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Introdution and Summary of Results

The aim of this thesis is to study the ategory of smooth represen-

tations of the isometry group of a homogeneous tree X of degree q+1,

q � 2. For speial values of q these trees are speial ases of the Bruhat-

Tits buildings [4℄. Indeed, the Bruhat-Tits building assoiated to the

p-adi PGL(2) is a homogeneous tree. (More generally, the Bruhat-

Tits buildings assoiated to the rank-one semisimple groups over nonar-

himedean loal �elds are homogeneous or semi-homogeneous trees.) If

we equip this tree with its natural geodesi distane, the p-adi group

PGL(2) is a losed subgroup of the isometry group of this tree. It

is known that this isometry group does not have a p-adi Lie group

struture. We are onerned here with the struture of the ategory of

all algebrai (=smooth) representations of this group.

The representation theory of this group was initiated by P. Cartier

[6, 7℄ in the beginning of the seventies. He studied the spherial Heke

algebra of this group, alulated the spherial funtions, and de�ned

the prinipal and omplementary series representations of this group.

Then, in 1976, G. Olshanski [14℄ lassi�ed all the irreduible algebrai

representations. He de�ned the spherial and speial representations

and proved that all the remaining irreduible algebrai representations

have ompatly supported matrix oeÆients. In analogy to the p-

adi groups he alled these representations 'uspidal'. Later, Figa-

Talamana and Nebbia [10℄ have extended the results of Olshanski to

losed subgroups of the isometry group of the homogeneous trees whih

at transitively both on the tree and on its boundary. They worked but

only with the unitary representations. They gave also the Planherel

formula for these groups. Chouroun, in 1993, has developed harmoni

analysis of these groups similar to the rank one p-adi groups to study

the spherial representations [8℄. His theory is appliable both to auto-

morphism groups of homogeneous and semi-homogeneous Bruhat-Tits

trees and to the simple p-adi groups of rank one. He observed also the

analogues of Cartan, Bruhat and Iwasawa deompositions, whih will

be very important for our purposes.

For the rest of this introdution we �x a homogeneous tree X of

degree q + 1, where q � 2. We equip this tree with its natural metri

and denote by G := Aut(X) the isometry group of X. We onsider

the elements of G as funtions in X and equip it with the topology of

pointwise onvergene. Then G beomes a loally pro�nite unimodular

7



8 INTRODUCTION AND SUMMARY OF RESULTS

group, whih is �-ompat and separable. We denote the boundary

(the set of ends of the tree X) by 
. This set is in a natural way an

ultrametri ompat spae and the union of X with its boundary is

ompat.

Let (x

n

)

n2Z

be a doubly in�nite geodesis in X. Let ! and �!

be the points on the boundary 
 orresponding to the semi-geodesis

(x

n

)

n2N

and (x

�n

)

n2N

, respetively. For m 2 N put B

m

(x

0

) for the

set of verties y in X with d(x

0

; y) � m. K = Stab(x

0

) beomes a

maximal ompat subgroup of G whih is pro�nite. If K

1

= Stab(x

1

),

then B := K \K

1

plays the role of the Iwahori subgroup in the p-adi

ase. So we all this B an Iwahori subgroup of G. Again, in analogy

with the p-adi ase, we all the subgroups U

m

:= Stab(B

m

(x

0

)) =

fg 2 G : g(x) = x 8x 2 Xg the ongruene subgroups of G. We

�x also an element t 2 G whih ats as translation on our doubly

in�nite geodesis suh that t(x

n

) = x

n+1

for all n 2 Z. The role of

the paraboli (or Borel) subgroup is played by the stabilisers of the

points at the boundary. We put P := Stab(!). Then, as observed by

Chouroun, we have the analogues of the Bruhat, Cartan and Iwasawa

deompositions.

Using these, we study the Heke algebra of all loally onstant om-

plex funtions with ompat support. In partiular we prove some

�niteness results on the U -Heke algebras for U a ongruene subgroup.

Then, using this, we see that the irreduible smooth representations are

indeed uniformly admissible. This means that, for any �xed ongruene

subgroup U , we have

maxfdim(V

U

) : V 2 Irr(G)g <1:

Here V

U

denotes the spae of vetors in V invariant under U . Then

we show that any G-module V an be written as the diret sum of two

submodules V

1

and V

2

suh that all the irreduible subfator modules

of V

1

are uspidal, while V

2

does not have any uspidal irreduible

subfator module. By using this deomposition theorem we are able to

prove one of the main results whih states that, if V is anyG-module, U

is any ongruene subgroup of G, and if V is generated as a G-module

by its U -�xed vetors V

U

, then every submodule of V has the same

property. The situation is analogous in the ase of p-adi groups. We

follow losely the approah of Bernstein [2℄ to the p-adi groups.

In the last part, we are going to extend the results of P. Shneider

and U. Stuhler in [16℄ to the automorphism group ase. In partiular,

we will show that the algebrai G-modules an be onsidered in a nat-

ural way as homologial oeÆient systems on the simpliial omplex

X. By using this we will be able to �nd some projetive resolutions of

smooth G-modules. Then �nite dimensionality of extensions between

the irreduible admissible representations will be proved.



INTRODUCTION AND SUMMARY OF RESULTS 9

In summary, we extend some of the known results from the rep-

resentation theory of p-adi groups, in partiular of the p-adi group

PGL(2), to the automorphism groups of general homogeneous trees.

When doing this, we try to present the proofs whih an be used in

both ases, i.e., in the p-adi ase and the automorphism group ase. Of

ourse, whenever the Jaquet theory is onerned, we use some substi-

tute. Almost all of the results an be proved also for semi-homogeneous

trees after some obvious modi�ations. These results, we hope, will be

useful in studying the haraters of irreduible algebrai representa-

tions of these groups. On the other hand, these groups have been

studied by many authors in reent years. For example, Bass, Lubotzky

and others have studied extensively the struture of latties in these

groups and in the orresponding automorphism groups of more gen-

eral trees [1℄. Some others have studied the isometries of more general

trees, for example the ase of metri trees. Moreover, similarities and

di�erenes between these groups and p-adi groups of rank one have

attained muh interest in the last few years. We hope also that the

results of this work will be useful in understanding these groups in this

sense as well.

Notation and Referenes. We use the letters Z;N;Q;R;C to

denote the set of integers, the set of non-negative integers, and the

�elds of rational, real and omplex numbers, respetively. The �eld of

p-adi numbers is denoted by Q

p

, the ring of p-adi integers by Z

p

. If

A is one of these sets, A

�

denotes the subset of non-zero elements in

A. If (X; d) is any metri spae and A;B � X, then we put d(A;B) :=

inffd(x; y) : x 2 A and y 2 Bg. If A = fxg, we write also d(x;B) for

d(fxg; B).

When we refer to a theorem, de�nition,...et. in the same hapter

we use only the orresponding numbering within the same hapter.

Otherwise we write also the hapter number. For the referenes we

give in general the page numbers, too.

Aknowledgements. I would like to express my gratitude to my

thesis advisor Ulrih Stuhler for his support, enouragement and super-

vision during my Ph.D. study. I wish to thank Samuel J. Patterson who

aepted to be my o-advisor for his interest and helpful suggestions

onerning the exposition.

I also wish to express my thanks to Bernard Leler, So�a Lam-

bropoulou and Frank Neumann for their interest and their enourage-

ment when it was needed. They all read the manusript and made very

useful suggestions. The disussions that I had with Bernard Leler

were always enjoyable and have greatly advaned my understanding of

some of the deep ideas of representation theory.

I owe

�

Ozlem very muh for her love and onstant enouragement

during all the years I know her. I wish to thank also Bernd, Canan,
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CHAPTER 1

Representation Theory of Loally Pro�nite Groups

In this hapter we reall some basi results from the representation

theory of loally pro�nite groups. All groups will be assumed to be sep-

arable and ountable at in�nity, i.e., they are the union of a ountable

family of ompat subsets. G will denote suh a group.

There are exellent referenes for this hapter. Some of them are

[3℄ hapter 1, [19℄ hapter 1, or [21℄ hapter 1.

1. Basi De�nitions and the Haar Measure

By a pro�nite group G we mean a projetive limit of �nite groups

(the �nite groups in question are given the disrete topologies.) A

well-known haraterization of pro�nite groups says that a topologial

group is a pro�nite group i� it is ompat and totally disonneted.

We say that a topologial group G is loally pro�nite if it is Haus-

dor�, loally ompat, totally disonneted and zero-dimensional, i.e.,

the identity element of this group has a fundamental system of neigh-

borhoods ontaining ompat open subgroups of G. We denote by

OK(G) the set of ompat open subgroups of suh a G. Aording

to our de�nition OK(G) is a fundamental system of neighborhoods at

the identity element of G. In addition to the above de�ning properties,

we are going to assume that our groups will always be ountable at

in�nity, that is, they are the union of a ountable family of ompat

subsets. (Suh topologial spaes are also alled �-ompat.) Some of

the basi properties of loally pro�nite groups are summarized in the

following

Proposition 1.1. Let G be a loally pro�nite group as above. Then

(i) Any losed subgroup of G is also loally pro�nite.

(ii) The intersetion of any two ompat open subgroups of G is of

�nite index in both of these open ompat subgroups. (Suh subgroups

are in general said to be ommensurable.)

(iii) If K 2 OK(G), and if we equip OK(G) with the inverse inlu-

sion relation, then OK(K) is a o�nal subset in OK(G). (That is, for

any, H 2 OK(G), one an �nd a K

0

2 OK(K) suh that K

0

� H.)

Now, let G be a loally pro�nite group. By a smooth funtion on

G we mean a loally onstant omplex funtion on G. The spae of all

smooth funtions on G is denoted by C

1

(G). Clearly all suh funtions

are ontinuous. If, moreover, f 2 C

1

(G) an be written as a (not

11



12 1. REPRESENTATION THEORY OF LOCALLY PROFINITE GROUPS

neessarily �nite) linear ombination of the harateristi funtions of

the left osets of some K 2 OK(G), then we all f uniformly loally

onstant (on the left). A ontinuous omplex funtion f is said to

have ompat support, or to be ompatly supported, if f vanishes

outside a ompat subset of G. The smallest suh ompat subset

will be alled the support of f , and will be denoted by supp(f). The

spae of all ompatly supported ontinuous omplex funtions on G

will be denoted by C



(G). The intersetion of C

1

(G) and C



(G) will

be denoted by C

1



(G) or by H(G). One an easily prove that the

members of H(G) are all uniformly loally onstant. Moreover, the

harateri funtion of any ompat open subset of G is ontained in

H(G). Moreover, it follows from the uniform loal onstany of the

elements of H(G) that the set of harateristi funtions of left osets

of ompat open subgroups of G span H(G).

By a distribution on G we mean an arbitrary linear funtional on

H(G). The spae of all distributions on G is denoted by H(G)

�

.

Eah g 2 G de�nes a homeomorphism of G by

h 7�! gh:

Hene one has in a natural way an ation of G on itself by left trans-

lations. If we pass to H(G), we have a dual operation of G de�ned

by

L(g)(f)(h) := f(g

�1

h)

for eah g; h 2 G and f 2 H(G). We an go further and de�ne also an

ation of G on the spae H(G)

�

of distributions on G as follows: for

g 2 G, T 2 H(G)

�

and f 2 H(G) we put

L

0

(g)(T )(f) := T (L(g

�1

)(f)):

It is easy to hek that

L

0

(g)L

0

(h) = L

0

(gh):

Now we are ready to de�ne the (left invariant) Haar measure on

a loally pro�nite group G. A (left) Haar measure on G is a non-

zero positive distribution � on G whih is invariant under the above

mentioned group ation. This means that for eah g 2 G one has

L

0

(g)(�) = �:

(It is atually well-known that on a loally ompat group there is

a unique left invariant Radon measure alled Haar measure. If you

restrit this Haar measure to our H(G), you get the same distribution

as will be shown below. The de�nition given above is suÆient for our

purposes.)

This is the main objet of harmoni analysis on suh groups.

In our ase the existene and uniqueness of suh a measure is simple.

By the observations above, every f 2 H(G) is a linear ombination of

harateristi funtions of left osets of some ompat open subgroup
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K 2 OK(G). From now on we identify ompat open subsets of G

with their harateristi funtions in H(G). We are going to onstrut

a positive linear funtional � onH(G) by de�ning its values on ompat

open subgroups and by taking the same values at their left osets. Take

any ompat open subgoup K

0

of G and put

�(K

0

) = 1:

Then, if K is any ompat open subgroup of K

0

, put

�(K) = [K

0

: K℄

�1

:

One should remark that the right hand side is always �nite. Now, if

x 2 G and K is any ompat open subgroup of K

0

, we write

�(xK) = �(K):

We an learly extend this set funtion �rst to the family of all ompat

open subsets of G and then to a linear funtional on the spae H(G).

By its onstrution it is lear that this funtional is positive and linear.

Thus, we have a left invariant Haar measure on G. (It is a simplematter

to hek that this funtional is also well de�ned, as follows from the

above proposition.)

Uniqueness follows now from the following observation: One an

reover suh a measure from its value on K

0

as above. This means

that the spae of left invariant positive linear funtionals on H(G) is

one-dimensional. i.e., any other left invariant measure on G is a salar

multiple of �.

One an onstrut in the same way right invariant Haar measures

using the analogous ation of G on itself by right translations. G is

said to be unimodular if every left Haar measure is also right invariant.

From now on we assume that G is also unimodular and �x a Haar

measure � on G.

2. The Spae H(G) as an Algebra

The above onstruted spae H(G) is very important for the study

of representations of our group. This is not only a vetor spae, but

also in a natural way an algebra over the �eld C of omplex num-

bers. The multipliation of two elements f; g 2 H(G) is de�ned by the

onvolution. That is, by the following formula:

(f � g)(x) =

Z

G

f(y)g(y

�1

x)d�(y)

for eah x 2 G. We are going to ignore this onvolution symbol and

simply write fg. With this multipliation,H(G) is a omplex assoia-

tive algebra. In general, this algebra does not have an identity. In fat,

one an see that this algebra has an identity i� the group G is ompat

and in this ase the identity element is simply the harateristi fun-

tion of the whole group. Sine the group studied in this work is not
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ompat, the orresponding algebra is not unital. But, this algebra

ontains many subalgebras with identity whih are also very impor-

tant for us. If K is a ompat open subgroup of G, then let C(G=K)

denote the spae of all omplex ontinuous funtions on G whih are

right-K-invariant, i.e., if x 2 G, k 2 K, then f(xk) = f(x). Simi-

larly we de�ne C(KnG) and then C(G==K) to be the intersetion of

these spaes. The elements of C(G==K) are said to be K-bi-invariant.

