
THE φ4 OF GORENSTEIN 3-FOLDS OF GENERAL TYPE

Meng Chen

Introduction

This paper is devoted to the birational classification of algebraic Gorenstein 3-

folds. Let X be a minimal projective Gorenstein 3-fold of general type with only

locally factorial terminal singularities. According to [2], [5, 6], [9], [15], [16] and

[20], we have the following theorem.

Theorem 0. Suppose X is a minimal projective Gorenstein 3-fold of general type

with only locally factorial terminal singularities. Then the following holds:

(i) the m-canonical map φm is a birational morphism for all m ≥ 6.

(ii) φ5 is birational with possible exception for K3
X = 2 and pg(X) ≤ 2. φ5 is a

generically finite morphism. (No counter examples found yet to the birationality of

φ5.)

Naturally one wants to know the behavior of φm (m ≤ 4). We observed that

some people have been studying the base point freeness of |4KX |. We are more

curious about some birational properties of φ4. Our approach is different from

theirs.

In order to make our statement simpler, let us first fix the terminologies. X is

refered to as φ4-standard if there exists a fibration f : X ′ −→ C onto a projective

curve C, where X ′ is birationally equivalent to X and the general fiber of f is

a smooth projective surface of general type with invariants K2 = 1 and pg = 2.

X is called φ4-semi-standard if X is fibred by curves of genus two, i.e. there is a

fibration g : X ′ −→W onto a normal projective surface W where X ′ is birationally

equivalent to X and the general fiber of g is a smooth projective curve of genus

two. If X is φ4-standard, one can easily see that X is φ4-semi-standard by taking

the relatively canonical map of f .

It is well known that the 4-canonical map of a smooth projective surface of

general type is birational if and only if (K2, pg) 6= (1, 2). This leads to the trivial

fact that, if X is φ4-standard, the 4-canonical map φ4 of X fails to be birational. A

very natural question is whether the converse is true. In this paper, we would like

to study this problem and to show that the converse is true under some reasonable
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conditions. Another natural question is whether φ4 is always generically finite. If

one can verify the base point freeness of |4KX |, then φ4 is automatically generically

finite. We shall study in an alternative way giving a direct and elementary proof.

Our results are as follows.

Theorem 1. Let X be a minimal projective Gorenstein 3-fold of general type with

only locally factorial terminal singularities. The following holds.

(i) Suppose pg(X) ≥ 41 and dimφ1(X) 6= 2. Then φ4 is birational if and only if

X is not φ4-standard.

(ii) Suppose pg(X) ≥ 41 and X is not φ4-semi-standard. Then φ4 is birational.

(iii) φ4 is generically finite.

Throughout the ground field is assumed to be algebraically closed of character-

istic 0. For a Q-divisor D on a smooth variety V , we denote by pDq the round-up

of D, which is the minimum integral divisor such that pDq − D ≥ 0. ∼lin means

linear equivalence. ∼num means numerical equivalence.

I would like to thank F. Catanese for fruitful discussions during my preparation

for this note. Special thanks are due to hospital faculty members of the Mathema-

tisches Institut der Universität Göttingen.

1. Proof of the main theorem

Definition 1.1. A normal variety X is called Gorenstein if the dualizing sheaf

ωX is invertible and X is Cohen-Macaulay.

We refer to [17] for the definitions of canonical, terminal singularities.

Let X be a minimal projective Gorenstein 3-fold of general type with only locally

factorial terminal singularities. It is well known that K3
X is a positive even integer,

χ(OX) < 0 and that

Pm(X) := h0(X,OX(mKX)) = (2m− 1)[
m(m− 1)

12
K3
X − χ(OX)]. (1.1)

Suppose pg(X) ≥ 2. We can define the canonical map φ1. Set

KX ∼lin M1 + Z1,

where M1 is the movable part of |KX | and Z1 the fixed one. Taking the birational

modification π : X ′ −→ X, according to Hironaka, such that

(1) X ′ is smooth;

(2) the movable part of |π∗(KX)| is base point free;

(3) π∗(KX) has supports with only normal crossings.

