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Abstrat. We introdue the lass of `medium varying funtions' and orresponding

weak Gibbs measures both de�ned on a symboli shift spae. We prove that the

free Helmholtz energy of the stohasti proess of a randomly stopped Birkho� sum

measured by a weak Gibbs measure an be expressed in terms of the topologial

pressure. This leads to the notion of the multifratal entropy funtion whih provides

large deviation bounds. The multifratal entropy funtion an be onsidered as a

generalization of the multifratal spetrum as they oinide (up to onstants) when for

instane Gibbs or g�measures are involved.
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1. Introdution

The theory of multifratals has its origin in Kolmogorov's work [9℄ on ompletely

developed turbulene. His third hypothesis, laiming the energy dissipation to be

lognormal distributed was questioned by Mandelbrot in [11℄. Based on these ideas

Frish, Parisi [5℄ and later Halsey et al. [6℄ developed a �rst simple formalism for

multifratals. Nowadays, the multifratal formalism is understood to be an `analysis of

level sets': For some set X we onsider a funtion g : X ! R and a real�valued funtion

D de�ned on an appropriate olletion of subsets of X suh that the spetrum

f(�) := D fx 2 X : g(x) = �g

is a well de�ned funtion. We are espeially interested in the ase in whih g is the loal

dimension of a measure �, i.e.,

g(x) := lim

r&0

log �(B

r

(x))

log r

whenever the limit exists. B

r

(x) := fy : d(x; y) � rg denotes the losed ball with entre

x and radius r. Notie that g depends not only on � but also on the metri d. The

set funtion D is hosen to be an appropriate notion of dimension, e.g. Hausdor� or

paking dimension (see [4℄ for de�nitions), whih as well depends on the hosen metri.

In this situation f is alled the multifratal (singularity) spetrum.

The onnetion between the multifratal formalism and thermodynami formalism

has been applied in order to determine f in many speial ases. Rand was the �rst to
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do this in [17℄. This onnetion is still one of the basi objets of researh in fratal

geometry. The textbook [15℄ by Pesin is a good referene for this and related topis.

In [12℄ Mandelbrot pointed out that there is a lose relationship between

multifratals and the theory of large deviation and that this relation is eligible to the

basi understanding of multifratal theory. In [18℄ Riedi applied this idea to the ase in

whih D is hosen to be the box�ounting dimension. The interplay of thermodynamis,

multifratal formalism and large deviation theory has rigorously been examined in [8℄

for symboli shift spaes, and in [2℄ for expanding onformal dynamial systems with

Hölder ontinuous potentials. In the preprint [16℄ Pesin and Weiss give a desription

of the interplay between large deviations for Birkho� averages of Hölder ontinuous

funtions, and the thermodynami formalism for symboli shift spaes.

In this paper we show that for the lass D of medium varying funtions on a

symboli shift spae a weakened thermodynami formalism proves to be su�ient to

derive large deviation laws for ertain stohasti proesses and rate�funtions permitting

an interpretation in terms of multifratal theory.

To be more preise, let ' and  be ontinuous funtions. For R 2 R

+

we de�ne a

stopping time by n

R

(x) := inf fn : S

n

 (x) � Rg, where S

n

 (x) :=

P

n�1

i=0

 (S

i

(x)) for

n > 0, S

0

 = 0. For a probability measure � we onsider the random proess

(S

n

R

(�)

'(�); �)

R>0

: (1)

For this proess we de�ne the free Helmholtz energy with rate�funtion � as the limit

H(t) := lim

R!1

1

�(R)

log

Z

exp (t S

n

R

') d�

whenever it exists. Note, that taking  � 1 and �(R) = [R℄ ([R℄ denotes the integer

part of R) yields an analysis of Birkho� averages for funtions that do not neessarily

have to be Hölder ontinuous. Whenever the rate�funtion � is given by �(R) = R

we will all H the free Helmholtz energy with rate R. The �rst question whih arises

is from whih lass of funtions do we have to hoose ' and  , and what measure

� is apposite to guarantee that the free energy H is a well de�ned onvex funtion.

Quite naturally, the lass D of medium varying funtions (see (4) below for the preise

de�nition) together with weak Gibbs measures (orresponding to funtions from D) turn

out to be the appropriate hoie. We also have to make the restrition that either  < 0

or  > 0. A (weak) thermodynami formalism for this lass of funtions (setion 2)

supplies us with the essential tehnial tools needed for the purposes desribed above.

