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Abstract. In this paper we study various aspects of tame �nite parabolic iterated function

systems which satisfy a certain open set condition. The �rst goal in our analysis of these

systems is a detailed investigation of the conformal measure on the associated limit sets. We

derive a formula which describes in a uniform way the scaling of this measure at arbitrary

limit points. The second goal is to provide a metrical Diophantine analysis for these parabolic

limit sets in the spirit of theorems of Jarn��k and Khintchine in number theory. Subsequently,

we show that this Diophantine analysis gives rise to re�nements of the description of the

conformal measure in terms of Hausdor� and packing measures with respect to certain gauge

functions.

1. Introduction

For a large class of fractal sets the idea of an iterated function system has turned out to be

a very convenient and e�cient concept. Traditionally, the development of fractal geometry

was always very much inspired by various phenomena which appear in conformal analysis and

number theory. In this paper we continue this tradition by studying metrical Diophantine

aspects of certain tame parabolic iterated function systems. This study generalizes results for

geometrically �nite Kleinian groups with parabolic elements (obtained in [S1] [S2] [S3] [SV],

see also [HV] [Su]) and for parabolic rational rational functions (obtained in [SU1] [SU2]),

which represent complex analytic analogues of Jarn��k's number theoretical theorem on well-

approximable numbers ([J] [B]) and Khintchine's on a qualitative description of the `essential

support' of the 1-dimensional Lebesgue measure ([K]).

The paper is organized as follows. In Section 2 we �rst de�ne the class of tame �nite para-

bolic iterated function systems which satisfy the Super Strong Open Set Condition (SSOSC).

We then recall a few immediate geometrical implications of the bounded distortion properties.

In Section 3 we study the h-conformal measures arising from these parabolic systems. ( Here,

h denotes the Hausdor� dimension of the limit set associated to such a system.) We obtain a

formula which describes in a uniform way the scaling of this measure at arbitrary elements of

the limit set. As a by-product we obtain an estimate on the local behaviour of the h-conformal

measure at parabolic points. In Section 4 we analyse the limit sets from a Diophantine point

of view. Our general approach here follows roughly the analysis given in [S1] [S2] [SV] [SU1]

[SU2]. Nevertheless, the construction of the main tool, namely the measure � on a Cantor-like

subset of the limit set, is di�erent. This construction is simpli�ed and its geometrical and

dynamical signi�cance is clari�ed. Finally, we establish various limit laws leading up to the

Khintchine Limit Law for tame parabolic iterated function systems. Subsequently, we show
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that these laws provide some e�cient control on the 
uctuations of the h-conformal measure,

giving rise to re�nements of the description of the h-conformal measure in terms of Hausdor�

and packing measures with respect to some gauge functions.

Acknowledgement: We should like to thank the Stochastic Institute at the University

of G�ottingen, the Mathematics Department at the University of Warwick and IMPA in Rio de

Janeiro for their warm hospitality and excellent working conditions when writing this paper.

2. Preliminaries

We begin by giving a description of our setting. Let X be a compact subset of some Euclidean

space IR

d

such that X has non-empty interior and is contained in some bounded connected

open set V . Suppose that there are countably many conformal maps �

i

: X ! X, i 2 I,

with I having at least two elements. Then the system S = f�

i

: i 2 Ig is called a conformal

iterated function system if and only if the following eight conditions are satis�ed.

(1): (Open Set Condition) �

i

(Int(X)) \ �

j

(Int(X)) = ; for all i 6= j.

(2): j�

0

i

(x)j < 1 everywhere except for �nitely many pairs (i; x

i

), i 2 I, for which x

i

is the

unique �xed point of �

i

and j�

0

i

(x

i

)j = 1. Such pairs and indices i will be called parabolic

and the set of parabolic indices will be denoted by 
. All other indices will be called

hyperbolic.

(3): For all n � 1; ! = (!

1

; :::; !

n

) 2 I

n

we have that if !

n

is a hyperbolic index or if

!

n�1

6= !

n

, then �

!

admits a conformal extension to V � IR

d

which maps V into itself.

(4): If i is a parabolic index, then

T

n�0

�

i

n

(X) = fx

i

g (Hence in particular, the diameter

of the set �

i

n

(X) tends to 0 for n tending to in�nity.)

(5): (Cone Condition) There exist �; l > 0 such that for every x 2 @X � IR

d

there exists

an open cone Con(x; u

x

; �; l) � Int(X) with vertex x, jju

x

jj = 1 and central angle �.

Here, we have set Con(x; u

x

; �; l) := fy : 0 < (y � x; u

x

) � cos�jjy � xjj � lg:

(6): There exists 0 < s < 1 such that for all n � 1; ! 2 I

n

we have that if !

n

is a

hyperbolic index or if !

n�1

6= !

n

, then jj�

0

!

jj � s.

(7): (Bounded Distortion Property) There exists K � 1 such that for all n � 1; ! =

(!

1

; :::; !

n

) 2 I

n

and x; y 2 V we have that if !

n

is a hyperbolic index or if !

n�1

6= !

n

,

then

j�

0

!

(y)j � K j�

0

!

(x)j:

(8): There are constants L � 1; � > 0 such that

�

�

�j�

0

i

(y)j � j�

0

i

(x)j

�

�

� � Ljj�

0

i

jjjy � xj

�

for all i 2 I ; y 2 V:

Note that if 
 = ;, then the system S is called hyperbolic, and that if 
 6= ;, then S is

called parabolic. Throughout this paper we shall always assume without further notice that

the system S is parabolic and the alphabet I is �nite.
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We now state a few immediate geometrical consequences of the bounded distortion properties

(7), (8) and the cone condition (5). For the proofs of these statements we refer to [MU1].

For all hyperbolic words ! 2 I

�

and all convex subsets C of V we have that

diam(�

!

(C)) � jj�

0

!

jjdiam(C) (2.1)

and

diam(�

!

(V )) � Djj�

0

!

jj: (2.2)

Here, the norm jj � jj is the supremum norm on V , and D � 1 denotes a universal constant.

Moreover, for every x 2 X, 0 < r � Dist(X; @V ), and for every hyperbolic word ! 2 I

�

we

have that

diam(�

!

(X)) � D

�1

jj�

0

!

jj (2.3)

and

�

!

(B(x; r)) � B(�

!

(x); K

�1

jj�

0

!

jjr): (2.4)

Also, there exists 0 < � � � such that for all x 2 X and for all hyperbolic words ! 2 I

�

�

!

(Int(X)) � Con

�

�

!

(x); �;D

�1

jj�

0

!

jj

�

� Con

�

�

!

(x); �;D

�2

diam�

!

(V ))

�

;

(2.5)

where Con

�

�

!

(x); �;D

�1

jj�

0

!

jj

�

and Con

�

�

!

(x); �;D

�2

diam(�

!

(V ))

�

denote some cones with

vertices at �

!

(x), angles �, and altitudesD

�1

jj�

0

!

jj andD

�2

diam(�

!

(V )) respectively. Finally,

for every ! 2 I

�

(not necessarily hyperbolic) and every x 2 X, there exists an altitude

l(!; x) > 0 such that

�

!

(Int(X)) � Con

�

�

!

(x); �; l(!; x)

�

: (2.6)

We should like to emphasize that for d � 2 the conditions (7) and (8) with � = 1 can be

deduced from condition (3). For d � 3, this has been shown in [U1]. For d = 2, conditions (7)

and (8) follow from Koebe's distortion theorem combined with the observation that complex

conjugation in CI can be represented by an isometry.

