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Chapter 3

Prerequisites

3.1 Prerequisites from group cohomology

3.1.1 Fundamentals

Invariant cohomology classes and the lemma of Swan: Recall that, if G is a
group and H a subgroup of finite index, then for any G-module M , the composition
of the restriction and the transfer map

H∗(G,M)
res
−−→ H∗(H,M)

tr
−→ H∗(G,M)

is the multiplication with the index [G : H ], i.e.

tr ◦ res(z) = [G : H ] · z for z ∈ H∗(G,M),

cf. [Bro82] III 9.5. Thus if multiplication with the index [G : H ] defines an isomor-
phism of M , then it defines also an isomorphism of H∗(G,M) and it follows that
the restriction map

H∗(G,M)
res
−−→ H∗(H,M)

is injective.

Example: If G is finite, H = 〈e〉 is the trivial group and M = k is a field, on which
G acts trivially and whose characteristic is prime to |G|, then the restriction map is
an isomorphism

H∗(G, k)
res
−−→ H∗(〈e〉, k) ∼= k (3.1)

with inverse 1
|G|tr.

Let G be a group, H an arbitrary subgroup and M a G-module. For g ∈ G,
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62 CHAPTER 3. PREREQUISITES

there are homomorphisms of groups

cg : g−1Hg → H, h 7→ ghg−1

ιg : g−1Hg ∩H → H, h 7→ h

fg : g−1Hg ∩H → H, h 7→ ghg−1

Let c∗g, ι
∗
g, f

∗
g be the induced maps in the cohomology H∗( ,M). Then an element

z ∈ H∗(H,M) is called G-invariant, if f ∗
g (z) = ι∗g(z) for any g ∈ G. In particular, if

H is a normal subgroup of G, then H∗(H,M) is a G-module via

g.z = c∗g−1(z) for g ∈ G, z ∈ Hn(H,M) (3.2)

and the subset of G-invariant elements is identical with the usual submodule of
invariants H∗(H,M)G. In any case the image of the restriction map

H∗(G,M)
res
−−→ H∗(H,M)

is contained in the subset of G-invariants in H∗(H,M).
Recall, that if G is a finite group, then |G| · Hn(G,M) = 0 for n > 0. Let

H∗(G,M)(p) denote the p-primary component of H∗(G,M).

Proposition 6. Let G be a finite group and H be a p-Sylow subgroup. For any
G-module M and any n > 0 the restriction map

resG
H : H∗(G,M) → H∗(H,M)

maps Hn(G,M)(p) isomorphically onto the submodule of G-invariant elements of
Hn(H,M). In particular, if H is a normal subgroup of G, then

Hn(G,M)(p)
∼= Hn(H,M)G.

For the proof I refer the reader to [Bro82] III.10. But the computation of the
invariants is simplified considerably, if H is an abelian group, as shows the following
lemma, which is due to Swan [Swa60].

Lemma 15. If in the situation of the theorem the p-Sylow subgroup H is abelian,
then Hn(G,M)(p) is isomorphic to Hn(H,M)NG(H), where NG(H) denotes the nor-
malizer of H in G.

Proof. Note first, that H∗(H,M)NG(H) clearly contains the set of G-invariants in
H∗(H,M). Hence, it remains to show the reverse inclusion, i.e. that for z ∈
H∗(H,M)NG(H) and g ∈ G we have ι∗g(z) = f ∗

g (z). Let Z be the centralizer of
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g−1Hg∩H in G. Then Z contains both g−1Hg and H , since H is abelian. Therefore,
H and g−1Hg are p-Sylow subgroups of Z and there is a t ∈ Z with t−1g−1Hgt = H ,
i.e. gt ∈ NG(H). Since t ∈ Z, we get ιg = ιgt, clearly, and fg = fgt, because

fg(y) = fg(tyt
−1) = gtyt−1g−1 = fgt(y) for y ∈ g−1Hg ∩H.

Since gt ∈ NG(H), it follows that

f ∗
g (z) = f ∗

gt(z) = ι∗gt(z) = ι∗g(z).

Remark 7. The integral cohomology ring of a finite abelian group of odd rank is
computed in [Cha82].

Definition 11. Let G be a group and p be a prime number. Then the p-part of the
integral cohomology ring H∗(G,Z) is defined to be the subring

H∗(G,Z)[p] :=
⊕

n≥0

An,

where A0 := H0(G,Z) ∼= Z and An, n > 0, is the p-primary component Hn(G,Z)(p)

of Hn(G,Z).

In the situation of the lemma we get

H∗(G,Z)[p]
∼= H∗(H,Z)NG(H).

The Lyndon-Hochschild-Serre spectral sequence Let

1 → H → G
π
−→ Q→ 1

be an extension of groups and let M be a G-module. Then H∗(H,M) is a G-module
via (3.2) and this action induces the structure of a module over the group ring of
Q on H∗(H,M), because c∗g−1 is the identity on H∗(H,M) for g ∈ H . Using these
modules, there is a spectral sequence of the form

Ep,q
2 := Hp(Q,Hq(H,M)) =⇒ Hp+q(G,M),

called Lyndon-Hochschild-Serre spectral sequence, cf. [Wei94] 6.8.2.
The pair (π, f) of maps, where f : MH →֒ M denotes the inclusion map, induces

a homomorphism in cohomology

inf : H∗(G/H,MH) → H∗(G,M),
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called the inflation map. The so called edge map of the Lyndon-Hochschild-Serre
spectral sequence

Ep,0
2 = Hp(G/H,MH) → Ep,0

∞ →֒ Hp(G,M)

is the inflation map, [Wei94] 6.8.2.
As a simple application we get

Proposition 7. Let H be a finite normal subgroup of a group G and let k be a
field, whose characteristic does not divide the order of H, considered as a trivial
G-module. Then the canonical map G→ G/H induces an isomorphism

π∗ : H∗(G/H, k)
∼
−→ H∗(G, k)

in cohomology.

Proof. By (3.1), we have

Hq(H, k) ∼=

{

k for q = 0
0 otherwise.

Hence Ep,q
2 is concentrated in the row q = 0. Therefore Ep,q

2 = Ep,q
∞ and the edge

map

Ep,0
2 → Hp(G,M)

is an isomorphism. But this map is the inflation map, which coincides with the map
π∗, because kH = k.

The cohomology of elementary abelian groups: Let C denote a cyclic group
of order p and ZC the group ring of C. The group Z acts on C by the rule

n.g = gn for n ∈ Z, g ∈ C

and this action factorizes through the additive group of the prime field Fp := Z/pZ.
To any unit ν ∈ F×

p there is an automorphism

ϕν : C → C, g 7→ gν .

This defines an isomorphism of F×
p , which is a cyclic group of order p− 1, onto the

group of automorphisms of C.
Now let as above k be a field of characteristic p, considered as ZC-module with

the trivial action of C on k.
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Proposition 8. 1. Let k[X, Y ] be a polynomial ring in two variables over k. Map-
ping Y (resp. X) to an arbitrary non trivial element of H1(C, k) (resp. H2(C, k))
we get an surjective homomorphism of rings

k[X, Y ] → H∗(C, k)

with kernel (Y 2). Hence
H∗(C, k) ∼= k[X, Y ]/(Y 2).

In the following, let the image of X and Y in H∗(C, k) be denoted by x and y
respectively. Then we can write H∗(C, k) = k[x, y], where deg x = 2, deg y = 1 and
y2 = 0, and

H2n(C, k) = kxn

H2n+1(C, k) = kxny

for n = 0, 1, . . ..
2. Note, that there is a unique embedding of fields Fp →֒ k, by which k becomes

a Fp-module. For ν ∈ F×
p , the ring homomorphism

ϕ∗
ν : H∗(C, k) → H∗(C, k),

which is induced by the automorphism ϕν, is determined by

ϕ∗
ν(x) = νx

ϕ∗
ν(y) = νy.

In particular

ϕ∗
ν(x

n) = νnxn

ϕ∗
ν(x

n−1y) = νnxn−1y.

3. The integral cohomology of C is of the form

Hn(C,Z) =







Z for n = 0
Z/pZ for n > 0 even
0 otherwise

and the map, which is induced by the natural map

Z → Fp
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on cohomology, maps Hn(C,Z) isomorphically onto Hn(C,Fp) for any even positive
n. Therefore, when we denote the preimage of x ∈ H∗(C,Fp) by ξ, we can write

H∗(C,Z) = Z[ξ]

with deg ξ = 2 and p · ξ = 0.

An elementary proof of this can be found for example in [CE73] ch. XII §7,
another proof using the interpretation of the cup product as Yoneda composition
product is given in [Ben91] 3.5.

Let R be a ring and A, B two Z-graded k-algebras. Then the graded tensor
product A⊗̂RB of A and B over R is the R-module A ⊗R B equipped with the
product, which is defined by

(a⊗ b)(c⊗ d) = (−1)βγac⊗ bd

for homogeneous elements a, c ∈ A and b, d ∈ B, where β, γ denote the degree of b
and c, respectively. If G and H are finite groups and R is a principal ideal domain,
on which G and H act trivially, then the Künneth formula yields for any n a split
exact sequence of R-modules

0 →
⊕

p+q=nH
p(G,R) ⊗R H

q(H,R)
i
−→ Hn(G×H,R)

→
⊕

p+q=n+1 TorR
1 (Hp(G,R), Hq(H,R)) → 0.