We all the spae H(G;K) =H(G)\C(G==K) the spherial funtion

algebra or Heke algebra of G relative to K. These are subalgebras

of H(G) and they have speial identity elements: the harateristi

funtions of de�ning ompat open subgroups multiplied by �(K)

�1

,

denoted by e

K

. These elements are idempotent in the algebra H(G).

Moreover, the set A := fe

K

: K 2 OK(G)g has the following property:

For eah e; f 2 A, there exists some a 2 A suh that we have

ae = ea = e

and

af = fa = f:

One an put also a partial order on A by de�ning e � f i� ef =

fe = e. From the de�nitions it follows also that for every �nite subset

B of H(G), we have an e 2 A so that eb = be = b for all b 2 B.

Suh an algebra we all idempotented. Now, if e

K

2 A, then one

has H(G;K) = e

K

H(G)e

K

. More generally, if e is any idempotent

element of H(G), then H(G)[e℄ will denote the subalgebra eH(G)e.

Thus, H(G;K) = H(G)[e

K

℄.

Let now V be aH(G)-module. We denote by V [e℄ the orresponding

H(G)[e℄-module e(V ). By de�nition, we say that V is a smooth H(G)-

module i�

V =

[

e2A

V [e℄:

(The reason for this terminology is as follows: In the next setion we

are going to de�ne "smooth" representations of G and then we will

see that these representations are exatly the "smooth" H(G)-modules

just de�ned.) Then it is easy to see that V is a smooth H(G)-module

i� H(G)(V ) = V . If V is any H(G)-module, we all

V

1

:=

[

e2A

V [e℄

the smooth part of V . It is in fat a smooth H(G)-module in the above

sense.

By M(H(G)) we denote the ategory of smooth H(G)-modules.

Let us observe another realization of the Heke AlgebraH(G) whih

is sometimes useful. We have de�ned distributions on G to be linear

funtionals on H(G) = C

1



(G). We have used a natural G-ation on
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the vetor spae H(G)

�

of distributions to give a proof of the existene

of a left-invariant Haar measure. Now a distribution T on G is said to

be ompatly supported if there is a ompat subset C of G suh that,

for any f 2 H(G) whose support is disjoint from C, one has T (f) = 0.

The smallest suh ompat set C in G is alled the support of T and

is denoted by Supp(T ). The ompatly supported distributions on G

form a vetor subspae of H(G)

�

whih is denoted by H(G)

�



. More-

over, under the left regular ation of G, the spae H(G)

�



is stable.

We denote by D(G) the subspae of H(G)

�



onsisting of all ompatly

supported distributions on G whih are invariant under some ompat

open subgroup of G. If f 2 H(G), then there is a orresponding dis-

tribution F on G de�ned by (F; h) = (�; fh) for all h 2 H(G), where

� denotes the unique left Haar measure on G. We denote this dis-

tribution F sometimes by f�. This mapping is well de�ned sine f

is ompatly supported and invariant under some ompat open sub-

group of G. Thus we have a natural mapping from H(G) to D(G)

sending f to f�. The disussion on p. 14 of [3℄ says that this mapping

is also an isomorphism of vetor spaes. If one de�nes a multiplia-

tion of distributions in the following way, the above mapping is also an

isomorphism of algebras. Let us now explain what we mean by multi-

pliation of distributions in D(G). It is easy to see that C

1



(G � G)

is isomorphi to C

1



(G)
 C

1



(G). Now let T 
 S 2 D(G) 
D(G). If

f 
 g 2 C

1



(G �G), we put

(T 
 S)(f 
 g) := T (f)S(g):

Here one should observe that T 
 S 2 C

1



(G � G)

�



. Then, eah f 2

C

1



(G) an be onsidered as an element of C

1



(G�G) via

~

f(x

1

; x

2

) =

f(x

1

x

2

) for eah x

1

; x

2

2 G. We de�ne T ? S to be the distribution on

G given by

(T ? S)(f) = (T 
 S)(

~

f):

Then one has (see pp. 13-14 of [3℄) an isomorphism between two asso-

iative algebras H(G) and D(G) given by f

-

f�.

This realization of the Heke algebra H(G) has some advantages.

For example, if K is a ompat open subgroup of G and g 2 G, one

has the following haraterization of '

g

= (�(KgK)

�1

)�

KgK

:

Lemma 2.1. '

g

is the unique distribution in D(G) with the follow-

ing properties:

1. It is supported on KgK,

2. It is K-invariant on both right and left, and

3. If 1 is the onstant funtion on G with the value 1, then '

g

(1) =

1.

We should remark (for 3) that eah T 2 D(G) de�nes a linear

funtional on the vetor spae C

1

(G). The details of the proof are

straightforward and an be found in pp.13-14 of [3℄.
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These elements will be important for us (see hapter 3). For now

we only say that any f in the Heke algebra is a linear ombination of

suh elements for some K.

We end this setion with the following observation: For eah g 2 G,

the Dira-delta distribution Æ

g

supported on g is a distribution in our

sene. It is also ompatly supported. But it an not be represented by

a smooth funtion on G. Hene it does not orrespond to any element

of the Heke algebra.

3. Smooth Representations

By a representation (�; V ) (or simply V ) we mean a omplex vetor

spae V and a group homomorphism � : G �! GL(V ). We say that

(�; V ) is smooth, or algebrai, if V = [

K

V

K

, where the union is taken

over OK(G). If V is any representation of G, we all

V

1

:=

[

K2OK(G)

V

K

the smooth part of V . It is a smooth representation of G

If K 2 OK(G), V

K

denotes the vetors in V that are �xed by K.

Those representations with the property that dim(V

K

) < 1 for all

K 2 OK(G) are alled admissible. If V , W are two representations

of G, a linear operator T : V �! W is said to be intertwining if

it ommutes with the G-operations on V and W , respetively. We

all smooth G-representations sometimes G-modules. The ategory

of smooth (admissible) G-modules with intertwining operators will be

denoted by Alg(G) (Adm(G)).

Now let (�; V ) be a smooth G-module. Then, for any h 2 H(G)

and v 2 V we de�ne

�(h)(v) =

Z

G

h(x)�(x)(v)d�(x):

With this ation, V beomes a smooth H(G)-module in our sense.

Conversely, if V is a smooth H(G)-module, then it is possible to give

V a smooth G-module struture. Thus, the ategory of smooth G-

modules and the ategory of smooth H(G)-modules are equivalent.

This ategory (i.e., M(H(G))) we will denote by M(G). In general,

we are going to use the latter notation for the ategory of G-modules.

We say that (�; V ) is irreduible if V does not ontain any non-trivial

proper subspae whih is invariant under G. These are the same as

the irreduible (= simple) H(G)-modules. Two G-modules are alled

equivalent if there is a bijetive intertwining operator between them.

Irr(G) denotes the set of equivalene lasses of irreduible G-modules.

For V a smooth G-module and K 2 OK(G) with V

K

6= 0, �(e

K

) is

atually a projetion and its image is V

K

. SineH(G;K) = e

K

H(G)e

K

,

the vetor spae V

K

has in a natural way a H(G;K)-module struture.
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4. Contragradient Representations

Let (�; V ) be a smoothG-module. Then, if v 2 V and v

�

2 V

�

, then

(�

�

(g)(v

�

); v) = (v

�

; �(g

�1

)(v)) for eah g 2 G de�nes a representation

of G on the dual spae V

�

of V . In general, this representation is not

smooth. So we take the smooth part (~�;

~

V ) of (�

�

; V

�

) and we all this

G-module the smooth ontragradient or smooth dual of (�; V ). The

elements of

~

V are alled the smooth funtionals on V .

5. Charaters of Admissible Representations

Let now (�; V ) 2 Adm(G). This means, by de�nition, that for eah

K 2 OK(G), dim(V

K

) <1. If f 2 H(G), then we know that there is

a K 2 OK(G) suh that f 2 H(G;K), and hene

fe

K

= e

K

f = f:

But, we know also that �(e

K

)(V ) = V

K

. Thus, �(f) = �(e

K

f) an be

onsidered as an operator from V to V

K

. Therefore the admissibility

of (�; V ) implies that dim(V

K

) <1 and �(f) is a �nite rank operator.

Conversely, suppose that (�; V ) is a smooth representation of G suh

that for eah f 2 H(G), the operator �(f) is of �nite rank. If K 2

OK(G), then we have a speial element e

K

in the Heke algebra H(G)

of G. The above assumption says that �(e

K

) is a �nite rank operator.

That is, V

K

= �(e

K

)(V ) is �nite dimensional. But this is nothing but

the de�nition of admissibility. We have proved the following

Proposition 5.1. A smooth representation of G is admissible i�,

for eah f 2 H(G), �(f) is a �nite rank operator.

This means that if � is an admisssible representation of G, and if f

is an element of the Heke algebra H(G), then the operator �(f) has

a trae. Now we put, for a given (�; V ) 2 Adm(G),

�

�

(f) := tr(�(f))

for eah f 2 H(G). This funtion is a distribution on G in our sense

whih we all the 'harater' of the admissible representation (�; V ).

Now suppose that (K

n

)

n

is a dereasing sequene of ompat open

subgroups of G whih form also a fundamental system of neighbor-

hoods at the identity. (This is always possible for the groups whih we

are interested in. As we will see later, the sequene of ongruene sub-

groups relative to a given �xed vertex will satisfy this ondition.) Then,

(V

K

n

)

n

is an inreasing (with respet to inlusion) sequene of �nite

dimensional subspaes of V with union V again. For eah g 2 G and n,

the operator �('

g;n

) : V

K

n

! V

K

n

has a trae whih an be denoted by

�

�;n

(g), where '

g;n

is the harateristi funtion of K

n

gK

n

multiplied

by the �(K

n

gK

n

)

�1

. Then this �

�;n

is an element of H(G;K

n

) and

de�nes a distribution on G. If we equip the spae H(G)

�

with the weak

topology with respet to its predual H(G), the harater of (�; V ) an
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be onsidered as the weak limit of the sequene �

�;n

. One an also

use the �nite dimensionality of V

K

n

and take an inreasing sequene

of �nite subsets of V whih form bases for the respetive V

K

n

's and

onsider the matrix oeÆients. Then taking diagonal entries as fun-

tions on G, one an de�ne the harater to be the weak sum of these

funtions (onsidered as distributions).

One should remark that haraters are de�ned as distributions on

G. They are not funtions. Weather they an be represented as fun-

tions on ertain subsets of G is another important subjet whih we

don't onsider here.

We end this setion with the following proposition whose proof an

be found, for example, in [19℄, Corollary 1.13.1, p. 74.

Proposition 5.2. Any family of pairwise inequivalent irreduible

admissible representations of G have linearly independent haraters in

H(G)

�

.

6. Irreduible Representations

We are going to study irreduible G-modules and and their K-�xed

points as H(G;K)-modules. Reall that if V is any G-module and K is

any ompat open subgroup of G, V

K

is in a natural way an H(G;K)-

module. We want to study the relationship between irreduibility of V

as a G-module and the irreduibility of V

K

as an H(G;K)-module.

Let now V be an irreduible G-module. Then we have a ompat

open subgroup K of G suh that V

K

is not 0. Let v;w 2 V

K

be

arbitrary. Sine V is irreduible as an H(G)-module, the submodule

of V generated by v is again V . Thus we have an h 2 H(G) suh that

h(v) = w:

Sine w 2 V

K

, we have

e

K

h(v) = e

K

(w) = w:

Similarly, sine v 2 V

K

, we have also

e

K

(v) = v:

Therefore, we have

(e

K

he

K

)(v) = w:

i.e., V

K

is irreduible as an H(G;K)-module.

Conversely, let W be a proper nontrivial submodule of V . Sine

both are smooth, there exists a ompat open subgroup K of G suh

that W

K

is a proper H(G;K)-submodule of V

K

. This means that

if V is not irreduible as a G-module, then there is a ompat open

subgroup K of G suh that V

K

annot be irreduible as an H(G;K)-

module. Hene we have proved the following
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Lemma 6.1. Let V be a smooth G-module. Then V is an irreduible

G-module i� for eah K 2 OM(G), V

K

is either 0 or an irreduible

H(G;K)-module.

Corollary 6.2. Let V;W be two irreduible G-modules. Then V

and W are isomorphi i� there exists a ompat open subgroup K of G

suh that V

K

and W

K

are both nonzero and isomorphi as H(G;K)-

modules.

Proof. The existene of K with nonzero V

K

and W

K

is trivial.

By the above lemma we know also that V

K

and W

K

are irreduible

H(G;K)-modules. Thus, the restrition of any isomorphism from V to

W has a nontrivial restrition from V

K

to W

K

. Clearly this morphism

is an H(G;K)-module morphism. Hene it is an isomorphism.

Conversely, let T be an H(G;K)-module isomorphism from V

K

to

W

K

. We have to show that T extends to a G-module isomorphism

from V onto W . First let us remark that T extends to a G-module

isomorphism from the G-submodule of V generated by V

K

onto the

orresponding submodule of W . But V and W are irreduible. Thus

we have the required result. �

Corollary 6.3. Every irreduible H(G;K)-module omes from

an irreduible G-module by restrition to K-invariant vetors. More-

over, by the above orollary, this G-module is unique.

Proof. Let W be an irreduible H(G;K)-module. Put

V = H(G)


H(G;K)

W:

Then V is a non-degenerate H(G)-module. Let us see that V

K

= W .

It is enough to show that e

K

(V ) = W . Sine e

K

ats as identity on W ,

we see that V = H(G)e

K




H(G;K)

W . Thus,

e

K

(H(G)e

K




H(G;K)

W ) = e

K

H(G)e

K




H(G;K)

W = W

sine we have e

K

H(G)e

K

= H(G;K). Moreover, if E is a non-trivial

proper G-submodule of V , then E

K

is a non-trivial proper H(G;K)-

submodule of W . Thus, irreduibility of W as an H(G;K)-module

implies irreduibility of V as a G-module. �

7. Subquotients

Let V;W be two G-modules. We say that W is a subrepresentation

of V , or W is a G-submodule of V , ifW is a G-invariant subspae of V

and the inlusion operator T : W

-

V is intertwining. This means

that the ation of G on W an be obtained by restriting the ation of

G on V to W . By a fator or quotient representation of V we mean a

representation of G obtained by taking the quotient of V with respet

to a subrepresentation. We say that W is a subfator module or a
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subquotient of V if there are two submodules V

1

; V

2

of V with V

2

� V

1

suh that W is the fator module of V

1

with respet to V

2

. The set

of all irreduible subfator modules will be very important to us. If V

is a G-module, JH(V ) will denote the set of all irreduible subfator

modules of V . This set is also alled the Jordan-H�older ontent of

V . The elements of JH(V ) are also alled then the Jordan-H�older

omponents of V . The following result is fundamental ([2℄, page 18):

Proposition 7.1. (a) Every non-zero �nitely generated V 2M(G)

has an irreduible subquotient.

