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Abstra
t

Let P denote the p.
.f. self-similar set de�ned by mapping the regular pentagon into itself by

�ve self-similarities ea
h leaving one vertex �xed. We de�ne the 
anoni
al Markov 
hain for P

and denote its Markov operator by P . We show that its Martin boundaryM is homeomorphi


to P . The asso
iated Diri
hlet problem (P � I)f = 0 and f = g on P has a unique solution

su
h that f(�) = P

�

for � 2 P . We obtain an integral representation for kernel fun
tions on P

(Poisson integral type).

Typeset by L

A

T

E

X2�



Contents

Chapter I. Preliminaries

x1. Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

x2. Martin boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

x3. Self-similar fra
tals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

x4. Outline of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter II. The natural mod 5 Markov 
hain

x1. The Pentakun graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

x2. The Green fun
tion and the Martin kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

x3. The estimation of the Martin kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter III. Pentakun as a Martin boundary

x1. The Martin boundary of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

x2. The Diri
hlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A
knowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Referen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Curri
ulum vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



5

Chapter I. Preliminaries

x1. Introdu
tion

Classi
al potential theory has its origins in Coulomb's law. It states that two


harges attra
t ea
h other with a for
e in the dire
tion of their 
onne
ting line

whose magnitude is proportional to the quotient of the produ
t of the two 
harges

and the square of their distan
e.

Another observation made in the 19th 
entury plays an important role in the

understanding of potential theory. In 1826 the botanist Brown observed that

mi
ros
opi
 parti
les, when left alone in a liquid, are seen to move 
onstantly in

the 
uid along errati
 paths. Mu
h later Einstein investigated this movement as

a statisti
al law whi
h des
ribes how a large number of parti
les spread over a

period of time. His predi
tions were veri�ed in experiment.

The above two ideas are linked by the Lapla
e operator. The deep 
onne
tion

between the two theories was �rst revealed in the papers of Doob [7℄, Ka
 [19℄,

Kakutani [20℄ and Knapp [23℄. This 
an be expressed by the fa
t that the har-

moni
 measures whi
h o

ur in the solution of the Diri
hlet problem are hitting

distributions for Brownian motion or, equivalently, that the positive hyperhar-

moni
 fun
tions for the Lapla
e equation are the ex
essive fun
tions of the Brow-

nian semigroup. This equivalen
e allows potential theoreti
 results and notions

to be given a probabilisti
 meaning.

Therefore, harmoni
 fun
tions play a 
entral role in the analysis to understand

the above-mentioned phenomena from a probabilisti
 viewpoint. These fun
tions

are 
hara
terised in di�erent ways.

Let U be a bounded open domain in R

d

with boundary �U . The Lapla
e oper-

ator � :=

P

d

i=1

�

2

=�x

2

i

a
ts on twi
e di�erentiable fun
tions on U ; by de�nition,

its kernel 
onsists of the harmoni
 fun
tions . Apart from this des
ription of

harmoni
 fun
tions f , that is by �f � 0, it is a well known fa
t that harmoni


fun
tions 
an be 
hara
terised by geometri
ally de�ned averaging properties.

Let a 2 U and denote by B(a; r)(� U) the open ball 
entred at a with radius

r > 0, the boundary �B(a; r) is the sphere S(a; r) of radius r > 0 
entred at a.

Let �

a;r

denote the uniform probability measure on S(a; r). With this notation

we are able to de�ne the averaging operator H

a;r

on �

a;r

-integrable fun
tions

de�ned on B(a; r) by

H

a;r

f(x) =

Z

S(a;r)

r

2

� jx� aj

2

jx� yj

d

r

d�2

f(y)d�

a;r

(y):
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Then it is known that a fun
tion f 2 C

2

(U) is harmoni
 if and only if for all

a 2 U and r > 0; f j

B(a;r)

is a �xed point of H

a;r

.

The Diri
hlet problem 
an be stated as follows. One has to �nd a 
ontinuous

fun
tion on U whi
h is harmoni
 in U and takes pres
ribed boundary values on

�U , i.e. we have a boundary 
ondition f � g on �U where g 2 C(�U).

Let f : S(a; r) ! R be a Borel measurable fun
tion whi
h is bounded from

below.

(1) If f is �

a;r

-integrable, then H

a;r

f is harmoni
 on B(a; r).

(2) If f is 
ontinuous at z 2 S(a; r), then

lim

x!z

H

a;r

f(x) = f(z):

We brie
y dis
uss the 
onne
tions with sto
hasti
 pro
esses.

Let X = (X

t

)

t>0

denote the Brownian motion on R

d

, i.e. it is given by the

transition density semigroup

p

t

(x; y) =

�

1

p

2�t

�

d

exp

�

�

jx� yj

2

2t

�

whi
h is 
onsidered as a Markov pro
ess with respe
t to the distributions P

x

when

starting in x 2 R

d

.

Sin
e X has 
ontinuous paths, it leaves a bounded open domain U within a

�nite time �

u

, on
e it started in U . We set

�

U

(y) = infft > 0jX

t

(y) 2 U




g:

Let f be a bounded measurable fun
tion. Then the theory of Brownian motion

asserts that

H

0

U

f(x) :=

Z

fy2
j�

U

(y)<1g

f ÆX(�

U

(y))dP

x

(y)

is harmoni
 in U (in parti
ular, we also have that f 2 C

2

(U)).

Also, if f is 
ontinuous at z 2 fs 2 �U jP

s

(�

U

= 0) = 1g, then it follows that

lim

x!z

x2U

H

0

U

f(x) = f(z):

The geometri
 averaging property of harmoni
 fun
tions is not restri
ted to

the stru
ture given by the Brownian motion or averaging on spheres, as well as

the abstra
t properties of the Lapla
e operator are not restri
ted to its spe
i�


de�nition. In fa
t, this 
on
ept has a dire
t extension to Markov pro
esses. Let

P denote a Markov operator, and 
all a fun
tion f de�ned on the state spa
e

harmoni
 if Pf = f , so that the Lapla
ian is de�ned by �f = (P � I)f . In order

to turn this 
on
ept into a Diri
hlet problem one needs to assign a boundary �E
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to E. Denker/Sato (see [6℄) solved this problem in the spe
ial 
ase of the word

spa
e (
f. Se
tion 2 of Chapter 3), that is,

Let E be a 
ountable set, 
alled word spa
e, and �E denote the Martin bound-

ary (asso
iated in Dynkin [9℄) of E. For a real valued 
ontinuous fun
tion g on

�E,

�

([P � I℄f)(x) = 0; x 2 E

lim

x!�

f(x) = g(�); � 2 �E

has a unique solution f in the spa
e of harmoni
 uniformly 
ontinuous fun
tions

on E, given by

f(x) =

Z

�E

k(x; y)g(y)d�(y)

where � denotes some �nite measure and k kernel fun
tion.

Lately there have been made attempts to de�ne the 
on
ept of the Lapla
e

operator and the Diri
hlet problem for p.
.f. self-similar sets.

A p.
.f. self-similar set K is de�ned by a family f

i

: R

d

! R

d

of 
ontra
tions

whi
h satisfy

K =

m

[

i=1

f

i

(K):

It is known (see [15,17℄) that a family f

i

always de�nes a unique self-similar set.

P.
.f. self-similar means that f

i

(K)\f

j

(K) is �nite for all 1 � i 6= j � m. Kigami

[21,22℄ has de�ned a method of geometri
 averaging in 
orresponding fra
tals of

this type and also des
ribed the Lapla
e operator. He showed that the Diri
hlet

problem for the Poisson equation on K, whi
h 
onsists in, for given real valued


ontinuous fun
tion h on K, �nding a real valued 
ontinuous fun
tion f on K

su
h that

�

�f = 0

f = h on �K;

has a unique solution f . Details will be given below.

On the other hand, a few years ago, Denker/Sato [4℄ have initiated the study

of the relation between one of the best known examples for a fra
tal set, the

Sierpi�nski gasket, and a Martin exit boundary; that is to say, the Sierpi�nski gasket

is represented as the Martin boundary of a Markov 
hain and harmoni
 fun
tions

have an integral representation using the Martin kernel of a 
ertain 
anoni
al

random walk and Dynkin's theorem [9℄. In addition, Denker and Ko
h [3℄ proved

a Poisson formula for bounded harmoni
 fun
tions on the Sierpi�nski gasket as an

appli
ation of [4℄. These results may be 
onsidered as a new approa
h in harmoni


analysis and Martin boundary theory.
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In this paper we 
onne
t the extension to the mod 5 Markov 
hain and Denker-

Sato's approa
h. We show that the Pentakun (the self-similar Pentagon) sug-

gested by Kumagai agrees with the Martin boundary of an appropriately 
hosen

Markov 
hain.

x2. Martin boundaries

Here we re
all some fa
ts about Martin boundaries whi
h are needed and ex-

plain the ba
kground of our investigation.

It is one of the main goals to identify Martin boundaries (whi
h always exist [9℄).

Clearly, the Martin boundary may be trivial (i.e. 
onsisting of one point) whi
h

o

urs for a re
urrent Markov Chain. One of the �rst examples of a nontrivial

Martin boundary is due to Ney and Spitzer [27℄ (see Woess [33℄). We begin by

des
ribing the ne
essary notation and de�nitions.

The Martin boundary for the state spa
e of a dis
rete Markov 
hain was intro-

du
ed by Doob [8℄, Dynkin [9℄, Feller [11℄ and Hunt [16℄, among others. In this


hapter, we use the notation of Dynkin [9℄ who uses Hunt's probabilisti
 approa
h.

We 
onsider a sub-Markovian kernel on a 
ountable set as starting point.

De�nition 1.1. Let E be a 
ountable set. We 
all p : E � E ! [0; 1℄ a

sub-Markovian Kernel, if

(1:1)

X

y2E

p(x; y) � 1

for every x 2 E.

De�nition 1.2. Let f be a non-negative fun
tion on E. The asso
iated

Markov operator P is de�ned by

(1:2) (Pf)(x) =

X

y2E

p(x; y)f(y) (x 2 E)

and f is 
alled P -ex
essive if Pf � f and P -harmoni
 if Pf = f where we admit

the value +1.

Let � be a measure on E. The asso
iated dual Markov operator P

�

is de�ned

by

(1:2)

0

(�P

�

)(y) =

X

x2E

�(x)p(x; y) (y 2 E)

and � is 
alled P

�

-ex
essive if �P

�

� � and P

�

-harmoni
 if �P

�

= P

�

.
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Iterating the pro
edure in (1.2) and (1:2)

0

we obtain

(1:3)

8

>

>

<

>

>

:

(P Æ P Æ � � � Æ P

| {z }

n-times

f)(x) =

X

y2E

p(n; x; y)f(y) x 2 E

(�P

�

Æ P

�

Æ � � � Æ P

�

| {z }

n-times

)(y) =

X

x2E

�(x)p(n; x; y) y 2 E;

where p(n; x; y) is de�ned re
ursively by

8

<

:

p(0; x; y) = Æ

x;y

p(n; x; y) =

X

z2E

p(n� 1; x; z)p(z; y);

where Æ

x;y

is the Krone
ker delta.

Introdu
ing the absorbing state 1 and setting

p(x;1) = 1�

X

y2E

p(x; y) and p(1;1) = 1

we may de�ne a Markov 
hain (X

n

)

n2N

0

with state spa
e E [ f1g where N

0

=

N [ f0g. Denote

T = minfn 2 N

0

jX

n

=1g:

Then fT =1g means that X

n

is never absorbed by 1.

De�nition 1.3. The Green fun
tion g on E is de�ned by

(1:4) g(x; y) =

1

X

n=0

p(n; x; y)

whenever the series 
onverges for all x; y 2 E.

In addition, we suppose that a �nite standard measure 
 on E (in the sense

that

P

y2E


(y) <1 and 
(z) > 0 for any z 2 E) exists. Then we de�ne

�(x) :=

X

y2E


(y)g(y; x) > 0

for ea
h x 2 E.

De�nition 1.4. The Martin kernel (for g and 
) is de�ned by

(1:5) k(x; y) =

g(x; y)

�(y)

(x; y 2 E)

whenever g(x; y) and �(y) exist.
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We 
all a fun
tion l : E ! N su
h that l(x

n

) ! 1 as n ! 1, an index or a

terminal moment.

In this 
hapter, we suppose that

(1:6) a(x) := sup

y2E

k(x; y) <1:

We de�ne a metri
 � on E by

(1:7) �(x; y) = j2

�l(x)

� 2

�l(y)

j+

X

z2E

jk(z; x)� k(z; y)j

a(z)f1 + jk(z; x)� k(z; y)jg

:

Using (1.7), we 
an assume that E is a metri
 spa
e (E; �) and 
an 
onstru
t

the �-
ompletion of E, denoted by E. Note that E is an open set. The next

Lemmas 1.5 and 1.6 will give a deeper insight into the topologi
al stru
ture of E.

Lemma 1.5. The map k(z; �) is uniformly 
ontinuous in the metri
 �.

Proof. It is obvious from the fa
t that a sequen
e fx

n

g

n2N

� E is Cau
hy

if and only if the sequen
e of real numbers fk(z; x

n

)g

n2N

is Cau
hy.

By the above lemma, the map k(z; �) and the metri
 (1.7) extend to E, respe
-

tively. Therefore, the extension is also denoted by k and �, respe
tively.

Lemma 1.6. E is a 
ompa
t metri
 spa
e.

