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Introduction and Summary of Results

The aim of this thesis is to study the category of smooth represen-
tations of the isometry group of a homogeneous tree X of degree ¢+ 1,
g > 2. For special values of ¢ these trees are special cases of the Bruhat-
Tits buildings [4]. Indeed, the Bruhat-Tits building associated to the
p-adic PGL(2) is a homogeneous tree. (More generally, the Bruhat-
Tits buildings associated to the rank-one semisimple groups over nonar-
chimedean local fields are homogeneous or semi-homogeneous trees.) If
we equip this tree with its natural geodesic distance, the p-adic group
PGL(2) is a closed subgroup of the isometry group of this tree. It
is known that this isometry group does not have a p-adic Lie group
structure. We are concerned here with the structure of the category of
all algebraic (=smooth) representations of this group.

The representation theory of this group was initiated by P. Cartier
[6, 7] in the beginning of the seventies. He studied the spherical Hecke
algebra of this group, calculated the spherical functions, and defined
the principal and complementary series representations of this group.
Then, in 1976, G. Olshanski [14] classified all the irreducible algebraic
representations. He defined the spherical and special representations
and proved that all the remaining irreducible algebraic representations
have compactly supported matrix coefficients. In analogy to the p-
adic groups he called these representations ’cuspidal’. Later, Figa-
Talamanca and Nebbia [10] have extended the results of Olshanski to
closed subgroups of the isometry group of the homogeneous trees which
act transitively both on the tree and on its boundary. They worked but
only with the unitary representations. They gave also the Plancherel
formula for these groups. Choucroun, in 1993, has developed harmonic
analysis of these groups similar to the rank one p-adic groups to study
the spherical representations [8]. His theory is applicable both to auto-
morphism groups of homogeneous and semi-homogeneous Bruhat-Tits
trees and to the simple p-adic groups of rank one. He observed also the
analogues of Cartan, Bruhat and Iwasawa decompositions, which will
be very important for our purposes.

For the rest of this introduction we fix a homogeneous tree X of
degree ¢ + 1, where ¢ > 2. We equip this tree with its natural metric
and denote by G := Aut(X) the isometry group of X. We consider
the elements of G as functions in X and equip it with the topology of
pointwise convergence. Then G becomes a locally profinite unimodular
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8 INTRODUCTION AND SUMMARY OF RESULTS

group, which is og-compact and separable. We denote the boundary
(the set of ends of the tree X)) by Q. This set is in a natural way an
ultrametric compact space and the union of X with its boundary is
compact.

Let (2, )nez be a doubly infinite geodesics in X. Let w and —w
be the points on the boundary €2 corresponding to the semi-geodesics
(2n)nen and (x_y)nen, respectively. For m € N put B,,(xo) for the
set of vertices y in X with d(xg,y) < m. K = Stab(zg) becomes a
maximal compact subgroup of G which is profinite. If K7 = Stab(zy),
then B := K N K; plays the role of the Iwahori subgroup in the p-adic
case. 5o we call this B an Iwahori subgroup of G. Again, in analogy
with the p-adic case, we call the subgroups U, := Stab(B,,(z¢)) =
{g € G :g(x) = V& € X} the congruence subgroups of . We
fix also an element ¢ € (' which acts as translation on our doubly
infinite geodesics such that ¢(x,) = x,41 for all n € Z. The role of
the parabolic (or Borel) subgroup is played by the stabilisers of the
points at the boundary. We put P := Stab(w). Then, as observed by
Choucroun, we have the analogues of the Bruhat, Cartan and Iwasawa
decompositions.

Using these, we study the Hecke algebra of all locally constant com-
plex functions with compact support. In particular we prove some
finiteness results on the U-Hecke algebras for U a congruence subgroup.
Then, using this, we see that the irreducible smooth representations are
indeed uniformly admissible. This means that, for any fixed congruence
subgroup U, we have

max{dim(V") : V € Irr(G)} < oo.

Here VY denotes the space of vectors in V invariant under /. Then
we show that any G-module V' can be written as the direct sum of two
submodules V] and V5 such that all the irreducible subfactor modules
of Vi are cuspidal, while V; does not have any cuspidal irreducible
subfactor module. By using this decomposition theorem we are able to
prove one of the main results which states that, if V' is any G-module, U
is any congruence subgroup of (¢, and if V' is generated as a G-module
by its U-fixed vectors VY, then every submodule of V has the same
property. The situation is analogous in the case of p-adic groups. We
follow closely the approach of Bernstein [2] to the p-adic groups.

In the last part, we are going to extend the results of P. Schneider
and U. Stuhler in [16] to the automorphism group case. In particular,
we will show that the algebraic G-modules can be considered in a nat-
ural way as homological coefficient systems on the simplicial complex
X. By using this we will be able to find some projective resolutions of
smooth G-modules. Then finite dimensionality of extensions between
the irreducible admissible representations will be proved.
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In summary, we extend some of the known results from the rep-
resentation theory of p-adic groups, in particular of the p-adic group
PGL(2), to the automorphism groups of general homogeneous trees.
When doing this, we try to present the proofs which can be used in
both cases, i.e., in the p-adic case and the automorphism group case. Of
course, whenever the Jacquet theory is concerned, we use some substi-
tute. Almost all of the results can be proved also for semi-homogeneous
trees after some obvious modifications. These results, we hope, will be
useful in studying the characters of irreducible algebraic representa-
tions of these groups. On the other hand, these groups have been
studied by many authors in recent years. For example, Bass, Lubotzky
and others have studied extensively the structure of lattices in these
groups and in the corresponding automorphism groups of more gen-
eral trees [1]. Some others have studied the isometries of more general
trees, for example the case of metric trees. Moreover, similarities and
differences between these groups and p-adic groups of rank one have
attained much interest in the last few years. We hope also that the
results of this work will be useful in understanding these groups in this
sense as well.

Notation and References. We use the letters Z,N,Q,R,C to
denote the set of integers, the set of non-negative integers, and the
fields of rational, real and complex numbers, respectively. The field of
p-adic numbers is denoted by Q,, the ring of p-adic integers by Z,. If
A is one of these sets, A* denotes the subset of non-zero elements in
A. If (X, d) is any metric space and A, B C X, then we put d(A, B) :=
inf{d(x,y):x € A and y € B}. If A={x}, we write also d(x, B) for
d({r} B).

When we refer to a theorem, definition,...etc. in the same chapter
we use only the corresponding numbering within the same chapter.
Otherwise we write also the chapter number. For the references we
give in general the page numbers, too.
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CHAPTER 1

Representation Theory of Locally Profinite Groups

In this chapter we recall some basic results from the representation
theory of locally profinite groups. All groups will be assumed to be sep-
arable and countable at infinity, i.e., they are the union of a countable
family of compact subsets. G will denote such a group.

There are excellent references for this chapter. Some of them are
[3] chapter 1, [19] chapter 1, or [21] chapter 1.

1. Basic Definitions and the Haar Measure

By a profinite group G we mean a projective limit of finite groups
(the finite groups in question are given the discrete topologies.) A
well-known characterization of profinite groups says that a topological
group is a profinite group iff it is compact and totally disconnected.
We say that a topological group G is locally profinite if it is Haus-
dorff, locally compact, totally disconnected and zero-dimensional, i.e.,
the identity element of this group has a fundamental system of neigh-
borhoods containing compact open subgroups of G. We denote by
OK (@) the set of compact open subgroups of such a G. According
to our definition OK(() is a fundamental system of neighborhoods at
the identity element of (. In addition to the above defining properties,
we are going to assume that our groups will always be countable at
infinity, that is, they are the union of a countable family of compact
subsets. (Such topological spaces are also called o-compact.) Some of
the basic properties of locally profinite groups are summarized in the
following

PROPOSITION 1.1. Let GG be a locally profinite group as above. Then

(i) Any closed subgroup of G is also locally profinite.

(ii) The intersection of any two compact open subgroups of G is of
finite index in both of these open compact subgroups. (Such subgroups
are in general said to be commensurable.)

(tii) If K € OK(G), and if we equip OK(G) with the inverse inclu-
sion relation, then OK(K) is a cofinal subset in OK(G'). (That is, for
any, H € OK(G), one can find a K' € OK(K) such that K' C H.)

Now, let (& be a locally profinite group. By a smooth function on
(G we mean a locally constant complex function on GG. The space of all
smooth functions on G is denoted by C*((G'). Clearly all such functions
are continuous. If, moreover, f € C°(() can be written as a (not

11



12 1. REPRESENTATION THEORY OF LOCALLY PROFINITE GROUPS

necessarily finite) linear combination of the characteristic functions of
the left cosets of some K € OK((), then we call f uniformly locally
constant (on the left). A continuous complex function f is said to
have compact support, or to be compactly supported, if f vanishes
outside a compact subset of G. The smallest such compact subset
will be called the support of f, and will be denoted by supp(f). The
space of all compactly supported continuous complex functions on
will be denoted by C.(G). The intersection of C*(() and C.(G) will
be denoted by C*(G) or by H(G). One can easily prove that the
members of H () are all uniformly locally constant. Moreover, the
characteric function of any compact open subset of (¢ is contained in
H(G). Moreover, it follows from the uniform local constancy of the
elements of H () that the set of characteristic functions of left cosets
of compact open subgroups of G span H(G).

By a distribution on G we mean an arbitrary linear functional on
H(G). The space of all distributions on G is denoted by H(G')*.

Each ¢ € G defines a homeomorphism of GG by

h — gh.

Hence one has in a natural way an action of G on itself by left trans-
lations. If we pass to H(G'), we have a dual operation of GG defined
by

L(g)()(h) := flg™"h)
for each g, h € G and f € H(G). We can go further and define also an
(G

action of GG on the space H of distributions on G as follows: for

g€ G, T e H(G) and f € H(G) we put
L'(g)(T)(f) = T(L(g™")(f))-

It is easy to check that

)-
)*

L(g) L/ (k) = L'(gh)
Now we are ready to define the (left invariant) Haar measure on
a locally profinite group G. A (left) Haar measure on G is a non-
zero positive distribution g on G which is invariant under the above
mentioned group action. This means that for each g € G one has

L'(g)(n) = p-

(It is actually well-known that on a locally compact group there is
a unique left invariant Radon measure called Haar measure. If you
restrict this Haar measure to our H ('), you get the same distribution
as will be shown below. The definition given above is sufficient for our
purposes.)

This is the main object of harmonic analysis on such groups.

In our case the existence and uniqueness of such a measure is simple.
By the observations above, every f € H(() is a linear combination of
characteristic functions of left cosets of some compact open subgroup
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K € OK(G). From now on we identify compact open subsets of
with their characteristic functions in H(G'). We are going to construct
a positive linear functional ¢ on H((G) by defining its values on compact
open subgroups and by taking the same values at their left cosets. Take
any compact open subgoup Ky of GG and put

,u([(o) = 1.
Then, if K is any compact open subgroup of Ky, put
w(K) =[Ko: K™

One should remark that the right hand side is always finite. Now, if
x € G and K is any compact open subgroup of Ky, we write

wleK) = u(K).

We can clearly extend this set function first to the family of all compact
open subsets of G and then to a linear functional on the space H(G).
By its construction it is clear that this functional is positive and linear.
Thus, we have a left invariant Haar measure on G. (It is a simple matter
to check that this functional is also well defined, as follows from the
above proposition.)

Uniqueness follows now from the following observation: One can
recover such a measure from its value on Ky as above. This means
that the space of left invariant positive linear functionals on H(G) is
one-dimensional. i.e., any other left invariant measure on ' is a scalar
multiple of p.

One can construct in the same way right invariant Haar measures
using the analogous action of GG on itself by right translations. G is
said to be unimodular if every left Haar measure is also right invariant.
From now on we assume that (' is also unimodular and fix a Haar
measure £ on (.

2. The Space H(() as an Algebra

The above constructed space H(() is very important for the study
of representations of our group. This is not only a vector space, but
also in a natural way an algebra over the field C of complex num-
bers. The multiplication of two elements f,g € H(G) is defined by the
convolution. That is, by the following formula:

(f*g)(x /f gy~ x)duly)

for each = € G. We are going to ignore this convolution symbol and
simply write fg. With this multiplication, H (') is a complex associa-
tive algebra. In general, this algebra does not have an identity. In fact,
one can see that this algebra has an identity iff the group G’ is compact
and in this case the identity element is simply the characteristic func-
tion of the whole group. Since the group studied in this work is not
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compact, the corresponding algebra is not unital. But, this algebra
contains many subalgebras with identity which are also very impor-
tant for us. If K is a compact open subgroup of G, then let C'(G/K)
denote the space of all complex continuous functions on G which are
right- K-invariant, i.e., if @ € G, k € K, then f(zk) = f(x). Simi-
larly we define C(K\(G) and then C(G//K) to be the intersection of
these spaces. The elements of C'(G//K) are said to be K-bi-invariant.
We call the space H(G; K) = H(G)NC(G/]K) the spherical function
algebra or Hecke algebra of GG relative to K. These are subalgebras
of H(G) and they have special identity elements: the characteristic
functions of defining compact open subgroups multiplied by /,L(K)_l,
denoted by ex. These elements are idempotent in the algebra H(G).
Moreover, the set A := {ex : K € OK(G)} has the following property:
For each ¢, f € A, there exists some a € A such that we have

ae=eca=e
and

af = fa=f.

