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Introdu
tion and Summary of Results

The aim of this thesis is to study the 
ategory of smooth represen-

tations of the isometry group of a homogeneous tree X of degree q+1,

q � 2. For spe
ial values of q these trees are spe
ial 
ases of the Bruhat-

Tits buildings [4℄. Indeed, the Bruhat-Tits building asso
iated to the

p-adi
 PGL(2) is a homogeneous tree. (More generally, the Bruhat-

Tits buildings asso
iated to the rank-one semisimple groups over nonar-


himedean lo
al �elds are homogeneous or semi-homogeneous trees.) If

we equip this tree with its natural geodesi
 distan
e, the p-adi
 group

PGL(2) is a 
losed subgroup of the isometry group of this tree. It

is known that this isometry group does not have a p-adi
 Lie group

stru
ture. We are 
on
erned here with the stru
ture of the 
ategory of

all algebrai
 (=smooth) representations of this group.

The representation theory of this group was initiated by P. Cartier

[6, 7℄ in the beginning of the seventies. He studied the spheri
al He
ke

algebra of this group, 
al
ulated the spheri
al fun
tions, and de�ned

the prin
ipal and 
omplementary series representations of this group.

Then, in 1976, G. Olshanski [14℄ 
lassi�ed all the irredu
ible algebrai


representations. He de�ned the spheri
al and spe
ial representations

and proved that all the remaining irredu
ible algebrai
 representations

have 
ompa
tly supported matrix 
oeÆ
ients. In analogy to the p-

adi
 groups he 
alled these representations '
uspidal'. Later, Figa-

Talaman
a and Nebbia [10℄ have extended the results of Olshanski to


losed subgroups of the isometry group of the homogeneous trees whi
h

a
t transitively both on the tree and on its boundary. They worked but

only with the unitary representations. They gave also the Plan
herel

formula for these groups. Chou
roun, in 1993, has developed harmoni


analysis of these groups similar to the rank one p-adi
 groups to study

the spheri
al representations [8℄. His theory is appli
able both to auto-

morphism groups of homogeneous and semi-homogeneous Bruhat-Tits

trees and to the simple p-adi
 groups of rank one. He observed also the

analogues of Cartan, Bruhat and Iwasawa de
ompositions, whi
h will

be very important for our purposes.

For the rest of this introdu
tion we �x a homogeneous tree X of

degree q + 1, where q � 2. We equip this tree with its natural metri


and denote by G := Aut(X) the isometry group of X. We 
onsider

the elements of G as fun
tions in X and equip it with the topology of

pointwise 
onvergen
e. Then G be
omes a lo
ally pro�nite unimodular

7



8 INTRODUCTION AND SUMMARY OF RESULTS

group, whi
h is �-
ompa
t and separable. We denote the boundary

(the set of ends of the tree X) by 
. This set is in a natural way an

ultrametri
 
ompa
t spa
e and the union of X with its boundary is


ompa
t.

Let (x

n

)

n2Z

be a doubly in�nite geodesi
s in X. Let ! and �!

be the points on the boundary 
 
orresponding to the semi-geodesi
s

(x

n

)

n2N

and (x

�n

)

n2N

, respe
tively. For m 2 N put B

m

(x

0

) for the

set of verti
es y in X with d(x

0

; y) � m. K = Stab(x

0

) be
omes a

maximal 
ompa
t subgroup of G whi
h is pro�nite. If K

1

= Stab(x

1

),

then B := K \K

1

plays the role of the Iwahori subgroup in the p-adi



ase. So we 
all this B an Iwahori subgroup of G. Again, in analogy

with the p-adi
 
ase, we 
all the subgroups U

m

:= Stab(B

m

(x

0

)) =

fg 2 G : g(x) = x 8x 2 Xg the 
ongruen
e subgroups of G. We

�x also an element t 2 G whi
h a
ts as translation on our doubly

in�nite geodesi
s su
h that t(x

n

) = x

n+1

for all n 2 Z. The role of

the paraboli
 (or Borel) subgroup is played by the stabilisers of the

points at the boundary. We put P := Stab(!). Then, as observed by

Chou
roun, we have the analogues of the Bruhat, Cartan and Iwasawa

de
ompositions.

Using these, we study the He
ke algebra of all lo
ally 
onstant 
om-

plex fun
tions with 
ompa
t support. In parti
ular we prove some

�niteness results on the U -He
ke algebras for U a 
ongruen
e subgroup.

Then, using this, we see that the irredu
ible smooth representations are

indeed uniformly admissible. This means that, for any �xed 
ongruen
e

subgroup U , we have

maxfdim(V

U

) : V 2 Irr(G)g <1:

Here V

U

denotes the spa
e of ve
tors in V invariant under U . Then

we show that any G-module V 
an be written as the dire
t sum of two

submodules V

1

and V

2

su
h that all the irredu
ible subfa
tor modules

of V

1

are 
uspidal, while V

2

does not have any 
uspidal irredu
ible

subfa
tor module. By using this de
omposition theorem we are able to

prove one of the main results whi
h states that, if V is anyG-module, U

is any 
ongruen
e subgroup of G, and if V is generated as a G-module

by its U -�xed ve
tors V

U

, then every submodule of V has the same

property. The situation is analogous in the 
ase of p-adi
 groups. We

follow 
losely the approa
h of Bernstein [2℄ to the p-adi
 groups.

In the last part, we are going to extend the results of P. S
hneider

and U. Stuhler in [16℄ to the automorphism group 
ase. In parti
ular,

we will show that the algebrai
 G-modules 
an be 
onsidered in a nat-

ural way as homologi
al 
oeÆ
ient systems on the simpli
ial 
omplex

X. By using this we will be able to �nd some proje
tive resolutions of

smooth G-modules. Then �nite dimensionality of extensions between

the irredu
ible admissible representations will be proved.
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In summary, we extend some of the known results from the rep-

resentation theory of p-adi
 groups, in parti
ular of the p-adi
 group

PGL(2), to the automorphism groups of general homogeneous trees.

When doing this, we try to present the proofs whi
h 
an be used in

both 
ases, i.e., in the p-adi
 
ase and the automorphism group 
ase. Of


ourse, whenever the Ja
quet theory is 
on
erned, we use some substi-

tute. Almost all of the results 
an be proved also for semi-homogeneous

trees after some obvious modi�
ations. These results, we hope, will be

useful in studying the 
hara
ters of irredu
ible algebrai
 representa-

tions of these groups. On the other hand, these groups have been

studied by many authors in re
ent years. For example, Bass, Lubotzky

and others have studied extensively the stru
ture of latti
es in these

groups and in the 
orresponding automorphism groups of more gen-

eral trees [1℄. Some others have studied the isometries of more general

trees, for example the 
ase of metri
 trees. Moreover, similarities and

di�eren
es between these groups and p-adi
 groups of rank one have

attained mu
h interest in the last few years. We hope also that the

results of this work will be useful in understanding these groups in this

sense as well.

Notation and Referen
es. We use the letters Z;N;Q;R;C to

denote the set of integers, the set of non-negative integers, and the

�elds of rational, real and 
omplex numbers, respe
tively. The �eld of

p-adi
 numbers is denoted by Q

p

, the ring of p-adi
 integers by Z

p

. If

A is one of these sets, A

�

denotes the subset of non-zero elements in

A. If (X; d) is any metri
 spa
e and A;B � X, then we put d(A;B) :=

inffd(x; y) : x 2 A and y 2 Bg. If A = fxg, we write also d(x;B) for

d(fxg; B).

When we refer to a theorem, de�nition,...et
. in the same 
hapter

we use only the 
orresponding numbering within the same 
hapter.

Otherwise we write also the 
hapter number. For the referen
es we

give in general the page numbers, too.
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CHAPTER 1

Representation Theory of Lo
ally Pro�nite Groups

In this 
hapter we re
all some basi
 results from the representation

theory of lo
ally pro�nite groups. All groups will be assumed to be sep-

arable and 
ountable at in�nity, i.e., they are the union of a 
ountable

family of 
ompa
t subsets. G will denote su
h a group.

There are ex
ellent referen
es for this 
hapter. Some of them are

[3℄ 
hapter 1, [19℄ 
hapter 1, or [21℄ 
hapter 1.

1. Basi
 De�nitions and the Haar Measure

By a pro�nite group G we mean a proje
tive limit of �nite groups

(the �nite groups in question are given the dis
rete topologies.) A

well-known 
hara
terization of pro�nite groups says that a topologi
al

group is a pro�nite group i� it is 
ompa
t and totally dis
onne
ted.

We say that a topologi
al group G is lo
ally pro�nite if it is Haus-

dor�, lo
ally 
ompa
t, totally dis
onne
ted and zero-dimensional, i.e.,

the identity element of this group has a fundamental system of neigh-

borhoods 
ontaining 
ompa
t open subgroups of G. We denote by

OK(G) the set of 
ompa
t open subgroups of su
h a G. A

ording

to our de�nition OK(G) is a fundamental system of neighborhoods at

the identity element of G. In addition to the above de�ning properties,

we are going to assume that our groups will always be 
ountable at

in�nity, that is, they are the union of a 
ountable family of 
ompa
t

subsets. (Su
h topologi
al spa
es are also 
alled �-
ompa
t.) Some of

the basi
 properties of lo
ally pro�nite groups are summarized in the

following

Proposition 1.1. Let G be a lo
ally pro�nite group as above. Then

(i) Any 
losed subgroup of G is also lo
ally pro�nite.

(ii) The interse
tion of any two 
ompa
t open subgroups of G is of

�nite index in both of these open 
ompa
t subgroups. (Su
h subgroups

are in general said to be 
ommensurable.)

(iii) If K 2 OK(G), and if we equip OK(G) with the inverse in
lu-

sion relation, then OK(K) is a 
o�nal subset in OK(G). (That is, for

any, H 2 OK(G), one 
an �nd a K

0

2 OK(K) su
h that K

0

� H.)

Now, let G be a lo
ally pro�nite group. By a smooth fun
tion on

G we mean a lo
ally 
onstant 
omplex fun
tion on G. The spa
e of all

smooth fun
tions on G is denoted by C

1

(G). Clearly all su
h fun
tions

are 
ontinuous. If, moreover, f 2 C

1

(G) 
an be written as a (not

11



12 1. REPRESENTATION THEORY OF LOCALLY PROFINITE GROUPS

ne
essarily �nite) linear 
ombination of the 
hara
teristi
 fun
tions of

the left 
osets of some K 2 OK(G), then we 
all f uniformly lo
ally


onstant (on the left). A 
ontinuous 
omplex fun
tion f is said to

have 
ompa
t support, or to be 
ompa
tly supported, if f vanishes

outside a 
ompa
t subset of G. The smallest su
h 
ompa
t subset

will be 
alled the support of f , and will be denoted by supp(f). The

spa
e of all 
ompa
tly supported 
ontinuous 
omplex fun
tions on G

will be denoted by C




(G). The interse
tion of C

1

(G) and C




(G) will

be denoted by C

1




(G) or by H(G). One 
an easily prove that the

members of H(G) are all uniformly lo
ally 
onstant. Moreover, the


hara
teri
 fun
tion of any 
ompa
t open subset of G is 
ontained in

H(G). Moreover, it follows from the uniform lo
al 
onstan
y of the

elements of H(G) that the set of 
hara
teristi
 fun
tions of left 
osets

of 
ompa
t open subgroups of G span H(G).

By a distribution on G we mean an arbitrary linear fun
tional on

H(G). The spa
e of all distributions on G is denoted by H(G)

�

.

Ea
h g 2 G de�nes a homeomorphism of G by

h 7�! gh:

Hen
e one has in a natural way an a
tion of G on itself by left trans-

lations. If we pass to H(G), we have a dual operation of G de�ned

by

L(g)(f)(h) := f(g

�1

h)

for ea
h g; h 2 G and f 2 H(G). We 
an go further and de�ne also an

a
tion of G on the spa
e H(G)

�

of distributions on G as follows: for

g 2 G, T 2 H(G)

�

and f 2 H(G) we put

L

0

(g)(T )(f) := T (L(g

�1

)(f)):

It is easy to 
he
k that

L

0

(g)L

0

(h) = L

0

(gh):

Now we are ready to de�ne the (left invariant) Haar measure on

a lo
ally pro�nite group G. A (left) Haar measure on G is a non-

zero positive distribution � on G whi
h is invariant under the above

mentioned group a
tion. This means that for ea
h g 2 G one has

L

0

(g)(�) = �:

(It is a
tually well-known that on a lo
ally 
ompa
t group there is

a unique left invariant Radon measure 
alled Haar measure. If you

restri
t this Haar measure to our H(G), you get the same distribution

as will be shown below. The de�nition given above is suÆ
ient for our

purposes.)

This is the main obje
t of harmoni
 analysis on su
h groups.

In our 
ase the existen
e and uniqueness of su
h a measure is simple.

By the observations above, every f 2 H(G) is a linear 
ombination of


hara
teristi
 fun
tions of left 
osets of some 
ompa
t open subgroup
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K 2 OK(G). From now on we identify 
ompa
t open subsets of G

with their 
hara
teristi
 fun
tions in H(G). We are going to 
onstru
t

a positive linear fun
tional � onH(G) by de�ning its values on 
ompa
t

open subgroups and by taking the same values at their left 
osets. Take

any 
ompa
t open subgoup K

0

of G and put

�(K

0

) = 1:

Then, if K is any 
ompa
t open subgroup of K

0

, put

�(K) = [K

0

: K℄

�1

:

One should remark that the right hand side is always �nite. Now, if

x 2 G and K is any 
ompa
t open subgroup of K

0

, we write

�(xK) = �(K):

We 
an 
learly extend this set fun
tion �rst to the family of all 
ompa
t

open subsets of G and then to a linear fun
tional on the spa
e H(G).

By its 
onstru
tion it is 
lear that this fun
tional is positive and linear.

Thus, we have a left invariant Haar measure on G. (It is a simplematter

to 
he
k that this fun
tional is also well de�ned, as follows from the

above proposition.)

Uniqueness follows now from the following observation: One 
an

re
over su
h a measure from its value on K

0

as above. This means

that the spa
e of left invariant positive linear fun
tionals on H(G) is

one-dimensional. i.e., any other left invariant measure on G is a s
alar

multiple of �.

One 
an 
onstru
t in the same way right invariant Haar measures

using the analogous a
tion of G on itself by right translations. G is

said to be unimodular if every left Haar measure is also right invariant.

From now on we assume that G is also unimodular and �x a Haar

measure � on G.

2. The Spa
e H(G) as an Algebra

The above 
onstru
ted spa
e H(G) is very important for the study

of representations of our group. This is not only a ve
tor spa
e, but

also in a natural way an algebra over the �eld C of 
omplex num-

bers. The multipli
ation of two elements f; g 2 H(G) is de�ned by the


onvolution. That is, by the following formula:

(f � g)(x) =

Z

G

f(y)g(y

�1

x)d�(y)

for ea
h x 2 G. We are going to ignore this 
onvolution symbol and

simply write fg. With this multipli
ation,H(G) is a 
omplex asso
ia-

tive algebra. In general, this algebra does not have an identity. In fa
t,

one 
an see that this algebra has an identity i� the group G is 
ompa
t

and in this 
ase the identity element is simply the 
hara
teristi
 fun
-

tion of the whole group. Sin
e the group studied in this work is not
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ompa
t, the 
orresponding algebra is not unital. But, this algebra


ontains many subalgebras with identity whi
h are also very impor-

tant for us. If K is a 
ompa
t open subgroup of G, then let C(G=K)

denote the spa
e of all 
omplex 
ontinuous fun
tions on G whi
h are

right-K-invariant, i.e., if x 2 G, k 2 K, then f(xk) = f(x). Simi-

larly we de�ne C(KnG) and then C(G==K) to be the interse
tion of

these spa
es. The elements of C(G==K) are said to be K-bi-invariant.

We 
all the spa
e H(G;K) =H(G)\C(G==K) the spheri
al fun
tion

algebra or He
ke algebra of G relative to K. These are subalgebras

of H(G) and they have spe
ial identity elements: the 
hara
teristi


fun
tions of de�ning 
ompa
t open subgroups multiplied by �(K)

�1

,

denoted by e

K

. These elements are idempotent in the algebra H(G).

Moreover, the set A := fe

K

: K 2 OK(G)g has the following property:

For ea
h e; f 2 A, there exists some a 2 A su
h that we have

ae = ea = e

and

af = fa = f:

One 
an put also a partial order on A by de�ning e � f i� ef =

fe = e. From the de�nitions it follows also that for every �nite subset

B of H(G), we have an e 2 A so that eb = be = b for all b 2 B.

