ON THE COHOMOLOGY OF GENERALIZED HOMOGENEOUS SPACES

J.P. MAY AND F. NEUMANN

Abstract

We observe that work of Gugenheim and May on the cohomology of classical homogeneous spaces G / H of Lie groups applies verbatim to the calculation of the cohomology of generalized homogeneous spaces G / H, where G is a finite loop space or a p-compact group and H is a "subgroup" in the homotopical sense.

We are interested in the cohomology $H^{*}(G / H ; R)$ of a generalized homogeneous space G / H with coefficients in a commutative Noetherian ring R. Here G is a "finite loop space" and H is a "subgroup". More precisely, G and H are homotopy equivalent to $\Omega B G$ and $\Omega B H$ for path connected spaces $B G$ and $B H$, and G / H is the homotopy fiber of a based map $f: B H \longrightarrow B G$. We always assume this much, and we add further hypotheses as needed. Such a framework of generalized homogeneous spaces was first introduced by Rector [10], and a more recent framework of p-compact groups has been introduced and studied extensively by Dwyer and Wilkerson [4] and others.

We ask the following question: How similar is the calculation of $H^{*}(G / H ; R)$ to the calculation of the cohomology of classical homogeneous spaces of compact Lie groups? When $R=\mathbb{F}_{p}$ and H is of maximal rank in G, in the sense that $H^{*}(H ; \mathbb{Q})$ and $H^{*}(G ; \mathbb{Q})$ are exterior algebras on the same number of generators, the second author has studied the question in $[8,9]$. There, the fact that $H^{*}(B G ; R)$ need not be a polynomial algebra is confronted and results similar to the classical theorems of Borel and Bott [2,3] are nevertheless proven. The purpose of this note is to begin to answer the general question without the maximal rank hypothesis, but under the hypothesis that $H^{*}(B G ; R)$ and $H^{*}(B H ; R)$ are polynomial algebras.

In fact, we shall not do any new mathematics. Rather, we shall merely point out that work of the first author [7] that was done before the general context was introduced goes far towards answering the question. Essentially the following theorem was announced in [7] and proven in [5]. We give a brief sketch of its proof and then return to a discussion of its applicability to the question on hand. Let $B T^{n}$ be a classifying space of an n-torus T^{n}

Theorem 1. Assume the following hypotheses.
(i) $\pi_{1}(B G)$ acts trivially on $H^{*}(G / H ; R)$.
(ii) R is a PID and $H_{*}(B G ; R)$ is of finite type over R.
(iii) $H^{*}(B G ; R)$ is a polynomial algebra.
(iv) There is a map $e: B T^{n} \longrightarrow B H$ such that $H^{*}\left(B T^{n} ; R\right)$ is a free $H^{*}(B H ; R)$ module via e^{*}.

[^0]Then $H^{*}(G / H ; R)$ is isomorphic as an R-module to $\operatorname{Tor}_{H^{*}(B G ; R)}\left(R, H^{*}(B H ; R)\right)$, regraded by total degree. Moreover, there is a filtration on $H^{*}(G / H ; R)$ such that its associated bigraded R-algebra is isomorphic to $\operatorname{Tor}_{H^{*}(B G ; R)}\left(R, H^{*}(B H ; R)\right)$.
Proof. The first two hypotheses ensure that $H^{*}(G / H ; R)$ is isomorphic to the differential torsion product $\operatorname{Tor}_{C^{*}(B G ; R)}\left(R, C^{*}(B H ; R)\right)$. See, for example, [5, p. 21-25]. The second hypothesis allows Lemma 3.2 there to be applied with \mathbb{Z} replaced by R, thus allowing the finite type over \mathbb{Z} hypothesis assumed there to be replaced by the finite type over R hypothesis assumed here. Therefore there is an Eilenberg-Moore spectral sequence that converges from $\operatorname{Tor}_{H^{*}(B G ; R)}\left(R, H^{*}(B H ; R)\right)$ to $H^{*}(G / H ; R)$. The conclusion of the theorem is that this spectral sequence collapses at E_{2} with trivial additive extensions, but not necessarily trivial multiplicative extensions. The last hypothesis and a comparison of spectral sequences argument essentially due to Baum [1] shows that the conclusion holds in general if it holds when $B H=B T^{n}$. See [5, p. 37-38]. Here the strange result [5, 4.1] gives that there is a morphism

$$
g: C^{*}\left(B T^{n} ; R\right) \longrightarrow H^{*}\left(B T^{n} ; R\right)
$$

of differential algebras such that g induces the identity map on cohomology and annihilates all \cup_{1}-products.