The lass of funtions D and the losely related notion of weak Gibbs measures have

also been introdued by M. Yuri in [22℄ while modeling ertain non�hyperboli systems

by one�sided shift spaes. These non�hyperboli systems are typial objets to whih

our `multifratal large deviation laws' are appliable.

The free Helmholtz energy an be expressed in terms of the real funtion t 7! �(t),

where �(t) denotes the unique solution of P (t'+�(t) ) = 0 and P the pressure funtion

(see (3) for the de�nition). From this an upper large deviation bound is easily dedued,
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whih in our ase has the following form:

lim sup

R!1

1

R

log�

��

S

n

R

'

R

2 K

��

� � sup

�2K

H

�

(�):

H

�

is the Legendre transform of H and K is any open subset of R (Theorem 1). The

lower bound depends strongly on the di�erentiability of H, so we an only dedue a

lower large deviation bound under speial restritions on H

0

+

, the left sided derivative

of H (Theorem 2).

In [8℄ the same proesses have been investigated for Hölder ontinuous funtions

' and  , and their assoiated Gibbs measures. In this ase strong analyti properties

of the Perron�Frobenius operator were used to apply dynamial zeta�funtion methods

for obtaining the muh stronger result of a loal large deviation law (sine � is in this

situation di�erentiable and �

0

is monotone, the inverse of �

0

denoted by t := (�

0

)

�1

, is

well de�ned):

�

��

x : S

n

R

(x)

'(x) + �R 2 [a; b℄

	�

�

C(�)

R

b

a

e

�t(�)s

ds

p

2��

00

(t(�))

e

�H

�

(�)R

p

R

(2)

uniformly in � from a ompat subset of f�

0

(t) : t 2 Rg. The funtion C is

ontinuous and bounded away from 0 and in�nity. Here f(R) � g(R) means that

lim sup

R!1

j(f(R)=g(R))� 1j = 0.

The link between large deviations for the proess (1) and multifratals is established

by onsidering the speial ase where � and � are weak Gibbs measures for the medium

varying funtions �(0) and ' respetively, and P (') = 0. In this setting we derive

large deviation estimates revealing aspets of the distribution of loal dimensions of �.

This is due to the fat that

I(t) := lim

r&0

1

� log r

log

Z

� (B

r

(x))

t

d�(x) = 1�

�(t)

�(0)

:

when hoosing the metri d

�

de�ned in (11) below. Thus, replaing S

n

R

'=R by the

approximation of the loal dimension log �(B

r

(x))= log r, we obtain multifratal versions

of the large deviation laws. In this ase we all I the multifratal free energy and

I

�

the multifratal entropy for the pair (�; �). In many known ases the multifratal

entropy an be expressed via the multifratal singularity spetrum by an identity suh

as I

�

(�) = 1�f(��). We shall demonstrate this priniple for g�measures using a reent

result by Olivier [13℄.

2. Thermodynami formalism for weak Gibbs measures

For a �nite alphabet A, i.e. A := f1; 2; : : : ; ag with a � 2, we de�ne the (one-sided)

shift spae X := A

N

together with the metri d(x; y) := 2

�minfi:x

i

6=y

i

g

for x 6= y, and

equals 0 otherwise. The metri spae (X; d) is ompat and the shift map S : X ! X

given by the relation (S(x))

i

= (x)

i+1

de�nes a loal homeomorphism. Its iterates are

denoted by S

i

, where S

0

= id. Thus, (X;S) represents a topologial dynamial system

(see e.g. [1℄ for further details).
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For n > 0 we all the set [x

0

; : : : ; x

n�1

℄ := fy : y

i

= x

i

; 0 � i < ng a ylinder set of

length n or n�ylinder. By onvention let the ylinder of length 0 be the empty set.

Let Z

n

denote the set of all n-ylinders. The set of ylinders sets of arbitrary lengths

generate the Borel �-algebra B of X. Note, that for every x 2 X and n 2 N there is

exatly one n-ylinder C

n

(x) ontaining x.

Let C(X) be the set of real�valued, ontinuous funtions on X. We de�ne the

pressure funtion P : C(X)! R by

P (') := lim

n!1

1

n

log

X

C2Z

n

exp

�

sup

x2C

S

n

'(x)

�

: (3)

In analogy to thermodynamis, we will all ' a potential.

Lemma 1. Let ';  2 C(X) with  > 0. Then the map p : R

2

! R, (t; s) 7!

P (t' + � ), is a onvex funtion, and for �xed t 2 R, it is an inreasing funtion

from �1 to 1.

Furthermore, there is a unique onave funtion �(t) : R ! R suh that p(t; �(t)) =

0.