Su
h an algebra we 
all idempotented. Now, if e

K

2 A, then one

has H(G;K) = e

K

H(G)e

K

. More generally, if e is any idempotent

element of H(G), then H(G)[e℄ will denote the subalgebra eH(G)e.

Thus, H(G;K) = H(G)[e

K

℄.

Let now V be aH(G)-module. We denote by V [e℄ the 
orresponding

H(G)[e℄-module e(V ). By de�nition, we say that V is a smooth H(G)-

module i�

V =

[

e2A

V [e℄:

(The reason for this terminology is as follows: In the next se
tion we

are going to de�ne "smooth" representations of G and then we will

see that these representations are exa
tly the "smooth" H(G)-modules

just de�ned.) Then it is easy to see that V is a smooth H(G)-module

i� H(G)(V ) = V . If V is any H(G)-module, we 
all

V

1

:=

[

e2A

V [e℄

the smooth part of V . It is in fa
t a smooth H(G)-module in the above

sense.

By M(H(G)) we denote the 
ategory of smooth H(G)-modules.

Let us observe another realization of the He
ke AlgebraH(G) whi
h

is sometimes useful. We have de�ned distributions on G to be linear

fun
tionals on H(G) = C

1




(G). We have used a natural G-a
tion on
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the ve
tor spa
e H(G)

�

of distributions to give a proof of the existen
e

of a left-invariant Haar measure. Now a distribution T on G is said to

be 
ompa
tly supported if there is a 
ompa
t subset C of G su
h that,

for any f 2 H(G) whose support is disjoint from C, one has T (f) = 0.

The smallest su
h 
ompa
t set C in G is 
alled the support of T and

is denoted by Supp(T ). The 
ompa
tly supported distributions on G

form a ve
tor subspa
e of H(G)

�

whi
h is denoted by H(G)

�




. More-

over, under the left regular a
tion of G, the spa
e H(G)

�




is stable.

We denote by D(G) the subspa
e of H(G)

�





onsisting of all 
ompa
tly

supported distributions on G whi
h are invariant under some 
ompa
t

open subgroup of G. If f 2 H(G), then there is a 
orresponding dis-

tribution F on G de�ned by (F; h) = (�; fh) for all h 2 H(G), where

� denotes the unique left Haar measure on G. We denote this dis-

tribution F sometimes by f�. This mapping is well de�ned sin
e f

is 
ompa
tly supported and invariant under some 
ompa
t open sub-

group of G. Thus we have a natural mapping from H(G) to D(G)

sending f to f�. The dis
ussion on p. 14 of [3℄ says that this mapping

is also an isomorphism of ve
tor spa
es. If one de�nes a multipli
a-

tion of distributions in the following way, the above mapping is also an

isomorphism of algebras. Let us now explain what we mean by multi-

pli
ation of distributions in D(G). It is easy to see that C

1




(G � G)

is isomorphi
 to C

1




(G)
 C

1




(G). Now let T 
 S 2 D(G) 
D(G). If

f 
 g 2 C

1




(G �G), we put

(T 
 S)(f 
 g) := T (f)S(g):

Here one should observe that T 
 S 2 C

1




(G � G)

�




. Then, ea
h f 2

C

1




(G) 
an be 
onsidered as an element of C

1




(G�G) via

~

f(x

1

; x

2

) =

f(x

1

x

2

) for ea
h x

1

; x

2

2 G. We de�ne T ? S to be the distribution on

G given by

(T ? S)(f) = (T 
 S)(

~

f):

Then one has (see pp. 13-14 of [3℄) an isomorphism between two asso-


iative algebras H(G) and D(G) given by f

-

f�.

This realization of the He
ke algebra H(G) has some advantages.

For example, if K is a 
ompa
t open subgroup of G and g 2 G, one

has the following 
hara
terization of '

g

= (�(KgK)

�1

)�

KgK

:

Lemma 2.1. '

g

is the unique distribution in D(G) with the follow-

ing properties:

1. It is supported on KgK,

2. It is K-invariant on both right and left, and

3. If 1 is the 
onstant fun
tion on G with the value 1, then '

g

(1) =

1.

We should remark (for 3) that ea
h T 2 D(G) de�nes a linear

fun
tional on the ve
tor spa
e C

1

(G). The details of the proof are

straightforward and 
an be found in pp.13-14 of [3℄.
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These elements will be important for us (see 
hapter 3). For now

we only say that any f in the He
ke algebra is a linear 
ombination of

su
h elements for some K.

We end this se
tion with the following observation: For ea
h g 2 G,

the Dira
-delta distribution Æ

g

supported on g is a distribution in our

sen
e. It is also 
ompa
tly supported. But it 
an not be represented by

a smooth fun
tion on G. Hen
e it does not 
orrespond to any element

of the He
ke algebra.

3. Smooth Representations

By a representation (�; V ) (or simply V ) we mean a 
omplex ve
tor

spa
e V and a group homomorphism � : G �! GL(V ). We say that

(�; V ) is smooth, or algebrai
, if V = [

K

V

K

, where the union is taken

over OK(G). If V is any representation of G, we 
all

V

1

:=

[

K2OK(G)

V

K

the smooth part of V . It is a smooth representation of G

If K 2 OK(G), V

K

denotes the ve
tors in V that are �xed by K.

Those representations with the property that dim(V

K

) < 1 for all

K 2 OK(G) are 
alled admissible. If V , W are two representations

of G, a linear operator T : V �! W is said to be intertwining if

it 
ommutes with the G-operations on V and W , respe
tively. We


all smooth G-representations sometimes G-modules. The 
ategory

of smooth (admissible) G-modules with intertwining operators will be

denoted by Alg(G) (Adm(G)).

Now let (�; V ) be a smooth G-module. Then, for any h 2 H(G)

and v 2 V we de�ne

�(h)(v) =

Z

G

h(x)�(x)(v)d�(x):

With this a
tion, V be
omes a smooth H(G)-module in our sense.

Conversely, if V is a smooth H(G)-module, then it is possible to give

V a smooth G-module stru
ture. Thus, the 
ategory of smooth G-

modules and the 
ategory of smooth H(G)-modules are equivalent.

This 
ategory (i.e., M(H(G))) we will denote by M(G). In general,

we are going to use the latter notation for the 
ategory of G-modules.

We say that (�; V ) is irredu
ible if V does not 
ontain any non-trivial

proper subspa
e whi
h is invariant under G. These are the same as

the irredu
ible (= simple) H(G)-modules. Two G-modules are 
alled

equivalent if there is a bije
tive intertwining operator between them.

Irr(G) denotes the set of equivalen
e 
lasses of irredu
ible G-modules.

For V a smooth G-module and K 2 OK(G) with V

K

6= 0, �(e

K

) is

a
tually a proje
tion and its image is V

K

. Sin
eH(G;K) = e

K

H(G)e

K

,

the ve
tor spa
e V

K

has in a natural way a H(G;K)-module stru
ture.
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4. Contragradient Representations

Let (�; V ) be a smoothG-module. Then, if v 2 V and v

�

2 V

�

, then

(�

�

(g)(v

�

); v) = (v

�

; �(g

�1

)(v)) for ea
h g 2 G de�nes a representation

of G on the dual spa
e V

�

of V . In general, this representation is not

smooth. So we take the smooth part (~�;

~

V ) of (�

�

; V

�

) and we 
all this

G-module the smooth 
ontragradient or smooth dual of (�; V ). The

elements of

~

V are 
alled the smooth fun
tionals on V .

5. Chara
ters of Admissible Representations

Let now (�; V ) 2 Adm(G). This means, by de�nition, that for ea
h

K 2 OK(G), dim(V

K

) <1. If f 2 H(G), then we know that there is

a K 2 OK(G) su
h that f 2 H(G;K), and hen
e

fe

K

= e

K

f = f:

But, we know also that �(e

K

)(V ) = V

K

. Thus, �(f) = �(e

K

f) 
an be


onsidered as an operator from V to V

K

. Therefore the admissibility

of (�; V ) implies that dim(V

K

) <1 and �(f) is a �nite rank operator.

Conversely, suppose that (�; V ) is a smooth representation of G su
h

that for ea
h f 2 H(G), the operator �(f) is of �nite rank. If K 2

OK(G), then we have a spe
ial element e

K

in the He
ke algebra H(G)

of G. The above assumption says that �(e

K

) is a �nite rank operator.

That is, V

K

= �(e

K

)(V ) is �nite dimensional. But this is nothing but

the de�nition of admissibility. We have proved the following

Proposition 5.1. A smooth representation of G is admissible i�,

for ea
h f 2 H(G), �(f) is a �nite rank operator.

This means that if � is an admisssible representation of G, and if f

is an element of the He
ke algebra H(G), then the operator �(f) has

a tra
e. Now we put, for a given (�; V ) 2 Adm(G),

�

�

(f) := tr(�(f))

for ea
h f 2 H(G). This fun
tion is a distribution on G in our sense

whi
h we 
all the '
hara
ter' of the admissible representation (�; V ).

Now suppose that (K

n

)

n

is a de
reasing sequen
e of 
ompa
t open

subgroups of G whi
h form also a fundamental system of neighbor-

hoods at the identity. (This is always possible for the groups whi
h we

are interested in. As we will see later, the sequen
e of 
ongruen
e sub-

groups relative to a given �xed vertex will satisfy this 
ondition.) Then,

(V

K

n

)

n

is an in
reasing (with respe
t to in
lusion) sequen
e of �nite

dimensional subspa
es of V with union V again. For ea
h g 2 G and n,

the operator �('

g;n

) : V

K

n

! V

K

n

has a tra
e whi
h 
an be denoted by

�

�;n

(g), where '

g;n

is the 
hara
teristi
 fun
tion of K

n

gK

n

multiplied

by the �(K

n

gK

n

)

�1

. Then this �

�;n

is an element of H(G;K

n

) and

de�nes a distribution on G. If we equip the spa
e H(G)

�

with the weak

topology with respe
t to its predual H(G), the 
hara
ter of (�; V ) 
an
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be 
onsidered as the weak limit of the sequen
e �

�;n

. One 
an also

use the �nite dimensionality of V

K

n

and take an in
reasing sequen
e

of �nite subsets of V whi
h form bases for the respe
tive V

K

n

's and


onsider the matrix 
oeÆ
ients. Then taking diagonal entries as fun
-

tions on G, one 
an de�ne the 
hara
ter to be the weak sum of these

fun
tions (
onsidered as distributions).

One should remark that 
hara
ters are de�ned as distributions on

G. They are not fun
tions. Weather they 
an be represented as fun
-

tions on 
ertain subsets of G is another important subje
t whi
h we

don't 
onsider here.

We end this se
tion with the following proposition whose proof 
an

be found, for example, in [19℄, Corollary 1.13.1, p. 74.

Proposition 5.2. Any family of pairwise inequivalent irredu
ible

admissible representations of G have linearly independent 
hara
ters in

H(G)

�

.

6. Irredu
ible Representations

We are going to study irredu
ible G-modules and and their K-�xed

points as H(G;K)-modules. Re
all that if V is any G-module and K is

any 
ompa
t open subgroup of G, V

K

is in a natural way an H(G;K)-

module. We want to study the relationship between irredu
ibility of V

as a G-module and the irredu
ibility of V

K

as an H(G;K)-module.

Let now V be an irredu
ible G-module. Then we have a 
ompa
t

open subgroup K of G su
h that V

K

is not 0. Let v;w 2 V

K

be

arbitrary. Sin
e V is irredu
ible as an H(G)-module, the submodule

of V generated by v is again V . Thus we have an h 2 H(G) su
h that

h(v) = w:

Sin
e w 2 V

K

, we have

e

K

h(v) = e

K

(w) = w:

Similarly, sin
e v 2 V

K

, we have also

e

K

(v) = v:

Therefore, we have

(e

K

he

K

)(v) = w:

i.e., V

K

is irredu
ible as an H(G;K)-module.

Conversely, let W be a proper nontrivial submodule of V . Sin
e

both are smooth, there exists a 
ompa
t open subgroup K of G su
h

that W

K

is a proper H(G;K)-submodule of V

K

. This means that

if V is not irredu
ible as a G-module, then there is a 
ompa
t open

subgroup K of G su
h that V

K


annot be irredu
ible as an H(G;K)-

module. Hen
e we have proved the following
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Lemma 6.1. Let V be a smooth G-module. Then V is an irredu
ible

G-module i� for ea
h K 2 OM(G), V

K

is either 0 or an irredu
ible

H(G;K)-module.

Corollary 6.2. Let V;W be two irredu
ible G-modules. Then V

and W are isomorphi
 i� there exists a 
ompa
t open subgroup K of G

su
h that V

K

and W

K

are both nonzero and isomorphi
 as H(G;K)-

modules.

Proof. The existen
e of K with nonzero V

K

and W

K

is trivial.

By the above lemma we know also that V

K

and W

K

are irredu
ible

H(G;K)-modules. Thus, the restri
tion of any isomorphism from V to

W has a nontrivial restri
tion from V

K

to W

K

. Clearly this morphism

is an H(G;K)-module morphism. Hen
e it is an isomorphism.

Conversely, let T be an H(G;K)-module isomorphism from V

K

to

W

K

. We have to show that T extends to a G-module isomorphism

from V onto W . First let us remark that T extends to a G-module

isomorphism from the G-submodule of V generated by V

K

onto the


orresponding submodule of W . But V and W are irredu
ible. Thus

we have the required result. �

Corollary 6.3. Every irredu
ible H(G;K)-module 
omes from

an irredu
ible G-module by restri
tion to K-invariant ve
tors. More-

over, by the above 
orollary, this G-module is unique.

Proof. Let W be an irredu
ible H(G;K)-module. Put

V = H(G)


H(G;K)

W:

Then V is a non-degenerate H(G)-module. Let us see that V

K

= W .

It is enough to show that e

K

(V ) = W . Sin
e e

K

a
ts as identity on W ,

we see that V = H(G)e

K




H(G;K)

W . Thus,

e

K

(H(G)e

K




H(G;K)

W ) = e

K

H(G)e

K




H(G;K)

W = W

sin
e we have e

K

H(G)e

K

= H(G;K). Moreover, if E is a non-trivial

proper G-submodule of V , then E

K

is a non-trivial proper H(G;K)-

submodule of W . Thus, irredu
ibility of W as an H(G;K)-module

implies irredu
ibility of V as a G-module. �

7. Subquotients

Let V;W be two G-modules. We say that W is a subrepresentation

of V , or W is a G-submodule of V , ifW is a G-invariant subspa
e of V

and the in
lusion operator T : W

-

V is intertwining. This means

that the a
tion of G on W 
an be obtained by restri
ting the a
tion of

G on V to W . By a fa
tor or quotient representation of V we mean a

representation of G obtained by taking the quotient of V with respe
t

to a subrepresentation. We say that W is a subfa
tor module or a
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subquotient of V if there are two submodules V

1

; V

2

of V with V

2

� V

1

su
h that W is the fa
tor module of V

1

with respe
t to V

2

. The set

of all irredu
ible subfa
tor modules will be very important to us. If V

is a G-module, JH(V ) will denote the set of all irredu
ible subfa
tor

modules of V . This set is also 
alled the Jordan-H�older 
ontent of

V . The elements of JH(V ) are also 
alled then the Jordan-H�older


omponents of V . The following result is fundamental ([2℄, page 18):

Proposition 7.1. (a) Every non-zero �nitely generated V 2M(G)

has an irredu
ible subquotient.

(b) If W is a subquotient of V , then every irredu
ible subquotient

of W is also an irredu
ible subquotient of V , i.e., JH(W ) � JH(V ).

(
) Thus, in general, every nonzero V 2 M(G) has an irredu
ible

subquotient.

(d) JH(

P

V

�

) =

S

JH(V

�

), i.e., the Jordan-H�older 
ontent of a

sum of modules is the union of the Jordan-H�older 
ontents of its sum-

mands.

8. Fun
tion Spa
e Realization of Representations

Now we are going to give a very simple but very important fa
t

whi
h allows us to realise many irredu
ible smooth representations as

fun
tion spa
es. Many important results 
an be dedu
ed from this

te
hni
al fa
t. As an example, let X be the tree of the p-adi
 group

H = PGL(2) and 
onsider H as a subgroup of G = Aut(X). Then one


an prove that the p-adi
 group PGL(2) and G have the same spheri
al

and spe
ial representations in the sense that the 
orresponding repre-

sentations of p-adi
 PGL(2) are the restri
tions of those of G. This is

the main prin
iple applied in [10℄.

