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Abstract

Let P denote the p.c.f. self-similar set defined by mapping the regular pentagon into itself by
five self-similarities each leaving one vertex fixed. We define the canonical Markov chain for P
and denote its Markov operator by P. We show that its Martin boundary M is homeomorphic
to P. The associated Dirichlet problem (P —I)f = 0 and f = g on P has a unique solution
such that f(£) = P¢ for £ € P. We obtain an integral representation for kernel functions on P
(Poisson integral type).
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Chapter |. Preliminaries

§1. Introduction

Classical potential theory has its origins in Coulomb’s law. It states that two
charges attract each other with a force in the direction of their connecting line
whose magnitude is proportional to the quotient of the product of the two charges
and the square of their distance.

Another observation made in the 19th century plays an important role in the
understanding of potential theory. In 1826 the botanist Brown observed that
microscopic particles, when left alone in a liquid, are seen to move constantly in
the fluid along erratic paths. Much later Einstein investigated this movement as
a statistical law which describes how a large number of particles spread over a
period of time. His predictions were verified in experiment.

The above two ideas are linked by the Laplace operator. The deep connection
between the two theories was first revealed in the papers of Doob [7], Kac [19],
Kakutani [20] and Knapp [23]. This can be expressed by the fact that the har-
monic measures which occur in the solution of the Dirichlet problem are hitting
distributions for Brownian motion or, equivalently, that the positive hyperhar-
monic functions for the Laplace equation are the excessive functions of the Brow-
nian semigroup. This equivalence allows potential theoretic results and notions
to be given a probabilistic meaning.

Therefore, harmonic functions play a central role in the analysis to understand
the above-mentioned phenomena from a probabilistic viewpoint. These functions
are characterised in different ways.

Let U be a bounded open domain in R? with boundary 0U. The Laplace oper-
ator A := 3% 8%/92? acts on twice differentiable functions on U; by definition,
its kernel consists of the harmonic functions . Apart from this description of
harmonic functions f, that is by Af = 0, it is a well known fact that harmonic
functions can be characterised by geometrically defined averaging properties.

Let a € U and denote by B(a,r)(C U) the open ball centred at a with radius
r > 0, the boundary 0B(a,r) is the sphere S(a,r) of radius r > 0 centred at a.

Let p,, denote the uniform probability measure on S(a, ). With this notation
we are able to define the averaging operator H,, on p, -integrable functions

defined on B(a,r) by

r? — |z — al

2
Hoof) = [ T i, ),



Then it is known that a function f € C?(U) is harmonic if and only if for all
a €U and r > 0, f|m is a fixed point of H,,.

The Dirichlet problem can be stated as follows. One has to find a continuous
function on U which is harmonic in U and takes prescribed boundary values on
U, i.e. we have a boundary condition f = ¢ on OU where g € C(9U).

Let f : S(a,r) — R be a Borel measurable function which is bounded from
below.

(1) If f is pq-integrable, then H,, f is harmonic on B(a,r).

(2) If f is continuous at z € S(a,r), then

lim H,, f(z) = f(2).
T—2
We briefly discuss the connections with stochastic processes.

Let X = (X{);~0 denote the Brownian motion on R?, i.e. it is given by the
transition density semigroup

oo = () o (55)

which is considered as a Markov process with respect to the distributions P* when
starting in z € R?.

Since X has continuous paths, it leaves a bounded open domain U within a
finite time 7,, once it started in U. We set

r(y) = inf{t > 0| X;(y) € U°}.

Let f be a bounded measurable function. Then the theory of Brownian motion
asserts that

Hyf(w) = [ o X (o (s)dP*(y)
{yeQry (y)<oo}
is harmonic in U (in particular, we also have that f € C?*(U)).

Also, if f is continuous at z € {s € QU|P*(ry = 0) = 1}, then it follows that
lim Hy, f(x) = f(2).

el

The geometric averaging property of harmonic functions is not restricted to
the structure given by the Brownian motion or averaging on spheres, as well as
the abstract properties of the Laplace operator are not restricted to its specific
definition. In fact, this concept has a direct extension to Markov processes. Let
P denote a Markov operator, and call a function f defined on the state space
harmonic if Pf = f, so that the Laplacian is defined by Af = (P —1I)f. In order
to turn this concept into a Dirichlet problem one needs to assign a boundary 0F
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to E. Denker/Sato (see [6]) solved this problem in the special case of the word
space (cf. Section 2 of Chapter 3), that is,

Let F be a countable set, called word space, and OF denote the Martin bound-
ary (associated in Dynkin [9]) of E. For a real valued continuous function g on
OF,

{([P—f]f)(ﬁ)zoa €Ll
limg ¢ f(z) = g(§), €€OF

has a unique solution f in the space of harmonic uniformly continuous functions
on FE, given by

f@ﬂ=iéEk@40ﬂyMu@)

where 11 denotes some finite measure and k& kernel function.

Lately there have been made attempts to define the concept of the Laplace
operator and the Dirichlet problem for p.c.f. self-similar sets.

A p.cf. self-similar set K is defined by a family f; : R — R? of contractions
which satisfy

K =J fi(K).

It is known (see [15,17]) that a family f; always defines a unique self-similar set.
P.c.f. self-similar means that f;(K)N f;(K) is finite for all 1 < i # j < m. Kigami
[21,22] has defined a method of geometric averaging in corresponding fractals of
this type and also described the Laplace operator. He showed that the Dirichlet
problem for the Poisson equation on K, which consists in, for given real valued
continuous function A on K, finding a real valued continuous function f on K
such that

f=hon 0K,

has a unique solution f. Details will be given below.

On the other hand, a few years ago, Denker/Sato [4] have initiated the study
of the relation between one of the best known examples for a fractal set, the
Sierpinski gasket, and a Martin exit boundary; that is to say, the Sierpinski gasket
is represented as the Martin boundary of a Markov chain and harmonic functions
have an integral representation using the Martin kernel of a certain canonical
random walk and Dynkin’s theorem [9]. In addition, Denker and Koch [3] proved
a Poisson formula for bounded harmonic functions on the Sierpinski gasket as an
application of [4]. These results may be considered as a new approach in harmonic
analysis and Martin boundary theory.

{Af:O



In this paper we connect the extension to the mod 5 Markov chain and Denker-
Sato’s approach. We show that the Pentakun (the self-similar Pentagon) sug-
gested by Kumagai agrees with the Martin boundary of an appropriately chosen
Markov chain.

§2. Martin boundaries

Here we recall some facts about Martin boundaries which are needed and ex-
plain the background of our investigation.

It is one of the main goals to identify Martin boundaries (which always exist [9]).
Clearly, the Martin boundary may be trivial (i.e. consisting of one point) which
occurs for a recurrent Markov Chain. One of the first examples of a nontrivial
Martin boundary is due to Ney and Spitzer [27] (see Woess [33]). We begin by
describing the necessary notation and definitions.

The Martin boundary for the state space of a discrete Markov chain was intro-
duced by Doob [8], Dynkin [9], Feller [11] and Hunt [16], among others. In this
chapter, we use the notation of Dynkin [9] who uses Hunt’s probabilistic approach.

We consider a sub-Markovian kernel on a countable set as starting point.

Definition 1.1.  Let F be a countable set. We call p: E x E — [0,1] a
sub-Markovian Kernel, if

(1.1) > plx,y) <1
yeE
for every x € F.

Definition 1.2. Let f be a non-negative function on E. The associated
Markov operator P is defined by

(1.2) (Pf)@) =) plz,y)f(y) (z€ E)

yelE

and f is called P-ezcessiveif Pf < f and P-harmonicif Pf = f where we admit
the value +oo0.

Let p be a measure on E. The associated dual Markov operator P* is defined
by

(1.2) (uP*)(y) =Y u(@)p(z,y) (y € E)

zelE
and p is called P*-excessive if uP* < p and P*-harmonic if pnP* = P*.



Iterating the procedure in (1.2) and (1.2)" we obtain

(PoPo---0Pf)(z anxy reFl
1.3 n-times yeE
(13) (Mf*oP* -0 P*)( Zu p(n;z,y) y€E,
n—tlmes zeE

where p(n; z,y) is defined recursively by

p(0,2,y) = bz
p(nsz,y) =Y p(n— Lz, 2)p(z,y),
z€E

where 0., is the Kronecker delta.
Introducing the absorbing state co and setting

p(l‘,OO) =1- Zp(xvy) and p(O0,00) =1

we may define a Markov chain (X,),en, with state space F U {oco} where Ny =
NU {0}. Denote
T = min{n € Ny|X,, = oco}.

Then {T = oo} means that X,, is never absorbed by co.
Definition 1.3.  The Green function g on E is defined by

(1.4) g(z,y) =Y p(n,z,y)

whenever the series converges for all z,y € FE.

In addition, we suppose that a finite standard measure v on E (in the sense
that > . 7(y) < oo and y(z) > 0 for any z € E) exists. Then we define

Z*y ) >0

yeE

for each z € E.

Definition 1.4. The Martin kernel (for g and 7) is defined by

_ 9@y

whenever g(z,y) and n(y) exist.
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We call a function [ : E'— N such that [(x,) — oo as n — oo, an indez or a
terminal moment.
In this chapter, we suppose that

(1.6) a(z) = sggk(x,y) < 0.

We define a metric p on E by

(L7) playy) =270 =27 W] 4y a(z){|1k4(rz|lf()z_arj;(j/zf/()L v}

Using (1.7), we can assume that E is a metric space (E, p) and can construct
the p-completion of E, denoted by E. Note that E is an open set. The next
Lemmas 1.5 and 1.6 will give a deeper insight into the topological structure of E.

Lemma 1.5. The map k(z,-) is uniformly continuous in the metric p.

Proof. It is obvious from the fact that a sequence {x,},en C E is Cauchy
if and only if the sequence of real numbers {k(z, z,) }nen is Cauchy.

