THE ϕ_4 OF GORENSTEIN 3-FOLDS OF GENERAL TYPE

MENG CHEN

Introduction

This paper is devoted to the birational classification of algebraic Gorenstein 3folds. Let X be a minimal projective Gorenstein 3-fold of general type with only locally factorial terminal singularities. According to [2], [5, 6], [9], [15], [16] and [20], we have the following theorem.

THEOREM 0. Suppose X is a minimal projective Gorenstein 3-fold of general type with only locally factorial terminal singularities. Then the following holds:

(i) the m-canonical map ϕ_m is a birational morphism for all $m \ge 6$.

(ii) ϕ_5 is birational with possible exception for $K_X^3 = 2$ and $p_g(X) \leq 2$. ϕ_5 is a generically finite morphism. (No counter examples found yet to the birationality of ϕ_5 .)

Naturally one wants to know the behavior of ϕ_m ($m \leq 4$). We observed that some people have been studying the base point freeness of $|4K_X|$. We are more curious about some birational properties of ϕ_4 . Our approach is different from theirs.

In order to make our statement simpler, let us first fix the terminologies. X is refered to as ϕ_4 -standard if there exists a fibration $f: X' \longrightarrow C$ onto a projective curve C, where X' is birationally equivalent to X and the general fiber of f is a smooth projective surface of general type with invariants $K^2 = 1$ and $p_g = 2$. X is called ϕ_4 -semi-standard if X is fibred by curves of genus two, i.e. there is a fibration $g: X' \longrightarrow W$ onto a normal projective surface W where X' is birationally equivalent to X and the general fiber of g is a smooth projective curve of genus two. If X is ϕ_4 -standard, one can easily see that X is ϕ_4 -semi-standard by taking the relatively canonical map of f.

It is well known that the 4-canonical map of a smooth projective surface of general type is birational if and only if $(K^2, p_g) \neq (1, 2)$. This leads to the trivial fact that, if X is ϕ_4 -standard, the 4-canonical map ϕ_4 of X fails to be birational. A very natural question is whether the converse is true. In this paper, we would like to study this problem and to show that the converse is true under some reasonable

¹⁹⁹¹ Mathematics Subject Classification. 14E05, 14C20, 14Q15.

Project partially supported by both the **NNSFC** and the post-doc fellowship of the Georg-August-Universität Göttingen.

conditions. Another natural question is whether ϕ_4 is always generically finite. If one can verify the base point freeness of $|4K_X|$, then ϕ_4 is automatically generically finite. We shall study in an alternative way giving a direct and elementary proof. Our results are as follows.

THEOREM 1. Let X be a minimal projective Gorenstein 3-fold of general type with only locally factorial terminal singularities. The following holds.

(i) Suppose $p_g(X) \ge 41$ and $\dim \phi_1(X) \ne 2$. Then ϕ_4 is birational if and only if X is not ϕ_4 -standard.

(ii) Suppose $p_g(X) \ge 41$ and X is not ϕ_4 -semi-standard. Then ϕ_4 is birational. (iii) ϕ_4 is generically finite.

Throughout the ground field is assumed to be algebraically closed of characteristic 0. For a Q-divisor D on a smooth variety V, we denote by $\lceil D \rceil$ the round-up of D, which is the minimum integral divisor such that $\lceil D \rceil - D \ge 0$. \sim_{lin} means linear equivalence. \sim_{num} means numerical equivalence.

I would like to thank F. Catanese for fruitful discussions during my preparation for this note. Special thanks are due to hospital faculty members of the Mathematisches Institut der Universität Göttingen.

1. Proof of the main theorem

DEFINITION 1.1. A normal variety X is called *Gorenstein* if the dualizing sheaf ω_X is invertible and X is Cohen-Macaulay.

We refer to [17] for the definitions of canonical, terminal singularities.