Denote by g the composition φ1 ◦ π. So

g : X ′ −→W ′ ⊆ Ppg(X)−1

is a morphism. Let

g : X ′ f
−→W

s
−→W ′
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be the Stein factorization of g. We can write

π∗(M1) ∼lin S1 + E1,

where S1 is the movable part. Then we have

π∗(KX) ∼lin S1 + E′,

where E′ = E1+π
∗(Z1) is the fixed part of |π∗(KX)|. We note that 1 ≤ dim(W ) ≤

3. We shall formulate our proof according to dim(W ).

Remark 1.2. Although [5], [6] and [16] only treated smooth minimal 3-folds, the

method is still effective for Gorenstein minimal 3-folds. In order to avoid unneces-

sary redundancy, we would like to cite several basic facts from there without giving

the proof.

Theorem 1.3. Let X be a minimal projective Gorenstein 3-fold of general type with

only locally factorial terminal singularities. Suppose pg(X) ≥ 5. If dimφ1(X) = 3,

then φ4 is birational.

Proof. It’s obvious that a general member S1 is a smooth projective surface of

general type. Because pg(X) > 0, it is sufficient to verify the birationality for φ4|S1

by virtue of the Tankeev principle. We consider the system

|KX′ + 2π∗(KX) + S1|.

The vanishing theorem gives

|KX′ + 2π∗(KX) + S1|
∣

∣

S1

= |KS1
+ 2L|,

where L := π∗(KX)|S1
is a nef and big divisor on S1. If |L| gives a birational map,

then so does |KS1
+ 2L|. Otherwise, |L| gives a generically finite map of degree

≥ 2. Noting that h0(S1, L) ≥ pg(X) − 1 ≥ 4, we have L2 ≥ 2(h0(S1, L) − 2) ≥ 4.

If |KS1
+ 2L| doesn’t give a birational map, then there is a free pencil of curves on

S1 with a general irreducible element C such that 2L ·C ≤ 2 according to Reider’s

result ([18, Corollary 2]). The only possibility is L · C = 1. On the other hand,

L · C ≥ 2 since |L| gives a generically finite map on C and C is a curve of genus

≥ 2. The contradiction shows that

Φ|KS1
+2L|

is birational. Therefore φ4 is birational. �

Theorem 1.4. Let X be a minimal projective Gorenstein 3-fold of general type

with only locally factorial terminal singularities. Suppose pg(X) ≥ 41 and X is not

φ4-standard. If dimφ1(X) = 1, then φ4 is birational.

Proof. In this case, W is a smooth projective curve. We have a fibration f : X ′ −→

W . Denote b := g(W ). Let F be a general fiber of f . Then F is a smooth
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projective surface of general type. In general position, S1 can split into a sum of

different fibers, i.e.

S1 ∼lin

a
∑

i=1

Fi,

where a ≥ pg(X)− 1. The vanishing theorem gives the surjective map

H0(X ′,KX′ + 2π∗(KX) +
∑

Fi) −→ ⊕ai=1H
0(Fi,KFi

+ 2π∗(KX)|Fi
) −→ 0.

This means that φ4 can distinguish general different fbers of f . In order to prove

the theorem, it is sufficient to verify the birationality of φ4|F for a general fiber F .

Denote F := π(F ). Then M1 ∼num aF . Noting that F
2
is a quasi effective 1-cycle

on X, we have KX ·F
2
≥ 0. Let σ : F −→ F0 be the contraction onto the minimal

model F0 of F .

Suppose KX · F
2
= 0. Then we have

OF (π
∗(KX)|F ) ∼= OF (σ

∗(KF0
)) (1.2)

according to [6, Lemma 2.3]. We have

π∗(KX) ∼num aF + E′.

Thus

π∗(KX)− F −
1

a
E′ ∼num (1−

1

a
)π∗(KX)

is a nef and big Q-divisor, since a > 1 under the condition of the theorem. Denote

G := pπ∗(KX)−
1

a
E′

q.