(b) If W is a subquotient of V , then every irreduible subquotient

of W is also an irreduible subquotient of V , i.e., JH(W ) � JH(V ).

() Thus, in general, every nonzero V 2 M(G) has an irreduible

subquotient.

(d) JH(

P

V

�

) =

S

JH(V

�

), i.e., the Jordan-H�older ontent of a

sum of modules is the union of the Jordan-H�older ontents of its sum-

mands.

8. Funtion Spae Realization of Representations

Now we are going to give a very simple but very important fat

whih allows us to realise many irreduible smooth representations as

funtion spaes. Many important results an be dedued from this

tehnial fat. As an example, let X be the tree of the p-adi group

H = PGL(2) and onsider H as a subgroup of G = Aut(X). Then one

an prove that the p-adi group PGL(2) and G have the same spherial

and speial representations in the sense that the orresponding repre-

sentations of p-adi PGL(2) are the restritions of those of G. This is

the main priniple applied in [10℄.

Lemma 8.1. Let V be an irreduible G-module. If U is an open

ompat subgroup of G and V has a non-zero �xed vetor invariant

under U , then V is equivalent to a subrepresentation of (in fat of its

smooth part) the left regular representation of G on C(G=U)

Proof. As V is irreduible, it is enough to show that there is a

non-zero intertwining operator V

-

C(G=U). Let

~

V be the smooth

dual of V . First, observe that if V

U

6= 0, then

~

V

U

6= 0. Let ~v 2

~

V

U

be

a non-zero smooth U -invariant linear funtional on V . We de�ne

T : V

-

C(G=U)

by

T (v)(g) := f

v;~v

(g)

for v 2 V and g 2 G, where f

v;~v

denotes the matrix oeÆient orre-

sponding to v and ~v. That is, f

v;~v

(g) =< �(g

�1

)(v); ~v > for all g 2 G.
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Beause of the hoie of ~v this linear mapping is not zero. Moreover,

T is G-equivariant. This an be seen as follows: let g

1

2 G. Then

T (�(g

1

)v)(g) =< �(g

�1

)�(g

1

)v; ~v >=< �((g

�1

1

g)

�1

)v; ~v >= f

v;~v

(g

�1

1

g):

Hene we get the result. �

Corollary 8.2. Let fV

�

: � 2 Ig be a family of pairwise non-

equivalent irreduible G-modules. Suppose, for eah V

�

in the given

family, f

�

is a non-zero matrix oeÆient of V

�

. Then, the set ff

�

:

� 2 Ig is linearly independent.

Proof. Let fV

1

; V

2

; :::; V

n

g be a �nite family of pairwise non-equivalent

(non-zero) irreduible G-modules. For eah i = 1; 2; :::; n we have a

ompat open subgroup K

i

of G suh that V

K

i

i

is not zero. By taking

the intersetion of K

i

's, if neessary, we may assume that there is a

ompat open subgroup K of G suh that V

K

i

is not zero for eah i.

Thus, by the above lemma, these representations an be realised as

subrepresentations of the left regular representation of G on C(G=K).

But, this means that they are G-stable subspaes of C(G=K). Sine

they are also irreduible, they an not have any ommon element other

than 0 in C(G=K). Therefore the matrix oeÆients of V

i

's annot be

lenarly dependant. �



22 1. REPRESENTATION THEORY OF LOCALLY PROFINITE GROUPS



CHAPTER 2

The Group Aut(X) and Irreduible

Representations

Let X be a homogeneous tree of degree q + 1, q � 2. By X

0

(or

simply by X) we denote the set of verties of X and by X

1

its set of

(non-oriented) edges. We denote by

�!

X

1

the set of oriented edges of

X. We equip X with its natural distane d. If x; y 2 X

0

, there is a

unique �nite sequene (x = x

0

; x

1

; ::::; x

n

= y) of verties of X suh

that (x

i

; x

i+1

) 2 X

1

for eah 0 � i � n � 1 and that x

i

6= x

i+2

for

0 � i � n � 2. Suh �nite sequenes we all geodesis. For x; y 2

X

0

[x; y℄ denotes the unique geodesi from x to y. In this ase we

de�ne the distane between x and y, d(x; y), to be n. This distane

funtion is also alled the geodesi distane on X. By a doubly in�nite

geodesi we mean a sequene (x

n

)

n2Z

suh that for eah n < m in

Zone has (x

n

; x

n+1

; :::; x

m

) is a geodesi in X. We use sometimes the

synonym 'appartment' for doubly in�nite geodesis. C[x; y℄ will denote

the subtree generated by fz 2 X

0

: y 2 [x; z℄g.

1. Automorphisms of X

By an automorphism of X we mean a mapping g : X

0

! X

0

whih

is bijetive and satis�es

8x; y 2 X

0

d(g(x); g(y)) = d(x; y):

It is lear that, if g is an automorphism of X, we have

g(X

1

) = X

1

;

i.e., automorphisms are bijetive mappings from X

0

onto X

0

whih

preserve the simpliial struture of X. The set of automorphisms of X

is a group whih is denoted by G = Aut(X).

Now we want to lassify the elements of G aording to their ations

on X. For eah g 2 G, we put

l(g) = minfd(x; g(x)) : x 2 Xg:

If l(g) � 2, then there are x; x

1

; :::; x

l(g)�1

in X suh that d(x; g(x)) =

l(g) and (x; x

1

; :::; x

l(g)�1

; g(x)) form a geodesi from x to g(x). By the

de�nition of l(g), g(x

1

) an not be between x and g(x). Moreover,

d(g(x

1

); g(x)) = 1. Hene [x; g(x

1

)℄ is again a geodesi whose length is

l(g) + 1. Similarly, g(x

2

) is not between x and g(x

1

). Thus [x; g(x

2

)℄

is again a geodesi. Now for eah n 2 Z, put x

n

= g

r

(x

i

), where

23
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r and i are the unique integers with the property n = r � l(g) + i.

0 � i < l(g). Here g

�r

= (g

�1

)

r

. Therefore we see that the image

of this geodesi under the yli subgroup of G generated by g is a

doubly in�nite geodesi and g ats on this appartment as a translation.

We all suh elements translations. If l(g) = 1, then one has an x

suh that d(x; g(x)) = 1. Now there are two ases: g(g(x)) = x or

d(x; g(g(x))) = 2. In the �rst ase we all g an inversion. In the seond

ase g is again a translation as above on an appartment ontaining x

and g(x). In this ase the appartment is given by x

n

= g

n

(x) for eah

n 2 Z. If l(g) = 0, this means that g �xes some vertex x and eah

set of verties whih are at a given distane from x (i.e.,the spheres

around x) are invariant under g. g is either identity or 'rotates' the

tree around x. Suh elements are alled rotations.

The above arguments lassify in some sense the elements of G. That

is to say, an element of G is either a translation, or an inversion, or a

rotation.

We note also that the enter of G is trivial. This follows from the

observation that, given any non-trivial element g of G, one an �nd

always some element in G whih does not ommute with g.

2. The Boundary of the Tree

Now we want to desribe what we all the boundary of X. Let x

0

be a �xed vertex in X. By an end of X we mean an in�nite geodesi

whih starts with x

0

. The boundary of X is de�ned to be the set

of all ends of X and is denoted by 
. If ! 2 
, we write [x

0

; ![

for the de�ning geodesi. We topologize the boundary as follows: If

! 2 
, then an open neighborhood of ! is given by C[x

0

; y℄, where

y is any vertex lying on the geodesi whih de�ne !. The set of all

suh neighborhoods form a loal basis at the point ! of the boundary.

This topology is indeed independent from the point x

0

with whih we

have started. To see this, one de�nes two in�nite geodesis (x

n

)

n2N

and

(y

n

)

n2N

to be equivalent whenever the intersetion of fx

n

g and fy

n

g

has �nite omplements in both sets. Then one an de�ne the boundary

to be the set of equivalene lasses of the ends of X. Now if x

0

and

y

0

are two di�erent verties of X and (x

n

)

n

and (y

n

)

n

are two in�nite

geodesis starting with x

0

and y

0

, respetively, then the geodesis are

equivalent i� there is an n

0

2 N and m 2 Zsuh that y

n

= x

n+m

for

eah n � n

0

. Thus the fundamental systems of the point ! on the

boundary de�ned by x

0

and y

0

de�ne the same loal basis at !.

Now it is atually easy to see that this topology is metrizable. In-

deed, let q + 1 be the order of X. Then, by our onstrution, any two

points !

1

and !

2

on the boundary an be joined by a unique doubly

in�nite geodesi. This one an see as follows: Let x

0

be any vertex

of X. Then put (x

n

)

n

and (y

n

)

n

for the geodesis de�ning !

1

and !

2

,

respetively, whih start at x, i.e., x

0

= y

0

. Let n

0

= minfn : x

n

= y

n

g.
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Now put z

0

= x

n

0

. For m � 0 we put z

m

= y

n

0

+m

, z

�m

= x

n

0

+m

. Then

we have that (z

m

)

m2Z

is an appartment and ℄!

1

; !

2

[= (z

m

)

m2Z

. Sine

the tree X does not ontain any loop, it is now easily seen that this

appartment is independent of x

0

and thus is unique.

Now, if !

1

and !

2

are two points on the boundary, then the geodesi

onneting them has a point y nearest to x

0

. If d(x

0

; y) = n, then we

de�ne d(!

1

; !

2

) = q

�n

, or, equivalently, d(!

1

; !

2

) := q

�d(x

0

;[!

1

;!

2

℄)

. In

this way, the boundary turns out to be a ompat ultrametri spae.

A part of a homogeneous tree of degree q = 3 with its boundary

an be symbolised geometrially as follows:

3. G as a Topologial Group

Now we introdue on G = Aut(X) the following topology. First we

onsider G as a subset of the spae of all mappings from X to X whih

is atually �

x2X

X with the produt topology. Then we equip G with

the subspae topology. Thus, if g 2 G,

B(g) = fO

F

(g) : F � X; Card(F ) <1g;

where O

F

(g) := fh 2 G : h(x) = g(x) 8x 2 Fg, form a loal basis at

g. If 1 2 G is the identity element, then the neighborhoods of 1 have

the form O

F

= fg 2 G : g(x) = x 8x 2 Fg, where F � X is �nite.

It is lear that any �nite F � X is bounded. Therefore, if x

0

2 X,

n 2 N, and B

n

:= B

n

(x

0

) = fx 2 X : d(x

0

; x) � ng, then any �nite

F is ontained in some B

n

. Hene, if U

n

:= Stab

G

(B

n

) = fg 2 G :

g(x) = x 8x 2 B

n

g, then fU

n

: n 2 Ng form a fundamental system
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of neighborhoods at 1 2 G. Moreover, eah U

n

is a subgroup of G and

for eah n 2 N and m � 1, U

n+m

is a normal subgroup of U

n

of �nite

index. By the de�nition of our topology, they are all open ompat

subgroups of G. Thus G is a loally ompat and totally disonneted

group. The group U

0

is very important for us. X an be identi�ed

with G=U

0

and U

0

is a pro�nite group.

More generally, one has the following result [9℄, Theorem 1.1:

Let X be a ountable loally �nite simpliial omplex, Aut(X) be

the group of its simpliial automorphisms equipped with the ompat-

open topology. That is, the identity of Aut(X) has as a loal basis the

sets of the form U(F ) = fg : g = id on Fg, where F runs over ompat

subsets of X.

Theorem 3.1. Let G be a losed subgroup of Aut(X) with the in-

dued topology. Then:

1. G is a seond ountable metrizable group,

2. G is loally ompat and the stabilizers of ompat subomplexes

are both ompat and open,

3. G is �-ompat,

4. Stabilizers of ompat subomplexes are either all �nite or all

unountable.

5. G is totally disonneted.

Here one should remark that the stabilizers of ompat subom-

plexes in our ase are never �nite.

4. The Tree of PGL(2; F ), F a Loal Non-arhimedean Field

Let F be a loal non-arhimedean �eld with the ring of integers R

and the unique maximal ideal P = �R for some prime � 2 R. Let q

be the ardinality of the residue �eld F = R=P . Put H := PGL(2; F ).

We are going to desribe how one an onstrut a homogeneous tree

X of degree q + 1 whih plays the role of a symmetri spae in Lie

group theory. Then the ation of H on this tree and the geometri

haraterizations of some important subgroups of H suh as paraboli

subgroups, maximal ompat open subgroups, ongruene subgroups,

Iwahori subgroups,...et, will be explained. The main referene is [18℄,

part 2.

Let E be a two dimensional vetor spae over F . A lattie � in

E is simply a free R-submodule of E of rank 2, or, equivalently, an

R-submodule of E whih generates E as a vetor spae. Two latties

� and �

0

are said to be equivalent if they belong to the same orbit

under the natural F

�

-ation. I.e., � and �

0

are equivalent i� there is

an � 2 F

�

suh that �� = �

0

.

This notion of equivalene is really an equivalene relation. The

set of equivalene lasses of latties in E we denote by X. Let fe

1

; e

2

g

be the standard basis of E and �

0

be the lattie generated by these
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basis vetors whih we all the standard lattie. Let x

0

denote the

equivalene lass of �

0

.

Let � be a lattie in E generated by u; v 2 E, then, for eah h 2 H,

h(�) is de�ned to be the lattie generated by h(u); h(v) 2 E. Thus

the group H ats on E. H sends a lattie to another lattie and two

equivalent latties to two equivalent latties. Thus the H-ation on E

de�nes naturally an ation of H on X. It is also not diÆult to see that

this ation is indeed transitive. Now let's onsider Stab

H

(x

0

). Then an

element g is in Stab

H

(x

0

) = fg 2 H : g(x

0

) = x

0

g i� g(R

2

) = R

2

and

hene we have:

Stab

H

(x

0

) = fg 2 H : g

ij

; (g

�1

)

ij

2 R for i; j = 1; 2g=R

�

:

HereR

2

denotes R�R as a subset of the vetor spae E and

�

g

11

g

12

g

21

g

22

�

denotes the matrix representation of g with respet to the basis fe

1

; e

2

g.

We denote this group by K = H(R). It is a ompat open subgroup of

H. Indeed it is also maximal with these properties. We see that K is

the stabilizer of a point in X and hene, as H ats transitively on X,

the set X an be identi�ed with the quotient set H=K. Besides, the

stabilizer of any other point x in X is of the form gKg

�1

where g 2 H

suh that g(x

0

) = x.