(3.3)

Here, the map i provides a homomorphism of graded rings

i : H∗(G,R)⊗̂RH
∗(H,R) → H∗(G×H,R)

and is an isomorphism, if R is a field, cf. [Eve91] 2.5 and 3.5. Hence, we get from
proposition 8

Corollary 6. Let G be an elementary abelian group of order pn and k as above.
Then

H∗(G, k) ∼= k[x, y]⊗̂k . . . ⊗̂kk[x, y].

Remark 8. Let V be a vector space of dimension n over k, then the ring H∗(G, k)
above is isomorphic to

S∗(V ) ⊗k Λ∗(V ),

where S∗(V ) denotes the symmetric algebra and Λ∗(V ) the alternating algebra of
V . To get an isomorphism of graded rings, we put

deg(v ⊗ 1) = 2 for v ∈ S1(V ) ⊂ S∗(V )

deg(1 ⊗ v) = 1 for v ∈ Λ1(V ) ⊂ Λ∗(V ).
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3.1.2 Equivariant Cohomology

In this paragraph I describe the fundamentals of the equivariant cohomology theory
of a G-complex, following the purely algebraic exposition of equivariant homology
in [Bro82] ch. VII.7 and 8. Hence, I refer the reader to this book for notational
conventions in homological algebra. A description of the multiplicative structure of
the associated spectral sequence is added, which is used to compute cup products.
To get concrete formulas, I restrict the discussion to the following situation.

Let X be a simplicial complex of dimension n and for 0 ≤ p ≤ n let Xp be
the set of p-simplices of X. Further I assume, that any simplex of X is a face of a
n-simplex. Let G be a group, which acts simplicially on X in such a way, that the
stabilizer of any simplex fixes each point of that simplex. Then the orbit-space G\X
is also a simplicial complex in an obvious way. Choose a set Σn of representatives
for the orbits of G in Xn. Then

Σp := {σ ∈ Xp | σ is a face of a simplex τ ∈ Σn}

is a set of representatives for the orbits of G in Xp for 0 ≤ p ≤ n.
Let (C∗(X), δ) be the simplicial chain complex of X, considered as a complex

of left G-modules and let C∗(X,M) := Hom(C∗(X),M) be the cellular cochain
complex with coefficients in some G-module M and differential f 7→ f ◦δ, considered
as cocomplex of G-modules with diagonal G-action, i.e.

(gf)(1σ) = gf(1g−1σ) for g ∈ G, σ ∈ Xp.

Definition 12. The cohomology of G with coefficients in C∗(X,M) is called G-
equivariant cohomology of X with coefficients in M and is denoted by

H∗
G(X,M).

Let F∗ → Z be a projective resolution of Z over ZG and consider the double
cocomplex

Cpq = HomG(Fq, C
p(X,M))

(which is a first quadrant double cocomplex), where the differential maps are defined
as follows. If d′ (resp. d′′) is the differential map of the complex F∗ (resp. C∗(X,M)),
then the horizontal differential dh and the vertical differential dv are the maps

dpq
h : Cpq → Cp+1,q, f 7→ d′′ ◦ f

dpq
v : Cpq → Cp,q+1, f 7→ (−1)q+1f ◦ d′.

With these conventions, H∗
G(X,M) is the cohomology of the total complex of Cpq,

which yields two spectral sequences converging to H∗
G(X,M). The first is

Epq
2 = Hp(G,Hq(X,M)) ⇒ Hp+q

G (X,M). (3.4)
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If f : X → Y is a cellular map of G-complexes, such that

f∗ : H∗X → H∗Y

is an isomorphism, then by the universal coefficient theorem

H∗(X,M) ∼= H∗(Y,M)

and the spectral sequence (3.4) yields an isomorphism

H∗
G(X,M) ∼= H∗

G(Y,M).

In particular, if X is contractible and pt. denotes a space, which consists of a single
point, then we have C∗(pt.,M) ∼= Hom(Z,M) ∼= M and hence we get

Corollary 7. Let X as above be a contractible space. Then

H∗
G(X,M) ∼= H∗(G,M).

Now, we compute the other spectral sequence:

Epq
1 = Hq(G,Cp(X,M)) ⇒ Hp+q

G (X,M). (3.5)

Proposition 9.

Epq
1

∼=
∏

τ∈Σp

Hq(Gτ ,M).

Proof. It is not hard to see, that there is an isomorphism of G-modules

ϕ : Hom(Cp(X),M) →
∏

τ∈Σp

HomGτ (ZG,M)

f 7→ (fτ )τ∈Σp ,

where
fτ (g) = g−1 · f(1gτ).

Then for any G-module N , this induces an isomorphism of abelian groups

Φ0 : HomG(N,Hom(Cp(X),M)) →
∏

τ∈Σp

HomG(N,HomGτ (ZG,M))

with
((Φ0(f))τ (n))(g) = g−1 · (f(n))(1gτ).

But by the universal property of the coinduced module, there is an isomorphism

ψτ : HomG(N,HomGτ (ZG,M)) → HomGτ (N,M)
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for τ ∈ Σp with
(ψτ (fτ ))(n) = (fτ (n))(e)

for fτ ∈ HomG(N,HomGτ (ZG,M)) and n ∈ N , where e denotes the neutral element
of G identified with the unit of ZG. Summing up, we have defined an isomorphism

Φ : HomG(N,Hom(Cp(X),M)) →
∏

τ∈Σp

HomGτ (N,M) (3.6)

with
(Φ(f))τ (n) = (f(n))(1τ).

Now, take the projective resolution F∗ of Z over ZG for N . Then we get in coho-
mology

Hq(G,Cp(X,M)) ∼=
∏

τ∈Σp

Hq(Gτ ,M).

The following two properties of the isomorphism Φ may be remarkable.

Lemma 16. The map Φ behaves well with respect to changes of the coefficient
module. More exactly, let h : M → M ′ be a homomorphism of G-modules. Then
there is a commutative diagram

HomG(Fq, C
p(X,M))

h∗−−−→ HomG(Fq, C
p(X,M ′))

Φ





y
Φ





y

∏

σ∈Σp
HomGσ(Fq,M)

h∗−−−→
∏

σ∈Σp
HomGσ(Fq,M

′)

where the bottom row is the product of the maps

HomGσ(Fq,M) → HomGσ(Fq,M
′), σ ∈ Σp.

Proof. For any f ∈ HomG(Fq, C
p(X,M)) and n ∈ Fq we have

(h∗ ◦ Φ(f))σ(n) = h(f(n))(1σ) = h∗(f(n))(1σ) = (Φ ◦ h∗(f))σ(n).

This proves the lemma.

Assume, that X is contractible, and consider the map g : X → pt from X onto
a point. Further, identify as above C∗(pt.,M) with M . Then for a vertex ν ∈ Σ0

let
prν :

∏

τ∈Σ0

HomGτ (F∗,M) → HomGν(F∗,M)
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be the canonical projection. Then the following diagram is commutative for any q

HomG(Fq, C
0(X,M))

Φ
−−−→

∏

τ∈Σ0
HomGτ (F∗,M)

g∗
x









y

prν

HomG(Fq,M)
ι

−−−→ HomGν (Fq,M),

where ι is the inclusion. Indeed for f ∈ HomG(Fq,M) and n ∈ F∗ we have

(prν ◦ Φ ◦ g∗)(f)(n) = (g∗f)(n)(1ν) = f(n).

But ι induces the restriction map in cohomology, thus we get:

Lemma 17. Assume that h : E0,∗
∞ →֒ H∗(G,M) is a splitting of the natural projec-

tion map H∗(G,M) → E0,∗
∞ . Then the following diagram commutes

H∗(G,M)
res

// H∗(Gν ,M)

E0,∗
∞

h

OO

�

�

// E0,∗
1

prν

OO

After these two details we continue with the computation of the differential dpq
1

of the spectral sequence (3.5). By proposition 9, this map is given by a map

dpq
1 :

∏

τ∈Σp

Hq(Gτ ,M) →
∏

σ∈Σp+1

Hq(Gσ,M).

Note, that if the complex G \ X is finite (i.e. if Σp is finite for any p), then this
map is determined by its (τ, σ)-components Hq(Gτ ,M) → Hq(Gσ,M), which can
be described as follows. Let for any p+ 1-simplex σ ∈ Σp+1 the p-faces σ0, . . . , σp+1

be numbered, such that

δ(1σ) =

p+1
∑

i=0

(−1)i1σi

in (C∗(X), δ).

Proposition 10. If τ ∈ Σp and σ ∈ Σp+1, then the (τ, σ)-component of dpq
1 is given

by

(dpq
1 )(τ,σ) =

{

(−1)iresGτ

Gσ
if τ = σi is a face of σ

0 otherwise.
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Proof. For f ∈ Hom(Fq, C
p(X,M)) and n ∈ Fq, it follows directly from the defini-

tions, that

(Φ(dh(f)))σ(n) = (dh(f))(n)(1σ) = (d′′ ◦ f)(n)(1σ)

= f(n)(

p+1
∑

i=0

(−1)i1σi
) =

p+1
∑

i=0

(−1)i(Φ(f))σi
(n).