By the above lemma, the map k(z,-) and the metric (1.7) extend to E, respec-
tively. Therefore, the extension is also denoted by k£ and p, respectively.

Lemma 1.6. FE is a compact metric space.

Proof.  Let {z,},en C E. First note that the sequence {k(z,2,)}nen is
bounded for fixed z € E. Hence we can choose subsequence {xN(n)}neN Cc E
such that {k(2, Zn(n)) }nen is Cauchy. Then by (1.7), it follows that {zx(m) }nen is
Cauchy in E and thus E is sequentially compact.

Definition 1.7.  F'is called the Martin space associated to p. The boundary
of E, that is, 0OE = F'\ E° = E'\ E is called Martin boundary and is denoted by
M. Note that M is a compact metric space.

The main theorem in this section (proved in Dynkin [9]) is the following.

Theorem 1.8. There exists a Borel set B C M, called the space of exits,
such that the following holds:
(1) The function k(-, 2) is P-harmonic on E for every z € B.
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(2) For every v-integrable P-excessive function h > 0 there exists a unique
finite measure u;, on F such that

h(z) = /EUB (. 2)djun (=) and in(M \ B) = 0.

(3) z € B if and only if ju(. .y (%) = 6,
(4) For every y-integrable P-harmonic function i > 0 there exists a unique
finite measure u;, on F such that

hz) = / k(@ y)dun(y).

(5) For every bounded P-harmonic function h > 0, py, is absolutely continuous
with respect to p; with bounded Radon-Nikodym derivative fl"T’; such that

hz) = / k(x,wj—‘;’;(y)dm(y)

d
lim h(X,) = 2

lim = (Xs) Prg-ae. on {T =00} VxeFE
dpn
dpiy
Here {X,|n € Ny} denotes the associated Markov chain and Pr, is the probability
measure concentrated on the paths starting from x given by

dX, 2 h(z) =E” [ (Xoo)] Vo € E.

Pry[Xo = x0, X1 =21, ..., Xy = T] = g 0oD(T0, T1)p(%1, T2) - - (@1, T1).

(6) Statement (5) holds for every bounded P-harmonic function if P is conser-
vative, i.e. P1 =1 (Recall that p is a Markovian kernel.).
(7) If f is a non-negative ui-integrable function on M then

(1.10) hy(x) = / k(z,y) f(y)dp(y)
B
is P-harmonic on F and
f(Xs) = lim hy(X,) Pry-a.e. on {T =00} Vz e E.
n—oo

The identification problem is investigated by many authors (see [28,33] etc.).
We mention some aspects of the theory which are connected with our research.

Random walks on infinite graphs and (as a special case) groups are among the
most interesting topics. The definition of a random walk adopted here is that
of a time-homogeneous Markov chain whose transition probabilities are adapted
in some way (which has to be specified more precisely) to a graph structure of
the underlying discrete state space. It goes without saying that a graph can be
associated with any time-homogeneous Markov chain on a countable state space,
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so that one could say that this notion of random walks coincides with that of
arbitrary Markov chains.

We suppose that F is an infinite graph; we consider the non-oriented edge set
as a symmetric subset of £ X F and write © ~ y if x and y are neighbours. The
degree of © € E, denoted by deg(x), is the number of neighbours of z. A path of
length n from x to y is a sequence © = xg, Z1, ..., T, = y of distinct vertices such
that z;_y ~ x;. We now assume that E is infinite and locally finite, i.e. for every
z,y € E there exists a finite path from x to y. The distance c¢(x,y) between two
vertices x and y is the minimal length of a path connecting the two.

Definition 1.9. A random walk on E' is defined by a transition matrix

P = (p(7,9))zyer

which describes the one-step transition of a Markov chain (X,,)nen, With state
space F.

To model X,,, we consider the trajectory space E°, equipped with the usual
product sigma-algebra arising from n-th projection E™ — E. This describes the
random walk starting at x € E, if E™° is equipped with the probability measure
Pr, given in Theorem 1.1.

It is clear that p(n;z,y) = Pr,[X,, = y|. This is the (x,y)-entry of P™ with
P°? =1, the identity matrix over E.

We also assume that (X,,)nen, is irreducible, that is, for every x,y € E there
exists some n € Ny such that p(n;z,y) > 0.

Irreducibility alone is, of course, not enough to say that the random walk is well
adapted to the underlying graph structure. Thus we now present some conditions
which will serve to meet this requirement in some form.

The random walk has finite range if {y|p(z,y) > 0} is a finite set for every
r € E. In particular, the random walk has bounded range if sup{c(x,y)|p(z,y) >
0} < oo.

§3. Self-similar fractals

In this section, we review the theory of self-similar sets and analysis in p.c.f
self-similar sets.

We begin with a description of a general construction for fractals (see [15,17]).
Examples are the Cantor set, the von Koch curve and the von Koch island.

Let D be a closed subset of R?. A mapping S : D — D is called a contraction
on D if there exists some ¢ with 0 < ¢ < 1 such that |S(z) —S(y)| < c|z—y] for all
x,y € D. If equality holds, then S maps sets to geometrically similar ones, and
we call S a similarity and c¢ its similitude ratio. According to [10,15,17], families
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of contractions, or iterated function schemes as they are sometimes called, define
unique non-empty compact invariant sets. That is,

Theorem 1.10. [10,15,17]  Let {f;}1<i<m be contractions on D C R?. Then
there exists a unique non-empty compact set K that satisfies

K =J ().

Moreover, if we define a transformation of f on the class ¥ of non-empty com-
pact sets by

f(Ko) = U fi(Ko),
then -

(1.11) K={()fofoof(Ko)

n=1 n-times

for any K, € T such that f;(K,) C K, for each i.

We call K a fractal set. In (1.11), taking K; as a simplex in R? and f; the
three appropriate similarities with similitude ratio 1/2, we have that K is the
Sierpinski gasket in R? originated from Sierpiriski’s work [30]. The term was later
introduced by Mandelbrot [25].

Moreover, by the following definition we can understand that a self-similar
structure is an abstraction of topological features from the concepts of the self-
similar sets studied in [15,17].

Let K be a compact metric space, 2 a finite set, 2A* the space of one-
sided infinite sequences, 20 the word space generated by 2. For each a € 2, let
F, : K — K be a continuous injection and w® : A — 2A*° the map defined
by w*(w) = aw where a € 2. Then (K, {F,}a.ca) is said to be a self-similar
structure on K (or simply, K is a self-similar set) if there exists a continuous
surjection 7 : A*° — K satisfying

Towow™o---owm =F, 0oF, 0---0F, om

for any wiws - - -w, € W. In particular, Fj is the identity map of K.

For fractal sets K the geometry has been investigated for quite some time. More
recently, one has investigated the connection between multifractal spectrum and
harmonic analysis [2].

Here, we are interested in the notion of Brownian motion in harmonic analysis.
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Goldstein [14] and Kusuoka [24] independently constructed a Brownian motion
on the Sierpinski gasket. Barlow/Pelkins [1] obtained a remarkable estimate on its
transition probability density with respect to an appropriate Hausdorff measure.

This investigation may be viewed as the part corresponding to the point of view
originating from Brownian motion. In fact, Fukushima/Shima [13] and Shima [29]
determined the eigenvalues of the Laplacian on Sierpinski gasket.

As mentioned before, Kigami [21] studied the problem from the averaging view-
point. He found the direct and natural definition of the Laplace operator on the
Sierpinski gasket as the limit of difference operators and then established a theory
which solved the associated Dirichlet problem for the Poisson equation, Gauss-
Green’s formula and so on. He later expanded the theory to a class of self-similar
sets called p.c.f. self-similar sets using the theory of Dirichlet forms [22].

We would like to mention that in [26] a suitable class of ”harmonic functions” on
the Sierpinski gasket is constructed such that these functions satisfy a minimum
principle and Harnack’s inequality. Furthermore, in [31] and [32], a dynamical
approach is taken using modified Cayley graphs and dynamical zeta functions.
There is also an approach using fractal differentiation [12]. In addition, as an
application of [4], a Poisson formula for P-harmonic functions is established by
application of the fibre dynamical property [3].

We consider the discrete approximation of a p.c.f. self-similar set by averages
of its "boundary”. The corresponding Markov chains are recurrent so that the
Martin boundaries are trivial. In order to get a non trivial Martin boundary it is
necessary to define Markov chains more suitable to represent harmonic functions
on the p.c.f. self-similar sets. This means that there exists a Markov chain with
discrete state space such that K is homeomorphic to the Martin boundary of the
Markov chain. Note that the coding 7 : > — K is a coding by the space of
ends, i.e. an equivalence class of infinite paths. In the Pentakun case, two paths
are equivalent if they differ by only finitely many vertices, and in general there
exists an analogous definition for the equivalence classes. However, in general, it
is not necessary to consider the space of ends.

We introduce the Pentakun P.

Let p; € R? for i = —2,—1,0,1,2 in a Euclidean space and

21| = [p2ipb| = |popt| = |Pips| = |p2p 5| = 1

then
0

A(p-2,-..sp2) = U {2|p=2F = s;p2p) + t;DaDj+b : 55,15 > 0,0 < 554+ 1; <1}
j=—2

is called a regular simplez if the vectors p_p—4 and p_zp5 are linearly independent.
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For —2 < 1,7 < 2, we define the points

:3—\/5 V5 —1

Dij 5 p; + 5

and for —2 < 7 < 2 we let

pj

FZ : A(p—?a "'7p2) — A(p—?a "'7p2)

denote the affine mappings onto the simplex generated by pj, and satisfying
Fy(pj) = pje- 1t is clear that py is a fixed point of Fj.