One can put also a partial order on A by defining e < f iff ef =
fe = e. From the definitions it follows also that for every finite subset
B of H(G), we have an e € A so that eb = be = b for all b € B.
Such an algebra we call idempotented. Now, if ex € A, then one
has H(G; K) = exH(G)ex. More generally, if e is any idempotent
element of H(G), then H(G)[e] will denote the subalgebra eH(G)e.
Thus, H(G; K) = H(G)[exk].

Let now V be a H(G)-module. We denote by Ve] the corresponding
H(G)[e]-module e(V'). By definition, we say that V' is a smooth H(G)-

module iff

V=]Vl

e€A

(The reason for this terminology is as follows: In the next section we
are going to define "smooth” representations of G and then we will
see that these representations are exactly the "smooth” H(G')-modules
just defined.) Then it is easy to see that V is a smooth H(G')-module
iff H(G)(V)=V. If V is any H(G)-module, we call

Ve = Ve
e€A
the smooth part of V. It is in fact a smooth H(G)-module in the above
sense.

By M(H((G)) we denote the category of smooth H(G)-modules.

Let us observe another realization of the Hecke Algebra H(G') which
1s sometimes useful. We have defined distributions on ' to be linear
functionals on H(G) = C(G). We have used a natural G-action on
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the vector space H(G)* of distributions to give a proof of the existence
of a left-invariant Haar measure. Now a distribution 7" on ' is said to
be compactly supported if there is a compact subset C' of (¢ such that,
for any f € H(G) whose support is disjoint from C', one has T'(f) = 0.
The smallest such compact set C' in G is called the support of T" and
is denoted by Supp(7T'). The compactly supported distributions on G
form a vector subspace of H((G)* which is denoted by H(G):. More-
over, under the left regular action of (7, the space H(G): is stable.
We denote by D((7) the subspace of H () consisting of all compactly
supported distributions on G which are invariant under some compact
open subgroup of G. If f € H(G), then there is a corresponding dis-
tribution F' on G defined by (F,h) = (p, fh) for all h € H(G), where
p denotes the unique left Haar measure on G. We denote this dis-
tribution F' sometimes by fu. This mapping is well defined since f
is compactly supported and invariant under some compact open sub-
group of G. Thus we have a natural mapping from H(G) to D(G)
sending f to fu. The discussion on p. 14 of [3] says that this mapping
is also an isomorphism of vector spaces. If one defines a multiplica-
tion of distributions in the following way, the above mapping is also an
isomorphism of algebras. Let us now explain what we mean by multi-
plication of distributions in D(G). It is easy to see that C°(G x G)
is isomorphic to C(G) @ CX(G). Now let T'@ S € D(G) @ D(G). If
f®geCr(G xd), we put

(T'@ S)(f @g):=T(f)5(g)-
Here one should observe that T'® S € C(G x G)7. Them7~ each [ €
C2°((G) can be considered as an element of C2°(G x () via f(x1,x2) =

flz12y) for each @1, 29 € G. We define T' x S to be the distribution on
G given by

(T S5)(f) = (T'@9)(f)-

Then one has (see pp. 13-14 of [3]) an isomorphism between two asso-
ciative algebras H((G) and D(G') given by f +—— fu.

This realization of the Hecke algebra H () has some advantages.
For example, if K is a compact open subgroup of G and g € G, one
has the following characterization of ¢, = (W(KgK)™")\ryk:

LEMMA 2.1. ¢, is the unique distribution in D(G) with the follow-
ing properties:

1. It is supported on Kgk,

2. It is K-invariant on both right and left, and

3. If 1 is the constant function on G with the value 1, then ¢ (1) =
1.

We should remark (for 3) that each T" € D((G) defines a linear
functional on the vector space C*((). The details of the proof are
straightforward and can be found in pp.13-14 of [3].
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These elements will be important for us (see chapter 3). For now
we only say that any f in the Hecke algebra is a linear combination of
such elements for some K.

We end this section with the following observation: For each ¢ € GG,
the Dirac-delta distribution d, supported on ¢ is a distribution in our
sence. It is also compactly supported. But it can not be represented by
a smooth function on (. Hence it does not correspond to any element

of the Hecke algebra.

3. Smooth Representations

By a representation (7, V') (or simply V') we mean a complex vector
space V and a group homomorphism 7 : G — GL(V). We say that
(7, V) is smooth, or algebraic, if V = U VX where the union is taken
over OK(G). If V is any representation of ¢, we call

Ve | VR

KeOK(G)

the smooth part of V. It is a smooth representation of G

If K € OK(G), VE denotes the vectors in V' that are fixed by K.
Those representations with the property that dim(V%®) < oo for all
K € OK(G) are called admissible. If V., W are two representations
of (4, a linear operator T' : V. — W 1is said to be intertwining if
it commutes with the G-operations on V' and W, respectively. We
call smooth G-representations sometimes GG-modules. The category
of smooth (admissible) GG-modules with intertwining operators will be
denoted by Alg(G) (Adm(G)).

Now let (m,V) be a smooth GG-module. Then, for any h € H(G)
and v € V we define

() = [ he)m(o)o)du(o)

With this action, V' becomes a smooth H((G)-module in our sense.
Conversely, if V' is a smooth H(G)-module, then it is possible to give
V' a smooth G-module structure. Thus, the category of smooth G-
modules and the category of smooth H((G)-modules are equivalent.
This category (i.e., M(H(G))) we will denote by M(G). In general,
we are going to use the latter notation for the category of G-modules.
We say that (7, V) is irreducible if V' does not contain any non-trivial
proper subspace which is invariant under (G. These are the same as
the irreducible (= simple) H(G)-modules. Two G-modules are called
equivalent if there is a bijective intertwining operator between them.
[rr() denotes the set of equivalence classes of irreducible G-modules.

For V a smooth G-module and K € OK(G) with VE £ 0, n(ef) is
actually a projection and its imageis V. Since H(G; K) = exH(G)e,
the vector space V& has in a natural way a H(G; K )-module structure.
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4. Contragradient Representations

Let (7, V) be a smooth G-module. Then, if v € V and v* € V*, then
(7*(g)(v*),v) = (v, (g7 ")(v)) for each g € G defines a representation
of GG on the dual space V™ of V. In general, this representation is not
smooth. So we take the smooth part (7, ‘N/) of (7*, V*) and we call this
G-module the smooth contragradient or smooth dual of (7, V). The
elements of V are called the smooth functionals on V.

5. Characters of Admissible Representations

Let now (7, V) € Adm((). This means, by definition, that for each
K € OK(G), dim(VF) < co. If f € H(G), then we know that there is
a K € OK(G) such that f € H(G; K), and hence

fex =exf=f.

But, we know also that m(ex)(V) = VE. Thus, 7(f) = m(exf) can be
considered as an operator from V to V. Therefore the admissibility
of (m,V) implies that dim(V®) < oo and 7(f) is a finite rank operator.
Conversely, suppose that (7, V) is a smooth representation of (& such
that for each f € H((G), the operator w(f) is of finite rank. If K €
OK (), then we have a special element e in the Hecke algebra H ()
of Gi. The above assumption says that 7(ex) is a finite rank operator.
That is, V& = m(ex)(V) is finite dimensional. But this is nothing but
the definition of admissibility. We have proved the following

PROPOSITION 5.1. A smooth representation of G is admissible iff,
for each f € H(G), n(f) is a finite rank operator.

This means that if 7 is an admisssible representation of &, and if f
is an element of the Hecke algebra H(('), then the operator 7(f) has
a trace. Now we put, for a given (7, V) € Adm(G),

Or(f) = te(x(f))

for each f € H(G). This function is a distribution on G in our sense
which we call the 'character’ of the admissible representation (7, V).
Now suppose that (K,), is a decreasing sequence of compact open
subgroups of G which form also a fundamental system of neighbor-
hoods at the identity. (This is always possible for the groups which we
are interested in. As we will see later, the sequence of congruence sub-
groups relative to a given fixed vertex will satisfy this condition.) Then,
(VEn), is an increasing (with respect to inclusion) sequence of finite
dimensional subspaces of V with union V again. For each g € G and n,
the operator m(p,,,) : VE» — VEn has a trace which can be denoted by
Or..(g), where @, ,, is the characteristic function of K, gk, multiplied
by the u(K,gK,)™'. Then this ©,, is an element of H(G; K,,) and
defines a distribution on (. If we equip the space H(G)* with the weak
topology with respect to its predual H((), the character of (7, V') can
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be considered as the weak limit of the sequence ©.,. One can also
use the finite dimensionality of V®» and take an increasing sequence
of finite subsets of V' which form bases for the respective V*»’s and
consider the matrix coefficients. Then taking diagonal entries as func-
tions on (4, one can define the character to be the weak sum of these
functions (considered as distributions).

One should remark that characters are defined as distributions on
(. They are not functions. Weather they can be represented as func-
tions on certain subsets of (G is another important subject which we
don’t consider here.

We end this section with the following proposition whose proof can
be found, for example, in [19], Corollary 1.13.1, p. 74.

PROPOSITION 5.2. Any family of pairwise inequivalent irreducible
admissible representations of G have linearly independent characters in

H(G)*

6. Irreducible Representations

We are going to study irreducible G-modules and and their K-fixed
points as H (G K )-modules. Recall that if V' is any G-module and K is
any compact open subgroup of G, V& is in a natural way an H(G; K)-
module. We want to study the relationship between irreducibility of V'
as a G-module and the irreducibility of VX as an H(G; K)-module.

Let now V' be an irreducible G-module. Then we have a compact
open subgroup K of G such that V¥ is not 0. Let v,w € V¥ be
arbitrary. Since V is irreducible as an H(G)-module, the submodule
of V' generated by v is again V. Thus we have an h € H(() such that

h(v) = w.
Since w € V| we have
exh(v) = ex(w) = w.
Similarly, since v € V&, we have also
ex(v) =v.
Therefore, we have
(exhex)(v) = w.

i.e., VE is irreducible as an H(G; K)-module.

Conversely, let W be a proper nontrivial submodule of V. Since
both are smooth, there exists a compact open subgroup K of GG such
that WX is a proper H(G; K)-submodule of V. This means that
if V' is not irreducible as a G-module, then there is a compact open
subgroup K of G such that VX cannot be irreducible as an H(G; K)-
module. Hence we have proved the following
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LEMMA 6.1. Let V be a smooth G-module. Then V is an irreducible
G-module iff for each K € OM(G), VE is either 0 or an irreducible
H(G; K)-module.

COROLLARY 6.2. Let V.W be two irreducible G-modules. Then V
and W are isomorphic iff there exists a compact open subgroup K of G
such that VX and W are both nonzero and isomorphic as H(G; K )-
modules.

Proof. The existence of K with nonzero V¥ and W is trivial.
By the above lemma we know also that V* and WX are irreducible
H(G; K)-modules. Thus, the restriction of any isomorphism from V' to
W has a nontrivial restriction from V to W. Clearly this morphism
is an H (G5 K)-module morphism. Hence it is an isomorphism.

Conversely, let T' be an H((G; K')-module isomorphism from V¥ to
WX, We have to show that T extends to a G-module isomorphism
from V onto W. First let us remark that 7" extends to a G-module
isomorphism from the G-submodule of V generated by V¥ onto the
corresponding submodule of W. But V and W are irreducible. Thus
we have the required result. O

COROLLARY 6.3. Fvery irreducible H(G; K)-module comes from
an irreducible G-module by restriction to K-invariant vectors. More-
over, by the above corollary, this G-module is unique.

Proof. Let W be an irreducible H(G; K )-module. Put
V = H(G) Qgary W-

Then Vis a non-degenerate 3 (()-module. Let us see that VE = W.
It is enough to show that ex (V) = W. Since ek acts as identity on W,
we see that V = H(G)ex gy W. Thus,

e (H(G)ex Qaqaiy W) = exH(G)ex @y W =W

since we have exH(G)ex = H(G; K). Moreover, if E is a non-trivial
proper G-submodule of V', then E™ is a non-trivial proper H(G; K)-
submodule of W. Thus, irreducibility of W as an H(G; K)-module

implies irreducibility of V' as a G-module. 0

7. Subquotients

Let V, W be two GG-modules. We say that W is a subrepresentation
of V, or W is a G-submodule of V', if W is a G-invariant subspace of V'
and the inclusion operator T': W —— V' is intertwining. This means
that the action of G on W can be obtained by restricting the action of
G on V to W. By a factor or quotient representation of V' we mean a
representation of (G obtained by taking the quotient of V' with respect
to a subrepresentation. We say that W is a subfactor module or a
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subquotient of V' if there are two submodules Vi, V5 of V with V, C W}
such that W is the factor module of V| with respect to V5. The set
of all irreducible subfactor modules will be very important to us. If V
is a G-module, JH (V') will denote the set of all irreducible subfactor
modules of V. This set is also called the Jordan-Holder content of
V. The elements of JH(V) are also called then the Jordan-Holder
components of V. The following result is fundamental ([2], page 18):

PROPOSITION 7.1. (a) Every non-zero finitely generated V- € M(G)
has an irreducible subquotient.