Now, the assertion follows by passing to cohomology.

Proposition 11. If M is a trivial G-module, then there is an isomorphism of com-
plexes

E∗,0
1 = H0(G,C∗(X,M)) ∼= Hom(C∗(G\X),M)

Proof. Assume, that F0 = ZG. Then, for g ∈ G, considered as an element of ZG,
we have

(f(g))(1τ) = (gf(e))(1τ) = g · f(e)(1g−1τ ).

Hence, for

f ∈ H0
G(X,M) = {h ∈ HomG(ZG,Cp(X,M)) | h(g) = h(e) for g ∈ G}

it follows, that

g · f(e)(1g−1τ ) = f(g)(1τ) = f(e)(1τ ).

Since M is a trivial G-module, this means, that f(e) ∈ Hom(Cp(X),M) is constant
on G-orbits in Xp. Hence we can define an isomorphism

Φ′ : H0(G,Cp(X,M)) → Hom(Cp(G\X),M)

by
Φ′(f)(1σ) = f(e)(1σ) for σ ∈ Xp,

where σ denotes the image of σ in G\X, and it is easily checked that this commutes
with the differentials.

Corollary 8.
Ep,0

2
∼= Hp(G\X,M).

Example: If X is contractible and Hq(Gτ ,M) = 0 for all τ ∈ Σp with q > 0 and
p ≥ 0, we get

H∗(G,M) ∼= H∗(G\X,M).

Now, let us consider a modification of the spectral sequence (3.5), which com-
putes the l-part of the integral cohomology of the group G for a prime number l.
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Here, we assume, that X is contractible and that the stabilizer Gσ of any simplex
σ of X is a finite group.

Consider the spectral sequence (E∗,∗
r , d∗,∗r ) of (3.5) for M = Z and put for r ≥ 1

E[l]p,q
r :=

{

Ep,q
r for q = 0

(Ep,q
r )(l) for q > 0

(3.7)

Obviously,
dp,q

r (E[l]p,q
r ) ⊂ E[l]p+r,q−r+1

r

for any choice of p, q and r. But, by assumption Ep,q
1 =

∏

σ∈Σp
Hq(Gσ,Z) is a torsion

module for q > 0 and it follows by induction that Ep,q
r is a torsion module for any

q > 0 and any r. It follows immediately, that

E[l]p,q
r+1 = (dp,q

r )−1(E[l]p+r,q−r+1
r )/dp−r,q+r−1

r (E[l]p−r,q+r−1
r ).

Thus, (E[l]∗,∗r , d∗,∗r ) with the restricted differential maps is a spectral sequence in its
own right.

Proposition 12. If G \X is acyclic, then the spectral sequence (E[l]∗,∗r , d∗,∗r ) con-
verges to the l-part of H∗(G,Z).

Proof. By proposition 11, the complex E∗,0
1 is isomorphic to the simplicial cochain

complex of G \X, hence, by assumption,

E∗,0
∞ = E∗,0

2 =

{

Z for p = 0
0 otherwise.

Therefore, E[l]p,q
∞ is the l-primary part of Ep,q

∞ for any (p, q) 6= (0, 0) and the propo-
sition follows.

3.1.3 Cup Products

Recall, that if C,C ′, E, E ′ are complexes of G-modules, then there is a natural map

× : HomG(C,C ′) ⊗ HomG(E,E ′) → HomG×G(C ⊗ E,C ′ ⊗ E ′),

defined by
u× v(c⊗ e) = (−1)deg v deg cu(c) ⊗ v(e)

for u ∈ HomG(C,C ′), v ∈ HomG(E,E ′), c ∈ C and e ∈ E homogeneous.
Let k be a commutative ring with 1 and µ : k⊗k → k be the multiplication map.

Let further F∗ be a projective resolution of Z over ZG and let ∆F∗
: F∗ → F∗ ⊗ F∗

denote a diagonal approximation, i.e. an augmentation preserving chain map over
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ZG, which is unique up to homotopy. Then the cup product of H∗(G, k)is by
definition the map, which is induced by

∪ := HomG(∆F∗
, µ) ◦ × : HomG(F∗, k) ⊗ HomG(F∗, k) → HomG(F∗, k).

More concretely, for u ∈ HomG(Fq, k), v ∈ Hom(Fq′ , k), n ∈ Fq+q′ we have

(u ∪ v)(n) = (−1)q·q′u(xq) · v(xq′), (3.8)

where xq ⊗xq′ is the (q, q′)-component of ∆F∗
(n) ∈

⊕

r+s=q+q′ Fr ⊗Fs. Assume now,
that X is a chamber complex with a labelling l : V(X) → {0, . . . , n}. Then the
Alexander-Withney diagonal map

∆ : C∗(X) → C∗(X) ⊗ C∗(X)

is defined as follows: If σ = {v0, . . . , vs} ∈ Xs is a s-simplex, whose vertices are
indexed such, that l(v0) ≤ . . . ≤ l(vs), then

∆(σ) =

s
∑

p=0

σp ⊗ σs−p,

where I put σp := {v0, . . . , vp} ∈ Xp and σs−p := {vp, . . . , vs} ∈ Xs−p. Then by our
assumptions the action of G on X is label preserving and ∆ is G-equivariant.

Put C∗ := Hom(C∗(X), k). Then the cochain cup product on the simplicial
complex X is the map

∆∗ := Hom(∆, µ) ◦ × : C∗ ⊗ C∗ → C∗,

where
∆∗(f ⊗ g)(σ) = f(σp)g(σ

p′)

for f ∈ Cp, g ∈ Cp′ and σ ∈ Xp+p′.
Now, the cup product for the equivariant cohomology H∗

G(X, k) can be defined
quite analogously to the cup product of H∗(G, k). It is the map

H∗
G(X, k) ⊗H∗

G(X, k) → H∗
G(X, k)

induced by the map ∪ := HomG(∆F∗
,∆∗) ◦ ×:

HomG(F∗, C
∗) ⊗ HomG(F∗, C

∗) → HomG(F∗, C
∗). (3.9)

But (3.9) maps HomG(Fq, C
p)⊗HomG(Fq′ , C

p′) to HomG(Fq+q′, C
p+p′). This defines

multiplicative structures on the spectral sequences of the last paragraph which are
compatible with the cup product of the equivariant cohomology in the abutment,
cf. [Bro82] X.4.5, where this is proved for Farrell-Tate cohomology.
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Remark 9. Let f : X → pt. be the map from X onto a point. Then, the induced
map

f ∗ : H∗(G, k) → H∗
G(X, k)

(cf. corollary 7) is a homomorphism of rings by construction. Hence, if X is con-
tractible, the ring structure ofH∗(G, k) is determined by the multiplicative structure
on the spectral sequence (3.5).

Now, consider the spectral sequence

Ep,q
1 = Hq(G,Cp(X, k)) ∼=

∏

τ∈Σp

Hq(Gτ , k) (3.10)

with the isomorphism of the last paragraph. Then for τ ∈ Σp, τ
′ ∈ Σp′ , σ ∈ Σp+p′

we can compute the component

Hq(Gτ , k) ⊗Hq′(Gτ ′ , k) → Hq+q′(Gσ, k)

of the multiplicative structure

Ep,q
1 ⊗ Ep′,q′

1 → Ep+p′,q+q′

1 .

Again, if the quotient G \X is finite, then this determines multiplicative structure
completely.

Proposition 13. Let τ ∈ Σp, τ
′ ∈ Σp′ and σ = {v0, . . . , vp+p′} ∈ Σp+p′ with l(v0) <

. . . < l(vp+p′) be some simplices. The component

Hq(Gτ , k) ⊗Hq′(Gτ ′ , k) → Hq+q′(Gσ, k)

of the multiplicative structure, is given by

Hq(Gτ , k) ⊗Hq′(Gτ ′, k)
(−1)qp′ resGτ

Gσ
⊗res

G
τ ′

Gσ−−−−−−−−−−−−→ Hq(Gσ, k) ⊗Hq′(Gσ, k)
∪
−→ Hq+q′(Gσ, k),

(3.11)

if τ = σp = {v0, . . . , vp} and τ ′ = σp′ = {vp, . . . , vp+p′}, and the trivial map other-
wise.

Proof. We have to compute the map D = C ◦B ◦ A, defined by the diagram

HomG(Fq, C
p) ⊗ HomG(Fq′ , C

p′)
B

−−−→ HomG(Fq ⊗ Fq′ , C
p+p′)

A

x









y
C

HomGτ (Fq, k) ⊗ HomGτ ′
(Fq′, k)

D
−−−→ HomGσ(Fq ⊗ Fq′ , k),
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where A and C are defined by the isomorphism (3.6) and the canonical injection
resp. projection map and B := HomG(id,∆∗) ◦ ×. So, let u ∈ HomGτ (Fq, k), v ∈
HomGτ ′

(Fq′, k) be identified with their images under A, m ∈ Fq and n ∈ Fq′ . Then
for ρ ∈ Xp+p′ it follows

B(u⊗ v)(m⊗ n)(ρ) = (−1)q(p′+q′)u(m)(ρp) · v(n)(ρp′),

which is zero, unless ρp = τ and ρp′ = τ ′, by the choice of u and v. Hence D is also
trivial, unless σp = τ and σp′ = τ ′. But in this case D(u⊗ v) is the map

D(u⊗ v)(m⊗ n) = (−1)q(p′+q′)u(m) · v(n).