Let % = {—2,—1,0,1, 2} be the alphabet of five letters equipped with a module
structure with the additive operation @ modulo 5. Let 2" denote the collection
of words consisting of n symbols and 2> the space of one-sided infinite sequences.
In particular, 2° = {()} where () denotes the empty word. Then, for w € 20U,
we define the conjugate w# of w by

(112) wt = W@®d/2)(@®-d/2) if w=woa(a®d),d € {-2,2}
' Sl w otherwise

and an equivalence relation ~ on 20U A® by x = y or x¥ = y where 20 =
U, 2" k€ NU{oo},a € A and wy € 20.
For x € A™ we define
F. = FIEloFmQO"'OF;pn ifX:l'lfL'Q---xn
* identity ifx=10

and
A(X) = FX(A(p—Qa 7p2))
The Pentakun P is defined as

P=) U A®).

m=0 xecA™m

It is clear that P is a compact metric space with the Euclidean distance in R?
restricted to P.

It is known that for the Sierpiniski gasket [4] and the Pentakun P (private
communication of M. Denker, see the below theorem) the fractal K in (1.11) is
homeomorphic to a quotient space A* /~.

Theorem 1.11. The space A*°/~ and the Pentakun P are bi-Lipschitz
equivalent.
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Idea of proof. @ We introduce the metric

d(xay) = Z (3 _2\/g> (1 - 617]‘,?!]’)

i=1

on A,
For x = x1x9 - - - € A define x,, = 2129+ - -, and [T : A*° — P by

I(z) = nll_glo A(xy,).
Since
M(x) - T(y)| < 2+ V5)d(x,y)

we have that IT is Lipschitz continuous and onto. Moreover, II(z) = II(y) if and
only if z ~ y.
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FI1GURE 1. P :Pentakun

Define 7 : (A*/~) — P by
w(z) =1l(z) forx € T € A/~
This map is well defined by the Lipschitz continuity of II. It is also a bijection

by general topology theory.
Define for x,y € A>®

d(z, if x
o) ={ g0 7Y
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and for Z, 7 € A® [~

= mf{ZdO (w1, w

By some discussions, we obtain the following properties:

(1) d is a metric, that is, R/~ is metrizable with respect to the metric d.
(2) |r(@) = 7()| < (3+ V5)d(&, ) whenever & # §.

(3) d(m (&), 7 1(€) < (5 = V/5)|¢ — €| whenever £ # ¢,

)ymeN:w’ € z,w' € A®,. wm_IEQl"o,wmeg}.

§4. Outline of the method

The main goal of this paper is to prove that P can be represented as the Martin
boundary of a canonical Markov chain which is not irreducible and does not have
bounded range structure. This can be accomplished by defining the Martin kernel,
and in fact the n-step transition probabilities.

Consider a finite alphabet 2l and the space 20 of finite words. Suppose we have
already defined an equivalence relation ~ on A, so that 2>/~ is homeomorphic
to the fractal. This extends to 20 by defining wa ~ vb if wa® ~ vb™ (see (1.12)).

A natural Markov chain for the fractal is given by a Markov chain with state
space 20 and positive transition probabilities. Furthermore, it has a following
properties:

e w is successor of v or its equivalent (dual) word.

e Transition probabilities are uniformly.

Consider a fractal which is totally disconnected. With N = #2( we choose the
transition probabilities p(w, wa) = 1/N. In this case p(n,w,v) = N~" because
there exists only one ancestor for each word u. In case (A*°/~) 2 Sierpinski
gasket there are exactly two ancestors (except ”boundary” word u, see [4]). Thus
there exists a simple formula for p(n,w,v). In the Pentakun case we have a
mixture of both phenomena. We now give a description of the estimate for the
Green function of the natural modulo 5 fractal Markov chains.

We denote by (X,,)nen, the Markov chain with state space 20 and stationary
transition probabilities
1
— if wEwh aec
(L13)  plw.wa) = p(w,wha) = ¢

if w=w?",ac 2.

| =
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The Green function g(v,w) on 20 is given by

(L14)  g(v,w) = p(I(w) = 1(v);v,w) == 3 p(l(w) = [(v) — L; v, w)p(u, w)

where /(w) denotes the length of w and where g(v,w) = dy w whenever [(v) =
[(w).

As a consequence of the above definitions (1.13) and (1.14), we became aware
that the key to the estimation of the Green function is the behaviour of the
difference of the last two different letters in a word, in particular, whether they
are 2 (or —2) or not. The investigation is based upon this interesting discovery.

Superficially, the Pentakun is similar to the Sierpinski gasket as a geometric
structure in R?, but in reality they are radically different in the behaviour of their
critical sets as p.c.f. self-similar sets.

The structure of the Martin kernel k(v, &) (i.e. the normalised Green function
in rough sense, see (1.5)) is such that it resembles the word space metric. If
v — 1, then k(v, &) vanishes outside a neighbourhood U(v) also contracting to
n. This immediately gives the final result that the Martin boundary is equal to
A [~

The organisation of this paper is as follows. In section II we first give basic
definitions and define the Martin function, called the Martin kernel. Next, we
define the conjugate area and the non-conjugate area for one fixed word and
derive the first result which is the estimation of the Martin kernels of the natural
mod 5 Markov chain by considering the difference between two letters and the
determination of a p-partial for the ancestor of a word. In section IIT we show
that P is homeomorphic to the Martin boundary and also a space of exits using
our result in section II. Finally, as a corollary to [5,6], we describe the associated
Dirichlet problem for P — I on 20 using Dynkin’s Theorem (Theorem 1.8).
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Chapter Il. The natural mod 5 Markov chain

§1. The Pentakun graph

In this section we study the symbolic representation of the Pentakun. We define
the state space for the natural Markov chain and derive basic properties.

Definition 2.1. Let 2 be an alphabet of five letters which are denoted
{—2,-1,0,1,2} and let Ny = NU {0}. We consider 2 as a module with addition
mod 5, denoted by &.

The following definitions give some basic concepts and notation.

(1) Let A be the space of one-sided infinite sequences.

(2) For n € Ny, let 2" be the collection of words consisting of n symbols. In
particular, A% = {0} where () denotes the empty word. Then the word space is
defined by

w=[J A
n€Ny
We consider (20, O;) as a topological space where O, is a discrete topology.

(3) For n € NgU{oc}, the length of a word is defined by I(x) = n where x € ™.

(4) The product of two words is defined by xy = 129 Tpy1y2- -+ where
X=x1Tg- X, €EWand y = y1yo--- € WU A,

(5) Let w = wywy - - - w, € W\ {0}. Then we define

wiwy -+ w, ifn>2

vz { 0 if n=1.
(6) For fixed p € 2, we define the function o, : A — A by 0,(a) = a & p.

Next, we define the conjugate of a word using a kind of involution.

Definition 2.2. Let 2l = & U®# where &° = {—1,0,1} and &% = {2, 2}.
(1) Let w € 20 UA*®. Then the conjugate w# of w is defined by

(2.1) w# = { WOUd/Q(a)U—d/z(a)k if w = woaoy(a)k,d € &#

w otherwise,

where £ € NU {oo},a € 2 and w, € 20.
For example, since —2 = 05(1), we have

(Wol(=2)F)* = (wolon(1)")# = wooi(1)o 1 (1)" = wy20*



which implies

(Wol(=2)")## = (wo205)* = (w20 5(2)")* = woo 1(2)01(2)F = w1 (—2)".

(2) Define the function 6 of x € 20 by
if x#
0(x) = { 1 ifx# #£x

2 if x# = x.

We define the relation ~ on 20 U (> by
X~y < x=yorx=y".

The next lemma is an immediate consequence.
Lemma 2.3. The relation ~ is an equivalence relation on 20 U 2A*°.

Hence we can define the Modulo 5 fractal by A% /~.
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For a fixed alphabet 2 = {—2,—1,0, 1,2} the Markov chain will be defined by
the following transition probabilities p(-,-) on 20 x 20, so it has state space 20.

Definition 2.4.

(1) We denote by (X, )nen, the Markov chain state space 20 and define the

transition probabilities
(2.2) p(w,wa) = p(w,wa) = —==

where w € 20 and a € 2.
We call X = (X,,)nen, the natural Markov chain for the Pentakun.

(2) The n-th step transition probabilities on 20 are defined recursively by

p(U, v, W) = 5v,w

(2.3) p(n;v,w) = Z p(n—1;v,u)p(u,w) v,we,neN,

ue

Lemma 2.5. Let v,w € 20. Then we have p(n;v,w) > 0 only if n =

l(w) —I(v).
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Proof. = We shall prove this lemma by induction over n. If p(1;v,w) > 0,
then by (2.3) we have ) o;p(0; v,u)p(u, w) > 0 which occurs only if

v=u
w = ua or u”q for some a € A
and hence [(w) — [(v) = l(u) +1 — [(u) = 1. This argument also gives the

induction step.

Definition 2.6. The non-oriented edge set as a symmetric subset of 2J x 20,
that is,

{edges [x,y]|x,y € W:y=xaory = x"a,a € A}
is called the Pentakun graph.

Let x,y € 20. A path from x to y is a collection {uy, u, ..., us} C 20 such that
l(w;) =1l(u; 1)+ 1,u; =x,u; =y and p(u;,u;; 1) >0 for all 1 < i < s. Define

(x,y) = the number of paths from x toy if p(I(y) — I(x);x,y) > 0
HEY =10 otherwise.

Lemma 2.7. The Pentakun graph is connected, i.e. for every x,y € 20
there exists a finite path from x to y.

Proof. Obvious.
§2. The Green function and the Martin kernel

The object of this section is to estimate the Martin kernel defined in (2.5). The
key to the estimation is the difference between two letters and the determination
of a p-partial for the ancestor of a word.

We first define the Green function and the Martin kernel.

By Lemma 2.5, we have
Zp(n; v,w) =p(l(w) = [(v);v,w)
n=0

and hence by (1.4), the Green function on 20 is defined as follows.
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Definition 2.9.  The Green function on 20U is given by
(2.4) g(v,w) =p(l(w) = I(v);v,w)

and v is called an ancestor of w if g(v,w) > 0. In particular, if g(v,w) > 0 and
l(w) —I(v) = k, then w is called k-ancestor of w. We denote the collection of
k-ancestors of w by Ancy[w].