Proof. Sine the pressure being onvex and inreasing as a funtion of C(X) the funtion

p is onvex, and inreasing in the seond variable. The divergene property follows from

the inequality P (0) + inf f � P (f) � P (0) + sup f , whih is valid for all f 2 C(X) (f

[21, theorem 9.7.(ii)+(v)℄). The existene of �, and its properties follow immediately

from the above-mentioned fats.

For f 2 C(X) we de�ne the n-variation of f by

var

n

(f) := sup

C2Z

n

sup

x;y2C

fjf(x)� f(y)jg :

Setting �

f

(n) := var

n

(S

n

f), we an de�ne the set D of medium varying funtions by

D := ff 2 C(X) : �

f

(n) = o(n)g (4)

Note, �(n) = o(n) means, that �(n)=n! 0 as n!1.

We now introdue the Perron-Frobenius operator L

f

: C(X) ! C(X), whih is

de�ned for f 2 C(X) by

L

f

g(x) :=

X

y2S

�1

fxg

exp(f(y)) g(y):

This operator is positive and L

f

1 > 0: Thus,

M :M(X) ! M(X);

� 7!

�

L

�

f

�(1)

�

�1

L

�

f

�;

is a well de�ned ontinuous funtion, where L

�

f

denotes the dual operator of L

f

. Sine

M(X) is ompat and onvex, the Shauder Tyhono� Theorem guarantees a �xed

point of M . Hene, we an �nd � > 0 suh that

L

�

f

� = ��: (5)
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A probability measure � is alled a weak Gibbs measure for f 2 D whenever (5) is

ful�lled for some � > 0 .

Observe, that for n 2 N

L

n

f

g(x) =

X

y2S

�n

fxg

exp(S

n

f(y)) g(y):

Lemma 2. Let f 2 D and � 2 M(X) suh that L

�

f

� = �� holds for some � > 0. Then

we have P (f) = log�.

Proof. A straight forward alulation gives that

1 =

Z

1 d� = �

�n

Z

L

n

f

1 d�

= �

�n

Z

X

y2S

�n

fxg

expS

n

f d�

8

>

>

>

<

>

>

>

:

� �

�n

exp �

f

(n)

X

C2Z

n

exp

�

sup

x2C

S

n

f(x)

�

� �

�n

exp��

f

(n)

X

C2Z

n

exp

�

sup

x2C

S

n

f(x)

�

:

This is equivalent to

e

��

f

(n)

X

C2X

n

exp

�

sup

x2C

S

n

f(x)

�

� �

n

� e

�

f

(n)

X

C2X

n

exp

�

sup

x2C

S

n

f(x)

�

:

Taking logarithms and dividing by n yields P (f) = log�.

Lemma 3. Let � 2 M(X) be a weak Gibbs measure for f 2 D. Then for all n 2 N

and x 2 [x

0

; : : : ; x

n�1

℄ we have that

exp(��

f

(n)) �

� ([x

0

; : : : ; x

n�1

℄)

exp(S

n

f(x)� nP (f)))

� exp(�

f

(n)):

Proof. Similar as in the proof of Lemma 2 we obtain for all [x

0

; : : : ; x

n�1

℄ and x 2

[x

0

; : : : ; x

n�1

℄, that

� ([x

0

; : : : ; x

n�1

℄) =

Z

1

[x

0

;:::;x

n�1

℄

d�

= �

�n

Z

L

n

f

1

[x

0

;:::;x

n�1

℄

d�

= �

�n

Z

X

y2S

�n

fzg

1

[x

0

;:::;x

n�1

℄

(y) expS

n

f(y) d�(z)

(

� �

�n

exp �

f

(n) exp (S

n

f(x))

� �

�n

exp��

f

(n) exp (S

n

f(x))
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3. The free Helmholtz energy

For  2 C(X) with  > 0 and for any positive R we de�ne a funtion n

R

: X ! N by

n

R

(x) := inf fn : S

n

 (x) � Rg :

Taking  := sup f (x) : x 2 Xg and  := inf f (x) : x 2 Xg we always have that

m(R) :=

�

R= 

�

� n

R

�

�

R= 

�

+ 1 =: M(R): (6)

Notie that for any f 2 C(X) the funtion S

n

R

f is Borel measurable. De�ne

H

R

(t) :=

1

R

log

Z

exp (t S

n

R

') d�;

whih is obviously �nite for any R > 0 and t 2 R. The following Proposition states

su�ient onditions for H(t) := lim

R!1

H

R

(t) to exist and to be �nite for all t 2 R.