Proof. Let fx

n

g

n2N

� E. First note that the sequen
e fk(z; x

n

)g

n2N

is

bounded for �xed z 2 E. Hen
e we 
an 
hoose subsequen
e fx

N(n)

g

n2N

� E

su
h that fk(z; x

N(n)

)g

n2N

is Cau
hy. Then by (1.7), it follows that fx

N(n)

g

n2N

is

Cau
hy in E and thus E is sequentially 
ompa
t.

De�nition 1.7. E is 
alled the Martin spa
e asso
iated to p. The boundary

of E, that is, �E = E n E

Æ

= E n E is 
alled Martin boundary and is denoted by

M . Note that M is a 
ompa
t metri
 spa
e.

The main theorem in this se
tion (proved in Dynkin [9℄) is the following.

Theorem 1.8. There exists a Borel set B � M , 
alled the spa
e of exits,

su
h that the following holds:

(1) The fun
tion k(�; z) is P -harmoni
 on E for every z 2 B.
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(2) For every 
-integrable P -ex
essive fun
tion h � 0 there exists a unique

�nite measure �

h

on E su
h that

h(x) =

Z

E[B

k(x; z)d�

h

(z) and �

h

(M nB) = 0:

(3) z 2 B if and only if �

k(�;z)

(x) = Æ

x;z

.

(4) For every 
-integrable P -harmoni
 fun
tion h � 0 there exists a unique

�nite measure �

h

on E su
h that

h(x) =

Z

B

k(x; y)d�

h

(y):

(5) For every bounded P -harmoni
 fun
tion h � 0, �

h

is absolutely 
ontinuous

with respe
t to �

1

with bounded Radon-Nikodym derivative

d�

h

d�

1

su
h that

h(x) =

Z

B

k(x; y)

d�

h

d�

1

(y)d�

1

(y)

lim

n!1

h(X

n

) =

d�

h

d�

1

(X

1

) Pr

x

-a.e. on fT =1g 8x 2 E

9X

1

3 h(x) = E

x

�

d�

h

d�

1

(X

1

)

�

8x 2 E:

Here fX

n

jn 2 N

0

g denotes the asso
iated Markov 
hain and Pr

x

is the probability

measure 
on
entrated on the paths starting from x given by

Pr

x

[X

0

= x

0

; X

1

= x

1

; :::; X

n

= x

n

℄ = Æ

x;x

0

p(x

0

; x

1

)p(x

1

; x

2

) � � � p(x

n�1

; x

n

):

(6) Statement (5) holds for every bounded P -harmoni
 fun
tion if P is 
onser-

vative, i.e. P1 = 1 (Re
all that p is a Markovian kernel.).

(7) If f is a non-negative �

1

-integrable fun
tion on M then

(1:10) h

f

(x) :=

Z

B

k(x; y)f(y)d�

1

(y)

is P -harmoni
 on E and

f(X

1

) = lim

n!1

h

f

(X

n

) Pr

x

-a.e. on fT =1g 8x 2 E:

The identi�
ation problem is investigated by many authors (see [28,33℄ et
.).

We mention some aspe
ts of the theory whi
h are 
onne
ted with our resear
h.

Random walks on in�nite graphs and (as a spe
ial 
ase) groups are among the

most interesting topi
s. The de�nition of a random walk adopted here is that

of a time-homogeneous Markov 
hain whose transition probabilities are adapted

in some way (whi
h has to be spe
i�ed more pre
isely) to a graph stru
ture of

the underlying dis
rete state spa
e. It goes without saying that a graph 
an be

asso
iated with any time-homogeneous Markov 
hain on a 
ountable state spa
e,
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so that one 
ould say that this notion of random walks 
oin
ides with that of

arbitrary Markov 
hains.

We suppose that E is an in�nite graph; we 
onsider the non-oriented edge set

as a symmetri
 subset of E � E and write x � y if x and y are neighbours. The

degree of x 2 E, denoted by deg(x), is the number of neighbours of x. A path of

length n from x to y is a sequen
e x = x

0

; x

1

; :::; x

n

= y of distin
t verti
es su
h

that x

i�1

� x

i

. We now assume that E is in�nite and lo
ally �nite, i.e. for every

x; y 2 E there exists a �nite path from x to y. The distan
e 
(x; y) between two

verti
es x and y is the minimal length of a path 
onne
ting the two.

De�nition 1.9. A random walk on E is de�ned by a transition matrix

P = (p(x; y))

x;y2E

whi
h des
ribes the one-step transition of a Markov 
hain (X

n

)

n2N

0

with state

spa
e E.

To model X

n

, we 
onsider the traje
tory spa
e E

N

0

, equipped with the usual

produ
t sigma-algebra arising from n-th proje
tion E

N

0

! E. This des
ribes the

random walk starting at x 2 E, if E

N

0

is equipped with the probability measure

Pr

x

given in Theorem 1.1.

It is 
lear that p(n; x; y) = Pr

x

[X

n

= y℄. This is the (x; y)-entry of P

n

, with

P

0

= I, the identity matrix over E.

We also assume that (X

n

)

n2N

0

is irredu
ible, that is, for every x; y 2 E there

exists some n 2 N

0

su
h that p(n; x; y) > 0.

Irredu
ibility alone is, of 
ourse, not enough to say that the random walk is well

adapted to the underlying graph stru
ture. Thus we now present some 
onditions

whi
h will serve to meet this requirement in some form.

The random walk has �nite range if fyjp(x; y) > 0g is a �nite set for every

x 2 E. In parti
ular, the random walk has bounded range if supf
(x; y)jp(x; y) >

0g <1.

x3. Self-similar fra
tals

In this se
tion, we review the theory of self-similar sets and analysis in p.
.f

self-similar sets.

We begin with a des
ription of a general 
onstru
tion for fra
tals (see [15,17℄).

Examples are the Cantor set, the von Ko
h 
urve and the von Ko
h island.

Let D be a 
losed subset of R

d

. A mapping S : D ! D is 
alled a 
ontra
tion

on D if there exists some 
 with 0 < 
 < 1 su
h that jS(x)�S(y)j � 
jx�yj for all

x; y 2 D. If equality holds, then S maps sets to geometri
ally similar ones, and

we 
all S a similarity and 
 its similitude ratio. A

ording to [10,15,17℄, families
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of 
ontra
tions, or iterated fun
tion s
hemes as they are sometimes 
alled, de�ne

unique non-empty 
ompa
t invariant sets. That is,

Theorem 1.10. [10,15,17℄ Let ff

i

g

1�i�m

be 
ontra
tions on D � R

d

. Then

there exists a unique non-empty 
ompa
t set K that satis�es

K =

m

[

i=1

f

i

(K):

Moreover, if we de�ne a transformation of f on the 
lass T of non-empty 
om-

pa
t sets by

f(K

0

) =

m

[

i=1

f

i

(K

0

);

then

(1:11) K =

1

\

n=1

f Æ f Æ � � � Æ f

| {z }

n-times

(K

0

)

for any K

0

2 T su
h that f

i

(K

0

) � K

0

for ea
h i.

We 
all K a fra
tal set. In (1.11), taking K

0

as a simplex in R

d

and f

i

the

three appropriate similarities with similitude ratio 1=2, we have that K is the

Sierpi�nski gasket in R

d

originated from Sierpi�nski's work [30℄. The term was later

introdu
ed by Mandelbrot [25℄.

Moreover, by the following de�nition we 
an understand that a self-similar

stru
ture is an abstra
tion of topologi
al features from the 
on
epts of the self-

similar sets studied in [15,17℄.

Let K be a 
ompa
t metri
 spa
e, A a �nite set, A

1

the spa
e of one-

sided in�nite sequen
es, W the word spa
e generated by A. For ea
h a 2 A, let

F

a

: K ! K be a 
ontinuous inje
tion and !

a

: A

1

! A

1

the map de�ned

by !

a

(w) = aw where a 2 A. Then (K;A; fF

a

g

a2A

) is said to be a self-similar

stru
ture on K (or simply, K is a self-similar set) if there exists a 
ontinuous

surje
tion � : A

1

! K satisfying

� Æ !

w

1

Æ !

w

2

Æ � � � Æ !

w

n

= F

w

1

Æ F

w

2

Æ � � � Æ F

w

n

Æ �

for any w

1

w

2

� � �w

n

2W. In parti
ular, F

;

is the identity map of K.

For fra
tal sets K the geometry has been investigated for quite some time. More

re
ently, one has investigated the 
onne
tion between multifra
tal spe
trum and

harmoni
 analysis [2℄.

Here, we are interested in the notion of Brownian motion in harmoni
 analysis.
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Goldstein [14℄ and Kusuoka [24℄ independently 
onstru
ted a Brownian motion

on the Sierpi�nski gasket. Barlow/Pelkins [1℄ obtained a remarkable estimate on its

transition probability density with respe
t to an appropriate Hausdor� measure.

This investigation may be viewed as the part 
orresponding to the point of view

originating from Brownian motion. In fa
t, Fukushima/Shima [13℄ and Shima [29℄

determined the eigenvalues of the Lapla
ian on Sierpi�nski gasket.

As mentioned before, Kigami [21℄ studied the problem from the averaging view-

point. He found the dire
t and natural de�nition of the Lapla
e operator on the

Sierpi�nski gasket as the limit of di�eren
e operators and then established a theory

whi
h solved the asso
iated Diri
hlet problem for the Poisson equation, Gauss-

Green's formula and so on. He later expanded the theory to a 
lass of self-similar

sets 
alled p.
.f. self-similar sets using the theory of Diri
hlet forms [22℄.

We would like to mention that in [26℄ a suitable 
lass of "harmoni
 fun
tions" on

the Sierpi�nski gasket is 
onstru
ted su
h that these fun
tions satisfy a minimum

prin
iple and Harna
k's inequality. Furthermore, in [31℄ and [32℄, a dynami
al

approa
h is taken using modi�ed Cayley graphs and dynami
al zeta fun
tions.

There is also an approa
h using fra
tal di�erentiation [12℄. In addition, as an

appli
ation of [4℄, a Poisson formula for P -harmoni
 fun
tions is established by

appli
ation of the �bre dynami
al property [3℄.

We 
onsider the dis
rete approximation of a p.
.f. self-similar set by averages

of its "boundary". The 
orresponding Markov 
hains are re
urrent so that the

Martin boundaries are trivial. In order to get a non trivial Martin boundary it is

ne
essary to de�ne Markov 
hains more suitable to represent harmoni
 fun
tions

on the p.
.f. self-similar sets. This means that there exists a Markov 
hain with

dis
rete state spa
e su
h that K is homeomorphi
 to the Martin boundary of the

Markov 
hain. Note that the 
oding � : A

1

! K is a 
oding by the spa
e of

ends, i.e. an equivalen
e 
lass of in�nite paths. In the Pentakun 
ase, two paths

are equivalent if they di�er by only �nitely many verti
es, and in general there

exists an analogous de�nition for the equivalen
e 
lasses. However, in general, it

is not ne
essary to 
onsider the spa
e of ends.

We introdu
e the Pentakun P.

Let p

i

2 R

2

for i = �2;�1; 0; 1; 2 in a Eu
lidean spa
e and

j

����!

p

�2

p

�1

j = j

���!

p

�1

p

0

j = j

��!

p

0

p

1

j = j

��!

p

1

p

2

j = j

���!

p

2

p

�2

j = 1

then

�(p

�2

; :::; p

2

) :=

0

[

j=�2

fxj

��!

p

�2

x = s

j

���!

p

�2

p

j

+ t

j

����!

p

�2

p

j+2

: s

j

; t

j

� 0; 0 � s

j

+ t

j

� 1g

is 
alled a regular simplex if the ve
tors

����!

p

�2

p

�1

and

���!

p

�2

p

2

are linearly independent.
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For �2 � i; j � 2, we de�ne the points

p

ij

=

3�

p

5

2

p

i

+

p

5� 1

2

p

j

and for �2 � ` � 2 we let

F

`

: �(p

�2

; :::; p

2

)! �(p

�2

; :::; p

2

)

denote the aÆne mappings onto the simplex generated by p

j`

and satisfying

F

`

(p

j

) = p

j`

. It is 
lear that p

`

is a �xed point of F

`

.

Let A = f�2;�1; 0; 1; 2g be the alphabet of �ve letters equipped with a module

stru
ture with the additive operation � modulo 5. Let A

n

denote the 
olle
tion

of words 
onsisting of n symbols and A

1

the spa
e of one-sided in�nite sequen
es.

In parti
ular, A

0

= f;g where ; denotes the empty word. Then, for w 2W[A

1

,

we de�ne the 
onjugate w

#

of w by

(1:12) w

#

=

�

w

0

(a� d=2)(a��d=2) if w = w

0

a(a� d)

k

; d 2 f�2; 2g

w otherwise

and an equivalen
e relation � on W [ A

1

by x = y or x

#

= y where W =

S

1

n=0

A

n

; k 2 N [ f1g; a 2 A and w

0

2W.

For x 2 A

n

we de�ne

F

x

=

�

F

x

1

Æ F

x

2

Æ � � � Æ F

x

n

if x = x

1

x

2

� � �x

n

identity if x = ;

and

�(x) = F

x

(�(p

�2

; :::; p

2

)):

The Pentakun P is de�ned as

P =

1

\

m=0

[

x2A

m

�(x):

It is 
lear that P is a 
ompa
t metri
 spa
e with the Eu
lidean distan
e in R

2

restri
ted to P.

It is known that for the Sierpi�nski gasket [4℄ and the Pentakun P (private


ommuni
ation of M. Denker, see the below theorem) the fra
tal K in (1.11) is

homeomorphi
 to a quotient spa
e A

1

=�.