Lemma 2.10. Let x,y € 20 such that {(x) < I(y) and let a € . Then we
have

1
9(x,ya) = 75{9(x,y) + 9(x, )}
Proof. Note that [(y) = I(y*) for all y € 2. By (2.2) and (2.4), we have

ucJ
¢ ] .
s x p(l(y) — 1(x);x,y) ify =y#
=
1 1 .
| 15 X PU) = 1x)i%,y) + 15 x p(l(y*) — l(x);x,y%) ify #y*
/ 1 .
s X g(x,y) ify =y#
=
1 1
1 1 B #
\ 10xg(x,3’)+10><g(x,y ) ify #y7,

and hence the lemma follows.
Lemma 2.11. Let x € 2. Then we have ¢(0),x) = 1/5"®).

Proof. Using induction over [(x), the assertion follows immediately. In
the case of I(x) < 1, the lemma is an immediate consequence of (2.4). We now
assume ¢(0),x) = 1/5'®). Let y € 20 such that /(y) = I(x) and let a € 2. Then
by Lemma 2.10 we have

1

1
9(0,ya) = 15 x90,y)+ 5 g(0,y%)

111 1
= 055 T 10" 5e®

1
Hl(y)+L”

The lemma is proved.
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Referring [4], (1.5) and the above lemma, the Martin kernel on 20 is defined as
follows.

Definition 2.12.  The Martin kernel (for g) on 20 is defined by

)= IV W)

(2.5) k(v,w 0. w)

= 5'Wg(v, w).

Note that if I(w) > [(v), then we have
k(v,w) = 5007V (v)g(v, w)
where ¢(v) := 5'™M@(v).
The following proposition will play an important role throughout this paper.

It states that the ancestor of an arbitrary finite word lies in the neighbourhood
of its first letter.

Proposition 2.13. Let x,y, € 25 such that y, = xaas---apap; where
a; €A, j=1,2,...,0,f{+1and £ € N. Then we have
(2.6) Anc[y,] U Anc,[y}] C | ] {x0,(a1), (xop(a1))*}.
peB®
Proof. We shall prove the proposition by induction over /. We set ay =

a1 @ dy. In the case £ =1, by (2.3) and (2.4),

0 < g(v,y1)
(2.7) = p(L;v,y1)
= p(0;v,xa)p(xar,y1) + p(0; v, (xa,)#)p((xa1)#, y1)

which implies Anc,[y;] = {xa1, (xa;)#*}. On the other hand, by (2.1)

4 [N ifd; € &°
yi = { X0q, /2(01)0 g, 2(ar) if dy € &#

and by the same argument as above, we have

{xay, (xa;)*} if dy € &°
{x04, 2(a1), (XO’dl/g(al))#} if d, € &#.

Since d;/2 € ®° whenever d; € &%, we obtain that (2.6) is true for ¢ = 1.
Assume that (2.6) is true for £. Then for a,o € %A, by the induction hypothesis

Ancilyt] - {
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and (2.3),
Ancii[ye] = Ancely,] U Ancly]]
c | {xop(@), (xop(a1))*}
and ’
(2.8)  Ancy[((xa1)agas - - agr1ap42)*] C U {(xa1)ap(a2), ((xa1)o,(az))*}.

Hence by (2.8), we have for ay = o,(a)

Ancy [yfil] = U Anc,[z]

zEAncy [yz’il}

c U fAneixai0,6,(a)] U Anci[(xa10p6,(@)) ]}

U {xop(a), (xop(ar)*} if g € &°
_ pe{0,¢}
U {xop(@r), (xop (@)} if g € &,

and thus the proposition follows.

Consequently, we have
g9(xa, u)
= Y p(t—kixa,z)p(k;z,u)

z€Ancy[u]

= Z {9(xa,xaras - - - ar—kop(ar—k1))g(xaras - - - ag-op(ae—r11), 1)
peEB®
+ g(xa, (Xa1a2 o 'GHUp(aHH))#)g((XChaz o 'GHUp(GHH))#, U—)}

for any u € U cpo {57 0q(aes1), (y7 0q(ar1))#} and 1 <k < L.
This leads us to the definition of a p-partial and the neighbourhood of a word.

Definition 2.14. Let x € 20 and a € 2. Then a p-partial of xa is defined

by
Uy(xa) := {x0,(a), (xop(a))*}.
Furthermore, the neighbourhood of xa is defined by

Uxa) := | {x0,(a), (xa,(a))#} = |J Up(xa).

peB® peEBe
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For a; € /U, k € N we define dy, = a1 — ag. di is called the difference between
letters a; and ag,q. Note that di is also 2A-valued.

Definition 2.15. Let x € 20 such that x = a,ay - - - agag;1 where a; € A, j =
1,2,...,¢,/+1and ¢ € N. The part of x from ay, to ay, 1, is called conjugate area
(resp. non-conjugate area) if d, € &% (resp. dj, € &°) for {1 < Vk < 01+ 0y — 1
where fl,fg S {1, 2, ,g} with /1 + 0y < 7+ 1.

x is always divided into two parts of area whenever x € [ J>°, ™. For example,
let x € 2 such that

x = 1(—2)(—1)2021 =: a1asa3a4a5a6a7.

Since dy, ds, dy,ds € &* and dy, ds € &°, we have that the conjugate area of x
is from a; to as and a3 to ag and that the non-conjugate area of x is from ay to
as and ag to ary.

The following Lemma 2.16 is the cornerstone of our discussion in the conjugate
area. This lemma states that one fundamental difference between two letters is
the sequence in which 2 and —2 appear alternately.

We set d* = d/2 for d € &7.

Lemma 2.16. Let x,y, € 20 such that y, = xaas - -agap;1 where a; €
A5 =1,2,..,0,0+1,d, € &% k=1,2,...0 and £ € N.

(1) If dy = d1(—1)*"1, then we have

Anc[y,] = U  Uxa)
p€{0,d](1-d1,0)}

and
Anc,y?] = U U,(xay).
pe{dyd1,¢,d7 (1—02,0)}
Consequently we have
(2)
U Uxa) if £=1,2

pe{0,d7(1-01.0)}
Ancly)] = ¢ -2

U U Uy(xay) if¢>3

k=1 pe{oadi(afdté-dk_,dk_*_l }
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and
( Ug; (xan) if0=1
U Uxa) if 0 =2
pe{[):_dfédl,dz}
Anc,[y#] = { U Uy(xa) if0=3
p€{0,d},—d} (0dy,dy —0dy ,dy)}
{—-3
U Uy (xay) if £ > 4.
\ k=1pe{0,di,~d{day, a1 >=d1(0a,_y.dp=0d)_5.d,_1)}

Proof. We begin with the proof of (1). We only show the case where ¢ > 3.
Note that y3 = xa,04, (a1)a104, (a1) whence yf = X104, (a1)04: (a1)0_g: (ar). In
the case ¢ = 3, by the same argument as that in (2.7), we can construct the
following diagram:

Y3 Y:)#
T . N T
Xa104, (a1)a
_ £<G1<17d;d(5113)01d)1 (a1) xa104, (a1)ay Xa104, (a1)04: (a1)
T T N : T( e
Xa104, Q1
xa10; (a1 xaon(0) g (@) (o)
T % T 7N
Xay (xap)* xog: (a1) (xog: (a))#
(2.9) transition diagram for £ = 3,d; = +2 and dy = F2,

which corresponds to (1) for ¢ = 3. Assume that (1) is true for /(> 3). Then by
the induction hypothesis,

Ancy[xasas - - - app1api0] = Ancyf(xazas - - -ag+1ag+2)#] = U Up(xaz),
pE{O,d;}

so that we have

Anclye1] = Anc@[yﬁ_l] = U Up(y1),
pe{0,d3}

and since d; — —d, and

AHC4+1[YZ+1] = Ancl[Ancl[YZJrl”a
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we have

Ancyi[yen] = Ance+1[y,ﬁ1]
= U Anc,[z]
a€{y1,y T vy oug(a2),(y1 ogg(a2))#}
= U Anc, [z]
ze{yy 04, (a1),yy 0gx (a1),x04x (a1)o_gx (a1)}
= U Up(xay)
pe{0,d7}
which implies (1). By (1), for the remaining parts of the proof it suffices to show
that if there exists p € {1, 2, ...,¢ — 2} such that d, = dp;1, then we have
(2.10) Ancy/] = U(xay).

We assume ¢ > 3. In the case ¢/ = 3 and d; = ds, by the discussion following
(2.9), we obtain the following diagram:

Y3 = Xa10gq, (al)a—d’{ (a1)0d*{ (a1)

S AN
(xa104, (a1)0_g; (a1))*
= Xa10_g,(a1)04: (a1)
N S T

(xa10_q, (al))#

Xa104, (a1)o_q: (a1)

#
Xa10 a
(xa104, (a1)) xa104,(01)  Xajo_q,(ar)

= Xog: (al)a_d»{ (ay) = X0_g: (al)ad»{ (ay)
/N T N T N
x0y: (a1) (Xog: (a1))* Xay (xa;)# xo_g;(a1) (x0_g; (a1))*

transition diagram for ¢ = 3,d; = dy = +2.
Suppose that (2.10) is true for £ (> 3). Then, by the induction hypothesis and
(1), we have that if d; = dy, dy = dy(—1)*"2 (k > 2), then
Anclyen]= | Up(n)
pe{0,d3}
and if dy, = dy,+1 for some ky € {2,3,...,¢ — 1}, then
Anc[ye1] =U(yi).

In either case, we obtain Ancyi1]y,i1] = U(xa;) and thus the lemma follows.