If x is the lass of a lattie � generated by fe; e

0

g, we write � =<

e; e

0

> and x = � = < e; e

0

>. Now let x and x

0

be two elements of

X. By de�nition we put d(x; x

0

) = 0 i� x = x

0

. d(x; x

0

) is de�ned

to be 1 i� there are two latties � and �

0

with x = � and x

0

= �

0

suh that � � �

0

and �

0

=� = F . The last ondition is equivalent to

��

0

� � � �

0

. After these de�nitions one an de�ne a graph struture

on X. Two points x and x

0

in X are said to be adjaent i� d(x; x

0

) = 1.

Then one has the following ([18℄, page 70, Theorem 1)

Theorem 4.1. With the de�nition of adjaeny given above, X is

a tree.

This theorem says that

1. X is onneted. That is, for eah x, x

0

in X, there are n 2 N

and pairwise distint s

1

, s

2

, ..., s

n�1

suh that

d(x; s

1

) = d(s

1

; s

2

) = ::: = d(s

n�1

; x

0

) = 1:

2. X ontains no loop. And this means that, with the above given

properties, the �nite sequene (s

1

; s

2

; :::; s

n�1

) is unique.

If x; x

0

are as in 1. above, we put d(x; x

0

) = n. Thus d is the natural

geodesi distane. Moreover, it follows from the de�nitions that any

given x = � 2 X is adjaent to the same number of points as the

number of non-equivalent latties �

0

� � suh that �=�

0

= F . This

is equivalent to the ondition that �� � �

0

� �. Thus every vertex is

adjaent to another q + 1 verties.
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Sine the group F

�

ats trivially on X, we an work for the rest of

this setion with H

0

= GL(2; F ).

Let x

n

= < �

n

e

1

; e

2

> and x

�n

= < e

1

; �

n

e

2

> for eah n 2 N.

In this way we get an appartment (x

n

)

n2Z

. By the above reasoning

we know that the stabiliser of x

0

is the subgroup K

0

= H

0

(R) of

matries with entries in R with an inverse again with this property.

Let �

0

= Re

1

+Re

2

2 x

0

, �

1

= R�e

1

+Re

2

2 x

1

.

If

g =

�

a b

 d

�

2 H

0

with g(�

1

) = �

1

, then we have

�ae

1

+ �be

2

= �a

0

e

1

+ b

0

e

2

for some a

0

; b

0

2 R. Thus a 2 R and b 2 �

�1

R. Similarly, we get

 2 �R and d 2 R.

Therefore we have K

0

0

= Stab

H

0

(�

1

) is the group of invertible ma-

tries

�

a b

 d

�

suh that a; d 2 R,  2 �R and b 2 �

�1

R. Thus B

0

= K

0

T

K

0

0

=

Stab

H

0

(fx

0

; x

1

g) is given by

f

�

a b

 d

�

: a; d 2 R � P; b 2 R;  2 �Rg:

This is the so-alled Iwahori subgroup. It is de�ned indeed as the

inverse image of the standard Borel subgroup of GL(2; F ) under the

natural mapping K

0

-

GL(2; F ). But it an be haraterized as the

stabilizer of an edge with verties x

0

and x

1

.

There are other subgroups of H

0

whih are important for various

reasons. As an example one an onsider the group of upper triangu-

lar matries in H

0

alled the paraboli subgroup of H

0

. To be able

to desribe them geometrially, we need some more observations on

our tree X. Now let (x

n

)

n2Z

be an appartment. Let �

0

be a lattie

representing x

0

. Then if x 2 X and d(x; x

0

) = m, then there exists

a unique representing lattie � 2 x suh that �

0

=� is isomorphi to

R=�

m

R. Thus the spheres around the vertex x

0

orrespond to the suit-

able projetive lines. The boundary of the tree, being the inverse limits

of spheres around a �xed vertex, is isomorphi to the projetive line

over F . It follows also that the points on the boundary orresponds to

lines through the origin. As a result, we have an equivalene between

the set of appartments, the set of deompositions of V just desribed

and the set of pairs of di�erent points on the boundary. Another re-

sult of this disussion is that the ends of X orrespond indeed to the

projetive spae P

1

(V ) attahed to V .
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Now by using similar arguments we used for the Iwahori subgroup,

one an see that if (x

n

)

n

is an appartment de�ned by a basis fe

1

; e

2

g

as above, then the paraboli subgroup an be haraterized as follows:

an element g is ontained in the paraboli subgroup i� there exists a

d 2 Z suh that g(x

n

) = x

n+d

for all suÆiently large n. Moreover,

if we de�ne the ongruene subgroups to be U

n

= I + �

n

M(2; R), it

is seen that these are nothing but the stabilizers of the balls around

x

0

with radius n. By the same token, one an see also that the (set-)

stabilizer of the appartment is the subgroup of matries of the form

�

a 0

0 d

�

whih ontains the Cartan subgroup of H

0

(obviously eah a; d 2 F

�

).

5. Deomposition Theorems

In this setion we are going to prove some deomposition theorems

for the group G = Aut(X). These theorems have their analogues in

the p-adi group theory. We start by giving the setup whih we are

going to use in the rest of this work.

By using the analogy to the study of p-adi groups and their or-

responding buildings, we make the following de�nitions:

Definition 5.1. By an appartment in X we mean a doubly in�nite

geodesis (x

n

)

n2Z

. The end points of this appartment are de�ned to be

the points �! and ! on the boundary whih orrespond to the in�nite

geodesis (x

�n

)

n2N

and (x

n

)

n2N

, respetively. In this ase we sometimes

write ℄� !; ![ for (x

n

)

n2N

.

Let (x

n

)

n2Z

=℄�!; ![ be a �xed appartment with end points �!; !.

We remark that eah g 2 G is an isometry. This implies in partiular

that the image of a geodesi under any element of G is again a geodesi.

Thus we have an ation of G on the boundary. Using this we make the

following de�nition:

Definition 5.2. 1. The stabilizer of a point on the boundary is

alled a paraboli subgroup of G. We denote by P the paraboli subgroup

fg 2 G : g(!) = !g

of G. The paraboli subgroup stabilizing �! is said to be opposite to

P .

2. N := fp 2 P : 9n

0

2 Z with p(x

n

) = x

n

8n � n

0

g. In

other words, N is the subgroup of P onsisting of rotations whih leaves

! �xed.

On our appartment (x

n

)

n2Z

there is a translation g 2 G whih has

step m for any m 2 Z. This means that, for any m 2 Z, we have a

g 2 G suh that g(x

n

) = x

n+m

for all n 2 Z. It should be lear that

suh an element is a translation in the sense at the beginning of this



30 2. THE GROUP Aut(X) AND IRREDUCIBLE REPRESENTATIONS

hapter. The existene of suh an element is a result of the homogeneity

of X. The ase m = 1 is espeially important for us.

Definition 5.3. By t we denote a �xed element of G suh that

t(x

n

) = x

n+1

for any n 2 Z. T := ft

n

: n 2 Zg is the yli subgroup

of G generated by t.

Now we reall the de�nitions of several important open ompat

subgroups of G.

Definition 5.4. 1. K = U

0

:= Stab(x

0

) = fg 2 G : g(x

0

) = x

0

g.

2. B := K \ tKt

�1

= fg 2 G : g(x

0

) = x

0

; g(x

1

) = x

1

g.

3. For eah n � 1, we put

U

n

:= Stab(B

n

(x

0

));

or,

U

n

:= fg 2 G : g(x) = x 8x 2 X

0

with d(x; x

0

) � ng:

We all B the Iwahori subgroup of G, U

n

the nth ongruene sub-

group of G.

We remark the following property of these subgroups:

� � �C U

n+1

C U

n

C � � �CB CK:

For our purposes we need also the following subgroups: If n � 1,

we put

U

+

n

:= fg 2 U

n

: g(x) = x 8x with x

1

2 [x

0

; x℄g:

That is to say, U

+

n

is the subgroup of U

n

whih stabilizes all x with the

property d(x; x

1

) < d(x; x

0

). Similarly, we de�ne

U

�

n

:= fg 2 U

n

: g(x) = x 8x with x

0

2 [x

1

; x℄g:

Theorem 5.5. Let U be U

n

for some n 2 N. Then:

1- G =

F

n2N

Kt

n

K

2- P = TN

3- G = KP

4- U = U

+

U

�

= U

�

U

+

5- t

�n

U

+

t

n

� U

+

and t

n

U

�

t

�n

� U

�

for eah n 2 N.

Proof.

1- Let g 2 G be arbitrary. If g �xes x

0

, then g belongs to K and the

result is lear. Otherwise put n = d(x

0

; g(x

0

)). As K ats transitively

on eah sphere around x

0

, one has a k

1

2 K suh that k

1

g(x

0

) = x

n

.

Then we apply t

�n

to get an element t

�n

k

1

g of K sine this element

�xes x

0

. This means that g should be an element of Kt

n

K. Sine n is

determined as above, all these osets are also disjoint.

2- Let g be an element of P . We may suppose that g is not a

rotation. But, sine g �xes some point on the boundary, it annot be

an inversion. Thus it should be a translation. This means that there
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are m

0

in N and n in Zsuh that g(x

m

) = x

m+n

for all m � m

0

. But,

in this ase t

�n

g is a rotation and hene an element of N .

3- Let g 2 G be arbitrary. Put !

1

= g(!). As K ats on the

boundary transitively, one has a k in K suh that k(!

1

) = !. But

this means that for this element k of K, kg �xes the point ! on the

boundary. That is to say, kg 2 P .

4- Let g 2 U be arbitrary. Assume that g does not stabilize fx

n

:

n 2 Ng. Then there is an element h in U

�

suh that hg stabilizes

fx

n

: n 2 Ng.

5- Let g be an arbitrary element of U

+

. We have to show that

h = t

�n

gt

n

is also an element of U

+

. Clearly h stabilizes eah vertex

on the geodesi (x

n

)

n2N

. Now let x 2 B

n

(x

0

). Then t

n

(x) is an element

of C[x

0

; x

1

℄. So it is �xed by g. Hene h(x) = x. The proof of the part

t

n

U

�

t

�n

� U

�

is similar. �

The parts 1-3 of this theorem are proved in [8℄, p.39 for the auto-

morphism group of semi-homogeneous trees.

The deomposition in the �rst part of this theorem is the Cartan

deomposition in our group. The deomposition G = KP = KTN is

alled the Iwasawa deomposition of G.

Corollary 5.6. For eah g 2 G, there exists a unique n 2 N suh

that g 2 Kt

n

K. In this ase g

�1

also belongs to Kt

n

K. Therefore,

eah double oset in the Cartan deomposition is invariant under the

mapping G! G whih takes g to g

�1

.

In the next hapter we are going to attah to eah t

n

an element

of the Heke algebra H(G;K) in a suitable way. Moreover, the multi-

pliation in the algebra and the multipliation in G (of these t

n

's) are

ompatible and we are going to see that these elements generate this

algebra.

Then, by the above orollary, the algebra H(G;K) is seen to be

ommutative. Thus (G;K) is a Gelfand pair and hene the group G is

unimodular.

Unimodularity ofG follows also from the following result [9℄, Lemma

1.6:

Theorem 5.7. Let X be a onneted simpliial omplex of pure

dimension n (i.e., X is the losure of the interior points of its n-

dimensional simplies) and suppose that the links of the simplies of

odimension � 2 are onneted. Suppose also that G is a losed sub-

group of Aut(X) suh that the stabilizers of (n� 1)-simplies at tran-

sitively on their respetive links. Then G ats transitively on X and it

is unimodular.

The onditions of this theorem are satis�ed by our trees, sine, the

stabilizers of verties ats as permutations on the spheres about the

verties stabilized.
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6. Irreduible Representations of Aut(X)

In this setion we are going to reall the lassi�ation of the irre-

duible representations G = Aut(X) due to G. Olshanski [14℄.

Reall that G has very speial open ompat subgroups. For the de-

sriptions of these groups let us �x again an appartment with boundary

points as above. Then, again as above, K

0

will be a maximal ompat

subgroup whih is also the stabilizer of the vertex x

0

, B the Iwahori

subgroup whih is the subgroup of K whih stabilizes the vertex x

1

.

U

n

(for n � 1) will be the the ongruene subgroups of G, i.e., they

are the stabilizers of the spheres of radius n around the vertex x

0

. We

have the following inlusions:

U

n+1

� U

n

� B � K

0

for eah n � 1.

We are interested in the irreduible smooth representations of G.

Reall that these are the irreduible representations (�; V ) of G suh

that

S

K

V

K

= V , where the union is taken over the set of open ompat

subgroups OK(G) of G.

Of ourse, we onsider only non-trivial representations. This means

that, if V is any suh representation, then there is an open ompat

subgroup K of G suh that V

K

6= 0. It should be remarked that if

K

1

is an open ompat subgroup of another suh subgroup K of G

and V

K

6= 0, then V

K

1

6= 0. Now reall that the set of ongruene

subgroups of G form a fundamental system of neighborhoods at the

identity element 1 of G. Therefore, the fat that V 6= 0 is equivalent to

the fat that there is a ongruene subgroup U of G suh that V

U

6= 0.

Now the representations V of G whih have the property V

K

0

6= 0

will be alled the spherial ones. If a representation is not spherial but

has the property that V

B

6= 0, we all these representations speial.

Thus a smooth representation with a non-trivial Iwahori-�xed vetor

is either spherial or speial.

In the representation theory of p-adi groups, the main role is played

by the uspidal representations. These representations are harater-

ized as those irreduible smooth representations whih have ompat

modulo enter matrix oeÆients. Beause the enter of our group G

is trivial, it is natural to all irreduible smooth representations with

ompatly supported matrix oeÆients uspidal. More generally, let

� be a smooth representation of G. We denote by A(�) the vetor

spae generated by the matrix oeÆients of �. We say that � is us-

pidal whenever A(�) � C

1



(G). The main result of Olshanski, for

our approah, is that all the irreduible smooth modules other than

spherial and speial ones are uspidal. This result makes the ategory

M(G) muh better than in the p-adi ase. In partiular, we are going

to see in the next hapter that by using this result one an avoid the
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Jaquet theory in obtaining some important theorems. This is impor-

tant beause the Jaquet theory seems to be diÆult to establish for

our group.

Now we need some notations to be able to explain the main result

of Olshanski. By a subtree Y of X we mean a onneted subset of X.