Let I

�

denote the set of all �nite words in the alphabet I, and let I

1

be the set of all in�nite

sequences with entries in I. By condition (3), we have that �

!

(V ) � V , for every hyperbolic

word !. For each ! 2 I

�

[ I

1

; we de�ne the length of ! by the uniquely determined relation

! 2 I

j!j

. If ! 2 I

�

[ I

1

and n � j!j, then we write !j

n

to denote the word !

1

!

2

: : : !

n

. In

[MU1] it was shown that lim

n!1

sup

j!j=n

fdiam(�

!

(X))g = 0. Hence, the map � : I

1

! X,

given by �(!) =

T

n�0

�

!j

n

(X), is uniformly continuous. Now, the limit set J = J

S

of the

system S can be de�ned as the range of the map �, that is we de�ne

J = �(I

1

):

In order to introduce the notion of tameness we de�ne, for every i 2 
,

X

i

=

[

j2Infig

�

j

(X):
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We call a parabolic conformal iterated function system S = f�

i

: i 2 Ig tame if x

i

=2 X

i

, for

every i 2 
. Also, we say that S satis�es the Super Strong Open Set Condition (SSOSC) if

the following two conditions are satis�ed.

[

i2In


�

i

(X) [

[

i2


[

j 6=i

�

ij

(X) � IntX; (2.7)

X \

[

i2I

�

i

(X) = fx

i

: i 2 
g: (2.8)

Unless stated otherwise, for the remaining part of this section we shall assume that S is a

tame parabolic �nite conformal iterate function system satisfying (SSOSC). The inclusion in

(2.7) implies that there exists 0 <

^

R < Dist(X; @V ) such that

B

0

@

[

i2In


�

i

(X) [

[

i2


[

j 6=i

�

ij

(X); 2

^

R

1

A

� IntX: (2.9)

Also, for each ! 2 I

�

and every A � B(x

i

; 2

^

R) we have that

�

!

(A) \ J = �

!

(A \ J): (2.10)

Note that in order to derive the latter formula, we have to use the fact that the system S is

tame. Furthermore, for all i 2 
; ! 2 I

�

we have that

�

�1

(�(!i

1

)) = !i

1

: (2.11)

Following [MU1], given t � 0, a Borel probability measure m is called t-conformal for the

system S if m(J) = 1 and if for every Borel set A � X and for each i; j 2 I with i 6= j, we

have that

m(�

i

(A)) =

Z

A

j�

0

i

j

t

dm (2.12)

and

m(�

i

(X) \ �

j

(X)) = 0: (2.13)

Recall that a parabolic system S is called regular if and only if there exists a t-conformal

measure (cf. [MU 1]). Then t = h is the Hausdor� dimension of the limit set (see [MU1]).

Combining Theorem 1.4 in [MU2] and Corollary 5.8 in [MU1], we immediately have the

following result.

Theorem 2.1. A parabolic �nite iterated function system is regular.
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Hence, since the systems which we consider in this paper are �nite, it follows that they are

regular. The associated h-conformal measure will always be denoted by m. We shall require

the following distortion properties.

Lemma 2.2. There exists a positive constant R

�

<

^

R such that the following holds. For each

hyperbolic word � 2 I

�

and for every ! 2 I

1

we have that �

�

is well-de�ned on B(�(!); R

�

).

Additionally, it holds that

j�

0

�

(y)j

j�

0

�

(x)j

� K for all x; y 2 B(�(!); R

�

);

and that

K

�h

j�

0

�

(�(!))j

h

m(B(�(!); R

�

)) � m

�

�

�

((B(�(!); R

�

))

�

� K

h

j�

0

�

(�(!))j

h

m(B(�(!); R

�

)):

Proof. The statement that �

�

: B(�(!); R

�

) ! IR

d

is well-de�ne and the �rst distortion

property of the lemma are immediate consequences of the fact that R

�

<

^

R < Dist(X; @V )

and property (7) at the beginning of this section. In order to derive the second distortion

property of the lemma, choose 0 < R

�

<

^

R su�ciently small such that, for each i 2 
,

B

�

�

i

(X) \ (IR

d

nB(x

i

;

^

R)); 2R

�

�

� IntX: (2.14)

If �(!) 2 �

i

(X) for some i 2 
, and if jj�(!) � x

i

jj �

^

R, then B(�(!); 2R

�

) � IntX. The

proof in this case then follows immediately from a combination of the conformality of the

measure m and distortion property (7). In case that �(!) 2 �

i

(X) \B(x

i

;

^

R), it follows that

B(�(!); R

�

) � B(x

i

; 2

^

R). Using (2.13) and the conformality of m, we obtain that

m

�

�

�

((B(�(!); R

�

))

�

= m

�

�

�

((B(�(!); R

�

)) \ J

�

= m

�

�

�

((B(�(!); R

�

) \ J)

�

=

Z

B(�(!);R

�

)\J

j�

0

�

j

h

dm =

Z

B(�(!);R

�

)

j�

0

�

j

h

dm;

and hence the �rst distortion property of the lemma gives the proof in this case. Finally, if

�(!) =2

S

i2


�

i

(X), then �(!) 2 �

j

(X) for some j 2 I n 
. In this case (2.12) implies that

B(�(!); 2R

�

) � IntX, and hence the statement of the lemma follows immediately from (7)

and the conformality of m. This proves the lemma.

In order to prove yet another distortion result, we need the following fact. For the proof of

this lemma we refer to [MU2] (Lemma 4.3).

Lemma 2.3. There exists a constant �

0

> 0 such that for every i 2 
 there exists a sequence

of non-decreasing positive numbers R

�

and a nested family of central open cones fC

i;�

: 0 <

� � �

0

g � IntX with angles �, vertex x

i

and common symmetry axis such that

B(x

i

; R

�

) \ J � C

i;�

[ fx

i

g:

We are now in the position to prove the following distortion property.
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Lemma 2.4. There exist constants �; R

�

> 0 such that for every i 2 
, x 2 J \B(x

i

; R

�

) [

X

i

[ �

i

(X

i

), and for each ! 2 I

�

we have that the map �

!

is well-de�ned on B(x; �jjx� x

i

jj)

and that

j�

0

!

(z)j

j�

0

!

(y)j

� K for all y; z 2 B(x; �jjx� x

i

jj);

and furthermore, for every positive r � �jjx� x

i

jj we have that

K

�h

j�

0

!

(x)j

h

m(B(x; r)) � m

�

�

!

((B(�(!); R

�

))

�

� K

h

j�

0

!

(�(!))j

h

m(B(x; r)):

Proof. Note that there exists 0 < �

1

< 1=2 such that B(x; 2�

1

jjx�x

i

jj) � C

i;�

0

� IntX, for

all x 2 C

i;�

0

=2

\B(x

i

; R

�

) and for every i 2 
. Thus, if x 2 J \B(x

i

; R

�

0

=2

) n fx

i

g (which by

Lemma 2.3 implies that x 2 C

i;�

0

=2

), then all the compositions �

!

: B(x; 2�

1

jjx� x

i

jj)! IR

d

are well-de�ned. Now, the Bounded Ditortion Property (7) implies the distortion property in

the lemma. Also, the second assertion in the lemma follows immediately from this distortion

property and the conformality of m. Namely, if x 2 X

i

\ �

i

(X

i

), then using (2.12) it follows

that B(x; 2

^

R) � IntX, and one can continue as before, replacing the ball B(x; 2�

1

jjx�x

i

jj) by

the ball B(x; 2

^

R). Hence in order to complete the proof, it is su�cient to choose R

�

= R

�

and

� = minf�

1

;

^

R=Dist(fx

i

: i 2 
g;

S

j2In


�

j

(X))g, where (2.8) guarantees that the distance in

this expression is positive. This �nishes the proof.