Comparing with (3.8) it follows, that the component

Hq(Gτ , k) ⊗Hq′(Gτ ′ , k) → Hq+q′(Gσ, k)

of the multiplicative structure, which is the map induced by ∆F ◦D, has the form
(3.11), as asserted.

3.2 Cohomology of S-arithmetic spin groups

3.2.1 The definition of S-arithmetic subgroups

There are many sources about the theory of S-arithmetic groups over number fields.
A good introduction is the article of Serre [Ser79]. The reduction theory can be
found in [Bor63] and some more recent information is contained in the book [PR94].
Here, only the most important definitions are given.

Let S denote a finite set of places of Q including ∞, put Sf = S \ {∞} and let
Z(S) = Z[1

p
| p ∈ Sf ] be the ring of S-integers of Q.

For any n ∈ N, let Gln denote the affine Z-group scheme of the general linear
group defined by the affine algebra

Z[X11, . . . , Xnn, det(Xij)
−1]

and the usual morphisms defining multiplication and inverse as in [Bor91] I.1.6
example (2).

Now let G be an affine algebraic group over Q. Then there is an isomorphism ρ
of G onto a closed subgroup of Gln × Spec Q for some n. Multiplying the defining
equations of this subgroup by a common denominator, we get an affine Z-group
scheme G, whose generic fiber can be identified with G via ρ. Recall, that for
such an affine Z-group scheme G the group G(Q) can be identified with the group
G(Q) = (G × Spec Q)(Q) by the isomorphism, which is induced by the natural
projection G × Spec Q → G.
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If G is some abstract group and H and H ′ are subgroups of G, then H and H ′

are called commensurable, if H ∩H ′ has finite index in both H and H ′.

A subgroup Γ ⊂ G(Q) is called an S-arithmetic subgroup of G, if Γ and G(Z(S))
are commensurable subgroups of G(Q). This definition is independent from the
chosen embedding into a group Gln × Spec Q, cf. [PR94] p. 267.

Let f : G → G′ be an epimorphism of linear algebraic groups over Q and let Γ ⊂
G and Γ′ ⊂ G′ be S-arithmetic subgroups. Then f(Γ) is an S-arithmetic subgroup
in G′ and, if the kernel of f is finite, f−1(Γ′) is also an S-arithmetic subgroup of G.
Indeed, it is a classical result from reduction theory, that f(Γ) is an S-arithmetic
subgroup in G′, [PR94] thm. 5.9. This means that f(Γ) is commensurable with Γ′.
But then it follows that f−1(f(Γ)) is commensurable with f−1(Γ′). If in addition
the map f has a finite kernel, then Γ has a finite index in f−1(f(Γ)), proving that
f−1(f(Γ)) and therefore f−1(Γ′) are S-arithmetic.

Assume that G acts morphically and faithfully on a vector space of finite di-
mension n over Q. Then any Z-lattice L in V defines an embedding of G into
Gln × Spec Q up to an automorphism of the affine Z-group scheme Gln, hence an
unique Z-group scheme G with generic fiber G. Then G is called the Z-structure of
G defined by L.

3.2.2 The action of Γ on the Bruhat-Tits building

The properties of an S-arithmetic group Γ in a reductive algebraic group G over
global fields are studied in [Ser71] and [BS76] considering the action of Γ on a suitable
contractible space. Let us assume for simplicity, that G is defined over Q. Then this
space is the product of the Bruhat-Tits buildings of the groups G ×Spec Q Spec Qν

defined in [BT72] and[BT84a] for ν ∈ Sf and the symmetric space of the real Lie
group G(R). In the following the action of Γ on this space is discussed in the special
case, where G is the spin group of a positive definite quadratic space over Q. Then
we can ignore the infinite place, because G(R) is a compact group.

Let (V, q) be a positive definite regular quadratic space of dimension n ≥ 3 over
Q and let G = Spin

V
be the spin group of (V, q). Further fix an S-arithmetic

subgroup Γ of G. Assume that for any ν ∈ Sf the space Vν = Qν ⊗Q V is isotropic
and satisfies the scaling condition (S) 2.3.1 above. Note that the condition (M) is
also satisfied, because the p-adic number fields Qp are complete. Therefore, Vν is
for any ν ∈ Sf a quadratic space exactly of that type, which we have considered in
chapter 2.

Remark 10. The scaling condition (S) is only a matter of convention and not es-
sential for the following. Furthermore, it follows from weak approximation for the
number field Q, that in general, there exists a number λ ∈ Z, such that the scaled
space (Vν , λq) satisfies (S) for any ν ∈ Sf . Indeed, choose for any ν ∈ Sf a Witt
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decomposition Vν = V +
ν ⊕ V −

ν ⊥ Vν,0 of Vν . Then for any ν ∈ Sf with anisotropic
part Vν,0 6= (0), choose a vector xν 6= 0 in Vν,0. Then there is a number λ ∈ Q× such
that λq(xν) is a square in Qν for any such ν ∈ Sf , since the square classes are open
in Q×

ν for any finite place ν. Clearly, λ can be chosen in Z.

The S-arithmetic group Γ is embedded diagonally as a discrete subgroup into
the group GS =

∏

ν∈S Gν , where Gν := G(Qν) for ν ∈ Sf and G∞ := G(R). Since
(V, q) is positive definite, G(R) is compact and it follows that Γ is even discrete in
GSf

=
∏

ν∈Sf
Gν . As V is a regular anisotropic quadratic space over Q, the linear

algebraic group G = Spin
V

over Q is semisimple and anisotropic and it follows from
reduction theory, that the quotients Γ\GS and Γ\GSf

are compact, cf. [PR94] thm.
5.7.

Now, let Xν denote the Bruhat-Tits building associated with (Vν , q) for ν ∈ Sf

and put Gν := G(Qν). The apartments of Xν are homeomorphic to an Euclidean
space Rr for suitable r, thus are contractible metric spaces. It follows from this fact
and the building axioms, that the building Xν itself is a contractible metric space,
cf. [Bro89] VI.3. Since the residue class field of Qν is finite it follows directly from
the description of the links of vertices of Xν in theorem 4, that the polysimplicial
complex Xν is locally finite, hence locally compact. In chapter 2 we have seen, that
the group Gν acts strongly transitively on the chamber complex Xν , in such a way,
that the natural labelling lν of Xν is preserved by the action. As intersection of
finitely many automorphism groups of Zν-lattices in Vν , the stabilizer Gν,σ of any
polysimplex σ in Xν in the p-adic group Gν is an open compact subgroup. It is not
very difficult to deduce from this fact, that the action of Gν on Xν is proper.

Now consider the polysimplicial complex X :=
∏

ν∈Sf
Xν . This inherits many of

the properties of its factors Xν for ν ∈ Sf . It is again a chamber complex, whose
chambers are of the form C =

∏

ν∈Sf
Cν , where Cν is a chamber in Xν for any ν.

Further there is a labelling l on X given as follows. If P =
∏

ν∈Sf
Pν is a vertex of X

with Pν ∈ V(Xν) for ν ∈ Sf , then the label of P is given by the tuple (lν(Pν))ν∈Sf
.

The actions of Gν on Xν for ν ∈ Sf induce an action of GSf
on X by simplicial

maps. This action is strongly transitive and label preserving. In particular, the
stabilizer B of any chamber C of X in GSf

fixes C pointwise. As a topological
space, the complex X is a locally compact contractible space, on which the locally
compact group GSf

acts properly. In particular, the stabilizer of any polysimplex
of X in GSf

is compact. Therefore the discrete subgroup Γ acts simplicially and
with finite stabilizers on X. Since B is open compact in GSf

, the image of B in
Γ \ GSf

is also open. It follows from the compactness of Γ \ GSf
, that the double

coset decomposition Γ\GSf
/B is finite. But the double cosets are in bijection to the

Γ-orbits of the chambers in X. Hence the orbit space Γ \X is a finite polysimplicial
complex. Clearly there is a triangulation of X, such that we can assume that X is a
simplicial complex. In particular, the theory of equivariant cohomology as described
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in the last section can be applied to compute the cohomology of Γ in terms of the
cohomology of the finite polysimplicial complex Γ \ X and the cohomology of the
stabilizers Γσ of polysimplices σ in X.

3.2.3 “Genera of vertices” and the Minkowski-Siegel mass
constant

The subject of this section is the structure of the orbit space Γ \ X in the special
situation, where the group Γ is defined as follows. The conventions of the last
paragraph remain valid. In particular, R ⊗Q V and V are anisotropic spaces over
R resp. Q with dimV ≥ 3. Now, assume that Λ ⊂ V is a Z-lattice such that
q(Λ) ⊂ Z(S) and that for any p /∈ S, the Zp-lattice Zp ⊗ Λ contains an orthogonal
summand of rank at least 2, which is even and modular (i.e. regular up to scaling).