(b) If W is a subquotient of V, then every irreducible subquotient
of W is also an irreducible subquotient of V', i.e., JH(W) C JH(V).

(¢) Thus, in general, every nonzero V€ M(G) has an irreducible
subquotient.

(d) JH(O V,) = UJH(V,), i.e., the Jordan-Holder content of a
sum of modules is the union of the Jordan-Holder contents of its sum-
mands.

8. Function Space Realization of Representations

Now we are going to give a very simple but very important fact
which allows us to realise many irreducible smooth representations as
function spaces. Many important results can be deduced from this
technical fact. As an example, let X be the tree of the p-adic group
H = PGL(2) and consider H as a subgroup of GG = Aut(X). Then one
can prove that the p-adic group PG L(2) and G have the same spherical
and special representations in the sense that the corresponding repre-
sentations of p-adic PGL(2) are the restrictions of those of . This is
the main principle applied in [10].

LEMMA 8.1. Let V be an irreducible G-module. If U is an open
compact subgroup of G and V' has a non-zero fized vector invariant

under U, then V is equivalent to a subrepresentation of (in fact of its
smooth part) the left regular representation of G on C(G/U)

Proof.  As V is irreducible, it is enough to show that there is a
non-zero intertwining operator V. —— C(G/U). Let V' be the smooth
dual of V. First, observe that if VY # 0, then VY #£ 0. Let o € VY be

a non-zero smooth U-invariant linear functional on V. We define
TV — C(GJU)
by
T'(v)(g) == foslg)

for v € V and ¢g € G, where f,; denotes the matrix coeflicient corre-
sponding to v and . That is, f,:(g) =< 7(¢7')(v),0 > for all g € G.
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Because of the choice of © this linear mapping is not zero. Moreover,
T is G-equivariant. This can be seen as follows: let g; € (G. Then

T(n(g)v)(g) =< 7(g~ )m(g)v, o >=<7((g7"9) "), 0 >= fus(g7"9)-
Hence we get the result. O

COROLLARY 8.2. Let {V, : a € I} be a family of pairwise non-
equivalent trreducible G-modules. Suppose, for each V, in the given
family, f, is a non-zero matriz cocfficient of V,,. Then, the set {f, :
a € 1} is linearly independent.

Proof. Let {V1, V5, ..., V., } be a finite family of pairwise non-equivalent
(non-zero) irreducible G-modules. For each ¢ = 1,2,...,n we have a
compact open subgroup K; of (G such that VZ»Ki is not zero. By taking
the intersection of K;’s, if necessary, we may assume that there is a
compact open subgroup K of G such that V¥ is not zero for each 1.
Thus, by the above lemma, these representations can be realised as
subrepresentations of the left regular representation of GG on C(G/K).
But, this means that they are G-stable subspaces of C(G/K). Since
they are also irreducible, they can not have any common element other
than 0 in C(G/K). Therefore the matrix coefficients of V;’s cannot be
lenarly dependant. O
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CHAPTER 2

The Group Aut(X) and Irreducible
Representations

Let X be a homogeneous tree of degree ¢ + 1, ¢ > 2. By Xy (or
simply by X) we denote the set of vertices of X and by X its set of
(non-oriented) edges. We denote by )7; the set of oriented edges of
X. We equip X with its natural distance d. If x,y € Xg, there is a
unique finite sequence (¢ = xg, ¥1,....,x, = y) of vertices of X such
that (z;,2;11) € X; for each 0 < ¢ < n — 1 and that ; # ;4o for
0 <1 < n—2. Such finite sequences we call geodesics. For z.y €
Xo [z,y] denotes the unique geodesic from x to y. In this case we
define the distance between = and y, d(x,y), to be n. This distance
function is also called the geodesic distance on X. By a doubly infinite
geodesic we mean a sequence (x,),ez such that for each n < m in
Z one has (¥, Tpi1, ..., Tp) is a geodesic in X. We use sometimes the
synonym ’appartment’ for doubly infinite geodesics. Clz, y] will denote
the subtree generated by {z € Xy :y € [z, z]}.

1. Automorphisms of X

By an automorphism of X we mean a mapping ¢ : Xo — Xy which
is bijective and satisfies

Va,y € Xo d(g(z),9(y)) = d(z,y).

It is clear that, if g is an automorphism of X, we have
g(Xl) = le

i.e., automorphisms are bijective mappings from Xy onto Xy which
preserve the simplicial structure of X. The set of automorphisms of X
is a group which is denoted by G' = Aut(X).

Now we want to classify the elements of G according to their actions
on X. For each g € (G, we put

[(g) = min{d(z,g(x)) : x € X}.
If [(g) > 2, then there are x, 2y, ..., 25— in X such that d(z,g(x)) =
I(g) and (2,21, ..., Ty(g)-1,g(x)) form a geodesic from x to g(x). By the
definition of I(g), g(x1) can not be between x and g(x). Moreover,
d(g(x1),g(x)) = 1. Hence [z, g(x1)] is again a geodesic whose length is
[(g) + 1. Similarly, g(x2) is not between a and g(x1). Thus [z, g(x2)]
is again a geodesic. Now for each n € Z, put x, = ¢"(x;), where

23
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r and ¢ are the unique integers with the property n = r - l(g) + 1.
0 < i < I(g). Here go" = (¢g7')". Therefore we see that the image
of this geodesic under the cyclic subgroup of (G generated by ¢ is a
doubly infinite geodesic and ¢ acts on this appartment as a translation.
We call such elements translations. If I(¢g) = 1, then one has an «
such that d(x,g(x)) = 1. Now there are two cases: g(g(x)) = x or
d(x,g(g(x))) = 2. In the first case we call g an inversion. In the second
case ¢ is again a translation as above on an appartment containing x
and g(x). In this case the appartment is given by z,, = ¢"(«) for each
n € Z. If [(g) = 0, this means that g fixes some vertex a and each
set of vertices which are at a given distance from x (i.e.,the spheres
around z) are invariant under g. ¢ is either identity or 'rotates’ the
tree around z. Such elements are called rotations.

The above arguments classify in some sense the elements of . That
is to say, an element of (G is either a translation, or an inversion, or a
rotation.

We note also that the center of (G is trivial. This follows from the
observation that, given any non-trivial element g of (G, one can find
always some element in ¢ which does not commute with g.

2. The Boundary of the Tree

Now we want to describe what we call the boundary of X. Let g
be a fixed vertex in X. By an end of X we mean an infinite geodesic
which starts with xo. The boundary of X is defined to be the set
of all ends of X and is denoted by Q. If w € Q, we write [zg,w]
for the defining geodesic. We topologize the boundary as follows: If
w € €, then an open neighborhood of w is given by Clzg,y], where
y is any vertex lying on the geodesic which define w. The set of all
such neighborhoods form a local basis at the point w of the boundary.
This topology is indeed independent from the point z¢ with which we
have started. To see this, one defines two infinite geodesics (@, )nen and
(Yn)nen to be equivalent whenever the intersection of {x,} and {y,}
has finite complements in both sets. Then one can define the boundary
to be the set of equivalence classes of the ends of X. Now if zg and
Yo are two different vertices of X and (), and (y,), are two infinite
geodesics starting with zg and yg, respectively, then the geodesics are
equivalent iff there is an ng € N and m € Z such that y, = z,4,, for
each n > ng. Thus the fundamental systems of the point w on the
boundary defined by x¢ and y, define the same local basis at w.

Now it is actually easy to see that this topology is metrizable. In-
deed, let ¢ + 1 be the order of X. Then, by our construction, any two
points w; and w, on the boundary can be joined by a unique doubly
infinite geodesic. This one can see as follows: Let z¢ be any vertex
of X. Then put (@), and (y,), for the geodesics defining w; and wy,
respectively, which start at @, i.e., 29 = yo. Let ng = min{n : z, =y, }.
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Now put zg = x,,. For m > 0 we put z,, = Yngtm, 2—m = Tng4m. Lhen
we have that (z,)mez is an appartment and Jwy,wz[= (2 )mez. Since
the tree X does not contain any loop, it is now easily seen that this
appartment is independent of xg and thus is unique.

Now, if w; and wy are two points on the boundary, then the geodesic
connecting them has a point y nearest to xg. If d(xo,y) = n, then we
define d(w;,w;) = ¢7", or, equivalently, d(w;,w;) := ¢~ @olwrweD Ip
this way, the boundary turns out to be a compact ultrametric space.

A part of a homogeneous tree of degree ¢ = 3 with its boundary
can be symbolised geometrically as follows:

3. G as a Topological Group

Now we introduce on G = Aut(X) the following topology. First we
consider (G as a subset of the space of all mappings from X to X which
is actually 1,ex X with the product topology. Then we equip GG with
the subspace topology. Thus, if g € G,

B(g)={O0r(g): F CX, Card(F)< oo},

where Op(g) :={h € G : h(x) = g(x) Va € F}, form a local basis at
g. If 1 € (G is the identity element, then the neighborhoods of 1 have
the form Op = {g € G : g(x) =« Va € F}, where F' C X is finite.
It is clear that any finite /© C X is bounded. Therefore, if g € X,
n € N, and B, := B,(2) = {x € X : d(xo,2) < n}, then any finite
F' is contained in some B,. Hence, if U, := Stabg(B,) = {g € G :
g(x) =x Va € B,}, then {U, : n € N} form a fundamental system
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of neighborhoods at 1 € G. Moreover, each U, is a subgroup of G and
for each n € N and m > 1, U, 4., is a normal subgroup of U, of finite
index. By the definition of our topology, they are all open compact
subgroups of (G. Thus G is a locally compact and totally disconnected
group. The group Uy is very important for us. X can be identified
with /Uy and Uy is a profinite group.

More generally, one has the following result [9], Theorem 1.1:

Let X be a countable locally finite simplicial complex, Aut(X) be
the group of its simplicial automorphisms equipped with the compact-
open topology. That is, the identity of Aut(X) has as a local basis the
sets of the form U(F) = {g : ¢ = id on F'}, where F runs over compact
subsets of X.

THEOREM 3.1. Let G be a closed subgroup of Aut(X) with the in-
duced topology. Then:

1. G is a second countable metrizable group,

2. G s locally compact and the stabilizers of compact subcomplezes
are both compact and open,

3. G is o-compact,

4. Stabilizers of compact subcomplexes are either all finite or all
uncountable.

5. G s totally disconnected.

Here one should remark that the stabilizers of compact subcom-
plexes in our case are never finite.

4. The Tree of PGL(2,F), F' a Local Non-archimedean Field

Let F' be a local non-archimedean field with the ring of integers R
and the unique maximal ideal P = 7R for some prime 7 € R. Let ¢
be the cardinality of the residue field F = R/P. Put H := PGL(2, F).
We are going to describe how one can construct a homogeneous tree
X of degree ¢ + 1 which plays the role of a symmetric space in Lie
group theory. Then the action of H on this tree and the geometric
characterizations of some important subgroups of H such as parabolic
subgroups, maximal compact open subgroups, congruence subgroups,
[wahori subgroups,...etc, will be explained. The main reference is [18],
part 2.

Let £ be a two dimensional vector space over F'. A lattice A in
E is simply a free R-submodule of E of rank 2, or, equivalently, an
R-submodule of F which generates I as a vector space. Two lattices
A and A" are said to be equivalent if they belong to the same orbit
under the natural F'*-action. Le., A and A’ are equivalent iff there is
an a € ['* such that aA = A,

This notion of equivalence is really an equivalence relation. The
set of equivalence classes of lattices in £ we denote by X. Let {e1,¢e3}
be the standard basis of £ and Ay be the lattice generated by these
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basis vectors which we call the standard lattice. Let xy denote the
equivalence class of Ag.

Let A be a lattice in £ generated by u,v € E, then, for each h € H,
h(A) is defined to be the lattice generated by h(u),h(v) € E. Thus
the group H acts on F. H sends a lattice to another lattice and two
equivalent lattices to two equivalent lattices. Thus the H-action on £
defines naturally an action of H on X. It is also not difficult to see that
this action is indeed transitive. Now let’s consider Stabg(xo). Then an
element ¢ is in Stabg(xo) = {g € H : g(x) = xo} iff g(R*) = R* and
hence we have:

Staby(zo) = {9 € H : gi;,(¢7")i; € Rfor 1,5 =1,2}/R*.