Let X be a minimal projective Gorenstein 3-fold of general type with only locally factorial terminal singularities. It is well known that K_X^3 is a positive even integer, $\chi(\mathcal{O}_X) < 0$ and that

$$P_m(X) := h^0(X, \mathcal{O}_X(mK_X)) = (2m-1)\left[\frac{m(m-1)}{12}K_X^3 - \chi(\mathcal{O}_X)\right].$$
(1.1)

Suppose $p_q(X) \ge 2$. We can define the canonical map ϕ_1 . Set

$$K_X \sim_{\text{lin}} M_1 + Z_1,$$

where M_1 is the movable part of $|K_X|$ and Z_1 the fixed one. Taking the birational modification $\pi: X' \longrightarrow X$, according to Hironaka, such that

(1) X' is smooth;

(2) the movable part of $|\pi^*(K_X)|$ is base point free;

(3) $\pi^*(K_X)$ has supports with only normal crossings.

Denote by g the composition $\phi_1 \circ \pi$. So

$$g: X' \longrightarrow W' \subseteq \mathbb{P}^{p_g(X)-1}$$

is a morphism. Let

$$g: X' \stackrel{f}{\longrightarrow} W \stackrel{s}{\longrightarrow} W'$$

be the Stein factorization of g. We can write

$$\pi^*(M_1) \sim_{\text{lin}} S_1 + E_1,$$

where S_1 is the movable part. Then we have

$$\pi^*(K_X) \sim_{\text{lin}} S_1 + E',$$

where $E' = E_1 + \pi^*(Z_1)$ is the fixed part of $|\pi^*(K_X)|$. We note that $1 \leq \dim(W) \leq 3$. We shall formulate our proof according to $\dim(W)$.

REMARK 1.2. Although [5], [6] and [16] only treated smooth minimal 3-folds, the method is still effective for Gorenstein minimal 3-folds. In order to avoid unnecessary redundancy, we would like to cite several basic facts from there without giving the proof.

THEOREM 1.3. Let X be a minimal projective Gorenstein 3-fold of general type with only locally factorial terminal singularities. Suppose $p_g(X) \ge 5$. If dim $\phi_1(X) = 3$, then ϕ_4 is birational.

Proof. It's obvious that a general member S_1 is a smooth projective surface of general type. Because $p_g(X) > 0$, it is sufficient to verify the birationality for $\phi_4|_{S_1}$ by virtue of the Tankeev principle. We consider the system

$$|K_{X'} + 2\pi^*(K_X) + S_1|.$$

The vanishing theorem gives

$$|K_{X'} + 2\pi^*(K_X) + S_1||_{S_1} = |K_{S_1} + 2L|,$$

where $L := \pi^*(K_X)|_{S_1}$ is a nef and big divisor on S_1 . If |L| gives a birational map, then so does $|K_{S_1} + 2L|$. Otherwise, |L| gives a generically finite map of degree ≥ 2 . Noting that $h^0(S_1, L) \geq p_g(X) - 1 \geq 4$, we have $L^2 \geq 2(h^0(S_1, L) - 2) \geq 4$. If $|K_{S_1} + 2L|$ doesn't give a birational map, then there is a free pencil of curves on S_1 with a general irreducible element C such that $2L \cdot C \leq 2$ according to Reider's result ([18, Corollary 2]). The only possibility is $L \cdot C = 1$. On the other hand, $L \cdot C \geq 2$ since |L| gives a generically finite map on C and C is a curve of genus ≥ 2 . The contradiction shows that

$$\Phi_{|K_{S_1}+2L|}$$

is birational. Therefore ϕ_4 is birational. \Box

THEOREM 1.4. Let X be a minimal projective Gorenstein 3-fold of general type with only locally factorial terminal singularities. Suppose $p_g(X) \ge 41$ and X is not ϕ_4 -standard. If dim $\phi_1(X) = 1$, then ϕ_4 is birational.

Proof. In this case, W is a smooth projective curve. We have a fibration $f: X' \longrightarrow W$. Denote b := g(W). Let F be a general fiber of f. Then F is a smooth

projective surface of general type. In general position, S_1 can split into a sum of different fibers, i.e.

$$S_1 \sim_{\lim} \sum_{i=1}^a F_i,$$

where $a \ge p_g(X) - 1$. The vanishing theorem gives the surjective map

$$H^0(X', K_{X'} + 2\pi^*(K_X) + \sum F_i) \longrightarrow \bigoplus_{i=1}^a H^0(F_i, K_{F_i} + 2\pi^*(K_X)|_{F_i}) \longrightarrow 0.$$

This means that ϕ_4 can distinguish general different fibers of f. In order to prove the theorem, it is sufficient to verify the birationality of $\phi_4|_F$ for a general fiber F. Denote $\overline{F} := \pi(F)$. Then $M_1 \sim_{\text{num}} a\overline{F}$. Noting that \overline{F}^2 is a quasi effective 1-cycle on X, we have $K_X \cdot \overline{F}^2 \ge 0$. Let $\sigma : F \longrightarrow F_0$ be the contraction onto the minimal model F_0 of F.