The constants R

�

and R

�

of Lemma 2.2 and Lemma 2.4 will be crucial in the sequel. For

later use we de�ne

R := minfR

�

; R

�

g:

3. The geometry of conformal measures

The main result in this section is the derivation of a `global formula' for the conformal

measure associated with a tame parabolic �nite iterated function system. This formula de-

scribes in a uniform way the scaling of this measure at arbitrary points in the associated limit

set. Our ellaboration of this formula follows closely the discussion in [SV] and [SU], where we

obtained this type of formula for geometrically �nite Kleinian groups with parabolic elements

and for parabolic rational maps.

The section is split into two subsections. In the �rst we give an estimate for the conformal

measure around parabolic points. In the second we then derive the global formula. Subse-

quently, as a �rst application of this formula, we obtain a �rst rough description of how the

conformal measure relates to the geometric concepts Hausdor� measure and packing measure.

3.1. The conformal measure around parabolic points. We begin this subsection by

recalling the following estimates for tame parabolic systems. For d � 2 a proof can be

found in [MU2] (Section 4). For d = 1 the estimates are obtained immediately from the

considerations in [U2].
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Proposition 3.1. Let S be a tame parabolic system. Then there exists a constant Q � 1 and

an integer q � 0 such that for every parabolic index i 2 I there exists an integer p

i

� 1 such

that for every j 2 I n fig and for all n; k � 1 we have that

Q

�1

n

�

p

i

+1

p

i

� inf

X

fj�

0

i

n

j

jg; jj�

0

i

n

j

jj; diam(�

i

n

j

(X)) � Qn

�

p

i

+1

p

i

; (3.1)

Q

�1

n

�

1

p

i

� Dist(x

i

; �

i

n

(X

i

)) � Dist(x

i

; �

i

n

(X

i

)) � Qn

�

1

p

i

; (3.2)

Dist(�

i

n

(X

i

); �

i

k(X

i

)) � Qjn

�

1

p

i

� k

�

1

p

i

j: (3.3)

Furthermore, for jn� kj � q we have that

Dist(�

i

n

(X

i

); �

i

k(X

i

)) � Qjn

�

1

p

i

� k

�

1

p

i

j: (3.4)

The following lemma gives the main result of this section.

Lemma 3.2. Let m denote the h-conformal measure of the �nite parabolic system S. For

each � > 0 there exists C

�

> 0 such that for every parabolic index i and for every x 2 J we

have that

C

�1

�

jjx� x

i

jj

h+(h�1)p

i

� m(B(x; �jjx� x

i

jj)) � C

�

jjx� x

i

jj

h+(h�1)p

i

:

In particular, the constant C

�

depends continuously on �.

Proof. Since the support of m is equal to J , we may assume without loss of generality that

jjx�x

i

jj � � for some �xed 0 < � � R. Let x = �(!) and ! 2 I

1

be given. Then ! = i

n

j� ,

where j 6= i, n � 1, and � 2 I

1

. Assuming � to be chosen su�ciently small, (3.1) implies

that

n � 2Q

2

�

�1

: (3.5)

For the proof of the �rst inequality in the measure estimate of the lemma, let

T := fk : Dist(�

i

k

j

(X); �

i

n

j

(X)) � �jjx� x

i

jj � diam(�

i

n

j

(X))g:

Using (3.1), we deduce that

m(B(x; �jjx� x

i

jj)) �

X

k2T

m(�

i

k

j

(X)) �

X

k2T

j�

0

i

k

j

j

h

�

�

X

k2T

Q

�h

k

�

p

i

+1

p

i

h

:

Using (3.2) and (3.1), we have that if

Q

�

�

�

�

n

�

1

p

i

� k

�

1

p

i

�

�

�

�

� �Q

�1

n

�

1

p

i

�Qn

�

p

i

+1

p

i

;

then it follows that k 2 T . Hence in particular, if k � n and if

Q

�

n

�

1

p

i

� k

�

1

p

i

�

� �Q

�1

n

�

1

p

i

�Qn

�

p

i

+1

p

i

; (3.6)
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then we have that k 2 T . Clearly, the statement in (3.6) is equivalent to

Qk

�

1

p

i

� (Q� �Q

�1

)n

�

1

p

i

+Qn

�

p

i

+1

p

i

:

Also, (3.5) implies that Qn

�

p

i

+1

p

i

� �(2Q)

�1

n

�

1

p

i

. Therefore, if k � n and Qk

�

1

p

i

� (Q �

�Q

�1

)n

�

1

p

i

+ �(2Q)

�1

n

�

1

p

i

, or equivalently if k � n and k �

�

1�

�

2Q

�

�

1

p

i

, then we have that

k 2 T . It now follows that there exists a constant

~

C

�

> 0 (which depends continuously on �)

such that

m(B(x; �jjx� x

i

jj)) � Q

�h

(

1�

�

2Q

)

�

1

p

i

X

k=n

k

�

p

i

+1

p

i

h

� Q

�h

 

1�

p

i

+ 1

p

i

h

!

0

B

@

 

1�

�

2Q

!

�

1

p

i

�

1�

p

i

+1

p

i

h

�

� 1

1

C

A

n

�

p

i

+1

p

i

h

=

~

C

�

n

�

�

h+(h�1)p

i

p

i

�

:

Hence, since by (3.6) we have that jjx� x

i

jj � Qn

�

1

p

i

, it follows that

m(B(x; �jjx� x

i

jj)) �

~

C

�

Q

h+(h�1)p

i

jjx� x

i

jj

h+(h�1)p

i

: (3.7)

In order to prove the second inequality in the measure estimate of the lemma, note that

Qk

�

1

p

i

� (1 + �)jjx� x

i

jj if and only if k �

�

Q

�1

(1 + �)jjx� x

i

jj

�

�p

i

. Using this observation,

(3.2) and (3.1), we obtain that

m(B(x; �jjx� x

i

jj)) � m(B(x

i

; (1 + �)jjx� x

i

jj)

�

X

j 6=i

X

k=

�

Q

�1

(1+�)jjx�x

i

jj

�

�p

i

m(�

i

k

j

(X))

�

X

j 6=i

X

k=

�

Q

�1

(1+�)jjx�x

i

jj

�

�p

i

jj�

0

i

k

j

jj

h

�

X

j 6=i

X

k=

�

Q

�1

(1+�)jjx�x

i

jj

�

�p

i

Qk

�

p

i

+1

p

i

h

� 2Q

�

k

h

p

i

+1

p

i

�1

�

�1

�

�

Q

�1

(1 + �)jjx� x

i

jj

�

�p

i

�

1�

p

i

+1

p

i

h

�

=

^

C

�

jjx� x

i

jj

h+(h�1)p

i

;

where

^

C

�

<1 denotes some positive constant (which depends continuously on �).
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Corollary 3.3. There exists a constant C � 1 such that for each i 2 
 and for all 0 < r �

2diam(X) we have that

C

�1

r

h+(h�1)p

i

� m(B(x

i

; r)) � C r

h+(h�1)p

i

:

Proof. Let j 6= i, and choose n � 1 to be the least integer such that Q

�1

n

�

1

p

i

� r. Let

x 2 �

i

n�1

j

(X) be �xed. By (3.2) and Lemma 3.2, we have that

m(B(x

i

; r)) � m(x; 2jjx� x

i

jj) � C

2

jjx� x

i

jj

h+(h�1)p

i

� C

2

Q(n� 1)

�

h+(h�1)p

i

p

i

� n

�

h+(h�1)p

i

p

i

�

�

Q

2

�

h+(h�1)p

i

r

h+(h�1)p

i

:

Now, let k � 1 denote the least integer such that Qk

�

1

p

i

� r=2, and let y 2 �

i

k

j

(X) be �xed.