The next lemma gives an ancestor of the non-conjugate area.
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Lemma 2.17. Let x,y, € 20 such that y, = xaias - -agap;1 where a; €
A,9=1,2,.., 0,0+ 1,d, € &, k=1,2,....,0 and £ € N. Then we have
(1) Ancly,] = Ancdyf] = Up(xay).
U Upxar) if dp=di(#0)

(2) Aan[(yZO'dl (ag+1))#] = p€{didy ¢,d1}
Up(xay) otherwise.

Proof. = We only have to show (2). By the discussion following (2.9), we
know that the lemma holds for ¢ =1, 2.
For ¢ > 2 and dy = d; (# 0), we assume

Anc[(y, 04,(as)*] = | Up(xar)
pe{0,d1}
which implies for apys = 04,,, (ar41)
Anc[(xazaz - - - apae1104,, (ars2))*] = U Up(xas)
p€{07d2}
and therefore we have
#] {}’1, Y1 0ds (a2)7 (YI_Udz (a2))#}
= {y1,¥1 024, (a1),x04, (a1)0_4, (a1) }.
In all other cases, we may assume that there exists some p € {1,2, ..., ¢} such
that
dp = {_dp+1;0}
dkE p+1 (p+1§]{?§£)
where d,1 € {—1,1}. Then we obtain
Ance (v, 00,(ac)?] = | Usyy)
q€{0,dp+1}
_ { vy, (v, 00)", 5, 04,1 ()} it d, =0
{Yp_apa (yp_ap)#a Yp O—dypir (ap)} if dp = —dpys.

and hence the lemma follows.

Ancy[(yer104,,, (ar2))

Next, we shall calculate the Martin kernel on 2. In the last two lemmas, we
have already constructed ancestors. Hence the following discussion assumes their
existence.

Lemma 2.18. Let x,y, € 20 such that y, = xaas - -agap;1 where a; €
A,7=1,2,..,00+1,d,=di(-1)"1,d € % k=1,2,..,0 and £ € N. Then we
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have for ¢ € 8° and v € U,(xa,)

(1) k(v,ye) = @ (1 +oo(dig—1) + 2¢(diq —2:1)(—1)Z> |

(2) k(v.yi) = @ (1 T op(dig— 1) - deldia 1)(—1)Z> |

2¢
(3) kv, (v, 0a (ae41))%)

= M (1 +oo(dig—1) + {3 - (_1)£}§0(d;{ +1)+ 690(dTQ)> ‘

6
Proof. By (1) of Lemma 2.16 we have
Ancy,) UAncfy]]1= ] Up(xa).
pe{0,di}

It is easy to check that the following recursion formula holds

( b(v)

kv = 04 ol 1) gt + 1))
vyt = P14 ol — 1) + 200 + 1)

K yeer) = U v0) + vy}
| kv yf) = kv )

and we have proved (1) and (2). Since dy—y = dy & dj, we have by (2) of Lemma
2.14

U Up(xay) if0=1,2
Anc[(y; 0q4; (ae41))7] = { pel-di—di(1-5:0))
U(xay) if £ > 3.
A straightforward computation using (1) and (2) yields
- Y(v ‘ "
kv, 7o (@)%) = Y04 plaig +1) + 20(d50))

kv, (Yiy20d;,, (0043))7) = %{k(va (v7 0a; (ae+1))¥) + 1}

and hence the lemma is proved.

Henceforth we will take &° as the representative element of Z/3Z when no
confusion can arise.
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Define the map ¢ : &° — &° by ¢(f) := —{. Since the projection Z onto
®° is well-defined, we may assume that the domain of ¢ is Z. For example,

2(2) = p(—1) = 1,0(=5) = (1) = —1, etc.
We now define the sequences for words of fixed length.

Let k] ,EJ eENy,7=1,2,....,p,p e Nym; € Ny and 7 € Ny. Confining ourselves
to Martin kernels, we associate the quantities K*, L*, L;, L, o, 3%, B Bm, and

Gijr - They are defined as follows:
Ki(p) = ik,
Li(p)=>2_, E with the convention L(0) = 0,
L, = KZ(LZ(ml) +1),
Lip)=>" L Wlth the convention L(0) =0,

aqu> (-1 )L%m*4w<w (7g—-n<—1v?bx
= (g) = U (p(—q — 1)(=1)8 £ (—1)™),

e (q) = B (q) — @A@, )

@Nm»—<y+w91<<1r+wm+n«4w>»

(2.11)

(2

where ¢ € ° and where

\I,(i)(x):{$ . . . . if m; =0
' (0D + 00D o0 + (8 + 1)) ---)) ifm e N

Let a; € 2A,j =1,2,...,L(p), L(p) + 1 where L(p) is defined in (2.11). Then we
define Hj 1—{q|L(p 1)+1<¢<L(p)—1:d; =dg1}

Lemma 2.19. Let k]( ),Eg ) K% L" and Lo be defined as in (2.11). Let
x,y € 2 satisfying y = xajaz - -ay,ar,+1 where a, € Ak = 1,2,..., Lo, Lo +

1,d, € % k=1,2,...,Ly and ZEU) # 0. Moreover, we suppose that
H, = {K°(1), K°(2), ..., K°(L°(my))}

and if mg > 2, then dKO(LO(t_1)+1) #* dKO(LO(t)+1) whenever t = 1,2,...,mg — 1.
Then we have for ¢ € &° and v € U,(xa,)

m E
_ 77b(.v.) * - CO’_77 20{7'710 (qu)
(1) k(v,y) = 6 1+ ¢(djg —1) +;; o KO(LO(r 9Lo
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mof

2) k(v,y*) = % L+ p(dig — 1) + 2; 2153’25 ;+ 4a”§)L(fqu)
(3) E(v,(y oq (are+1))")
_ @ Lt o(diq— 1 +§°:Zz: QKCS’JLST 9y my (d19) ;Sﬁmo(d*{q)
r=1 j=1
Proof. Define
ﬁ;# = ﬁk(“ (xayaz - - - agog;) o (axo(; )+1))#)
R = ﬁk(v,xalaz Lago(yor(AKo()11))
g = YRFOF /0 /Y

where !X is the transposed matrix of X.

L F
Note that (2.1) and dgo() ® (—djo(;)) € 8° whence ﬁ “on® _ R9. Hence by
Lemma 2.18, we have for 1 < j < Lo(mo)

KO(j+1) _ 1 (=1)"i+143 0 1 1
ﬁj+1 s ~ & (1 - W) REOT + (5 + W) ﬁ?
2 J+1(0) 277+1
1 (—1)f+1 3\ 0%
< 27j+1
. (0)
0 1 2(—1)ki+1 o) +1lg0 1 (-1t 04
Rjn = g<1+ AQ >ﬁj TR §< o By
275+1 2%j+1
/Y = 1 (1 _Acytn ﬁd.;(%) + IR0 (14 @ RO#
\ j+1 6 ) ](0+)1 J 3 ) ](0+)1 70
it follows
d* . A d* o #
¢ 0 0 0# 1 j+1 0 0
[ﬁj—fl(]-i_l) RO +17Rj+1] — ( ](0) + B> t[ﬁjk’ €] ,ﬁg,ﬁj#]
2 j+1
where
(0 (0
(= 1)Fi+1 43 1 & 1)fi+1 3
o) Bk(o) 1 3 2
(2.12) Ajn (—1)7d+t 0 (—17i+1 and B=-|1 3 2|,
() 30 1 3 2
2=t g (=) U
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so that we obtain
Lmo) /4
L +2—j
ﬁLO(m()«}»l) = H ( (Ogmo) J _|_ B) ﬁl.
j=1 2" LO(mg)+2—j

Now define the matrices M; and M, for the case where kj(-(jr)l is odd and even in
(2.12) respectively, that is,

~1/3 1 —2/3 —2/3 1 —1/3
Mi=|-1/30 1/3 | andMo=| 1/3 0 —1/3
2/3 0 —2/3 ~2/3 0 2/3

Note that by some linear algebra one can show

1| 2e(n+1)—p(n) 2¢0(n)—en—1) 2¢p(n—1)—p(n+1)
= p(n—1) p(n+1) p(n)
—2p(n —1) —2p(n +1) —2¢(n)

and for j € {1,2,3}

n—1 __
M =

/ ) 4(0)171 (0) _ 2 i s
MM = U0 - 1) - (1))

1 .
Lap( - 1)
) _ 4(0)171 (0) 1 i s
O MM My = L0 1)+ (1))

) _ 4(0)171 (0) _ 2 . s
O 2y = <20 - 1)+ (1))

where Xj; is the (4, j)-entry of X.
Suppose that mg > 2 and Ego) > 2. Since A;11B =0,B? = B, MM, = M,
and for j > 2

Lo _ [ even if j = LO(1) +1,L0(2) + 1, L%(3) + 1,..., L(mg — 1) + 1
i 7 1 odd otherwise,

we have
L°(myo)
ALO 27
H ( k(0§m0)+ ]+B
j=1 27L0(mo)+2—j
(0) Q) 0)
A 14 (0) #_
BMI™! & o BMIT My ME T M, - - My MY
(213) = B+ Z © © Z Z © ©
kst otk s=1 j=1 k t +kL0(S)+J

(0)
+AL0(m0)+1M oMy MM

(0) O)
ky etk
27

LO(mg)+1
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We have already constructed £; in Lemma 2.18 and thus the result follows.

Similar calculations show the remaining part of the lemma.