Theorem 1.11. The spa
e A

1

=� and the Pentakun P are bi-Lips
hitz

equivalent.
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 1

2

-1

-2

0

    

        

1(-1) 11

121(-2)

020(-2)

01

00

0(-1)

(-1)1

(-1)2(-1)(-2)

(-1)(-1)

(-1)0

(-2)0

(-2)(-1) (-2)1

(-2)(-2)

20

2(-1) 21

222(-2)

10

 (-2)2

Idea of proof. We introdu
e the metri


d(x; y) =

1

X

j=1

 

3�

p

5

2

!

j

(1� Æ

x

j

;y

j

)

on A

1

.

For x = x

1

x

2

� � � 2 A

1

de�ne x

n

= x

1

x

2

� � �x

n

and � : A

1

! P by

�(x) = lim

n!1

�(x

n

):

Sin
e

j�(x)� �(y)j � (2 +

p

5)d(x;y)

we have that � is Lips
hitz 
ontinuous and onto. Moreover, �(x) = �(y) if and

only if x � y.
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Figure 1. P :Pentakun

De�ne � : (A

1

=�)! P by

�(~x) = �(x) for x 2 ~x 2 A

1

=� :

This map is well de�ned by the Lips
hitz 
ontinuity of �. It is also a bije
tion

by general topology theory.

De�ne for x; y 2 A

1

d

0

(x; y) =

�

d(x; y) if x 6� y

0 if x � y;
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and for ~x; ~y 2 A

1

=�

~

d(~x; ~y)

= inf

(

m

X

j=1

d

0

(w

j�1

; w

j

)

�

�

�

�

�

m 2 N : w

0

2 ~x; w

1

2 A

1

; :::; w

m�1

2 A

1

; w

m

2 ~y

)

:

By some dis
ussions, we obtain the following properties:

(1)

~

d is a metri
, that is, A

1

=� is metrizable with respe
t to the metri


~

d.

(2) j�(~x)� �(~y)j < (3 +

p

5)

~

d(~x; ~y) whenever ~x 6= ~y.

(3)

~

d(�

�1

(�); �

�1

(�

0

)) < (5�

p

5)j� � �

0

j whenever � 6= �

0

.

x4. Outline of the method

The main goal of this paper is to prove that P 
an be represented as the Martin

boundary of a 
anoni
al Markov 
hain whi
h is not irredu
ible and does not have

bounded range stru
ture. This 
an be a

omplished by de�ning the Martin kernel,

and in fa
t the n-step transition probabilities.

Consider a �nite alphabet A and the spa
eW of �nite words. Suppose we have

already de�ned an equivalen
e relation � on A

1

, so that A

1

=� is homeomorphi


to the fra
tal. This extends toW by de�ning wa � vb if wa

1

� vb

1

(see (1.12)).

A natural Markov 
hain for the fra
tal is given by a Markov 
hain with state

spa
e W and positive transition probabilities. Furthermore, it has a following

properties:

� w is su

essor of v or its equivalent (dual) word.

� Transition probabilities are uniformly.

Consider a fra
tal whi
h is totally dis
onne
ted. With N = #A we 
hoose the

transition probabilities p(w;wa) = 1=N . In this 
ase p(n;w;v) = N

�n

be
ause

there exists only one an
estor for ea
h word u. In 
ase (A

1

=�)

�

=

Sierpi�nski

gasket there are exa
tly two an
estors (ex
ept "boundary" word u, see [4℄). Thus

there exists a simple formula for p(n;w;v). In the Pentakun 
ase we have a

mixture of both phenomena. We now give a des
ription of the estimate for the

Green fun
tion of the natural modulo 5 fra
tal Markov 
hains.

We denote by (X

n

)

n2N

0

the Markov 
hain with state spa
e W and stationary

transition probabilities

(1:13) p(w;wa) = p(w;w

#

a) =

8

>

<

>

:

1

10

if w 6= w

#

; a 2 A

1

5

if w = w

#

; a 2 A:
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The Green fun
tion g(v;w) on W is given by

(1:14) g(v;w) = p(l(w)� l(v);v;w) :=

X

u2W

p(l(w)� l(v)� 1;v;u)p(u;w)

where l(w) denotes the length of w and where g(v;w) = Æ

v;w

whenever l(v) =

l(w).

As a 
onsequen
e of the above de�nitions (1.13) and (1.14), we be
ame aware

that the key to the estimation of the Green fun
tion is the behaviour of the

di�eren
e of the last two di�erent letters in a word, in parti
ular, whether they

are 2 (or �2) or not. The investigation is based upon this interesting dis
overy.

Super�
ially, the Pentakun is similar to the Sierpi�nski gasket as a geometri


stru
ture in R

2

, but in reality they are radi
ally di�erent in the behaviour of their


riti
al sets as p.
.f. self-similar sets.

The stru
ture of the Martin kernel k(v; �) (i.e. the normalised Green fun
tion

in rough sense, see (1.5)) is su
h that it resembles the word spa
e metri
. If

v ! �, then k(v; �) vanishes outside a neighbourhood U(v) also 
ontra
ting to

�. This immediately gives the �nal result that the Martin boundary is equal to

A

1

=�.

The organisation of this paper is as follows. In se
tion II we �rst give basi


de�nitions and de�ne the Martin fun
tion, 
alled the Martin kernel. Next, we

de�ne the 
onjugate area and the non-
onjugate area for one �xed word and

derive the �rst result whi
h is the estimation of the Martin kernels of the natural

mod 5 Markov 
hain by 
onsidering the di�eren
e between two letters and the

determination of a p-partial for the an
estor of a word. In se
tion III we show

that P is homeomorphi
 to the Martin boundary and also a spa
e of exits using

our result in se
tion II. Finally, as a 
orollary to [5,6℄, we des
ribe the asso
iated

Diri
hlet problem for P � I on W using Dynkin's Theorem (Theorem 1.8).
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Chapter II. The natural mod 5 Markov 
hain

x1. The Pentakun graph

In this se
tion we study the symboli
 representation of the Pentakun. We de�ne

the state spa
e for the natural Markov 
hain and derive basi
 properties.

De�nition 2.1. Let A be an alphabet of �ve letters whi
h are denoted

f�2;�1; 0; 1; 2g and let N

0

= N [ f0g. We 
onsider A as a module with addition

mod 5, denoted by �.

The following de�nitions give some basi
 
on
epts and notation.

(1) Let A

1

be the spa
e of one-sided in�nite sequen
es.

(2) For n 2 N

0

, let A

n

be the 
olle
tion of words 
onsisting of n symbols. In

parti
ular, A

0

= f;g where ; denotes the empty word. Then the word spa
e is

de�ned by

W =

[

n2N

0

A

n

:

We 
onsider (W;O

1

) as a topologi
al spa
e where O

1

is a dis
rete topology.

(3) For n 2 N

0

[f1g, the length of a word is de�ned by l(x) = n where x 2 A

n

.

(4) The produ
t of two words is de�ned by xy = x

1

x

2

� � �x

n

y

1

y

2

� � � where

x = x

1

x

2

� � �x

n

2W and y = y

1

y

2

� � � 2W [ A

1

.

(5) Let w = w

1

w

2

� � �w

n

2W n f;g. Then we de�ne

w

�

=

�

w

1

w

2

� � �w

n

if n � 2

; if n = 1:

(6) For �xed p 2 A, we de�ne the fun
tion �

p

: A! A by �

p

(a) = a� p.

Next, we de�ne the 
onjugate of a word using a kind of involution.

De�nition 2.2. Let A = G

Æ

[G

#

where G

Æ

= f�1; 0; 1g and G

#

= f�2; 2g.

(1) Let w 2W [ A

1

. Then the 
onjugate w

#

of w is de�ned by

(2:1) w

#

=

�

w

0

�

d=2

(a)�

�d=2

(a)

k

if w = w

0

a�

d

(a)

k

; d 2 G

#

w otherwise;

where k 2 N [ f1g; a 2 A and w

0

2W.

For example, sin
e �2 = �

2

(1), we have

(w

0

1(�2)

k

)

#

= (w

0

1�

2

(1)

k

)

#

= w

0

�

1

(1)�

�1

(1)

k

= w

0

20

k
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whi
h implies

(w

0

1(�2)

k

)

##

= (w

0

20

k

)

#

= (w

0

2�

�2

(2)

k

)

#

= w

0

�

�1

(2)�

1

(2)

k

= w

0

1(�2)

k

:

(2) De�ne the fun
tion � of x 2W by

�(x) =

�

1 if x

#

6= x

2 if x

#

= x:

We de�ne the relation � on W [ A

1

by

x � y () x = y or x = y

#

:

The next lemma is an immediate 
onsequen
e.

Lemma 2.3. The relation � is an equivalen
e relation on W [ A

1

.

Hen
e we 
an de�ne the Modulo 5 fra
tal by A

1

=�.

For a �xed alphabet A = f�2;�1; 0; 1; 2g the Markov 
hain will be de�ned by

the following transition probabilities p(�; �) on W�W, so it has state spa
e W.

De�nition 2.4.

(1) We denote by (X

n

)

n2N

0

the Markov 
hain state spa
e W and de�ne the

transition probabilities

(2:2) p(w;wa) = p(w;w

#

a) =

�(w)

10

where w 2W and a 2 A.

We 
all X = (X

n

)

n2N

0

the natural Markov 
hain for the Pentakun.

(2) The n-th step transition probabilities on W are de�ned re
ursively by

(2:3)

8

<

:

p(0;v;w) = Æ

v;w

p(n;v;w) =

X

u2W

p(n� 1;v;u)p(u;w) v;w 2W; n 2 N :

Lemma 2.5. Let v;w 2 W. Then we have p(n;v;w) > 0 only if n =

l(w)� l(v).



22

Proof. We shall prove this lemma by indu
tion over n. If p(1;v;w) > 0,

then by (2.3) we have

P

u2W

p(0;v;u)p(u;w) > 0 whi
h o

urs only if

�

v = u

w = ua or u

#

a for some a 2 A

and hen
e l(w) � l(v) = l(u) + 1 � l(u) = 1. This argument also gives the

indu
tion step.

De�nition 2.6. The non-oriented edge set as a symmetri
 subset ofW�W,

that is,

�

edges [x;y℄jx;y 2W : y = xa or y = x

#

a; a 2 A

	

is 
alled the Pentakun graph.

Let x;y 2W. A path from x to y is a 
olle
tion fu

1

;u

2

; :::;u

s

g �W su
h that

l(u

i

) = l(u

i�1

) + 1;u

1

= x;u

s

= y and p(u

i

;u

i+1

) > 0 for all 1 � i < s. De�ne

n(x;y) =

�

the number of paths from x to y if p(l(y)� l(x);x;y) > 0

0 otherwise:

Lemma 2.7. The Pentakun graph is 
onne
ted, i.e. for every x;y 2 W

there exists a �nite path from x to y.

Proof. Obvious.

x2. The Green fun
tion and the Martin kernel

The obje
t of this se
tion is to estimate the Martin kernel de�ned in (2.5). The

key to the estimation is the di�eren
e between two letters and the determination

of a p-partial for the an
estor of a word.

We �rst de�ne the Green fun
tion and the Martin kernel.

By Lemma 2.5, we have

1

X

n=0

p(n;v;w) = p(l(w)� l(v);v;w)

and hen
e by (1.4), the Green fun
tion on W is de�ned as follows.
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De�nition 2.9. The Green fun
tion on W is given by

(2:4) g(v;w) = p(l(w)� l(v);v;w)

and v is 
alled an an
estor of w if g(v;w) > 0. In parti
ular, if g(v;w) > 0 and

l(w) � l(v) = k, then w is 
alled k-an
estor of w. We denote the 
olle
tion of

k-an
estors of w by An


k

[w℄.

Lemma 2.10. Let x;y 2W su
h that l(x) � l(y) and let a 2 A. Then we

have

g(x;ya) =

1

10

fg(x;y) + g(x;y

#

)g:

Proof. Note that l(y) = l(y

#

) for all y 2W. By (2.2) and (2.4), we have

g(x;ya)

= p(l(y) + 1� l(x);x;ya)

=

X

u2W

p(l(y)� l(x);x;u)p(u;ya)

=

8

>

<

>

:

1

5

� p(l(y)� l(x);x;y) if y = y

#

1

10

� p(l(y)� l(x);x;y) +

1

10

� p(l(y

#

)� l(x);x;y

#

) if y 6= y

#

=

8

>

<

>

:

1

5

� g(x;y) if y = y

#

1

10

� g(x;y) +

1

10

� g(x;y

#

) if y 6= y

#

;

and hen
e the lemma follows.

Lemma 2.11. Let x 2W. Then we have g(;;x) = 1=5

l(x)

.

Proof. Using indu
tion over l(x), the assertion follows immediately. In

the 
ase of l(x) � 1, the lemma is an immediate 
onsequen
e of (2.4). We now

assume g(;;x) = 1=5

l(x)

. Let y 2W su
h that l(y) = l(x) and let a 2 A. Then

by Lemma 2.10 we have

g(;;ya) =

1

10

� g(;;y) +

1

10

� g(;;y

#

)

=

1

10

�

1

5

l(y)

+

1

10

�

1

5

l(y

#

)

=

1

5

l(y)+1

:

The lemma is proved.
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Referring [4℄, (1.5) and the above lemma, the Martin kernel onW is de�ned as

follows.