Suppose $K_X \cdot \overline{F}^2 = 0$. Then we have

$$\mathcal{O}_F(\pi^*(K_X)|_F) \cong \mathcal{O}_F(\sigma^*(K_{F_0})) \tag{1.2}$$

according to [6, Lemma 2.3]. We have

$$\pi^*(K_X) \sim_{\text{num}} aF + E'.$$

Thus

$$\pi^*(K_X) - F - \frac{1}{a}E' \sim_{\text{num}} (1 - \frac{1}{a})\pi^*(K_X)$$

is a nef and big \mathbb{Q} -divisor, since a > 1 under the condition of the theorem. Denote

$$G := \lceil \pi^*(K_X) - \frac{1}{a}E' \rceil.$$

The Kawamata-Viehweg vanishing theorem yields

$$|K_{X'} + 2\pi^*(K_X) + G||_F = |K_F + 2L + G|_F|, \qquad (1.3)$$

where $L := \pi^*(K_X)|_F \sim_{\text{lin}} \sigma^*(K_{F_0})$. We can see that

$$G|_F = \lceil (1 - \frac{1}{a})E' \rceil|_F$$

is an effective divisor. Because X is not ϕ_4 -standard, F can't be a surface with $(K_{F_0}^2, p_g(F)) = (1, 2)$. If $(K_{F_0}^2, p_g(F)) \neq (2, 3)$, then $\Phi_{|3K_F|}$ is birational. Since

$$\Phi_{|K_F+2L|} = \Phi_{|3K_F|},$$

we see that $\phi_4|_F$ is birational and so is ϕ_4 . If $(K_{F_0}^2, p_g(F)) = (2,3)$, we can show that

$$\Phi_{|K_F+2L+G|_F|}$$

is birational. In fact, we have

$$K_F + 2L + G|_F \ge K_F + 2L + \lceil (1 - \frac{1}{a})E'|_F \rceil,$$

where

$$(1-\frac{1}{a})E'|_F \sim_{\text{num}} (1-\frac{1}{a})\pi^*(K_X)|_F$$

is a nef and big \mathbb{Q} -divisor. It is well known that $|\sigma^*(K_{F_0})|$ gives a generically finite map ([1]). For simplicity, we can suppose the movable part of $|\sigma^*(K_{F_0})|$ is base point free and C is a general member in the movable part of this system. It's sufficient to prove the birationality of

$$\Phi_{|K_F+2L+\lceil (1-\frac{1}{a})E'|_F\rceil|}|_C.$$

We study the system

$$|K_F + L + \lceil (1 - \frac{1}{a})E'|_F \rceil + C|.$$

The vanishing theorem gives

$$|K_F + L + \lceil (1 - \frac{1}{a})E'|_F \rceil + C||_C = |K_C + L|_C + D|,$$

where $\deg(L|_C) \ge 2$ and D is a divisor of degree > 0. Obviously, $|K_C + L|_C + D|$ gives an embedding. Thus $\phi_4|_F$ is birational and so is ϕ_4 .

Suppose $K_X \cdot \overline{F}^2 > 0$. We want to show that $\phi_4|_F$ is also birational. In this case, (1.2) doesn't hold. However, we still have (1.3). First we have to study |2L|. We claim that |2L| gives a generically finite map whenever $p_g(X) \ge 41$. Suppose M_2 is the movable part of $|2K_{X'}|$. Then $M_2 \le 2\pi^*(K_X)$. It's obvious that

$$K_{X'} + G \le 2K_{X'}.$$

Denote by M'_2 the movable part of $|K_{X'} + G|$. Then $M'_2 \leq M_2$. The Kawamata-Viehweg vanishing theorem gives the surjective map

$$H^0(X', K_{X'} + G) \xrightarrow{\alpha} H^0(F, K_F + G|_F) \longrightarrow 0.$$

We also have a natural map

$$H^0(X', M'_2) \xrightarrow{\beta} H^0(F, M'_2|_F)$$

When $p_g(X) \ge 41$, we have $p_g(F) \ge q(F) \ge 5$ by [7, Theorem 2(3)]. Thus $|K_F|$ can't be composed of a pencil of curves according to [22]. Denote by H the movable part of $|K_F|$. We have

$$h^{0}(F, M'_{2}|_{F}) \ge \dim_{\mathbb{C}} im(\beta)$$

=dim_{\mathbb{C}} im(\alpha) = h^{0}(F, K_{F} + G|_{F}).