Here is an example of Lemma 2.19 with
y = x1(=2)1(—=2)1(—1)1(—-1)1(—2)0(—=2)1(—2)0(—2)1(—1).
Since dy = d5 = —2, we have by (2) of Lemma 2.16
Ancy;ly] = U(x1) = {x1, (x1)#,x0, (x0)#,x2, (x2)*},
so that by (2.11) we can set
EO =4,k = 4,56 = 1,50 = 2,k = 2,k = 2,80 = 1,1 =1,

0 =100 =200 =100 = 1,6 =2,
H, = {K°(1),K°(2),..., K°%(L°(5))} = {4,8,9,11,13,15,16}

and obtain

k(x1,y) = k((x1)*,y)

/©
»(x1) o~ Cogir(0) 20;5(0)
- 6 2+ Z Z oKO(LO(r—1)+j) 97

r=1 j=1

wxn<2+§é¢u—1x+2 SURDI SFITED I )

- 6 9K°(j) KO (147) KO (3+7) QKO (4+7)
7=1 7=1 7=1 7=1
2 .
e(j+1) 2
* QKO (5+7) + QKO(7+1)
j=1
B (x1) 5 1 1 1 1 2
- 6 -~ 9K(3) + 9K(4)  9K(5) + 9K (6) + 9K(8)
P(x1) 1 1 1 1 2
= PTawtan T as st
P(x1) 261942
= X
6 217
B (x1) x 43657
- 917 ’

A similarly calculation yields
k(x2,y) = k((x2)#,y) = L2 20560
k(x0,y) = k((x0)#,y) = LeQx1511.
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Lemma 2.20. Let x,y, € 20 such that y, = xaias - -agap;1 where a; €
A,7=1,2,...0,0+1,d, € &, k=1,2,....,0 and ¢ € N. Then we have for ¢ € &°
and v € U,(xay)

(1) k(v,ye) = k(v,y}) = %(")
o 1 B o Y(v) (%jL%) if dp = dy(#£0)
2) BV, (e 0w (aen))") = 60,4 (V) otherwise

2

where ¢(q) = ¢(diq + 1).

Proof. We only have to show (2) in the case where dy, = di(# 0) for
1 <k < /¢. Note that

Anc(y, o0, (ac)¥l = |J  Up(xar)
p€{di1dy,¢,d1}

by Lemma 2.15. Let a0 € A such that api o = apr1 ®dy. 1t is easy to check that
the following recursion formula holds

kv, (v70w (02)) = 2 (00, + 0()

2 k(v (Y10 (a042)) %) = k(v (¥, 04, (ae41))%) + k(v ¥2)-
This together with the fact that k(v,y,) = do 4 (v)/2 implies the result.

§3. The estimation of the Martin kernel

In this section we shall prove the following theorem.

Theorem A. Let k](-i),ﬁg-i),Ki,Li,Li and L be as in (2.11). Let x,y € 20
satisfying
y =Xa1a2 - QLN +1)0L(2N+1)+1
where a, € A,k =1,2,...,L(2N +1),L(2N +1)+ 1 and N € N.
(1) If v ¢ U(xay) (i.e. v € Uy(xa,),p € &¥), then
k(v,y) = k(v,y*) = 0.
(2) If v € U(xay), then the Martin kernel k has the form:
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o If d; € &, then there exist sequences

- s; =s;(v,y) € &° with ZveU (xa1)

o p1(v,y) with 0 < p; <3 and ZVEU(xal)p1:6 ifj=1
PI= pily) with 0 < p; <1 if2<j<N+1

and o € &° such that

Sj:()

N+1
S1S9 - 65182 - SN
k(v,y) = <p1 + Z oL(2j— 2 pj + 9L(2N+1)+1 )

N+1
” B S189 - 68182"'81\706
k(v, y ) = 6 <p1 + Z OL(2j— 2 OL(2N+1)+1 ’

o If d; € &°, then there exist sequences

z -k
D

. Sj € B°
-p; =pi(y) with 0 <p; <1
ct=1(v) € &° with 7 /et =0
and a € &° such that
N+1
’QZ}(V) 5182"'Sj_1 63182"'31\[0[
k(v,y) = 6 300, + (V) Z 9L(2j-2) pj + QL(2N+1)+1
j=1
N+1
o (V) S182° - Sj-1 65152 - - sy
k(v,y") = =5 304 +1(v) > oL(2j—2) Pi T ToLeN+h+ :
j=1

We give the exact formula in the following proposition.

Proposition 2.21. Let k
27 satistying

](Z),ﬁgz),Kz L', L;and L be asin (2.11). Let x,y,z €
Yy = Xa10a2 -+ - AL(2N)AL(2N)+1 and z = xa,a;y - - "OL(2N+1)OL(2N+1)+1

where a, € A,k =1,2,...,.L(2N +1),L(2N + 1)+ 1 and N € N.
Moreover, we suppose that if dy € &% for L(i — 1) + 1 < Vk < L(3), then

H; = {K'(1) + L(i — 1), K(2) + L(i — 1), ..., K'(L*(m;)) + L(i — 1)}
with the convention H:_;, = () whenever m; = 0.

W1l ¥ rL-D+1<k<L(2)t=12.,N
FEY 6# forL(2t—2)+1<k<L(2t—1),t=12..,N,N+1,

then there exists a sequence {SE-Q) }j C &° satisfying > 4 s .. .ngl) =0 for
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any j such that

k(v.y) = k(v,y")
v :
( )pl(d’{q) ifN=1
= N (9 (@) (2)
Y(v) X 51789 "'Sj—1p2j*1(1) .
N pi(diq) + 22 oL(2j—2) if N >2,
‘]:

k(v,z)

— P(v) -— q (Q) ) 5)1]?2] 1(1) + 655‘1)3;‘]) ) "Sﬁ)amzwﬂ(l)

= 5 (mda)+ Z Lo S ,
k(v,z%)

. 77b(v) d* - Sg )SgI) 5‘@1p2j—1(1) 6SgQ)Séq) e Sg\?)am2N+1 (1)

- 76 pi(dig) + z; 9L(2j—2) - OL2N+1)+1

j

for ¢ € ° and v € U,(xay).

(2) Tf dy € &% forL(2t—1)+1<k<L(2t),t=1,2,..,N

k ®° forL(2t—2)+1<k<L(2t—1),t=1,2,..,N,N +1,
then there exists a sequence {s;}; C 8° such that
N
p(v) S159+ -+ 8;p2;(1) 68189+ SNQU, . (1)
k(v,y) = 6 360, + 0(q) z; 9L(2j—1) + 9L(2N)+1 = ’
]:
N
#_ p(v) $1S9 -+ Spa;(1) _ Bs152 - snQm, (1)
B(v,y*) = == 1 300, + 0(0) Zl ST i :
‘]:

N
k(v,z) = k(v,z%) = ¢(6 v) (350,,1 + é(q Z 5182 - ;ﬂ:?](l))
7=1

for ¢ € ®° and v € U,(xay), where ¢ is defined in Lemma 2.20 and p; is de-
fined as follows:

L+¢(g—1)— (g +1)(-1/2)% if HI_| =
pi(q) = m W ¢ rm; (q)
j 1+ (g —1) +222Kﬂ;jl + T;ij it H) | #0.
v=1 w=1

Proof. We show (1) in several steps. For 1 < ¢ < L(2N + 1), we set
X) = X1y - - oy (Aps1).
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(First step) ~ For any p € {1,2,..., N} and Wrp11) € U(Xy,y,,q)), We have

1

(2.14) k(v, Wrgpin) = 5{"3(‘6"%(21:71))+k(V’X0L??&2p—1))}

. 5L2p+1XI(7q),¢(V) L . dL(Qp)#

st PLopii Xe(sy)  Wipin)
where
( 9L(2p-1) 2 2 0
p— #
W{k(va XLIE;;AI; ) = k(v, XL(prl))}
dr(2p
i J Xu(z) € Ancreni) vz,

dj = di, 1) for L(2p—1)+1<j <L(2p)

(2.15) X0 ={ 2L
P W{k(va XOL(gp_u) — k(v, X%p_l))}
d 2p
it 1 Xy € Ancroniy venz,
d;j = _dfupq) for L(2p— 1)+ 1 < j <L(2p)

0 otherwise.

\

Indeed, we can prove (2.14) by the following way.

Suppose that

d #
(2.15.1) XL () € ANCLEN 1) L) (2],
dj = di,, 4y for L(2p—1)+1<j <L(2p).

By the definition of the transition probability

k(v, WLi2p+1)) = Z k(v,t)p(Lapii;t, Wrizps1))-

teU(x%(%))
Hence by (2.15.1) and Lemma 2.20, we have

(v, Wr(2p+1))

1 1 dp (2 #
- Z k(v,t) <§ - 2L2p> 5L2p+1p(L2p+15XLIZ;;p)) , WL(2p+1))

bEUO (L (2 1))
5L2p+1p(L2 1'XdL(2p)# WL(2pt 1 )
kv, t) p+1> SL(2p) VW L(2p+1)
_'_ Z ’ 2L2p
tev,

0
dIt(Qp—l)(xL@P*l))
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d #
1 — 552041 p(Ligy 1 XLL(;?)) , WL(2p+1))

+ Z k(v,t) 5

tEUo(X%(2P71))

0
B k(v, X%(Qp—l)) + k(v, XL?ép—l))
2
k(v,x) )+ k(v,xy )
» 2L(2p—1) ) “L(2p—1 dv(2p) #
_ P T (2p-1) 5L2p+1p(L2p+1;XLIEZ7p)) 7WL(2p+1))
& &y
E(V, Xpp) )+ BV Xg5, 1)) o #
+ (p—1) STy (p—1) 5L2P+IP(L2p+1;XLIE;;p)) s WL(2p+1))
0
B k(v, X%(Qp—l)) + k(v, XL?ép—l))
2
& o # 0
E(v,x S 07) — k(v,x )
» 2L(2p—1) » 2L(2p—1) . d #
- oL, : 5sz+lp(L2p+1§XLL(;2pp)) » WL(2p+1))

which is (2.14).

(Second step) ~ We shall prove
Xz(,q) € ° and Z Xz(,q) =0 for any p € {1,2,..., N}.

qe®Be

(2.16)

Since - cgo W2 = 0 follows from (2.15), we only have to show that W0 e &°.
Using induction over p, the assertion follows immediately. If p = 1, then by
Lemmas 2.18 and 2.19 we have
. dig+1)(1+ (=D)E) +2(=1)1p(diq
e ot s, BN C + 200" o

— i (), (dig) 5 @ (41) } .