De�nition 2.12. The Martin kernel (for g) on W is de�ned by

(2:5) k(v;w) =

g(v;w)

g(;;w)

= 5

l(w)

g(v;w):

Note that if l(w) > l(v), then we have

k(v;w) = 5

l(w)�l(v)

 (v)g(v;w)

where  (v) := 5

l(v)

�(v).

The following proposition will play an important role throughout this paper.

It states that the an
estor of an arbitrary �nite word lies in the neighbourhood

of its �rst letter.

Proposition 2.13. Let x;y

`

2 W su
h that y

`

= xa

1

a

2

� � �a

`

a

`+1

where

a

j

2 A; j = 1; 2; :::; `; `+ 1 and ` 2 N . Then we have

(2:6) An


`

[y

`

℄ [An


`

[y

#

`

℄ �

[

p2G

Æ

fx�

p

(a

1

); (x�

p

(a

1

))

#

g:

Proof. We shall prove the proposition by indu
tion over `. We set a

2

=

a

1

� d

1

. In the 
ase ` = 1, by (2.3) and (2.4),

(2:7)

0 < g(v;y

1

)

= p(1;v;y

1

)

= p(0;v;xa

1

)p(xa

1

;y

1

) + p(0;v; (xa

1

)

#

)p((xa

1

)

#

;y

1

)

whi
h implies An


1

[y

1

℄ = fxa

1

; (xa

1

)

#

g. On the other hand, by (2.1)

y

#

1

=

�

y

1

if d

1

2 G

Æ

x�

d

1

=2

(a

1

)�

�d

1

=2

(a

1

) if d

1

2 G

#

and by the same argument as above, we have

An


1

[y

#

1

℄ =

�

fxa

1

; (xa

1

)

#

g if d

1

2 G

Æ

fx�

d

1

=2

(a

1

); (x�

d

1

=2

(a

1

))

#

g if d

1

2 G

#

:

Sin
e d

1

=2 2 G

Æ

whenever d

1

2 G

#

, we obtain that (2.6) is true for ` = 1.

Assume that (2.6) is true for `. Then for a

`+2

2 A, by the indu
tion hypothesis
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and (2.3),

An


`+1

[y

`+1

℄ = An


`

[y

`

℄ [An


`

[y

#

`

℄

�

[

p2G

Æ

fx�

p

(a

1

); (x�

p

(a

1

))

#

g

and

(2:8) An


`

[((xa

1

)a

2

a

3

� � �a

`+1

a

`+2

)

#

℄ �

[

p2G

Æ

f(xa

1

)�

p

(a

2

); ((xa

1

)�

p

(a

2

))

#

g:

Hen
e by (2.8), we have for a

2

= �

q

(a

1

)

An


`+1

[y

#

`+1

℄ =

[

z2An


`

[y

#

`+1

℄

An


1

[z℄

�

[

p2G

Æ

fAn


1

[xa

1

�

p�q

(a

1

)℄ [An


1

[(xa

1

�

p�q

(a

1

))

#

℄g

=

8

>

>

<

>

>

:

[

p2f0;qg

fx�

p

(a

1

); (x�

p

(a

1

))

#

g if q 2 G

Æ

[

p2G

Æ

fx�

p

(a

1

); (x�

p

(a

1

))

#

g if q 2 G

#

;

and thus the proposition follows.

Consequently, we have

g(xa;u)

=

X

z2An


k

[u℄

p(`� k;xa; z)p(k; z;u)

=

X

p2G

Æ

fg(xa;xa

1

a

2

� � �a

`�k

�

p

(a

`�k+1

))g(xa

1

a

2

� � �a

`�k

�

p

(a

`�k+1

);u)

+ g(xa; (xa

1

a

2

� � �a

`�k

�

p

(a

`�k+1

))

#

)g((xa

1

a

2

� � �a

`�k

�

p

(a

`�k+1

))

#

;u)g

for any u 2

S

q2G

Æ

fy

�

`

�

q

(a

`+1

); (y

�

`

�

q

(a

`+1

))

#

g and 1 � k � `.

This leads us to the de�nition of a p-partial and the neighbourhood of a word.

De�nition 2.14. Let x 2 W and a 2 A. Then a p-partial of xa is de�ned

by

U

p

(xa) := fx�

p

(a); (x�

p

(a))

#

g:

Furthermore, the neighbourhood of xa is de�ned by

U(xa) :=

[

p2G

Æ

fx�

p

(a); (x�

p

(a))

#

g =

[

p2G

Æ

U

p

(xa):
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For a

k

2 A; k 2 N we de�ne d

k

= a

k+1

� a

k

. d

k

is 
alled the di�eren
e between

letters a

k

and a

k+1

. Note that d

k

is also A-valued.

De�nition 2.15. Let x 2W su
h that x = a

1

a

2

� � �a

`

a

`+1

where a

j

2 A; j =

1; 2; :::; `; `+1 and ` 2 N . The part of x from a

`

1

to a

`

1

+`

2

is 
alled 
onjugate area

(resp. non-
onjugate area) if d

k

2 G

#

(resp. d

k

2 G

Æ

) for `

1

� 8k � `

1

+ `

2

� 1

where `

1

; `

2

2 f1; 2; :::; `g with `

1

+ `

2

� `+ 1.

x is always divided into two parts of area whenever x 2

S

1

n=2

A

n

. For example,

let x 2W su
h that

x = 1(�2)(�1)2021 =: a

1

a

2

a

3

a

4

a

5

a

6

a

7

:

Sin
e d

1

; d

3

; d

4

; d

5

2 G

#

and d

2

; d

6

2 G

Æ

, we have that the 
onjugate area of x

is from a

1

to a

2

and a

3

to a

6

and that the non-
onjugate area of x is from a

2

to

a

3

and a

6

to a

7

.

The following Lemma 2.16 is the 
ornerstone of our dis
ussion in the 
onjugate

area. This lemma states that one fundamental di�eren
e between two letters is

the sequen
e in whi
h 2 and �2 appear alternately.

We set d

�

= d=2 for d 2 G

#

.

Lemma 2.16. Let x;y

`

2 W su
h that y

`

= xa

1

a

2

� � �a

`

a

`+1

where a

j

2

A; j = 1; 2; :::; `; `+ 1; d

k

2 G

#

; k = 1; 2; :::; ` and ` 2 N .

(1) If d

k

= d

1

(�1)

k�1

, then we have

An


`

[y

`

℄ =

[

p2f0;d

�

1

(1�Æ

1;`

)g

U

p

(xa

1

)

and

An


`

[y

#

`

℄ =

[

p2fd

�

1

Æ

1;`

;d

�

1

(1�Æ

2;`

)g

U

p

(xa

1

):

Consequently we have

(2)

An


`

[y

`

℄ =

8

>

>

>

>

<

>

>

>

>

:

[

p2f0;d

�

1

(1�Æ

1;`

)g

U

p

(xa

1

) if ` = 1; 2

`�2

[

k=1

[

p2f0;d

�

1

;�d

�

1

Æ

d

k

;d

k+1

g

U

p

(xa

1

) if ` � 3
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and

An


`

[y

#

`

℄ =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

U

d

�

1

(xa

1

) if ` = 1

[

p2f0;�d

�

1

Æ

d

1

;d

2

g

U

p

(xa

1

) if ` = 2

[

p2f0;d

�

1

;�d

�

1

(Æ

d

2

;d

3

�Æ

d

1

;d

2

)g

U

p

(xa

1

) if ` = 3

`�3

[

k=1

[

p2f0;d

�

1

;�d

�

1

Æ

d

k

;d

k+1

;�d

�

1

(Æ

d

`�1

;d

`

�Æ

d

`�2

;d

`�1

)g

U

p

(xa

1

) if ` � 4:

Proof. We begin with the proof of (1). We only show the 
ase where ` � 3.

Note that y

3

= xa

1

�

d

1

(a

1

)a

1

�

d

1

(a

1

) when
e y

#

3

= xa

1

�

d

1

(a

1

)�

d

�

1

(a

1

)�

�d

�

1

(a

1

). In

the 
ase ` = 3, by the same argument as that in (2.7), we 
an 
onstru
t the

following diagram:

y

3

y

#

3

" - "

(xa

1

�

d

1

(a

1

)a

1

)

#

= xa

1

�

d

�

1

(a

1

)�

�d

1

(a

1

)

xa

1

�

d

1

(a

1

)a

1

xa

1

�

d

1

(a

1

)�

d

�

1

(a

1

)

" " %- "

xa

1

�

d

�

1

(a

1

) xa

1

�

d

1

(a

1

)

(xa

1

�

d

1

(a

1

))

#

= x�

d

�

1

(a

1

)�

�d

�

1

(a

1

)

" %- " %-

xa

1

(xa

1

)

#

x�

d

�

1

(a

1

) (x�

d

�

1

(a

1

))

#

(2:9) transition diagram for ` = 3; d

1

= �2 and d

2

= �2;

whi
h 
orresponds to (1) for ` = 3. Assume that (1) is true for `(� 3). Then by

the indu
tion hypothesis,

An


`

[xa

2

a

3

� � �a

`+1

a

`+2

℄ = An


`

[(xa

2

a

3

� � �a

`+1

a

`+2

)

#

℄ =

[

p2f0;d

�

2

g

U

p

(xa

2

);

so that we have

An


`

[y

`+1

℄ = An


`

[y

#

`+1

℄ =

[

p2f0;d

�

2

g

U

p

(y

1

);

and sin
e d

1

= �d

2

and

An


`+1

[y

`+1

℄ = An


1

[An


`

[y

`+1

℄℄;
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we have

An


`+1

[y

`+1

℄ = An


`+1

[y

#

`+1

℄

=

[

z2fy

1

;y

#

1

;y

�

1

�

d

�

2

(a

2

);(y

�

1

�

d

�

2

(a

2

))

#

g

An


1

[z℄

=

[

z2fy

�

1

�

d

1

(a

1

);y

�

1

�

d

�

1

(a

1

);x�

d

�

1

(a

1

)�

�d

�

1

(a

1

)g

An


1

[z℄

=

[

p2f0;d

�

1

g

U

p

(xa

1

)

whi
h implies (1). By (1), for the remaining parts of the proof it suÆ
es to show

that if there exists p 2 f1; 2; :::; `� 2g su
h that d

p

= d

p+1

, then we have

(2:10) An


`

[y

`

℄ = U(xa

1

):

We assume ` � 3. In the 
ase ` = 3 and d

1

= d

2

, by the dis
ussion following

(2.9), we obtain the following diagram:

y

3

= xa

1

�

d

1

(a

1

)�

�d

�

1

(a

1

)�

d

�

1

(a

1

)

% -

xa

1

�

d

1

(a

1

)�

�d

�

1

(a

1

)

(xa

1

�

d

1

(a

1

)�

�d

�

1

(a

1

))

#

= xa

1

�

�d

1

(a

1

)�

d

�

1

(a

1

)

" - % "

(xa

1

�

d

1

(a

1

))

#

= x�

d

�

1

(a

1

)�

�d

�

1

(a

1

)

xa

1

�

d

1

(a

1

) xa

1

�

�d

1

(a

1

)

(xa

1

�

�d

1

(a

1

))

#

= x�

�d

�

1

(a

1

)�

d

�

1

(a

1

)

%- " %- " %-

x�

d

�

1

(a

1

) (x�

d

�

1

(a

1

))

#

xa

1

(xa

1

)

#

x�

�d

�

1

(a

1

) (x�

�d

�

1

(a

1

))

#

transition diagram for ` = 3; d

1

= d

2

= �2:

Suppose that (2.10) is true for ` (� 3). Then, by the indu
tion hypothesis and

(1), we have that if d

1

= d

2

; d

k

= d

2

(�1)

k�2

(k � 2), then

An


`

[y

`+1

℄ =

[

p2f0;d

�

2

g

U

p

(y

1

)

and if d

k

0

= d

k

0

+1

for some k

0

2 f2; 3; :::; `� 1g, then

An


`

[y

`+1

℄ = U(y

1

):

In either 
ase, we obtain An


`+1

[y

`+1

℄ = U(xa

1

) and thus the lemma follows.

The next lemma gives an an
estor of the non-
onjugate area.
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Lemma 2.17. Let x;y

`

2 W su
h that y

`

= xa

1

a

2

� � �a

`

a

`+1

where a

j

2

A; j = 1; 2; :::; `; `+ 1; d

k

2 G

Æ

; k = 1; 2; :::; ` and ` 2 N . Then we have

(1) An


`

[y

`

℄ = An


`

[y

#

`

℄ = U

0

(xa

1

):

(2) An


`

[(y

�

`

�

d

`

(a

`+1

))

#

℄ =

8

>

<

>

:

[

p2fd

1

Æ

1;`

;d

1

g

U

p

(xa

1

) if d

k

� d

1

( 6= 0)

U

0

(xa

1

) otherwise:

Proof. We only have to show (2). By the dis
ussion following (2.9), we

know that the lemma holds for ` = 1; 2.