Here R? denotes R x R as a subset of the vector space I/ and <gn §IQ>
21 Y22

denotes the matrix representation of ¢ with respect to the basis {e1, e3}.
We denote this group by K = H(R). It is a compact open subgroup of
H. Indeed it is also maximal with these properties. We see that K is
the stabilizer of a point in X and hence, as H acts transitively on X,
the set X can be identified with the quotient set H/K. Besides, the
stabilizer of any other point z in X is of the form gK ¢! where g € H
such that g(xzo) = x.

If  is the class of a lattice A generated by {e, €'}, we write A =<
e,e! >and 2 = A = < e, ¢ > Now let 2 and 2’ be two elements of
X. By definition we put d(x,z') = 0 iff @ = a’. d(x,2') is defined
to be 1 iff there are two lattices A and A’ with 2 = A and 2/ = A/
such that A C A’ and A’/A = F. The last condition is equivalent to
7N C A C A, After these definitions one can define a graph structure
on X. Two points & and 2’ in X are said to be adjacent iff d(z, 2") = 1.
Then one has the following ([18], page 70, Theorem 1)

THEOREM 4.1. With the definition of adjacency given above, X is
a lree.

This theorem says that
1. X is connected. That is, for each x, 2’ in X, there are n € N
and pairwise distinct sy, Sg, ..., $,_1 such that

d((E,Sl) = d(51732) = ... = d(Sn—l,[L'/) _ 1

2. X contains no loop. And this means that, with the above given
properties, the finite sequence (sy, $2, ..., $,—1) is unique.

If #,2" are as in 1. above, we put d(x, 2’) = n. Thus d is the natural
geodesic distance. Moreover, it follows from the definitions that any
given = A € X is adjacent to the same number of points as the
number of non-equivalent lattices A’ C A such that A/A’ = F. This
is equivalent to the condition that 7A C A’ C A. Thus every vertex is
adjacent to another ¢ 4+ 1 vertices.
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Since the group F'* acts trivially on X, we can work for the rest of
this section with Hy = GL(2, F).

Let x, = < 7"ey,eq > and x_, = < e;,7"ey > for each n € N.
In this way we get an appartment (u,),ez. By the above reasoning
we know that the stabiliser of z¢ is the subgroup Ko, = Ho(R) of
matrices with entries in R with an inverse again with this property.

Let AO = Rel + R€2 € Zo, Al = Rwel + R€2 € 2.

If
a b
g_<c d)EHO

with g(Ay) = Ay, then we have
mae; + wbhey = ma'e; + bey

for some o', € R. Thus a € R and b € 7~'R. Similarly, we get
cemRand d € R.
Therefore we have K{j = Stabp,(A;) is the group of invertible ma-

trices
a b
c d

such that a,d € R, ¢ € 7R and b € 77'R. Thus By = KoK =
Stabp, ({xo, x1}) is given by

{(‘c‘ Z) ca,dc R—Pbe R,cc R},

This is the so-called Iwahori subgroup. It is defined indeed as the
inverse image of the standard Borel subgroup of G'L(2, F') under the
natural mapping Ko — GL(2, F). But it can be characterized as the
stabilizer of an edge with vertices z¢ and z;.

There are other subgroups of Hy which are important for various
reasons. As an example one can consider the group of upper triangu-
lar matrices in Hy called the parabolic subgroup of Hy. To be able
to describe them geometrically, we need some more observations on
our tree X. Now let (2,),ez be an appartment. Let Ag be a lattice
representing 9. Then if © € X and d(x,x9) = m, then there exists
a unique representing lattice A € x such that Ag/A is isomorphic to
R/7™ R. Thus the spheres around the vertex ¢ correspond to the suit-
able projective lines. The boundary of the tree, being the inverse limits
of spheres around a fixed vertex, is isomorphic to the projective line
over F'. It follows also that the points on the boundary corresponds to
lines through the origin. As a result, we have an equivalence between
the set of appartments, the set of decompositions of V' just described
and the set of pairs of different points on the boundary. Another re-
sult of this discussion is that the ends of X correspond indeed to the
projective space P}(V') attached to V.



5. DECOMPOSITION THEOREMS 29

Now by using similar arguments we used for the Iwahori subgroup,
one can see that if (x,), is an appartment defined by a basis {e1, e}
as above, then the parabolic subgroup can be charaterized as follows:
an element ¢ is contained in the parabolic subgroup iff there exists a
d € Z such that g(x,) = x,4q for all sufficiently large n. Moreover,
if we define the congruence subgroups to be U, = [ + 7" M(2, R), it
is seen that these are nothing but the stabilizers of the balls around
xo with radius n. By the same token, one can see also that the (set-)
stabilizer of the appartment is the subgroup of matrices of the form

a 0
0 d
which contains the Cartan subgroup of Hy (obviously each a,d € F*).

5. Decomposition Theorems

In this section we are going to prove some decomposition theorems
for the group ¢ = Aut(X). These theorems have their analogues in
the p-adic group theory. We start by giving the setup which we are
going to use in the rest of this work.

By using the analogy to the study of p-adic groups and their cor-
responding buildings, we make the following definitions:

DEFINITION 5.1. By an appartment in X we mean a doubly infinite
geodesics (1,)nen. The end points of this appartment are defined to be
the points —w and w on the boundary which correspond to the infinite
geodesics (x_y)nen and (2, )nen, respectively. In this case we sometimes
write | — w,w[ for (2,)nen.

Let (2,,)nez =] —w,w][ be a fixed appartment with end points —w, w.
We remark that each g € (¢ is an isometry. This implies in particular
that the image of a geodesic under any element of (¢ is again a geodesic.
Thus we have an action of G on the boundary. Using this we make the
following definition:

DEFINITION 5.2. 1. The stabilizer of a point on the boundary is
called a parabolic subgroup of . We denote by P the parabolic subgroup

{g € G:g(w) =w}
of GG. The parabolic subgroup stabilizing —w s said to be opposite to
P.
2. N:={pe P:3dng€Z with pa,) =z, Yn>ne}t In
other words, N is the subgroup of P consisting of rotations which leaves

w fired.

On our appartment (x,),ecz there is a translation g € G which has
step m for any m € Z. This means that, for any m € Z, we have a
g € G such that g(a,) = @p4n for all n € Z. It should be clear that
such an element is a translation in the sense at the beginning of this
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chapter. The existence of such an element is a result of the homogeneity
of X. The case m =1 is especially important for us.

DEFINITION 5.3. By t we denote a fized element of G' such that
Han) = @pyr Jor anyn € Z. T :={t" : n € Z} is the cyclic subgroup
of G generated by t.

Now we recall the definitions of several important open compact
subgroups of (.

DEFINITION 5.4. 1. K = Uy := Stab(zo) = {g € G : g(x0) = z0}.
2. B:=KnNtKt™" ={g€G:glxo) = xo,9(x1) =1}
3. For each n > 1, we put

U, := Stab(B,(x0)),
or
U, ={9g€G:g(x)=a VYre X, with d(x,z9) <n}.

We call B the Twahori subgroup of G, U, the nth congruence sub-
group of G.

We remark the following property of these subgroups:
o QU U, <4--- < B<K.

For our purposes we need also the following subgroups: If n > 1,
we put

Ut:={geU,:g(x)=2 Va with € [z,2]}.

That is to say, U7 is the subgroup of U, which stabilizes all x with the
property d(x,x1) < d(x,x0). Similarly, we define

U - i={g€eU,:g(z)=2 Va with € [21,2]}.
THEOREM 5.5. Let U be U, for somen € N. Then:

1-G =],y K"K
2-P=TN
3-G =KP

J-U = U= = U-U+
S5- 17U CUT and t"U~ 1™ C U~ for each n € N.

Proof.

1- Let g € G be arbitrary. If g fixes ¢, then ¢g belongs to K" and the
result is clear. Otherwise put n = d(xo, g(0)). As K acts transitively
on each sphere around x¢, one has a k; € K such that kig(xg) = .
Then we apply ™" to get an element ¢t7"k;g of K since this element
fixes xg. This means that g should be an element of Kt"K. Since n is
determined as above, all these cosets are also disjoint.

2- Let g be an element of P. We may suppose that ¢ is not a
rotation. But, since g fixes some point on the boundary, it cannot be
an inversion. Thus it should be a translation. This means that there
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are mo in N and n in Z such that g(x,,) = @p4n for all m > mg. But,
in this case t7"¢ is a rotation and hence an element of N.

3- Let ¢ € G be arbitrary. Put w; = g(w). As K acts on the
boundary transitively, one has a k in K such that k(w;) = w. But
this means that for this element k& of K, kg fixes the point w on the
boundary. That is to say, kg € P.

4- Let g € U be arbitrary. Assume that g does not stabilize {z,, :
n € N}. Then there is an element h in U~ such that hg stabilizes
{x, :n € N}.

5- Let g be an arbitrary element of UT. We have to show that
h = t7"gt" is also an element of U*t. Clearly h stabilizes each vertex
on the geodesic (2,,)nen. Now let & € B, (o). Then t"(x) is an element
of Clxg, x1]. So it is fixed by g. Hence h(x) = x. The proof of the part
t"U=t=™ C U~ is similar. O

The parts 1-3 of this theorem are proved in [8], p.39 for the auto-
morphism group of semi-homogeneous trees.

The decomposition in the first part of this theorem is the Cartan
decomposition in our group. The decomposition G = KP = KT'N 1is
called the Iwasawa decomposition of G.

COROLLARY 5.6. For each g € G, there exists a unique n € N such
that ¢ € Kt"K. In this case g~ also belongs to Ki"K. Thercfore,
each double coset in the Cartan decomposition is invariant under the

mapping G — G which takes g to g *.

In the next chapter we are going to attach to each t" an element
of the Hecke algebra H(G; K) in a suitable way. Moreover, the multi-
plication in the algebra and the multiplication in i (of these t"’s) are
compatible and we are going to see that these elements generate this
algebra.

Then, by the above corollary, the algebra H(G; K) is seen to be
commutative. Thus (G; K) is a Gelfand pair and hence the group G is
unimodular.

Unimodularity of i follows also from the following result [9], Lemma

1.6:

THEOREM 5.7. Let X be a connected simplicial complex of pure
dimension n (i.e., X is the closure of the interior points of its n-
dimensional simplices) and suppose that the links of the simplices of
codimension > 2 are connected. Suppose also that GG is a closed sub-
group of Aut(X) such that the stabilizers of (n — 1)-simplices act tran-
sitively on their respective links. Then G acts transitively on X and it
is unimodular.

The conditions of this theorem are satisfied by our trees, since, the
stabilizers of vertices acts as permutations on the spheres about the
vertices stabilized.
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6. Irreducible Representations of Aut(X)

In this section we are going to recall the classification of the irre-
ducible representations GG = Aut(X) due to G. Olshanski [14].

Recall that GG has very special open compact subgroups. For the de-
scriptions of these groups let us fix again an appartment with boundary
points as above. Then, again as above, Ky will be a maximal compact
subgroup which is also the stabilizer of the vertex xq, B the Iwahori
subgroup which is the subgroup of K which stabilizes the vertex z;.
U, (for n > 1) will be the the congruence subgroups of G, i.e., they
are the stabilizers of the spheres of radius n around the vertex zy. We
have the following inclusions:

Uppr CU, C BC K,

for each n > 1.

We are interested in the irreducible smooth representations of G.
Recall that these are the irreducible representations (7, V) of G such
that | J, V* =V, where the union is taken over the set of open compact
subgroups OK(G) of G.

Of course, we consider only non-trivial representations. This means
that, if V' is any such representation, then there is an open compact
subgroup K of G such that V& £ 0. It should be remarked that if
K1 is an open compact subgroup of another such subgroup K of G
and VE = 0, then VX1 #£ 0. Now recall that the set of congruence
subgroups of ¢ form a fundamental system of neighborhoods at the
identity element 1 of . Therefore, the fact that V' # 0 is equivalent to
the fact that there is a congruence subgroup U of (& such that V¥ # 0.

Now the representations V' of G which have the property V%o #£ 0
will be called the spherical ones. If a representation is not spherical but
has the property that VP #£ 0, we call these representations special.
Thus a smooth representation with a non-trivial Iwahori-fixed vector
is either spherical or special.

In the representation theory of p-adic groups, the main role is played
by the cuspidal representations. These representations are character-
ized as those irreducible smooth representations which have compact
modulo center matrix coefficients. Because the center of our group
is trivial, it 1s natural to call irreducible smooth representations with
compactly supported matrix coefficients cuspidal. More generally, let
7 be a smooth representation of (. We denote by A(m) the vector
space generated by the matrix coefficients of m. We say that 7 is cus-
pidal whenever A(r) C C(G). The main result of Olshanski, for
our approach, is that all the irreducible smooth modules other than
spherical and special ones are cuspidal. This result makes the category
M(G) much better than in the p-adic case. In particular, we are going
to see in the next chapter that by using this result one can avoid the
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Jacquet theory in obtaining some important theorems. This is impor-
tant because the Jacquet theory seems to be difficult to establish for
our group.