Whereas, $M'_2|_F \leq K_F + G|_F$. We see that $H \leq M'_2|_F$. Thus $|M_2|_F|$ is not composed of a pencil of curves and neither is |2L|. We have $H \leq 2L$. If |H| already gives a birational map, so does $|K_F + 2L + G|_F|$. Otherwise,

$$2L \cdot H \ge H^2 \ge 2(p_q(F) - 2) \ge 6.$$

Thus $L \cdot H \ge 3$. For simplicity, we can suppose |H| is base point free. This means that we can take H be a smooth curve. Using the vanishing theorem again, we have

$$|K_F + \lceil (1 - \frac{1}{a})E'|_F \rceil + H||_H = |K_H + D_0|,$$

where D_0 is a divisor on the curve H with

$$\deg(D_0) \ge (1 - \frac{1}{a})E'|_F \cdot H = (1 - \frac{1}{a})L \cdot H > 2.$$

So $K_H + D_0$ is very ample. Noting that

$$K_F + \lceil (1 - \frac{1}{a})E' |_F \rceil + H \le K_F + G|_F + 2L_F$$

we see that $\Phi_{|K_F+G|_F+2L|}|_H$ is birational and so is $\Phi_{|K_F+G|_F+2L|}$. This shows that ϕ_4 is birational. \Box

THEOREM 1.5. Let X be a minimal projective Gorenstein 3-fold of general type with only locally factorial terminal singularities. Suppose $p_g(X) \ge 5$ and X is not ϕ_4 -semi-standard. If dim $\phi_1(X) = 2$, then ϕ_4 is birational.

Proof. In this case, we have a fibration $f : X' \longrightarrow W$ onto a normal projective surface W. Let C be a general fiber of f. Because X is not ϕ_4 -semi-standard, C is a smooth curve of genus ≥ 3 . We can see that

$$S_1|_{S_1} \sim_{\text{lin}} \sum_{i=1}^{a_2} C_i \sim_{\text{num}} a_2 C,$$

where $a_2 \ge p_g(X) - 2 \ge 3$ and we take C be a smooth fiber contained in S_1 . Note that a general member S_1 is a smooth projective surface of general type. The vanishing theorem gives

$$|K_{X'} + 2\pi^*(K_X) + S_1||_{S_1} = |K_{S_1} + 2L|,$$

where $L := \pi^*(K_X)|_{S_1}$ is nef and big and

$$h^0(S_1, L) \ge h^0(S_1, S_1|_{S_1}) \ge p_g(X) - 1.$$

Suppose |L| is not composed of a pencil of curves. If |L| gives a birational map, so does $|K_{S_1} + 2L|$. Otherwise,

$$L^2 \ge 2(h^0(S_1, L) - 2) \ge 4.$$

If $|K_{S_1} + 2L|$ doesn't give a birational map, according to Reider, there is a free pencil on S_1 with a general irreducible member \overline{C} such that $2L \cdot \overline{C} \leq 2$. This means $L \cdot \overline{C} = 1$. This is impossible, because |L| gives a finite map on \overline{C} and \overline{C} is a curve of genus ≥ 2 . Thus $\Phi_{|K_{S_1}+2L|}$ is birational. So ϕ_4 is birational.