Remark 11. 1. If S contains 2 and any prime which devides the discriminant of Λ,
then Zp ⊗ Λ is regular for any p 6∈ S and the condition above is satisfied.
2. Choose a finite set of places S ′ containing S such that Z(S ′) ⊗ Λ is regular over
Z(S ′). Then the image of the spinor norm

θ : SOΛ(Z(S)) → Q×/(Q×)2

is contained in the subgroup Sq+(S ′) of

Z(S ′)×(Q×)2/(Q×)2 ∼= Z(S ′)×/(Z(S ′)×)2,

which is generated by the positive units in Z(S ′). This is an elementary abelian
group of order 2|S

′|−1 and is generated by the prime numbers that define the finite
places in S ′.

Consider the Z-group scheme OΛ defined in section 1.12. Then the group Γ̃ :=
OΛ(Z(S)) is embedded as S-arithmetic subgroup into the linear algebraic group
OV = OΛ ×Spec Z Spec Q. Further let ι : Spin

V
(Q) → OV (Q) be the canonical

isogeny. By section 1.11, the image of ι is the kernel of the spinor norm in SOV (Q)
and it follows from the remark above, that Γ̃ ∩ ι(Spin

V
(Q)) has a finite index in Γ̃.

Then, as remarked in 3.2.1, the group Γ := ι−1Γ̃ is an S-arithmetic group in the
group G = Spin

V
. If Λ (resp. Z(S)⊗Λ) is a regular or semiregular quadratic module

over Z (resp. Z(S)), then Γ can be written more elegantly in the form Spin
Λ
(Z(S))

(resp. Spin
Z(S)⊗Λ

(Z(S))), where Spin
Λ

and Spin
Z(S)⊗Λ

are the group schemes as in

section 1.12. But in general it is more sophisticated to find a group scheme over Z

or Z(S) with generic fibre Spin
V

with Γ as the group of S-integral points. But this
does not matter in the following.

We will see, that the vertices of Γ \X can be described by the classes of certain
genera of Z-lattices in the quadratic space (V, q). Recall, that two Z-lattices L and
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L′ in quadratic spaces are said to belong to the same class, if they are of the same
rank and there is an isometry between them, and that they are contained in the
same genus, if R⊗L ∼= R⊗L′ and Zp ⊗L ∼= Zp ⊗L′ for any prime number p. Thus
there is a close connection between the structure of Γ \ X and the classification
of lattices in the positive definite space (V, q). A strong tool in this theory is the
Minkowski-Siegel mass constant. It is described below, how this fits the present
context.

Since the classes of Z-lattices occur as orbits of the orthogonal group O(V, q),
it is appropriate to consider first the orthogonal group OV instead of Spin

V
and

the space X̃ :=
∏

ν∈Ss
X̃ν , where X̃ν is the (possibly not thick) building of simple

flags of lattices (cf. theorem 5). Note, that this is again a chamber complex with a
labelling l̃ and that there is a label preserving action of G̃ =

∏

ν∈Sf
OΛ(Qν) on X̃.

By the fundamental correspondance between local and global lattices [Kne02]
(21.5), the vertices of X̃ are in bijection with those Z-lattices L in V , such that

1. Zp ⊗ L = Zp ⊗ Λ for all p /∈ S

2. Zp ⊗ L is a Zp-lattice in Vp that represents a vertex of X̃p, for p ∈ Sf .

Note that condition 1. is equivalent to

L ⊂ ΛS := Z(S) ⊗ Λ =
⋂

p/∈S

((Zp ⊗ Λ) ∩ V ).

I use the following notational conventions for adéles: Let

A = R ×
∏

p prime

(Qp; Zp)

denote the full ring of adéles associated with Q, A(∞) = R×
∏

p prime Zp the subring
of integral adéles and A(S) = R×

∏

p∈Sf
Qp ×

∏

p/∈S Zp the ring of S-integral adéles.

Further let Af =
∏

p prime(Qp; Zp) be the subring of finite adéles in A and put
Af(∞) = Af ∩ A(∞) and Af(S) = Af ∩ A(S).

By the fundamental correspondence of local and global lattices mentioned above,
the group OΛ(Af) acts on the set of Z-lattices in V . This induces an action of the
group OΛ(Af(S)) on the space X̃, which is strongly transitive and label preserving,
because

OΛ(Af (S)) = G̃×
∏

ν 6∈S

OΛ(Zν).

Therefore, two lattices L and L′, which represent some vertices of X̃, have the same
label as vertices of X̃, if and only if they are contained in the same OΛ(Af(S))-orbit,
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and this is equivalent to the fact, that L and L′ are contained in the same genus,
because

OΛ(Af (S)) = {ϕ ∈ OΛ(Af) | ϕ(ΛS) = ΛS}.

Similarly, since

Γ̃ = OΛ(Z(S)) = OΛ(Q) ∩ OΛ(Af(S)),

L and L′ represent the same vertex in the orbit space Γ̃ \ X̃, if and only if they are
isomorphic. But it is a consequence of strong approximation in G, that conversely
any class in the genus of a lattice L as above occurs as a vertex in Γ̃ \ X̃. This is
shown in the following proposition.

Proposition 14. Let L ⊂ V be a Z-lattice that satisfies the conditions 1. and 2.
above. Then in ΛS, there is contained a representative of any class in the genus of
L.

Proof. This is classical, but I sketch the proof for completeness.
By 1., we can assume that Λ = L. Now, recall the following well known theorem:

Theorem 9. Let E be a regular quadratic space over Q with dimE ≥ 3 and L ⊂ E
a Z-lattice with the property, that for any prime p the Zp-lattice Zp ⊗ L contains
an orthogonal summand of rank at least 2, which is even and modular, i.e. which
is regular up to scaling. Then the genus of L consists of only one spinor genus,
[Kne02] (25.4).

Clearly this theorem can be applied to Λ ⊂ V . Let O′
V denote the image of

Spin
V

in OV under the canonical isogeny and let O′
Λ denote the Z-structure of O′

V

defined by Λ as described in 3.2.1. Then this fact can be written in the form

OΛ(Af) Λ = OΛ(Q) O′
Λ(Af ) Λ,

which is equivalent to

OΛ(Af) = OΛ(Q) O′
Λ(Af) OΛ(Af(∞)). (3.12)

But, since the quadratic space Vν = Qν ⊗Q V is isotropic for ν ∈ Sf , the simply
connected almost simple semisimple algebraic group Spin

V
has strong approximation

with respect to S, i.e. for any “Z-structure” G of G = Spin
V

as in 3.2.1 we have

G(Af) = G(Q)G(Af (S)),

[PR94] p. 427, which implies that

O′
Λ(Af) = O′

Λ(Q) O′
Λ(Af (S)).
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It follows that the right hand side of (3.12) equals to

OΛ(Q) O′
Λ(Af(S)) OΛ(Af(∞)).

But, since

O′
Λ(Af(S)) OΛ(Af (∞)) =

∏

p∈Sf

(O′
Λ(Qp) OΛ(Zp)) ×

∏

p/∈S

OΛ(Zp),

it follows that
OΛ(Af) = OΛ(Q) OΛ(Af (S)), (3.13)

because it follows from the assumption dimV ≥ 3, that SOΛ(Q) ⊂ OΛ(Q) contains
an element with spinor norm p(Q×)2 for any p ∈ Sf , cf. [Kne02] (25.5).

Hence, if L′ ⊂ V is a lattice in the genus of Λ, then there is an isometry g ∈ OΛ(Q)
and an element u ∈ OΛ(Af(S)) with gL′ = uΛ, thus

gL′ ⊂ u(Z(S) ⊗ Λ) = Z(S) ⊗ Λ,

since Z(S) ⊗ Λ =
⋂

p/∈S(V ∩ (Zp ⊗ Λ)).

Remark 12. Another formulation for the proposition is, that the genus of the Z(S)-
lattice Z(S) ⊗ Λ consists of only one class, cf. (3.13).

Recall, that for a lattice L ⊂ V the Minkowski-Siegel mass constant is given by

K̃L :=
∑

L′

1

|OL′(Z)|
,

where the sum runs over a set of representatives for the classes in the genus of L.
This can be computed only in terms of L and V , i.e. without any knowledge about
the other classes in the genus of L. This is provided by the Minkowski-Siegel mass
formula, which can be written down in the following form. Letm denote both, a Haar
measure on OΛ(A) and on OΛ(Af), which are unimodular locally compact groups.
Now OΛ(Q) is a discrete cocompact subgroup of OΛ(A), therefore m induces a finite
measure on the quotient OΛ(Q) \ OΛ(A) and the Minkowski-Siegel mass formula
asserts

m(OΛ(Q) \ OΛ(A)) = m(OL(A(∞))) · K̃L.