Now we need some notations to be able to explain the main result
of Olshanski. By a subtree Y of X we mean a connected subset of X.
A subtree is said to be finite if it has a finite number of vertices. By
an interior point of a subtree we mean a vertex x of Y such that YV
contains at least two neighbours of . Now we say that a finite subtree
is complete if it contains all of the neighbours of its interior points.
The boundary of such a subtree Y is defined as the set of non-interior
points of Y. A subtree consisting of only one vertex or only one edge
is also assumed to be complete.

If Y is a finte subtree of X, then the diameter of Y is the maximum
distance between its vertices.

It should be also clear that a subtree is finite iff it is bounded. Let
Y be a complete finite subtree of X with diameter > 2. Let U(Y') be
the (pointwise) stabiliser of ¥ in G, and U(Y) ={geG:gY)CVY}.
Then U(Y) is the normaliser of U/(Y) in G and the group U(Y)/U(Y)
is finite. Let Uy, U,, ..., U, be the stabilisers of the maximal complete
subtrees of Y. Olshanski defines those irreducible representations p of
U(Y) which are trivial on U(Y') and which have no non-trivial U;-fixed
vectors (1 <i < n) to be non-degenerate. If p is such a representation
of U(Y), we denote by I(Y,p) the corresponding representation of (¥
induced from U(Y).

We are now ready to formulate the following [14]

THEOREM 6.1. Let (m,V) be an irreducibe admissible representa-
tion of GG. Then the following are equivalent:

(a) V contains no non-trivial Twahori-fixed vector;

(b) V is equivalent to a representation I(Y,p) for some complete
Jinite subtree Y and some irreducible non-degenerate representation p
of T(Y);

(¢c) All the matrix coefficients of V' are compactly supported;

Therefore, an irreducible smooth representation of (i is either spher-
ical, or special, or cuspidal. Moreover, all the irreducible cuspidal G-
modules are induced from compact open subgroups. Olshanski proves
in [14] also that the irreducible cuspidal representations are the only
irreducible representations with L'-matrix-coefficients.

Olshanski has proved also the following result:

PROPOSITION 6.2. With the notations as above, I(Y,p) is isomor-
phic to I(Y',p") iff there exists a g € G such that g(Y) =Y and the

representations p and g - p (the definition is below) are isomorphic.

Now consider the set ¥ of all (Y, p) where Y is a complete finite
subtree (of diameter > 2) of X and p is an irreducible non-degenerate
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representation of U(Y) Since the image of a complete subtree in a
homogeneous tree under an automorphism is again a complete subtree,
we have a natural action of G on the first components of ¥. We define
also the G-action on the second components by (g - p)(h) = p(ghg™")
for each ¢g.h € G. 1t is also clear that the last operation is well-
defined. Thus we get an operation of G on Y. The above proposition of
Olshanski says that the set of equivalence classes of irreducible cuspidal
representations of (G are parametrized by the set of G-orbits in X.



CHAPTER 3
The Category M(G)

As usual we fix a geodesics (2,,)nez, K = Stab(xg), and t € ¢
such that t(x,) = t(x,41) for each n € Z. B will denote the Iwahori
subgroup of G. i.e., B = Stab(xg)()Stab(xy). In section 1 U will

denote a fixed congruence subgroup of G.

1. H(G;U) is finitely generated

Let us recall the distribution realisation of the Hecke algebra of ¢
at the end of section 1.2. For each element ¢ of the Hecke algebra
H(G) = C(G) we associate the distribution ¢u on G, where p is the
left-invariant Haar measure on (G. Moreover, each f in H(G) can be
considered as a compactly supported smooth function on GG x GG via
fo:(g1,92) —— f(g192). As

C2(G % G) = 0(G) 0 C(0),

one can define (S @ T)(f) :=(S@T)(fo). If v1,p2 € H(G), we define
(S @ T)e1 ® @) := S(e1)T(¢2). Now, if S and T correspond to
two elements of the Hecke algebra, then a multiplicatin of these two
elements can be performed as follows. If f € H((G), then we consider
first the corresponding fy on G X G, then we write it as an element of
the tensor product C°(G) @ C°((G), and then we calculate the value
of this element under S @ T..

If F' denotes the above given mapping ¢ —— @u, I is injective,
linear and an algebra morphism. That is to say,

F(e1pz) = Flp1) @ F(pa).

By using this we identify H () with its image under F.

For each g € GG, we denote by ¢, the unique U-bi-invariant distri-
bution on G with support in UglU and integral 1. i.e,

g = €y * Oy * €.

This distribution corresponds to u(UglU)™ g Clearly {¢, : g €
U\G/U} is a basis of H(G;U).

LEMMA 1.1. If g,h € G and if h normalizes U, then one has
PgPh = Pgh-

Proof.  Clearly if h normalizes U, then one has (UgU)(URU) =

UghU. For simplicity we assume that p is a left Haar measure on ¢

35
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with the property that u(U) = 1. Otherwise we should multiply by a
suitable constant. Direct calculation shows that in this case one has

poen = (u(UgU)u(URU )" u(UgU 0 (gh)UR™ U ) xugnu-

(One can see [21], 3.4.(:v) for such a calculation).
Now, since h normalizes U, we have (gh)Uh™'U = gU and hence

p(UgU N (gh)UR™'U) = p(UglU N gU) = p(gU) = p(U) = 1.
Moreover since G is unimodular we have
p(UghlU) = p(Ugl)

and

p(URU) = 1.
Therefore,

poen = ((UghU)) ™ Xugnr = @gn-
O

Remark. Let U be as above. Then, if g is any element of G which
normalizes U, then, for any i € (&, one has again

PgPh = Pgh-

Remark. One has indeed the following general rule ([2], page 28):
If g, h € G are arbitrary with (UgU)(URU) = UghU, then one has

PgPh = Pgh-
Thus, if {21, ...,2,} = K/U, then, since U is normal in K, we have,
for g € G,
(Ux,U)UgU) = Ux;UgU = Ux,;gU
and that

Prig = PriPyg
forall g € G and i € {1,...,r}. Similarly,

Pow; = PgPux;-
for all ¢ € G and ¢ € {1,...,r} Therefore, if C' is the vector subspace
generated by {pm : n € N}, the Cartan decomposition

G = U Ki"K

neN

shows that

H(GU)=H(K;U)CH(K;U).
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Now let us show that, ¥n,m € N,

S‘Qtn@tm = S‘Qtn-l-m.

(This will imply clearly that C' is not only a vector subspace, but also
a subalgebra generated by one element, hence it is commutative). For
this let Ut be the subgroup of U consisting of elements of U which fix
all the vertices = of X such that

d(z,xy) < d(x,x_q).
Similarly, let U~ be the subgroup of U consisting of elements which fix
all x € X with d(z,21) > d(x,2_1). Then

U=UYU"=U"U".

Besides, let # € X be fixed by all elements in Ut. Then d(z,z;) <
d(x,x0). Sincet™ is an isometry, we have d(t"(x),x,) = d(x,x¢) (n > 0)
and d(t"(x),x0) = 2n > 2n — 1 = d(t"(x),z1). Thus t"*(x) is also fixed
by all elementsof U*. Since t™"t"(z) = x, forany k € U, t7"kt"(z) =
and one has ¢7"U*t"™ C U™ for all n € N. Similarly one has also
t"U~t=" C U~. Hence if n,m € N, then

UtUtU = U"U- U0 = U U~ ) (U)o C U,

le.,

S‘Qtn-l-m = S‘Qtn@tm.
Therefore we have proved the following

THEOREM 1.2. H(G;U) = H(K;U)CH(K;U) where C is a com-
mutative subalgebra of H(G; U) which is generated by only one element.

One should remark that dim(H(K;U)) = [K : U] < oc.

2. Uniform Admissibility of Irreducible Representations

It is well known [14] (see also the appendix) that any irreducible
smooth representation of (& is admissible. Using the theorem 1.2 above,
one can even prove the following stronger result:

THEOREM 2.1. For each firxed U € OK(G) there exists an N =
N(U) € N such that, for any V € M(G) irreducible one has

dim(VY) < N.

Proof. The statement of the theorem is equivalent to the following
statement: All simple H(G; U)-modules have dimension smaller than
or equal to V.

Now let (m,V) be an irreducible representation of H(G;U). We
know that k := dim(V') < co. Moreover, by a theorem of Burnside,

m: H(GU) — End(V)
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is onto. But, if Hy := H(K;U) and d := [K : U] = dim(Hy), the

theorem 1.2 gives
k* = dim(End(V)) = dim(m(H(G; U))) < &dim(=(C)).

Since m(C') is a cyclic subalgebra of End(V), its dimension is < k.
Thus, we have

k< d?.

Hence N := d? = dim(3H,)?* satisfies the condition of the theorem.
O

3. More on Cuspidal Representations

We define a smooth G-module V' to be cuspidal iff all its matrix
coefficients are compactly supported. We have moreover the following

THEOREM 3.1. Let (m,V) be a cuspidal G-module, U € OK(G),
v e V\{0}. Then, if W is the G-submodule of V' generated by v, one

has
dim(m(er)(W)) < oo.

In other words, for any non-zero v in V., if we consider the G-
submodule W of V' generated by v, then the space of U-invariant vec-
tors in W is finite dimensional.

Proof. Let (m,V),U,v,W be as above. Put F := m(ey)(W). We
define also a function f : G — VY by

[(g) = m(ev)m(g)(v)
for all ¢ € GG. This function is well defined and smooth, as 7 is smooth.
Suppose that dim(E£) = oco. This means that the range of f is in-
finite dimensional. Thus there exists a sequence (g, )nen such that
(f(gn))nen is linearly independent. Since f is smooth, this means that
{g, : n € N} is a discrete set. Without loss of generality we may assume
that {f(g.) : n € N} spans E. (If not, one may consider the subspace
of F generated by {f(g,):n € N}.) Now define a functional v on VY
by 9(f(g.)) = n for each n € N and 9(w) = 0 for each w € VU\FE.
Then & € VU and ©ui(gn) # 0 for almost all n € N. But, ¢, is
a matrix coefficient of V' and should have a compact support which

can not have an infinite discrete subset. This contradicts the fact that
{g, : n € N} is discrete. 0

COROLLARY 3.2. Fvery finitely generated cuspidal representation
is admissible.

Proof. Let V € M(G) be such a module and U € OK(G). We
want to show that dim(VY) < co. Let {vy,vq,..., v} be a generating
subset of the G-module V. For each 1 <i < m put F; = 7(ep)(W;) as
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in the proof of the above theorem, where W; is the G-submodule of V/
generated by v;.
Then, it is clear that

Ey+ By + .t E, =V".
Hence
dim(VY) < dim(FE,) + dim(FEy) + ... + dim(E,,).
But, as dim(F;) < oo for each i, the result follows. O

COROLLARY 3.3. Irreducible cuspidal G-modules are admissible.

In general, if a smooth representation of a locally profinite group has
compactly supported matrix coefficients, one calls such representations
‘compact’ or "finite’. In this general context an irreducible representa-
tion is called cuspidal iff its matrix coefficients are compactly supported
modulo center. Since the center of our group G is trivial, an irreducible
smooth representation of (¢ is cuspidal iff it is compact. To be able to
go further, we need a fundamental result from the theory of such rep-
resentations. A proof of this result can be found in [3], Theorem 2.44
on p. 28.

THEOREM 3.4. Let V' be an irreducible cuspidal G-module. Then
any G-module W can be written as a direct sum of two submodules
Wi and Wy such that JH(Wy) C {V'} and that V ¢ JH(W;). More-
over, in this case, Wy is completely reducible, hence is a direct sum of
submodules each of which is isomorphic to V.

One standard proof of this theorem is based on the following lemma
which is known for cuspidal representations of locally profinite groups
in our sense [3], Theorem 2.42 on p. 27.

LEMMA 3.5. Let U be any congruence subgroup, m be an irreducible
cuspidal representation of G. Then there is a unique element h(U, 1) €
H(G,U) such that n(h(U, 7)) = w(ey) and, whenever ©' is any irre-
ducible representation of G which is not isomorphic to 7, then

m'(h(U, 7)) = 0.

In other words, the elements of H(G, U) separate the isomorphism
classes of irreducible cuspidal representations of (¢ with non-zero U-
invariant vectors.

If we combine this lemma with the uniform admissibility theorem,
we get the following very important finiteness result which will allow us
to improve the above theorem in the sense that the ’set’ of irreducible
cuspidal representations split the whole category M(G).