For ` � 2 and d

k

� d

1

( 6= 0), we assume

An


`

[(y

�

`

�

d

`

(a

`+1

))

#

℄ =

[

p2f0;d

1

g

U

p

(xa

1

)

whi
h implies for a

`+2

= �

d

`+1

(a

`+1

)

An


`

[(xa

2

a

3

� � �a

`

a

`+1

�

d

`+1

(a

`+2

))

#

℄ =

[

p2f0;d

2

g

U

p

(xa

2

)

and therefore we have

An


`

[(y

`+1

�

d

`+1

(a

`+2

))

#

℄ = fy

1

;y

�

1

�

d

2

(a

2

); (y

�

1

�

d

2

(a

2

))

#

g

= fy

1

;y

�

1

�

2d

1

(a

1

);x�

d

1

(a

1

)�

�d

1

(a

1

)g:

In all other 
ases, we may assume that there exists some p 2 f1; 2; :::; `g su
h

that

�

d

p

= f�d

p+1

; 0g

d

k

� d

p+1

(p+ 1 � k � `)

where d

p+1

2 f�1; 1g. Then we obtain

An


`�p

[(y

�

`

�

d

`

(a

`+1

))

#

℄ =

[

q2f0;d

p+1

g

U

q

(y

p

)

=

�

fy

�

p

a

p

; (y

�

p

a

p

)

#

;y

�

p

�

d

p+1

(a

p

)g if d

p

= 0

fy

�

p

a

p

; (y

�

p

a

p

)

#

;y

�

p

�

�d

p+1

(a

p

)g if d

p

= �d

p+1

:

and hen
e the lemma follows.

Next, we shall 
al
ulate the Martin kernel on W. In the last two lemmas, we

have already 
onstru
ted an
estors. Hen
e the following dis
ussion assumes their

existen
e.

Lemma 2.18. Let x;y

`

2 W su
h that y

`

= xa

1

a

2

� � �a

`

a

`+1

where a

j

2

A; j = 1; 2; :::; `; `+1; d

k

= d

1

(�1)

k�1

; d

1

2 G

#

; k = 1; 2; :::; ` and ` 2 N . Then we
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have for q 2 G

Æ

and v 2 U

q

(xa

1

)

(1) k(v;y

`

) =

 (v)

6

�

1 + '(d

�

1

q � 1) +

2'(d

�

1

q + 1)(�1)

`

2

`

�

:

(2) k(v;y

#

`

) =

 (v)

6

�

1 + '(d

�

1

q � 1)�

4'(d

�

1

q + 1)(�1)

`

2

`

�

:

(3) k(v; (y

�

`

�

d

�

`

(a

`+1

))

#

)

=

 (v)

6

�

1 + '(d

�

1

q � 1) +

f3� (�1)

`

g'(d

�

1

q + 1) + 6'(d

�

1

q)

2

`

�

:

Proof. By (1) of Lemma 2.16 we have

An


`

[y

`

℄ [An


`

[y

#

`

℄ =

[

p2f0;d

�

1

g

U

p

(xa

1

):

It is easy to 
he
k that the following re
ursion formula holds

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

k(v;y

1

) =

 (v)

6

f1 + '(d

�

1

q � 1)� '(d

�

1

q + 1)g

k(v;y

#

1

) =

 (v)

6

f1 + '(d

�

1

q � 1) + 2'(d

�

1

q + 1)g

k(v;y

`+1

) =

1

2

fk(v;y

`

) + k(v;y

#

`

)g

k(v;y

#

`+1

) = k(v;y

`

)

and we have proved (1) and (2). Sin
e d

`�1

= d

`

� d

�

`

, we have by (2) of Lemma

2.14

An


`

[(y

�

`

�

d

�

`

(a

`+1

))

#

℄ =

8

>

<

>

:

[

p2f�d

�

1

;�d

�

1

(1�Æ

2;`

)g

U

p

(xa

1

) if ` = 1; 2

U(xa

1

) if ` � 3:

A straightforward 
omputation using (1) and (2) yields

8

>

<

>

:

k(v; (y

�

1

�

d

�

1

(a

2

))

#

) =

 (v)

6

f1 + '(d

�

1

q + 1) + 2'(d

�

1

q)g

k(v; (y

�

`+2

�

d

�

`+2

(a

`+3

))

#

) =

1

4

fk(v; (y

�

`

�

d

�

`

(a

`+1

))

#

) + 1g

and hen
e the lemma is proved.

Hen
eforth we will take G

Æ

as the representative element of Z=3Z when no


onfusion 
an arise.
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De�ne the map ' : G

Æ

! G

Æ

by '(`) := �`. Sin
e the proje
tion Z onto

G

Æ

is well-de�ned, we may assume that the domain of ' is Z. For example,

'(2) = '(�1) = 1; '(�5) = '(1) = �1, et
.

We now de�ne the sequen
es for words of �xed length.

Let k

(i)

j

; `

(i)

j

2 N

0

; j = 1; 2; :::; p; p 2 N ; m

i

2 N

0

and i 2 N

0

. Con�ning ourselves

to Martin kernels, we asso
iate the quantities K

i

; L

i

;L

i

;L; �

m

i

; �

+

m

i

, �

�

m

i

; �

m

i

and

�

i;j;r

. They are de�ned as follows:

(2:11)

� K

i

(p) =

P

p

j=1

k

(i)

j

;

� L

i

(p) =

P

p

j=1

`

(i)

j

with the 
onvention L

i

(0) = 0;

� L

i

= K

i

(L

i

(m

i

) + 1);

� L(p) =

P

p

i=1

L

i

with the 
onvention L(0) = 0;

� �

m

i

(q) = (�1)

k

(i)

L

i

(m

i

)+1

	

(i)

m

i

('(�q � 1)(�1)

k

(i)

1

));

� �

�

m

i

(q) = 	

(i)

m

i

('(�q � 1)(�1)

k

(i)

1

� (�1)

m

i

);

� �

m

i

(q) = �

+

m

i

(q)� �

�

m

i

(q);

� �

i;j;r

(q) = '(j +	

(i)

r�1

('((�1)

r

+ '(q + 1)(�1)

k

(i)

1

)))

where q 2 G

Æ

and where

	

(i)

m

i

(x) =

�

x if m

i

= 0

'(`

(i)

m

i

+ '(`

(i)

m

i

�1

+ � � �+ '(`

(i)

2

+ '(`

(i)

1

+ x)) � � � )) if m

i

2 N :

Let a

j

2 A; j = 1; 2; :::;L(p);L(p) + 1 where L(p) is de�ned in (2.11). Then we

de�ne H

p

p�1

= fqjL(p� 1) + 1 � q � L(p)� 1 : d

q

= d

q+1

g.

Lemma 2.19. Let k

(0)

j

; `

(0)

j

; K

0

; L

0

and L

0

be de�ned as in (2.11). Let

x;y 2 W satisfying y = xa

1

a

2

� � �a

L

0

a

L

0

+1

where a

k

2 A; k = 1; 2; :::;L

0

;L

0

+

1; d

k

2 G

#

; k = 1; 2; :::;L

0

and `

(0)

1

6= 0. Moreover, we suppose that

H

1

0

= fK

0

(1); K

0

(2); :::; K

0

(L

0

(m

0

))g

and if m

0

� 2, then d

K

0

(L

0

(t�1)+1)

6= d

K

0

(L

0

(t)+1)

whenever t = 1; 2; :::; m

0

� 1.

Then we have for q 2 G

Æ

and v 2 U

q

(xa

1

)

(1) k(v;y) =

 (v)

6

0

�

1 + '(d

�

1

q � 1) +

m

0

X

r=1

`

(0)

r

X

j=1

�

0;j;r

(d

�

1

q)

2

K

0

(L

0

(r�1)+j)

�

2�

m

0

(d

�

1

q)

2

L

0

1

A

:
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(2) k(v;y

#

) =

 (v)

6

0

�

1 + '(d

�

1

q � 1) +

m

0

X

r=1

`

(0)

r

X

j=1

�

0;j;r

(d

�

1

q)

2

K

0

(L

0

(r�1)+j)

+

4�

m

0

(d

�

1

q)

2

L

0

1

A

:

(3) k(v; (y

�

�

d

�

L

0

(a

L

0

+1

))

#

)

=

 (v)

6

0

�

1 + '(d

�

1

q � 1) +

m

0

X

r=1

`

(0)

r

X

j=1

�

0;j;r

(d

�

1

q)

2

K

0

(L

0

(r�1)+j)

+

�

m

0

(d

�

1

q) + 3�

m

0

(d

�

1

q)

2

L

0

1

A

:

Proof. De�ne

K

r#

j

=

1

 (v)

k(v; (xa

1

a

2

� � �a

K

0

(j)

�

r

(a

K

0

(j)+1

))

#

)

K

r

j

=

1

 (v)

k(v;xa

1

a

2

� � �a

K

0

(j)

�

r

(a

K

0

(j)+1

))

K

j

=

t

[K

d

�

K

0

(j)

#

j

;K

0

j

;K

0#

j

℄

where

t

X is the transposed matrix of X.

Note that (2.1) and d

K

0

(j)

� (�d

�

K

0

(j)

) 2 G

Æ

when
e K

�d

�

K

0

(j)

#

j

= K

0

j

. Hen
e by

Lemma 2.18, we have for 1 � j � L

0

(m

0

)

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

K

d

�

K

0

(j+1)

#

j+1

=

1

6

�

1�

(�1)

k

(0)

j+1

+3

2

k

(0)

j+1

�

K

d

�

K

0

(j)

#

+

�

1

2

+

1

2

k

(0)

j+1

�

K

0

j

+

1

6

�

2 +

(�1)

k

(0)

j+1

�3

2

k

(0)

j+1

�

K

0#

j

K

0

j+1

=

1

6

�

1 +

2(�1)

k

j+1

2

k

(0)

j+1

�

K

d

�

K

0

(j)

#

j

+

1

2

K

0

j

+

1

3

�

1�

(�1)

k

(0)

j+1

2

k

(0)

j+1

�

K

0#

j

K

0#

j+1

=

1

6

�

1�

4(�1)

k

j+1

2

k

(0)

j+1

�

K

d

�

K

0

(j)

#

j

+

1

2

K

0

j

+

1

3

�

1 +

2(�1)

k

(0)

j+1

2

k

(0)

j+1

�

K

0#

j

;

it follows

t

[K

d

�

K

0

(j+1)

#

j+1

;K

0

j+1

;K

0#

j+1

℄ =

�

A

j+1

2

k

(0)

j+1

+B

�

t

[K

d

�

K

0

(j)

#

j

;K

0

j

;K

0#

j

℄

where

(2:12) A

j+1

=

2

6

6

6

4

�

(�1)

k

(0)

j+1

+3

6

1

(�1)

k

(0)

j+1

�3

6

(�1)

k

(0)

j+1

3

0 �

(�1)

k

(0)

j+1

3

�

2(�1)

k

(0)

j+1

3

0

2(�1)

k

(0)

j+1

3

3

7

7

7

5

and B =

1

6

2

4

1 3 2

1 3 2

1 3 2

3

5

;
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so that we obtain

K

L

0

(m

0

+1)

=

L

0

(m

0

)

Y

j=1

 

A

L

0

(m

0

)+2�j

2

k

(0)

L

0

(m

0

)+2�j

+B

!

K

1

:

Now de�ne the matri
es M

1

and M

2

for the 
ase where k

(0)

j+1

is odd and even in

(2.12) respe
tively, that is,

M

1

=

2

4

�1=3 1 �2=3

�1=3 0 1=3

2=3 0 �2=3

3

5

and M

2

=

2

4

�2=3 1 �1=3

1=3 0 �1=3

�2=3 0 2=3

3

5

:

Note that by some linear algebra one 
an show

M

n�1

1

=

1

3

2

4

2'(n+ 1)� '(n) 2'(n)� '(n� 1) 2'(n� 1)� '(n+ 1)

'(n� 1) '(n+ 1) '(n)

�2'(n� 1) �2'(n + 1) �2'(n)

3

5

and for j 2 f1; 2; 3g

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(M

`

(0)

s

�1

1

M

2

M

`

(0)

s�1

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

)

1j

=

2

3

	

(0)

s

('(j � 1)� (�1)

s

)

�

1

3

	

(0)

s

('(j � 1))

(M

`

(0)

s

�1

1

M

2

M

`

(0)

s�1

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

)

2j

=

1

3

	

(0)

s

('(j � 1) + (�1)

s

)

(M

`

(0)

s

�1

1

M

2

M

`

(0)

s�1

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

)

3j

= �

2

3

	

(0)

s

('(j � 1) + (�1)

s

)

where X

ij

is the (i; j)-entry of X.

Suppose that m

0

� 2 and `

(0)

1

� 2. Sin
e A

j+1

B = 0; B

2

= B;M

1�1

1

M

2

= M

2

and for j � 2

k

(0)

j

=

�

even if j = L

0

(1) + 1; L

0

(2) + 1; L

0

(3) + 1; :::; L

0

(m

0

� 1) + 1

odd otherwise;

we have

(2:13)

L

0

(m

0

)

Y

j=1

 

A

L

0

(m

0

)+2�j

2

k

(0)

L

0

(m

0

)+2�j

+B

!

= B +

`

(0)

1

X

j=2

BM

j�1

1

2

k

(0)

2

+���+k

(0)

j

+

m

0

�1

X

s=1

`

(0)

s+1

X

j=1

BM

j�1

1

M

2

M

`

(0)

s

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

2

k

(0)

2

+���+k

(0)

L

0

(s)+j

+

A

L

0

(m

0

)+1

M

`

(0)

m

0

�1

1

M

2

� � �M

2

M

`

(0)

1

�1

1

2

k

(0)

2

+���+k

(0)

L

0

(m

0

)+1

:
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We have already 
onstru
ted K

1

in Lemma 2.18 and thus the result follows.

Similar 
al
ulations show the remaining part of the lemma.

