ON THE COHOMOLOGY OF GENERALIZED HOMOGENEOUS SPACES

J.P. MAY AND F. NEUMANN

ABSTRACT. We observe that work of Gugenheim and May on the cohomology of classical homogeneous spaces G/H of Lie groups applies verbatim to the calculation of the cohomology of generalized homogeneous spaces G/H, where G is a finite loop space or a *p*-compact group and H is a "subgroup" in the homotopical sense.

We are interested in the cohomology $H^*(G/H; R)$ of a generalized homogeneous space G/H with coefficients in a commutative Noetherian ring R. Here G is a "finite loop space" and H is a "subgroup". More precisely, G and H are homotopy equivalent to ΩBG and ΩBH for path connected spaces BG and BH, and G/His the homotopy fiber of a based map $f : BH \longrightarrow BG$. We always assume this much, and we add further hypotheses as needed. Such a framework of generalized homogeneous spaces was first introduced by Rector [10], and a more recent framework of p-compact groups has been introduced and studied extensively by Dwyer and Wilkerson [4] and others.

We ask the following question: How similar is the calculation of $H^*(G/H; R)$ to the calculation of the cohomology of classical homogeneous spaces of compact Lie groups? When $R = \mathbb{F}_p$ and H is of maximal rank in G, in the sense that $H^*(H; \mathbb{Q})$ and $H^*(G; \mathbb{Q})$ are exterior algebras on the same number of generators, the second author has studied the question in [8, 9]. There, the fact that $H^*(BG; R)$ need not be a polynomial algebra is confronted and results similar to the classical theorems of Borel and Bott [2, 3] are nevertheless proven. The purpose of this note is to begin to answer the general question without the maximal rank hypothesis, but under the hypothesis that $H^*(BG; R)$ and $H^*(BH; R)$ are polynomial algebras.

In fact, we shall not do any new mathematics. Rather, we shall merely point out that work of the first author [7] that was done before the general context was introduced goes far towards answering the question. Essentially the following theorem was announced in [7] and proven in [5]. We give a brief sketch of its proof and then return to a discussion of its applicability to the question on hand. Let BT^n be a classifying space of an *n*-torus T^n .

Theorem 1. Assume the following hypotheses.

- (i) $\pi_1(BG)$ acts trivially on $H^*(G/H; R)$.
- (ii) R is a PID and $H_*(BG; R)$ is of finite type over R.
- (iii) $H^*(BG; R)$ is a polynomial algebra.
- (iv) There is a map $e: BT^n \longrightarrow BH$ such that $H^*(BT^n; R)$ is a free $H^*(BH; R)$ -module via e^* .

Date: April 20, 2000.

¹⁹⁹¹ Mathematics Subject Classification. Primary 55P35, 57T35; Secondary 57T15. The first author was partially supported by the NSF.

Then $H^*(G/H; R)$ is isomorphic as an R-module to $Tor_{H^*(BG;R)}(R, H^*(BH; R))$, regraded by total degree. Moreover, there is a filtration on $H^*(G/H; R)$ such that its associated bigraded R-algebra is isomorphic to $Tor_{H^*(BG;R)}(R, H^*(BH; R))$.

Proof. The first two hypotheses ensure that $H^*(G/H; R)$ is isomorphic to the differential torsion product $\operatorname{Tor}_{C^*(BG;R)}(R, C^*(BH; R))$. See, for example, [5, p. 21-25]. The second hypothesis allows Lemma 3.2 there to be applied with \mathbb{Z} replaced by R, thus allowing the finite type over \mathbb{Z} hypothesis assumed there to be replaced by the finite type over R hypothesis assumed here. Therefore there is an Eilenberg-Moore spectral sequence that converges from $\operatorname{Tor}_{H^*(BG;R)}(R, H^*(BH; R))$ to $H^*(G/H; R)$. The conclusion of the theorem is that this spectral sequence collapses at E_2 with trivial additive extensions, but not necessarily trivial multiplicative extensions. The last hypothesis and a comparison of spectral sequences argument essentially due to Baum [1] shows that the conclusion holds in general if it holds when $BH = BT^n$. See [5, p. 37-38]. Here the strange result [5, 4.1] gives that there is a morphism

$$g: C^*(BT^n; R) \longrightarrow H^*(BT^n; R)$$

of differential algebras such that g induces the identity map on cohomology and annihilates all \cup_1 -products.

Now the general theory of differential torsion products of [5] kicks in. In modern language, implicit in the discussion of [6, p. 70], there is a model category structure on the category of A-modules for any DGA A over R such that every right A-module M admits a cofibrant approximation of a very precise sort. Namely, for any HA-free resolution $X \otimes_R HA \longrightarrow HM$ of HM, there is a cofibrant approximation $P = X \otimes_R A \longrightarrow M$. Grading is made precise in the cited sources. The essential point is that P is not a bicomplex but rather has differential with many components. When HA is a polynomial algebra and M = R, we can take X to be an exterior algebra with one generator for each polynomial generator of HA. Here, assuming that A has a \cup_1 -product that satisfies the Hirsch formula (\cup_1 is a graded derivation), [5, 2.2] specifies the required differential explicitly in terms of \cup_1 products. Using g to replace $C^*(BT^n; R)$ by $H^*(BT^n; R)$ in our differential torsion product, we see that the differential torsion product $\operatorname{Tor}_{C^*(BG;R)}(R, H^*(BT^n; R))$ is computed by exactly the same chain complex as the ordinary torsion product $\operatorname{Tor}_{H^*(BG;R)}(R, H^*(BT^n; R))$. See [5, 2.3]. The conclusion follows.

