated on the paths starting from x given by

Pr

x

[X

0

= x

0

; X

1

= x

1

; :::; X

n

= x

n

℄ = Æ

x;x

0

p(x

0

;x

1

)p(x

1

;x

2

) � � � p(x

n�1

;x

n

):
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(2) Conversely for every non-negative �

1

-integrable funtion f on A

1

=�

(3:5) h

f

(v) :=

Z

A

1

=�

k(v; �)f(�)d�

1

(�)

de�nes a P -harmoni funtion on W and

f(X

1

) = lim

n!1

h

f

(X

n

) Pr

v

-a.e. 8v 2W:

Let � be the Bernoulli measure on A

1

, that is, the produt measure � =

Q

1

k=1

�

k

, where eah �

k

is the uniform probability measure on A. It is known

that � Æ }

�1

is the Hausdor� measure on P where } : A

1

! A

1

=� denotes the

anonial projetion.

We also use the notation C(A) = ff jf : A! R; ontinuous; A � A

1

=�g.

The following Corollaries 3.11 through 3.13 follow from [5℄.

Corollary 3.11. The harmoni measure �

1

on A

1

=� in Theorem 1.8,

oinides with the normalised anonial Hausdor� measure � Æ }

�1

.

Corollary 3.12. � Æ }

�1

is a Radon measure on A

1

=� and full, i.e.

(1) � Æ }

�1

(A) = supf� Æ }

�1

(K)jK � A; K is ompat subset of A

1

=�g.

(2) For every non-empty open subset B of A

1

=�, we have that � Æ }

�1

(B) is

stritly positive.

Corollary 3.13. Let h

f

be de�ned in (3.5). Then we have h

f

2 H

C

u

(W n

f;g).

Corollary 3.14. Let f be a ontinuous funtion on A

1

=�. Then h

f

an

be extended to a ontinuous funtion onW[ (A

1

=�), whih oinides with f on

W [ (A

1

=�). In partiular we have

lim

w!�

h

f

(w) = f(�)

for every � 2 A

1

=�.

Proof. Sine ; is an isolated point, h

f

is uniformly ontinuous on the dense

subset W of the ompat metri spae W [ (A

1

=�) and extends to a ontinuous

funtion h

f

on W [ (A

1

=�).

On the other hand by (2) of Corollary 3.10 we have

lim

n!1

h

f

(X

n

) = f(X

1

) Pr

;

-a.e.
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and sine � Æ }

�1

= Pr

;

ÆX

�1

1

we have

h

f

(�) = f(�) (Pr

;

ÆX

�1

1

)-a.e.

Sine � Æ}

�1

is a Radon measure on A

1

=� and full, we obtain that h

f

� f on

W [ (A

1

=�).

We denote the map sending a bounded measurable funtion f on A

1

=� to h

f

by I, that is, I(f) = h

f

.

Note that

(3:6) I(C(A

1

=�)) = H

C

u

(W)

via Corollary 3.14.

We summerise our result in.

Theorem D. The Dirihlet problem for P � I on W,

(D)

�

f(P � I)fg(w) = 0; w 2W

lim

w!�

f(w) = g(�); � 2 M(= (A

1

=�) = P)

where g 2 C(A

1

=�), has a unique solution f = h

g

in H

C

u

(W).

Proof. This follows from Corollary 3.14: Given a ontinuous funtion g, the

funtion

h

g

(v) =

Z

M

k(v; �)g(�)d�

1

(�)

is a solution. Hene it suÆes to show that this solution of (D) is unique. We

now onsider

(D

�

)

�

([P � I℄F )(w) = 0; w 2W

lim

w!�

F (w) = 0; � 2 M:

Then by (3.6), there exists some funtion G 2 C(A

1

=�) = C(M) suh that

F (v) =

Z

M

k(v; �)G(�)d�

1

(�)

for any v 2 W. Thus by (2) of Corollary 3.10 and (D

�

), we have G � 0 on M

whih implies F � 0 on W.
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