Similar as above, (3.2) and Lemma 3.2 imply that

m(B(x

i

; r)) � m(B(y; jjy � x

i

j) � C

1

jjy � x

i

jj

h+(h�1)p

i

� C

1

Q

�(h+(h�1)p

i

)

k

�

h+(h�1)p

i

p

i

� (k � 1)

�

h+(h�1)p

i

p

i

� 2

�(h+(h�1)p

i

)

r

h+(h�1)p

i

:

Lemma 3.4. For every � > 0 there exists D

�

� 1 such that for each i 2 
, for every

su�ciently small r > 0, and for all x 2 J \ B(x

i

; �

�1

r) we have that

D

�1

�

r

h+(h�1)p

i

� m(B(x; r)) � D

�

r

h+(h�1)p

i

:

Proof. Since B(x; r) � B(x

i

; jjx�x

i

jj+r) � B(x

i

; (1+�

�1

)r), it follows from Corollary 3.3

that

m(B(x; r)) � C(1 + �

�1

)

h+(h�1)p

i

r

h+(h�1)p

i

: (3.8)

Now, if r � 2jjx� x

i

jj, then r = �jjx� x

i

jj for some � such that � � � � 2. By Lemma 3.2,

we have that C

�

� C := supfC

t

: t 2 [�; 2]g < 1. Hence, using Lemma 3.2 once again, it

follows that

m(B(x; r)) = m(B(x; �jjx� x

i

jj) � C

�

jjx� x

i

jj

h+(h�1)p

i

� C

�

r

�

�

h+(h�1)p

i

� C�

�(h+(h�1)p

i

)

r

h+(h�1)p

i

:

(3.9)

Otherwise if r � 2jjx� x

i

jj, then Corollary 3.3 implies

m(B(x; r)) � m(B(x

i

; r=2)) � C

�

r

2

�

h+(h�1)p

i

= C2

�(h+(h�1)p

i

)

r

h+(h�1)p

i

:

Combining the latter estimate, (3.8) and (3.9), the lemma follows.
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3.2. The global formula for the conformal measure. An element ! 2 I

1

is called pre-

parabolic if and only if �

k

! = i

1

for some k � 0 and some i 2 
. The set of all pre-parabolic

elements will be denoted by I

1

p

. Also, a limit point which is not a pre-parabolic element will

be referred to as radial, and we write I

1

r

to denote the set of all radial points.

For each ! 2 I

1

we �x an increasing sequence of integers fn

j

(!)g

k(!)

j=1

as follows. Assume

that n

j

(!) is de�ned, then we de�ne n

j+1

(!) to be the smallest index which is greater than

n

j

(!) such that either !

n

j+1

(!)

is hyperbolic or !

n

j+1

(!)

6= !

n

j+1

(!)�1

(note that n

1

(!) is well-

de�ned). In case n

j+1

(!) does not exist, then j = k(!). Note that if n

j+1

(!) � n

j

(!)+2, then

there exists a unique parabolic index i = i(!; j) such that !

l

= i for all n

j

(!) � l � n

j+1

(!).

Furthermore, if n

j+1

(!) = n

j

(!)+1, then i(!; j) denotes some arbitrary element of 
. Observe

that k(!) =1 if and only if ! 2 I

1

r

. For each j, we de�ne

r

j

(!) := R j�

0

!j

n

j

(!)

(�(�

n

j

(!)

!))j;

and we refer to the sequence fr

j

(!)g

k(!)

j=1

as to the hyperbolic zoom of !. Note that by the chain

rule and by property (6) of section 2, we have that fr

j

(!)g

k(!)

j=1

is a strictly decreasing sequence.

Hence, for each ! 2 I

1

r

and every 0 < r �

~

R = minfinffj�

0

i

j : i =2 
g; inffj�

0

ij

j : i 2 
; j 6= igg,

there exists a unique j � 1 such that r

j+1

(!) < r � r

j

(!). For a given ! and r, these so

determined neighbours r

j+1

(!) and r

j

(!) in the hyperbolic zoom of ! will be denoted by r

�

(!)

and r

�

(!) respectively. Also, in this situation we shall write i(!; r) to denote the parabolic

element i(!; j). Finally we de�ne the function �, which is given for ! 2 I

1

and r > 0 by

�(!; r) :=

m(B(x; r))

r

h

:

The following theorem is the main result of this section.

Theorem 3.5. (Global formula for conformal measures) Let S be a tame parabolic �nite

iterated function system satisfying the (SSOSC). Then, for each ! 2 I

1

r

and every 0 < r �

~

R

we have with i = i(!; r) that

�(!; r) �

8

>

<

>

:

�

r

r

�

(!)

�

(h�1)p

i

for r

�

(!) � r � r

�

(!)

�

r

�

(!)

r

�

(!)

�

1

p

i

+1

�

r

�

(!)

r

�

h�1

for r

�

(!) � r � r

�

(!)

�

r

�

(!)

r

�

(!)

�

1

p

i

+1

:

Proof. Let ! 2 I

1

r

and 0 < r �

~

R be �xed. For ease of notation, throughout the proof we

shall suppress the dependence on ! in some of the appearing quantities. Let j be determined

by the condition r

�

= r

j

. Hence, we have that r

�

= r

j+1

. By (3.2), we have that

jj�(�

n

j

!)� x

i

jj = jj�(�

i

n

j+1

�n

j

�1

!

n

j+1

(�(�

n

j+1

!)))� x

i

jj � (n

j+1

� n

j

)

�

1

p

i

:

Using the chain rule and (3.1), we obtain that

1 = r

j+1

j�

0

!j

n

j

(�(�

n

j

!))j

�1

j�

0

�

n

j

!j

n

j+1

�n

j

�1

(�(�

n

j+1

!))j

�1

�

 

r

j+1

r

j

!

(n

j+1

� n

j

)

p

i

+1

p

i

=

�

r

�

r

�

�

(n

j+1

� n

j

)

p

i

+1

p

i

:
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Hence,

�

r

�

r

�

�

1

p

i

� jj�(�

n

j

!)� x

i

jj: (3.10)

This implies that if

r � r

�

(!)

 

r

�

(!)

r

�

(!)

!

1

p

i

+1

;

then

j�

0

!j

n

j

(�(�

n

j

!))j � jj�(�

n

j

!)� x

i

jj � r � j�

0

!j

n

j

(�(�

n

j

!))j;

and hence,

jj�(�

n

j

!)� x

i

jj �

r

j�

0

!j

n

j

(�(�

n

j

!))j

� 1:

Now, using Lemma 2.4 and Lemma 3.4, it follows that

m(B(�(!); r)) � j�

0

!j

n

j

(�(�

n

j

!))j

h

m

�

B(�(�

n

j

!); rj�

0

!j

n

j

(�(�

n

j

!))j

�1

)

�

� r

h

j

(rr

�1

j

)

h+(h�1)p

i

= r

h

 

r

r

j

!

(h�1)p

i

= r

h

�

r

r

�

�

(h�1)p

i

:

This proves the �rst case in the theorem. We are now left to consider the case in which

r � r

�

(!)

 

r

�

(!)

r

�

(!)

!