Suppose |L| is composed of a pencil of curves. Since

$$L \ge S_1|_{S_1},$$

we can see that a generic irreducible element of the movable part of |L| is a smooth fiber C contained in S_1 . We have

$$L^2 \ge L \cdot S_1|_{S_1} \ge a_2 \ge 3.$$

If $|K_{S_1} + 2L|$ doesn't give a birational map, according to Reider, there is a free pencil on S_1 with a general irreducible element \overline{C} such that $2L \cdot \overline{C} \leq 2$. The only possibility is $L \cdot \overline{C} = 1$. Obviously, \overline{C} should be algebraically equivalent to C. Otherwise, dim $\Phi_{|L|}(\overline{C}) = 1$. Which means $L \cdot \overline{C} \geq 2$, since \overline{C} is a curve of genus ≥ 2 . Therefore we have seen that \overline{C} is actually a fiber of f. So we should have $L \cdot C = 1$. We want to derive a contradiction by proving that $L \cdot C \geq 2$. We can write

$$L \sim_{\lim} S_1|_{S_1} + J$$
$$\sim_{\operatorname{num}} a_2 C + J,$$

where J is an effective divisor on S_1 and C is contained in S_1 . So

$$L - C - \frac{1}{a_2}J \sim_{\text{num}} (1 - \frac{1}{a_2})L$$

is a nef and big \mathbb{Q} -divisor. Considering the system

$$|K_{S_1} + L + \lceil L - \frac{1}{a_2}J\rceil|,$$

we get from the Kawamata-Viehweg vanishing theorem that

$$|K_{S_1} + L + \lceil L - \frac{1}{a_2}J\rceil||_C = |K_C + L|_C + \lceil L - \frac{1}{a_2}J\rceil|_C|.$$

We shall use a parallel analysis to the one in the proof of Theorem 1.4. Denote by M_4 the movable part of $|4K_{X'}|$. Then $M_4 \leq 4\pi^*(K_X)$. Denote by M'_4 the movable part of

$$|K_{X'} + 2\pi^*(K_X) + S_1|.$$

Then $M'_4 \leq M_4$. Denote by N the movable part of $|K_{S_1} + 2L|$. We have the exact sequence

$$H^0(X', K_{X'} + 2\pi^*(K_X) + S_1) \xrightarrow{\alpha_1} H^0(S_1, K_{S_1} + 2L) \longrightarrow 0$$

and the natural map

$$H^0(X', M'_4) \xrightarrow{\beta_1} H^0(S_1, M'_4|_{S_1}).$$

Since $M'_4|_{S_1} \leq K_{S_1} + 2L$ and

$$h^{0}(S_{1}, M'_{4}|_{S_{1}}) \ge \dim_{\mathbb{C}} im(\beta_{1})$$

= $\dim_{\mathbb{C}} im(\alpha_{1}) = h^{0}(S_{1}, K_{S_{1}} + 2L),$

we see that $M'_4|_{S_1} \ge N$. Denote by N' the movable part of

$$|K_{S_1} + L + \lceil L - \frac{1}{a_2}J\rceil|.$$

Then $N \ge N'$. We have the surjective map

$$H^{0}(S_{1}, K_{S_{1}} + L + \lceil L - \frac{1}{a_{2}}J^{\rceil}) \xrightarrow{\rho} H^{0}(C, K_{C} + L|_{C} + \lceil L - \frac{1}{a_{2}}J^{\rceil}|_{C}) \longrightarrow 0$$

and the natural map

$$H^0(S_1, N') \xrightarrow{\psi} H^0(C, N'|_C).$$

So

$$h^{0}(C, N'|_{C}) \geq \dim_{\mathbb{C}} im(\psi) = \dim_{\mathbb{C}} im(\rho)$$
$$= h^{0}(K_{C} + L|_{C} + \lceil L - \frac{1}{a_{2}}J^{\gamma}|_{C}).$$

Since

$$(L - \frac{1}{a_2}J) \cdot C = (1 - \frac{1}{a_2})L \cdot C > 0,$$

we see that

$$h^{0}(K_{C} + L|_{C} + \lceil L - \frac{1}{a_{2}}J^{\rceil}|_{C}) \ge g(C) + 1.$$

Thus $h^0(C, N'|_C) \ge g(C) + 1$. The R-R on C shows at once that $N' \cdot C \ge 2g(C) \ge 6$, because $g(C) \ge 3$. Thus we have

$$4\pi^*(K_X)|_{S_1} \cdot C \ge N' \cdot C \ge 6.$$

We get $L \cdot C \geq 2$, a contradiction. Thus $|K_{S_1} + 2L|$ gives a birational map and so ϕ_4 is birational. \Box

Theorems 1.3, 1.4 and 1.5 directly imply (i) and (ii) of Theorem 1.