In order to go not into details, I refer the reader for proofs or methods for the com-
putation of the quotient m(OΛ(Q) \ OΛ(A)) : m(OL(A(∞))) to [Kne02]. Concrete
formulas and values can be found in [CS99] pp. 408-412. There are also more refer-
ences to the literature. To know this constant is useful e.g., if the classes of a given
genus should be determined, because it provides a simple check, that a given list is
complete.
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Now, let L ⊂ V be a lattice which represents a vertex in the space X̃. Note,
that the stabilizer Γ̃L of L in Γ̃ is naturally isomorphic to the group O(L, q). By
proposition 14, the classes in the genus of L are represented by the Γ̃-orbits in the
set of vertices in X̃, which are of the same label as L. Therefore, we can write

K̃L =
∑

L′

1

|Γ̃L′|
,

where L′ runs over a set of representatives for the vertices of label l̃(L) in the orbit
space Γ̃ \ X̃.

In this form the notion of mass constant can be generalized to polysimplices of
higher dimension in X̃:

Definition 13. Let σ be a polysimplex in X̃. Then the set of polysimplices σ′ with
label l̃(σ′) = l̃(σ) is called the genus of σ and the orbit Γ̃σ is the class of σ. The
mass constant of σ is the sum

K̃σ =
∑

σ′

1

Γ̃σ′

,

where σ′ runs over a set of representatives of classes in the genus of σ.

Clearly, these are interesting invariants for the space Γ̃ \ X̃. Note that, if σ is a
vertex given by a lattice L, then this notion of genus and class differs slightly from
the usual one, because the class and the genus of L in the sense of definition 13
consist only of lattices, which are contained in Z(S) ⊗ Λ.

Lemma 18. Let for a polysimplex σ in X̃ and a face τ ≤ σ the number of polysim-
plices σ′ in the genus of σ with τ ≤ σ′ be denoted by ñσ

τ . Then

K̃σ = ñσ
τ K̃τ .

Proof. Note that ñσ
τ is well defined since X̃ is locally finite. Now let τ1, . . . , τh

be a set of representatives for the classes in the genus of τ and let σ1, . . . , σl be
representatives for the classes in the genus of σ. We can assume that there are
numbers 0 = i0 < i1 < . . . < ih = l such that σ(ij−1+1), . . . , σij contain τj for
j = 1, . . . , h.

Then it follows |Γ̃τj
| = [Γ̃τj

: Γ̃σ] |Γ̃σ| for j = 1, . . . , h and σ ∈ {σ(ij−1+1), . . . , σij}.
Hence

ij
∑

i=ij−1+1

1

|Γ̃σi
|

=
1

|Γ̃τj
|

ij
∑

i=ij−1+1

[Γ̃τj
: Γ̃σi

] =
1

|Γ̃τj
|
ñσi

τj
.

But ñσi
τj

= ñσ
τ by symmetry, because the group Γ̃ acts strongly transitively on X̃.

Therefore the assertion follows by summing over j = 1, . . . , h.
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Assume that σ and τ are contained in a chamber C of X̃. The polysimplices
σ, τ, C are of the form

τ =
∏

p∈Sf

τp, σ =
∏

p∈Sf

σp, C =
∏

p∈Sf

Cp,

where τp ≤ σp ≤ Cp are contained in the building X̃p. Then if ñ
Cp
σp (resp. ñ

Cp
τp )

denotes the number of chambers in the link of σp (resp. τp) in X̃p, we find that

ñσ
τ =

∏

p∈Sf

ñ
Cp
τp

ñ
Cp
σp

. (3.14)

Remark 13. The number of chambers in the link of a simplex σ of a building ∆,
which admits a strongly transitive and label preserving group of automorphisms, is
computed in [Ser71] p. 143-152. By formula (3.14) we can assume for simplicity,
that the Weyl group of ∆ is connected of type Br (r ≥ 3), Cr (r ≥ 3) or Dr (r ≥ 4).
Choose a chamber and an apartment, such that σ ⊂ C ⊂ A. Let I be the set of
labels of ∆ as defined in chapter 2. For i ∈ I let si denote the reflection at the
hyperplane in A, that is generated by the unique panel of C, which contains no
vertex of label i. Put S := {si | i ∈ I} and W := 〈S〉. Then W is the Weyl group of
∆ and (W,S) is a Coxeter system. Let S0 be the quotient of S by the equivalence
relation

s ∼ s′ if and only if s and s′ are conjugate in W

and let [s] be the image of s ∈ S in S0. Note, that

1. S0 consists of one element, if W is of type Dr

2. S0 consists of two elements representing the subsets {0+, 0−, 2, . . . , r− 1} and
{r} of I if W is of type Br

3. S0 consists of three elements representing the subsets {0}, {1, 2, . . . , r−1} and
{r} of I if W is of type Cr,

because s and s′ are conjugate in W , if ss′ has order 3 as element of W . Now, let
w ∈W and choose a reduced representation w = si1 · . . . ·siα as word by the elements
of S. Then in the ring Z[[(ti)i∈S0 ]] of formal power series with variables {ti}i∈S0 , the
element

tw := t[si1
] · . . . · t[siα ]

does not depend on the choice of the representation. Further, associate with any
subset Y of S the formal power series

PY ((ti)i∈S0) =
∑

w∈〈Y 〉

tw.
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This is a polynomial if Y 6= S, clearly, because then 〈Y 〉 is a finite Coxeter group.
Let qi be the number of chambers in ∆, which contain the panel of label I \ {i}

of C. By the results of chapter 2, qi = p + 1, unless ∆ is of type Br and i = r
or ∆ is of type Cr and i ∈ {0, r}, where the value qi depends on the structure of
the anisotropic space V0. Therefore or as corollary of the building axioms, we get
qi = qj , if si and sj are conjugate in W . Thus we can write q[si] = qi for i ∈ I.

Now let be Y := {s ∈ S | sσ = σ}. Then the number of chambers of the link of
σ in ∆ is PY ((q[s])[s]∈S0), cf. [Ser71] prop. 27 (b).

Note, that a finite product of buildings as above is itself a building. Clearly
definition 13 and lemma 18 make sense for any locally finite building ∆, which
admits a strongly transitive and label preserving group of automorphisms, and any
discrete group H , which acts properly on ∆ and preserves labels. But the advantage
of the special situation above was that we have started with the Minkowski-Siegel
mass constant, which can be assumed to be known. Therefore in order to apply the
above ideas to the space X and the spin group Γ defined in section 3.2.2, it is only
necessary to compute the “mass constant”

KL =
∑

L′

1

ΓL′

for a lattice, which represents a vertex of X, where the sum runs over a set of
representatives of Γ-orbits in the set of vertices of X, which are of the same type as
L.

Definition 14. Let L ⊂ V be a lattice that represents a vertex of X̃. A finite
place p ∈ Sf is called oriflamme place of L, if the OV (Qp)-orbit of L splits into two
Spin

V
(Qp)-orbits.

Example: If S = {∞, p} and X = Xp is a building of type Dr or Br, then the set
of vertices of type 0 splits into the sets of vertices of type 0+ and 0−.

By our scaling condition (S) and since all residue class fields are perfect, it
follows from the proof of theorem 7 and corollary 2, that p is a oriflamme place of
L, if and only if

(dL)Zp = Zp or (dL)Zp = p
n
2 Zp for n even

(d′L)Zp = Zp for n odd,

where dL denotes the discriminant and d′L the halfdiscriminant of L, cf. 1.2. Let
for any L as in the definition NL denote the number of oriflamme places in Sf .

Let L0 be a vertex of X. Then L0 represents also a vertex of X̃. By the oriflamme
construction the genus L̃ of L0 in the sense of definition 13 splits into 2NL0 types
of vertices of X. Let L1, . . . ,L2

NL0
be the subsets of L̃, which corresponds to the

different types of vertices in X, i.e.
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1. L̃ =
⋃2

NL0

i=1 Li.

2. Let l be the natural labelling on X. For L ∈ Li and L′ ∈ Lj with 1 ≤ i, j ≤
2NL0 we have l(L) = l(L′) if and only if i = j.

To get a nice formula, I make a further assumption on Λ and S, which is satisfied
in many cases:

(R) For any prime number p ∈ Sf , there is an element x ∈ Z(S)⊗Λ with q(x) = p.
Furthermore there is an element x ∈ Z(S) ⊗ Λ with q(x) = 1.

This implies that for any class κ in the group Sq+(S) of positive square classes in
Z(S)×/(Z(S)×)2 (cf. remark 11) there is a rotation u ∈ SOΛ(Z(S)) with spinor norm
θ(u) = κ. But if p is an oriflamme place of a vertex L0, then it follows from the proof
of theorem 8 that Zp ⊗L0 and Zp ⊗ uL0 are contained in different Spin

V
(Qp)-orbits

in Xp. Therefore the assumption (R) implies that the group SOV (Z(S)) ⊂ Γ̃ maps
any L ∈ L̃ to any of the subsets L1, . . . ,L2

NL0
. In this situation we get the formula:

Theorem 10. Let Γ′ be the image of Γ in Γ̃. Then

KL0 =
[Γ̃ : Γ′]

2NL0
+1
K̃L0.