Thus, by Hölder's inequality we observe that H

R

and H are both onvex funtions. We

all H the free Helmholtz energy for the proess (S

n

R

'; �)

R>0

with rate R.

Proposition 1. Let ';  2 D,  > 0. Let � : R ! R be the unique (onave) funtion

suh that P (t' + �(t) ) = 0, and let � 2 M(X) be a weak Gibbs measure for the

potential �(0) . The free Helmholtz energy H for the proess (S

n

R

'; �)

R>0

with rate R

is determined by

H(t) = �(0)� �(t):

Proof. For every positive R the olletion of pairwise disjoint ylinder sets

X

R

:=

�

C : 9x 2 X : C

n

R

(x)

(x) = C and 8y 2 C : C

n

R

(y)

(y) � C

	

(7)

de�nes a over of X. For a given ylinder C 2 X

R

we onsider x; y 2 C where

C

n

R

(x)

(x) = C (we denote suh an x by x

C

). Obviously n := n

R

(x) � n

R

(y) =: m.

By de�nition of n

R

, we have that

 � jS

n

 (x)� S

m

 (y)j � jS

n

 (x)� S

n

 (y)� S

m�n

 (S

n

(y))j

� jS

m�n

 (S

n

(y))j � jS

n

 (x)� S

n

 (y)j :

Sine jS

n

 (x)� S

n

 (y)j � �

 

(n), we have  + �

 

(n) � jS

m�n

 (S

n

(y))j � (m � n) .

Thus, it follows that

m� n �

 + �

 

(n)

 

:

Using this fat we obtain

jS

m

'(x)� S

n

'(x)j � jS

n

'(x)� S

n

'(y)� S

m�n

'(S

n

(y))j

� jS

n

'(x)� S

n

'(y)j+ jS

m�n

'(S

n

(y))j

� �

'

(n) + (m� n) sup j'j

� �

'

(n) +

( + �

 

(n)) sup j'j

 

=: e�(n) = o(n):
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From this we derive the ruial estimate

sup

C2X

R

sup

x;y2C

�

�

�

S

n

R

(x)

'(x)� S

n

R

(y)

'(y)

�

�

	

� 2e�(M(R)) =: �

1

(R)

= o(R):

(8)

The latter inequality, Lemma 3, the fat that sup

m(R)�n�M(R)

�

�(0) 

(n) =: �

2

(R) = o(R)

and inequality (6) imply the following estimate.

Z

exp (t S

n

R

') d�

� exp �

1

(R)

X

C2X

R

�(C) expS

n

R

(x

C

)

t'(x

C

)

� exp (�

1

(R) + �

2

(R))

X

C2X

R

exp

�

S

n

R

(x

C

)

(t'(x

C

) + �(t) (x

C

))

�

� exp

�

S

n

R

(x

C

)

(�(0)� �(t)) (x

C

)

�

� exp

�

(R +  )(�(0)� �(t)) + �

1

(R) + �

2

(R)

�

�

X

C2X

R

exp

�

S

n

R

(x

C

)

(t'(x

C

) + �(t) (x

C

))

�

:

In the same fashion we derive the following a reversed inequality

Z

exp (t S

n

R

') d� � exp

�

(R +  )(�(0)� �(t))� �

1

(R)� �

2

(R)

�

�

X

C2X

R

exp

�

S

n

R

(x

C

)

(t'(x

C

) + �(t) (x

C

))

�

.

Now, the aim is to show that log

P

C2X

R

exp

�

S

n

R

(x

C

)

(t'(x

C

) + �(t) (x

C

))

�

= o(R).

Certainly, we have that t�+�(t) 2 D. So, for any weak Gibbs measure � 2 M(X) for

t�+ �(t) Lemma 3 is appliable. Sine �

3

(R) := sup

m(R)�n�M(R)

�

(t'+�(t) )

(n) = o(R)

and X

R

is a over of X by pairwise disjoint ylinders, we get

1 =

X

C2X

R

�(C)

8

>

>

<

>

>

:

� exp (�

3

(R))

X

C2X

R

exp

�

S

n

R

(x

C

)

(t'(x

C

) + �(t) (x

C

))

�

� exp (��

3

(R))

X

C2X

R

exp

�

S

n

R

(x

C

)

(t'(x

C

) + �(t) (x

C

))

�

:

Taking the logarithm and dividing by R, the proposition follows.

4. The entropy funtion

The Legendre transform of the onvex funtion H = �(0)� � de�ned by

H

�

(�) := sup

t2R

ft��H(t)g
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will be alled the entropy funtion for the proess (S

n

R

'; �)

R>0

with rate R. The

funtion H

�

is onvex, lower semi�ontinuous, non�negative, has ompat level sets and

inf

�2R

H

�

(�) = 0 (f [3℄). Now, we are in the position to formulate an upper large

deviation bound for this proess.