THEOREM 1.6. Let X be a minimal projective Gorenstein 3-fold of general type with only locally factorial terminal singularities. Then ϕ_4 is generically finite.

Proof. Since we are treating the general case without any assumption on $p_g(X)$, we can't consider the canonical map. However we have $p_2(X) \ge 4$ according to (1.1). So we can study ϕ_2 .

Set

$$2K_X \sim_{\text{lin}} M_2 + Z_2,$$

where M_2 is the movable part of $|2K_X|$ and Z_2 the fixed one. Taking the birational modification $\pi_2: X' \longrightarrow X$, according to Hironaka, such that

(1) X' is smooth;

(2) the movable part of $|2\pi_2^*(K_X)|$ is base point free;

(3) both $\pi_2^*(2K_X)$ and $\pi_2^*(4K_X)$ have supports with only normal crossings.

Denote by g_2 the composition $\phi_2 \circ \pi_2$. So

$$q_2: X' \longrightarrow W'_2 \subset \mathbb{P}^{P_2(X)-1}$$

is a morphism. Let

$$g_2: X' \xrightarrow{f_2} W_2 \xrightarrow{s_2} W'_2$$

be the Stein factorization of g_2 . We can write

$$\pi_2^*(M_2) \sim_{\text{lin}} S_2 + E_2,$$

where S_2 is the movable part. Then we have

$$\pi_2^*(2K_X) \sim_{\text{lin}} S_2 + E_2',$$

where $E'_2 = E_2 + \pi_2^*(Z_2)$ is the fixed part of $|\pi_2^*(2K_X)|$. We only have to consider the case when $\dim \phi_2(X) < 3$.

Suppose dim $\phi_2(X) = 1$. We have a fibration $f_2 : X' \longrightarrow W_2$ onto a smooth curve W_2 . A general fiber F of f_2 is a smooth projective surface of general type. Because $2K_{X'} \leq 4K_{X'}$, ϕ_4 can distinguish different fibers of g_2 . In order to prove the generic finiteness of ϕ_4 , it is sufficient to show that $\phi_4|_F$ is generically finite for a general fiber of f_2 since s_2 is a finite map. We can write

$$S_2 \sim_{\text{lin}} \sum_{i=1}^{a_2} F_i,$$

where $a_2 \ge P_2(X) - 1$ and the $F'_i s$ are fibers of f_2 . The vanishing theorem gives

$$|K_{X'} + \pi_2^*(K_X) + S_2||_{S_2} = |K_{S_2} + L_2|,$$

where $L_2 := \pi_2^*(K_X)|_{S_2}$. According to [16, Claim 9.1], we have

$$\mathcal{O}_{S_2}(\pi_2^*(K_X)|_{S_2}) \cong \mathcal{O}_{S_2}(\sigma_2^*(K_{S_0}))$$

where $\sigma_2: S_2 \longrightarrow S_0$ is the contraction onto the minimal model S_0 of S_2 . Thus

$$K_{S_2} + L_2 \sim_{\text{lin}} K_{S_2} + \sigma_2^*(K_{S_0})$$

and so

$$\Phi_{|K_{S_2}+L_2|} = \Phi_{|2K_{S_2}|}.$$

From Theorem 3.1 of [6], we know that S_2 can't be a surface with $p_g = q = 0$. By [21, Theorem 1], $\Phi_{|2K_{S_2}|}$ is generically finite. Thus ϕ_4 is generically finite.

Suppose $\dim \phi_2(X) = 2$. We want to derive a contradiction assuming that ϕ_4 is not generically finite. We consider the following two natural maps

$$H^{0}(X', 4\pi_{2}^{*}(K_{X})) \xrightarrow{\alpha_{4}} \Lambda_{4} \subseteq H^{0}(S_{2}, 4L)$$

$$H^{0}(X', 2\pi_{2}^{*}(K_{X})) \xrightarrow{\alpha_{2}} \Lambda_{2} \subseteq H^{0}(S_{2}, 2L),$$

$$(1.4)$$

where Λ_i is the image of α_i for i = 2, 4. By our assumption, Λ_4 should be composed of a pencil of curves on the surface S_2 . On the other hand, it's obvious that $\Lambda_2 \subseteq \Lambda_4$ and