Lemma 8.1. Let V be an irredu
ible G-module. If U is an open


ompa
t subgroup of G and V has a non-zero �xed ve
tor invariant

under U , then V is equivalent to a subrepresentation of (in fa
t of its

smooth part) the left regular representation of G on C(G=U)

Proof. As V is irredu
ible, it is enough to show that there is a

non-zero intertwining operator V

-

C(G=U). Let

~

V be the smooth

dual of V . First, observe that if V

U

6= 0, then

~

V

U

6= 0. Let ~v 2

~

V

U

be

a non-zero smooth U -invariant linear fun
tional on V . We de�ne

T : V

-

C(G=U)

by

T (v)(g) := f

v;~v

(g)

for v 2 V and g 2 G, where f

v;~v

denotes the matrix 
oeÆ
ient 
orre-

sponding to v and ~v. That is, f

v;~v

(g) =< �(g

�1

)(v); ~v > for all g 2 G.
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Be
ause of the 
hoi
e of ~v this linear mapping is not zero. Moreover,

T is G-equivariant. This 
an be seen as follows: let g

1

2 G. Then

T (�(g

1

)v)(g) =< �(g

�1

)�(g

1

)v; ~v >=< �((g

�1

1

g)

�1

)v; ~v >= f

v;~v

(g

�1

1

g):

Hen
e we get the result. �

Corollary 8.2. Let fV

�

: � 2 Ig be a family of pairwise non-

equivalent irredu
ible G-modules. Suppose, for ea
h V

�

in the given

family, f

�

is a non-zero matrix 
oeÆ
ient of V

�

. Then, the set ff

�

:

� 2 Ig is linearly independent.

Proof. Let fV

1

; V

2

; :::; V

n

g be a �nite family of pairwise non-equivalent

(non-zero) irredu
ible G-modules. For ea
h i = 1; 2; :::; n we have a


ompa
t open subgroup K

i

of G su
h that V

K

i

i

is not zero. By taking

the interse
tion of K

i

's, if ne
essary, we may assume that there is a


ompa
t open subgroup K of G su
h that V

K

i

is not zero for ea
h i.

Thus, by the above lemma, these representations 
an be realised as

subrepresentations of the left regular representation of G on C(G=K).

But, this means that they are G-stable subspa
es of C(G=K). Sin
e

they are also irredu
ible, they 
an not have any 
ommon element other

than 0 in C(G=K). Therefore the matrix 
oeÆ
ients of V

i

's 
annot be

lenarly dependant. �
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CHAPTER 2

The Group Aut(X) and Irredu
ible

Representations

Let X be a homogeneous tree of degree q + 1, q � 2. By X

0

(or

simply by X) we denote the set of verti
es of X and by X

1

its set of

(non-oriented) edges. We denote by

�!

X

1

the set of oriented edges of

X. We equip X with its natural distan
e d. If x; y 2 X

0

, there is a

unique �nite sequen
e (x = x

0

; x

1

; ::::; x

n

= y) of verti
es of X su
h

that (x

i

; x

i+1

) 2 X

1

for ea
h 0 � i � n � 1 and that x

i

6= x

i+2

for

0 � i � n � 2. Su
h �nite sequen
es we 
all geodesi
s. For x; y 2

X

0

[x; y℄ denotes the unique geodesi
 from x to y. In this 
ase we

de�ne the distan
e between x and y, d(x; y), to be n. This distan
e

fun
tion is also 
alled the geodesi
 distan
e on X. By a doubly in�nite

geodesi
 we mean a sequen
e (x

n

)

n2Z

su
h that for ea
h n < m in

Zone has (x

n

; x

n+1

; :::; x

m

) is a geodesi
 in X. We use sometimes the

synonym 'appartment' for doubly in�nite geodesi
s. C[x; y℄ will denote

the subtree generated by fz 2 X

0

: y 2 [x; z℄g.

1. Automorphisms of X

By an automorphism of X we mean a mapping g : X

0

! X

0

whi
h

is bije
tive and satis�es

8x; y 2 X

0

d(g(x); g(y)) = d(x; y):

It is 
lear that, if g is an automorphism of X, we have

g(X

1

) = X

1

;

i.e., automorphisms are bije
tive mappings from X

0

onto X

0

whi
h

preserve the simpli
ial stru
ture of X. The set of automorphisms of X

is a group whi
h is denoted by G = Aut(X).

Now we want to 
lassify the elements of G a

ording to their a
tions

on X. For ea
h g 2 G, we put

l(g) = minfd(x; g(x)) : x 2 Xg:

If l(g) � 2, then there are x; x

1

; :::; x

l(g)�1

in X su
h that d(x; g(x)) =

l(g) and (x; x

1

; :::; x

l(g)�1

; g(x)) form a geodesi
 from x to g(x). By the

de�nition of l(g), g(x

1

) 
an not be between x and g(x). Moreover,

d(g(x

1

); g(x)) = 1. Hen
e [x; g(x

1

)℄ is again a geodesi
 whose length is

l(g) + 1. Similarly, g(x

2

) is not between x and g(x

1

). Thus [x; g(x

2

)℄

is again a geodesi
. Now for ea
h n 2 Z, put x

n

= g

r

(x

i

), where

23
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r and i are the unique integers with the property n = r � l(g) + i.

0 � i < l(g). Here g

�r

= (g

�1

)

r

. Therefore we see that the image

of this geodesi
 under the 
y
li
 subgroup of G generated by g is a

doubly in�nite geodesi
 and g a
ts on this appartment as a translation.

We 
all su
h elements translations. If l(g) = 1, then one has an x

su
h that d(x; g(x)) = 1. Now there are two 
ases: g(g(x)) = x or

d(x; g(g(x))) = 2. In the �rst 
ase we 
all g an inversion. In the se
ond


ase g is again a translation as above on an appartment 
ontaining x

and g(x). In this 
ase the appartment is given by x

n

= g

n

(x) for ea
h

n 2 Z. If l(g) = 0, this means that g �xes some vertex x and ea
h

set of verti
es whi
h are at a given distan
e from x (i.e.,the spheres

around x) are invariant under g. g is either identity or 'rotates' the

tree around x. Su
h elements are 
alled rotations.

The above arguments 
lassify in some sense the elements of G. That

is to say, an element of G is either a translation, or an inversion, or a

rotation.

We note also that the 
enter of G is trivial. This follows from the

observation that, given any non-trivial element g of G, one 
an �nd

always some element in G whi
h does not 
ommute with g.

2. The Boundary of the Tree

Now we want to des
ribe what we 
all the boundary of X. Let x

0

be a �xed vertex in X. By an end of X we mean an in�nite geodesi


whi
h starts with x

0

. The boundary of X is de�ned to be the set

of all ends of X and is denoted by 
. If ! 2 
, we write [x

0

; ![

for the de�ning geodesi
. We topologize the boundary as follows: If

! 2 
, then an open neighborhood of ! is given by C[x

0

; y℄, where

y is any vertex lying on the geodesi
 whi
h de�ne !. The set of all

su
h neighborhoods form a lo
al basis at the point ! of the boundary.

This topology is indeed independent from the point x

0

with whi
h we

have started. To see this, one de�nes two in�nite geodesi
s (x

n

)

n2N

and

(y

n

)

n2N

to be equivalent whenever the interse
tion of fx

n

g and fy

n

g

has �nite 
omplements in both sets. Then one 
an de�ne the boundary

to be the set of equivalen
e 
lasses of the ends of X. Now if x

0

and

y

0

are two di�erent verti
es of X and (x

n

)

n

and (y

n

)

n

are two in�nite

geodesi
s starting with x

0

and y

0

, respe
tively, then the geodesi
s are

equivalent i� there is an n

0

2 N and m 2 Zsu
h that y

n

= x

n+m

for

ea
h n � n

0

. Thus the fundamental systems of the point ! on the

boundary de�ned by x

0

and y

0

de�ne the same lo
al basis at !.

Now it is a
tually easy to see that this topology is metrizable. In-

deed, let q + 1 be the order of X. Then, by our 
onstru
tion, any two

points !

1

and !

2

on the boundary 
an be joined by a unique doubly

in�nite geodesi
. This one 
an see as follows: Let x

0

be any vertex

of X. Then put (x

n

)

n

and (y

n

)

n

for the geodesi
s de�ning !

1

and !

2

,

respe
tively, whi
h start at x, i.e., x

0

= y

0

. Let n

0

= minfn : x

n

= y

n

g.
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Now put z

0

= x

n

0

. For m � 0 we put z

m

= y

n

0

+m

, z

�m

= x

n

0

+m

. Then

we have that (z

m

)

m2Z

is an appartment and ℄!

1

; !

2

[= (z

m

)

m2Z

. Sin
e

the tree X does not 
ontain any loop, it is now easily seen that this

appartment is independent of x

0

and thus is unique.

Now, if !

1

and !

2

are two points on the boundary, then the geodesi



onne
ting them has a point y nearest to x

0

. If d(x

0

; y) = n, then we

de�ne d(!

1

; !

2

) = q

�n

, or, equivalently, d(!

1

; !

2

) := q

�d(x

0

;[!

1

;!

2

℄)

. In

this way, the boundary turns out to be a 
ompa
t ultrametri
 spa
e.

A part of a homogeneous tree of degree q = 3 with its boundary


an be symbolised geometri
ally as follows:

3. G as a Topologi
al Group

Now we introdu
e on G = Aut(X) the following topology. First we


onsider G as a subset of the spa
e of all mappings from X to X whi
h

is a
tually �

x2X

X with the produ
t topology. Then we equip G with

the subspa
e topology. Thus, if g 2 G,

B(g) = fO

F

(g) : F � X; Card(F ) <1g;

where O

F

(g) := fh 2 G : h(x) = g(x) 8x 2 Fg, form a lo
al basis at

g. If 1 2 G is the identity element, then the neighborhoods of 1 have

the form O

F

= fg 2 G : g(x) = x 8x 2 Fg, where F � X is �nite.

It is 
lear that any �nite F � X is bounded. Therefore, if x

0

2 X,

n 2 N, and B

n

:= B

n

(x

0

) = fx 2 X : d(x

0

; x) � ng, then any �nite

F is 
ontained in some B

n

. Hen
e, if U

n

:= Stab

G

(B

n

) = fg 2 G :

g(x) = x 8x 2 B

n

g, then fU

n

: n 2 Ng form a fundamental system
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of neighborhoods at 1 2 G. Moreover, ea
h U

n

is a subgroup of G and

for ea
h n 2 N and m � 1, U

n+m

is a normal subgroup of U

n

of �nite

index. By the de�nition of our topology, they are all open 
ompa
t

subgroups of G. Thus G is a lo
ally 
ompa
t and totally dis
onne
ted

group. The group U

0

is very important for us. X 
an be identi�ed

with G=U

0

and U

0

is a pro�nite group.

More generally, one has the following result [9℄, Theorem 1.1:

Let X be a 
ountable lo
ally �nite simpli
ial 
omplex, Aut(X) be

the group of its simpli
ial automorphisms equipped with the 
ompa
t-

open topology. That is, the identity of Aut(X) has as a lo
al basis the

sets of the form U(F ) = fg : g = id on Fg, where F runs over 
ompa
t

subsets of X.

Theorem 3.1. Let G be a 
losed subgroup of Aut(X) with the in-

du
ed topology. Then:

1. G is a se
ond 
ountable metrizable group,

2. G is lo
ally 
ompa
t and the stabilizers of 
ompa
t sub
omplexes

are both 
ompa
t and open,

3. G is �-
ompa
t,

4. Stabilizers of 
ompa
t sub
omplexes are either all �nite or all

un
ountable.

5. G is totally dis
onne
ted.

Here one should remark that the stabilizers of 
ompa
t sub
om-

plexes in our 
ase are never �nite.

4. The Tree of PGL(2; F ), F a Lo
al Non-ar
himedean Field

Let F be a lo
al non-ar
himedean �eld with the ring of integers R

and the unique maximal ideal P = �R for some prime � 2 R. Let q

be the 
ardinality of the residue �eld F = R=P . Put H := PGL(2; F ).

We are going to des
ribe how one 
an 
onstru
t a homogeneous tree

X of degree q + 1 whi
h plays the role of a symmetri
 spa
e in Lie

group theory. Then the a
tion of H on this tree and the geometri



hara
terizations of some important subgroups of H su
h as paraboli


subgroups, maximal 
ompa
t open subgroups, 
ongruen
e subgroups,

Iwahori subgroups,...et
, will be explained. The main referen
e is [18℄,

part 2.

Let E be a two dimensional ve
tor spa
e over F . A latti
e � in

E is simply a free R-submodule of E of rank 2, or, equivalently, an

R-submodule of E whi
h generates E as a ve
tor spa
e. Two latti
es

� and �

0

are said to be equivalent if they belong to the same orbit

under the natural F

�

-a
tion. I.e., � and �

0

are equivalent i� there is

an � 2 F

�

su
h that �� = �

0

.

This notion of equivalen
e is really an equivalen
e relation. The

set of equivalen
e 
lasses of latti
es in E we denote by X. Let fe

1

; e

2

g

be the standard basis of E and �

0

be the latti
e generated by these
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basis ve
tors whi
h we 
all the standard latti
e. Let x

0

denote the

equivalen
e 
lass of �

0

.

Let � be a latti
e in E generated by u; v 2 E, then, for ea
h h 2 H,

h(�) is de�ned to be the latti
e generated by h(u); h(v) 2 E. Thus

the group H a
ts on E. H sends a latti
e to another latti
e and two

equivalent latti
es to two equivalent latti
es. Thus the H-a
tion on E

de�nes naturally an a
tion of H on X. It is also not diÆ
ult to see that

this a
tion is indeed transitive. Now let's 
onsider Stab

H

(x

0

). Then an

element g is in Stab

H

(x

0

) = fg 2 H : g(x

0

) = x

0

g i� g(R

2

) = R

2

and

hen
e we have:

Stab

H

(x

0

) = fg 2 H : g

ij

; (g

�1

)

ij

2 R for i; j = 1; 2g=R

�

:

HereR

2

denotes R�R as a subset of the ve
tor spa
e E and

�

g

11

g

12

g

21

g

22

�

denotes the matrix representation of g with respe
t to the basis fe

1

; e

2

g.

We denote this group by K = H(R). It is a 
ompa
t open subgroup of

H. Indeed it is also maximal with these properties. We see that K is

the stabilizer of a point in X and hen
e, as H a
ts transitively on X,

the set X 
an be identi�ed with the quotient set H=K. Besides, the

stabilizer of any other point x in X is of the form gKg

�1

where g 2 H

su
h that g(x

0

) = x.

If x is the 
lass of a latti
e � generated by fe; e

0

g, we write � =<

e; e

0

> and x = � = < e; e

0

>. Now let x and x

0

be two elements of

X. By de�nition we put d(x; x

0

) = 0 i� x = x

0

. d(x; x

0

) is de�ned

to be 1 i� there are two latti
es � and �

0

with x = � and x

0

= �

0

su
h that � � �

0

and �

0

=� = F . The last 
ondition is equivalent to

��

0

� � � �

0

. After these de�nitions one 
an de�ne a graph stru
ture

on X. Two points x and x

0

in X are said to be adja
ent i� d(x; x

0

) = 1.

Then one has the following ([18℄, page 70, Theorem 1)

Theorem 4.1. With the de�nition of adja
en
y given above, X is

a tree.

This theorem says that

1. X is 
onne
ted. That is, for ea
h x, x

0

in X, there are n 2 N

and pairwise distin
t s

1

, s

2

, ..., s

n�1

su
h that

d(x; s

1

) = d(s

1

; s

2

) = ::: = d(s

n�1

; x

0

) = 1:

2. X 
ontains no loop. And this means that, with the above given

properties, the �nite sequen
e (s

1

; s

2

; :::; s

n�1

) is unique.

If x; x

0

are as in 1. above, we put d(x; x

0

) = n. Thus d is the natural

geodesi
 distan
e. Moreover, it follows from the de�nitions that any

given x = � 2 X is adja
ent to the same number of points as the

number of non-equivalent latti
es �

0

� � su
h that �=�

0

= F . This

is equivalent to the 
ondition that �� � �

0

� �. Thus every vertex is

adja
ent to another q + 1 verti
es.
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Sin
e the group F

�

a
ts trivially on X, we 
an work for the rest of

this se
tion with H

0

= GL(2; F ).