1

p

i

+1

:

Because of (3.10), this means that

j�

0

!j

n

j+1

(�(�

n

j+1

!))j � r � �j�

0

!j

n

j

(�(�

n

j

!))j � jj�(�

n

j

!)� x

i

jj;

where 0 < � < 1 is the constant obtained in Lemma 2.4. Therefore, there exists n

j

� u �

n

j+1

� 1 such that

j�

0

!j

u+1

(�(�

u+1

!))j � jj�(�

u+1

!)� x

i

jj � r � j�

0

!j

u

(�(�

u

!))j � jj�(�

u

!)� x

i

jj:

In particular, this means that

r � j�

0

!j

u

(�(�

u

!))j � jj�(�

u

!)� x

i

jj: (3.11)

Thus, by using the conformality of m, Lemma 2.4 and Lemma 3.2, it follows that

m(B(�(!); r)) � j�

0

!j

u

(�(�

u

!))j

h

m(B(�(�

u

!); jj�(�

u

!)� x

i

jj))

� j�

0

!j

u

(�(�

u

!))j

h

jj�(�

u

!)� x

i

jj

h+(h�1)p

i

� r

h

jj�(�

u

!)� x

i

jj

(h�1)p

i

:

(3.12)

On the other hand, the chain rule, (3.1) and (3.2) imply that

1 = r

j+1

j�

0

!j

u

(�(�

u

!))j

�1

j�

0

�

u

!j

n

j+1

�u�1

(�(�

n

j+1

!))j

�1

� r

�

j�

0

!j

u

(�(�

u

!))j

�1

(n

j+1

� u)

p

i

+1

p

i

;
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as well as

jj�(�

u

!)� x

i

jj

�(p

i

+1)

� (n

j+1

� u)

p

i

+1

p

i

:

These two latter comparabilities together with (3.11) show that

r � r

�

jj�(�

u

!)� x

i

jj

�(p

i

+1)

jj�(�

u

!)� x

i

jj = r

�

jj�(�

u

!)� x

i

jj

�p

i

:

Hence, we have that jj�(�

u

!)� x

i

jj � (r

�

=r)

1=p

i

, which together with (3.12) implies that

m(B(�(!); r)) � r

h

�

r

�

r

�

h�1

:

This proves the second case in the theorem.

The following corollaries are immediate consequences of the previous theorem.

Corollary 3.6. If ! 2 I

1

r

, then for each j � 1 we have that

m(B(�(!); r

j

(!))) � r

j

(!)

h

:

Corollary 3.7. The conformal measure m is a doubling measure. This means that for every

c > 0 there exists B > 0 such that for each z 2 J and every r > 0 we have that

m(B(z; cr)) � Bm(B(z; r)):

Finally, as a �rst non-trivial application of Theorem 3.5 we derive an alternative proof of the

following geometrical fact which was obtained under slightly weaker assumptions in [MU2].

For this let H

t

and P

t

denote the t-dimensional Hausdor� and packing measure respectively.

Theorem 3.8. If S is a tame �nite parabolic system satisfying the (SSOSC), then the fol-

lowing holds.

(a): If h > 1, then 0 < H

h

(J) <1 and P

h

(J) =1.

(b): If h = 1, then 0 < H

h

(J);P

h

(J) <1.

(c): If h < 1, then 0 < P

h

(J) <1 and H

h

(J) = 0.

Additionally, if either measure H

h

or P

h

is �nite and positive, then its normalized version is

equal to the conformal measure m.

Proof. In [MU1] (Lemma 5.6 and Theorem 5.7) it was shown that for a tame �nite parabolic

system satisfying the (SSOSC) the h-conformal measure m is atomless. This combined with

Corollary 3.6 and the inverse Frostmann lemma (see [PU]) implies that we always have that

H

h

(J) < 1 and P

h

(J) > 0. Now, if h � 1, then Theorem 3.5 immediately gives that, for

every x 2 �(I

1

r

),

lim sup

r!0

m(B(x; r))

r

h

� 1;

which implies that H

h

(J) > 0. If in addition x = �(!), for ! 2 I

1

r

containing arbitrarily long

blocks of i's for some i 2 
, then we have that

lim inf

r!0

m(B(x; r))

r

h

� lim inf

r!0

�

0

@

!; �r

�

(!)

 

r

�

(!)

r

�

(!)

!

1

p

i

+1

1

A

= lim inf

r!0

 

r

�

(!)

r

�

(!)

!

(h�1)p

i

p

i

+1

= 0:
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Now, by ergodicity of the measure m (see [MU2], Corollary 5.11) and since m is positive on

open sets, it follows that m-almost everywhere we have that

lim inf

r!0

m(B(x; r))

r

h

= 0:

We conclude that P

h

(J) =1, which proves case (a) of the theorem. Case (b) is an immediate

consequence of Theorem 3.5. The proof of case (c) is analogous to the proof of case (a), and

we obmit it.

4. Metrical Diophantine analysis

In this section we give a metrical Diophantine analysis for tame parabolic �nite iterated

function systems. In the �rst subsection we calculate the Hausdor� dimensions of certain

subsets of the limit set which are of zero h-conformal measure. These sets are comprised of

radial elements which under the system have a rather rapid approach to the parabolic points.

In particular, these sets are the natural analogues of the sets of well-approximable numbers.

In the second subsection we derive various limit laws which give useful approximations of the

`essential support' of the h-conformal measure associated with a tame �nite parabolic iterated

function system. Subsequently, we show that these laws lead to good estimates on the growth

of the function � in the global formula (Theorem 3.5), which in turn give rise to a re�ned

description of the conformal measure in terms of Hausdor� measures and packing measures

with respect to some explicit gauge functions.

4.1. Iterated function systems in the spirit of Jarn��k. We �rst have to introduce the

notion of a canonical ball. For i 2 
, � > 0 and a hyperbolic word ! 2 I

�

, we de�ne

B

!

(i) = B

!

= B(�

!

(x

i

); Rj�

0

!

(x

i

)j) and B

�

!

(i) = B

�

!

= B(�

!

(x

i

); (Rj�

0

!

(x

i

)j)

1+�

):

The closed ball B

!

will be referred to as the canonical ball associated with the hyperbolic

word !.

Our main interest in this section will be focused on the sets

J

�

i

:=

\

q�1

[

n�q

[

j!j=n

B

�

!

and

J

�

:=

[

i2


J

�

i

:

The main result in this section is stated in the following theorem. The proof of this theorem

will occupy the remaining part of this section. It will be given in several steps, some of which

are formulated in separate lemmata.

Theorem 4.1. Let S = f�

i

: i 2 Ig be a tame parabolic �nite iterated function system

satisfying (SSOSC). Then, for every i 2 
 the following holds.
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(a): If h � 1, then

HD(J

�

) =

h

1 + �

:

(b): If h � 1, then

HD(J

�

i

) =

8

<

:

h

1+�

if � � h� 1

h+�p

i

1+�(1+p

i

)

if � � h� 1:

In particular, with p

min

:= minfp

i

: i 2 
g, we have that

HD(J

�

) =

8

<

:

h

1+�

if � � h� 1

h+�p

min

1+�(1+p

min

)

if � � h� 1:

The �rst step in the proof of the theorem is to give some upper bound for HD(J

�

i

).

Lemma 4.2. For each i 2 
 and every � > 0 we have that

HD(J

�

i

) � min

(

h

1 + �

;

h+ �p

i

1 + �(1 + p

i

)

)

:

Proof. For n � 1, let H

n

denote the family of all hyperbolic words of length n. For every

� > 0 we have that

H

h

1+�

+�

(J

�

i

) � lim inf

q!1

X

n�q

X

!2H

n

�

(Rj�

0

!