Here is an example of Lemma 2.19 with

y = x1(�2)1(�2)1(�1)1(�1)1(�2)0(�2)1(�2)0(�2)1(�1):

Sin
e d

4

= d

5

= �2, we have by (2) of Lemma 2.16

An


17

[y℄ = U(x1) = fx1; (x1)

#

;x0; (x0)

#

;x2; (x2)

#

g;

so that by (2.11) we 
an set

8

>

<

>

:

k

(0)

1

= 4; k

(0)

2

= 4; k

(0)

3

= 1; k

(0)

4

= 2; k

(0)

5

= 2; k

(0)

6

= 2; k

(0)

7

= 1; k

(0)

8

= 1;

`

(0)

1

= 1; `

(0)

2

= 2; `

(0)

3

= 1; `

(0)

4

= 1; `

(0)

5

= 2;

H

1

0

= fK

0

(1); K

0

(2); :::; K

0

(L

0

(5))g = f4; 8; 9; 11; 13; 15; 16g

and obtain

k(x1;y) = k((x1)

#

;y)

=

 (x1)

6

0

�

2 +

5

X

r=1

`

(0)

r

X

j=1

�

0;j;r

(0)

2

K

0

(L

0

(r�1)+j)

�

2�

5

(0)

2

17

1

A

=

 (x1)

6

 

2 +

1

X

j=1

'(j � 1)

2

K

0

(j)

+

2

X

j=1

'(j � 1)

2

K

0

(1+j)

+

1

X

j=1

'(j + 1)

2

K

0

(3+j)

+

1

X

j=1

'(j)

2

K

0

(4+j)

+

2

X

j=1

'(j + 1)

2

K

0

(5+j)

+

2

2

K

0

(7+1)

!

=

 (x1)

6

�

2�

1

2

K(3)

+

1

2

K(4)

�

1

2

K(5)

+

1

2

K(6)

+

2

2

K(8)

�

=

 (x1)

6

�

2�

1

2

9

+

1

2

11

�

1

2

13

+

1

2

15

+

2

2

17

�

=

 (x1)

6

�

261942

2

17

=

 (x1)� 43657

2

17

:

A similarly 
al
ulation yields

k(x2;y) = k((x2)

#

;y) =

 (x2)�20565

2

17

k(x0;y) = k((x0)

#

;y) =

 (x0)�1314

2

17

:
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Lemma 2.20. Let x;y

`

2 W su
h that y

`

= xa

1

a

2

� � �a

`

a

`+1

where a

j

2

A; j = 1; 2; :::; `; `+ 1; d

k

2 G

Æ

; k = 1; 2; :::; ` and ` 2 N. Then we have for q 2 G

Æ

and v 2 U

q

(xa

1

)

(1) k(v;y

`

) = k(v;y

#

`

) =

Æ

q;0

 (v)

2

:

(2) k(v; (y

�

`

�

d

`

(a

`+1

))

#

) =

8

>

>

<

>

>

:

 (v)

�

Æ

0;q

2

+

�(q)

2

`

�

if d

k

� d

1

( 6= 0)

Æ

0;q

 (v)

2

otherwise

where �(q) = '(d

1

q + 1).

Proof. We only have to show (2) in the 
ase where d

k

� d

1

( 6= 0) for

1 � k � `. Note that

An


`

[(y

�

`

�

d

`

(a

`+1

))

#

℄ =

[

p2fd

1

Æ

1;`

;d

1

g

U

p

(xa

1

)

by Lemma 2.15. Let a

`+2

2 A su
h that a

`+2

= a

`+1

� d

1

. It is easy to 
he
k that

the following re
ursion formula holds

8

<

:

k(v; (y

�

1

�

d

1

(a

2

))

#

) =

 (v)

2

(Æ

0;q

+ �(q))

2 � k(v; (y

�

`+1

�

d

`+1

(a

`+2

))

#

) = k(v; (y

�

`

�

d

`

(a

`+1

))

#

) + k(v;y

`

):

This together with the fa
t that k(v;y

`

) = Æ

0;q

 (v)=2 implies the result.

x3. The estimation of the Martin kernel

In this se
tion we shall prove the following theorem.

Theorem A. Let k

(i)

j

; `

(i)

j

; K

i

; L

i

;L

i

and L be as in (2.11). Let x;y 2 W

satisfying

y = xa

1

a

2

� � �a

L(2N+1)

a

L(2N+1)+1

where a

k

2 A; k = 1; 2; :::;L(2N + 1);L(2N + 1) + 1 and N 2 N .

(1) If v 62 U(xa

1

) (i.e. v 2 U

p

(xa

1

); p 2 G

#

), then

k(v;y) = k(v;y

#

) = 0:

(2) If v 2 U(xa

1

), then the Martin kernel k has the form:
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� If d

1

2 G

#

, then there exist sequen
es

� s

j

= s

j

(v;y) 2 G

Æ

with

P

v2U(xa

1

)

s

j

= 0

� p

j

=

�

p

1

(v;y) with 0 � p

1

� 3 and

P

v2U(xa

1

)

p

1

= 6 if j = 1

p

j

(y) with 0 � p

j

� 1 if 2 � j � N + 1

and � 2 G

Æ

su
h that

k(v;y) =

 (v)

6

 

p

1

+

N+1

X

j=2

s

1

s

2

� � � s

j�1

2

L(2j�2)

p

j

+

6s

1

s

2

� � � s

N

�

2

L(2N+1)+1

!

k(v;y

#

) =

 (v)

6

 

p

1

+

N+1

X

j=2

s

1

s

2

� � � s

j�1

2

L(2j�2)

p

j

�

6s

1

s

2

� � � s

N

�

2

L(2N+1)+1

!

:

� If d

1

2 G

Æ

, then there exist sequen
es

� s

j

2 G

Æ

� p

j

= p

j

(y) with 0 � p

j

� 1

� t = t(v) 2 G

Æ

with

P

v2U(xa

1

)

t = 0

and � 2 G

Æ

su
h that

k(v;y) =

 (v)

6

(

3Æ

0;q

+ t(v)

 

N+1

X

j=1

s

1

s

2

� � � s

j�1

2

L(2j�2)

p

j

+

6s

1

s

2

� � � s

N

�

2

L(2N+1)+1

!)

k(v;y

#

) =

 (v)

6

(

3Æ

0;q

+ t(v)

 

N+1

X

j=1

s

1

s

2

� � � s

j�1

2

L(2j�2)

p

j

�

6s

1

s

2

� � � s

N

�

2

L(2N+1)+1

!)

:

We give the exa
t formula in the following proposition.

Proposition 2.21. Let k

(i)

j

; `

(i)

j

; K

i

; L

i

;L

i

and L be as in (2.11). Let x;y; z 2

W satisfying

y = xa

1

a

2

� � �a

L(2N)

a

L(2N)+1

and z = xa

1

a

2

� � �a

L(2N+1)

a

L(2N+1)+1

where a

k

2 A; k = 1; 2; :::;L(2N + 1);L(2N + 1) + 1 and N 2 N .

Moreover, we suppose that if d

k

2 G

#

for L(i� 1) + 1 � 8k � L(i), then

H

i

i�1

= fK

i

(1) + L(i� 1); K

i

(2) + L(i� 1); :::; K

i

(L

i

(m

i

)) + L(i� 1)g

with the 
onvention H

i

i�1

= ; whenever m

i

= 0.

(1) If d

k

2

�

G

Æ

for L(2t� 1) + 1 � k � L(2t); t = 1; 2; :::; N

G

#

for L(2t� 2) + 1 � k � L(2t� 1); t = 1; 2; :::; N;N + 1;

then there exists a sequen
e fs

(q)

j

g

j

� G

Æ

satisfying

P

q2G

Æ

s

(q)

1

s

(q)

2

� � � s

(q)

j

= 0 for
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any j su
h that

k(v;y) = k(v;y

#

)

=

8

>

>

>

<

>

>

>

:

 (v)

6

p

1

(d

�

1

q) if N = 1

 (v)

6

 

p

1

(d

�

1

q) +

N

X

j=2

s

(q)

1

s

(q)

2

� � � s

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

!

if N � 2;

k(v; z)

=

 (v)

6

 

p

1

(d

�

1

q) +

N+1

X

j=2

s

(q)

1

s

(q)

2

� � � s

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

+

6s

(q)

1

s

(q)

2

� � � s

(q)

N

�

m

2N+1

(1)

2

L(2N+1)+1

!

;

k(v; z

#

)

=

 (v)

6

 

p

1

(d

�

1

q) +

N+1

X

j=2

s

(q)

1

s

(q)

2

� � � s

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

�

6s

(q)

1

s

(q)

2

� � � s

(q)

N

�

m

2N+1

(1)

2

L(2N+1)+1

!

for q 2 G

Æ

and v 2 U

q

(xa

1

).

(2) If d

k

2

�

G

#

for L(2t� 1) + 1 � k � L(2t); t = 1; 2; :::; N

G

Æ

for L(2t� 2) + 1 � k � L(2t� 1); t = 1; 2; :::; N;N + 1;

then there exists a sequen
e fs

j

g

j

� G

Æ

su
h that

k(v;y) =

 (v)

6

(

3Æ

0;q

+ �(q)

 

N

X

j=1

s

1

s

2

� � � s

j

p

2j

(1)

2

L(2j�1)

+

6s

1

s

2

� � � s

N

�

m

2N

(1)

2

L(2N)+1

!)

;

k(v;y

#

) =

 (v)

6

(

3Æ

0;q

+ �(q)

 

N

X

j=1

s

1

s

2

� � � s

j

p

2j

(1)

2

L(2j�1)

�

6s

1

s

2

� � � s

N

�

m

2N

(1)

2

L(2N)+1

!)

;

k(v; z) = k(v; z

#

) =

 (v)

6

 

3Æ

0;q

+ �(q)

N

X

j=1

s

1

s

2

� � � s

j

p

2j

(1)

2

L(2j�1)

!

for q 2 G

Æ

and v 2 U

q

(xa

1

), where � is de�ned in Lemma 2.20 and p

j

is de-

�ned as follows:

p

j

(q) =

8

>

>

<

>

>

:

1 + '(q � 1)� '(q + 1)(�1=2)

L

j

if H

j

j�1

= ;

1 + '(q � 1) +

m

j

X

v=1

`

(j)

v

X

w=1

�

j;w;v

(q)

2

K

j

(L

j

(v�1)+w)

+

�

m

j

(q)

2

L

j

if H

j

j�1

6= ;:

Proof. We show (1) in several steps. For 1 � ` � L(2N + 1), we set

x

r

`

= xa

1

a

2

� � �a

`

�

r

(a

`+1

).
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(First step) For any p 2 f1; 2; :::; Ng and w

L(2p+1)

2 U(x

0

L(2p+1)

), we have

(2:14)

k(v;w

L(2p+1)

) =

1

2

fk(v;x

0

L(2p�1)

) + k(v;x

0#

L(2p�1)

)g

+

5

L

2p+1

�

(q)

p

 (v)

2

L(2p)

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

where

(2:15) �

(q)

p

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

2

L(2p�1)

 (v)

fk(v;x

d

�

L(2p�1)

#

L(2p�1)

)� k(v;x

0#

L(2p�1)

)g

if

(

x

d

L(2p)

L(2p)

2 An


L(2N+1)�L(2p)

[z℄;

d

j

� d

�

L(2p�1)

for L(2p� 1) + 1 � j � L(2p)

2

L(2p�1)

 (v)

fk(v;x

0

L(2p�1)

)� k(v;x

0#

L(2p�1)

)g

if

(

x

d

L(2p)

L(2p)

2 An


L(2N+1)�L(2p)

[z℄;

d

j

� �d

�

L(2p�1)

for L(2p� 1) + 1 � j � L(2p)

0 otherwise:

Indeed, we 
an prove (2.14) by the following way.

Suppose that

(2:15:1)

(

x

d

L(2p)

#

L(2p)

2 An


L(2N+1)�L(2p)

[z℄;

d

j

� d

�

L(2p�1)

for L(2p� 1) + 1 � j � L(2p):

By the de�nition of the transition probability

k(v;w

L(2p+1)

) =

X

t2U(x

0

L(2p)

)

k(v; t)p(L

2p+1

; t;w

L(2p+1)

):

Hen
e by (2.15.1) and Lemma 2.20, we have

k(v;w

L(2p+1)

)

=

X

t2U

0

(x

0

L(2p�1)

)

k(v; t)

�

1

2

�

1

2

L

2p

�

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

+

X

t2U

d

�

L(2p�1)

(x

0

L(2p�1)

)

k(v; t)

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

2

L

2p
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+

X

t2U

0

(x

0

L(2p�1)

)

k(v; t)

1� 5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

2

=

k(v;x

0

L(2p�1)

) + k(v;x

0#

L(2p�1)

)

2

�

k(v;x

0

L(2p�1)

) + k(v;x

0#

L(2p�1)

)

2

L

2p

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

+

k(v;x

d

�

L(2p�1)

#

L(2p�1)

) + k(v;x

d

�

L(2p�1)

L(2p�1)

)

2

L

2p

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

=

k(v;x

0

L(2p�1)

) + k(v;x

0#

L(2p�1)

)

2

+

k(v;x

d

�

L(2p�1)

#

L(2p�1)

)� k(v;x

0#

L(2p�1)

)

2

L

2p

5

L

2p+1

p(L

2p+1

;x

d

L(2p)

#

L(2p)

;w

L(2p+1)

)

whi
h is (2.14).

(Se
ond step) We shall prove

(2:16) �

(q)

p

2 G

Æ

and

X

q2G

Æ

�

(q)

p

= 0 for any p 2 f1; 2; :::; Ng:

Sin
e

P

q2G

Æ

�

(q)

p

= 0 follows from (2.15), we only have to show that �

(q)

p

2 G

Æ

.