Let x

n

= < �

n

e

1

; e

2

> and x

�n

= < e

1

; �

n

e

2

> for ea
h n 2 N.

In this way we get an appartment (x

n

)

n2Z

. By the above reasoning

we know that the stabiliser of x

0

is the subgroup K

0

= H

0

(R) of

matri
es with entries in R with an inverse again with this property.

Let �

0

= Re

1

+Re

2

2 x

0

, �

1

= R�e

1

+Re

2

2 x

1

.

If

g =

�

a b


 d

�

2 H

0

with g(�

1

) = �

1

, then we have

�ae

1

+ �be

2

= �a

0

e

1

+ b

0

e

2

for some a

0

; b

0

2 R. Thus a 2 R and b 2 �

�1

R. Similarly, we get


 2 �R and d 2 R.

Therefore we have K

0

0

= Stab

H

0

(�

1

) is the group of invertible ma-

tri
es

�

a b


 d

�

su
h that a; d 2 R, 
 2 �R and b 2 �

�1

R. Thus B

0

= K

0

T

K

0

0

=

Stab

H

0

(fx

0

; x

1

g) is given by

f

�

a b


 d

�

: a; d 2 R � P; b 2 R; 
 2 �Rg:

This is the so-
alled Iwahori subgroup. It is de�ned indeed as the

inverse image of the standard Borel subgroup of GL(2; F ) under the

natural mapping K

0

-

GL(2; F ). But it 
an be 
hara
terized as the

stabilizer of an edge with verti
es x

0

and x

1

.

There are other subgroups of H

0

whi
h are important for various

reasons. As an example one 
an 
onsider the group of upper triangu-

lar matri
es in H

0


alled the paraboli
 subgroup of H

0

. To be able

to des
ribe them geometri
ally, we need some more observations on

our tree X. Now let (x

n

)

n2Z

be an appartment. Let �

0

be a latti
e

representing x

0

. Then if x 2 X and d(x; x

0

) = m, then there exists

a unique representing latti
e � 2 x su
h that �

0

=� is isomorphi
 to

R=�

m

R. Thus the spheres around the vertex x

0


orrespond to the suit-

able proje
tive lines. The boundary of the tree, being the inverse limits

of spheres around a �xed vertex, is isomorphi
 to the proje
tive line

over F . It follows also that the points on the boundary 
orresponds to

lines through the origin. As a result, we have an equivalen
e between

the set of appartments, the set of de
ompositions of V just des
ribed

and the set of pairs of di�erent points on the boundary. Another re-

sult of this dis
ussion is that the ends of X 
orrespond indeed to the

proje
tive spa
e P

1

(V ) atta
hed to V .
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Now by using similar arguments we used for the Iwahori subgroup,

one 
an see that if (x

n

)

n

is an appartment de�ned by a basis fe

1

; e

2

g

as above, then the paraboli
 subgroup 
an be 
haraterized as follows:

an element g is 
ontained in the paraboli
 subgroup i� there exists a

d 2 Z su
h that g(x

n

) = x

n+d

for all suÆ
iently large n. Moreover,

if we de�ne the 
ongruen
e subgroups to be U

n

= I + �

n

M(2; R), it

is seen that these are nothing but the stabilizers of the balls around

x

0

with radius n. By the same token, one 
an see also that the (set-)

stabilizer of the appartment is the subgroup of matri
es of the form

�

a 0

0 d

�

whi
h 
ontains the Cartan subgroup of H

0

(obviously ea
h a; d 2 F

�

).

5. De
omposition Theorems

In this se
tion we are going to prove some de
omposition theorems

for the group G = Aut(X). These theorems have their analogues in

the p-adi
 group theory. We start by giving the setup whi
h we are

going to use in the rest of this work.

By using the analogy to the study of p-adi
 groups and their 
or-

responding buildings, we make the following de�nitions:

Definition 5.1. By an appartment in X we mean a doubly in�nite

geodesi
s (x

n

)

n2Z

. The end points of this appartment are de�ned to be

the points �! and ! on the boundary whi
h 
orrespond to the in�nite

geodesi
s (x

�n

)

n2N

and (x

n

)

n2N

, respe
tively. In this 
ase we sometimes

write ℄� !; ![ for (x

n

)

n2N

.

Let (x

n

)

n2Z

=℄�!; ![ be a �xed appartment with end points �!; !.

We remark that ea
h g 2 G is an isometry. This implies in parti
ular

that the image of a geodesi
 under any element of G is again a geodesi
.

Thus we have an a
tion of G on the boundary. Using this we make the

following de�nition:

Definition 5.2. 1. The stabilizer of a point on the boundary is


alled a paraboli
 subgroup of G. We denote by P the paraboli
 subgroup

fg 2 G : g(!) = !g

of G. The paraboli
 subgroup stabilizing �! is said to be opposite to

P .

2. N := fp 2 P : 9n

0

2 Z with p(x

n

) = x

n

8n � n

0

g. In

other words, N is the subgroup of P 
onsisting of rotations whi
h leaves

! �xed.

On our appartment (x

n

)

n2Z

there is a translation g 2 G whi
h has

step m for any m 2 Z. This means that, for any m 2 Z, we have a

g 2 G su
h that g(x

n

) = x

n+m

for all n 2 Z. It should be 
lear that

su
h an element is a translation in the sense at the beginning of this



30 2. THE GROUP Aut(X) AND IRREDUCIBLE REPRESENTATIONS


hapter. The existen
e of su
h an element is a result of the homogeneity

of X. The 
ase m = 1 is espe
ially important for us.

Definition 5.3. By t we denote a �xed element of G su
h that

t(x

n

) = x

n+1

for any n 2 Z. T := ft

n

: n 2 Zg is the 
y
li
 subgroup

of G generated by t.

Now we re
all the de�nitions of several important open 
ompa
t

subgroups of G.

Definition 5.4. 1. K = U

0

:= Stab(x

0

) = fg 2 G : g(x

0

) = x

0

g.

2. B := K \ tKt

�1

= fg 2 G : g(x

0

) = x

0

; g(x

1

) = x

1

g.

3. For ea
h n � 1, we put

U

n

:= Stab(B

n

(x

0

));

or,

U

n

:= fg 2 G : g(x) = x 8x 2 X

0

with d(x; x

0

) � ng:

We 
all B the Iwahori subgroup of G, U

n

the nth 
ongruen
e sub-

group of G.

We remark the following property of these subgroups:

� � �C U

n+1

C U

n

C � � �CB CK:

For our purposes we need also the following subgroups: If n � 1,

we put

U

+

n

:= fg 2 U

n

: g(x) = x 8x with x

1

2 [x

0

; x℄g:

That is to say, U

+

n

is the subgroup of U

n

whi
h stabilizes all x with the

property d(x; x

1

) < d(x; x

0

). Similarly, we de�ne

U

�

n

:= fg 2 U

n

: g(x) = x 8x with x

0

2 [x

1

; x℄g:

Theorem 5.5. Let U be U

n

for some n 2 N. Then:

1- G =

F

n2N

Kt

n

K

2- P = TN

3- G = KP

4- U = U

+

U

�

= U

�

U

+

5- t

�n

U

+

t

n

� U

+

and t

n

U

�

t

�n

� U

�

for ea
h n 2 N.

Proof.

1- Let g 2 G be arbitrary. If g �xes x

0

, then g belongs to K and the

result is 
lear. Otherwise put n = d(x

0

; g(x

0

)). As K a
ts transitively

on ea
h sphere around x

0

, one has a k

1

2 K su
h that k

1

g(x

0

) = x

n

.

Then we apply t

�n

to get an element t

�n

k

1

g of K sin
e this element

�xes x

0

. This means that g should be an element of Kt

n

K. Sin
e n is

determined as above, all these 
osets are also disjoint.

2- Let g be an element of P . We may suppose that g is not a

rotation. But, sin
e g �xes some point on the boundary, it 
annot be

an inversion. Thus it should be a translation. This means that there
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are m

0

in N and n in Zsu
h that g(x

m

) = x

m+n

for all m � m

0

. But,

in this 
ase t

�n

g is a rotation and hen
e an element of N .

3- Let g 2 G be arbitrary. Put !

1

= g(!). As K a
ts on the

boundary transitively, one has a k in K su
h that k(!

1

) = !. But

this means that for this element k of K, kg �xes the point ! on the

boundary. That is to say, kg 2 P .

4- Let g 2 U be arbitrary. Assume that g does not stabilize fx

n

:

n 2 Ng. Then there is an element h in U

�

su
h that hg stabilizes

fx

n

: n 2 Ng.

5- Let g be an arbitrary element of U

+

. We have to show that

h = t

�n

gt

n

is also an element of U

+

. Clearly h stabilizes ea
h vertex

on the geodesi
 (x

n

)

n2N

. Now let x 2 B

n

(x

0

). Then t

n

(x) is an element

of C[x

0

; x

1

℄. So it is �xed by g. Hen
e h(x) = x. The proof of the part

t

n

U

�

t

�n

� U

�

is similar. �

The parts 1-3 of this theorem are proved in [8℄, p.39 for the auto-

morphism group of semi-homogeneous trees.

The de
omposition in the �rst part of this theorem is the Cartan

de
omposition in our group. The de
omposition G = KP = KTN is


alled the Iwasawa de
omposition of G.

Corollary 5.6. For ea
h g 2 G, there exists a unique n 2 N su
h

that g 2 Kt

n

K. In this 
ase g

�1

also belongs to Kt

n

K. Therefore,

ea
h double 
oset in the Cartan de
omposition is invariant under the

mapping G! G whi
h takes g to g

�1

.

In the next 
hapter we are going to atta
h to ea
h t

n

an element

of the He
ke algebra H(G;K) in a suitable way. Moreover, the multi-

pli
ation in the algebra and the multipli
ation in G (of these t

n

's) are


ompatible and we are going to see that these elements generate this

algebra.

Then, by the above 
orollary, the algebra H(G;K) is seen to be


ommutative. Thus (G;K) is a Gelfand pair and hen
e the group G is

unimodular.

Unimodularity ofG follows also from the following result [9℄, Lemma

1.6:

Theorem 5.7. Let X be a 
onne
ted simpli
ial 
omplex of pure

dimension n (i.e., X is the 
losure of the interior points of its n-

dimensional simpli
es) and suppose that the links of the simpli
es of


odimension � 2 are 
onne
ted. Suppose also that G is a 
losed sub-

group of Aut(X) su
h that the stabilizers of (n� 1)-simpli
es a
t tran-

sitively on their respe
tive links. Then G a
ts transitively on X and it

is unimodular.

The 
onditions of this theorem are satis�ed by our trees, sin
e, the

stabilizers of verti
es a
ts as permutations on the spheres about the

verti
es stabilized.
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6. Irredu
ible Representations of Aut(X)

In this se
tion we are going to re
all the 
lassi�
ation of the irre-

du
ible representations G = Aut(X) due to G. Olshanski [14℄.

Re
all that G has very spe
ial open 
ompa
t subgroups. For the de-

s
riptions of these groups let us �x again an appartment with boundary

points as above. Then, again as above, K

0

will be a maximal 
ompa
t

subgroup whi
h is also the stabilizer of the vertex x

0

, B the Iwahori

subgroup whi
h is the subgroup of K whi
h stabilizes the vertex x

1

.

U

n

(for n � 1) will be the the 
ongruen
e subgroups of G, i.e., they

are the stabilizers of the spheres of radius n around the vertex x

0

. We

have the following in
lusions:

U

n+1

� U

n

� B � K

0

for ea
h n � 1.

We are interested in the irredu
ible smooth representations of G.

Re
all that these are the irredu
ible representations (�; V ) of G su
h

that

S

K

V

K

= V , where the union is taken over the set of open 
ompa
t

subgroups OK(G) of G.

Of 
ourse, we 
onsider only non-trivial representations. This means

that, if V is any su
h representation, then there is an open 
ompa
t

subgroup K of G su
h that V

K

6= 0. It should be remarked that if

K

1

is an open 
ompa
t subgroup of another su
h subgroup K of G

and V

K

6= 0, then V

K

1

6= 0. Now re
all that the set of 
ongruen
e

subgroups of G form a fundamental system of neighborhoods at the

identity element 1 of G. Therefore, the fa
t that V 6= 0 is equivalent to

the fa
t that there is a 
ongruen
e subgroup U of G su
h that V

U

6= 0.

Now the representations V of G whi
h have the property V

K

0

6= 0

will be 
alled the spheri
al ones. If a representation is not spheri
al but

has the property that V

B

6= 0, we 
all these representations spe
ial.

Thus a smooth representation with a non-trivial Iwahori-�xed ve
tor

is either spheri
al or spe
ial.

In the representation theory of p-adi
 groups, the main role is played

by the 
uspidal representations. These representations are 
hara
ter-

ized as those irredu
ible smooth representations whi
h have 
ompa
t

modulo 
enter matrix 
oeÆ
ients. Be
ause the 
enter of our group G

is trivial, it is natural to 
all irredu
ible smooth representations with


ompa
tly supported matrix 
oeÆ
ients 
uspidal. More generally, let

� be a smooth representation of G. We denote by A(�) the ve
tor

spa
e generated by the matrix 
oeÆ
ients of �. We say that � is 
us-

pidal whenever A(�) � C

1




(G). The main result of Olshanski, for

our approa
h, is that all the irredu
ible smooth modules other than

spheri
al and spe
ial ones are 
uspidal. This result makes the 
ategory

M(G) mu
h better than in the p-adi
 
ase. In parti
ular, we are going

to see in the next 
hapter that by using this result one 
an avoid the



6. IRREDUCIBLE REPRESENTATIONS OF Aut(X) 33

Ja
quet theory in obtaining some important theorems. This is impor-

tant be
ause the Ja
quet theory seems to be diÆ
ult to establish for

our group.

Now we need some notations to be able to explain the main result

of Olshanski. By a subtree Y of X we mean a 
onne
ted subset of X.

A subtree is said to be �nite if it has a �nite number of verti
es. By

an interior point of a subtree we mean a vertex x of Y su
h that Y


ontains at least two neighbours of x. Now we say that a �nite subtree

is 
omplete if it 
ontains all of the neighbours of its interior points.

The boundary of su
h a subtree Y is de�ned as the set of non-interior

points of Y . A subtree 
onsisting of only one vertex or only one edge

is also assumed to be 
omplete.

If Y is a �nte subtree of X, then the diameter of Y is the maximum

distan
e between its verti
es.

It should be also 
lear that a subtree is �nite i� it is bounded. Let

Y be a 
omplete �nite subtree of X with diameter � 2. Let U(Y ) be

the (pointwise) stabiliser of Y in G, and

~

U(Y ) = fg 2 G : g(Y ) � Y g.

Then

~

U(Y ) is the normaliser of U(Y ) in G and the group

~

U(Y )=U(Y )

is �nite. Let U

1

; U

2

; :::; U

n

be the stabilisers of the maximal 
omplete

subtrees of Y . Olshanski de�nes those irredu
ible representations � of

~

U(Y ) whi
h are trivial on U(Y ) and whi
h have no non-trivial U

i

-�xed

ve
tors (1 � i � n) to be non-degenerate. If � is su
h a representation

of

~

U (Y ), we denote by I(Y; �) the 
orresponding representation of G

indu
ed from

~

U(Y ).

We are now ready to formulate the following [14℄

Theorem 6.1. Let (�; V ) be an irredu
ibe admissible representa-

tion of G. Then the following are equivalent:

(a) V 
ontains no non-trivial Iwahori-�xed ve
tor;

(b) V is equivalent to a representation I(Y; �) for some 
omplete

�nite subtree Y and some irredu
ible non-degenerate representation �

of

~

U (Y );

(
) All the matrix 
oeÆ
ients of V are 
ompa
tly supported;

Therefore, an irredu
ible smooth representation of G is either spher-

i
al, or spe
ial, or 
uspidal. Moreover, all the irredu
ible 
uspidal G-

modules are indu
ed from 
ompa
t open subgroups. Olshanski proves

in [14℄ also that the irredu
ible 
uspidal representations are the only

irredu
ible representations with L

1

-matrix-
oeÆ
ients.

Olshanski has proved also the following result:

Proposition 6.2. With the notations as above, I(Y; �) is isomor-

phi
 to I(Y

0

; �

0

) i� there exists a g 2 G su
h that g(Y ) = Y

0

and the

representations � and g � � (the de�nition is below) are isomorphi
.