Theorem 1. Under the same onditions as in Proposition 1 we get for eah losed set

K � R that

lim sup

R!1

1

R

log�

��

S

n

R

'

R

2 K

��

� � inf

�2K

H

�

(�):

Proof. We use the fat that there are real numbers a � b suh that H

�

= 0 on [a; b℄, and

H

�

is non�inreasing for values smaller than a, and non�dereasing for values greater

than b. If K \ [a; b℄ 6= ;, the inequality holds trivially, sine the left hand side is always

less or equal to 0 as � is a probability measure. If K\ [a; b℄ = ; we then onsider the half

intervals (�1; �

1

℄ and [�

2

;1) suh that K � (�1; �

1

℄[ [�

2

;1) and �

1

< a � b < �

2

.

Then we apply Markov's inequality for this half intervals separately as indiated here

for [�

2

;1):

�

��

S

n

R

'

R

2 K

��

� lim sup

R!1

1

R

log� (fS

n

R

' � Ra

2

g)

� inf

t>0

lim sup

R!1

1

R

log

�

e

(�Rt�

2

)

Z

exp (tS

n

R

') d�

�

= inf

t>0

�t�

2

+H(t) = �H

�

(�

2

):

For a lower large deviation bound the di�erentiability of H beomes important. Thus,

we de�ne the right and left derivatives of a funtion f : R ! R by

f

0

+

(t) := lim

s&t

f(s)� f(t)

s� t

and f

0

�

(t) := lim

s%t

f(s)� f(t)

s� t

:

If the right and left derivatives oinide we will write for the ommon value f

0

(t) as

usually. Let D(H) :=

�

x 2 R : H

0

+

(x) = H

0

�

(x)

	

and I

H

be the interval where H

�

is

�nite. As H is a losed onvex funtion, it follows from the general theory of onvex

funtions (f [19℄) that I

H

nD(H) is at most ountable, D(H) is a G

Æ

set whih is dense

in I

H

, and �nally that H

0

+

and H

0

�

are non�inreasing funtions suh that

H

0

+

(x) � H

0

�

(y) � H

0

+

(y) � H

0

�

(z) whenever x < y < z:

Furthermore, the following ontinuity properties are ful�lled:

lim

z&x

H

0

+

(z) = H

0

+

(x); lim

z%x

H

0

+

(z) = H

0

�

(x);

lim

z&x

H

0

�

(z) = H

0

+

(x); lim

z%x

H

0

�

(z) = H

0

�

(x):

(9)

Additional monotoniity properties ofH

0

+

give rise to a lower large deviation bound:
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Theorem 2. Let the same onditions as in Proposition 1 be true. Suppose that for

t 2 D(H) there exist an " > 0 suh that H

0

+

is stritly dereasing on the interval

fx 2 R : sign(t)t � sign(t)x < sign(t)(t+ sign(t)")g. Then

lim inf

R!1

1

R

log� (fsign(t)S

n

R

' � sign(t)RH

0

(t)g) � �H

�

(H

0

(t)):

Proof. For t = 0 2 D(H) one readily gets that H

�

(H

0

(0)) = 0, so the inequality is

trivially ful�lled. Suppose t > 0 (the ase t < 0 an be treated in the same manner).

Beause D(H) is dense in I

H

we an �nd for every Æ 2 (0; ") an s 2 (t; t + Æ) \D(H).

As H

0

+

is stritly dereasing on the interval [t; t + ") we have H

0

(t) � H

0

(s) =: d > 0.

De�ne A

R

s

:= fx 2 X : R

�1

S

n

R

' 2 (H

0

(s)� d=2; H

0

(s) + d=2)g, whih is a subset of

A

R

:= fsign(t)S

n

R

' � sign(t)RH

0

(t)g. Thus,

�(A

R

) � �

�

A

R

s

�

=

Z

A

R

s

exp (sS

n

R

') exp (�sS

n

R

') d�

� e

(�Rs(H

0

(s)+d=2)+RH

R

(s)))

e

(�RH

R

(s))

Z

A

R

s

exp (S

n

R

s') d�

= e

(�Rs(H

0

(s)+d=2)+RH

R

(s)))

Z

1

A

R

s

d�

R

: (10)