$$\Lambda_2 = \mid S_2 \mid_{S_2} \mid .$$

Noting that $|S_2|_{S_2}|$ is a free pencil, we can see that, in this situation, the movable part of Λ_4 is also base point free and that both Λ_2 and Λ_4 have the same generic irreducible element. Because the movable part of Λ_4 is base point free, there is a divisor H_4 (movable part of Λ_4) in S_2 such that $|H_4| \subset \Lambda_4$ and

$$h^0(S_2, H_4) = \dim_{\mathbb{C}} \Lambda_4.$$

(One should note that Λ_4 is not a complete linear system in general.) We can write

$$S_2|_{S_2} \sim_{\text{lin}} \sum_{i=1}^{b_2} C_i \sim_{\text{num}} b_2 C,$$

where $b_2 \geq P_2(X) - 2$, the $C'_i s$ are fibers of f_2 and C is a smooth fiber of f_2 contained in S_2 . Then we have $H_4 \sim_{\text{num}} b_4 C$, where $b_4 \geq \dim_{\mathbb{C}} \Lambda_4 - 1$ and we think of Λ_4 as a \mathbb{C} -vector space. The vanishing theorem gives that

$$|K_{X'} + \pi_2^*(K_X) + S_2||_{S_2} = |K_{S_2} + L_2|,$$

where $L_2 := \pi_2^*(K_X)|_{S_2}$. It is obvious that

$$K_{S_2} + L_2 \ge 2L_2 \ge S_2|_{S_2}.$$

This means that $\Phi_{|K_{S_2}+L_2|}$ can distinguish different fibers of Φ_{Λ_2} . For a generic C contained in S_2 , we want to study $\Phi_{|K_{S_2}+L_2|}|_C$ in order to derive a contradiction.

If $\dim_{\mathbb{C}} \Lambda_4 \geq 6$, i.e. $h^0(S_2, H_4) \geq 6$, then we can see that $b_4 \geq 5$. Noting that $H_4 \leq 4L_2$, we have

$$4L_2 \sim_{\text{num}} b_4 C + Z_4$$

where Z_4 is an effective divisor. Thus

$$L_2 \sim_{\text{num}} \frac{b_4}{4}C + \frac{1}{4}Z_4$$

and

$$L_2 - C - \frac{1}{b_4} Z_4 \sim_{\text{num}} (1 - \frac{4}{b_4}) L_2$$

is a nef and big \mathbb{Q} -divisor on S_2 . Thus the vanishing theorem yields

$$|K_{S_2} + \lceil L_2 - \frac{1}{b_4} Z_4 \rceil||_C = |K_C + D|,$$

where

$$\deg(D) \ge (L_2 - \frac{1}{b_4}Z_4) \cdot C = (1 - \frac{4}{b_4})L_2 \cdot C > 0.$$

So $|K_C + D|$ gives a finite map on C. Noting that

$$K_{S_2} + \lceil L_2 - \frac{1}{b_4} Z_4 \rceil \le K_{S_2} + L_2,$$

we see that $\Phi_{|K_{S_2}+L_2|}|_C$ is finite and so $\Phi_{|K_{S_2}+L_2|}$ is generically finite. This means ϕ_4 is generically finite, a contradiction.

If $\dim_{\mathbb{C}} \Lambda_4 \leq 5$, because $P_4(X) \geq 21$ by (1.1), we see from the map (1.4) that

$$|4\pi_2^*(K_X) - 4S_2| \neq \emptyset.$$

So we can write

$$4\pi_2^*(K_X) \sim_{\text{lin}} 4S_2 + G_4,$$

where G_4 is an effective divisor. Thus

$$\pi_2^*(K_X) \sim_{\text{num}} S_2 + \frac{1}{4}G_4$$

$$L_2 = \pi_2^*(K_X) \sim_{\text{num}} S_2|_{S_2} + \frac{1}{4}G_4|_{S_2}$$
$$\sim_{\text{num}} b_2C + \frac{1}{4}G_4|_{S_2},$$

where $b_2 \ge P_2(X) - 2 \ge 2$. We have that

$$L_2 - C - \frac{1}{4b_2}G_4|_{S_2} \sim_{\text{num}} (1 - \frac{1}{b_2})L_2$$

is a nef and big \mathbb{Q} -divisor. The vanishing theorem gives

$$|K_{S_2} + \lceil L_2 - \frac{1}{4b_2}G_4|_{S_2}\rceil||_C = |K_C + D'|,$$

where

$$\deg(D') \ge (L_2 - \frac{1}{4b_2}G_4|_{S_2}) \cdot C = (1 - \frac{1}{b_2})L_2 \cdot C > 0.$$