Now 
onsider the set � of all (Y; �) where Y is a 
omplete �nite

subtree (of diameter � 2) of X and � is an irredu
ible non-degenerate
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representation of

~

U(Y ). Sin
e the image of a 
omplete subtree in a

homogeneous tree under an automorphism is again a 
omplete subtree,

we have a natural a
tion of G on the �rst 
omponents of �. We de�ne

also the G-a
tion on the se
ond 
omponents by (g � �)(h) = �(ghg

�1

)

for ea
h g; h 2 G. It is also 
lear that the last operation is well-

de�ned. Thus we get an operation of G on �. The above proposition of

Olshanski says that the set of equivalen
e 
lasses of irredu
ible 
uspidal

representations of G are parametrized by the set of G-orbits in �.



CHAPTER 3

The Category M(G)

As usual we �x a geodesi
s (x

n

)

n2Z

, K = Stab(x

0

), and t 2 G

su
h that t(x

n

) = t(x

n+1

) for ea
h n 2 Z. B will denote the Iwahori

subgroup of G. i.e., B = Stab(x

0

)

T

Stab(x

1

). In se
tion 1 U will

denote a �xed 
ongruen
e subgroup of G.

1. H(G;U) is �nitely generated

Let us re
all the distribution realisation of the He
ke algebra of G

at the end of se
tion 1.2. For ea
h element ' of the He
ke algebra

H(G) = C

1




(G) we asso
iate the distribution '� on G, where � is the

left-invariant Haar measure on G. Moreover, ea
h f in H(G) 
an be


onsidered as a 
ompa
tly supported smooth fun
tion on G � G via

f

0

: (g

1

; g

2

)

-

f(g

1

g

2

). As

C

1




(G�G)

�

=

C

1




(G)
 C

1




(G);

one 
an de�ne (S 
 T )(f) := (S 
 T )(f

0

). If '

1

; '

2

2 H(G), we de�ne

(S 
 T )('

1


 '

2

) := S('

1

)T ('

2

). Now, if S and T 
orrespond to

two elements of the He
ke algebra, then a multipli
atin of these two

elements 
an be performed as follows. If f 2 H(G), then we 
onsider

�rst the 
orresponding f

0

on G�G, then we write it as an element of

the tensor produ
t C

1




(G) 
 C

1




(G), and then we 
al
ulate the value

of this element under S 
 T .

If F denotes the above given mapping '

-

'�, F is inje
tive,

linear and an algebra morphism. That is to say,

F ('

1

'

2

) = F ('

1

)
 F ('

2

):

By using this we identify H(G) with its image under F .

For ea
h g 2 G, we denote by '

g

the unique U -bi-invariant distri-

bution on G with support in UgU and integral 1. i.e,

'

g

= e

U

� Æ

g

� e

U

:

This distribution 
orresponds to �(UgU)

�1

�

UgU

. Clearly f'

g

: g 2

UnG=Ug is a basis of H(G;U).

Lemma 1.1. If g; h 2 G and if h normalizes U , then one has

'

g

'

h

= '

gh

.

Proof. Clearly if h normalizes U , then one has (UgU)(UhU) =

UghU . For simpli
ity we assume that � is a left Haar measure on G

35
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with the property that �(U) = 1. Otherwise we should multiply by a

suitable 
onstant. Dire
t 
al
ulation shows that in this 
ase one has

'

g

'

h

= (�(UgU)�(UhU))

�1

�(UgU \ (gh)Uh

�1

U)�

UghU

:

(One 
an see [21℄, 3.4.(iv) for su
h a 
al
ulation).

Now, sin
e h normalizes U , we have (gh)Uh

�1

U = gU and hen
e

�(UgU \ (gh)Uh

�1

U) = �(UgU \ gU) = �(gU) = �(U) = 1:

Moreover sin
e G is unimodular we have

�(UghU) = �(UgU)

and

�(UhU) = 1:

Therefore,

'

g

'

h

= (�(UghU))

�1

�

UghU

= '

gh

:

�

Remark. Let U be as above. Then, if g is any element of G whi
h

normalizes U , then, for any h 2 G, one has again

'

g

'

h

= '

gh

:

Remark. One has indeed the following general rule ([2℄, page 28):

If g; h 2 G are arbitrary with (UgU)(UhU) = UghU , then one has

'

g

'

h

= '

gh

:

Thus, if fx

1

; :::; x

r

g = K=U , then, sin
e U is normal in K, we have,

for g 2 G,

(Ux

i

U)(UgU) = Ux

i

UgU = Ux

i

gU

and that

'

x

i

g

= '

x

i

'

g

for all g 2 G and i 2 f1; :::; rg. Similarly,

'

gx

i

= '

g

'

x

i

:

for all g 2 G and i 2 f1; :::; rg Therefore, if C is the ve
tor subspa
e

generated by f'

t

n

: n 2 Ng, the Cartan de
omposition

G =

[

n2N

Kt

n

K

shows that

H(G;U) = H(K;U)CH(K;U):
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Now let us show that, 8n;m 2 N,

'

t

n

'

t

m

= '

t

n+m
:

(This will imply 
learly that C is not only a ve
tor subspa
e, but also

a subalgebra generated by one element, hen
e it is 
ommutative). For

this let U

+

be the subgroup of U 
onsisting of elements of U whi
h �x

all the verti
es x of X su
h that

d(x; x

1

) < d(x; x

�1

):

Similarly, let U

�

be the subgroup of U 
onsisting of elements whi
h �x

all x 2 X with d(x; x

1

) > d(x; x

�1

). Then

U = U

+

U

�

= U

�

U

+

:

Besides, let x 2 X be �xed by all elements in U

+

. Then d(x; x

1

) <

d(x; x

0

). Sin
e t

n

is an isometry, we have d(t

n

(x); x

n

) = d(x; x

0

) (n � 0)

and d(t

n

(x); x

0

) = 2n > 2n � 1 = d(t

n

(x); x

1

). Thus t

n

(x) is also �xed

by all elements of U

+

. Sin
e t

�n

t

n

(x) = x, for any k 2 U , t

�n

kt

n

(x) = x

and one has t

�n

U

+

t

n

� U

+

for all n 2 N. Similarly one has also

t

n

U

�

t

�n

� U

�

. Hen
e if n;m 2 N, then

Ut

n

Ut

m

U = Ut

n

U

�

U

+

t

m

U = U(t

n

U

�

t

�n

)t

n+m

(t

�m

U

+

t

m

)U � Ut

n+m

U;

i.e.,

'

t

n+m

= '

t

n

'

t

m

:

Therefore we have proved the following

Theorem 1.2. H(G;U) = H(K;U)CH(K;U) where C is a 
om-

mutative subalgebra ofH(G;U) whi
h is generated by only one element.

One should remark that dim(H(K;U)) = [K : U ℄ <1.

2. Uniform Admissibility of Irredu
ible Representations

It is well known [14℄ (see also the appendix) that any irredu
ible

smooth representation of G is admissible. Using the theorem 1.2 above,

one 
an even prove the following stronger result:

Theorem 2.1. For ea
h �xed U 2 OK(G) there exists an N =

N(U) 2 N su
h that, for any V 2M(G) irredu
ible one has

dim(V

U

) � N:

Proof. The statement of the theorem is equivalent to the following

statement: All simple H(G;U)-modules have dimension smaller than

or equal to N .

Now let (�; V ) be an irredu
ible representation of H(G;U). We

know that k := dim(V ) <1. Moreover, by a theorem of Burnside,

� : H(G;U)! End(V )
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is onto. But, if H

0

:= H(K;U) and d := [K : U ℄ = dim(H

0

), the

theorem 1.2 gives

k

2

= dim(End(V )) = dim(�(H(G;U))) � d

2

dim(�(C)):

Sin
e �(C) is a 
y
li
 subalgebra of End(V ), its dimension is � k.

Thus, we have

k � d

2

:

Hen
e N := d

2

= dim(H

0

)

2

satis�es the 
ondition of the theorem.

�

3. More on Cuspidal Representations

We de�ne a smooth G-module V to be 
uspidal i� all its matrix


oeÆ
ients are 
ompa
tly supported. We have moreover the following

Theorem 3.1. Let (�; V ) be a 
uspidal G-module, U 2 OK(G),

v 2 V nf0g. Then, if W is the G-submodule of V generated by v, one

has

dim(�(e

U

)(W )) <1:

In other words, for any non-zero v in V , if we 
onsider the G-

submodule W of V generated by v, then the spa
e of U -invariant ve
-

tors in W is �nite dimensional.

Proof. Let (�; V ); U; v;W be as above. Put E := �(e

U

)(W ). We

de�ne also a fun
tion f : G

-

V

U

by

f(g) = �(e

U

)�(g)(v)

for all g 2 G. This fun
tion is well de�ned and smooth, as � is smooth.

Suppose that dim(E) = 1. This means that the range of f is in-

�nite dimensional. Thus there exists a sequen
e (g

n

)

n2N

su
h that

(f(g

n

))

n2N

is linearly independent. Sin
e f is smooth, this means that

fg

n

: n 2 Ng is a dis
rete set. Without loss of generality we may assume

that ff(g

n

) : n 2 Ng spans E. (If not, one may 
onsider the subspa
e

of E generated by ff(g

n

) : n 2 Ng.) Now de�ne a fun
tional ~v on V

U

by ~v(f(g

n

)) = n for ea
h n 2 N and ~v(w) = 0 for ea
h w 2 V

U

nE.

Then ~v 2

~

V

U

and '

v;~v

(g

n

) 6= 0 for almost all n 2 N. But, '

v;~v

is

a matrix 
oeÆ
ient of V and should have a 
ompa
t support whi
h


an not have an in�nite dis
rete subset. This 
ontradi
ts the fa
t that

fg

n

: n 2 Ng is dis
rete. �

Corollary 3.2. Every �nitely generated 
uspidal representation

is admissible.

Proof. Let V 2 M(G) be su
h a module and U 2 OK(G). We

want to show that dim(V

U

) < 1. Let fv

1

; v

2

; :::; v

m

g be a generating

subset of the G-module V . For ea
h 1 � i � m put E

i

= �(e

U

)(W

i

) as
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in the proof of the above theorem, where W

i

is the G-submodule of V

generated by v

i

.

Then, it is 
lear that

E

1

+ E

2

+ :::+ E

m

= V

U

:

Hen
e

dim(V

U

) � dim(E

1

) + dim(E

2

) + :::+ dim(E

m

):

But, as dim(E

i

) <1 for ea
h i, the result follows. �

Corollary 3.3. Irredu
ible 
uspidal G-modules are admissible.

In general, if a smooth representation of a lo
ally pro�nite group has


ompa
tly supported matrix 
oeÆ
ients, one 
alls su
h representations

'
ompa
t' or '�nite'. In this general 
ontext an irredu
ible representa-

tion is 
alled 
uspidal i� its matrix 
oeÆ
ients are 
ompa
tly supported

modulo 
enter. Sin
e the 
enter of our group G is trivial, an irredu
ible

smooth representation of G is 
uspidal i� it is 
ompa
t. To be able to

go further, we need a fundamental result from the theory of su
h rep-

resentations. A proof of this result 
an be found in [3℄, Theorem 2.44

on p. 28.

Theorem 3.4. Let V be an irredu
ible 
uspidal G-module. Then

any G-module W 
an be written as a dire
t sum of two submodules

W

1

and W

2

su
h that JH(W

1

) � fV g and that V =2 JH(W

2

). More-

over, in this 
ase, W

1

is 
ompletely redu
ible, hen
e is a dire
t sum of

submodules ea
h of whi
h is isomorphi
 to V .

One standard proof of this theorem is based on the following lemma

whi
h is known for 
uspidal representations of lo
ally pro�nite groups

in our sense [3℄, Theorem 2.42 on p. 27.

Lemma 3.5. Let U be any 
ongruen
e subgroup, � be an irredu
ible


uspidal representation of G. Then there is a unique element h(U; �) 2

H(G;U) su
h that �(h(U; �)) = �(e

U

) and, whenever �

0

is any irre-

du
ible representation of G whi
h is not isomorphi
 to �, then

�

0

(h(U; �)) = 0.

In other words, the elements of H(G;U) separate the isomorphism


lasses of irredu
ible 
uspidal representations of G with non-zero U -

invariant ve
tors.

If we 
ombine this lemma with the uniform admissibility theorem,

we get the following very important �niteness result whi
h will allow us

to improve the above theorem in the sense that the 'set' of irredu
ible


uspidal representations split the whole 
ategory M(G).

Corollary 3.6. Let U be a 
ongruen
e subgroup. There are at

most �nitely many non-isomorphi
 irredu
ible 
uspidal representations

with a non-zero U-invariant ve
tor.
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Proof. We know that an irredu
ible representation of H(G;U)


omes from a unique irredu
ible smooth representation of G. Let us


all an irredu
ible representation ofH(G;U) 
uspidal if the 
orrespond-

ing smooth representation of G is 
uspidal. The uniform admissibility

theorem says that for given U �xed, the dimensions of irredu
ible rep-

resentations of H(G;U) are bounded from above. In other words,

9N > 0 : 8V 2 Irr(G) dim(V

U

) < N

Thus it is enough to show that for ea
h n 2 [0; N ℄ there 
an exist

at most �nitely many irredu
ible 
uspidal representations of H(G;U)

of dimension n. For let M = End(C

n

) = M(n; C ), A be the set of

algebra morphisms of H(G;U) into M . Let fh

1

; h

2

; :::; h

m

g be a set of

generators of H(G;U) (this algebra is �nitely generated). We identify

A with its image in the diagonal of M

m

by the mapping

�

-

(�(h

1

); :::; �(h

m

))

for ea
h � 2 A. Now let � be an n-dimensional irredu
ible 
uspidal

representation, h(U; �) 2 H(G;U) be the 
orresponding element as in

the above lemma. Now, h(U; �) 
an be written as P

�

(h

1

; :::; h

m

) where

P

�

is a 
omplex non
ommutative polynomial in m variables. Its image

under � will also be denoted by P

�

. If we de�ne Q

�

(�) = tr(P

�

(�(�))),

then Q

�

is a 
ommutative polynomial fun
tion on M

m

. Now it is easy

to see that, for any � 2 A, Q

�

(�) 6= 0 i� � is isomorphi
 to �. Indeed,

suppose that Q

�

(�) 6= 0. This means that tr(P

�

)(�(h

1

); :::; h

m

) 6= 0.

Thus tr(�(h(U; �))) 6= 0. Hen
e �(h(U; �)) is not zero and, by the

above lemma, � and � should be isomorphi
. Conversely suppose that

� and � are isomorphi
. Then Q

�

(�) = tr(P

�

(�(h

1

); :::; �(h

m

))) =

tr(�(h(U; �))). Sin
e � and � are isomorphi
 their 
hara
ters are the

same. Thus tr(�(h(U; �))) = tr(�(h(U; �))) whi
h is equal to tr(�(e

U

)).

But the last operator is non-zero and idempotent, hen
e has a non-zero

tra
e. Therefore we have Q

�

(�) 6= 0.