The Kawamata-Viehweg vanishing theorem yields

|KX′ + 2π∗(KX) +G|
∣

∣

F
=
∣

∣ KF + 2L+G|F
∣

∣, (1.3)

where L := π∗(KX)|F ∼lin σ
∗(KF0

). We can see that

G|F = p(1−
1

a
)E′

q|F

is an effective divisor. Because X is not φ4-standard, F can’t be a surface with

(K2
F0
, pg(F )) = (1, 2). If (K2

F0
, pg(F )) 6= (2, 3), then Φ|3KF | is birational. Since

Φ|KF+2L| = Φ|3KF |,

we see that φ4|F is birational and so is φ4. If (K2
F0
, pg(F )) = (2, 3), we can show

that

Φ|KF+2L+G|F |
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is birational. In fact, we have

KF + 2L+G|F ≥ KF + 2L+ p(1−
1

a
)E′|F q,

where

(1−
1

a
)E′|F ∼num (1−

1

a
)π∗(KX)|F

is a nef and big Q-divisor. It is well known that |σ∗(KF0
)| gives a generically finite

map ([1]). For simplicity, we can suppose the movable part of |σ∗(KF0
)| is base

point free and C is a general member in the movable part of this system. It’s

sufficient to prove the birationality of

Φ|KF+2L+p(1− 1

a
)E′|F q||C .

We study the system

|KF + L+ p(1−
1

a
)E′|F q+ C|.

The vanishing theorem gives

|KF + L+ p(1−
1

a
)E′|F q+ C|

∣

∣

C
=
∣

∣ KC + L|C +D
∣

∣,

where deg(L|C) ≥ 2 and D is a divisor of degree > 0. Obviously,
∣

∣ KC +L|C +D
∣

∣

gives an embedding. Thus φ4|F is birational and so is φ4.

Suppose KX · F
2
> 0. We want to show that φ4|F is also birational. In this

case, (1.2) doesn’t hold. However, we still have (1.3). First we have to study |2L|.

We claim that |2L| gives a generically finite map whenever pg(X) ≥ 41. Suppose

M2 is the movable part of |2KX′ |. Then M2 ≤ 2π∗(KX). It’s obvious that

KX′ +G ≤ 2KX′ .

Denote by M ′
2 the movable part of |KX′ + G|. Then M ′

2 ≤ M2. The Kawamata-

Viehweg vanishing theorem gives the surjective map

H0(X ′,KX′ +G)
α

−→ H0(F,KF +G|F ) −→ 0.

We also have a natural map

H0(X ′,M ′
2)

β
−→ H0(F,M ′

2|F ).

When pg(X) ≥ 41, we have pg(F ) ≥ q(F ) ≥ 5 by [7, Theorem 2(3)]. Thus |KF |

can’t be composed of a pencil of curves according to [22]. Denote by H the movable

part of |KF |. We have

h0(F,M ′
2|F ) ≥ dimCim(β)

=dimCim(α) = h0(F,KF +G|F ).
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Whereas,M ′
2|F ≤ KF +G|F . We see that H ≤M ′

2|F . Thus |M2|F | is not composed

of a pencil of curves and neither is |2L|. We have H ≤ 2L. If |H| already gives a

birational map, so does |KF + 2L+G|F |. Otherwise,

2L ·H ≥ H2 ≥ 2(pg(F )− 2) ≥ 6.

Thus L ·H ≥ 3. For simplicity, we can suppose |H| is base point free. This means

that we can take H be a smooth curve. Using the vanishing theorem again, we

have

|KF + p(1−
1

a
)E′|F q+H|

∣

∣

H
= |KH +D0|,

where D0 is a divisor on the curve H with

deg(D0) ≥ (1−
1

a
)E′|F ·H = (1−

1

a
)L ·H > 2.

So KH +D0 is very ample. Noting that

KF + p(1−
1

a
)E′|F q+H ≤ KF +G|F + 2L,

we see that Φ|KF+G|F+2L||H is birational and so is Φ|KF+G|F+2L|. This shows that

φ4 is birational. �

Theorem 1.5. Let X be a minimal projective Gorenstein 3-fold of general type

with only locally factorial terminal singularities. Suppose pg(X) ≥ 5 and X is not

φ4-semi-standard. If dimφ1(X) = 2, then φ4 is birational.