This means that $|K_C + D'|$ gives a finite map on C. Noting that

$$|K_{S_2} + \lceil L_2 - \frac{1}{4b_2}G_4|_{S_2}\rceil \subseteq |K_{S_2} + L_2|,$$

we see that $|K_{S_2}+L_2|$ gives a generically finite map and so that ϕ_4 is also generically finite, a contradiction.

In a word, ϕ_4 is generically finite. \Box

EXAMPLE 1.7. The assumption $p_g(X) \ge 5$ is sharp in Theorem 1.2. There is a trivial example with $p_g(X) = 4$ and $K_X^3 = 2$ on which $\dim \phi_1(X) = 3$ and ϕ_4 is a finite map of degree 2. On $\mathbb{P}^3_{\mathbb{C}}$, take a smooth hypersurface S of degree 10. $S \sim_{\text{lin}} 10H$. Let X be a double cover over \mathbb{P}^3 with branch locus along S. Then X is a nonsingular canonical model, $K_X^3 = 2$ and $p_g(X) = 4$ and ϕ_1 is a finite morphism onto \mathbb{P}^3 of degree 2. One can easily check that ϕ_4 is also a finite morphism of degree 2.

References

- 1. W. Barth, C. Peter, A. Van de Ven, Compact complex surface, 1984, Springer-Verlag.
- 2. X. Benveniste, Sur les applications pluricanoniques des variétés de type très gégéral en dimension 3, Amer. J. Math. **108**(1986), 433-449.
- E. Bombieri, Canonical models of surfaces of general type, Publications I.H.E.S. 42(1973), 171-219.
- F. Catanese, Canonical rings and special surfaces of general type, Proc. Symp. Pure Math. 46(1987), 175-194.
- M. Chen, On pluricanonical maps for threefolds of general type, J. Math. Soc. Japan 50(1998), 615-621.
- 6. —, Kawamata-Viehweg vanishing and quint-canonical maps for threefolds of general type, Comm. in Algebra **27**(1999), 5471-5486.
- 7. —, Complex varieties of general type whose canonical systems are composed with pencils, J. Math. Soc. Japan **51**(1999), 331-335.
- 8. C. Ciliberto, *The bicanonical map for surfaces of general type*, Proc. Symposia in Pure Math. **62**(1997), 57-83.
- L. Ein, R. Lazarsfeld, Global generation of pluricanonical and adjoint linear systems on smooth projective threefolds, J. Amer. Math. Soc. 6(1993), 875-903.

- 10. R. Hartshorne, Algebraic Geometry, GTM 52, Springer-Verlag 1977.
- Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261(1982), 43-46.
- Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math. 10(1987), 283-360.
- J. Kollár, Higher direct images of dualizing sheaves, I, Ann. of Math. 123(1986), 11-42.
- 14. J. Kollár, S. Mori, *Birational geometry of algebraic varieties*, Cambridge Univ. Press, 1998.
- 15. S. Lee, *Remarks on the pluricanonical and adjoint linear series on projective threefolds*, Commun. Algebra **27**(1999), 4459-4476.
- K. Matsuki, On pluricanonical maps for 3-folds of general type, J. Math. Soc. Japan 38(1986), 339-359.
- 17. M. Reid, Young person's guide to canonical singularities, Proc. Symposia in Pure Math. **46**(1987), 345-414.
- I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. Math. 127(1988), 309-316.
- 19. E. Viehweg, Vanishing theorems, J. reine angew. Math. 335(1982), 1-8.
- P.M.H. Wilson, The pluricanonical map on varieties of general type, Bull. Lond. Math. Soc. 12(1980), 103-107.
- G. Xiao, Finitude de l'application bicanonique des surfaces de type général, Bull. Soc. Math. France 113(1985), 23-51.
- 22. —, L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau, Compositio Math. **56**(1985), 251-257.

MATHEMATISCHES INSTITUT, GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN BUNSENSTR. 3-5, 37073 GÖTTINGEN, GERMANY