A subtree is said to be �nite if it has a �nite number of verties. By

an interior point of a subtree we mean a vertex x of Y suh that Y

ontains at least two neighbours of x. Now we say that a �nite subtree

is omplete if it ontains all of the neighbours of its interior points.

The boundary of suh a subtree Y is de�ned as the set of non-interior

points of Y . A subtree onsisting of only one vertex or only one edge

is also assumed to be omplete.

If Y is a �nte subtree of X, then the diameter of Y is the maximum

distane between its verties.

It should be also lear that a subtree is �nite i� it is bounded. Let

Y be a omplete �nite subtree of X with diameter � 2. Let U(Y ) be

the (pointwise) stabiliser of Y in G, and

~

U(Y ) = fg 2 G : g(Y ) � Y g.

Then

~

U(Y ) is the normaliser of U(Y ) in G and the group

~

U(Y )=U(Y )

is �nite. Let U

1

; U

2

; :::; U

n

be the stabilisers of the maximal omplete

subtrees of Y . Olshanski de�nes those irreduible representations � of

~

U(Y ) whih are trivial on U(Y ) and whih have no non-trivial U

i

-�xed

vetors (1 � i � n) to be non-degenerate. If � is suh a representation

of

~

U (Y ), we denote by I(Y; �) the orresponding representation of G

indued from

~

U(Y ).

We are now ready to formulate the following [14℄

Theorem 6.1. Let (�; V ) be an irreduibe admissible representa-

tion of G. Then the following are equivalent:

(a) V ontains no non-trivial Iwahori-�xed vetor;

(b) V is equivalent to a representation I(Y; �) for some omplete

�nite subtree Y and some irreduible non-degenerate representation �

of

~

U (Y );

() All the matrix oeÆients of V are ompatly supported;

Therefore, an irreduible smooth representation of G is either spher-

ial, or speial, or uspidal. Moreover, all the irreduible uspidal G-

modules are indued from ompat open subgroups. Olshanski proves

in [14℄ also that the irreduible uspidal representations are the only

irreduible representations with L

1

-matrix-oeÆients.

Olshanski has proved also the following result:

Proposition 6.2. With the notations as above, I(Y; �) is isomor-

phi to I(Y

0

; �

0

) i� there exists a g 2 G suh that g(Y ) = Y

0

and the

representations � and g � � (the de�nition is below) are isomorphi.

Now onsider the set � of all (Y; �) where Y is a omplete �nite

subtree (of diameter � 2) of X and � is an irreduible non-degenerate
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representation of

~

U(Y ). Sine the image of a omplete subtree in a

homogeneous tree under an automorphism is again a omplete subtree,

we have a natural ation of G on the �rst omponents of �. We de�ne

also the G-ation on the seond omponents by (g � �)(h) = �(ghg

�1

)

for eah g; h 2 G. It is also lear that the last operation is well-

de�ned. Thus we get an operation of G on �. The above proposition of

Olshanski says that the set of equivalene lasses of irreduible uspidal

representations of G are parametrized by the set of G-orbits in �.



CHAPTER 3

The Category M(G)

As usual we �x a geodesis (x

n

)

n2Z

, K = Stab(x

0

), and t 2 G

suh that t(x

n

) = t(x

n+1

) for eah n 2 Z. B will denote the Iwahori

subgroup of G. i.e., B = Stab(x

0

)

T

Stab(x

1

). In setion 1 U will

denote a �xed ongruene subgroup of G.

1. H(G;U) is �nitely generated

Let us reall the distribution realisation of the Heke algebra of G

at the end of setion 1.2. For eah element ' of the Heke algebra

H(G) = C

1



(G) we assoiate the distribution '� on G, where � is the

left-invariant Haar measure on G. Moreover, eah f in H(G) an be

onsidered as a ompatly supported smooth funtion on G � G via

f

0

: (g

1

; g

2

)

-

f(g

1

g

2

). As

C

1



(G�G)

�

=

C

1



(G)
 C

1



(G);

one an de�ne (S 
 T )(f) := (S 
 T )(f

0

). If '

1

; '

2

2 H(G), we de�ne

(S 
 T )('

1


 '

2

) := S('

1

)T ('

2

). Now, if S and T orrespond to

two elements of the Heke algebra, then a multipliatin of these two

elements an be performed as follows. If f 2 H(G), then we onsider

�rst the orresponding f

0

on G�G, then we write it as an element of

the tensor produt C

1



(G) 
 C

1



(G), and then we alulate the value

of this element under S 
 T .

If F denotes the above given mapping '

-

'�, F is injetive,

linear and an algebra morphism. That is to say,

F ('

1

'

2

) = F ('

1

)
 F ('

2

):

By using this we identify H(G) with its image under F .

For eah g 2 G, we denote by '

g

the unique U -bi-invariant distri-

bution on G with support in UgU and integral 1. i.e,

'

g

= e

U

� Æ

g

� e

U

:

This distribution orresponds to �(UgU)

�1

�

UgU

. Clearly f'

g

: g 2

UnG=Ug is a basis of H(G;U).

Lemma 1.1. If g; h 2 G and if h normalizes U , then one has

'

g

'

h

= '

gh

.

Proof. Clearly if h normalizes U , then one has (UgU)(UhU) =

UghU . For simpliity we assume that � is a left Haar measure on G

35
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with the property that �(U) = 1. Otherwise we should multiply by a

suitable onstant. Diret alulation shows that in this ase one has

'

g

'

h

= (�(UgU)�(UhU))

�1

�(UgU \ (gh)Uh

�1

U)�

UghU

:

(One an see [21℄, 3.4.(iv) for suh a alulation).

Now, sine h normalizes U , we have (gh)Uh

�1

U = gU and hene

�(UgU \ (gh)Uh

�1

U) = �(UgU \ gU) = �(gU) = �(U) = 1:

Moreover sine G is unimodular we have

�(UghU) = �(UgU)

and

�(UhU) = 1:

Therefore,

'

g

'

h

= (�(UghU))

�1

�

UghU

= '

gh

:

�

Remark. Let U be as above. Then, if g is any element of G whih

normalizes U , then, for any h 2 G, one has again

'

g

'

h

= '

gh

:

Remark. One has indeed the following general rule ([2℄, page 28):

If g; h 2 G are arbitrary with (UgU)(UhU) = UghU , then one has

'

g

'

h

= '

gh

:

Thus, if fx

1

; :::; x

r

g = K=U , then, sine U is normal in K, we have,

for g 2 G,

(Ux

i

U)(UgU) = Ux

i

UgU = Ux

i

gU

and that

'

x

i

g

= '

x

i

'

g

for all g 2 G and i 2 f1; :::; rg. Similarly,

'

gx

i

= '

g

'

x

i

:

for all g 2 G and i 2 f1; :::; rg Therefore, if C is the vetor subspae

generated by f'

t

n

: n 2 Ng, the Cartan deomposition

G =

[

n2N

Kt

n

K

shows that

H(G;U) = H(K;U)CH(K;U):
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Now let us show that, 8n;m 2 N,

'

t

n

'

t

m

= '

t

n+m
:

(This will imply learly that C is not only a vetor subspae, but also

a subalgebra generated by one element, hene it is ommutative). For

this let U

+

be the subgroup of U onsisting of elements of U whih �x

all the verties x of X suh that

d(x; x

1

) < d(x; x

�1

):

Similarly, let U

�

be the subgroup of U onsisting of elements whih �x

all x 2 X with d(x; x

1

) > d(x; x

�1

). Then

U = U

+

U

�

= U

�

U

+

:

Besides, let x 2 X be �xed by all elements in U

+

. Then d(x; x

1

) <

d(x; x

0

). Sine t

n

is an isometry, we have d(t

n

(x); x

n

) = d(x; x

0

) (n � 0)

and d(t

n

(x); x

0

) = 2n > 2n � 1 = d(t

n

(x); x

1

). Thus t

n

(x) is also �xed

by all elements of U

+

. Sine t

�n

t

n

(x) = x, for any k 2 U , t

�n

kt

n

(x) = x

and one has t

�n

U

+

t

n

� U

+

for all n 2 N. Similarly one has also

t

n

U

�

t

�n

� U

�

. Hene if n;m 2 N, then

Ut

n

Ut

m

U = Ut

n

U

�

U

+

t

m

U = U(t

n

U

�

t

�n

)t

n+m

(t

�m

U

+

t

m

)U � Ut

n+m

U;

i.e.,

'

t

n+m

= '

t

n

'

t

m

:

Therefore we have proved the following

Theorem 1.2. H(G;U) = H(K;U)CH(K;U) where C is a om-

mutative subalgebra ofH(G;U) whih is generated by only one element.

One should remark that dim(H(K;U)) = [K : U ℄ <1.

2. Uniform Admissibility of Irreduible Representations

It is well known [14℄ (see also the appendix) that any irreduible

smooth representation of G is admissible. Using the theorem 1.2 above,

one an even prove the following stronger result:

Theorem 2.1. For eah �xed U 2 OK(G) there exists an N =

N(U) 2 N suh that, for any V 2M(G) irreduible one has

dim(V

U

) � N:

Proof. The statement of the theorem is equivalent to the following

statement: All simple H(G;U)-modules have dimension smaller than

or equal to N .

Now let (�; V ) be an irreduible representation of H(G;U). We

know that k := dim(V ) <1. Moreover, by a theorem of Burnside,

� : H(G;U)! End(V )



38 3. THE CATEGORY M(G)

is onto. But, if H

0

:= H(K;U) and d := [K : U ℄ = dim(H

0

), the

theorem 1.2 gives

k

2

= dim(End(V )) = dim(�(H(G;U))) � d

2

dim(�(C)):

Sine �(C) is a yli subalgebra of End(V ), its dimension is � k.

Thus, we have

k � d

2

:

Hene N := d

2

= dim(H

0

)

2

satis�es the ondition of the theorem.

�

3. More on Cuspidal Representations

We de�ne a smooth G-module V to be uspidal i� all its matrix

oeÆients are ompatly supported. We have moreover the following

Theorem 3.1. Let (�; V ) be a uspidal G-module, U 2 OK(G),

v 2 V nf0g. Then, if W is the G-submodule of V generated by v, one

has

dim(�(e

U

)(W )) <1:

In other words, for any non-zero v in V , if we onsider the G-

submodule W of V generated by v, then the spae of U -invariant ve-

tors in W is �nite dimensional.

Proof. Let (�; V ); U; v;W be as above. Put E := �(e

U

)(W ). We

de�ne also a funtion f : G

-

V

U

by

f(g) = �(e

U

)�(g)(v)

for all g 2 G. This funtion is well de�ned and smooth, as � is smooth.

Suppose that dim(E) = 1. This means that the range of f is in-

�nite dimensional. Thus there exists a sequene (g

n

)

n2N

suh that

(f(g

n

))

n2N

is linearly independent. Sine f is smooth, this means that

fg

n

: n 2 Ng is a disrete set. Without loss of generality we may assume

that ff(g

n

) : n 2 Ng spans E. (If not, one may onsider the subspae

of E generated by ff(g

n

) : n 2 Ng.) Now de�ne a funtional ~v on V

U

by ~v(f(g

n

)) = n for eah n 2 N and ~v(w) = 0 for eah w 2 V

U

nE.

Then ~v 2

~

V

U

and '

v;~v

(g

n

) 6= 0 for almost all n 2 N. But, '

v;~v

is

a matrix oeÆient of V and should have a ompat support whih

an not have an in�nite disrete subset. This ontradits the fat that

fg

n

: n 2 Ng is disrete. �

Corollary 3.2. Every �nitely generated uspidal representation

is admissible.

Proof. Let V 2 M(G) be suh a module and U 2 OK(G). We

want to show that dim(V

U

) < 1. Let fv

1

; v

2

; :::; v

m

g be a generating

subset of the G-module V . For eah 1 � i � m put E

i

= �(e

U

)(W

i

) as
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in the proof of the above theorem, where W

i

is the G-submodule of V

generated by v

i

.

Then, it is lear that

E

1

+ E

2

+ :::+ E

m

= V

U

:

Hene

dim(V

U

) � dim(E

1

) + dim(E

2

) + :::+ dim(E

m

):

But, as dim(E

i

) <1 for eah i, the result follows. �

Corollary 3.3. Irreduible uspidal G-modules are admissible.

In general, if a smooth representation of a loally pro�nite group has

ompatly supported matrix oeÆients, one alls suh representations

'ompat' or '�nite'. In this general ontext an irreduible representa-

tion is alled uspidal i� its matrix oeÆients are ompatly supported

modulo enter. Sine the enter of our group G is trivial, an irreduible

smooth representation of G is uspidal i� it is ompat. To be able to

go further, we need a fundamental result from the theory of suh rep-

resentations. A proof of this result an be found in [3℄, Theorem 2.44

on p. 28.

Theorem 3.4. Let V be an irreduible uspidal G-module. Then

any G-module W an be written as a diret sum of two submodules

W

1

and W

2

suh that JH(W

1

) � fV g and that V =2 JH(W

2

). More-

over, in this ase, W

1

is ompletely reduible, hene is a diret sum of

submodules eah of whih is isomorphi to V .

One standard proof of this theorem is based on the following lemma

whih is known for uspidal representations of loally pro�nite groups

in our sense [3℄, Theorem 2.42 on p. 27.

Lemma 3.5. Let U be any ongruene subgroup, � be an irreduible

uspidal representation of G. Then there is a unique element h(U; �) 2

H(G;U) suh that �(h(U; �)) = �(e

U

) and, whenever �

0

is any irre-

duible representation of G whih is not isomorphi to �, then

�

0

(h(U; �)) = 0.

In other words, the elements of H(G;U) separate the isomorphism

lasses of irreduible uspidal representations of G with non-zero U -

invariant vetors.

If we ombine this lemma with the uniform admissibility theorem,

we get the following very important �niteness result whih will allow us

to improve the above theorem in the sense that the 'set' of irreduible

uspidal representations split the whole ategory M(G).