)

Noting that
(i)

k(i-) ; k(i-) +m; k
Bini (dq) — @i, (diq) = 2(=1) Hemon ) ((—1) oot ™ — p(dig + 1)(=1)"),
this implies that (2.16) is true for p = 1. Suppose that (2.16) is true for p. By

(2.14), we obtain

2L(2p+1) d* #
( ) 07
o) B xpe ) = k(v X))
10L2p+1X(q) drep# _ dneprn# CJdLep# _o#
X )_p(LZerl;XL(gp) 7XL(2p+1))}'

P
= 9L (2p) {p(L2p+15XL(2p) P AL(2p+1)
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On the other hand, by Lemmas 2.18 and 2.19 again

L dropy# O eprn dLep# 0%
5 ZPH{p(LQp-H, (21)) 7XL(2;p-:11) ) — (L2p+1,XL( 2p) 7XL(2p+1))}

(=D =1 Bmayys (1) = gy (1)
| f

2Lopt1+1 ’ 9L2pt1+1
so that
—1) L2+ 1
X;(;(IJZ1 S {(_1)L2P+IX;(;]); %X;(;Q)a
m — Oy (1)
_ am2p+1(1)X;(,Q)a 2p+1 . 2p+1 X;(;Q)}

and we have proved (2.16).

(Third step)  Now by (2.14)

Ly 5] — k(v t) | ) (xWpani(1) | 6xWasn (1)
(v,z) = Z 9 + 6 9L(2N) OL(2N+1)+1 '
tEUU(x%(szl))

Using (2.14) again, we have

k(v,t
3 (2 )

teUO(xoL(QN—l))

k(v,t) slav-1x ) | (en-2)#
= X Tt Y Gl y o)
tEUo(X%(QN_g)) tEUO(x%@N—l))

This together with the fact that

dy #
Z 5t =1 (Lo — 1,XLL(;21<;V ;3 ,t) = 2pan—_1(1)

teUO(X%@N—l))
implies
(@ . (q)
k(v,t)  ¥(v) N+1Xj—1p23—1(1) 6xn an1(1)
k(v,z): Z 9 + 6 Z 9L(2j—-2) + OL(2N+1)+1 )
tEUO(X%(2N73)) j=N

Repeating this process, we have

k(v,2) = ¥(v) (p1 d%q) _|_NZ+1X] 1P2j-1 )+6X53)Q2N+1(1)>.

6 9L(25-2) 2L(2N+1)+1

By construction of XN in (2.17), there exists a sequence {ngn }; C &° such that

X§3) = sgq)sé‘n e 353), and hence the theorem follows.
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Remark 2.22.  This is an additional remark to Proposition 2.21.

(1) If dp € &* or d), € ®° for any k, then we come to the conclusions that
Lemmas 2.19 (or 2.18) or 2.20 hold, respectively.

(2) Let My, My and B be defined as in Lemma 2.19. It is easy to see that

M =< M |M = [my,ma,m3] : my,mo,m3 € R [—2/3,1/3,—-2/3]
1,0,0]
where M is the collection of consisting of finite arbitrary product M; and Ms.
Furthermore, we define My = {M|M = BM': M' € M}. By the same argument
as above, we have
t[_1/67 _1/67 _1/6]
MOZ M M:[ml,mg,mg]:ml,mQ,mge t[1/6,1/6,1/6]
10,0, 0]

Then by (2.13), it follows that there exists a sequence {v,gj’q)}k C &° and

constant 79 € &° satisfying the condition > ew %(Cj,q) =3 e 709 = 0 such
that

1+ ¢(q— 1) — (g + 1)(—1/2)% if H/ | =0
(7,9) (j.a) .
. — Y Y .
(2.18) pi(q) 1+p(g—1)+ Z 2k_'£(j_1) + 5L if H | # 0.
keH/

j—1

We also have that

XD e {o(g+ 1) (— 1Bt —p(g + 1) (—1)Trriyg?,
Qg+ 1) {1—(=1)"2r+1}420(q)  (¢) @(g+1){=14H(=1)"2r+1}1—20(q)  (q)

e—

2 Xp s 2 Xp
sﬂ(q+1){1+(—12)L21’+1 H420(0) | (@) sp(qul){—l—(—;)LQY"+1 1=20(0) \ (0}
Compare this result with (2.17).
(3) It is clear that
b(v)

k(va}’)v k(V,y#), k(V,Z), k(V,Z#) S T

for any v € U(xa;). In particular, by elementary computations, we have for any
v € Up(xay)
P(v) (v

(2.19) 0 < k(v,y), k(v,y"), k(v,2z), k(v,z%) < T)
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Chapter Ill. Pentakun as a Martin boundary

§1. The Martin boundary of X

In this section we identify the Pentakun P with the Martin boundary M of
the transition probability function defined in (2.2). Since by Theorem 1.11 the
Modulo 5 fractal A% /~ and the Pentakun P are bi-Lipschitz equivalent, it suffices
to show the existence of a homeomorphism

T:(A°/~) - M.

We define the map p: 00 x W — Ry

B1) ey = [0 0]+ 3 agu)
ue2l

k(u,x) — k(u,y)|
1+ |k(u,x) — k(u,y)|

V5

where r = 2=Y5 and {a(u);u € 2} is some fixed sequence of strictly positive

numbers such that Y o a(u) = 1.
Lemma 3.1. The map p is a metric on 2.

Proof. We assume that p(x,y) = 0. Then by (3.1) we have
[(x) =l(y) and k(u,x) = k(u,y) for all u € 20.

Taking u = x and by (2.5), we obtain x = y. The remaining parts are obvious.

This metric has its source in (1.7) and is called Martin metric [5,9]. By (3) of
Remark 2.22, the Martin kernel defined in (2.5) satisfies (1.6). Hence by the same
discussion as in Section 2 of Chapter 1, we can consider (20, Os) as a topological
space where O, is a natural topology.

The p-completion of 2T is called the Martin space associated to p where p is
defined in (2.2), denoted by 20. The boundary of 20, that is, 020 = 20\ 20° =
W\ W is called the Martin boundary and is denoted by M. M is a compact
metric space (see (1.8) and (1.9)). Recall that O; is defined in (2) of Definition
2.1. The next lemma is an immediate consequence.

Lemma 3.2. O; = O,.

Since p is a Markovian kernel, we can also define the Markov operator on 2.
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Let f be a non-negative function on 2J. The associated Markov operator P is
defined by

(P (W)=Y p(w,v)f(v)

vey

and f is called P-excessive if Pf < f and P-harmonicif Pf = f.
Let 1 be a measure on 20. The associated dual Markov operator P* is defined
by

(P)(v) = > ulw)p(w,v)

weW

and p is called P*-ezcessive if pP* < p and P*-harmonic if uP* = p.

Theorem B.  2A*°/~ is the Martin boundary M of a certain, naturally
defined the mod 5 Markov chain X (in Definition 2.4).

In order to prove the theorem, it is enough to establish a map T : (A /~) — M
with the following Lemmas 3.3 through 3.7.

Lemma 3.3. Let x = {xx} be an infinite sequence of letters and define
Xy = Ty xyxpyq and £ € N Then Ty(z) = {x,} is a Cauchy sequence in
(20, p).

Proof. Let v.€ 20. If v ¢ U(xyv)), then by Proposition 2.13 we have
k(v,x;) = 0 for all ¢, so that we may assume without loss of generality that
(> 1(v) and v € U(x(v)).

Recall that K, L, L; and L are defined in (2.11). We may set

Tep1Zp42 T T4l = Tg41Te42 " TYLLENH1) LLHLE2N+1)+15

g © L1+ 1<k <+ L(2t)
k &% if(+L2t—2)+1<k<(+L(2t-1),

t=1,2,...,NNN+1and N € N.
If dy € &°, then by Proposition 2.21 we have

N+1
p?j—l(l) 6am2N+1(]‘)
90+L(2j—2) | Q+LEN+1)+1 |
7j=1

|k(v,xp) — k(v,x,)| <

Y(v)
6
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If d, € &%, then by replacing ¢ — ng by K°(L°(mg) + 1) in Lemma 2.19 and
Proposition 2.21 again, we have

|k(v,xp) — k(v,x)]

N41
w(v) p2j*1(1) 6am2N+1(1)
= 6 90+L(2j—2) ' Ql+L(2N+1)+1
j=2
e
1 - 1
+% 2K0L0m0 1)+ +ZZ2K1 qu 1)+4)+f—no +2£+L()
g=1 j=1
= 6 Z 90+L(2j-2) + 9+L(2N+1)+1
j=2
my £ .
2£+1 + ZZ QKL (g—1)+5)+ + 2¢6+L(1)
q=1 j=1

where ng = max{n|l(v) <n < {,d, € &°}.
In either case, we obtain

o0

1

|k(v,xp) — k(v, %) o

— 0 as { — oo.

n=0

The remaining parts can be shown analogously.

Lemma 3.4. If {x,} is a Cauchy sequence in 20, then {Xf} is also a Cauchy
sequence. {x} } is equivalent to {x,} if I[(x;) — co.

Proof. Let v € U(xv)). By the triangle inequality:
p(xe, %) < p(xe, X)) + p(x,x0y) + p(xr, %)
and by (3.1), it suffices to show that
lim |k(v,x¢) — k(v,x])| = 0.
£—00

If limy 0o [(x¢) < 00, then the sequence x, is eventually constant, so is xf,

hence it is also a Cauchy sequence. Thus, by Proposition 2.21 we have

¥(v)
2¢

k(v xe) — k(v,x])| <

Lemma 3.5. If To(x) = Ty(y) for © = 125+ -+ and y = g1y - - - € ™A, then
we have r ~ y.
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Proof. Let x,y € A satisfying = # y. Then there exists w € 20 such that
T = WXLy, Y= Wyilays -+ and x1 # y1.
Assume that Ty(z) = Ty(y) and define x,,, = w129 - - - T, and Y, = WY1Y2 * = * Ui
Note that by the definition of p and T}, we have for any t € 20
(3.2) "lbl_r)r;o k(t,xm) = k(t,x) = k(t,y) = "lbl_r)r;o k(t,ym)-
Taking t = x; in (3.2), we have by (2.19)

0 < lim k(x1,Xm) = Jim k(X1,Ym)

and hence by Proposition 2.13 we obtain {x;} N U(y:) # 0 which implies y; =
o4(r1) where d € {—1,1}. Taking t = x5 in (3.2) and the same argument as
above, we have {x2} N U(y2) # 0 and hence y, = 0_g4(x1) and 22 = o9q(x1).