(x

i

)j)

1+�

)

�

h

1+�

+�

� R

h+�(1+�)

lim inf

q!1

X

n�q

X

!2H

n

j�

0

!

(x

i

)j

h+�(1+�)

:

From Lemma 4.3 and Theorem 4.6 in [MU1] we deduce that exists a (h+�(1+�))-semiconformal

measure �. We then apply Theorem 5.1 in [MU1], which gives that � is in fact (h+ �(1+ �))-

conformal, and that �(x

j

) > 0 for some j 2 
. From the de�nition of the limit set J it follows

that there exists a hyperbolic word � 2 I

�

such that �

�

(x

j

) 2 B(x

i

; R). Hence by 3.12, we

have for every hyperbolic word ! 2 I

�

that

�

0

!

(x

i

)j � Kj�

0

!

(�

�

(x

j

))j = Kj�

0

�

(x

j

)j

�1

j�

0

!�

(x

j

)j:

Combining this latter estimate and the conformality of �, it follows that for each q � 0 and

every n � q we have that

X

n�q

X

!2H

n

j�

0

!

(x

i

)j

h+�(1+�)

�

�

Kj�

0

�

(x

j

)j

�1

�

h+�(1+�)

X

n�q

X

!2H

n

j�

0

!�

(x

j

)j

h+�(1+�)

�

X

n�q

X

j!j=n

�(�

!�

(x

j

))�(x

j

)

�1

� �(x

j

)

�1

�(f�




(x

j

) : j
j � q + j� jg) � �(x

j

)

�1

:

Hence, H

h

1+�

+�

(J

�

i

) � �(x

j

)

�1

, and consequently HD(J

�

i

) �

h

1+�

+ �. By letting � tend to 0, we

derive that HD(J

�

i

) �

h

1+�

.
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In order to obtain the second upper bound, note that (3.2), (3.1) and Lemma 2.3 imply that

for each hyperbolic word ! the ball B(�

!

(x

i

); (Rj�

0

!

(x

i

)j)

�

) can be covered by balls of radii

(Rj�

0

!

(x

i

)j)

�(p

i

+1)

such that the number of these covering balls is comparable to (Rj�

0

!

(x

i

)j)

��p

i

.

Hence, each ball B

�

!

can be covered by approximately (Rj�

0

!

(x

i

)j)

��p

i

balls of radii comparable

to (Rj�

0

!

(x

i

)j)

1+�(1+p

i

)

. It follows that for every � > 0 we have that

H

h+�p

i

1+�(1+p

i

)

+�

(J

�

i

) � lim inf

q!1

X

n�q

X

!2H

n

�

(Rj�

0

!

(x

i

)j)

1+�(1+p

i

)

�

h+�p

i

1+�(1+p

i

)

+�

(Rj�

0

!

(x

i

)j)

��p

i

� lim inf

q!1

X

n�q

X

!2H

n

j�

0

!

(x

i

)j

h+�(1+�(1+p

i

))

:

Now the proof follows exactly in the same way as in the �rst part.

As a �rst step towards the proof of the lower bound in Theorem 4.1, we obtain the following

lemma.

Lemma 4.3. There exists a universal constant b(d) � 1 such that the following holds. For

every open set G � IntX and each n � 1, there exists a �nite set I

G;n

�

S

j�n

I

j

of mutually

incomparable words, which has the properties that m

�

S

!2I

G;n

B

!

�

� b(d)

�1

m(G) and that the

balls in fB

!

: ! 2 I

G;n

g are pairwise disjoint subsets of G.

Proof. We de�ne

J

1

:= �

�

f! 2 I

1

n f�i

1

: � 2 I

�

g : ! contains arbitrarily long blocks of i'sg

�

:

Then, since the conformal measure m is positive on non-empty open subsets of J , Corollary

5.11 in [MU1] implies that m(J

1

) = 1.

Now, let q � 1 be su�ciently large such that �

i

q

(X) � B(x

i

; K

�1

R). It follows from the

de�nition of J

1

that if x 2 J

1

, then there exists an increasing in�nite sequence fl

j

g

j

with

l

j

� n for all j � 1, a sequence fq

j

g

j

with q

j

� q+1 for all j � 1, and words !

(j)

2 I

l

j

+q

j

such

that for all j � 1 we have that x 2 �

!

(j)

(X), !

(j)

l

j

6= i and �

l

j

!j

q

j

= i

q

j

. It now follows that

x 2 �

!

(j)

j

l

j

+1

(B(x;K

�1

R)) � B

!

(j)

, and that lim

j!1

diam(B

!

(j)

) = 0. Hence, the set G \ J

1

can be covered by canonical balls B

!

for which j!j � n. Let � denote such a cover of G\J

1

.

By the Besicovic Covering Theorem, there exists a universal constant b(d) � 2 such that

� contains b(d)=2 subfamilies, each consisting of pairwise disjoint elements, such that G is

contained in the union of all balls in these subfamilies. It follows that for at least one of these

subfamilies, say �

0

, we have that m (

S

B

!

2�

0

B

!

) � 2=b(d)m(G \ J

1

) = 2=b(d)m(G). Since

there clearly exists a �nite subset �

f

of �

0

which has the property that m

�

S

B

!

2�

f

B

!

�

�

1

2

m (

S

B

!

2�

0

B

!

), the statement of the lemma follows.

Proof of Theorem 4.1.

Our next step in the proof of the theorem is the construction of a Cantor set contained in

J

�

i

. Crucial for this will be a certain increasing sequence fn

l

g

l�0

of non-negative integers, and

it will become clear during the construction how one has to choose this sequence. We begin
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with by de�ning for l � 0 the sets I

l

� I

�

by induction as follows. Let B

;

:= B(x

i

; R) and

I

0

:= f;g. Suppose that I

l

has been de�ned, and let ! 2 I

l

be �xed. By Lemma 4.3 we have

that there exists a �nite set

!

�

�

[

k�maxfj!j+l;n

l+1

g

I

k

with the property that the family fB

�

g

�2!

�

consists of pairwise disjoint balls such that B

�

�

IntB

�

!

for every � 2 !

�

(note that � j

j!j

= !), and such that

m

 

[

�2!

�

B

�

!

�

1

b(d)

m(IntB

�

!

)� m(B

�

!

): (4.1)

Here, the latter inequality is a consequence of the conformality of m, Lemma 2.2 and Corol-

lary 3.3. Now, let fF

l

g

l�1

denote the family of nested non-empty compact subsets of B

;

which

is given by

F

l

:=

\

!2I

l

B

!

:

Note that we have in particular that

F =

\

l�1

F

l

6= ;:

Next, for each l � 1 we construct a Borel probability measure �

l

supported on the set F

l�1

as follows. Let �

1

:=

1

m(B

;

)

mj

B

;

, and assume that the measure �

l

has already been de�ned

for some l � 1. Recall that !

�

:= f� 2 I

l+1

: � j

n

l

= !g for ! 2 I

l

. Now, for each ! 2 I

l

and

every Borel set A � B

!

we put

�

l+1

(A) :=

P

�2!

�

m(A \ B

�

)

P

�2!

�
m(B

�

)

: (4.2)

This de�nes a Borel probability measure �

l+1

on F

l

which has the property that �

l+1

(B

!

) =

�

l

(B

!

) for every ! 2 I

l

. A straighforward inductive argument gives that �

q

(B

!

) = �

l

(B

!

) for

every q � l. Also, since for each ! 2

S

l�0

I

l

the set B

!