COROLLARY 3.6. Let U be a congruence subgroup. There are at
most finitely many non-isomorphic irreducible cuspidal representations
with a non-zero U-invariant vector.
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Proof.  We know that an irreducible representation of H(G,U)
comes from a unique irreducible smooth representation of G. Let us
call an irreducible representation of H(G, U) cuspidal if the correspond-
ing smooth representation of G is cuspidal. The uniform admissibility
theorem says that for given U fixed, the dimensions of irreducible rep-
resentations of H (G, U) are bounded from above. In other words,

AN > 0:VV € Iir(G)  dim(VY) < N

Thus it is enough to show that for each n € [0, N] there can exist
at most finitely many irreducible cuspidal representations of H (G, U)
of dimension n. For let M = End(C") = M(n,C), A be the set of
algebra morphisms of H(G,U) into M. Let {hy, ha, ..., hy} be a set of
generators of H (G, U) (this algebra is finitely generated). We identify
A with its image in the diagonal of M™ by the mapping

at— (a(h1),...,a(hp))

for each @ € A. Now let m be an n-dimensional irreducible cuspidal
representation, h(U, ) € H(G, U) be the corresponding element as in
the above lemma. Now, h(U,7) can be written as Pr(hy, ..., hy,) where
P is a complex noncommutative polynomial in m variables. Its image
under 7 will also be denoted by P,. If we define Q,(-) = tr(Pr(7(-))),
then (), is a commutative polynomial function on M™. Now it is easy
to see that, for any o € A, Qr(a) # 0 iff « is isomorphic to 7. Indeed,
suppose that Qr(a) # 0. This means that tr(P;)(a(h1), ..., hm) # 0.
Thus tr(a(h(U,7))) # 0. Hence a(h(U,n)) is not zero and, by the
above lemma, o and 7 should be isomorphic. Conversely suppose that
7 and « are isomorphic. Then Q. (o) = tr(Pr(a(hy),....,alhy))) =
tr(a(h(U,m))). Since o and 7 are isomorphic their characters are the
same. Thus tr(a(h(U,7))) = tr(n(h(U, 7))) which is equal to tr(m(er)).
But the last operator is non-zero and idempotent, hence has a non-zero
trace. Therefore we have Q,(«a) # 0.

The set of all (), for all possible n-dimensional irreducible cuspidal
representations m of H(G, U) generate an ideal in the ring of polyno-
mial functions on M™. By the Hilbert Basis Theorem, let {m,..., 7}
be a finite set of generators of this ideal. Now if 7 is any irreducible
n-dimensional cuspidal representation, then @Q,(m) # 0. Thus there
is some ¢ € {1,2,...,r} such that Q. (7) # 0 and hence m; and 7 are
isomorphic. This result says also that, up to isomorphism, there are
only finitely many irreducible n-dimensional cuspidal representations

of H(G,U). This completes the proof. O

We state also the following consequence of the above theorem:

COROLLARY 3.7. IfV is a smooth G-module. Then any irreducible
cuspidal subquotient of V' is isomorphic to a subrepresentation of V.
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Proof. Let W be an irreducible cuspidal G-module. We can write
V as a direct sum of Vi and V; where all the irreducible subquotients
of Vi are isomorphic to W and V; does not contain such irreducible
subquotients and that V; is compeletely reducible (by theorem 3.4). O

4. The Decomposition of M(G)

First recall that, by theorem 3.4, if W € M(() is irreducible and
cuspidal, {W} splits the whole category M(G). le, if V. € M(G) is
arbitrary, then V' has two G-submodules Vi and V5 such that

V=Valh
with JH(V1) C {W} and W ¢ JH(V2). Now, by corollary 3.6, we

know that for any congruence subgroup U of (G, we have only finitely
many irreducible cuspidal G-modules with non-zero U-invariant vec-
tors. Hence simply by repeating the argument above for these finitely
many irreducible cuspidal modules we can prove a stronger version of
theorem 3.4 in the following sense: V' can be written as a direct sum of
its two submodules such that one of these summands has only cuspidal
JH-components with U-invariant vectors while the other one does not
have such components. In fact, as we prove below, we can enlarge the
first component of this decomposition to contain all possible cuspidal
JH-components. We state this fact more precisely as follows:

THEOREM 4.1. Irr. (), the set of all irreducible cuspidal represen-
tations of G, splits the category M(G), i.e., Fvery V. € M(G) can be

written as
V=V.aV,

where all the Jordan-Holder components of V. are cuspidal and V; does
not have any cuspidal Jordan-Holder components.

Proof. First let U be a congruence subgroup of G and V € M(G).
Then, let {Wi, ..., W,,} be the set of irreducible cuspidals containing a
non-zero U-invariant vector. Then

V=viaW'
with JH(Vi) C {W,} and W, ¢ JH(Vi*) Then
V=V al"

with JH(Vy) C {Wa} and Wy ¢ JH(Vyh), ...

Vm—lJ_ — Vm S, VmJ_

with the properties as above.
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Then, putting V.o = V1 @ ... @ V., and VQUL = VmL, we get the

decomposition
V=V.oraV.rt,

where V. has only cuspidal Jordan-Holder components while VQUL
does not have any cuspidal JH-components with non-zero U-invariant
vectors.

Now put V. := |J, Vo and V; := [, VQUL, where the union and
intersection are taken over the set of all congruence subgroups of G.
Now it is enough to show that

V=V.aV.

Forlet v € V be arbitrary. Then there exists a congruence subgroup
U of G such that v € VY and that v = v, + vy for some v, € Veu,
vy € VQUL. Now it is enough to show that vy € V; (that vy € V. is
clear from the definitions). We want to prove that the G-submodule
W of V generated by vy is contained in V;. But, this is the case ifft W
contains no irreducible cuspidal subquotients. First, W is a submodule
of V.yt. This means that W cannot contain a cuspidal JH-component
with a non-zero U-fixed vector.

On the other hand, let £ be a JH-component of W which does not
have any U-invariant non-zero vector. That is to say, let £ € JH(W)
with £Y = 0. Then E does not contain a non-zero vector invariant
under the Iwahori subgroup B of G. Then E should be cuspidal. By
corollary 3.7, an irreducible cuspidal subquotient of W is isomorphic
to an irreducible submodule of W. Thus we have a restriction operator
from W to E which is at the same time intertwining. Thus the image
of vy under this restriction operator is 0. Therefore W can not contain
any cuspidal JH-component without non-zero U-invariant vectors. In
other words, all the JH-components of W are either spherical or spe-
cial. This means that W C V,. O

In analogy to the p-adic groups, we can call an admissible G-module
V' supercuspidal if it is in addition cuspidal.

5. The subcategory M(G,U)

Now we can prove the following result which will be one of the main
ingredients in the next chapter. Let U be a fixed congruence subgroup

of G.
THEOREM 5.1. The full subcategory M(G,U) of G-modules V' which

are generated by their U-fived vectors is stable under taking submodules.

Proof. 1t is easy to see that if we can prove that all JH-components
of a smooth G-module V' € M(G,U) have some non-zero vector in-
variant under U, then we have the required result. So, let W be an
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irreducible subquotient of V. We know that (by theorem 2.6.1) W is
cuspidal iff WP is trivial, where B is the Iwahori subgroup of (. Thus,
if W is not cuspidal, it contains some non-zero vector invariant under
B. But this vector is clearly invariant under U, too. Therefore we
may assume that W is cuspidal. Now, since {W} splits the category
of smooth GG-modules, we have, in particular,

Vi=Vialy,

where J H (V1) contains only irreducible cuspidals isomorphic to W, and
V3 contains no JH-components isomorphic to W. Note that V; is also
generated by its U-fixed vectors. V4" contains some non-zero vector
v. Let F be the G-submodule of V] generated by this v and I be an
irreducible subfactor of E. Then clearly FV is nontrivial. But by the
decomposition above F' 2 W, hence WY is also nontrivial. 0

Now we make the following definition:

DEFINITION 5.2. A module Vin M(G) is called noetherian if every
finitely generated submodule of V' is again finitely generated.

As an immediate application of the theorem above we are going to
prove

COROLLARY 5.3. An admissible G-module in M(G,U) is noether-
wan.

Proof. We remark that it follows from the definitions that every
admissible V' in M(G, U) is automatically finitely generated. Indeed,
If V is admissible and if it is generated by its U-fixed vectors VY, V is
generated by a basis of VY which is finite dimensional since V' is ad-
missible. Let now V' be such a module. It is enough to show that every
submodule of V' is also finitely generated. So let W be a submodule of
V. By the above remark W is admissible. Hence dim(WV) < oo. The
above theorem says that W lies also in M(G, U), thus W is generated
by WY which is finite dimensional. O

DEFINITION 5.4. A category A of modules over H(G) is said to be
noetherian if every finitely generated object in A is noetherian.

Therefore the corollary proved above says that the subcategory
M(G,U) N Adm(G) is noetherian.

THEOREM 5.5. The full subcategory Adm(G') of M(G) consisting

admissible G-modules is noetherian.

Proof. According to the corollary it is enough to prove that any
finitely generated G-module V' is contained in M(G; U) for some con-
gruence subgroup U of G. For this let F' C V be a finite generating
subset. Then as V' is smooth, every element in F' is fixed by some
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congruence subgroup of GG. F'is finite. Since the intersection of a finite
family of congruence subgroups contains another congruence subgroup
of G we see that there is a congruence subgroup U of G which fixes
all elements of F. In other words, there is an U € OK(G) such that
F c VY. Thus V€ M(G;U). The rest follows from the above corol-
lary and the admissibility of V. 0

Remark. By corollary 3.3.2 we know that all finitely generated cus-
pidal representations are admissible. Thus the subcategory of M(G)
consisting of cuspidal representations is also noetherian.

Remark. 1t is indeed natural to ask whether the whole category
M(G) is noetherian. By the proof of the theorem above one can see that
every finitely generated G-module is contained in M(G;U) for some
congruence subgroup U of (. Thus M(G) is noetherian iff M(G;U)
is noetherian for any congruence subgroup U. An important step in
understanding the noetherian properties of M((G') is to understand the
representations of (G with only cuspidal Jordan-Holder components.
This family contains the cuspidal tepresentations but is substantially
larger than the family of cuspidal representations.



CHAPTER 4

Extensions Between Admissible Representations

In this chapter we are going to prove that the representations define
in a natural way homological systems of coefficients on the complex X.
The results proved in the last chapter allows us to apply the approach
of P. Schneider and U. Stuhler in the p-adic group case (see [16]) to the
automorphism group G of the homogeneous tree X. Since we cannot
give a better exposition of their approach than that in their original
work, from this point on we are going to follow closely their work [16]
or [17] and at the necessary points we are going to use the necessary
results from the last chapter. In particular, we are going to construct
and study some homological complexes, and using the contractibility
properties of some related subcomplexes of the tree we are going to find
some exact resolutions. Then we prove the finiteness results of [16] in
our case.

We consider X as a simplicial complex. Xy (or simply X) will
denote the O-simplices of X, that is, the vertices, and X; will denote
the 1-simplices (edges) of X. As before, (2,,)mez will denote a fixed
doubly infinite geodesics in X, and, for n € N*_ U,, will denote the nth
congruence subgroup of GG, relative to .

1. Some Definitions

We are going to recall some basic definitions which we are going to
use in the rest of this work.
Let M be an abelian category of non-degenerate modules over H =

H(G). (e.g., M(G))

DEFINITION 1.1. Let P, I be two objects in M. We say that P is
projective if the functor M —— Ab given by W —— Hom(P, W) is ex-
act. [ is said to be injective if M —— Ab given by W —— Hom(W, I)
s exact.

DEFINITION 1.2. We say that M has sufficiently many (or enough)
projectives if for every V in M there is a projective object P and a
surjective morphism P —— V. Similarly, one says that M has enough
injectives if for every V€ M there is an injective morphism V. —— I.

Now let M = M(G). Recall that H is an idempotented algebra. In
this case we have the following: ([2], pp. 13-14, theorems 13 and 14)

45
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THEOREM 1.3. (1) The category M has enough projectives.
(2) M has also enough injectives.

Remark. We should remark that this theorem is valid for all locally
profinite groups we considered in chapter 1 provided all irreducible
smooth representations are admissible. For irreducible cuspidal repre-
sentations of locally profinite groups this is known by corollary 3.3. For
the irreducible non-cuspidal representations of (¢ = Aut(X) the proof
of admissibility is given in the appendix at the end of this work.