Corollary 3.6. Let U be a ongruene subgroup. There are at

most �nitely many non-isomorphi irreduible uspidal representations

with a non-zero U-invariant vetor.
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Proof. We know that an irreduible representation of H(G;U)

omes from a unique irreduible smooth representation of G. Let us

all an irreduible representation ofH(G;U) uspidal if the orrespond-

ing smooth representation of G is uspidal. The uniform admissibility

theorem says that for given U �xed, the dimensions of irreduible rep-

resentations of H(G;U) are bounded from above. In other words,

9N > 0 : 8V 2 Irr(G) dim(V

U

) < N

Thus it is enough to show that for eah n 2 [0; N ℄ there an exist

at most �nitely many irreduible uspidal representations of H(G;U)

of dimension n. For let M = End(C

n

) = M(n; C ), A be the set of

algebra morphisms of H(G;U) into M . Let fh

1

; h

2

; :::; h

m

g be a set of

generators of H(G;U) (this algebra is �nitely generated). We identify

A with its image in the diagonal of M

m

by the mapping

�

-

(�(h

1

); :::; �(h

m

))

for eah � 2 A. Now let � be an n-dimensional irreduible uspidal

representation, h(U; �) 2 H(G;U) be the orresponding element as in

the above lemma. Now, h(U; �) an be written as P

�

(h

1

; :::; h

m

) where

P

�

is a omplex nonommutative polynomial in m variables. Its image

under � will also be denoted by P

�

. If we de�ne Q

�

(�) = tr(P

�

(�(�))),

then Q

�

is a ommutative polynomial funtion on M

m

. Now it is easy

to see that, for any � 2 A, Q

�

(�) 6= 0 i� � is isomorphi to �. Indeed,

suppose that Q

�

(�) 6= 0. This means that tr(P

�

)(�(h

1

); :::; h

m

) 6= 0.

Thus tr(�(h(U; �))) 6= 0. Hene �(h(U; �)) is not zero and, by the

above lemma, � and � should be isomorphi. Conversely suppose that

� and � are isomorphi. Then Q

�

(�) = tr(P

�

(�(h

1

); :::; �(h

m

))) =

tr(�(h(U; �))). Sine � and � are isomorphi their haraters are the

same. Thus tr(�(h(U; �))) = tr(�(h(U; �))) whih is equal to tr(�(e

U

)).

But the last operator is non-zero and idempotent, hene has a non-zero

trae. Therefore we have Q

�

(�) 6= 0.

The set of all Q

�

for all possible n-dimensional irreduible uspidal

representations � of H(G;U) generate an ideal in the ring of polyno-

mial funtions on M

m

. By the Hilbert Basis Theorem, let f�

1

; :::; �

r

g

be a �nite set of generators of this ideal. Now if � is any irreduible

n-dimensional uspidal representation, then Q

�

(�) 6= 0. Thus there

is some i 2 f1; 2; :::; rg suh that Q

�

i

(�) 6= 0 and hene �

i

and � are

isomorphi. This result says also that, up to isomorphism, there are

only �nitely many irreduible n-dimensional uspidal representations

of H(G;U). This ompletes the proof. �

We state also the following onsequene of the above theorem:

Corollary 3.7. If V is a smooth G-module. Then any irreduible

uspidal subquotient of V is isomorphi to a subrepresentation of V .
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Proof. Let W be an irreduible uspidal G-module. We an write

V as a diret sum of V

1

and V

2

where all the irreduible subquotients

of V

1

are isomorphi to W and V

2

does not ontain suh irreduible

subquotients and that V

1

is ompeletely reduible (by theorem 3.4). �

4. The Deomposition of M(G)

First reall that, by theorem 3.4, if W 2 M(G) is irreduible and

uspidal, fWg splits the whole ategory M(G). I.e, if V 2 M(G) is

arbitrary, then V has two G-submodules V

1

and V

2

suh that

V = V

1

� V

2

with JH(V

1

) � fWg and W =2 JH(V

2

). Now, by orollary 3.6, we

know that for any ongruene subgroup U of G, we have only �nitely

many irreduible uspidal G-modules with non-zero U -invariant ve-

tors. Hene simply by repeating the argument above for these �nitely

many irreduible uspidal modules we an prove a stronger version of

theorem 3.4 in the following sense: V an be written as a diret sum of

its two submodules suh that one of these summands has only uspidal

JH-omponents with U -invariant vetors while the other one does not

have suh omponents. In fat, as we prove below, we an enlarge the

�rst omponent of this deomposition to ontain all possible uspidal

JH-omponents. We state this fat more preisely as follows:

Theorem 4.1. Irr



(G), the set of all irreduible uspidal represen-

tations of G, splits the ategory M(G), i.e., Every V 2 M(G) an be

written as

V = V



� V

i

;

where all the Jordan-H�older omponents of V



are uspidal and V

i

does

not have any uspidal Jordan-H�older omponents.

Proof. First let U be a ongruene subgroup of G and V 2M(G).

Then, let fW

1

; :::;W

m

g be the set of irreduible uspidals ontaining a

non-zero U -invariant vetor. Then

V = V

1

� V

1

?

with JH(V

1

) � fW

1

g and W

1

=2 JH(V

1

?

) Then

V

1

?

= V

2

� V

2

?

with JH(V

2

) � fW

2

g and W

2

=2 JH(V

2

?

), .....

V

m�1

?

= V

m

� V

m

?

with the properties as above.
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Then, putting V

;U

= V

1

� :::::� V

m

, and V

;U

?

= V

m

?

, we get the

deomposition

V = V

;U

� V

;U

?

;

where V

;U

has only uspidal Jordan-H�older omponents while V

;U

?

does not have any uspidal JH-omponents with non-zero U -invariant

vetors.

Now put V



:=

S

U

V

;U

and V

i

:=

T

U

V

;U

?

, where the union and

intersetion are taken over the set of all ongruene subgroups of G.

Now it is enough to show that

V = V



� V

i

:

For let v 2 V be arbitrary. Then there exists a ongruene subgroup

U of G suh that v 2 V

U

and that v = v

1

+ v

2

for some v

1

2 V

;U

,

v

2

2 V

;U

?

. Now it is enough to show that v

2

2 V

i

(that v

1

2 V



is

lear from the de�nitions). We want to prove that the G-submodule

W of V generated by v

2

is ontained in V

i

. But, this is the ase i� W

ontains no irreduible uspidal subquotients. First,W is a submodule

of V

;U

?

. This means that W annot ontain a uspidal JH-omponent

with a non-zero U -�xed vetor.

On the other hand, let E be a JH-omponent of W whih does not

have any U -invariant non-zero vetor. That is to say, let E 2 JH(W )

with E

U

= 0. Then E does not ontain a non-zero vetor invariant

under the Iwahori subgroup B of G. Then E should be uspidal. By

orollary 3.7, an irreduible uspidal subquotient of W is isomorphi

to an irreduible submodule of W . Thus we have a restrition operator

from W to E whih is at the same time intertwining. Thus the image

of v

2

under this restrition operator is 0. Therefore W an not ontain

any uspidal JH-omponent without non-zero U -invariant vetors. In

other words, all the JH-omponents of W are either spherial or spe-

ial. This means that W � V

i

. �

In analogy to the p-adi groups, we an all an admissibleG-module

V superuspidal if it is in addition uspidal.

5. The subategory M(G;U)

Now we an prove the following result whih will be one of the main

ingredients in the next hapter. Let U be a �xed ongruene subgroup

of G.

Theorem 5.1. The full subategoryM(G;U) of G-modules V whih

are generated by their U-�xed vetors is stable under taking submodules.

Proof. It is easy to see that if we an prove that all JH-omponents

of a smooth G-module V 2 M(G;U) have some non-zero vetor in-

variant under U , then we have the required result. So, let W be an
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irreduible subquotient of V . We know that (by theorem 2.6.1) W is

uspidal i�W

B

is trivial, where B is the Iwahori subgroup of G. Thus,

if W is not uspidal, it ontains some non-zero vetor invariant under

B. But this vetor is learly invariant under U , too. Therefore we

may assume that W is uspidal. Now, sine fWg splits the ategory

of smooth G-modules, we have, in partiular,

V = V

1

� V

2

;

where JH(V

1

) ontains only irreduible uspidals isomorphi toW , and

V

2

ontains no JH-omponents isomorphi to W . Note that V

1

is also

generated by its U -�xed vetors. V

1

U

ontains some non-zero vetor

v. Let E be the G-submodule of V

1

generated by this v and F be an

irreduible subfator of E. Then learly F

U

is nontrivial. But by the

deomposition above F

�

=

W , hene W

U

is also nontrivial. �

Now we make the following de�nition:

Definition 5.2. A module V in M(G) is alled noetherian if every

�nitely generated submodule of V is again �nitely generated.

As an immediate appliation of the theorem above we are going to

prove

Corollary 5.3. An admissible G-module in M(G;U) is noether-

ian.

Proof. We remark that it follows from the de�nitions that every

admissible V in M(G;U) is automatially �nitely generated. Indeed,

If V is admissible and if it is generated by its U -�xed vetors V

U

, V is

generated by a basis of V

U

whih is �nite dimensional sine V is ad-

missible. Let now V be suh a module. It is enough to show that every

submodule of V is also �nitely generated. So let W be a submodule of

V . By the above remark W is admissible. Hene dim(W

U

) <1. The

above theorem says that W lies also in M(G;U), thus W is generated

by W

U

whih is �nite dimensional. �

Definition 5.4. A ategory A of modules over H(G) is said to be

noetherian if every �nitely generated objet in A is noetherian.

Therefore the orollary proved above says that the subategory

M(G;U) \Adm(G) is noetherian.

Theorem 5.5. The full subategory Adm(G) of M(G) onsisting

admissible G-modules is noetherian.

Proof. Aording to the orollary it is enough to prove that any

�nitely generated G-module V is ontained in M(G;U) for some on-

gruene subgroup U of G. For this let F � V be a �nite generating

subset. Then as V is smooth, every element in F is �xed by some
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ongruene subgroup of G. F is �nite. Sine the intersetion of a �nite

family of ongruene subgroups ontains another ongruene subgroup

of G we see that there is a ongruene subgroup U of G whih �xes

all elements of F . In other words, there is an U 2 OK(G) suh that

F � V

U

. Thus V 2 M(G;U). The rest follows from the above orol-

lary and the admissibility of V . �

Remark. By orollary 3.3.2 we know that all �nitely generated us-

pidal representations are admissible. Thus the subategory of M(G)

onsisting of uspidal representations is also noetherian.

Remark. It is indeed natural to ask whether the whole ategory

M(G) is noetherian. By the proof of the theorem above one an see that

every �nitely generated G-module is ontained in M(G;U) for some

ongruene subgroup U of G. Thus M(G) is noetherian i� M(G;U)

is noetherian for any ongruene subgroup U . An important step in

understanding the noetherian properties of M(G) is to understand the

representations of G with only uspidal Jordan-H�older omponents.

This family ontains the uspidal tepresentations but is substantially

larger than the family of uspidal representations.



CHAPTER 4

Extensions Between Admissible Representations

In this hapter we are going to prove that the representations de�ne

in a natural way homologial systems of oeÆients on the omplexX.

The results proved in the last hapter allows us to apply the approah

of P. Shneider and U. Stuhler in the p-adi group ase (see [16℄) to the

automorphism group G of the homogeneous tree X. Sine we annot

give a better exposition of their approah than that in their original

work, from this point on we are going to follow losely their work [16℄

or [17℄ and at the neessary points we are going to use the neessary

results from the last hapter. In partiular, we are going to onstrut

and study some homologial omplexes, and using the ontratibility

properties of some related subomplexes of the tree we are going to �nd

some exat resolutions. Then we prove the �niteness results of [16℄ in

our ase.

We onsider X as a simpliial omplex. X

0

(or simply X) will

denote the 0-simplies of X, that is, the verties, and X

1

will denote

the 1-simplies (edges) of X. As before, (x

m

)

m2Z

will denote a �xed

doubly in�nite geodesis in X, and, for n 2 N

�

, U

n

will denote the nth

ongruene subgroup of G, relative to x

0

.

1. Some De�nitions

We are going to reall some basi de�nitions whih we are going to

use in the rest of this work.

LetM be an abelian ategory of non-degenerate modules over H =

H(G). (e.g., M(G))

Definition 1.1. Let P; I be two objets in M. We say that P is

projetive if the funtor M

-

Ab given by W

-

Hom(P;W ) is ex-

at. I is said to be injetive if M

-

Ab given by W

-

Hom(W; I)

is exat.

Definition 1.2. We say that M has suÆiently many (or enough)

projetives if for every V in M there is a projetive objet P and a

surjetive morphism P

-

V . Similarly, one says that M has enough

injetives if for every V 2M there is an injetive morphism V

-

I.

Now letM =M(G). Reall that H is an idempotented algebra. In

this ase we have the following: ([2℄, pp. 13-14, theorems 13 and 14)

45
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Theorem 1.3. (1) The ategory M has enough projetives.

(2) M has also enough injetives.

Remark. We should remark that this theorem is valid for all loally

pro�nite groups we onsidered in hapter 1 provided all irreduible

smooth representations are admissible. For irreduible uspidal repre-

sentations of loally pro�nite groups this is known by orollary 3.3. For

the irreduible non-uspidal representations of G = Aut(X) the proof

of admissibility is given in the appendix at the end of this work.

Let V 2 M(G). By a projetive resolution of V we mean an exat

sequene

: : :

-

P

n

-

: : :

-

P

1

-

P

0

-

V

-

0

suh that eah P

n

is a projetive G-module (in the abelian ategory

M(G)). We are going to all suh a resolution also �nitely generated if

all P

n

are �nitely generated. Similarly, by an injetive resolution of V

we mean an exat sequene

0

-

V

-

I

0

-

I

1

-

: : :

-

I

n

-

: : :

where eah I

n

is an injetive G-module. Now suppose that we have

a projetive resolution of V as above. If W is another G-module,

then Ext

n

(V;W ) is de�ned to be the nth homology of the omplex

(Hom(P

n

;W ))

n

. That is to say,

Ext

�

(V;W ) := H

�

(Hom(P

�

;W ):

In partiular, Ext

0

(V;W ) = Hom(V;W ). One an de�ne Ext

�

(V;W )

also by using an injetive resolution ofW . In that ase, one would have

Ext

�

(V;W ) = H

�

(Hom(V; I

�

));

where I

�

is an injetive resolution of W . One should remark here that

Ext

�

(V;W ) de�ned above is independent of the projetive (injetive,

resp.) resolution used. This means that one an use any suitably on-

struted projetive resolution of V to study Ext

�

(V;W ). We are going

to use the �rst one., i.e., by onstruting suitable projetive resolutions

with some nie properties. Our aim is to show that if V and W are

two admissible G-modules whih are in a suitable full subategory of

M(G), then Ext

n

(V;W ) is always �nite dimensional and vanishes for

n > 2. In order to be able to show this, using V , we will onstrut

some homologial omplexes using the idea explained above. Then, we

are going to prove that the orresponding augmented omplexes give

indeed some resolutions of V . By onstrution, these omplexes will

be short enough. Then, we are going to show that this resolution is

indeed projetive and �nitely generated. Clearly this will ensure us the

result that, Ext

n

(V;W ) are all �nite dimensional and vanish for n > 2.
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2. Smooth Representations as CoeÆients

We onsider X as a simpliial omplex. Thus the verties are the

0-simplies of X, and the edges e 2 X

1

are the 1-simplies. Now, we �x

also an orientation with the inidene numbers [e; x℄. For example, we

an onsider the following orientation: As earlier, we �x a vertex x

0

in

X

0

. Then if e =< x; y > is any edge on X, and if d(x

0

; x)(< d(x

0

; y))

is an even number, then we say that < x; y > is positively oriented

and in this ase [e; x℄ = 1 and [e; y℄ = �1. If d(x

0

; x) is odd, then

�e :=< y; x > is assumed to be positively oriented.