The set of all Q

�

for all possible n-dimensional irredu
ible 
uspidal

representations � of H(G;U) generate an ideal in the ring of polyno-

mial fun
tions on M

m

. By the Hilbert Basis Theorem, let f�

1

; :::; �

r

g

be a �nite set of generators of this ideal. Now if � is any irredu
ible

n-dimensional 
uspidal representation, then Q

�

(�) 6= 0. Thus there

is some i 2 f1; 2; :::; rg su
h that Q

�

i

(�) 6= 0 and hen
e �

i

and � are

isomorphi
. This result says also that, up to isomorphism, there are

only �nitely many irredu
ible n-dimensional 
uspidal representations

of H(G;U). This 
ompletes the proof. �

We state also the following 
onsequen
e of the above theorem:

Corollary 3.7. If V is a smooth G-module. Then any irredu
ible


uspidal subquotient of V is isomorphi
 to a subrepresentation of V .
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Proof. Let W be an irredu
ible 
uspidal G-module. We 
an write

V as a dire
t sum of V

1

and V

2

where all the irredu
ible subquotients

of V

1

are isomorphi
 to W and V

2

does not 
ontain su
h irredu
ible

subquotients and that V

1

is 
ompeletely redu
ible (by theorem 3.4). �

4. The De
omposition of M(G)

First re
all that, by theorem 3.4, if W 2 M(G) is irredu
ible and


uspidal, fWg splits the whole 
ategory M(G). I.e, if V 2 M(G) is

arbitrary, then V has two G-submodules V

1

and V

2

su
h that

V = V

1

� V

2

with JH(V

1

) � fWg and W =2 JH(V

2

). Now, by 
orollary 3.6, we

know that for any 
ongruen
e subgroup U of G, we have only �nitely

many irredu
ible 
uspidal G-modules with non-zero U -invariant ve
-

tors. Hen
e simply by repeating the argument above for these �nitely

many irredu
ible 
uspidal modules we 
an prove a stronger version of

theorem 3.4 in the following sense: V 
an be written as a dire
t sum of

its two submodules su
h that one of these summands has only 
uspidal

JH-
omponents with U -invariant ve
tors while the other one does not

have su
h 
omponents. In fa
t, as we prove below, we 
an enlarge the

�rst 
omponent of this de
omposition to 
ontain all possible 
uspidal

JH-
omponents. We state this fa
t more pre
isely as follows:

Theorem 4.1. Irr




(G), the set of all irredu
ible 
uspidal represen-

tations of G, splits the 
ategory M(G), i.e., Every V 2 M(G) 
an be

written as

V = V




� V

i

;

where all the Jordan-H�older 
omponents of V




are 
uspidal and V

i

does

not have any 
uspidal Jordan-H�older 
omponents.

Proof. First let U be a 
ongruen
e subgroup of G and V 2M(G).

Then, let fW

1

; :::;W

m

g be the set of irredu
ible 
uspidals 
ontaining a

non-zero U -invariant ve
tor. Then

V = V

1

� V

1

?

with JH(V

1

) � fW

1

g and W

1

=2 JH(V

1

?

) Then

V

1

?

= V

2

� V

2

?

with JH(V

2

) � fW

2

g and W

2

=2 JH(V

2

?

), .....

V

m�1

?

= V

m

� V

m

?

with the properties as above.



42 3. THE CATEGORY M(G)

Then, putting V


;U

= V

1

� :::::� V

m

, and V


;U

?

= V

m

?

, we get the

de
omposition

V = V


;U

� V


;U

?

;

where V


;U

has only 
uspidal Jordan-H�older 
omponents while V


;U

?

does not have any 
uspidal JH-
omponents with non-zero U -invariant

ve
tors.

Now put V




:=

S

U

V


;U

and V

i

:=

T

U

V


;U

?

, where the union and

interse
tion are taken over the set of all 
ongruen
e subgroups of G.

Now it is enough to show that

V = V




� V

i

:

For let v 2 V be arbitrary. Then there exists a 
ongruen
e subgroup

U of G su
h that v 2 V

U

and that v = v

1

+ v

2

for some v

1

2 V


;U

,

v

2

2 V


;U

?

. Now it is enough to show that v

2

2 V

i

(that v

1

2 V




is


lear from the de�nitions). We want to prove that the G-submodule

W of V generated by v

2

is 
ontained in V

i

. But, this is the 
ase i� W


ontains no irredu
ible 
uspidal subquotients. First,W is a submodule

of V


;U

?

. This means that W 
annot 
ontain a 
uspidal JH-
omponent

with a non-zero U -�xed ve
tor.

On the other hand, let E be a JH-
omponent of W whi
h does not

have any U -invariant non-zero ve
tor. That is to say, let E 2 JH(W )

with E

U

= 0. Then E does not 
ontain a non-zero ve
tor invariant

under the Iwahori subgroup B of G. Then E should be 
uspidal. By


orollary 3.7, an irredu
ible 
uspidal subquotient of W is isomorphi


to an irredu
ible submodule of W . Thus we have a restri
tion operator

from W to E whi
h is at the same time intertwining. Thus the image

of v

2

under this restri
tion operator is 0. Therefore W 
an not 
ontain

any 
uspidal JH-
omponent without non-zero U -invariant ve
tors. In

other words, all the JH-
omponents of W are either spheri
al or spe-


ial. This means that W � V

i

. �

In analogy to the p-adi
 groups, we 
an 
all an admissibleG-module

V super
uspidal if it is in addition 
uspidal.

5. The sub
ategory M(G;U)

Now we 
an prove the following result whi
h will be one of the main

ingredients in the next 
hapter. Let U be a �xed 
ongruen
e subgroup

of G.

Theorem 5.1. The full sub
ategoryM(G;U) of G-modules V whi
h

are generated by their U-�xed ve
tors is stable under taking submodules.

Proof. It is easy to see that if we 
an prove that all JH-
omponents

of a smooth G-module V 2 M(G;U) have some non-zero ve
tor in-

variant under U , then we have the required result. So, let W be an
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irredu
ible subquotient of V . We know that (by theorem 2.6.1) W is


uspidal i�W

B

is trivial, where B is the Iwahori subgroup of G. Thus,

if W is not 
uspidal, it 
ontains some non-zero ve
tor invariant under

B. But this ve
tor is 
learly invariant under U , too. Therefore we

may assume that W is 
uspidal. Now, sin
e fWg splits the 
ategory

of smooth G-modules, we have, in parti
ular,

V = V

1

� V

2

;

where JH(V

1

) 
ontains only irredu
ible 
uspidals isomorphi
 toW , and

V

2


ontains no JH-
omponents isomorphi
 to W . Note that V

1

is also

generated by its U -�xed ve
tors. V

1

U


ontains some non-zero ve
tor

v. Let E be the G-submodule of V

1

generated by this v and F be an

irredu
ible subfa
tor of E. Then 
learly F

U

is nontrivial. But by the

de
omposition above F

�

=

W , hen
e W

U

is also nontrivial. �

Now we make the following de�nition:

Definition 5.2. A module V in M(G) is 
alled noetherian if every

�nitely generated submodule of V is again �nitely generated.

As an immediate appli
ation of the theorem above we are going to

prove

Corollary 5.3. An admissible G-module in M(G;U) is noether-

ian.

Proof. We remark that it follows from the de�nitions that every

admissible V in M(G;U) is automati
ally �nitely generated. Indeed,

If V is admissible and if it is generated by its U -�xed ve
tors V

U

, V is

generated by a basis of V

U

whi
h is �nite dimensional sin
e V is ad-

missible. Let now V be su
h a module. It is enough to show that every

submodule of V is also �nitely generated. So let W be a submodule of

V . By the above remark W is admissible. Hen
e dim(W

U

) <1. The

above theorem says that W lies also in M(G;U), thus W is generated

by W

U

whi
h is �nite dimensional. �

Definition 5.4. A 
ategory A of modules over H(G) is said to be

noetherian if every �nitely generated obje
t in A is noetherian.

Therefore the 
orollary proved above says that the sub
ategory

M(G;U) \Adm(G) is noetherian.

Theorem 5.5. The full sub
ategory Adm(G) of M(G) 
onsisting

admissible G-modules is noetherian.

Proof. A

ording to the 
orollary it is enough to prove that any

�nitely generated G-module V is 
ontained in M(G;U) for some 
on-

gruen
e subgroup U of G. For this let F � V be a �nite generating

subset. Then as V is smooth, every element in F is �xed by some
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ongruen
e subgroup of G. F is �nite. Sin
e the interse
tion of a �nite

family of 
ongruen
e subgroups 
ontains another 
ongruen
e subgroup

of G we see that there is a 
ongruen
e subgroup U of G whi
h �xes

all elements of F . In other words, there is an U 2 OK(G) su
h that

F � V

U

. Thus V 2 M(G;U). The rest follows from the above 
orol-

lary and the admissibility of V . �

Remark. By 
orollary 3.3.2 we know that all �nitely generated 
us-

pidal representations are admissible. Thus the sub
ategory of M(G)


onsisting of 
uspidal representations is also noetherian.

Remark. It is indeed natural to ask whether the whole 
ategory

M(G) is noetherian. By the proof of the theorem above one 
an see that

every �nitely generated G-module is 
ontained in M(G;U) for some


ongruen
e subgroup U of G. Thus M(G) is noetherian i� M(G;U)

is noetherian for any 
ongruen
e subgroup U . An important step in

understanding the noetherian properties of M(G) is to understand the

representations of G with only 
uspidal Jordan-H�older 
omponents.

This family 
ontains the 
uspidal tepresentations but is substantially

larger than the family of 
uspidal representations.



CHAPTER 4

Extensions Between Admissible Representations

In this 
hapter we are going to prove that the representations de�ne

in a natural way homologi
al systems of 
oeÆ
ients on the 
omplexX.

The results proved in the last 
hapter allows us to apply the approa
h

of P. S
hneider and U. Stuhler in the p-adi
 group 
ase (see [16℄) to the

automorphism group G of the homogeneous tree X. Sin
e we 
annot

give a better exposition of their approa
h than that in their original

work, from this point on we are going to follow 
losely their work [16℄

or [17℄ and at the ne
essary points we are going to use the ne
essary

results from the last 
hapter. In parti
ular, we are going to 
onstru
t

and study some homologi
al 
omplexes, and using the 
ontra
tibility

properties of some related sub
omplexes of the tree we are going to �nd

some exa
t resolutions. Then we prove the �niteness results of [16℄ in

our 
ase.

We 
onsider X as a simpli
ial 
omplex. X

0

(or simply X) will

denote the 0-simpli
es of X, that is, the verti
es, and X

1

will denote

the 1-simpli
es (edges) of X. As before, (x

m

)

m2Z

will denote a �xed

doubly in�nite geodesi
s in X, and, for n 2 N

�

, U

n

will denote the nth


ongruen
e subgroup of G, relative to x

0

.

1. Some De�nitions

We are going to re
all some basi
 de�nitions whi
h we are going to

use in the rest of this work.

LetM be an abelian 
ategory of non-degenerate modules over H =

H(G). (e.g., M(G))

Definition 1.1. Let P; I be two obje
ts in M. We say that P is

proje
tive if the fun
tor M

-

Ab given by W

-

Hom(P;W ) is ex-

a
t. I is said to be inje
tive if M

-

Ab given by W

-

Hom(W; I)

is exa
t.

Definition 1.2. We say that M has suÆ
iently many (or enough)

proje
tives if for every V in M there is a proje
tive obje
t P and a

surje
tive morphism P

-

V . Similarly, one says that M has enough

inje
tives if for every V 2M there is an inje
tive morphism V

-

I.

Now letM =M(G). Re
all that H is an idempotented algebra. In

this 
ase we have the following: ([2℄, pp. 13-14, theorems 13 and 14)

45
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Theorem 1.3. (1) The 
ategory M has enough proje
tives.

(2) M has also enough inje
tives.

Remark. We should remark that this theorem is valid for all lo
ally

pro�nite groups we 
onsidered in 
hapter 1 provided all irredu
ible

smooth representations are admissible. For irredu
ible 
uspidal repre-

sentations of lo
ally pro�nite groups this is known by 
orollary 3.3. For

the irredu
ible non-
uspidal representations of G = Aut(X) the proof

of admissibility is given in the appendix at the end of this work.

Let V 2 M(G). By a proje
tive resolution of V we mean an exa
t

sequen
e

: : :

-

P

n

-

: : :

-

P

1

-

P

0

-

V

-

0

su
h that ea
h P

n

is a proje
tive G-module (in the abelian 
ategory

M(G)). We are going to 
all su
h a resolution also �nitely generated if

all P

n

are �nitely generated. Similarly, by an inje
tive resolution of V

we mean an exa
t sequen
e

0

-

V

-

I

0

-

I

1

-

: : :

-

I

n

-

: : :

where ea
h I

n

is an inje
tive G-module. Now suppose that we have

a proje
tive resolution of V as above. If W is another G-module,

then Ext

n

(V;W ) is de�ned to be the nth homology of the 
omplex

(Hom(P

n

;W ))

n

. That is to say,

Ext

�

(V;W ) := H

�

(Hom(P

�

;W ):

In parti
ular, Ext

0

(V;W ) = Hom(V;W ). One 
an de�ne Ext

�

(V;W )

also by using an inje
tive resolution ofW . In that 
ase, one would have

Ext

�

(V;W ) = H

�

(Hom(V; I

�

));

where I

�

is an inje
tive resolution of W . One should remark here that

Ext

�

(V;W ) de�ned above is independent of the proje
tive (inje
tive,

resp.) resolution used. This means that one 
an use any suitably 
on-

stru
ted proje
tive resolution of V to study Ext

�

(V;W ). We are going

to use the �rst one., i.e., by 
onstru
ting suitable proje
tive resolutions

with some ni
e properties. Our aim is to show that if V and W are

two admissible G-modules whi
h are in a suitable full sub
ategory of

M(G), then Ext

n

(V;W ) is always �nite dimensional and vanishes for

n > 2. In order to be able to show this, using V , we will 
onstru
t

some homologi
al 
omplexes using the idea explained above. Then, we

are going to prove that the 
orresponding augmented 
omplexes give

indeed some resolutions of V . By 
onstru
tion, these 
omplexes will

be short enough. Then, we are going to show that this resolution is

indeed proje
tive and �nitely generated. Clearly this will ensure us the

result that, Ext

n

(V;W ) are all �nite dimensional and vanish for n > 2.
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2. Smooth Representations as CoeÆ
ients

We 
onsider X as a simpli
ial 
omplex. Thus the verti
es are the

0-simpli
es of X, and the edges e 2 X

1

are the 1-simpli
es. Now, we �x

also an orientation with the in
iden
e numbers [e; x℄. For example, we


an 
onsider the following orientation: As earlier, we �x a vertex x

0

in

X

0

. Then if e =< x; y > is any edge on X, and if d(x

0

; x)(< d(x

0

; y))

is an even number, then we say that < x; y > is positively oriented

and in this 
ase [e; x℄ = 1 and [e; y℄ = �1. If d(x

0

; x) is odd, then

�e :=< y; x > is assumed to be positively oriented.

In order to go further, we need the notion of (homologi
al) 
oeÆ-


ient systems on the tree X. By a 
oeÆ
ient system on X we mean

the following data: For ea
h simplex � in X a 
omplex ve
tor spa
e

V

�

, and for ea
h in
lusion �

0

� �, a restri
tion map r

�

�

0

: V

�

-

V

�

0

with the properties that r

�

�

= id and r

�

�

0

Æ r

�

0

�

00

= r

�

�

00

. Sin
e our 
omplex

is one-dimensional, these properties are trivial.

Assume now V is a smooth G-module. We are going to de�ne

a 
oeÆ
ient system on X by using the invariant ve
tors under some


ompa
t open subgroups asso
iated to the simpli
es of X. Let n be a

positive integer greater than 1. Then, we denote by U the 
ongruen
e

subgroup 
orresponding to this n. That is, U = Stab

G

(B(x

0

; n)) =

fg 2 G : g(x) = x 8x with d(x

0

; x) � ng. Then, for ea
h x in

X, we put U

x

= gUg

�1

, where g 2 G su
h that g(x

0

) = x. This means

that U

x

= Stab

G

(B(x; n)). If e =< x; y > is an edge, we de�ne U

e

to be

the subgroup generated by U

x

[ U

y

. Then, if x 2 X (i.e., 2 X

0

), V

x

is

de�ned to be V

U

x

, the subspa
e of ve
tors invariant under the subgroup

U

x

. Similarly, for ea
h e 2 X

1

, V

e

:= V

U

e

. Sin
e U

x

� U

e

for ea
h e

and x with x � e, we have V

e

� V

x

. Thus we 
onsider the natural

restri
tion maps r

e

x

and see that ea
h V 2 M(G) de�nes in a natural

way a 
oeÆ
ient system onX. For su
h a 
oeÆ
ient system, one de�nes

the oriented 1-
hains to be the V -valued �nitely supported fun
tions �

on X

1

su
h that �(e) 2 V

e

for ea
h e 2 X

1

and �(�e) = ��(e), where

�e is the same edge as e with the opposite orientation. Similarly, the

oriented 0-
hains are de�ned as V -valued fun
tions � on X whi
h are

again �nitely supported and satisfy �(x) 2 V

x

.

Here one remark is in order: In the 
ase of the tree the 
oeÆ
ient

systems are mu
h easier to study with. In this 
ase one 
an take any

ve
tor spa
e for ea
h simplex and then de�ne the restri
tion maps

arbitrarily. Then one 
an de�ne oriented 
hains as above.