Proof. By construction, the kernel of the isogeny ι : Γ → Γ̃ has order 2 and acts
trivially on the space X. Now, consider a lattice L0 ∈ L1 ⊂ L̃. Then the Γ̃-orbit of
L0 splits into different Γ′-orbits

Γ̃L0 = ΓL1∪̇ · · · ∪̇ΓLh

= Γ′L1∪̇ · · · ∪̇Γ′Lh,

where

h = [Γ̃ : Γ̃L0Γ
′] =

[Γ̃ : Γ′]

[Γ̃L0Γ
′ : Γ′]

=
[Γ̃ : Γ′]

[Γ̃L0 : Γ′
L0 ]
.

Since Γ′ ⊂ Γ̃ is a normal subgroup, the stabilizers Γ′
Li

for i = 1, . . . , h are all
isomorphic to Γ′

L0 , thus

h
∑

i=1

1

|ΓLi
|

=
[Γ̃ : Γ′]

[Γ̃L0 : Γ′
L0 ]

1

2|Γ′
L0|

=
[Γ̃ : Γ′]

2|Γ̃L0|
.

But by assumption (R), Γ̃/Γ′ acts transitively on the subsets L1, . . . ,L2
NL0

of the

genus L̃. Hence Γ̃L0 ∩ L1 contains exactly h · 2−NL0 of the orbits Γ′L1, . . . ,Γ
′Lh,

which yields
∑

L∈{L1,...,Lh}∩L1

1

|ΓL|
=

[Γ̃ : Γ′]

2NL0
+1

1

|Γ̃L0|
.
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Summing over all classes in the genus of L0 we get

KL0 =
[Γ̃ : Γ′]

2NL0
+1
K̃L0.

Corollary 9. If in the situation of the theorem the Z(S)-lattice Z(S)⊗Λ is regular,
then there is a formula

KL0 = 2|Sf |−NL0K̃L0 .

Proof. By assumption (R) the image of the spinor norm

θ : SOΛ(Z(S)) → (Z(S) \ {0})/(Z(S)×)2

contains the group Sq+(S) of positive square classes in Z(S)×/(Z(S)×)2 defined in
remark 11, which is an elementary abelian group of order 2|Sf |. Conversely, since
Z(S)⊗Λ is regular and positive definite, it follows from the considerations in section
1.11, that the image of the spinor norm is contained in Sq+(S). It follows that Γ′,
which is the kernel of the spinor norm in SOΛ(Z(S)), has index 2|Sf | in SOΛ(Z(S)).
Again, it follows from (R), that Γ̃ = OΛ(Z(S)) contains a reflection, hence

[Γ̃ : Γ′] = 2|Sf |+1,

which proves the corollary.

Examples:
In the following examples a root lattice of type (a)Ar,

(a)Br,
(a)Cr,

(a)Dr,
(a)Er with

a ∈ Q× means a lattice L, which is isometric to the lattice, which is generated by
the roots of a root system Φ of type Ar, Br, Cr, Dr, Er in an Euclidean space E,
where the bilinear form b on E is such that b(α, α) = 2a for any short root α of Φ in
the cases Ar, Cr, Dr, Er and for any long root, if Φ has the type Br. For a = 1 we
say simply, that L is of type Ar, Br, Cr, Dr, Er, respectively. For orthogonal sums
of such lattices, we use the obvious notation, for example if L is an orthogonal sum
of two root lattices of type (2)A1 and a root lattice of type D4, then L is called to be
of type 2(2)A1D4. All these lattices are described in [CS99] ch. 4.

1. All cases, where the Witt index r is at least 2 and the orbit space Γ \ X
is just a chamber (i.e. Γ acts transitively on the set of chambers of X), are listed
in [KLT87]. If S = {∞, 2} then these examples are given, when Λ is chosen as a
root lattice of type A5, B6, A6, E6, B7 and E8, respectively. In order to satisfy the
condition (S) we would prefer the scaled forms (3)A5,

(3)B6 and (7)E7 (which defines
the same Z[1

2
]-lattice as (14)B7) instead of A5, B6 and B7. Then the vertices of label

0 in X̃ are root lattices of type (3)A5,
(3)D6, A6, E6,

(7)E7 and E8 and the associated
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Bruhat-Tits buildings are affine buildings of type B2, C2, B2, A3, B3 and D4. The
case, where Λ is of type E8 is the subject of chapter 4.

There are also three examples for S = {∞, 3}. These are given by the root

lattices of type B5, E6 and B
(6)
5 A1. Note that the root lattices of type E6 and B

(6)
5 A1

define two different genera of Z[1
3
]-lattices in the same quadratic space over Q. In

particular, the associated groups act on the same building, which is of type C2. In
the case B5 the building is of type B2.

2. As an illustration of the above ideas, the computation of the space Γ \ X
follows in an easy case. Put S = {∞, 2}, and let V be a regular quadratic space
over Q with a basis x1, . . . , x6 and a quadratic form q, which is defined by

q(
6

∑

i=1

λixi) =
1

2
(λ2

1 + . . .+ λ2
5) + λ2

6

for λ1, . . . , λ6 ∈ Q. A short computation in the Witt group of Q2 shows that the
quadratic space V2 = Q2⊗QV has Witt-index 2 and that the orthogonal complement
V0 of a hyperbolic subspace of dimension 4 in V2 has a basis u1, u2 such that

q(λ1u1 + λ2u2) = 5λ2
1 + 10λ2

2.

Hence ω(q(V0 \ {0})) = Z and it follows that the Bruhat-Tits building X = X̃ of V2

is of type C2. The unique maximal Z2-lattice Λ0 ⊂ V0 is Λ0 := Z2u1 ⊕ Z2u2. It can
be checked directly, that for an admissible Z2-lattice L̃1 ⊂ V2 of type 1 (i.e. a lattice

that represents a vertex of label 1 in X), the quadratic spaces V L̃1
and V

L̃1
over

F2, which are defined in section 2.3.3, are semiregular of dimension 3. Such spaces
contain exactly 3 isotropic subspaces of dimension 1. Therefore the correspondence
of theorem 4 implies, that any panel of X is contained in exactly three chambers. It
follows from lemma 18 and the formulas above that if L0, L1, L2 are Z-lattices in V
such that {L0, L1, L2} represents a chamber of X and Li is of type i for i = 0, 1, 2,
then we have the following relation between the mass constants

K̃L0 = K̃L2 =
45

9
K̃L1 =

45

3
K̃{L0,L1} =

45

3
K̃{L0,L2} =

45

3
K̃{L1,L2} = 45K̃{L0,L1,L2}.

Now consider the lattice

Λ := {
6

∑

i=1

λixi | λ1, . . . , λ6 ∈ Z and λ1 + . . .+ λ5 ≡ 0 mod 2},

put Γ̃ = OΛ(Z[1
2
]) and let Γ ⊂ Spin

V
(Q) be the stabilizer of the lattice Z[1

2
] ⊗ Λ.

Since q(Λ) ⊂ Z and dΛZ2 = dΛ0Z2 = 8Z2, the lattice L0 := Λ represents a vertex
of label 0 in X.
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For a lattice L ⊂ V which represents a vertex of X, the dual lattice (Z2 ⊗ L)(♯)

in the sense of section 2.3.3 corresponds to the Z-lattice

L(♯) := (Z2 ⊗ L)(♯) ∩ Z[
1

2
] ⊗ Λ = ((Z2 ⊗ L)(♯) ∩ V ) ∩

⋂

p 6=2

(Zp ⊗ L) ∩ V

by the fundamental correspondence between local and global lattices and since Zp⊗
L = Zp ⊗ Λ is regular for any p 6= 2, it follows easily, that

L(♯) = {x ∈ V | b(x, L) ⊂ Z, q(x) ⊂
1

2
Z}.

For example

L0
(♯) = {

6
∑

i=1

λixi | λ1, . . . , λ6 ∈ Z}

is a root lattice of type B5A1 and has the properties q(L0
(♯)) ⊂ 1

2
Z and dL0

(♯) = 2.

Hence dL0
(♯) = 2 is a so called “odd integral” lattice with discriminant 2 and it

is well known, that there exists exactly one class of such lattices, cf. [Kne57]. In
particular

K̃L0 = K̃L0
(♯) =

1

|O(L0
(♯), q)|

and Γ̃\X contains only one vertex of label 0. The order of the automorphism group
of a root lattice is easily computed by the principle that the decomposition of a
positive definite Z-lattice into irreducible components is unique, cf. [Kne02] (27.2)
and [CS99] ch. IV.3. Therefore O(L0

(♯), q) = O(L0, q) is a direct product of a Weyl
group of type B5, permuting the coordinates x1, . . . , x5 and changing the signs of
them, and a Weyl group of type A1, which changes the sign of x6. Hence

K̃L0 =
1

25 · 5! · 2
=

1

29 · 3 · 5

The quadratic space

V Z2⊗L0
∼=

1

2
L0/L0

(♯)

is semiregular of dimension 5 over F2 and the elements a := 1
2
(x1 + . . . + x4), c :=

1
2
(x1 + x2) + 1

2
x6 ∈

1
2
L0 generate a maximal totally isotropic subspace in 1

2
L0/L0

(♯).
By the correspondence of theorem 4 this subspace corresponds to the vertex

L2 := {x ∈ L0 | b(x, a) ∈ Z, b(x, c) ∈ Z}

= {
6

∑

i=1

λixi | λ1, . . . , λ6 ∈ Z and λ1 + λ2, λ3 + λ4, λ5 ∈ 2Z},
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which is a root lattice of type 5A
(2)
1 A1; hence

1

|O(L2, q)|
=

1

5! · 25 · 2
= K̃L2

and there is also only one lattice of label 2 in Γ̃ \X.
The lattice of type 1, which corresponds to the subspace F2(a + L0

(♯)) (resp.
F2(b+ L0

(♯))) in 1
2
L0/L0

(♯), is the lattice

L1 := {x ∈ L0 | b(x, a) ∈ Z}

= {
6

∑

i=1

λixi | λ1, . . . , λ6 ∈ Z and λ1 + λ2 + λ3 + λ4, λ5 ∈ 2Z}

(resp.