Now the general theory of differential torsion products of [5] kicks in. In modern language, implicit in the discussion of [6, p. 70], there is a model category structure on the category of A-modules for any $D G A A$ over R such that every right A-module M admits a cofibrant approximation of a very precise sort. Namely, for any $H A$-free resolution $X \otimes_{R} H A \longrightarrow H M$ of $H M$, there is a cofibrant approximation $P=X \otimes_{R} A \longrightarrow M$. Grading is made precise in the cited sources. The essential point is that P is not a bicomplex but rather has differential with many components. When $H A$ is a polynomial algebra and $M=R$, we can take X to be an exterior algebra with one generator for each polynomial generator of $H A$. Here, asssuming that A has a \cup_{1}-product that satisfies the Hirsch formula (\cup_{1} is a graded derivation), $[5,2.2]$ specifies the required differential explicitly in terms of \cup_{1} products. Using g to replace $C^{*}\left(B T^{n} ; R\right)$ by $H^{*}\left(B T^{n} ; R\right)$ in our differential torsion product, we see that the differential torsion product $\operatorname{Tor}_{C^{*}(B G ; R)}\left(R, H^{*}\left(B T^{n} ; R\right)\right)$ is computed by exactly the same chain complex as the ordinary torsion product $\operatorname{Tor}_{H^{*}(B G ; R)}\left(R, H^{*}\left(B T^{n} ; R\right)\right)$. See [5, 2.3]. The conclusion follows.

Hypotheses (i) and (ii) in the theorem are reasonable and not very restrictive. Hypothesis (iii) is intrinsic to the method at hand. Note that $H^{*}(B G ; R)$ can have infinitely many polynomial generators, so that G need not be finite. The key hypothesis is (iv). Here the following homotopical version of a theorem of Borel is relevant. It was first noticed by Rector [10, 2.2] that Baum's proof [1] of Borel's theorem is purely homotopical. A generalized variant of Baum's proof is given in [5, p. 40-42]. That proof applies directly to give the following theorem. We state it for H and G as in the first paragraph. However, we are interested in its applicability to T^{n} and H in Theorem 1, and we restate it as a corollary in that special case.

Theorem 2. Let R be a field and assume the following hypotheses.
(i) $\pi_{1}(B G)$ acts trivially on $H^{*}(G / H ; R)$.
(ii) $H^{*}(B H ; R)$ and $H^{*}(B G ; R)$ are polynomial algebras on the same finite number of generators.
(iii) $H^{*}(G / H ; R)$ is a finite dimensional R-module.

Then $H^{*}(G / H ; R) \cong R \otimes_{H^{*}(B G ; R)} H^{*}(B H ; R)$ as an algebra and

$$
H^{*}(B H ; R) \cong H^{*}(B G ; R) \otimes_{R} H^{*}(G / H ; R)
$$

as a left $H^{*}(B G ; R)$-module. In particular, $H^{*}(B H ; R)$ is $H^{*}(B G ; R)$-free.
Corollary 3. Let R be a field and assume given a map $e: B T^{n} \longrightarrow B H$ that satisfies the following properties, where H / T^{n} is the fiber of e.
(i) $\pi_{1}(B H)$ acts trivially on $H^{*}\left(H / T^{n} ; R\right)$.
(ii) $H^{*}(B H ; R)$ is a polynomial algebra on n generators.
(iii) $H^{*}\left(H / T^{n} ; R\right)$ is a finite dimensional R-module.