We are going to denote the 
omplex ve
tor spa
e of oriented q-


hains by C

q

(V ) for q = 0; 1. Now we de�ne

� : C

1

(V )

-

C

0

(V )

by

�(�)(x) =

X

�(e);
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where � 2 C

1

(V ) and the sum is taken over all e 2 X

1

su
h that

x = o(e). (Re
all that if e is an oriented edge, then it has an origin

denoted by o(e) and a terminal point denoted by t(e) so that we 
an

write e =< o(e); t(e) >.)

If we 
onsider also the G-a
tion on C

1

(V ) given by

g�(< x; y >) = g(�(< g

�1

x; g

�1

y >)

for ea
h e 2 X

1

and g 2 G, and, similarly on C

0

(V ), then we see

that the C

q

(V ) are smooth G-modules and � is G-equivariant. The

augmentation map is de�ned as

� : C

0

(V )

-

V

by

�(�) =

X

x2X

�(x):

In this 
hapter we are going to study the exa
tness properties of

the 
orresponding augmented 
omplex

0

-

C

1

(V )

�

-

C

0

(V )

�

-

V:

It is easy to see that

1) C

0

(V ) is not trivial i� V has some non-zero ve
tors invariant

under the 
ongruen
e subgroup U , and

2) The augmentation map is surje
tive i� V , as a G-module, is

generated by its subspa
e V

U

of ve
tors invariant under U . (It is easy

to see that the image of � generates, as a ve
tor spa
e, the whole G-

submodule of V generated by V

U

.)

Thus it is natural to work with the 
ategory M(G;U) introdu
ed

in the last 
hapter.

Sin
e ea
h � 2 C

1

(V ) is 
ompa
tly supported, it is also easy to see

that �Æ� = 0. But the exa
tness at C

0

(V ) is not trivial at all. For this,

as in [16℄, we use the following strategy: First we are going to prove this

for the smooth G-module C




(G=U). (Re
all that at the end of 
hapter

2 we have proved that every irredu
ible smooth G-module with non-

zero U -invariant ve
tors 
an be realized as a subrepresentation of this

representation.) Then, we are going to use the main theorem of the

last 
hapter and prove that one 
an redu
e to the 
ase C




(G=U) by

showing that one has always an exa
t resolutions in terms of C




(G=U).

Then, it will follow from the above remarks that, if V is inM(G;U),

the above exa
t sequen
e will give us an exa
t resolution of V . Later

we are going to prove that this exa
t resolution is indeed proje
tive.

One should also remark that the 
oeÆ
ient systems on X form in

a natural way a 
ategory and the fun
tor ( V

-

(V

�

)

�

)from the


ategory M(G) to this 
ategory de�ned above is exa
t sin
e all of our

groups U

x

, U

e

are pro�nite. (Re
all that U is a 
ongruen
e subgroup

of level n � 1.)
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3. The 
ase V = C




(G=U)

Let S = G=U . Then, sin
e U is open in G, S is a dis
rete 
ountable

set. Moreover, for ea
h x 2 X, we have

C




(S)

U

x

= C




(U

x

nG=U):

Similarly, for ea
h e 2 X

1

, we have

C




(S)

U

e

= C




(U

e

nG=U)

and

U

e

nS = U

e

nG=U = S

x

a

S

S

y

where e = fx; yg and S

x

:= U

x

nS, S

e

:= U

e

nS for x 2 X and e 2 X

1

.

If � is a simplex in X (i.e., is either a vertex or an edge in our tree X),

one gets, as in [16℄, a simpli
ial set S

�;�

with

S

�;m

= S �

S

�

S �

S

�

::::�

S

�

S (m+ 1 fa
tors, m � 0)

and all fa
e maps are proper in the sense that the inverse image of

any �nite set is again �nite. Then one has the following 
ommutative

diagrams of simpli
ial sets (here S and S

�

are 
onsidered as 
onstant

simpli
ial sets) :

S

�;�

�

R

S

-

S

�

and

S

�;�

-

S

�

S

�

0

;�

?

-

S

�

0

?

where �

0

� �.

One gets, by passing to fun
tions, the following 
ommutative dia-

gram:
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0 0 0

0

-

�

X

1

C




(S

e

)

?

�

-

�

X

0

C




(S

x

)

?

�

-

C




(S)

?

-

0

0

-

�

X

1

C




(S)

?

�

-

�

X

0

C




(S)

?

�

-

C




(S)

w

w

w

w

w

-

0

0

-

�

X

1

C




(S �

S

e

S)

?

�

-

�

X

0

C




(S �

S

x

S)

?

�

-

C




(S)

0

?

-

0

0

-

�

X

1

C




(S �

S

e

S �

S

e

S)

?

�

-

�

X

0

C




(S �

S

x

S �

S

x

S)

?

�

-

C




(S)

w

w

w

w

w

-

0

.

.

.

?

.

.

.

?

.

.

.

0

?

We want to show that the top row of this diagram is exa
t. For

this, one observes that ea
h S

�;�

is a disjoint union of simpli
ial �nite

sets of the form

S

n

s

:= S

s

� S

s

� :::� S

s

where S

s

denotes the set of s

0

2 S whi
h go to s under the map

S

-

S

�

. Sin
e these simli
ial sets are 
ontra
tible, one sees that

the 
olumns of the above 
omplex are exa
t. Thus, it is enough to

show that sequen
es above of the form

0

-

�

X

1

C




(S �

S

e

:::�

S

e

S)

�

-

�

X

0

C




(S �

S

x

:::�

S

x

S)

�

-

C




(S)

-

0

are exa
t.

Let m � 0 be �xed.

One 
an 
onsider S

�;m

= S �

S

e

:::�

S

e

S (m+ 1 fa
tors) as a subset of

S

m+1

= S � :::� S. Similarly, one 
onsiders S as the set of diagonal

elements of S

m+1

. Now we want to write the above 
omplex with

the new terminology in a more 
onvenient form. For this we de�ne,

following [16℄, for ~s = (s

1

; s

2

; :::; s

m+1

) 2 S

m+1

, X

~s

to be the set of

all simpli
es � in X su
h that the image of fs

1

; s

2

; :::; s

m+1

g under the

map S

-

S

�

is not a singleton.

We have, for ea
h x 2 X, a natural surje
tion p

x

: S

-

S

x

. Then


onsider the mapping

� : S

-

�

x2X

S

x
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given by � (s) = (p

x

(s))

x2X

. Observe that � is equivariant with respe
t

to the natural G-a
tions on both sides. Let s be an element of S su
h

that � (s) = � (U). This means that p

x

(s) = p

x

(1U) for all x 2 X. In

parti
ular, p

x

0

(s) = U . This means that Us = U , hen
e s = U . (Re
all

that S is the set of left 
osets of S in G.) This proves that the mapping

� is inje
tive. Thus, if ~s is not on the diagonal, then X

~s

is non-empty.

By the above 
onstru
tion one has

�

�2X

�

C




(S

�;m

) = �

~s2S

m+1

C




(X

�

n(X

~s

)

�

):

Therefore, in our 
ase, too, if we 
an show that the simpli
ial 
om-

plexes X

~s

are 
ontra
tible, then we have the exa
tness of the 
omplex

under dis
ussion. Let us prove this for m = 1. The general 
ase is

almost the same. Let

' : S

-

X

0

be the natural mapping. We have su
h a mapping sin
e U is a subgroup

of K, the stabilizer of x

0

.

Let s; t 2 S and

X

(s;t)

= f� : s

�

6= t

�

g

where for ea
h simplex �, s

�

and t

�

denote the images of s and t in S

�

.

By de�nition,

s

�

= t

�

i� 9g 2 U

�

: g(s) = t:

We observe also that the mapping

' : S

-

X

0

is a �nite (proper) mapping sin
e [K : U ℄ is �nite. Moreover, this

mapping is a
tually uniformly �nite. We have G-a
tions on S and X,

respe
tively. These a
tions are 
ompatible with '. This means that,

for s

1

and s

2

in S,

'(s

1

) = '(s

2

) =) '(g(s

1

)) = '(g(s

2

)):

In other words, the following diagram is 
ommutative.

G

	 R

X

0

= G=K

�

'

G=U = S

' is also G-equivariant.

It is well known that a 
onne
ted graph is 
ontra
tible i� it is a tree.

We are going to prove that X

(s;t)

is a tree. Put Y for the 
omplement

of X

(s;t)

in X. We de�ne a semi-metri
 on S by

d

S

(s; s

0

) = d

X

('(s); '(s

0

))

for any s; s

0

2 S. Here d = d

X

denotes the geodesi
 metri
 in X.
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Sin
e n � 1, if x 2 X and d(x; ['(s); '(t)℄) � n � 1, then B(x; n)

and ['(s); '(t)℄ have at least three points in 
ommon. Clearly these

points are �xed by every element of U

x

. But this means that s

x

and t

x


an not be the same. Hen
e su
h an x 
an not be an element of Y .

If x 2 X su
h that d(x; '(s)) 6= d(x; '(t)), then there 
an not be

any element of G whi
h �xes x and takes '(s) to '(t) sin
e the elements

of G are isometries. This means that if Y is non-empty, then it 
an


onsists of verti
es of X whose distan
es to '(s) and '(t) are the same.

Moreover, Y 
an 
onsist of only verti
es whose distan
e to ['(s); '(t)℄

is bigger that n� 1. Let x 2 X be su
h a vertex, i.e.,

d(x; ['(s); '(t)℄) � n and d(x; '(s)) = d(x; '(t)) = r:

First observe that, as n � 1, x =2 ['(s); '(t)℄. Moreover, if [x; '(s)℄ =

[x; x

1

; x

2

; :::; x

r�1

; '(s)℄ and [x; '(t)℄ = [x; y

1

; y

2

; :::; y

r�1

; '(t)℄ are the


orresponding geodesi
 paths, there must be a k � 1 su
h that x

i

= y

i

for all i 2 f1; 2; :::; kg. Sin
e X is a tree, there is a unique path between

'(s) and '(t) and hen
e d(s; t) = 2r � 2k. (One should remark that

['(s); x

r�1

; :::; x

k

= y

k

; :::; y

r�1

; '(t)℄ is su
h a geodesi
 path.)

Let us show that su
h an x must lie in Y . For this, we re
all that

any element of U

x

leaves any point in B(x; n) invariant. Subje
t to this


ondition, U

x


ontains all isometries of the tree. We know also from

the position of x de�ned by the above given 
onditions that k � n.

Therefore U

x


ontains some elements g 2 G su
h that g �xes every x

i

,

i � k, and

g(x

i

) = y

i

for k � i � r:

Putting x

r

= '(s), y

r

= '(t), we get the result that g('(s)) = '(t).

Now, U is a subgroup of K, the stabilizer of x

0

and the elements of K

permute the set of 
osets of U in K. Thus, it is easy to see that there

is a g in fh 2 U

x

: h('(s)) = '(t)g su
h that g(s) = t. That is to say,

one 
an �nd su
h a g in U

x

. But this says nothing but that the images

of s and t are the same in S

x

. These observations say the following:

1. Y is non-empty only if d(s; t) is even.

2. Y is a disjoint union of �nitely many 
ones of the form C[a; b℄

where a is the middle-point of ['(s); '(t)℄ and b is a vertex in X su
h

that d(a; b) = n and that [a; b℄ 
ontains no vertex of ['(s); '(t)℄ other

than a. Su
h a 
one is shown in the following �gure. In the �gure,

P= '(s) and Q= '(t), a is the middle-point of ['(s); '(t)℄, b is a point

on the boundary of B(a; n) su
h that [a; b℄

T

['(s); '(t)℄ = fag, x is a

typi
al point in C[a; b℄.
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a

b

x

ϕ (s) ϕ (t)

Now it is 
lear from the pi
ture at hand that the 
omplement of Y

in X is 
onne
ted sin
e any vertex in XnY = X

(s;t)


an be joined to

['(s); '(t)℄.

Now we have to show only that X

(s;t)

, as a simpli
ial 
omplex, is

the tree generated by these verti
es. For this, we have to prove two

things:

1. x; y are two verti
es in X

(s;t)

, and if d(x; y) = 1, then the edge e

formed up by these verti
es is a simplex in X

(s;t)

.

2. For an edge e to be in (X

(s;t)

)

1

, it is ne
essery that both of the

endpoints be in (X

(s;t)

)

0

.

Then, X

(s;t)

will be seen to be a tree and hen
e 
ontra
tible.

For the proof of the above 
laims, let Y

1

be the set of edges in X

su
h that s and t have the same images in S

e

. Let e 2 X

1

with the

endpoints x and y. Then, without loss of generality, if x 2 Y , then

s

e

= t

e

sin
e U

x

� U

e

. This means that e 2 Y

1

and proves the 
laim 2

above. By using an argument of the same type, the 
alim 1 above also

follows.

The general 
ase is very similar to this one. First the existen
e of a

middle-point is required. That is, there must be some vertex ofX whi
h

is at the same distan
e from all the given points '(s

0

); '(s

1

); :::; '(s

m

).

Otherwise the 
orresponding set Y will be empty. Then one 
onstru
ts

the �nitely many 
ones as above. The tree generated by the rest of Y

in X will be the 
omplex X

~s

, where ~s = (s

0

; s

1

; s

2

; :::; s

m

).

Therefore we have proved the exa
tness of the rows under the top

row in our 
omplex. Thus, the top row is also exa
t. Hen
e we have

the required exa
tness result in the 
ase V = C




(G=U).

4. The General Case

Now we want to see that, for any V 2 M(G;U), the augmented


omplex
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0

-

C

1

(V )

-

C

0

(V )

-

V

is exa
t.

Consider the morphism of G-modules

C




(S)
 V

U

-

V

given by

f 
 v

-

X

g2S=G=U

f(g)g(v):

Sin
e V , as a G-module, is generated by V

U

, this morphism is also

onto. Thus, its kernel lies in the same 
ategory M(G;U) sin
e we have

proved in the last 
hapter that this sub
ategory is stable under taking

submodules. Now we know that in this 
ase we have an exa
t resolution

of V in M(G;U) of the form

: : :

-

�

I

1

C




(S)

-

�

I

0

C




(S)

-

V

-

0

for some suitable index sets I

0

; I

1

; :::

If we 
ombine this 
omplex with the one in previous se
tion, it is

enough to know the exa
tness in the 
ase of V = C




(S).

Let V 2 M(G;U). Our group G a
ts on both X = X

0

and X

1

transitively. This means, if x 2 X, e 2 X

1

, and if we 
onsider the

subspa
es A and B of C

1

(V ) and C

0

(V ), respe
tively, given by A =

f� 2 C

1

(V ) : supp(�) � fxgg and B = f� 2 C

0

(V ) : supp(�) � fegg,

then C

1

(V ) (resp. C

0

(V )) is generated by A (resp. by B). But, as

�(x) 2 V

x

, and admissibility of V implies that dim(V

x

) < 1, A is

�nite dimensional. SimilarlyB is also �nite dimensional. Hen
e C

1

(V )

and C

0

(V ) are both �nitely generated. Thus we have the following

Theorem 4.1. Let V be a G-module in M(G;U). Then, the reso-

lution

0

-

C

1

(V )

-

C

0

(V )

-

V

is exa
t. Moreover, if V is in addition admissible, then this resolution

is also �nitely generated in the sense that C

1

(V ) and C

0

(V ) are both

�nitely generated.

Now we want to prove that this resolution is also proje
tive. It

is enough to show that the fun
tor Hom

G

(C(V )

i

;�) is exa
t on the


ategory M(G) for i = 0; 1. Consider the 
ase i = 1. Let e be the

edge given by x

0

and x

1

. Let < e > denote the same edge with positive

orientation. For ea
h v 2 V

e

, we 
onsider the following spe
ial elements

of C

1

(V ): For ea
h v 2 V

e

let �

v

(< e >) = v, �

v

(� < e >) = �v,

�

v

(�) = 0 if � 6= e. Let also B

0

be the set of elements of G su
h

that g(fx

0

; x

1

g) = fx

0

; x

1

g. Then B

0

is a 
ompa
t open subgroup of

G and our Iwahori subgroup B is a subgroup of B

0

of index 2. (The
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di�eren
e 
omes from the inversions 
ontained in B

0

). Let � be the

unique 
hara
ter of B

0

-

f1;�1g with kernel B. Then we de�ne,

for W 2M(G),

E(W ) := fA 2 Hom

C

(V

e

;W ) : gAg

�1

(v) = � (g)A(v) 8g 2 B

0

;8v 2 V

e

g:

We de�ne

' : Hom

G

(C

1

(V );W )

-

E(W )

as follows: For a T 2 Hom

G

(C

1

(V );W ), '(T )(v) = T (�

v

). We 
laim

that this mapping ' is a linear isomorphism. Linearity and inje
tivity

of ' is trivial. Before proving surje
tivity, we try to explain what this

gives us: This will give us an isomorphism

Hom

B

0

(V

e

;W ) = Hom

B

0

=U

e

(V

e

;W

e

) = Hom

C

(V

e

;W

e

)

B

0

=U

e

:

But, sin
e U

e

is pro�nite and B

0

=U

e

is �nite (B=U

e

is 
learly �nite),

the fun
tor Hom

G

(C

1

(V );W ) be
omes exa
t in W 2 M(G).