Let V € M((). By a projective resolution of V' we mean an exact
sequence

P, e P P V 0

such that each P, is a projective G-module (in the abelian category
M(G)). We are going to call such a resolution also finitely generated if
all P, are finitely generated. Similarly, by an injective resolution of V'
we mean an exact sequence

0 V I° r "

where each I™ is an injective G-module. Now suppose that we have
a projective resolution of V' as above. If W is another G-module,
then Ext"(V,W) is defined to be the nth homology of the complex
(Hom(P,,W)),. That is to say,

Ext'(V,W) := H(Hom(P., W).
In particular, Ext®(V, W) = Hom(V,W). One can define Ext (V, W)

also by using an injective resolution of W. In that case, one would have
Ext'(V,W) =H (Hom(V, I')),

where " is an injective resolution of W. One should remark here that
Ext'(V, W) defined above is independent of the projective (injective,
resp.) resolution used. This means that one can use any suitably con-
structed projective resolution of V' to study Ext'(V,W). We are going
to use the first one., i.e., by constructing suitable projective resolutions
with some nice properties. OQur aim is to show that if V and W are
two admissible G-modules which are in a suitable full subcategory of
M(G), then Ext"(V, W) is always finite dimensional and vanishes for
n > 2. In order to be able to show this, using V., we will construct
some homological complexes using the idea explained above. Then, we
are going to prove that the corresponding augmented complexes give
indeed some resolutions of V. By construction, these complexes will
be short enough. Then, we are going to show that this resolution is
indeed projective and finitely generated. Clearly this will ensure us the
result that, Ext"(V, W) are all finite dimensional and vanish for n > 2.
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2. Smooth Representations as Coefficients

We consider X as a simplicial complex. Thus the vertices are the
O-simplices of X, and the edges e € X are the 1-simplices. Now, we fix
also an orientation with the incidence numbers [e, z]. For example, we
can consider the following orientation: As earlier, we fix a vertex xg in
Xo. Then if e =< 2,y > is any edge on X, and if d(xg, 2)(< d(x0,y))
is an even number, then we say that < z,y > is positively oriented
and in this case [e,z] = 1 and [e,y] = —1. If d(xo, ) is odd, then
—e =< y,x > is assumed to be positively oriented.

In order to go further, we need the notion of (homological) coeffi-
cient systems on the tree X. By a coefficient system on X we mean
the following data: For each simplex ¢ in X a complex vector space
V5, and for each inclusion o’ C o, a restriction map r7, : V, —— V,
with the properties that r7 = id and 77, o rgf, =r?,. Since our complex
is one-dimensional, these properties are trivial.

Assume now V is a smooth G-module. We are going to define
a coefficient system on X by using the invariant vectors under some
compact open subgroups associated to the simplices of X. Let n be a
positive integer greater than 1. Then, we denote by U the congruence
subgroup corresponding to this n. That is, U = Stabg(B(xo,n)) =
{g € G:glx)=2a Va with d(zo,2) <n}. Then, for each = in
X, we put U, = gUg™!, where g € GG such that g(x¢) = z. This means
that U, = Stabg(B(x,n)). If e =< 2,y > is an edge, we define U, to be
the subgroup generated by U, U U,. Then, if € X (i.e., € Xy), V; is
defined to be VY=, the subspace of vectors invariant under the subgroup
U,. Similarly, for each e € X;, V. := VY. Since U, C U, for each ¢
and x with # C e, we have V. C V.. Thus we consider the natural
restriction maps ¢ and see that each V' € M((') defines in a natural
way a coefficient system on X. For such a coefficient system, one defines
the oriented 1-chains to be the V-valued finitely supported functions «
on Xj such that a(e) € V, for each e € X; and a(—e) = —a(e), where
—e is the same edge as e with the opposite orientation. Similarly, the
oriented O-chains are defined as V-valued functions a on X which are
again finitely supported and satisfy a(x) € V.

Here one remark is in order: In the case of the tree the coefficient
systems are much easier to study with. In this case one can take any
vector space for each simplex and then define the restriction maps
arbitrarily. Then one can define oriented chains as above.

We are going to denote the complex vector space of oriented g¢-

chains by C (V) for ¢ = 0,1. Now we define
8 . Cl(V) —_— Co(V)
by
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where o € C1(V) and the sum is taken over all e € X; such that
x = o(e). (Recall that if e is an oriented edge, then it has an origin
denoted by o(e) and a terminal point denoted by t(e) so that we can
write e =< o(e), t(e) >.)

If we consider also the G-action on C1(V') given by

ga(< z,y>)=gla(< gz, g7y >)
for each e € X; and g € G, and, similarly on Cy(V), then we see

that the C (V) are smooth G-modules and 0 is G-equivariant. The
augmentation map is defined as

e: Co(V) —V
by

reX

In this chapter we are going to study the exactness properties of

the corresponding augmented complex
0 —— C1(V) == Co(V) == V.

It is easy to see that

1) Co(V) is not trivial iff V' has some non-zero vectors invariant
under the congruence subgroup U, and

2) The augmentation map is surjective iff V, as a G-module, is
generated by its subspace VY of vectors invariant under U. (It is easy
to see that the image of € generates, as a vector space, the whole G-
submodule of V' generated by VU.)

Thus it is natural to work with the category M(G,U) introduced
in the last chapter.

Since each o € C1(V) is compactly supported, it is also easy to see
that eod = 0. But the exactness at Cp(V') is not trivial at all. For this,
as in [16], we use the following strategy: First we are going to prove this
for the smooth G-module C.(G/U). (Recall that at the end of chapter
2 we have proved that every irreducible smooth G-module with non-
zero U-invariant vectors can be realized as a subrepresentation of this
representation.) Then, we are going to use the main theorem of the
last chapter and prove that one can reduce to the case C.(G/U) by
showing that one has always an exact resolutions in terms of C.(G/U).

Then, it will follow from the above remarks that, if V' is in M(G, U),
the above exact sequence will give us an exact resolution of V. Later
we are going to prove that this exact resolution is indeed projective.

One should also remark that the coefficient systems on X form in
a natural way a category and the functor ( V —— (V;),)from the
category M(() to this category defined above is exact since all of our
groups U, U, are profinite. (Recall that U is a congruence subgroup
of level n > 1.)
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3. The case V = C.(G/U)

Let S = G/U. Then, since U is open in (7, S is a discrete countable
set. Moreover, for each x € X, we have

C.(S)" = C(UNG/U).
Similarly, for each e € X;, we have
()0 = CLUNG/U)
and

UNS =UNG/U =S, ] 5,
S

where ¢ = {z,y} and 5, := U,\S, Sec := U\S for x € X and e € X;.
If o is a simplex in X (i.e., is either a vertex or an edge in our tree X),
one gets, as in [16], a simplicial set S, . with

Som =95 X5 X....x8 (m + 1 factors, m > 0)
Se  So  So

and all face maps are proper in the sense that the inverse image of
any finite set is again finite. Then one has the following commutative
diagrams of simplicial sets (here S and S, are considered as constant
simplicial sets) :

and

S,. —— 8,

|

[p——

where ¢’ C 0.
One gets, by passing to functions, the following commutative dia-
gram:
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0 0 0
0 BOS) — e (s, — CL) 0
Xl & € XO & T CH
0 C.(S 0 C.(S S oS 0

¢ () 9 () o(5) —
lo
B
0 BCO(S x 5) DOS X §) — = C(8) —— 0
X1 Se Xo Sg: H

B
0 BO(S X S X 8) D BCAS % S % S) —= C(S) —= 0
X1 Se Se Xo Sx Sz l

! !

We want to show that the top row of this diagram is exact. For
this, one observes that each S, is a disjoint union of simplicial finite
sets of the form

Sti= 9 X S X ... X S

where S; denotes the set of s’ € S which go to s under the map
S —— 5,. Since these simlicial sets are contractible, one sees that
the columns of the above complex are exact. Thus, it is enough to
show that sequences above of the form

B
0 BOAS X oo X S) 2 BOLS X oo X S) — O §) —— 0
X1 Se Se Xo

Sz Sz

are exact.
Let m > 0 be fixed.

One can consider Sy, =5 X ... x S (m + 1 factors) as a subset of
Se  S.

SmHl = § % ... x S. Similarly, one considers S as the set of diagonal
elements of S™*!. Now we want to write the above complex with
the new terminology in a more convenient form. For this we define,
following [16], for § = (51,82, ..., 8ms1) € S™ X* to be the set of
all simplices o in X such that the image of {s1, s2, ..., 8,41} under the
map S — 5, is not a singleton.

We have, for each # € X, a natural surjection p, : S —— S,. Then
consider the mapping

T:5 — 11 5,

reX
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given by 7(s) = (p.(8))zex. Observe that 7 is equivariant with respect

to the natural G-actions on both sides. Let s be an element of S such

that 7(s) = 7(U). This means that p,(s) = p,(1U) for all z € X. In

particular, p,,(s) = U. This means that Us = U, hence s = U. (Recall

that S is the set of left cosets of S in (&.) This proves that the mapping

T is injective. Thus, if 5 is not on the diagonal, then X? is non-empty.
By the above construction one has

© Ce(Som) = ~€g+10c(X.\(X§).).

ceX.

Therefore, in our case, too, if we can show that the simplicial com-
plexes X? are contractible, then we have the exactness of the complex
under discussion. Let us prove this for m = 1. The general case is
almost the same. Let

p: 5 — X

be the natural mapping. We have such a mapping since U is a subgroup
of K, the stabilizer of wg.
Let s,t € S and

X6 = {5, #£1,}

where for each simplex o, s, and ¢, denote the images of s and ¢ in S, .
By definition,

s =1, iff g€ U, 1 g(s) = 1.
We observe also that the mapping
w: S5 — Xy
is a finite (proper) mapping since [K : U] is finite. Moreover, this
mapping is actually uniformly finite. We have G-actions on S and X,
respectively. These actions are compatible with ¢. This means that,
for s; and s3 in S,
p(s1) = @(s2) = w(g(s1)) = ¢(g(s2))-

In other words, the following diagram is commutative.

SN

Xo=G/K GJU = §

@ is also G-equivariant.

It is well known that a connected graph is contractible iff it is a tree.
We are going to prove that X is a tree. Put Y for the complement
of X8 in X. We define a semi-metric on S by

ds(s,s") = dx(e(s),0(s")
for any s,s" € S. Here d = dx denotes the geodesic metric in X.
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Since n > 1, if € X and d(x, [p(s),¢(t)]) < n —1, then B(x,n)
and [p(s),¢(t)] have at least three points in common. Clearly these
points are fixed by every element of U,. But this means that s, and ¢,
can not be the same. Hence such an = can not be an element of Y.

If + € X such that d(x,¢(s)) # d(x,¢(t)), then there can not be
any element of ¢ which fixes @ and takes ¢(s) to ¢(¢) since the elements
of GG are isometries. This means that if Y is non-empty, then it can
consists of vertices of X whose distances to ¢(s) and () are the same.
Moreover, Y can consist of only vertices whose distance to [¢(s), p(1)]
is bigger that n — 1. Let « € X be such a vertex, i.e.,

d(z,[p(s),p)]) 2 and  d(z,¢(s)) = d(z, (1)) = 1.

First observe that, asn > 1, @ ¢ [p(s), ¢(t)]. Moreover, if [z, p(s)] =
[l’, L1y, L2505 Lr—1, S‘Q(S)] and [l’, S‘Q(t)] = [l’, Y1, Y2y o5 Yr—1, S‘Q(t)] are the
corresponding geodesic paths, there must be a k > 1 such that z; = y;
forall i € {1,2,...,k}. Since X is a tree, there is a unique path between
@(s) and ¢(t) and hence d(s,t) = 2r — 2k. (One should remark that
[0(8)y Tretyeeey Tk = Yhy ooy Yr—1, ()] is such a geodesic path.)

Let us show that such an = must lie in Y. For this, we recall that
any element of U, leaves any point in B(x,n) invariant. Subject to this
condition, U, contains all isometries of the tree. We know also from
the position of = defined by the above given conditions that & > n.
Therefore U, contains some elements g € (G such that ¢ fixes every z;,
1 < k, and

g(x;) =y for k<i<r.

Putting x, = ¢(s), y» = (1), we get the result that g(p(s)) = (1).
Now, U is a subgroup of K, the stabilizer of xg and the elements of K
permute the set of cosets of U in K. Thus, it is easy to see that there
isagin{h €U, :h(p(s)) =p(t)} such that g(s) = ¢. That is to say,
one can find such a ¢ in U,. But this says nothing but that the images
of s and t are the same in 5,. These observations say the following:

1. Y is non-empty only if d(s,t) is even.

2. Y is a disjoint union of finitely many cones of the form Cla, b]
where « is the middle-point of [¢(s),¢(t)] and b is a vertex in X such
that d(a,b) = n and that [a,b] contains no vertex of [¢(s),¢(t)] other
than a. Such a cone is shown in the following figure. In the figure,
P= p(s) and Q= ¢(1), a is the middle-point of [p(s), ¢ ()], b is a point
on the boundary of B(a,n) such that [a,b][[¢(s),¢(t)] = {a}, z is a
typical point in Cla, b).
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b (s) o (t)

Now it is clear from the picture at hand that the complement of Y
in X is connected since any vertex in X\Y = X% can be joined to
(o(5), 1)

Now we have to show only that X% as a simplicial complex, is
the tree generated by these vertices. For this, we have to prove two
things:

1. x,y are two vertices in X% and if d(x,y) = 1, then the edge e
formed up by these vertices is a simplex in X (),

2. For an edge e to be in (X%),, it is necessery that both of the
endpoints be in (X&),

Then, X! will be seen to be a tree and hence contractible.

For the proof of the above claims, let Y] be the set of edges in X
such that s and ¢ have the same images in S.. Let e € X; with the
endpoints  and y. Then, without loss of generality, if + € Y, then
se =t since U, C U,. This means that ¢ € Y] and proves the claim 2
above. By using an argument of the same type, the calim 1 above also
follows.