In order to go further, we need the notion of (homologial) oeÆ-

ient systems on the tree X. By a oeÆient system on X we mean

the following data: For eah simplex � in X a omplex vetor spae

V

�

, and for eah inlusion �

0

� �, a restrition map r

�

�

0

: V

�

-

V

�

0

with the properties that r

�

�

= id and r

�

�

0

Æ r

�

0

�

00

= r

�

�

00

. Sine our omplex

is one-dimensional, these properties are trivial.

Assume now V is a smooth G-module. We are going to de�ne

a oeÆient system on X by using the invariant vetors under some

ompat open subgroups assoiated to the simplies of X. Let n be a

positive integer greater than 1. Then, we denote by U the ongruene

subgroup orresponding to this n. That is, U = Stab

G

(B(x

0

; n)) =

fg 2 G : g(x) = x 8x with d(x

0

; x) � ng. Then, for eah x in

X, we put U

x

= gUg

�1

, where g 2 G suh that g(x

0

) = x. This means

that U

x

= Stab

G

(B(x; n)). If e =< x; y > is an edge, we de�ne U

e

to be

the subgroup generated by U

x

[ U

y

. Then, if x 2 X (i.e., 2 X

0

), V

x

is

de�ned to be V

U

x

, the subspae of vetors invariant under the subgroup

U

x

. Similarly, for eah e 2 X

1

, V

e

:= V

U

e

. Sine U

x

� U

e

for eah e

and x with x � e, we have V

e

� V

x

. Thus we onsider the natural

restrition maps r

e

x

and see that eah V 2 M(G) de�nes in a natural

way a oeÆient system onX. For suh a oeÆient system, one de�nes

the oriented 1-hains to be the V -valued �nitely supported funtions �

on X

1

suh that �(e) 2 V

e

for eah e 2 X

1

and �(�e) = ��(e), where

�e is the same edge as e with the opposite orientation. Similarly, the

oriented 0-hains are de�ned as V -valued funtions � on X whih are

again �nitely supported and satisfy �(x) 2 V

x

.

Here one remark is in order: In the ase of the tree the oeÆient

systems are muh easier to study with. In this ase one an take any

vetor spae for eah simplex and then de�ne the restrition maps

arbitrarily. Then one an de�ne oriented hains as above.

We are going to denote the omplex vetor spae of oriented q-

hains by C

q

(V ) for q = 0; 1. Now we de�ne

� : C

1

(V )

-

C

0

(V )

by

�(�)(x) =

X

�(e);
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where � 2 C

1

(V ) and the sum is taken over all e 2 X

1

suh that

x = o(e). (Reall that if e is an oriented edge, then it has an origin

denoted by o(e) and a terminal point denoted by t(e) so that we an

write e =< o(e); t(e) >.)

If we onsider also the G-ation on C

1

(V ) given by

g�(< x; y >) = g(�(< g

�1

x; g

�1

y >)

for eah e 2 X

1

and g 2 G, and, similarly on C

0

(V ), then we see

that the C

q

(V ) are smooth G-modules and � is G-equivariant. The

augmentation map is de�ned as

� : C

0

(V )

-

V

by

�(�) =

X

x2X

�(x):

In this hapter we are going to study the exatness properties of

the orresponding augmented omplex

0

-

C

1

(V )

�

-

C

0

(V )

�

-

V:

It is easy to see that

1) C

0

(V ) is not trivial i� V has some non-zero vetors invariant

under the ongruene subgroup U , and

2) The augmentation map is surjetive i� V , as a G-module, is

generated by its subspae V

U

of vetors invariant under U . (It is easy

to see that the image of � generates, as a vetor spae, the whole G-

submodule of V generated by V

U

.)

Thus it is natural to work with the ategory M(G;U) introdued

in the last hapter.

Sine eah � 2 C

1

(V ) is ompatly supported, it is also easy to see

that �Æ� = 0. But the exatness at C

0

(V ) is not trivial at all. For this,

as in [16℄, we use the following strategy: First we are going to prove this

for the smooth G-module C



(G=U). (Reall that at the end of hapter

2 we have proved that every irreduible smooth G-module with non-

zero U -invariant vetors an be realized as a subrepresentation of this

representation.) Then, we are going to use the main theorem of the

last hapter and prove that one an redue to the ase C



(G=U) by

showing that one has always an exat resolutions in terms of C



(G=U).

Then, it will follow from the above remarks that, if V is inM(G;U),

the above exat sequene will give us an exat resolution of V . Later

we are going to prove that this exat resolution is indeed projetive.

One should also remark that the oeÆient systems on X form in

a natural way a ategory and the funtor ( V

-

(V

�

)

�

)from the

ategory M(G) to this ategory de�ned above is exat sine all of our

groups U

x

, U

e

are pro�nite. (Reall that U is a ongruene subgroup

of level n � 1.)
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3. The ase V = C



(G=U)

Let S = G=U . Then, sine U is open in G, S is a disrete ountable

set. Moreover, for eah x 2 X, we have

C



(S)

U

x

= C



(U

x

nG=U):

Similarly, for eah e 2 X

1

, we have

C



(S)

U

e

= C



(U

e

nG=U)

and

U

e

nS = U

e

nG=U = S

x

a

S

S

y

where e = fx; yg and S

x

:= U

x

nS, S

e

:= U

e

nS for x 2 X and e 2 X

1

.

If � is a simplex in X (i.e., is either a vertex or an edge in our tree X),

one gets, as in [16℄, a simpliial set S

�;�

with

S

�;m

= S �

S

�

S �

S

�

::::�

S

�

S (m+ 1 fators, m � 0)

and all fae maps are proper in the sense that the inverse image of

any �nite set is again �nite. Then one has the following ommutative

diagrams of simpliial sets (here S and S

�

are onsidered as onstant

simpliial sets) :

S

�;�

�

R

S

-

S

�

and

S

�;�

-

S

�

S

�

0

;�

?

-

S

�

0

?

where �

0

� �.

One gets, by passing to funtions, the following ommutative dia-

gram:
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0 0 0

0

-

�

X

1

C



(S

e

)

?

�

-

�

X

0

C



(S

x

)

?

�

-

C



(S)

?

-

0

0

-

�

X

1

C



(S)

?

�

-

�

X

0

C



(S)

?

�

-

C



(S)

w

w

w

w

w

-

0

0

-

�

X

1

C



(S �

S

e

S)

?

�

-

�

X

0

C



(S �

S

x

S)

?

�

-

C



(S)

0

?

-

0

0

-

�

X

1

C



(S �

S

e

S �

S

e

S)

?

�

-

�

X

0

C



(S �

S

x

S �

S

x

S)

?

�

-

C



(S)

w

w

w

w

w

-

0

.

.

.

?

.

.

.

?

.

.

.

0

?

We want to show that the top row of this diagram is exat. For

this, one observes that eah S

�;�

is a disjoint union of simpliial �nite

sets of the form

S

n

s

:= S

s

� S

s

� :::� S

s

where S

s

denotes the set of s

0

2 S whih go to s under the map

S

-

S

�

. Sine these simliial sets are ontratible, one sees that

the olumns of the above omplex are exat. Thus, it is enough to

show that sequenes above of the form

0

-

�

X

1

C



(S �

S

e

:::�

S

e

S)

�

-

�

X

0

C



(S �

S

x

:::�

S

x

S)

�

-

C



(S)

-

0

are exat.

Let m � 0 be �xed.

One an onsider S

�;m

= S �

S

e

:::�

S

e

S (m+ 1 fators) as a subset of

S

m+1

= S � :::� S. Similarly, one onsiders S as the set of diagonal

elements of S

m+1

. Now we want to write the above omplex with

the new terminology in a more onvenient form. For this we de�ne,

following [16℄, for ~s = (s

1

; s

2

; :::; s

m+1

) 2 S

m+1

, X

~s

to be the set of

all simplies � in X suh that the image of fs

1

; s

2

; :::; s

m+1

g under the

map S

-

S

�

is not a singleton.

We have, for eah x 2 X, a natural surjetion p

x

: S

-

S

x

. Then

onsider the mapping

� : S

-

�

x2X

S

x
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given by � (s) = (p

x

(s))

x2X

. Observe that � is equivariant with respet

to the natural G-ations on both sides. Let s be an element of S suh

that � (s) = � (U). This means that p

x

(s) = p

x

(1U) for all x 2 X. In

partiular, p

x

0

(s) = U . This means that Us = U , hene s = U . (Reall

that S is the set of left osets of S in G.) This proves that the mapping

� is injetive. Thus, if ~s is not on the diagonal, then X

~s

is non-empty.

By the above onstrution one has

�

�2X

�

C



(S

�;m

) = �

~s2S

m+1

C



(X

�

n(X

~s

)

�

):

Therefore, in our ase, too, if we an show that the simpliial om-

plexes X

~s

are ontratible, then we have the exatness of the omplex

under disussion. Let us prove this for m = 1. The general ase is

almost the same. Let

' : S

-

X

0

be the natural mapping. We have suh a mapping sine U is a subgroup

of K, the stabilizer of x

0

.

Let s; t 2 S and

X

(s;t)

= f� : s

�

6= t

�

g

where for eah simplex �, s

�

and t

�

denote the images of s and t in S

�

.

By de�nition,

s

�

= t

�

i� 9g 2 U

�

: g(s) = t:

We observe also that the mapping

' : S

-

X

0

is a �nite (proper) mapping sine [K : U ℄ is �nite. Moreover, this

mapping is atually uniformly �nite. We have G-ations on S and X,

respetively. These ations are ompatible with '. This means that,

for s

1

and s

2

in S,

'(s

1

) = '(s

2

) =) '(g(s

1

)) = '(g(s

2

)):

In other words, the following diagram is ommutative.

G

	 R

X

0

= G=K

�

'

G=U = S

' is also G-equivariant.

It is well known that a onneted graph is ontratible i� it is a tree.

We are going to prove that X

(s;t)

is a tree. Put Y for the omplement

of X

(s;t)

in X. We de�ne a semi-metri on S by

d

S

(s; s

0

) = d

X

('(s); '(s

0

))

for any s; s

0

2 S. Here d = d

X

denotes the geodesi metri in X.
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Sine n � 1, if x 2 X and d(x; ['(s); '(t)℄) � n � 1, then B(x; n)

and ['(s); '(t)℄ have at least three points in ommon. Clearly these

points are �xed by every element of U

x

. But this means that s

x

and t

x

an not be the same. Hene suh an x an not be an element of Y .

If x 2 X suh that d(x; '(s)) 6= d(x; '(t)), then there an not be

any element of G whih �xes x and takes '(s) to '(t) sine the elements

of G are isometries. This means that if Y is non-empty, then it an

onsists of verties of X whose distanes to '(s) and '(t) are the same.

Moreover, Y an onsist of only verties whose distane to ['(s); '(t)℄

is bigger that n� 1. Let x 2 X be suh a vertex, i.e.,

d(x; ['(s); '(t)℄) � n and d(x; '(s)) = d(x; '(t)) = r:

First observe that, as n � 1, x =2 ['(s); '(t)℄. Moreover, if [x; '(s)℄ =

[x; x

1

; x

2

; :::; x

r�1

; '(s)℄ and [x; '(t)℄ = [x; y

1

; y

2

; :::; y

r�1

; '(t)℄ are the

orresponding geodesi paths, there must be a k � 1 suh that x

i

= y

i

for all i 2 f1; 2; :::; kg. Sine X is a tree, there is a unique path between

'(s) and '(t) and hene d(s; t) = 2r � 2k. (One should remark that

['(s); x

r�1

; :::; x

k

= y

k

; :::; y

r�1

; '(t)℄ is suh a geodesi path.)

Let us show that suh an x must lie in Y . For this, we reall that

any element of U

x

leaves any point in B(x; n) invariant. Subjet to this

ondition, U

x

ontains all isometries of the tree. We know also from

the position of x de�ned by the above given onditions that k � n.

Therefore U

x

ontains some elements g 2 G suh that g �xes every x

i

,

i � k, and

g(x

i

) = y

i

for k � i � r:

Putting x

r

= '(s), y

r

= '(t), we get the result that g('(s)) = '(t).

Now, U is a subgroup of K, the stabilizer of x

0

and the elements of K

permute the set of osets of U in K. Thus, it is easy to see that there

is a g in fh 2 U

x

: h('(s)) = '(t)g suh that g(s) = t. That is to say,

one an �nd suh a g in U

x

. But this says nothing but that the images

of s and t are the same in S

x

. These observations say the following:

1. Y is non-empty only if d(s; t) is even.

2. Y is a disjoint union of �nitely many ones of the form C[a; b℄

where a is the middle-point of ['(s); '(t)℄ and b is a vertex in X suh

that d(a; b) = n and that [a; b℄ ontains no vertex of ['(s); '(t)℄ other

than a. Suh a one is shown in the following �gure. In the �gure,

P= '(s) and Q= '(t), a is the middle-point of ['(s); '(t)℄, b is a point

on the boundary of B(a; n) suh that [a; b℄

T

['(s); '(t)℄ = fag, x is a

typial point in C[a; b℄.
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a

b

x

ϕ (s) ϕ (t)

Now it is lear from the piture at hand that the omplement of Y

in X is onneted sine any vertex in XnY = X

(s;t)

an be joined to

['(s); '(t)℄.

Now we have to show only that X

(s;t)

, as a simpliial omplex, is

the tree generated by these verties. For this, we have to prove two

things:

1. x; y are two verties in X

(s;t)

, and if d(x; y) = 1, then the edge e

formed up by these verties is a simplex in X

(s;t)

.

2. For an edge e to be in (X

(s;t)

)

1

, it is neessery that both of the

endpoints be in (X

(s;t)

)

0

.

Then, X

(s;t)

will be seen to be a tree and hene ontratible.

For the proof of the above laims, let Y

1

be the set of edges in X

suh that s and t have the same images in S

e

. Let e 2 X

1

with the

endpoints x and y. Then, without loss of generality, if x 2 Y , then

s

e

= t

e

sine U

x

� U

e

. This means that e 2 Y

1

and proves the laim 2

above. By using an argument of the same type, the alim 1 above also

follows.