Proof. In this case, we have a fibration f : X ′ −→ W onto a normal projective

surface W . Let C be a general fiber of f . Because X is not φ4-semi-standard, C is

a smooth curve of genus ≥ 3. We can see that

S1|S1
∼lin

a2
∑

i=1

Ci ∼num a2C,

where a2 ≥ pg(X) − 2 ≥ 3 and we take C be a smooth fiber contained in S1.

Note that a general member S1 is a smooth projective surface of general type. The

vanishing theorem gives

|KX′ + 2π∗(KX) + S1|
∣

∣

S1

= |KS1
+ 2L|,

where L := π∗(KX)|S1
is nef and big and

h0(S1, L) ≥ h0(S1, S1|S1
) ≥ pg(X)− 1.

Suppose |L| is not composed of a pencil of curves. If |L| gives a birational map,

so does |KS1
+ 2L|. Otherwise,

L2 ≥ 2(h0(S1, L)− 2) ≥ 4.
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If |KS1
+ 2L| doesn’t give a birational map, according to Reider, there is a free

pencil on S1 with a general irreducible member C such that 2L ·C ≤ 2. This means

L ·C = 1. This is impossible, because |L| gives a finite map on C and C is a curve

of genus ≥ 2. Thus Φ|KS1
+2L| is birational. So φ4 is birational.

Suppose |L| is composed of a pencil of curves. Since

L ≥ S1|S1
,

we can see that a generic irreducible element of the movable part of |L| is a smooth

fiber C contained in S1. We have

L2 ≥ L · S1|S1
≥ a2 ≥ 3.

If |KS1
+ 2L| doesn’t give a birational map, according to Reider, there is a free

pencil on S1 with a general irreducible element C such that 2L · C ≤ 2. The only

possibility is L · C = 1. Obviously, C should be algebraically equivalent to C.

Otherwise, dimΦ|L|(C) = 1. Which means L · C ≥ 2, since C is a curve of genus

≥ 2. Therefore we have seen that C is actually a fiber of f . So we should have

L · C = 1. We want to derive a contradiction by proving that L · C ≥ 2. We can

write

L ∼lin S1|S1
+ J

∼num a2C + J,

where J is an effective divisor on S1 and C is contained in S1. So

L− C −
1

a2
J ∼num (1−

1

a2
)L

is a nef and big Q-divisor. Considering the system

|KS1
+ L+ pL−

1

a2
Jq|,

we get from the Kawamata-Viehweg vanishing theorem that

|KS1
+ L+ pL−

1

a2
Jq|

∣

∣

C
=
∣

∣ KC + L|C + pL−
1

a2
Jq|C

∣

∣ .

We shall use a parallel analysis to the one in the proof of Theorem 1.4. Denote by

M4 the movable part of |4KX′ |. Then M4 ≤ 4π∗(KX). Denote by M ′
4 the movable

part of

|KX′ + 2π∗(KX) + S1|.

Then M ′
4 ≤M4. Denote by N the movable part of |KS1

+ 2L|. We have the exact

sequence

H0(X ′,KX′ + 2π∗(KX) + S1)
α1−→ H0(S1,KS1

+ 2L) −→ 0
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and the natural map

H0(X ′,M ′
4)

β1

−→ H0(S1,M
′
4|S1

).

Since M ′
4|S1

≤ KS1
+ 2L and

h0(S1,M
′
4|S1

) ≥ dimCim(β1)

=dimCim(α1) = h0(S1,KS1
+ 2L),

we see that M ′
4|S1

≥ N . Denote by N ′ the movable part of

|KS1
+ L+ pL−

1

a2
Jq|.

Then N ≥ N ′. We have the surjective map

H0(S1,KS1
+ L+ pL−

1

a2
Jq)

ρ
−→

H0(C,KC + L|C + pL−
1

a2
Jq|C) −→ 0

and the natural map

H0(S1, N
′)

ψ
−→ H0(C,N ′|C).

So

h0(C,N ′|C) ≥ dimCim(ψ) = dimCim(ρ)

=h0(KC + L|C + pL−
1

a2
Jq|C).