\F is an open subsets of F , we conclude

that the weak-limit � := lim

l!1

�

l

exists and is supported on F , and that �(B

!

) = �

l

(B

!

)

for each l � 1 and every ! 2 I

l

. For ! 2 I

l

and j � l, let k

j

= k

j

(!) � j!j denote the unique

integer which is determined by !j

k

j

2 I

j

. Using (4.20) and (4.2), a straightforward inductive



METRICAL DIOPHANTINE ANALYSIS FOR TAME PARABOLIC ITERATED FUNCTION SYSTEMS 17

argument gives that for every l � 1 and every ! 2 I

l

we have that

�(B

!

) = �

l

(B

!

) =

l

Y

j=1

m(B

!j

k

j

)

P

�2!j

�

k

j�1

m(B

�

)

= m(B

!

)

l�1

Y

j=1

m(B

!j

k

j

)

P

�2!j

�

k

j

m(B

�

)

1

m(B(x

i

; R))

= m(B

!

)

l�1

Y

j=1

m(B

!j

k

j

)

m(B

�

!j

k

j

)

exp(O(l))

= m(B

!

)

l�1

Y

j=1

j�

0

!j

k

j

(x

i

)j

h

j�

0

!j

k

j

(x

i

)j

h

m

�

B

�

x

i

;

�

Rj�

0

!j

k

j

(x

i

)j

�

�

�

�

exp(O(l))

= m(B

!

)

l�1

Y

j=1

m

�

B

�

x

i

;

�

Rj�

0

!j

k

j

(x

i

)j

�

�

�

�

�1

exp(O(l)):

(4.3)

For every � 2

S

j�l�1

I

j

de�ne

Y

l�1

(�) :=

l�1

Y

j=1

m

�

B

�

x

i

;

�

Rj�

0

�j

k

j

(x

i

)j

�

�

�

�

�1

:

Since

lim

n!1

supfj�

0

!

(x

i

)j : ! 2 I

n

g = 0; (4.4)

it follows that there exists n

0

� 1 such that for each ! with j!j � n

0

we have that

(Rj�

0

!

(x

i

)j)

1+�

�

1

3

Rj�

0

!

(x

i

)j: (4.5)

Since the set I

l

is �nite, it follows from (4.4) that there exists a positive number

~

R � R such

that if ! 2 I

l

and if Rj�

0

�

(x

i

)j �

~

R for some � 2 !

�

, then j!j � n

0

. For �xed z 2 F and

0 < r �

~

R=3, consider the family F of all words ! 2

S

l�0

I

l+1

for which

B

!

\ B(z; r) \ J 6= ;; R j�

0

!

(x

i

)j < 3r; R j�

0

!j

k

l

(x

i

)j � 3r: (4.6)

We shall now see that the family F

�

= f!j

k

l

: ! 2 Fg is a singleton, and that if this is the

case with f
g = F

�

, then it follows that

B(z; r) � B




: (4.7)

For this, �x some element 
 2 F

�

and ! 2 F such that 
 = !j

k

l

and such that y 2

B

!

\B(z; r) \ J . Clearly, by construction of the set J , we have that y 2 B

�




. From (4.5) and

(4.6) we deduce that if x 2 B(z; r), then

jjx� �




(x

i

)jj � jjx� zjj+ jjz � yjj+ jjy � �




(x

i

)jj < r + r + (Rj�

0

!

(x

i

)j)

1+�

� 2r +

1

3

Rj�

0

!

(x

i

)j �

2

3

Rj�

0

!j

k

l

(x

i

)j+

1

3

Rj�

0

!j

k

l

(x

i

)j = Rj�

0

!

(x

i

)j = Rj�

0




(x

i

):
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Hence, we have now obtained that (4.7) holds and in particular, using (4.6) and the construc-

tion of the set F , that F

�

= f
g.

Let � > 0 be �xed. Since T

0

:= supf

Q

(�) : � 2 I

l�1

g < 1, we obtain for n

l

su�ciently

large and for all � 2 I

l

that

T

0

exp(O(l)) � j�

0

�

(x

i

)j

��

:

Combining this estimate and (4.6), it follows that

Y

l�1

(
) exp(O(l)) � r

��

: (4.8)

In order to complete the proof of Theorem 4.1, it is now su�cient to show that �(B(z; r)) can

essentially be estimated from above by r

�2�

r

�

, for � being either

h

1+�

or

h+�p

i

1+�(1+p

i

)

. We split

this estimate into the following three di�erent cases.

Case 1

0

: r �

�

R j�

0




(x

i

)j

�

1+�

.

Using (4.7), (4.8) and the conformality of m, we obtain that

�(B(z; r)) � �(B




) = �

l

(B




) � m(B




)

Y

l�1

(
) exp(O(l)) = j�

0




(x

i

)j

h

Y

l�1

(
) exp(O(l))

� j�

0




(x

i

)j

h

r

��

� r

h

1+�

��

;

which completes the discussion for this case.

Before dealing with the remaining cases, note that, using (4.3), (4.6), (4.8) and Corol-

lary 3.3, we have that

�(B(z; r)) �

X

!2F

�(B

!

) =

X

!2F

m(B

!

)

Y

l

(!) exp(O(l)) � m(B(z; 7r))

Y

l

(!) exp(O(l))

= m(B(z; 7r))

Y

l�1

(!) exp(O(l)

�

m

�

B(x

i

; (Rj�

0




(x

i

)j)

�

��

�1

)

� r

��

j�

0




(x

i

)j

��(h+(h�1)p

i

)

m(B(z; 7r)):

(4.9)

Case 2

0

: r �

�

R j�

0




(x

i

)j

�

1+�

and r � K

2

RQ

p

i

+2

�

R j�

0




(x

i

)j

�

1+�+�p

i

.

From (4.7) and Koebe's distortion theorem we deduce that r � R j�

0




(x

i

)j � KR j�

0

� j

n

(�(�

n

�))j,

where z = �(�) and � j

n

= 
. This implies that

r=K � R j�

0

� j

n

(�(�

n

�))j = R j�

0




(�(�

n

�))j: (4.10)

Now, since z 2 B




\J , we have that z 2 B

�




, and therefore that �(�

n

�) 2 B

�

x

i

; K(R j�

0




(x

i

)j)

�

�

.

Let �

n

� = i

q

!, with !

1

6= i. By Proposition 3.1 (formula (3.2)), we have that jj�(�

n

�)�x

i

jj �

Q

�1

q

�

1

p

i

. Hence, using the fact that Q

�1

q

�

1

p

i

� K(R j�

0




(x

i

)j)

�

and Proposition 3.1 (formula

(3.1)), we obtain that
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R j�

0

� j

n+q+1

(�(�

n+q+1

�))j = R j�

0




(�(�

n

�))j � j�

0

i

q

!

1

(�(�!))j

� R j�

0




(�(�

n

�))jQq

�

1

p

i

� KRQ

p

i

+2

(Rj�

0




(x

i

)j)

1+�(p

i

+1)

� r=K:

(4.11)

Hence, it follows that

(r=K)

�

= Rj�

0




(�(�

n

�))j and (r=K)

�

= Rj�

0

� j

n+q+1

(�(�

n+q+1

�))j:

Choose � > 0 to be su�ciently small, which will be speci�ed in the course of the proof.