Let A 2 E(W ). We have to �nd a T 2 Hom(C

1

(V );W ) su
h that

'(T ) = A. For ea
h v 2 V

e

and �

v

2 C

1

(V ), we put T (�

v

) = A(v).

Then we extend it linearly. We have to show that this de�nition gives

indeed an element of Hom(C

1

(V );W ). Clearly, if T is well-de�ned, it

satis�es '(T ) = A. Now let � 2 C

1

(V ) and let F = fe

1

; e

2

; e

3

; :::; e

m

g

be the set of elements of X

1

su
h that F

S

�F = supp(�) (i.e., F is a

�nite subset of X

1

su
h that F

T

�F is empty and the symmetri
 set

generated by F is the support of �). For ea
h i 2 [1;m℄, let v

i

= �(e

i

).

Then, if g

i

2 G su
h that g

i

(e) = e

i

for ea
h i 2 [1;m℄, we have

g

�1

i

(v

i

) 2 V

e

. One has indeed

� = g

�1

i

� �

g

�1

i

(v

i

)

:

Corollary 4.2. Let V be an arbitrary �nitely generated smooth

G-module, W an admissible G-module. Then Hom(V;W ) is �nite di-

mensional.

Proof. Let A = fv

1

; v

2

; :::; v

k

g � V be a �nite set that generates V

as a G-module. Sin
e V is smooth there exists a 
ongruen
e subgroup

U

0

of G su
h that all the elements of A are invariant under U

0

. Every

T 2 Hom(V;W ) is 
ompletely determined by its values on this set A.

Observe also that the image of ea
h v

i

2 A under T will be an element

of W

U

0

whi
h is �nite dimensional (sin
e W is admissible). Therefore

Hom(V;W ) must be �nite dimensional. �

Re
all that if V 2 M(G;U) is admissible, then it is generated,

as a G-module, by the subspa
e V

U

whi
h is by admissibility �nite

dimensional. In other words, every admissible V 2 M(G;U) is �nitely

generated. This observation gives in parti
ular the following result.

Corollary 4.3. For V;W 2 Adm(G) with V 2M(G;U),

Ext

i

M(G)

(V;W ) is �nite dimensional for all i and Ext

i

M(G)

(V;W ) = 0

for all i > 2.
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Proof.

By theorem 4.1 we have the proje
tive resolution

0

-

C

1

(V )

-

C

0

(V )

-

V:

Moreover, ea
h C

i

(V ); i = 0; 1 are �nitely generated by the same the-

orem.

Now sin
e (see se
tion 1)

Ext

�

(V;W ) := H

�

(Hom(C

�

(V );W )

we get the required result by the above 
orollary. (Here C

i

(V ) := 0

for all i > 1). �



Appendix: Admissibility of Irredu
ible

Representations

In se
tion 3.2 we proved the Uniform Admissibility Theorem whi
h

says that if U is any 
ompa
t open subgroup of G = Aut(X), then

there is a positive integer N that satis�es the following 
ondition: For

any irredu
ible smooth representation V 2 Irr(G), one has

dim(V

U

) � N:

For the proof of this theorem we used the fa
t that every irredu
ible

smooth representation V of G is indeed admissible. That is to say, if

U and V are as above, we have

dim(V

U

) <1:

An expli
it proof of this fa
t seems to be not available in the literature.

Sin
e this result plays a very imprtant role in various pla
es in our work

we give here a simple proof of this fa
t. We use the same notation as in


hapter 3. Let (�; V ) 2 Irr(G) be an irredu
ible smooth representation

of G = Aut(X). We saw in Corollary 3.3.3 that if V is 
uspidal, then

it is automati
ally admissible. In fa
t, more generally, we proved that

�nitely generated 
ispidal representations are admissible. Thus it is

enough to prove that irredu
ible spe
ial and spheri
al representations

are admissible.

Assume that (�; V ) is spe
ial. We re
all that [15℄ there are only two

irredu
ible spe
ial representations of G. They are realised on the same

spa
e of fun
tions. The elements of this spa
e are square-integrable

fun
tions on the dis
rete set X

1

of (non-oriented) edges in X. More

pre
isely,

V = ff 2 `

2

(X

1

) :

X

x2e

f(e) = 0 8x 2 X

0

g

on whi
h we 
onsider the natural representation � of G. That is to say,

�(g)(f)(e) := f(g

�1

(e))

for ea
h g 2 G and e 2 X

1

. Let � be the unique non-trivial represen-

tation of Z=2 = f�1; 1g. Then � and � 
 � are the only irredu
ible

spe
ial representations of G. It is enough to prove the admissibility of

�. Let U = U

n

be any 
ongruen
e subgroup, B(x

0

; n) = fx 2 X

0

:

d(x; x

0

) � ng. Put E := fe 2 X

1

: e � Eg. We want to show that V

U

is �nite dimensional. For let f 2 V

U

. This means that f(u(e)) = f(e)

57
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for all u 2 U and e 2 X

1

. Thus if e; e

0

2 XnE and e and e

0

have

the same distan
e to some vertex x on the boundary of B(x

0

; n), then

f(e) = f(e

0

) = (�1=q)

r

f(e

00

) for some r 2 N

�

, where e

00

is the edge


ontained in E one of whose endpoints is x. Therefore the fun
tion f

is uniquely determined by its values on the elements of the set E whi
h

is �nite. Hen
e the spa
e V

U

must be �nite dimensional. Indeed, after

this observation one 
an 
al
ulate the dimension of this spa
e and show

that dim(V

U

) = q(q � 1)

n�1

.

Now assume that (�; V ) 2 Irr(G) is spheri
al. Then, a

ording

to [14℄, we have the following realisation of V : There exists a quasi-


hara
ter � : P

-

C

�

whi
h is trivial on N su
h that �(t) 6= (q +

1)

1=2

;�((q + 1)

1=2

); (q + 1)

�1=2

;�((q + 1)

�1=2

) and that

V

�

=

V

�

:= ff 2 C

1

(G) : f(pg) = �(p)

p

�(p)f(g) 8p 2 P;8g 2 Gg:

Here � is the modular fun
tion of P and V

�

is equipped with the right

regular representation of G. By the Iwasawa de
omposition G = PK

the restri
tion of f to K determines f uniquely. Now if f 2 V

U

for

some 
ongruen
e subgroup U of G, then f j

K

is 
ompletely determined

by the values of f at the elements in a representing set of K=U whi
h

is �nite. Therefore V is admissible and indeed

dim(V

U

) � [K : U ℄:

This �nishes the proof that every irredu
ible smooth representation

of G is admissible.

Remark. The proofs given above imply in parti
ular that the set of

irredu
ible non-
uspidal representations of G is uniformly admissible.

In other words, if N = maxf[K : U ℄; q(q� 1)

n�1

g for some n � 1, then

for any irredu
ible non-
uspidal representation V of G we have

dim(V

U

n

) � N:



Notes and Remarks

Here we 
olle
t some remarks 
on
erning the literature and some

questions of interest to us. We will 
ontinue our investigations to an-

swer these questions.

(1) In this work we have formulated and proved analogues of some

of the important results known in the 
ase of p-adi
 groups. Most of the

results in 
hapters 3 and 4 seem to be new in the 
ase of automorphism

groups of homogeneous trees. For the proofs of these theorems we have

used the de
omposition theorem proved in se
tion 2.5. The de
omposi-

tions in (1), (2) and (3) of the theorem 2.5.5 are due to Chou
roun. He

proved these results for the semi-homogeneous Bruhat-Tits trees ([8℄

page 39). The de
ompositions in (4) and (5) of the same theorem have

their analogues in the theory of p-adi
 groups ([2℄, page 30). They play

a very important role in the study of the 
ongruen
e He
ke algebras

H(G;U) and in the proof of the Uniform Admissibility Theorem. Only

after the writing of the �rst draft of this manus
ript we 
ould read the

earlier work of Olshanski [13℄. There he uses a very similar de
ompo-

sition and proves the Uniform Admissibility Theorem in a way whi
h

is almost the same as ours. The only missing part there was a detailed

proof of the admissibility of irredu
ible smooth representations. In the

appendix we gave a 
omplete proof of this fa
t.

(2) At the end of his arti
le [14℄ Olshanski asks whether the 
hara
-

ters of irredu
ible 
uspidal representations are lo
ally integrable fun
-

tions on the group. He indi
ates also that the answer to the same ques-

tion for irredu
ible non-
uspidal representations is negative. S
hneider-

Stuhler theory gives some expli
it formulas for the 
hara
ters of ir-

redu
ible 
uspidal representations of p-adi
 groups. So it seems to

be interesting to investigate this question from the point of view of

S
hneider-Stuhler theory in the automorphism group 
ase as adopted

in the last 
hapter. We plan to go further in this dire
tion.

(3) The 
hara
terization of irredu
ible 
uspidal representations of

Aut(X) given by Olshanski as representations indu
ed from some 
on-


rete 
ompa
t open 
ompa
t subgroups is somehow similar to the type

theory of Bushnell-Kutzko ([5℄) in the representation theory of p-adi


groups. This similarity also deserves in our opinion more attention.

For a better understanding of this phenomenon one should understand

the restri
tions of irredu
ible 
uspidal representations of Aut(X) to

PGL(2; F ). Here, of 
ourse, X is the Bruhat-Tits tree asso
iated to
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the group PGL(2; F ). This subje
t is interesting also in itself. As

we indi
ated at the end of 
hapter 1, the restri
tions of irredu
ible

non-
uspidal representations to PGL(2; F ) are again irredu
ible and

of the same type (i.e., they are either spheri
al or spe
ial). The group

PGL(2; F ) has also non-spheri
al prin
ipal series representations whi
h

are not 
uspidal and do not 
ontain any Iwahori-�xed ve
tor. It follows

from the above dis
ussion that they 
annot be obtained by resti
ting

irredu
ible non-
uspidal representations of Aut(X) to PGL(2; F ). It

would be interesting to know whi
h 
uspidal representations of Aut(X)


ontains (when restri
ted to PGL(2; F )) representations of the non-

spheri
al prin
iple series of PGL(2; F ).

(4) Another interesting problem related to the 
omparison of repre-

sentations of Aut(X) and those of PGL(2; F ) is the following. A

ord-

ing to the theory of Ja
quet and Langlands ([12℄, Theorem 15.1), there

is a 
orresponden
e between irredu
ible representations of quaternions

and dis
rete series representations of GL(2; F ) (see also [11℄ for a ni
e

exposition). For example, the irredu
ible 
uspidal representations of

Aut(X) should 
orrespond to some sets of irredu
ible representations

of quaternions. It would be interesting to know what form these sets


an have.

(5) Another question of interest is the one stated at the end of 
hap-

ter 3, i.e., whether the 
ategoryM(Aut(X)) is noetherian. We strongly

expe
t that one 
an give an aÆrmative answer to this question. The

reason is that our groups have the `same' non-
uspidal representations

as p-adi
 groups and we know that the 
uspidal part of M(Aut(X)) is

noetherian. For a p-adi
 group G it is well-known that the 
ategory

M(G) is noetherian ([2℄, page 60, Proposition 32). We are going to


ontinue our investigations to prove or disprove our 
laim .



Bibliography

[1℄ Bass, H., Lubotzky, A., Tree latti
es, Book to appear, Birkh�auser, 2000.

[2℄ Bernstein, J., Representation theory of p-adi
 groups, Harvard Le
tures, 1993.

[3℄ Bernstein, J., Zelevinskii, A., Representations of the group GL(n; F ) where F is

a non-ar
himedean lo
al �eld, Usp. Mat. Nauk 31, 5-70 (1976) (Russian); Engl.

translation: Russian Math. Surveys 31, 1-68 (1976).

[4℄ Bruhat, F. and Tits, J., Groupes r�edu
tifs sur un 
orps lo
al I, Publ. Math.

I.H.E.S. 41, 1972.

[5℄ Bushnell, C. J. and Kutzko, P., The Admissible Dual of GL(N ) via Compa
t

Open Subgroups, Annals of Mathemati
s Studies 129, Prin
eton University

Press (1993).

[6℄ Cartier, P., Harmoni
 analysis on trees, Harmoni
 Analysis homog. Spa
es,

Pro
. Sympos. Pure Math. 26, Williamstown 1972, 419-424 (1973).

[7℄ Cartier, P., G�eom�etrie et analyse sur les arbres, S�em. Bourbaki 1971/72, expos�e

407, Le
t. Notes in Math. 317, 123-140, Springer-Verlag, 1973.

[8℄ Chou
roun, F. M., Analyse harmonique des groupes d'automorphismes d'arbres

de Bruhat-Tits, Mem. So
. Math. Fr., Nouv. Ser. 58, 1-166 (1994).

[9℄ Dymara, J. and Januszkiewi
z, T., New Kazhdan groups, preprint.

[10℄ Figa-Talaman
a, A. and Nebbia, C., Harmoni
 analysis and representation

theory for groups a
ting on homogeneous trees, London Math. So
. Le
ture

notes series 162, Cambridge University Press 1991.

[11℄ Gerardin, P. and Li, W. W., Fourier Transforms of Representations of Quater-

nions, J. Reine Angew. Math. 359, 121-173 (1985).

[12℄ Ja
quet, H. and Langlands, R., Automorphi
 Forms on GL(2) Le
ture Notes

in Mathemati
s. Vol. 114, Berlin-Heidelberg-New York: Springer-Verlag.

[13℄ Ol'shanskii, G. I., Representations of groups of automorphisms of trees, Usp.

Mat. Nauk, 30, 169-170 (1975).

[14℄ Ol'shanskii, G. I., Classi�
ation of irredu
ible representations of groups of au-

tomorphisms of the Bruhat-Tits Trees, Funkts. Anal. i. Prilozh. 11, 32-42 (1976)

(Russian); Engl. translation in Fun
.Anal. Appl., 11 (1976), 26-34.

[15℄ Ol'shanskii, G. I., New "large" groups of type I, Sovremennye problemymatem-

atiki, 16, 31-52 (1982) (Russian); English translation in J. Soviet Math. 18

(1982), 22-39.

[16℄ S
hneider, P. and Stuhler, U., Resolutions for smooth representations of the

general linear group over a lo
al �eld, J. Reine Angew. Math. 436, 19-32 (1993).

[17℄ S
hneider, P. and Stuhler, U., Representation theory and sheaves on the

Bruhat-Tits buildings, Publ. Math. I.H.E.S. 85, 97-191 (1997).

[18℄ Serre, J. P., Arbre, Amalgames, SL

2

, Ast�erisque no.46, So
. Math. Fran
e,

1977 (Fren
h); Engl. translation: Trees, Springer-Verlag, 1991.

[19℄ Silberger, A., Introdu
tion to harmoni
 analysis on redu
tive p-adi
 groups,

Prin
eton Univ. Press, 1979.

[20℄ Tits, J., Sur le groupe des automorphismes d'un arbre, Essays on Topology

and related topi
s, M�emoires d�edi�es a George de Rham, Springer-Verlag, 1970,

188-211.

61



62 BIBLIOGRAPHY

[21℄ Vign�eras, M., Repr�esentations l-modulaires d'un groupe r�edu
tif p-adique ave


l 6= p , Progress in Math. 137, Birkh _auser, 1996.



Curri
ulum Vitae

1.2.1968 Born in Erzurum, Turkey.

1990-1992 Student, Department of Mathemati
s, Bo�gazi�
i University, Is-

tanbul.

1992-1993 Resear
h Assistant, Department of Mathemati
s, Bilkent Uni-

versity, Ankara.

1993-1995 M.S
. student and resear
h assistant, Department of Mathemat-

i
s, Bo�gazi�
i University, Istanbul.

1995-2000 Ph.D. student at the Institute for (Pure) Mathemati
s, Georg-

August-Universit�at G�ottingen.

63