We define X = {k > 3|xy # o9q(x1)}, Y = {k > 3|yx # 0_4(x1)} and denote ¢
and ¢ by { = min X and ¢ = min) if X # () and Y # (), respectively. We shall

prove
(3.3) xX=y=0.

If X # () and Y = (), then by taking t = x, in (3.2), it follows that {x,}NU(y,) =
() which is a contradiction. Interchanging x and y, the remaining parts of the proof
for (3.3) suffice in considering the case where X # () and ) # (). Notice that we
may automatically assume ¢ = ¢'. However, we obtain

{x} NU(ye) = {xe} N UK ye) = 0
implies (3.3) and thus 27 = y.

Consequently, by Lemma 3.4, we can define the map T : (A /~) — M by
T () = {x/|t € N}

where © = (xy)peny and {x,|¢ € N}~ denotes the equivalence class of the Cauchy
sequence {x|¢ € N}.

Lemma 3.6. The map 7T : (A°°/~) — M is surjective.

Proof. Let {wy,}nen € 20 be a Cauchy sequence. Then, since 2 is a
finite set, there exists a subsequence {Wy(1k)}ren such that the first letter of all
Woak);k € N, is 21 € A Next we can extract a subsequence {Wy 2k }ren(C
{Wn(1,k) }ren) such that the second letter of all wy,24); k € N, is 2, € 2. Similarly
we can extract a subsequence {Wy(j+1,k) boen(C {Wn(jk) tren) such that the (j+1)-
th letter of all wy,(j114);k € Niszjy € 2. Define {w} }ren = {Wn (k) tken. Then,
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since {w} }ren is a subsequence of {w,},en, it is a Cauchy sequence equivalent to
{Wn}neN-

Define x = xyx9 - -2, -+ € A® and X = 129 ---xx. Then we have Ty(x) =
{x }ren and by construction, for any n € N the first n letters of w® are 2,25 - - - 2.
For any fixed v € 20, by the same argument as that in Lemma 3.3 and Propo-
sition 2.21, we have
lim |k(v,w)) — k(v,x,)| = 0.

n—o0

Lemma 3.7. T :(A*°/~) — M is a homeomorphism.

Proof. By Lemmas 3.5 and 3.6, we have that the map 7" is bijective. The
continuity of T follows from the continuity of 7, which is an easy consequence of
Theorem A and (3.1). The continuity of 7! follows from this and since A/~
and M are compact.

Remark 3.8. It goes without saying that we can also prove Theorem B
using p; which is defined in (2.18).

§2. The Dirichlet Problem

In this section, as a corollary to [5,6], we shall solve the associated Dirichlet
problem:

Let g be a continuous function on M. Then

{([P—f]f)(w)zo, w e
limy e £(w) = g(), € € M(= (A%/~) =P)

has a unique solution in the class of uniformly continuous harmonic function space
over 20, denoted by H¢, (20).

The notion of a space of exits defined in Theorem 1.8 will play an important
role in the proving the associated Dirichlet problem. Using the next corollary we
first prove that 2/~ (= P) coincides with a space of exits.

By Theorem B and (2) of Theorem 1.8, we obtain
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There exists a Borel set B C M, called the space of exits,

such that the following holds:
(1) The function k(-, 2) is P-harmonic function on 2U for every z € B.
(2) For every P-excessive function h > 0 there exists a unique finite measure

p, on 20 such that

(3.4) h(v)

/M k() and i (M B) =0

(3) y € B if and only if ug(. y)(x) = Oxy-

Note that the function v — k(v,y) is P-excessive for every y € A /~.

Theorem C.

(1) The function v +— k(v,y) is P-harmonic on 20 for every y € A /~.

(2) (A*/~) =B.

Proof.

(1) Let y € A*° /~ be fixed. Then, by Fubini’s theorem, we have for any v € 20

Pk(v,y)

S p(v wk(v.y)

uc

> p(v,u) x lim g(u,w)

ue Wy g(@, W)

> lim (Z p(v,u)p(n;u,w)/g(0, W))

Yy
ucl

lim (Zp(n + 1L;v,w)/g(0, W))

. g(V,W) - 5VW
l )
v g(0w)
k(v,y).

(2) Let y € A°°/~. Since k(-,y) is P-harmonic on 20, by (3) of Corollary 3.9,
the measure p.,) has its support in A*°/~. Therefore it suffices to show that

@/)\{yt = J  {Eeq®/~ [k(v,&) > 0}.

veW;k(v,y)=0
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Indeed, if v € 20 and k(v,y) = 0, then by (3.4) we have
0= = [ b g (©)
WU(A /)
80 that fi(v.y) ({€ € Wk(v,£) > 0}) = 0 and thus fr(vy) (A°/~) \ {y}) = 0.

Let &,y € A®/~ such that £ # y. Then we may assume that £ and y have a
representation

E=u&ie- , y=uyiyz -

where u € 20 and & # y;. By Proposition 2.13, we have & = o4(y;) where
d € {—1,1}. If yo # y,, for some m > 3, then the first letter of y# is y; and hence

{u&i& - EntNU(ayy2 - ym) =0

which implies k(W& & - - - &, y) = 0. In addition, if yo € U(y;), then by Lemma
2.17 we have Anc,,[uy,y5'] = Up(uy;); so that we may assume y = uy;0a4(y1)*.
On the other hand, if there exists n > 2 such that &, # 0_4(y1), then

{u&i& - &y NU(uyys - yn) = 0.
Thus we have

§=ubi&o - =uoy(y1)o_q(y1)* = (uy102d(yl)oo)# = y#,

which implies £ =y in A°°/~. This is a contradiction.
Therefore by Theorem 1.8 we also have shown

Corollary 3.10.
(1) For every bounded P-harmonic function i > 0, py, is absolutely continuous
with respect to p; with Radon-Nikodym derivative ‘;’”7’11 such that

hw) = [ kG @)

nhﬁl(gJ h(X,) = z—/;’;(Xoo) Pry-a.e. Vv el
_ v |
IX. 3 h(v) =EY |2 (x )| wwew.
dpn

Here {X,|n € Ny} denotes the associated Markov chain and Pry is the probability
measure concentrated on the paths starting from x given by

Prx[XO = X0, X] = X1,..., X, = Xn] = 5x,xop(XUa Xl)p(xla Xz) e 'p(XnA,Xn)-
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(2) Conversely for every non-negative y;-integrable function f on A%/~

(35) i) o= [ k0 5@ (e

defines a P-harmonic function on 20 and

f(Xx) = nll)rgo h;(X,) Pry-a.e. Vv e 20.

Let v be the Bernoulli measure on A, that is, the product measure v =
[12, vk, where each vy is the uniform probability measure on . It is known
that v o p~' is the Hausdorff measure on P where p : A% — A/~ denotes the
canonical projection.

We also use the notation C'(A) = {f|f : A = R, continuous, A C A>®/~}.

The following Corollaries 3.11 through 3.13 follow from [5].

Corollary 3.11. The harmonic measure p; on A/~ in Theorem 1.8,
coincides with the normalised canonical Hausdorff measure v o p~!.

Corollary 3.12. vop !isa Radon measure on A®/~ and full, i.e.

(1) vop HA) =sup{rop '(K)|K C A, K is compact subset of 2> /~}.

(2) For every non-empty open subset B of A/~ we have that v o p~'(B) is
strictly positive.

Corollary 3.13.  Let hy be defined in (3.5). Then we have hy € H¢, (20
{03).

Corollary 3.14.  Let f be a continuous function on A*°/~. Then h; can
be extended to a continuous function on QU (A* /~), which coincides with f on
20 U (A /~). In particular we have

lim fy(w) = f(§)

w—E

for every £ € A% /~.

Proof.  Since ) is an isolated point, h; is uniformly continuous on the dense
subset 20 of the compact metric space 20 U (A% /~) and extends to a continuous
function hy on WU (A /~).

On the other hand by (2) of Corollary 3.10 we have

lim h¢(X,) = f(Xsx) Prp-a.e.
n—o0
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and since v o ! = Pry o X! we have

hp(€) = f(§) (Prgo X ')-ae.

Since v o ! is a Radon measure on 2%/~ and full, we obtain that h_f = fon
20U (A /~).

We denote the map sending a bounded measurable function f on A%/~ to hy
by Z, that is, Z(f) = hy.
Note that

(3.6) Z(C(A*/~)) = Hc, (W)
via Corollary 3.14.

We summerise our result in.

Theorem D. The Dirichlet problem for P — I on 207,
[{(P=Df}w) =0, wew

{ limwe f(W) = g(£), £€ M(=(A*/~)=P)

where g € C'(2>/~), has a unique solution f = h, in He, (20).

(D)

Proof. This follows from Corollary 3.14: Given a continuous function g, the
function

hov) = [ k. Oa(€)n (6

is a solution. Hence it suffices to show that this solution of (D) is unique. We
now consider

(0 { ([P—-1F)(w)=0, we2
limy_ ¢ F(w) =0, &€ M.
Then by (3.6), there exists some function G € C(A*°/~) = C(M) such that

F(v) = /M kv, €)G(E)dyu (€)

for any v € 20. Thus by (2) of Corollary 3.10 and (D*), we have G = 0 on M
which implies F' = 0 on 20.
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