Since

(L−
1

a2
J) · C = (1−

1

a2
)L · C > 0,

we see that

h0(KC + L|C + pL−
1

a2
Jq|C) ≥ g(C) + 1.

Thus h0(C,N ′|C) ≥ g(C)+1. The R-R on C shows at once that N ′ ·C ≥ 2g(C) ≥ 6,

because g(C) ≥ 3. Thus we have

4π∗(KX)|S1
· C ≥ N ′ · C ≥ 6.

We get L · C ≥ 2, a contradiction. Thus |KS1
+ 2L| gives a birational map and so

φ4 is birational. �

Theorems 1.3, 1.4 and 1.5 directly imply (i) and (ii) of Theorem 1.
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Theorem 1.6. Let X be a minimal projective Gorenstein 3-fold of general type

with only locally factorial terminal singularities. Then φ4 is generically finite.

Proof. Since we are treating the general case without any assumption on pg(X), we

can’t consider the canonical map. However we have p2(X) ≥ 4 according to (1.1).

So we can study φ2.

Set

2KX ∼lin M2 + Z2,

where M2 is the movable part of |2KX | and Z2 the fixed one. Taking the birational

modification π2 : X ′ −→ X, according to Hironaka, such that

(1) X ′ is smooth;

(2) the movable part of |2π∗
2(KX)| is base point free;

(3) both π∗
2(2KX) and π∗

2(4KX) have supports with only normal crossings.

Denote by g2 the composition φ2 ◦ π2. So

g2 : X ′ −→W ′
2 ⊆ PP2(X)−1

is a morphism. Let

g2 : X ′ f2
−→W2

s2−→W ′
2

be the Stein factorization of g2. We can write

π∗
2(M2) ∼lin S2 + E2,

where S2 is the movable part. Then we have

π∗
2(2KX) ∼lin S2 + E′

2,

where E′
2 = E2 + π∗

2(Z2) is the fixed part of |π∗
2(2KX)|. We only have to consider

the case when dimφ2(X) < 3.

Suppose dimφ2(X) = 1. We have a fibration f2 : X ′ −→ W2 onto a smooth

curve W2. A general fiber F of f2 is a smooth projective surface of general type.

Because 2KX′ ≤ 4KX′ , φ4 can distinguish different fibers of g2. In order to prove

the generic finiteness of φ4, it is sufficient to show that φ4|F is generically finite for

a general fiber of f2 since s2 is a finite map. We can write

S2 ∼lin

a2
∑

i=1

Fi,

where a2 ≥ P2(X)− 1 and the F ′
is are fibers of f2. The vanishing theorem gives

|KX′ + π∗
2(KX) + S2|

∣

∣

S2

= |KS2
+ L2|,

where L2 := π∗
2(KX)|S2

. According to [16, Claim 9.1], we have

OS2
(π∗

2(KX)|S2
) ∼= OS2

(σ∗
2(KS0

))
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where σ2 : S2 −→ S0 is the contraction onto the minimal model S0 of S2. Thus

KS2
+ L2 ∼lin KS2

+ σ∗
2(KS0

)

and so

Φ|KS2
+L2| = Φ|2KS2

|.

From Theorem 3.1 of [6], we know that S2 can’t be a surface with pg = q = 0. By

[21, Theorem 1], Φ|2KS2
| is generically finite. Thus φ4 is generically finite.

Suppose dimφ2(X) = 2. We want to derive a contradiction assuming that φ4 is

not generically finite. We consider the following two natural maps

H0(X ′, 4π∗
2(KX))

α4−→ Λ4 ⊆ H0(S2, 4L) (1.4)

H0(X ′, 2π∗
2(KX))

α2−→ Λ2 ⊆ H0(S2, 2L),

where Λi is the image of αi for i = 2, 4. By our assumption, Λ4 should be composed

of a pencil of curves on the surface S2. On the other hand, it’s obvious that Λ2 ⊆ Λ4

and

Λ2 =
∣

∣ S2|S2

∣

∣ .