We set d�

R

:= exp (�RH

R

(s)) exp (S

n

R

s') d�, whih de�nes a probability measure on

X. The free energy funtion of the proess (S

n

R

'; �

R

) with rate R is easily omputed:

e

H(u) := lim

R!1

1

R

log

Z

exp (uS

n

R

') d�

R

= lim

R!1

H

R

(u+ s)�H

R

(s)

= H(u+ s)�H(s):

Sine H is di�erentiable at s we onlude that

e

H is di�erentiable at 0; this implies that

e

H

�

attains its global (unique) minimum 0 at

e

H

0

(0) = H

0

(s). Now, we make use of the

slightly modi�ed Theorem II.6.3 of [3℄:

Lemma. Let (W

R

; �

R

)

R>0

be a real-valued stohasti proess suh that



R

(t) :=

1

R

log

Z

exp(tW

R

) d�

R

is �nite for every R > 0 and every t 2 R. Further, assume that the limit (t) :=

lim

R!1



R

(t) exists and is �nite for all t 2 R. (This already implies that  is a onvex

funtion). Then the following statements are equivalent:

(a)  is di�erentiable at 0 and 

0

(0) = z

0

:

(b) 

�

attains its in�mum over R at the unique point z

0

.

() For any " > 0 there exists a number n(") > 0 suh that for R su�iently large

�

R

(fjS

n

R

'=R�H

0

(s)j � "g) � exp(�Rn(")):
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We apply this lemma to the proess (S

n

R

'; �

R

) with rate R and obtain that

�

R

(fjS

n

R

'=R�H

0

(s)j � d=2g) ! 0 exponentially fast as R ! 1. This implies that

R

1

A

R

s

d�

R

! 1 as R!1. Taking logarithms and dividing by R in (10) gives us

lim inf

R!1

1

R

log� (fS

n

R

' � RH

0

(t)g) � �H

�

(H

0

(s))�

sd

2

:

Sine Æ an be hosen arbitrarily small the ontinuity properties (9) yield the inequality

in question.

Remark: The assumption for monotoniity of H

0

+

in the theorem above just forbids

the point t 2 D(H) to be situated on a linear segment of H.

The theorem remains true if we exhange H

+

by H

�

.

5. The multifratal interpretation

Many examples from geometri measure theory and dynamial systems an be modeled

by a symboli shift spae over a �nite alphabet. Sine we do not want to go into details

on the di�erent proedures involved, we just give the multifratal formalism within the

shift spae itself. Let  2 D with  > 0, and � be a weak Gibbs measure for �(0) .

Then we an derive from Lemma 3 that � is non�atomi and supported by X. Thus,

d

�

(x; y) := inff�(C

n

(x)) : y 2 C

n

(x); n 2 Ng (11)

de�nes a metri. We also onsider the metri d

 

, de�ned by

d

 

(x; y) := inf

�

min

�

e

�S

n

 (x)

; e

�S

n

 (y)

	

: y 2 C

n

(x); n 2 N

	

:

Proposition 2. Under the assumption of Proposition 1 we require additionally that �

is a weak Gibbs measure for ' and P (') = 0. Note that �(0) < 0.

Then the free Helmholtz energy funtion I for the proess (log �(B

r

(�)); �)

0<r<1

with

rate�funtion (� log r), i.e.

I(t) := lim

r&0

1

� log r

log

Z

� (B

r

(x))

t

d�(x);

equals �(0) � �(t) in (X; d

 

), whih is the free Helmholtz energy for the proess

(S

n

R

'; �)

R>0

with rate R. Furthermore, I = 1� �=�(0) in (X; d

�

).

Proof. Without loss of generality we have P ( ) = 0 (otherwise take �(0) instead of

 ). No matter whih metri we hoose we dedue from their de�nition that

C

(

n

� log r

(x)+a(x)

)

(x) � B

r

(x) � C

(

n

� log r

(x)�a(x)

)

(x)

holds, where a(x) =

��

 + �

 

(n

� log r

(x))

�

 

�1

�

: Let X

R

be the disjoint over as de�ned

in (7). Applying Lemma 3 and using the estimate (8) together with the above fat, we

�nally get

sup

C2X

(� log r)

sup

y2C

n

�

�

�

S

n

� log(r)

(x

C

)

'(x

C

)� log � (B

r

(y))

�

�

�

o

= o(� log r):
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Sine we an ontrol the di�erene in this way, we an interhange log � (B

r

(y)) with

the ergodi sum S

n

� log(r)

(x

C

)

'(x

C

) and just �nish the proof by the same arguments we

used in the proof of Proposition 1.

In the situation of Proposition 2 we all the free Helmholtz energy I the multifratal free

energy for the pair of weak Gibbs measures (�; �). We easily verify that the multifratal

free energy is always non�inreasing.