The general ase is very similar to this one. First the existene of a

middle-point is required. That is, there must be some vertex ofX whih

is at the same distane from all the given points '(s

0

); '(s

1

); :::; '(s

m

).

Otherwise the orresponding set Y will be empty. Then one onstruts

the �nitely many ones as above. The tree generated by the rest of Y

in X will be the omplex X

~s

, where ~s = (s

0

; s

1

; s

2

; :::; s

m

).

Therefore we have proved the exatness of the rows under the top

row in our omplex. Thus, the top row is also exat. Hene we have

the required exatness result in the ase V = C



(G=U).

4. The General Case

Now we want to see that, for any V 2 M(G;U), the augmented

omplex
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0

-

C

1

(V )

-

C

0

(V )

-

V

is exat.

Consider the morphism of G-modules

C



(S)
 V

U

-

V

given by

f 
 v

-

X

g2S=G=U

f(g)g(v):

Sine V , as a G-module, is generated by V

U

, this morphism is also

onto. Thus, its kernel lies in the same ategory M(G;U) sine we have

proved in the last hapter that this subategory is stable under taking

submodules. Now we know that in this ase we have an exat resolution

of V in M(G;U) of the form

: : :

-

�

I

1

C



(S)

-

�

I

0

C



(S)

-

V

-

0

for some suitable index sets I

0

; I

1

; :::

If we ombine this omplex with the one in previous setion, it is

enough to know the exatness in the ase of V = C



(S).

Let V 2 M(G;U). Our group G ats on both X = X

0

and X

1

transitively. This means, if x 2 X, e 2 X

1

, and if we onsider the

subspaes A and B of C

1

(V ) and C

0

(V ), respetively, given by A =

f� 2 C

1

(V ) : supp(�) � fxgg and B = f� 2 C

0

(V ) : supp(�) � fegg,

then C

1

(V ) (resp. C

0

(V )) is generated by A (resp. by B). But, as

�(x) 2 V

x

, and admissibility of V implies that dim(V

x

) < 1, A is

�nite dimensional. SimilarlyB is also �nite dimensional. Hene C

1

(V )

and C

0

(V ) are both �nitely generated. Thus we have the following

Theorem 4.1. Let V be a G-module in M(G;U). Then, the reso-

lution

0

-

C

1

(V )

-

C

0

(V )

-

V

is exat. Moreover, if V is in addition admissible, then this resolution

is also �nitely generated in the sense that C

1

(V ) and C

0

(V ) are both

�nitely generated.

Now we want to prove that this resolution is also projetive. It

is enough to show that the funtor Hom

G

(C(V )

i

;�) is exat on the

ategory M(G) for i = 0; 1. Consider the ase i = 1. Let e be the

edge given by x

0

and x

1

. Let < e > denote the same edge with positive

orientation. For eah v 2 V

e

, we onsider the following speial elements

of C

1

(V ): For eah v 2 V

e

let �

v

(< e >) = v, �

v

(� < e >) = �v,

�

v

(�) = 0 if � 6= e. Let also B

0

be the set of elements of G suh

that g(fx

0

; x

1

g) = fx

0

; x

1

g. Then B

0

is a ompat open subgroup of

G and our Iwahori subgroup B is a subgroup of B

0

of index 2. (The
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di�erene omes from the inversions ontained in B

0

). Let � be the

unique harater of B

0

-

f1;�1g with kernel B. Then we de�ne,

for W 2M(G),

E(W ) := fA 2 Hom

C

(V

e

;W ) : gAg

�1

(v) = � (g)A(v) 8g 2 B

0

;8v 2 V

e

g:

We de�ne

' : Hom

G

(C

1

(V );W )

-

E(W )

as follows: For a T 2 Hom

G

(C

1

(V );W ), '(T )(v) = T (�

v

). We laim

that this mapping ' is a linear isomorphism. Linearity and injetivity

of ' is trivial. Before proving surjetivity, we try to explain what this

gives us: This will give us an isomorphism

Hom

B

0

(V

e

;W ) = Hom

B

0

=U

e

(V

e

;W

e

) = Hom

C

(V

e

;W

e

)

B

0

=U

e

:

But, sine U

e

is pro�nite and B

0

=U

e

is �nite (B=U

e

is learly �nite),

the funtor Hom

G

(C

1

(V );W ) beomes exat in W 2 M(G).

Let A 2 E(W ). We have to �nd a T 2 Hom(C

1

(V );W ) suh that

'(T ) = A. For eah v 2 V

e

and �

v

2 C

1

(V ), we put T (�

v

) = A(v).

Then we extend it linearly. We have to show that this de�nition gives

indeed an element of Hom(C

1

(V );W ). Clearly, if T is well-de�ned, it

satis�es '(T ) = A. Now let � 2 C

1

(V ) and let F = fe

1

; e

2

; e

3

; :::; e

m

g

be the set of elements of X

1

suh that F

S

�F = supp(�) (i.e., F is a

�nite subset of X

1

suh that F

T

�F is empty and the symmetri set

generated by F is the support of �). For eah i 2 [1;m℄, let v

i

= �(e

i

).

Then, if g

i

2 G suh that g

i

(e) = e

i

for eah i 2 [1;m℄, we have

g

�1

i

(v

i

) 2 V

e

. One has indeed

� = g

�1

i

� �

g

�1

i

(v

i

)

:

Corollary 4.2. Let V be an arbitrary �nitely generated smooth

G-module, W an admissible G-module. Then Hom(V;W ) is �nite di-

mensional.

Proof. Let A = fv

1

; v

2

; :::; v

k

g � V be a �nite set that generates V

as a G-module. Sine V is smooth there exists a ongruene subgroup

U

0

of G suh that all the elements of A are invariant under U

0

. Every

T 2 Hom(V;W ) is ompletely determined by its values on this set A.

Observe also that the image of eah v

i

2 A under T will be an element

of W

U

0

whih is �nite dimensional (sine W is admissible). Therefore

Hom(V;W ) must be �nite dimensional. �

Reall that if V 2 M(G;U) is admissible, then it is generated,

as a G-module, by the subspae V

U

whih is by admissibility �nite

dimensional. In other words, every admissible V 2 M(G;U) is �nitely

generated. This observation gives in partiular the following result.

Corollary 4.3. For V;W 2 Adm(G) with V 2M(G;U),

Ext

i

M(G)

(V;W ) is �nite dimensional for all i and Ext

i

M(G)

(V;W ) = 0

for all i > 2.
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Proof.

By theorem 4.1 we have the projetive resolution

0

-

C

1

(V )

-

C

0

(V )

-

V:

Moreover, eah C

i

(V ); i = 0; 1 are �nitely generated by the same the-

orem.

Now sine (see setion 1)

Ext

�

(V;W ) := H

�

(Hom(C

�

(V );W )

we get the required result by the above orollary. (Here C

i

(V ) := 0

for all i > 1). �



Appendix: Admissibility of Irreduible

Representations

In setion 3.2 we proved the Uniform Admissibility Theorem whih

says that if U is any ompat open subgroup of G = Aut(X), then

there is a positive integer N that satis�es the following ondition: For

any irreduible smooth representation V 2 Irr(G), one has

dim(V

U

) � N:

For the proof of this theorem we used the fat that every irreduible

smooth representation V of G is indeed admissible. That is to say, if

U and V are as above, we have

dim(V

U

) <1:

An expliit proof of this fat seems to be not available in the literature.

Sine this result plays a very imprtant role in various plaes in our work

we give here a simple proof of this fat. We use the same notation as in

hapter 3. Let (�; V ) 2 Irr(G) be an irreduible smooth representation

of G = Aut(X). We saw in Corollary 3.3.3 that if V is uspidal, then

it is automatially admissible. In fat, more generally, we proved that

�nitely generated ispidal representations are admissible. Thus it is

enough to prove that irreduible speial and spherial representations

are admissible.

Assume that (�; V ) is speial. We reall that [15℄ there are only two

irreduible speial representations of G. They are realised on the same

spae of funtions. The elements of this spae are square-integrable

funtions on the disrete set X

1

of (non-oriented) edges in X. More

preisely,

V = ff 2 `

2

(X

1

) :

X

x2e

f(e) = 0 8x 2 X

0

g

on whih we onsider the natural representation � of G. That is to say,

�(g)(f)(e) := f(g

�1

(e))

for eah g 2 G and e 2 X

1

. Let � be the unique non-trivial represen-

tation of Z=2 = f�1; 1g. Then � and � 
 � are the only irreduible

speial representations of G. It is enough to prove the admissibility of

�. Let U = U

n

be any ongruene subgroup, B(x

0

; n) = fx 2 X

0

:

d(x; x

0

) � ng. Put E := fe 2 X

1

: e � Eg. We want to show that V

U

is �nite dimensional. For let f 2 V

U

. This means that f(u(e)) = f(e)

57



58 APPENDIX: ADMISSIBILITY OF IRREDUCIBLE REPRESENTATIONS

for all u 2 U and e 2 X

1

. Thus if e; e

0

2 XnE and e and e

0

have

the same distane to some vertex x on the boundary of B(x

0

; n), then

f(e) = f(e

0

) = (�1=q)

r

f(e

00

) for some r 2 N

�

, where e

00

is the edge

ontained in E one of whose endpoints is x. Therefore the funtion f

is uniquely determined by its values on the elements of the set E whih

is �nite. Hene the spae V

U

must be �nite dimensional. Indeed, after

this observation one an alulate the dimension of this spae and show

that dim(V

U

) = q(q � 1)

n�1

.

Now assume that (�; V ) 2 Irr(G) is spherial. Then, aording

to [14℄, we have the following realisation of V : There exists a quasi-

harater � : P

-

C

�

whih is trivial on N suh that �(t) 6= (q +

1)

1=2

;�((q + 1)

1=2

); (q + 1)

�1=2

;�((q + 1)

�1=2

) and that

V

�

=

V

�

:= ff 2 C

1

(G) : f(pg) = �(p)

p

�(p)f(g) 8p 2 P;8g 2 Gg:

Here � is the modular funtion of P and V

�

is equipped with the right

regular representation of G. By the Iwasawa deomposition G = PK

the restrition of f to K determines f uniquely. Now if f 2 V

U

for

some ongruene subgroup U of G, then f j

K

is ompletely determined

by the values of f at the elements in a representing set of K=U whih

is �nite. Therefore V is admissible and indeed

dim(V

U

) � [K : U ℄:

This �nishes the proof that every irreduible smooth representation

of G is admissible.

Remark. The proofs given above imply in partiular that the set of

irreduible non-uspidal representations of G is uniformly admissible.

In other words, if N = maxf[K : U ℄; q(q� 1)

n�1

g for some n � 1, then

for any irreduible non-uspidal representation V of G we have

dim(V

U

n

) � N:



Notes and Remarks

Here we ollet some remarks onerning the literature and some

questions of interest to us. We will ontinue our investigations to an-

swer these questions.

(1) In this work we have formulated and proved analogues of some

of the important results known in the ase of p-adi groups. Most of the

results in hapters 3 and 4 seem to be new in the ase of automorphism

groups of homogeneous trees. For the proofs of these theorems we have

used the deomposition theorem proved in setion 2.5. The deomposi-

tions in (1), (2) and (3) of the theorem 2.5.5 are due to Chouroun. He

proved these results for the semi-homogeneous Bruhat-Tits trees ([8℄

page 39). The deompositions in (4) and (5) of the same theorem have

their analogues in the theory of p-adi groups ([2℄, page 30). They play

a very important role in the study of the ongruene Heke algebras

H(G;U) and in the proof of the Uniform Admissibility Theorem. Only

after the writing of the �rst draft of this manusript we ould read the

earlier work of Olshanski [13℄. There he uses a very similar deompo-

sition and proves the Uniform Admissibility Theorem in a way whih

is almost the same as ours. The only missing part there was a detailed

proof of the admissibility of irreduible smooth representations. In the

appendix we gave a omplete proof of this fat.

(2) At the end of his artile [14℄ Olshanski asks whether the hara-

ters of irreduible uspidal representations are loally integrable fun-

tions on the group. He indiates also that the answer to the same ques-

tion for irreduible non-uspidal representations is negative. Shneider-

Stuhler theory gives some expliit formulas for the haraters of ir-

reduible uspidal representations of p-adi groups. So it seems to

be interesting to investigate this question from the point of view of

Shneider-Stuhler theory in the automorphism group ase as adopted

in the last hapter. We plan to go further in this diretion.

(3) The haraterization of irreduible uspidal representations of

Aut(X) given by Olshanski as representations indued from some on-

rete ompat open ompat subgroups is somehow similar to the type

theory of Bushnell-Kutzko ([5℄) in the representation theory of p-adi

groups. This similarity also deserves in our opinion more attention.

For a better understanding of this phenomenon one should understand

the restritions of irreduible uspidal representations of Aut(X) to

PGL(2; F ). Here, of ourse, X is the Bruhat-Tits tree assoiated to
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the group PGL(2; F ). This subjet is interesting also in itself. As

we indiated at the end of hapter 1, the restritions of irreduible

non-uspidal representations to PGL(2; F ) are again irreduible and

of the same type (i.e., they are either spherial or speial). The group

PGL(2; F ) has also non-spherial prinipal series representations whih

are not uspidal and do not ontain any Iwahori-�xed vetor. It follows

from the above disussion that they annot be obtained by restiting

irreduible non-uspidal representations of Aut(X) to PGL(2; F ). It

would be interesting to know whih uspidal representations of Aut(X)

ontains (when restrited to PGL(2; F )) representations of the non-

spherial priniple series of PGL(2; F ).

(4) Another interesting problem related to the omparison of repre-

sentations of Aut(X) and those of PGL(2; F ) is the following. Aord-

ing to the theory of Jaquet and Langlands ([12℄, Theorem 15.1), there

is a orrespondene between irreduible representations of quaternions

and disrete series representations of GL(2; F ) (see also [11℄ for a nie

exposition). For example, the irreduible uspidal representations of

Aut(X) should orrespond to some sets of irreduible representations

of quaternions. It would be interesting to know what form these sets

an have.

(5) Another question of interest is the one stated at the end of hap-

ter 3, i.e., whether the ategoryM(Aut(X)) is noetherian. We strongly

expet that one an give an aÆrmative answer to this question. The

reason is that our groups have the `same' non-uspidal representations

as p-adi groups and we know that the uspidal part of M(Aut(X)) is

noetherian. For a p-adi group G it is well-known that the ategory

M(G) is noetherian ([2℄, page 60, Proposition 32). We are going to

ontinue our investigations to prove or disprove our laim .
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