Noting that
∣

∣ S2|S2

∣

∣ is a free pencil, we can see that, in this situation, the movable

part of Λ4 is also base point free and that both Λ2 and Λ4 have the same generic

irreducible element. Because the movable part of Λ4 is base point free, there is a

divisor H4 (movable part of Λ4) in S2 such that |H4| ⊂ Λ4 and

h0(S2, H4) = dimCΛ4.

(One should note that Λ4 is not a complete linear system in general.) We can write

S2|S2
∼lin

b2
∑

i=1

Ci ∼num b2C,

where b2 ≥ P2(X) − 2, the C ′
is are fibers of f2 and C is a smooth fiber of f2

contained in S2. Then we have H4 ∼num b4C, where b4 ≥ dimCΛ4−1 and we think

of Λ4 as a C-vector space. The vanishing theorem gives that

|KX′ + π∗
2(KX) + S2|

∣

∣

S2

= |KS2
+ L2|,

where L2 := π∗
2(KX)|S2

. It is obvious that

KS2
+ L2 ≥ 2L2 ≥ S2|S2

.

This means that Φ|KS2
+L2| can distinguish different fibers of ΦΛ2

. For a generic C

contained in S2, we want to study Φ|KS2
+L2||C in order to derive a contradiction.
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If dimCΛ4 ≥ 6, i.e. h0(S2, H4) ≥ 6, then we can see that b4 ≥ 5. Noting that

H4 ≤ 4L2, we have

4L2 ∼num b4C + Z4,

where Z4 is an effective divisor. Thus

L2 ∼num
b4

4
C +

1

4
Z4

and

L2 − C −
1

b4
Z4 ∼num (1−

4

b4
)L2

is a nef and big Q-divisor on S2. Thus the vanishing theorem yields

|KS2
+ pL2 −

1

b4
Z4q|

∣

∣

C
= |KC +D|,

where

deg(D) ≥ (L2 −
1

b4
Z4) · C = (1−

4

b4
)L2 · C > 0.

So |KC +D| gives a finite map on C. Noting that

KS2
+ pL2 −

1

b4
Z4q ≤ KS2

+ L2,

we see that Φ|KS2
+L2||C is finite and so Φ|KS2

+L2| is generically finite. This means

φ4 is generically finite, a contradiction.

If dimCΛ4 ≤ 5, because P4(X) ≥ 21 by (1.1), we see from the map (1.4) that

|4π∗
2(KX)− 4S2| 6= ∅.

So we can write

4π∗
2(KX) ∼lin 4S2 +G4,

where G4 is an effective divisor. Thus

π∗
2(KX) ∼num S2 +

1

4
G4

L2 = π∗
2(KX) ∼num S2|S2

+
1

4
G4|S2

∼num b2C +
1

4
G4|S2

,

where b2 ≥ P2(X)− 2 ≥ 2. We have that

L2 − C −
1

4b2
G4|S2

∼num (1−
1

b2
)L2
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is a nef and big Q-divisor. The vanishing theorem gives

|KS2
+ pL2 −

1

4b2
G4|S2

q|
∣

∣

C
= |KC +D′|,

where

deg(D′) ≥ (L2 −
1

4b2
G4|S2

) · C = (1−
1

b2
)L2 · C > 0.

This means that |KC +D′| gives a finite map on C. Noting that

|KS2
+ pL2 −

1

4b2
G4|S2

q| ⊆ |KS2
+ L2|,

we see that |KS2
+L2| gives a generically finite map and so that φ4 is also generically

finite, a contradiction.

In a word, φ4 is generically finite. �

Example 1.7. The assumption pg(X) ≥ 5 is sharp in Theorem 1.2. There is

a trivial example with pg(X) = 4 and K3
X = 2 on which dimφ1(X) = 3 and

φ4 is a finite map of degree 2. On P3
C
, take a smooth hypersurface S of degree 10.

S ∼lin 10H. Let X be a double cover over P3 with branch locus along S. Then X is

a nonsingular canonical model, K3
X = 2 and pg(X) = 4 and φ1 is a finite morphism

onto P3 of degree 2. One can easily check that φ4 is also a finite morphism of degree

2.
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