The multifratal versions of Theorem 1 and Theorem 2 follow by analogous

arguments from Proposition 2.

Corollary 1. Under the same onditions as in Proposition 2 we get for eah losed set

K � R that

lim sup

r&0

1

� log r

log�

��

log � (B

r

(�))

� log r

2 K

��

� � inf

�2K

I

�

(�)

where I equals �(0)� � in (X; d

 

) or 1� �=�(0) in (X; d

�

).

Corollary 2. Let the same onditions as in Proposition 2 be true. Suppose that for

t 2 D(I) there exists an " > 0 suh that I

0

+

is stritly dereasing on the interval

fx 2 R : sign(t)t � sign(t)x < sign(t)(t+ sign(t)")g. Then

lim inf

r&0

1

� log r

log�

��

sign(t)

log � (B

r

(�))

� log r

� sign(t)I

0

(t)

��

� �I

�

(I

0

(t))

where I equals �(0)� � in (X; d

 

) or 1� �=�(0) in (X; d

�

).

6. Appliation to Gibbs and g�measures

We now want to ompare

f(�) := dim

�

��

x : lim

r&0

log �(B

r

(x))

log r

= �

��

(where dim

�

is the Hausdor� dimension de�ned on the metri spae (X; d

�

)) with the

multifratal entropy H

�

for the pair (�; �) when the involved measures are Gibbs or

g�measures.

We start with the speial situation where the potentials ' and  are Hölder

ontinuous. Then the weak Gibbs measures are atually unique Gibbs measures and

the thermodynami formalism as developed in [20℄ leads to the following basi result

desribing the di�erentiability properties of �.

Proposition 3 (e.g. [17℄). Let ';  be Hölder ontinuous suh that  > 0 and

P (') = 0. Then there exists a unique real�analyti funtion

� : R ! R

satisfying

P (t'+ �(t) ) = 0:
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with �

0

> 0 and �

00

� 0. These derivatives either vanish only in isolated points or

�

00

= 0. In the �rst ase one obtains that � := �

0

is invertible, and the domain of

de�nition of its Legendre transform �

�

is the interval � := f�(t) : t 2 Rg. Hene

�

�

(�(t)) = t�(t)� �(t):

Using this fat, we an ombine Corollary 1 and 2 to get the following large deviation

law.

Corollary 3. Under the onditions of Proposition 3 we have

lim

r&0

1

log r

log�

�

sign(t)

log �(B

r

(x))

log r

� sign(t)�(t)

�

= I

�

(�(t));

where I equals �(0)� � in (X; d

 

) or 1� �=�(0) in (X; d

�

).

Remark: In [8℄ an even stronger asymptoti formula was derived from the loal large

deviation law (2) for ylinder sets:

log�

�

sign(t)

log �(C

n

� log r

(x))

� log r

� sign(t)�(t)

�

�

C(�(t))

p

2��

00

(t(�))

r

I

�

(�)

p

� log r

:

A large deviation law like in Corollary 3 will not ontinue to hold in general when

we allow � and � to be g�measures, for the lower large deviation bound depends on the

di�erentiability of I.

The notion of g�measures was introdued by M. Keane in [7℄. Let ' 2 C(X) be a

normalized potential, i.e., L

'

1 = 1. Then a probability measure � 2 M(X) is alled a

g�measure for ' if and only if L

�

'

� = �. The measure � is non�atomi, supported by

X, and S�invariant, i.e., � ÆS

�1

= �. It is also haraterized as an equilibrium measure

(f [10℄), i.e.,

P (') = sup fh

�

+ �(') : � 2 M

S

(X)g = h

�

+ �(')

where M

S

(X) are the S-invariant probability measures on X and h

�

is the measure

theoretial entropy (see [1℄ for the de�nition).

To demonstrate that g�measures are weak Gibbs we use an observation made by

Olivier in [13, Lemma 2℄: The onvergene

I

n

�

(x) := log

�

�([x

0

; : : : ; x

n

℄)

�([x

1

; : : : ; x

n

℄)

�

! ' as n!1

is uniform (f [14℄); so we �nd a sequene of positive numbers ("

n

) onverging to 0 suh

that

e

�"

n

�

�([x

0

; : : : ; x

n

℄)

�([x

1

; : : : ; x

n

℄)

exp(�'(x)) � e

"

n

whih implies

e

(

�

P

n�1

i=0

"

i

)

�

�([x

0

; : : : ; x

n�1

℄)

exp(S

n

'(x))

� e

(

P

n�1

i=0

"

i

)

:

From this we readily see that atually ' 2 D, and onsequently � is a weak Gibbs

measure for '. Hene, our two theorems are appliable. On the other hand Olivier

proved
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Theorem 3 ([13℄). Let � and � be g�measures for the normalized potentials ' and  .