L′
1 := {x ∈ L0 | b(x, c) ∈ Z}

= {
6

∑

i=1

λixi | λ1, . . . , λ6 ∈ Z and λ1 + λ2, λ3 + λ4 + λ5, λ6 ∈ 2Z}),

and this is a root lattice of type D4A
(2)
1 A1 (resp. D32A

(4)
1 A1). Therefore there are at

least two classes of lattices in the genus of lattices of type 1 in X. But since

1

|O(L1, q)|
+

1

|O(L′
1, q)|

=
1

(3! · 23 · 4!) · 2 · 2
+

1

(23 · 3!) · (2 · 22) · 2
= K̃L1 ,

the space Γ̃ \X has exactly two vertices with label 1.
Computing the orders of the stabilizers and comparing them with the mass

constants, it can be checked without any difficulty, that the two chambers C0 :=
{L0, L1, L2} and C1 := {L0, L

′
1, L2} together with their faces (where common faces

have to be counted simply) provide a full set of representatives for the Γ̃-orbits in
X.

Note that the reflections τ2x1 and τx6 are contained in Γ̃ and that q(2x1) = 2 and
q(x6) = 1. Therefore condition (R) is satisfied and it follows that the image Γ′ of Γ
in Γ̃ has index 4, since Z[1

2
]⊗Λ is regular, and that τ2x1 and τx6 generate Γ̃/Γ′. But

this implies Γ̃ \X = Γ \X, because τ2x1 and τx6 fix C0 and C1 pointwise.

3.2.4 The Euler-Poincaré characteristic of Γ

As an application, we combine now the ideas of the last section with the results of
the article [Ser71] for the computation of the Euler-Poincaré characteristic of the
group Γ. The definition of the Euler-Poincaré characteristic of a group of type VFL
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follows this paper. Also proofs can be found there, that all notions introduced below
are well defined.

Let Γ be some group, ZΓ the group ring of Γ and ǫ : ZΓ → Z the augmentation
map. The rank rkΓL of a free ZΓ-module L is defined to be the dimension of the
Q-vector space L⊗ZΓ Q, where the tensor product is defined by the map

ZΓ
ǫ
−→ Z →֒ Q.

A group Γ which admits a finite resolution of Z by free ZΓ-modules of finite rank is
called to be of type FL. If Γ is of type FL and

0 → Ln → Ln−1 → . . .→ L0 → Z → 0

is such a finite resolution, then the number

χ(Γ) =

n
∑

i=0

(−1)irkΓLi

is called the Euler-Poincaré characteristic of Γ. A group Γ, which has a torsion-free
subgroup of finite index, is called virtually torsion-free. A group of type VFL is a
group Γ, which contains a subgroup Γ′ of finite index, which is of type FL. For such
a group, the Euler-Poincaré characteristic is by definition

χ(Γ) =
1

[Γ : Γ′]
χ(Γ′).

Remark 14. There is also a notion of Euler-Poincaré characteristic for groups of
type VFP, cf. [Bro82] ch. IX. This depends on a reasonable notion of a rank for a
projective ZΓ-module.

Note that a group of type FL is torsion-free. If all torsion-free subgroups of finite
index in a group Γ are of type FL, then Γ is called to be of type WFL.
Example: 1. If Γ is a finite group, then Γ is a group of type WFL and χ(Γ) = |Γ|−1.
2. [Ser71] prop. 14. Assume, that there is a cellular action of Γ on an acyclic CW -
complex X. For any cell σ in X, let Γσ denote the stabilizer of σ in Γ and choose
a set Σ of representatives of the cells of X modulo Γ. Assume, that Σ is finite and
that Γ is virtually torsion-free. If any of the stabilizers Γσ is of type WFL, then Γ
is of type WFL and the Euler-Poincaré characteristic of Γ is

χ(Γ) =
∑

σ∈Σ

(−1)dim σχ(Γσ).

This example can be applied to the situation, where Γ is the S-arithmetic spin
group and X is the product of Bruhat-Tits buildings considered in the last section.
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By Minkowski’s theorem, there are contained torsion-free subgroups of finite index
in Γ, given by congruence subgroups. The stabilizers Γσ of polysimplices σ of X are
finite groups, thus Γ is of type WFL and

χ(Γ) =
∑

σ∈Σ

(−1)dim σ 1

|Γσ|
.

Now, let Σ0 be the set of faces of a fixed chamber C of X. This is a set of represen-
tatives for the different types of polysimplices of X with respect to the labelling of
X. With the notions of section 3.2.3 we get

χ(Γ) =
∑

σ∈Σ0

(−1)dim σKσ = (
∑

σ∈Σ0

(−1)dimσ 1

nC
σ

)KC , (3.15)

where in Kσ =
∑

σ′ |Γσ′ |−1 the sum runs over a set of representatives for the Γ-orbits
in the set of polysimplices of type l(σ) and nC

σ means the number of chambers in X
containing σ. But for the computation of the sum

MX := (
∑

σ∈Σ0

(−1)dimσ 1

nC
σ

)

there are given formulas in [Ser71] 3.4.

Remark 15. Consider the locally compact group GSf
:=

∏

p∈Sf
Spin

V
(Qp) and let

B ⊂ GSf
be the stabilizer of the chamber C in X. Then it is shown in [Ser71],

that the group GSf
has an Euler-Poincaré measure and that MX is just the Euler-

Poincaré measure of B, and in this context MX is computed there (see in particular
loc. cit. thm. 6).

Now, let L be a lattice representing a vertex of X and assume, that the chamber
C contains L. Then (3.15) and theorem 10 yield

Theorem 11.

χ(Γ) = MX · nC
L ·

[Γ̃ : Γ′]

2NL+1
K̃L (3.16)

As an example we will compute in chapter 4 the Euler-Poincaré characteristic of
Γ in the case, where Λ is an even unimodular lattice in a positive definite quadratic
space over Q.

Remark 16. Computation of cohomology with coefficients in C

Assume, that Sf consists of a single prime p, such that Γ is a discrete and cocompact
subgroup of the group Spin

V
(Qp) and let r be the Witt index of Qp ⊗Q V .

Consider a torsion-free subgroup Γ′ of finite index in Γ. Then Γ′ acts freely
on the Bruhat-Tits building X and the orbit space Γ′ \ X is compact. Since X
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is contractible, it follows, that Γ′ \ X is a K(Γ′, 1)-complex (cf. [Bro82] I.4). In
particular Γ′ is a group of type FL and the cohomological dimension of Γ′ is r =
dimX. Choose a finite resolution

0 → Lr → Lr−1 → . . .→ L0 → Z → 0

of Z by free ZΓ′-modules of finite rank. Then we have

r
∑

i=0

(−1)irkΓ′Li = χ(Γ′) = [Γ : Γ′]χ(Γ).

Now, let W be a finite dimensional vector space over C, on which Γ′ has an
unitary representation. Then for i = 1, . . . , r we have

dimC HomZΓ′(Li,W ) = rkΓ′(Li) · dimC(W ),

because the modules Li are free of finite rank. Hence

r
∑

i=0

(−1)i dimCH
i(Γ′,W ) =

r
∑

i=0

(−1)i dimC HomZΓ′(Li,W ) = [Γ : Γ′]χ(Γ) · dimC(W ).

But by Garland’s theorem (see [Gar73] and [Cas74]),

H i(Γ′,W ) = 0 unless i = 0, r,

and the Euler-Poincaré characteristic provides the dimension of the remaining co-
homology space:

dimC H
r(Γ′,W ) = (−1)r([Γ : Γ′]χ(Γ) − dimC(W Γ′

)), (3.17)

where W Γ′

denotes the subspace of Γ′-invariants in W , which is canonically isomor-
phic to the space H0(Γ′,W ).

If the representation of Γ′ on W extends to Γ, then the restriction map maps
H∗(Γ,W ) injectively into the submodule of Γ-invariant elements of H∗(Γ′,W ), cf.
section 3.1.1. Therefore H i(Γ,W ) = 0 for i 6= 0, r and (3.17) provides an upper
bound for the dimension of Hr(Γ,W ).