Then $H^{*}\left(H / T^{n} ; R\right) \cong R \otimes_{H^{*}(B H ; R)} H^{*}\left(B T^{n} ; R\right)$ as an algebra and

$$
H^{*}\left(B T^{n} ; R\right) \cong H^{*}(B H ; R) \otimes_{R} H^{*}\left(H / T^{n} ; R\right)
$$

as a left $H^{*}(B H ; R)$-module. In particular, $H^{*}\left(B T^{n} ; R\right)$ is $H^{*}(B H ; R)$-free.
When Corollary 3 applies, its conclusion gives hypothesis (iv) of Theorem 1. We comment briefly on applications to the integral and p-compact settings for the study of generalized homogeneous spaces.

Remark 4. A counterexample of Rector [10] shows that not all finite loop spaces H have (integral) maximal tori. When H does have a maximal torus, hypothesis (iii) of the Corollary holds by definition. Assuming that H is simply connected, [9, 3.11] describes for which primes $p H^{*}(B H ; \mathbb{Z})$ is p-torsion free, so that $H^{*}\left(B H ; \mathbb{F}_{p}\right)$ is a polynomial algebra. If R is the localization of \mathbb{Z} at the primes p for which $H^{*}(H ; \mathbb{Z})$ is p-torsion free, then $H^{*}(B H ; R)$ is also a polynomial algebra, and $H^{*}(B T ; R)$ is a free $H^{*}(B H ; R)$-module. That is, hypothesis (iv) of Theorem 1 holds for the localization of \mathbb{Z} away from the finitely many "bad primes" for which $H^{*}\left(B H ; \mathbb{F}_{p}\right)$ is not a polynomial algebra on n generators.

Remark 5. In the p-compact setting, taking $R=\mathbb{F}_{p}$, Dwyer and Wilkerson [4, 8.13, 9.7] prove that if H is connected, $B H$ is \mathbb{F}_{p}-complete, $H^{*}\left(H ; \mathbb{F}_{p}\right)$ is finite dimensional, and $H^{*}\left(H ; \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}$ is an exterior algebra on n generators, then there is a map $e: B T^{n} \longrightarrow B H$ such that $H^{*}\left(H / T^{n} ; \mathbb{F}_{p}\right)$ is finite dimensional. Here Corollary 3 applies whenever $H^{*}\left(B H ; \mathbb{F}_{p}\right)$ is a polynomial algebra on n generators.

References

[1] P.F. Baum. On the cohomology of homogeneous spaces. Topology 7(1968), 15-38.
[2] A. Borel. Sur la cohomologie des éspaces fibré principaux et des éspaces homogènes de groupes de Lie compact. Ann Math. 57(1953), 115-207.
[3] R. Bott. An application of Morse theory to the topology of Lie groups. Bull. Soc. Math. France 84(1956), 251-281.
[4] W.G. Dwyer and C.W. Wilkerson. Homotopy fixed point methods for Lie groups and finite loop spaces. Ann. Math 139(1994), 395-442.
[5] V.K.A.M. Gugenheim and J.P. May. On the theory and applications of differential torsion products. Memoirs Amer. Math. Soc. No. 142, 1974.
[6] I. Kriz and J.P. May. Operads, algebras, modules, and motives. Astérisque. No. 233. 1995.
[7] J.P. May The cohomology of principal bundles, homogeneous spaces, and two-stage Postnikov systems. Bull. Amer. Math. Soc. 74(1968), 334-339.
[8] F. Neumann. On the cohomology of homogeneous spaces of finite loop spaces and the Eilenberg-Moore spectral sequence. J. Pure and Applied Algebra 140(1999), 261-287.
[9] F. Neumann. Torsion in the cohomology of finite loop spaces and the Eilenberg-Moore spectral sequence. Topology and its Applications 100(2000), 133-150.
[10] D. Rector. Subgroups of finite dimensioanl topological groups. J. Pure Appl. Algebra 1(1971), 253-273.

Department of Mathematics, The University of Chicago, Chicago, IL 60637
E-mail address: may@math.uchicago.edu
Mathematisches Institut der Georg-August-Universität, Göttingen, Germany E-mail address: neumann@uni-math.gwdg.de

[^0]: Date: April 20, 2000.
 1991 Mathematics Subject Classification. Primary 55P35, 57T35; Secondary 57T15.
 The first author was partially supported by the NSF.