Using indu
tion over p, the assertion follows immediately. If p = 1, then by

Lemmas 2.18 and 2.19 we have

�

(q)

1

2

�

'(d

�

1

q + 1)(�1)

L

1

;

(d

�

1

q + 1)(1 + (�1)

L

1

) + 2(�1)

L

1

'(d

�

1

q)

2

;

� �

m

1

(d

�

1

q);

�

m

1

(d

�

1

q)� �

m

1

(d

�

1

q)

2

�

:

Noting that

�

m

i

(d

�

1

q)� �

m

i

(d

�

1

q) = 2(�1)

k

(i)

L

i

(m

i

)+1

	

(i)

m

i

((�1)

k

(i)

L

i

(m

i

)+1

+m

i

� '(d

�

1

q + 1)(�1)

k

(i)

1

);

this implies that (2.16) is true for p = 1. Suppose that (2.16) is true for p. By

(2.14), we obtain

2

L(2p+1)

 (v)

fk(v;x

d

�

L(2p+1)

#

L(2p+1)

)� k(v;x

0#

L(2p+1)

)g

=

10

L

2p+1

�

(q)

p

2

L(2p)

fp(L

2p+1

;x

d

L(2p)

#

L(2p)

;x

d

�

L(2p+1)

#

L(2p+1)

)� p(L

2p+1

;x

d

L(2p)

#

L(2p)

;x

0#

L(2p+1)

)g:
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On the other hand, by Lemmas 2.18 and 2.19 again

5

L

2p+1

fp(L

2p+1

;x

d

L(2p)

#

L(2p)

;x

d

�

L(2p+1)

#

L(2p+1)

)� p(L

2p+1

;x

d

L(2p)

#

L(2p)

;x

0#

L(2p+1)

)g

2

�

(�1)

L

2p+1

� 1

2

L

2p+1

+1

;

�

m

2p+1

(1)� �

m

2p+1

(1)

2

L

2p+1

+1

�

;

so that

(2:17)

�

(q)

p+1

2

�

(�1)

L

2p+1

�

(q)

p

;

(�1)

L

2p+1

� 1

2

�

(q)

p

;

� �

m

2p+1

(1)�

(q)

p

;

�

m

2p+1

(1)� �

m

2p+1

(1)

2

�

(q)

p

�

and we have proved (2.16).

(Third step) Now by (2.14)

k(v; z) =

X

t2U

0

(x

0

L(2N�1)

)

k(v; t)

2

+

 (v)

6

 

�

(q)

N

p

2N+1

(1)

2

L(2N)

+

6�

(q)

N

�

2N+1

(1)

2

L(2N+1)+1

!

:

Using (2.14) again, we have

X

t2U

0

(x

0

L(2N�1)

)

k(v; t)

2

=

X

t2U

0

(x

0

L(2N�3)

)

k(v; t)

2

+

X

t2U

0

(x

0

L(2N�1)

)

5

L

2N�1

�

(q)

N�1

2

L(2N�2)+1

p(L

2N�1

;x

d

�

L(2N�2)

#

L(2N�2)

; t):

This together with the fa
t that

X

t2U

0

(x

0

L(2N�1)

)

5

L

2N�1

p(L

2N�1

;x

d

�

L(2N�2)

#

L(2N�2)

; t) = 2p

2N�1

(1)

implies

k(v; z) =

X

t2U

0

(x

0

L(2N�3)

)

k(v; t)

2

+

 (v)

6

 

N+1

X

j=N

�

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

+

6�

(q)

N

�

2N+1

(1)

2

L(2N+1)+1

!

:

Repeating this pro
ess, we have

k(v; z) =

 (v)

6

 

p

1

(d

�

1

q) +

N+1

X

j=2

�

(q)

j�1

p

2j�1

(1)

2

L(2j�2)

+

6�

(q)

N

�

2N+1

(1)

2

L(2N+1)+1

!

:

By 
onstru
tion of �

(q)

N

in (2.17), there exists a sequen
e fs

(q)

j

g

j

� G

Æ

su
h that

�

(q)

N

= s

(q)

1

s

(q)

2

� � � s

(q)

N

, and hen
e the theorem follows.
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Remark 2.22. This is an additional remark to Proposition 2.21.

(1) If d

k

2 G

#

or d

k

2 G

Æ

for any k, then we 
ome to the 
on
lusions that

Lemmas 2.19 (or 2.18) or 2.20 hold, respe
tively.

(2) Let M

1

;M

2

and B be de�ned as in Lemma 2.19. It is easy to see that

M =

8

<

:

M

�

�

�

�

�

�

M = [m

1

; m

2

; m

3

℄ : m

1

; m

2

; m

3

2

8

<

:

t

[�1=3;�1=3; 2=3℄

t

[�2=3; 1=3;�2=3℄

t

[1; 0; 0℄

9

=

;

9

=

;

where M is the 
olle
tion of 
onsisting of �nite arbitrary produ
t M

1

and M

2

.

Furthermore, we de�ne M

0

= fM jM = BM

0

:M

0

2Mg. By the same argument

as above, we have

M

0

=

8

<

:

M

�

�

�

�

�

�

M = [m

1

; m

2

; m

3

℄ : m

1

; m

2

; m

3

2

8

<

:

t

[�1=6;�1=6;�1=6℄

t

[1=6; 1=6; 1=6℄

t

[0; 0; 0℄

9

=

;

9

=

;

:

Then by (2.13), it follows that there exists a sequen
e f


(j;q)

k

g

k

� G

Æ

and


onstant 


(j;q)

2 G

Æ

satisfying the 
ondition

P

q2G

Æ




(j;q)

k

=

P

q2G

Æ




(j;q)

= 0 su
h

that

(2:18) p

j

(q) =

8

>

>

<

>

>

:

1 + '(q � 1)� '(q + 1)(�1=2)

L

j

if H

j

j�1

= ;

1 + '(q � 1) +

X

k2H

j

j�1




(j;q)

k

2

k�L(j�1)

+




(j;q)

2

L

j

if H

j

j�1

6= ;:

We also have that

�

(q)

p+1

2 f'(q + 1)(�1)

L

2p+1

�

(q)

p

;�'(q + 1)(�1)

L

2p+1

�

(q)

p

;

'(q+1)f1�(�1)

L

2p+1

g+2'(q)

2

�

(q)

p

;

'(q+1)f�1+(�1)

L

2p+1

g�2'(q)

2

�

(q)

p

;

'(q+1)f1+(�1)

L

2p+1

g+2'(q)

2

�

(q)

p

;

'(q+1)f�1�(�1)

L

2p+1

g�2'(q)

2

�

(q)

p

g:

Compare this result with (2.17).

(3) It is 
lear that

k(v;y); k(v;y

#

); k(v; z); k(v; z

#

) �

 (v)

2

for any v 2 U(xa

1

). In parti
ular, by elementary 
omputations, we have for any

v 2 U

0

(xa

1

)

(2:19)

 (v)

4

� k(v;y); k(v;y

#

); k(v; z); k(v; z

#

) �

 (v)

2

:
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Chapter III. Pentakun as a Martin boundary

x1. The Martin boundary of X

In this se
tion we identify the Pentakun P with the Martin boundary M of

the transition probability fun
tion de�ned in (2.2). Sin
e by Theorem 1.11 the

Modulo 5 fra
tal A

1

=� and the Pentakun P are bi-Lips
hitz equivalent, it suÆ
es

to show the existen
e of a homeomorphism

T : (A

1

=�)!M:

We de�ne the map � :W�W! R

+

(3:1) �(x;y) =

�

�

r

l(x)

� r

l(y)

�

�

+

X

u2W

a(u)

jk(u;x)� k(u;y)j

1 + jk(u;x)� k(u;y)j

where r =

3�

p

5

2

and fa(u);u 2 Wg is some �xed sequen
e of stri
tly positive

numbers su
h that

P

u2W

a(u) = 1.

Lemma 3.1. The map � is a metri
 on W.

Proof. We assume that �(x;y) = 0. Then by (3.1) we have

l(x) = l(y) and k(u;x) = k(u;y) for all u 2W:

Taking u = x and by (2.5), we obtain x = y. The remaining parts are obvious.

This metri
 has its sour
e in (1.7) and is 
alled Martin metri
 [5,9℄. By (3) of

Remark 2.22, the Martin kernel de�ned in (2.5) satis�es (1.6). Hen
e by the same

dis
ussion as in Se
tion 2 of Chapter 1, we 
an 
onsider (W;O

2

) as a topologi
al

spa
e where O

2

is a natural topology.

The �-
ompletion of W is 
alled the Martin spa
e asso
iated to p where p is

de�ned in (2.2), denoted by W. The boundary of W, that is, �W = W nW

Æ

=

W nW is 
alled the Martin boundary and is denoted by M. M is a 
ompa
t

metri
 spa
e (see (1.8) and (1.9)). Re
all that O

1

is de�ned in (2) of De�nition

2.1. The next lemma is an immediate 
onsequen
e.

Lemma 3.2. O

1

= O

2

.

Sin
e p is a Markovian kernel, we 
an also de�ne the Markov operator on W.
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Let f be a non-negative fun
tion on W. The asso
iated Markov operator P is

de�ned by

(Pf)(w) =

X

v2W

p(w;v)f(v)

and f is 
alled P -ex
essive if Pf � f and P -harmoni
 if Pf = f .

Let � be a measure on W. The asso
iated dual Markov operator P

�

is de�ned

by

(�P

�

)(v) =

X

w2W

�(w)p(w;v)

and � is 
alled P

�

-ex
essive if �P

�

� � and P

�

-harmoni
 if �P

�

= �.

Theorem B. A

1

=� is the Martin boundary M of a 
ertain, naturally

de�ned the mod 5 Markov 
hain X (in De�nition 2.4).

In order to prove the theorem, it is enough to establish a map T : (A

1

=�)!M

with the following Lemmas 3.3 through 3.7.

Lemma 3.3. Let x = fx

k

g be an in�nite sequen
e of letters and de�ne

x

`

= x

1

x

2

� � �x

`

x

`+1

and ` 2 N . Then T

0

(x) = fx

`

g is a Cau
hy sequen
e in

(W; �).

Proof. Let v 2 W. If v 62 U(x

l(v)

), then by Proposition 2.13 we have

k(v;x

`

) = 0 for all `, so that we may assume without loss of generality that

` � l(v) and v 2 U(x

l(v)

).

Re
all that K

i

; L

i

;L

i

and L are de�ned in (2.11). We may set

x

`+1

x

`+2

� � �x

`

0

x

`

0

+1

= x

`+1

x

`+2

� � �x

`+L(2N+1)

x

`+L(2N+1)+1

;

d

k

2

�

G

Æ

if `+ L(2t� 1) + 1 � k � `+ L(2t)

G

#

if `+ L(2t� 2) + 1 � k � `+ L(2t� 1);

t = 1; 2; :::; N;N + 1 and N 2 N .

If d

`

2 G

Æ

, then by Proposition 2.21 we have

jk(v;x

`

0

)� k(v;x

`

)j �

 (v)

6

�

�

�

�

�

N+1

X

j=1

p

2j�1

(1)

2

`+L(2j�2)

+

6�

m

2N+1

(1)

2

`+L(2N+1)+1

�

�

�

�

�

:
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If d

`

2 G

#

, then by repla
ing ` � n

0

by K

0

(L

0

(m

0

) + 1) in Lemma 2.19 and

Proposition 2.21 again, we have

jk(v;x

`

0

)� k(v;x

`

)j

�

 (v)

6

�

�

�

�

�

N+1

X

j=2

p

2j�1

(1)

2

`+L(2j�2)

+

6�

m

2N+1

(1)

2

`+L(2N+1)+1

+

1

2

n

0

0

�

6

2

K

0

(L

0

(m

0

)+1)+1

+

m

1

X

q=1

`

(1)

q

X

j=1

1

2

K

1

(L

1

(q�1)+j)+`�n

0

+

1

2

`+L(1)�n

0

1

A

�

�

�

�

�

�

�

 (v)

6

�

�

�

�

�

N+1

X

j=2

1

2

`+L(2j�2)

+

6

2

`+L(2N+1)+1

+

6

2

`+1

+

m

1

X

q=1

`

(1)

q

X

j=1

1

2

K

1

(L

1

(q�1)+j)+`

+

1

2

`+L(1)

�

�

�

�

�

�

where n

0

= maxfnjl(v) � n < `; d

n

2 G

Æ

g.

In either 
ase, we obtain

jk(v;x

`

0

)� k(v;x

`

)j �

 (v)

2

`

1

X

n=0

1

2

n

! 0 as `!1:

The remaining parts 
an be shown analogously.

Lemma 3.4. If fx

`

g is a Cau
hy sequen
e inW, then fx

#

`

g is also a Cau
hy

sequen
e. fx

#

`

g is equivalent to fx

`

g if l(x

`

)!1.

Proof. Let v 2 U(x

l(v)

). By the triangle inequality:

�(x

`

;x

`

0

) � �(x

`

;x

#

`

) + �(x

#

`

;x

#

`

0

) + �(x

#

`

0

;x

`

0

)

and by (3.1), it suÆ
es to show that

lim

`!1

jk(v;x

`

)� k(v;x

#

`

)j = 0:

If lim

`!1

l(x

`

) < 1, then the sequen
e x

`

is eventually 
onstant, so is x

#

`

,

hen
e it is also a Cau
hy sequen
e. Thus, by Proposition 2.21 we have

jk(v;x

`

)� k(v;x

#

`

)j �

 (v)

2

`

! 0 as `!1:

Lemma 3.5. If T

0

(x) = T

0

(y) for x = x

1

x

2

� � � and y = y

1

y

2

� � � 2 A

1

, then

we have x � y.
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Proof. Let x; y 2 A

1

satisfying x 6= y. Then there exists w 2W su
h that

x = wx

1

x

2

x

3

� � � ; y = wy

1

y

2

y

3

� � � and x

1

6= y

1

:

Assume that T

0

(x) = T

0

(y) and de�ne x

m

= wx

1

x

2

� � �x

m

and y

m

= wy

1

y

2

� � � y

m

.