Then, using our notation from above, f(�) = ��

�

(��).

Thus, in the situation of Proposition 3 we established I

�

(�) = 1�f(��). The proof

of Proposition 3 depends strongly on � and � being equilibrium measures, whereas a

weak Gibbs measure does not even have to be S�invariant. Wherefore, we may think

of I

�

as a generalization of f .

Referenes

[1℄ M. Denker, C. Grillenberger, and K. Sigmund. Ergodi Theory on Compat Spaes, volume 527.

Springer�Verlag, Berlin, Heidelberg, New York, LNM edition, 1976.

[2℄ M. Denker and M. Kesseböhmer. Thermodynami formalism, large deviation, and multifratals.

In P. Imkeller and J.-S. von Storh, editors, Proeedings of the workshop on stohasti limate

models, Progress in Probability. Birkhäuser Verlag, in preparation.

[3℄ R. S. Ellis. Entropy, Large Deviation, and Statistial Mehanis, volume 271 of Grundlehren der

mathematishen Wissenshaften. Springer-Verlag, New York, Berlin, Tokyo, 1985.

[4℄ K. Faloner. Fratal Geometry. J. Wiley, 1990.

[5℄ U. Frish and G. Parisi. On the singularity struture of fully developed turbulene. In Turbulene

and preditability in geophysial �uid dynamis and limate dynamis, pages 84�88, North

Holland Amsterdam, 1985.

[6℄ T. C. Halsey, M. H. Jensen, L. P. Kadano�, I. Proaia, and B. J. Shraiman. Fratal measures

and their singularities: The haraterization of strange sets. Phys. Rev. A, 85(33):1141�1151,

1986.

[7℄ M. Keane. Strongly mixing g�measures. Invent. Math, 16:309�324, 1972.

[8℄ M. Kesseböhmer. Multifratale und Asymptotiken groÿer Deviationen. PhD thesis, Georg-August-

Universität Göttingen, 1999.

[9℄ A. N. Kolmogorov. The loal struture of turbulene in inompressible visous �uids for every

large Reynold's numbers. C.R. Dokl. Aad. Si. USSR, pages 301�305, 1941.

[10℄ F. Ledrappier. Prinipe variationnel et systèmes dynamiques symboliques. Z. Wahrsh. und Verw.

Gebiete, 30:185�202, 1974.

[11℄ B. B. Mandelbrot. Intermittent turbulene in self�similar asades: Divergene of high moments

and dimension of the arrier. J. Fluid Meh., 62:331�358, 1974.

[12℄ B. B. Mandelbrot. An introdution to multifratal distribution funtions. In Flutuation and

Pattern Formation. K. Aademi, 1988.

[13℄ E. Olivier. Multifratal analysis in symboli dynamis and distribution of pointwise dimension for

g�measures. Nonlinearity, 12:1571�1585, 1999.

[14℄ M. R. Palmer, W. Parry, and P. Walters. Large sets of endomorphisms and of g�measures, volume

668 of LNM. Springer Verlag, 1977.

[15℄ Y. Pesin. Dimension Theory in Dynamial Systems: Contemporary Views and Appliations.

Chiago letures in mathematis. The University of Chiago Press, 1997.

[16℄ Y. Pesin and H. Weiss. The multifratal analysis of Birkho� averages and large deviations.

preprint.

[17℄ D. A. Rand. The singularity spetrum f(�) for ookie-utter. Ergo. Theor. Dynam. Syst., 9:527�

541, 1989.

[18℄ R. Riedi. An improved multifratal formalism and self-similar measures. Journal of Mathematial

Analysis and Appliation, 189:462�490, Marh 1995.

[19℄ R. T. Rokafellar. Convex Analysis. Prineton Univ. Press, Prineton, 1970.

[20℄ D. Ruelle. Thermodynami Formalism, volume 5 of Enylopedia of Mathematis and its

Appliation. Addison-Wesley, 1978.



Large deviation for weak Gibbs measures and multifratal spetra 14

[21℄ P. Walters. A Introdution to Ergodi Theory, volume 79 of GMT. Springer�Verlag, New York,

Heidelberg, Berlin, 1982.

[22℄ M. Yuri. Zeta funtions for ertain non-hyperboli systems and topologial Markov

approximations. Ergod. Th. Dynam. Sys., 18:1589�1612, 1998.