Hypotheses (i) and (ii) in the theorem are reasonable and not very restrictive. Hypothesis (iii) is intrinsic to the method at hand. Note that $H^*(BG; R)$ can have infinitely many polynomial generators, so that G need not be finite. The key hypothesis is (iv). Here the following homotopical version of a theorem of Borel is relevant. It was first noticed by Rector [10, 2.2] that Baum's proof [1] of Borel's theorem is purely homotopical. A generalized variant of Baum's proof is given in [5, p. 40-42]. That proof applies directly to give the following theorem. We state it for H and G as in the first paragraph. However, we are interested in its applicability to T^n and H in Theorem 1, and we restate it as a corollary in that special case.

Theorem 2. Let R be a field and assume the following hypotheses.

- (i) $\pi_1(BG)$ acts trivially on $H^*(G/H; R)$.
- (ii) H*(BH; R) and H*(BG; R) are polynomial algebras on the same finite number of generators.
- (iii) $H^*(G/H; R)$ is a finite dimensional R-module.

Then $H^*(G/H; R) \cong R \otimes_{H^*(BG; R)} H^*(BH; R)$ as an algebra and

$$H^*(BH; R) \cong H^*(BG; R) \otimes_R H^*(G/H; R)$$

as a left $H^*(BG; R)$ -module. In particular, $H^*(BH; R)$ is $H^*(BG; R)$ -free.

Corollary 3. Let R be a field and assume given a map $e : BT^n \longrightarrow BH$ that satisfies the following properties, where H/T^n is the fiber of e.

(i) $\pi_1(BH)$ acts trivially on $H^*(H/T^n; R)$.

(ii) $H^*(BH; R)$ is a polynomial algebra on n generators.

(iii) $H^*(H/T^n; R)$ is a finite dimensional R-module.

Then $H^*(H/T^n; R) \cong R \otimes_{H^*(BH;R)} H^*(BT^n; R)$ as an algebra and

$$H^*(BT^n; R) \cong H^*(BH; R) \otimes_R H^*(H/T^n; R)$$

as a left $H^*(BH; R)$ -module. In particular, $H^*(BT^n; R)$ is $H^*(BH; R)$ -free.

When Corollary 3 applies, its conclusion gives hypothesis (iv) of Theorem 1. We comment briefly on applications to the integral and p-compact settings for the study of generalized homogeneous spaces.

Remark 4. A counterexample of Rector [10] shows that not all finite loop spaces H have (integral) maximal tori. When H does have a maximal torus, hypothesis (iii) of the Corollary holds by definition. Assuming that H is simply connected, [9, 3.11] describes for which primes $p \ H^*(BH;\mathbb{Z})$ is p-torsion free, so that $H^*(BH;\mathbb{F}_p)$ is a polynomial algebra. If R is the localization of \mathbb{Z} at the primes p for which $H^*(H;\mathbb{Z})$ is p-torsion free, then $H^*(BH;R)$ is also a polynomial algebra, and $H^*(BT;R)$ is a free $H^*(BH;R)$ -module. That is, hypothesis (iv) of Theorem 1 holds for the localization of \mathbb{Z} away from the finitely many "bad primes" for which $H^*(BH;\mathbb{F}_p)$ is not a polynomial algebra on n generators.

Remark 5. In the *p*-compact setting, taking $R = \mathbb{F}_p$, Dwyer and Wilkerson [4, 8.13, 9.7] prove that if H is connected, BH is \mathbb{F}_p -complete, $H^*(H;\mathbb{F}_p)$ is finite dimensional, and $H^*(H;\mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{Q}$ is an exterior algebra on n generators, then there is a map $e: BT^n \longrightarrow BH$ such that $H^*(H/T^n;\mathbb{F}_p)$ is finite dimensional. Here Corollary 3 applies whenever $H^*(BH;\mathbb{F}_p)$ is a polynomial algebra on n generators.

References

- [1] P.F. Baum. On the cohomology of homogeneous spaces. Topology 7(1968), 15–38.
- [2] A. Borel. Sur la cohomologie des éspaces fibré principaux et des éspaces homogènes de groupes de Lie compact. Ann Math. 57(1953), 115–207.
- [3] R. Bott. An application of Morse theory to the topology of Lie groups. Bull. Soc. Math. France 84(1956), 251–281.
- [4] W.G. Dwyer and C.W. Wilkerson. Homotopy fixed point methods for Lie groups and finite loop spaces. Ann. Math 139(1994), 395–442.
- [5] V.K.A.M. Gugenheim and J.P. May. On the theory and applications of differential torsion products. Memoirs Amer. Math. Soc. No. 142, 1974.
- [6] I. Kriz and J.P. May. Operads, algebras, modules, and motives. Astérisque. No. 233. 1995.
- [7] J.P. May The cohomology of principal bundles, homogeneous spaces, and two-stage Postnikov systems. Bull. Amer. Math. Soc. 74(1968), 334–339.
- [8] F. Neumann. On the cohomology of homogeneous spaces of finite loop spaces and the Eilenberg-Moore spectral sequence. J. Pure and Applied Algebra 140(1999), 261-287.
- [9] F. Neumann. Torsion in the cohomology of finite loop spaces and the Eilenberg-Moore spectral sequence. Topology and its Applications 100(2000), 133–150.
- [10] D. Rector. Subgroups of finite dimensioanl topological groups. J. Pure Appl. Algebra 1(1971), 253–273.

Department of Mathematics, The University of Chicago, Chicago, IL 60637 $E\text{-}mail\ address: \verb"may@math.uchicago.edu"$

 $\label{eq:mathematisches} Mathematisches Institut der Georg-August-Universität, Göttingen, Germany {\it E-mail address: neumann@uni-math.gwdg.de}$

4