Note that by the de�nition of � and T

0

, we have for any t 2W

(3:2) lim

m!1

k(t;x

m

) = k(t; x) = k(t; y) = lim

m!1

k(t;y

m

):

Taking t = x

1

in (3.2), we have by (2.19)

0 < lim

m!1

k(x

1

;x

m

) = lim

m!1

k(x

1

;y

m

)

and hen
e by Proposition 2.13 we obtain fx

1

g \ U(y

1

) 6= ; whi
h implies y

1

=

�

d

(x

1

) where d 2 f�1; 1g. Taking t = x

2

in (3.2) and the same argument as

above, we have fx

2

g \ U(y

2

) 6= ; and hen
e y

2

= �

�d

(x

1

) and x

2

= �

2d

(x

1

).

We de�ne X = fk � 3jx

k

6= �

2d

(x

1

)g;Y = fk � 3jy

k

6= �

�d

(x

1

)g and denote `

and `

0

by ` = minX and `

0

= minY if X 6= ; and Y 6= ;, respe
tively. We shall

prove

(3:3) X = Y = ;:

If X 6= ; and Y = ;, then by taking t = x

`

in (3.2), it follows that fx

`

g\U(y

`

) =

; whi
h is a 
ontradi
tion. Inter
hanging x and y, the remaining parts of the proof

for (3.3) suÆ
e in 
onsidering the 
ase where X 6= ; and Y 6= ;. Noti
e that we

may automati
ally assume ` = `

0

. However, we obtain

fx

`

g \ U(y

`

) = fx

`

g \ U(x

#

`�1

y

`

) = ;

implies (3.3) and thus x

#

= y.

Consequently, by Lemma 3.4, we 
an de�ne the map T : (A

1

=�)!M by

T (~x) = fx

`

j` 2 Ng

�

where x = (x

`

)

`2N

and fx

`

j` 2 Ng

�

denotes the equivalen
e 
lass of the Cau
hy

sequen
e fx

`

j` 2 Ng.

Lemma 3.6. The map T : (A

1

=�)!M is surje
tive.

Proof. Let fw

n

g

n2N

� W be a Cau
hy sequen
e. Then, sin
e A is a

�nite set, there exists a subsequen
e fw

n(1;k)

g

k2N

su
h that the �rst letter of all

w

n(1;k)

; k 2 N , is x

1

2 A. Next we 
an extra
t a subsequen
e fw

n(2;k)

g

k2N

(�

fw

n(1;k)

g

k2N

) su
h that the se
ond letter of all w

n(2;k)

; k 2 N , is x

2

2 A. Similarly

we 
an extra
t a subsequen
e fw

n(j+1;k)

g

k2N

(� fw

n(j;k)

g

k2N

) su
h that the (j+1)-

th letter of allw

n(j+1;k)

; k 2 N is x

j+1

2 A. De�ne fw

0

k

g

k2N

= fw

n(k;k)

g

k2N

. Then,
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sin
e fw

0

k

g

k2N

is a subsequen
e of fw

n

g

n2N

, it is a Cau
hy sequen
e equivalent to

fw

n

g

n2N

.

De�ne x = x

1

x

2

� � �x

n

� � � 2 A

1

and x

k

= x

1

x

2

� � �x

k

. Then we have T

0

(x) =

fx

k

g

k2N

and by 
onstru
tion, for any n 2 N the �rst n letters ofw

0

n

are x

1

x

2

� � �x

n

.

For any �xed v 2W, by the same argument as that in Lemma 3.3 and Propo-

sition 2.21, we have

lim

n!1

jk(v;w

0

n

)� k(v;x

n

)j = 0:

Lemma 3.7. T : (A

1

=�)!M is a homeomorphism.

Proof. By Lemmas 3.5 and 3.6, we have that the map T is bije
tive. The


ontinuity of T follows from the 
ontinuity of T

0

, whi
h is an easy 
onsequen
e of

Theorem A and (3.1). The 
ontinuity of T

�1

follows from this and sin
e A

1

=�

and M are 
ompa
t.

Remark 3.8. It goes without saying that we 
an also prove Theorem B

using p

j

whi
h is de�ned in (2.18).

x2. The Diri
hlet Problem

In this se
tion, as a 
orollary to [5,6℄, we shall solve the asso
iated Diri
hlet

problem:

Let g be a 
ontinuous fun
tion on M. Then

�

([P � I℄f)(w) = 0; w 2W

lim

w!�

f(w) = g(�); � 2 M(= (A

1

=�) = P)

has a unique solution in the 
lass of uniformly 
ontinuous harmoni
 fun
tion spa
e

over W, denoted by H

C

u

(W).

The notion of a spa
e of exits de�ned in Theorem 1.8 will play an important

role in the proving the asso
iated Diri
hlet problem. Using the next 
orollary we

�rst prove that A

1

=� (= P) 
oin
ides with a spa
e of exits.

By Theorem B and (2) of Theorem 1.8, we obtain
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Corollary 3.9. There exists a Borel set B � M, 
alled the spa
e of exits,

su
h that the following holds:

(1) The fun
tion k(�; z) is P -harmoni
 fun
tion on W for every z 2 B.

(2) For every P -ex
essive fun
tion h � 0 there exists a unique �nite measure

�

h

on W su
h that

(3:4) h(v) =

Z

W[B

k(v; y)d�

h

(y) and �

h

(MnB) = 0:

(3) y 2 B if and only if �

k(�;y)

(x) = Æ

x;y

.

Note that the fun
tion v 7! k(v; y) is P -ex
essive for every y 2 A

1

=�.

Theorem C.

(1) The fun
tion v 7! k(v; y) is P -harmoni
 on W for every y 2 A

1

=�.

(2) (A

1

=�) = B.

Proof.

(1) Let y 2 A

1

=� be �xed. Then, by Fubini's theorem, we have for any v 2W

Pk(v; y) =

X

u2W

p(v;u)k(v; y)

=

X

u2W

p(v;u)� lim

w!y

g(u;w)

g(;;w)

=

X

u2W

lim

w!y

 

1

X

n=0

p(v;u)p(n;u;w)=g(;;w)

!

= lim

w!y

 

1

X

n=0

p(n+ 1;v;w)=g(;;w)

!

= lim

w!y

g(v;w)� Æ

v;w

g(;;w)

= k(v; y):

(2) Let y 2 A

1

=�. Sin
e k(�; y) is P -harmoni
 on W, by (3) of Corollary 3.9,

the measure �

k(�;y)

has its support in A

1

=�. Therefore it suÆ
es to show that

(A

1

=�) n fyg =

[

v2W;k(v;y)=0

f� 2 A

1

=� jk(v; �) > 0g:
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Indeed, if v 2W and k(v; y) = 0, then by (3.4) we have

0 = k(v; y) =

Z

W[(A

1

=�)

k(v; �)d�

k(v;y)

(�);

so that �

k(v;y)

(f� 2Wjk(v; �) > 0g) = 0 and thus �

k(v;y)

((A

1

=�) n fyg) = 0.

Let �; y 2 A

1

=� su
h that � 6= y. Then we may assume that � and y have a

representation

� = u�

1

�

2

� � � ; y = uy

1

y

2

� � �

where u 2 W and �

1

6= y

1

. By Proposition 2.13, we have �

1

= �

d

(y

1

) where

d 2 f�1; 1g. If y

2

6= y

m

for some m � 3, then the �rst letter of y

#

is y

1

and hen
e

fu�

1

�

2

� � � �

m

g \ U(uy

1

y

2

� � � y

m

) = ;

whi
h implies k(w�

1

�

2

� � � �

m

; y) = 0. In addition, if y

2

2 U(y

1

), then by Lemma

2.17 we have An


m

[uy

1

y

m

2

℄ = U

0

(uy

1

); so that we may assume y = uy

1

�

2d

(y

1

)

1

.

On the other hand, if there exists n � 2 su
h that �

n

6= �

�d

(y

1

), then

fu�

1

�

2

� � � �

n

g \ U(uy

1

y

2

� � � y

n

) = ;:

Thus we have

� = u�

1

�

2

� � � = u�

d

(y

1

)�

�d

(y

1

)

1

= (uy

1

�

2d

(y

1

)

1

)

#

= y

#

;

whi
h implies � = y in A

1

=�. This is a 
ontradi
tion.

Therefore by Theorem 1.8 we also have shown

Corollary 3.10.

(1) For every bounded P -harmoni
 fun
tion h � 0, �

h

is absolutely 
ontinuous

with respe
t to �

1

with Radon-Nikodym derivative

d�

h

d�

1

su
h that

h(v) =

Z

A

1

=�

k(v; �)

d�

h

d�

1

(�)d�

1

(�)

lim

n!1

h(X

n

) =

d�

h

d�

1

(X

1

) Pr

v

-a.e. 8v 2W

9X

1

3 h(v) = E

v

�

d�

h

d�

1

(X

1

)

�

8v 2W:

Here fX

n

jn 2 N

0

g denotes the asso
iated Markov 
hain and Pr

x

is the probability

measure 
on
entrated on the paths starting from x given by

Pr

x

[X

0

= x

0

; X

1

= x

1

; :::; X

n

= x

n

℄ = Æ

x;x

0

p(x

0

;x

1

)p(x

1

;x

2

) � � � p(x

n�1

;x

n

):
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(2) Conversely for every non-negative �

1

-integrable fun
tion f on A

1

=�

(3:5) h

f

(v) :=

Z

A

1

=�

k(v; �)f(�)d�

1

(�)

de�nes a P -harmoni
 fun
tion on W and

f(X

1

) = lim

n!1

h

f

(X

n

) Pr

v

-a.e. 8v 2W:

Let � be the Bernoulli measure on A

1

, that is, the produ
t measure � =

Q

1

k=1

�

k

, where ea
h �

k

is the uniform probability measure on A. It is known

that � Æ }

�1

is the Hausdor� measure on P where } : A

1

! A

1

=� denotes the


anoni
al proje
tion.

We also use the notation C(A) = ff jf : A! R; 
ontinuous; A � A

1

=�g.

The following Corollaries 3.11 through 3.13 follow from [5℄.

Corollary 3.11. The harmoni
 measure �

1

on A

1

=� in Theorem 1.8,


oin
ides with the normalised 
anoni
al Hausdor� measure � Æ }

�1

.

Corollary 3.12. � Æ }

�1

is a Radon measure on A

1

=� and full, i.e.

(1) � Æ }

�1

(A) = supf� Æ }

�1

(K)jK � A; K is 
ompa
t subset of A

1

=�g.

(2) For every non-empty open subset B of A

1

=�, we have that � Æ }

�1

(B) is

stri
tly positive.

Corollary 3.13. Let h

f

be de�ned in (3.5). Then we have h

f

2 H

C

u

(W n

f;g).

Corollary 3.14. Let f be a 
ontinuous fun
tion on A

1

=�. Then h

f


an

be extended to a 
ontinuous fun
tion onW[ (A

1

=�), whi
h 
oin
ides with f on

W [ (A

1

=�). In parti
ular we have

lim

w!�

h

f

(w) = f(�)

for every � 2 A

1

=�.

Proof. Sin
e ; is an isolated point, h

f

is uniformly 
ontinuous on the dense

subset W of the 
ompa
t metri
 spa
e W [ (A

1

=�) and extends to a 
ontinuous

fun
tion h

f

on W [ (A

1

=�).

On the other hand by (2) of Corollary 3.10 we have

lim

n!1

h

f

(X

n

) = f(X

1

) Pr

;

-a.e.
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and sin
e � Æ }

�1

= Pr

;

ÆX

�1

1

we have

h

f

(�) = f(�) (Pr

;

ÆX

�1

1

)-a.e.

Sin
e � Æ}

�1

is a Radon measure on A

1

=� and full, we obtain that h

f

� f on

W [ (A

1

=�).

We denote the map sending a bounded measurable fun
tion f on A

1

=� to h

f

by I, that is, I(f) = h

f

.

Note that

(3:6) I(C(A

1

=�)) = H

C

u

(W)

via Corollary 3.14.

We summerise our result in.

Theorem D. The Diri
hlet problem for P � I on W,

(D)

�

f(P � I)fg(w) = 0; w 2W

lim

w!�

f(w) = g(�); � 2 M(= (A

1

=�) = P)

where g 2 C(A

1

=�), has a unique solution f = h

g

in H

C

u

(W).

Proof. This follows from Corollary 3.14: Given a 
ontinuous fun
tion g, the

fun
tion

h

g

(v) =

Z

M

k(v; �)g(�)d�

1

(�)

is a solution. Hen
e it suÆ
es to show that this solution of (D) is unique. We

now 
onsider

(D

�

)

�

([P � I℄F )(w) = 0; w 2W

lim

w!�

F (w) = 0; � 2 M:

Then by (3.6), there exists some fun
tion G 2 C(A

1

=�) = C(M) su
h that

F (v) =

Z

M

k(v; �)G(�)d�

1

(�)

for any v 2 W. Thus by (2) of Corollary 3.10 and (D

�

), we have G � 0 on M

whi
h implies F � 0 on W.
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