The general case is very similar to this one. First the existence of a
middle-point is required. That is, there must be some vertex of X which
is at the same distance from all the given points ¢(s0), ©(51), .., ©(Sm ).
Otherwise the corresponding set Y will be empty. Then one constructs
the finitely many cones as above. The tree generated by the rest of YV
in X will be the complex X*® where 3 = (80, 51,52, -+, Sm)-

Therefore we have proved the exactness of the rows under the top
row in our complex. Thus, the top row is also exact. Hence we have
the required exactness result in the case V = C.(G/U).

4. The General Case

Now we want to see that, for any V € M(G,U), the augmented
complex
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is exact.
Consider the morphism of G-modules

Co(S) @ VY —V
given by

fovi— Y flgg).

Since V, as a G-module, is generated by V'V, this morphism is also
onto. Thus, its kernel lies in the same category M(G, U) since we have
proved in the last chapter that this subcategory is stable under taking
submodules. Now we know that in this case we have an exact resolution

of V in M(G, U) of the form
. — ?CC(S)—» ?CC(S)—»V—»O

for some suitable index sets I, 11, ...

If we combine this complex with the one in previous section, it is
enough to know the exactness in the case of V = C.(9).

Let V. € M(G,U). Our group G acts on both X = X, and X,
transitively. This means, if © € X, e € Xy, and if we consider the
subspaces A and B of C1(V) and Co(V), respectively, given by A =
fa € C1(V) : supp(a) C {x}} and B = {a € Co(V') : supp(a) C {e},
then C1(V) (resp. Co(V)) is generated by A (resp. by B). But, as
a(x) € V,, and admissibility of V' implies that dim(V,) < oo, A is
finite dimensional. Similarly B is also finite dimensional. Hence C1(V)
and Co(V) are both finitely generated. Thus we have the following

THEOREM 4.1. Let V' be a G-module in M(G,U). Then, the reso-

lution

is exact. Moreover, if V is in addition admissible, then this resolution
is also finitely generated in the sense that C1(V) and Co(V) are both
finitely generated.

Now we want to prove that this resolution is also projective. It
is enough to show that the functor Homg(C'(V);, —) is exact on the
category M(G) for i = 0,1. Consider the case i = 1. Let e be the
edge given by x¢ and z;. Let < e > denote the same edge with positive
orientation. For each v € V., we consider the following special elements
of C1(V): For each v € V. let a,(< e >) = v, a,(— < e >) = —v,
ay(c) = 0if 0 # e. Let also By be the set of elements of G such
that g({xo,21}) = {20, 21}. Then By is a compact open subgroup of
(¢ and our Iwahori subgroup B is a subgroup of By of index 2. (The



4. THE GENERAL CASE 55

difference comes from the inversions contained in By). Let 7 be the
unique character of By —— {1, —1} with kernel B. Then we define,
for W e M(G),

E(W) :={A € Home(V., W) : gAg~ " (v) = 7(9)A(v) Vg€ By,Yv € V. }.
We define

¢ : Homg(C1(V), W) — E(W)
as follows: For a T' € Homg(C1(V), W), o(T)(v) = T(e,). We claim

that this mapping ¢ is a linear isomorphism. Linearity and injectivity
of ¢ is trivial. Before proving surjectivity, we try to explain what this
gives us: This will give us an isomorphism

HOmBO(‘/e7 W) = ]:—]:OIFI’IBO/U'E(‘/67 We) = HOm@(‘/e7 WB)BO/Ue‘

But, since U, is profinite and By/U. is finite (B/U. is clearly finite),
the functor Homg(C1(V), W) becomes exact in W € M(G).

Let A € E(W). We have to find a T' € Hom(Cy(V), W) such that
©(T) = A. For each v € V. and «a, € C1(V), we put T(a,) = A(v).
Then we extend it linearly. We have to show that this definition gives
indeed an element of Hom(Cy(V), W). Clearly, if T' is well-defined, it
satisfies p(T) = A. Now let a € Cy(V) and let F' = {e1,e3,¢€3,...,€n}
be the set of elements of X such that F'|J—F = supp(a) (i.e., Fis a
finite subset of X such that F'[|—F is empty and the symmetric set
generated by F'is the support of ). For each i € [1,m], let v; = a(e;).
Then, if g; € G such that g;(e) = e; for each i € [1,m], we have
g7 (v;) € V.. One has indeed

o= gi_l CQ ()
COROLLARY 4.2. Let V' be an arbitrary finitely generated smooth
G-module, W an admissible G-module. Then Hom(V, W) is finite di-

mensional.

Proof. Let A = {vy,vy,...,v5} CV be a finite set that generates V'
as a G-module. Since V' is smooth there exists a congruence subgroup
U’ of G such that all the elements of A are invariant under U’. Every
T € Hom(V, W) is completely determined by its values on this set A.
Observe also that the image of each v; € A under T" will be an element
of WU which is finite dimensional (since W is admissible). Therefore
Hom(V, W) must be finite dimensional. O

Recall that if V' € M(G,U) is admissible, then it is generated,
as a (GG-module, by the subspace VY which is by admissibility finite
dimensional. In other words, every admissible V' € M(G, U) is finitely
generated. This observation gives in particular the following result.

COROLLARY 4.3. For V,W € Adm(G) with V € M(G,U),
Exté\m(G)(V, W) is finite dimensional for all 1 and Extyyq) (V,W) =0
for all 1 > 2.
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Proof.

By theorem 4.1 we have the projective resolution

Moreover, each C;(V),i = 0,1 are finitely generated by the same the-
orem.
Now since (see section 1)

Ext (V,W) := H(Hom(C.(V), W)

we get the required result by the above corollary. (Here C;(V) :=0
for all 7 > 1). O



Appendix: Admissibility of Irreducible
Representations

In section 3.2 we proved the Uniform Admissibility Theorem which
says that if U is any compact open subgroup of G = Aut(X), then
there is a positive integer N that satisfies the following condition: For
any irreducible smooth representation V' € Irr((), one has

dim(VY) < N.

For the proof of this theorem we used the fact that every irreducible
smooth representation V' of (¢ is indeed admissible. That is to say, if
U and V' are as above, we have

dim(VU) < 0.

An explicit proof of this fact seems to be not available in the literature.
Since this result plays a very imprtant role in various places in our work
we give here a simple proof of this fact. We use the same notation as in
chapter 3. Let (7, V) € Irr(() be an irreducible smooth representation
of G = Aut(X). We saw in Corollary 3.3.3 that if V' is cuspidal, then
it is automatically admissible. In fact, more generally, we proved that
finitely generated cispidal representations are admissible. Thus it is
enough to prove that irreducible special and spherical representations
are admissible.

Assume that (7, V') is special. We recall that [15] there are only two
irreducible special representations of (. They are realised on the same
space of functions. The elements of this space are square-integrable
functions on the discrete set X; of (non-oriented) edges in X. More
precisely,

V={fel(X1):) fle)=0 Ve X}

on which we consider the natural representation m of (G. That is to say,

T(g)(f)(e) = flg™"(e))
for each ¢ € G and e € X;. Let € be the unique non-trivial represen-
tation of Z/2 = {—1,1}. Then 7 and 7 ® ¢ are the only irreducible
special representations of (. It is enough to prove the admissibility of
7. Let U = U, be any congruence subgroup, B(xg,n) = {x € Xj :
d(z,z0) <n}. Put F:={e€ X, :eC E}. We want to show that VY
is finite dimensional. For let f € VY. This means that f(u(e)) = f(e)
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for all w € U and ¢ € Xj. Thus if e,¢’ € X\F and ¢ and ¢’ have
the same distance to some vertex x on the boundary of B(xg,n), then
fle) = f(e) = (=1/q)" f(€") for some r € N*| where €” is the edge
contained in F one of whose endpoints is x. Therefore the function f
is uniquely determined by its values on the elements of the set £/ which
is finite. Hence the space VY must be finite dimensional. Indeed, after
this observation one can calculate the dimension of this space and show
that dim(VY) = q(q — 1)L,

Now assume that (m,V) € Irr(G) is spherical. Then, according
to [14], we have the following realisation of V: There exists a quasi-
character y : P —— C* which is trivial on N such that x(¢) # (¢ +

DY2 —((g+ D)Y?), (¢ + )72, —((¢+1)7"/?) and that

VeV ={leC™(G): f(pg) =x(p)VO(p)flg) VpeE P VgeG]
Here 0 is the modular function of P and V. is equipped with the right
regular representation of (. By the Iwasawa decomposition ¢ = PK
the restriction of f to K determines f uniquely. Now if f € VU for
some congruence subgroup U of G, then f|x is completely determined
by the values of f at the elements in a representing set of K'/U which
is finite. Therefore V' is admissible and indeed

dim(VY) < [K : U].

This finishes the proof that every irreducible smooth representation
of GG is admissible.

Remark. The proofs given above imply in particular that the set of
irreducible non-cuspidal representations of ¢ is uniformly admissible.
In other words, if N = max{[K : U],q(q—1)""'} for some n > 1, then
for any irreducible non-cuspidal representation V' of G we have

dim(V) < N.



Notes and Remarks

Here we collect some remarks concerning the literature and some
questions of interest to us. We will continue our investigations to an-
swer these questions.

(1) In this work we have formulated and proved analogues of some
of the important results known in the case of p-adic groups. Most of the
results in chapters 3 and 4 seem to be new in the case of automorphism
groups of homogeneous trees. For the proofs of these theorems we have
used the decomposition theorem proved in section 2.5. The decomposi-
tions in (1), (2) and (3) of the theorem 2.5.5 are due to Choucroun. He
proved these results for the semi-homogeneous Bruhat-Tits trees ([8]
page 39). The decompositions in (4) and (5) of the same theorem have
their analogues in the theory of p-adic groups ([2], page 30). They play
a very important role in the study of the congruence Hecke algebras
H(G,U) and in the proof of the Uniform Admissibility Theorem. Only
after the writing of the first draft of this manuscript we could read the
earlier work of Olshanski [18]. There he uses a very similar decompo-
sition and proves the Uniform Admissibility Theorem in a way which
is almost the same as ours. The only missing part there was a detailed
proof of the admissibility of irreducible smooth representations. In the
appendix we gave a complete proof of this fact.

(2) At the end of his article [14] Olshanski asks whether the charac-
ters of irreducible cuspidal representations are locally integrable func-
tions on the group. He indicates also that the answer to the same ques-
tion for irreducible non-cuspidal representations is negative. Schneider-
Stuhler theory gives some explicit formulas for the characters of ir-
reducible cuspidal representations of p-adic groups. So it seems to
be interesting to investigate this question from the point of view of
Schneider-Stuhler theory in the automorphism group case as adopted
in the last chapter. We plan to go further in this direction.

(3) The characterization of irreducible cuspidal representations of
Aut(X) given by Olshanski as representations induced from some con-
crete compact open compact subgroups is somehow similar to the type
theory of Bushnell-Kutzko ([5]) in the representation theory of p-adic
groups. This similarity also deserves in our opinion more attention.
For a better understanding of this phenomenon one should understand
the restrictions of irreducible cuspidal representations of Aut(X) to
PGL(2, F). Here, of course, X is the Bruhat-Tits tree associated to
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the group PGL(2, F). This subject is interesting also in itself. As
we indicated at the end of chapter 1, the restrictions of irreducible
non-cuspidal representations to PGL(2, F') are again irreducible and
of the same type (i.e., they are either spherical or special). The group
PGL(2, F) has also non-spherical principal series representations which
are not cuspidal and do not contain any Iwahori-fixed vector. It follows
from the above discussion that they cannot be obtained by resticting
irreducible non-cuspidal representations of Aut(X) to PGL(2,F). It
would be interesting to know which cuspidal representations of Aut(X)
contains (when restricted to PGL(2, F')) representations of the non-
spherical principle series of PGL(2, F').

(4) Another interesting problem related to the comparison of repre-
sentations of Aut(X) and those of PGL(2, F') is the following. Accord-
ing to the theory of Jacquet and Langlands ([12], Theorem 15.1), there
is a correspondence between irreducible representations of quaternions
and discrete series representations of GL(2, F') (see also [11] for a nice
exposition). For example, the irreducible cuspidal representations of
Aut(X) should correspond to some sets of irreducible representations
of quaternions. It would be interesting to know what form these sets
can have.

(5) Another question of interest is the one stated at the end of chap-
ter 3, i.e., whether the category M(Aut(X)) is noetherian. We strongly
expect that one can give an affirmative answer to this question. The
reason is that our groups have the ‘same’ non-cuspidal representations
as p-adic groups and we know that the cuspidal part of M(Aut(X)) is
noetherian. For a p-adic group G it is well-known that the category
M(G) is noetherian ([2], page 60, Proposition 32). We are going to
continue our investigations to prove or disprove our claim .
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