Without loss of generality we may assume that z =2 J

�+�

i

. Thus by choosing r > 0 to be

su�ciently small, we can assume that z =2 B

�+�




, and hence in particular that �

(

�

n

�) =2

B

�

x

i

; K

�1

(Rj�

0




(x

i

)j)

�+�

�

. Since by Proposition 3.1 (formula (3.2)), we have that jj�(�

n

�)�

x

i

jj � Qq

�

1

p

i

, it follows that Qq

�

1

p

i

� K

�1

(Rj�

0




(x

i

)j)

�+�

. Hence, using Proposition 3.1

(formula (3.1)), we obtain that

R j�

0

� j

n+q+1

(�(�

n+q+1

�))j = R j�

0




(�(�

n

�))j � j�

0

i

q

!

1

(�(�!))j

� K

�1

R j�

0




(x

i

)jQ

�1

q

�

1

p

i

� (R(KQ)

p

i

+2

)

�1

(R j�

0




(x

i

)j)

1+(�+�)(p

i

+1)

:

(4.12)

Write r = c(Rj�

0




(x

i

)j)

1+�+�

, for 0 � � � �p

i

and 1 � c � K

2

RQ

p

i

+2

. Suppose �rst that the

�rst part of the global formula (Theorem 3.5) holds for the centre z and radius r=K. Using

(4.12), we obtain that

cK

�1

(Rj�

0




(x

i

)j)

1+�+�

� Rj�

0




(�(�

n

�))j

 

Rj�

0

� j

n+q+1

(�(�

n+q+1

�))j

Rj�

0




(�(�

n

�))j

!

1

p

i

+1

� RK

�1

j�

0




(x

i

)j

 

(R(KQ)

p

i

+2

)

�1

(Rj�

0




(x

i

)j)

1+(�+�)(p

i

+1)

Rj�

0




(�(�

n

�))j

!

1

p

i

+1

� j�

0




(x

i

)j

1+�+�

:
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Note that if r > 0 is chosen to be su�ciently small (and hence the word length of 
 is large),

we have that � � 2�. Then, applying Theorem 3.5, (4.9) and Corollary 3.7, we obtain that

�(B(z; r))� r

��

j�

0




(x

i

)j

��(h+(h�1)p

i

)

m(B(z; r=K)) � r

��

r

h

j�

0




(x

i

)j

��(h+(h�1)p

i

)

 

r=K

(r=K)

�

!

h�1

� r

��

r

h

j�

0




(x

i

)j

��(h+(h�1)p

i

)

 

r

j�

0




(x

i

)j

!

(h�1)p

i

= r

��

r

h+(h�1)p

i

j�

0




(x

i

)j

��(h+(h�1)p

i

)�(h�1)p

i

� r

��

r

h+(h�1)p

i

r

��(h+(h�1)p

i

)�(h�1)p

i

1+�+�

= r

��

r

hp

i

��p�+h+h�

1+�+�

:

Note that we have

hp

i

� � p� + h+ h�

1 + � + �

�

h

1 + �

� � (4.13)

if and only if

�(hp

i

� p

i

+ hp

i

� � p

i

� + h�) � ��(1 + � + �):

Clearly, since � � 2�, the latter inequality is satis�ed if we choose � > 0 to be su�ciently

small. Hence, we can assume without loss of generality that (4.13) holds. It then follows that

�(B(z; r)) � r

h

1+�

�2�

;

which gives the Case 2

0

assuming the �rst part of the global formula.

Now suppose that the second part of the global formula (Theorem 3.5) holds for the centre

z = �(�) and radius r=K. Then (4.9), Corollary 3.7 and Theorem 3.5 imply that

�(B(z; r))� r

��

j�

0




(x

i

)j

��(h+(h�1)p

i

)

m(B(z; r=K)) � r

��

j�

0




(x

i

)j

��(h+(h�1)p

i

)

r

h

 

(r=K)

�

r

!

h�1

� r

��

rj�

0




(x

i

)j

��(h+(h�1)p

i

)p

j�

0

� j

n+q+1

(�(�

n+q+1

�))j

h�1

:

(4.14)

If h � 1, then using (4.12), we can continue the estimate in this case as follows.

�(B(z; r))� r

��

rj�

0




(x

i

)j

��(h+(h�1)p

i

)p

i

j�

0




(x

i

)j

(h�1)(1+(�+�)(p+1))

= r

��

rj�

0




(x

i

)j

h+h�p

i

+h���p

i

�1����

= r

��

rj�

0




(x

i

)j

h�1��+a�

;

where we have set a := hp

i

+ h� p

i

� 1 � 0. Hence, we have that

�(B(z; r))� r

��

rr

h�1��+a�

1+�+�

= r

��

r

h+�+a�

1+�+�

� r

��

r

h+a�

1+�

;

where in the last inequality we used the assumption that h � 1. Now, by choosing � > 0 to

be su�ciently small, it follows that

�(B(z; r)) � r

h

1+�

�2�

:
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This completes Case 2

0

for h � 1.

If h > 1, then using (4.11), we can continue the estimate in (4.14) as follows.

�(B(z; r))� r

��

rj�

0




(x

i

)j

��(h+(h�1)p

i

)

j�

0




(x

i

)j

(h�1)(1+�(p+1))

= r

��

rj�

0




(x

i

)j

h�1��

= r

��

rr

h�1��

1+�+�

= r

��

r

h+�

1+�+�

�

8

<

:

r

h

1+�

��

if � � h� 1

r

h+�p

i

1+�(1+p

i

)

if � � h� 1:

Here, the latter inequality is obtained by using the facts that � � �p

i

and that for � � h� 1

it holds that

h+�

1+�+�

decreases if � increases.

Hence, the proof of Case 2

0

is complete.

Case 3

0

: r � K

2

RQ

p

i

+2

�

Rj�

0




(x

i

)j

�

1+�+�p

i

.

From (4.9) and Corollary 3.7 we deduce that

�(B(z; r))� r

��

j�

0




(x

i

)j

��(h+(h�1)p

i

)

m(B(z; r=K)) = r

��

j�

0




(x

i

)j

��(h+(h�1)p

i

)

r

h

�(z; r=K)

� r

��

r

h

r

�

�(h+(h�1)p

i

)

1+�+�p

i

�(z; r=K)

= r

h+�p

i

1+�+�p

i

��

�(z; r=K):

(4.15)

If h � 1, then we can apply Theorem 3.5, and we obtain that

�(B(z; r))� r

h+�p

i

1+�+�p

i

��

:

If h � 1, we can assume that i = i

max

, which means that p

i

= maxfp

j

: j 2 
g. Let k � 1

be the index in the hyperbolic zoom associated with the point z and with the radius r=K.

If n

k+1

= n

k

+ 1, then we can proceed as in the previous case to obtain the desired result.

Hence, suppose that n

k+1

6= n

k

+1. It follows that �

n

k

� = j

u

�

n

k

+1

for some j 2 
, u � 1 and

�

n

k

+1

6= j. Now, for t 2 [(r=K)

�

; (r=K)

�

] we write �(z; t) = t

�(t)

. Then we have that

�(t) =

log �(z; t)

log t

=

8

>

<

>

:

p

j

(h� 1) +

p

j

(1�h) log((r=K)

�

)

log t

for (r=K)

�

� r � (r=K)

�

�

(r=K)

�

(r=K)

�

�

1

p

j

+1

1� h +

(h�1) log((r=K)

�

)

log t

for (r=K)

�

� r � (r=K)

�

�

(r=K)

�

(r=K)

�

�

1

p

j

+1

:

From this we deduce that the function � takes on its minimum at t = (r=K)

�

�

(r=K)

�

(r=K)

�

�

1

p

j

+1

.

Therefore, we can assume without loss of generality that

(r=K) = (r=K)

�

 

(r=K)

�

(r=K)

�

!

1

p

j

+1

: (4.16)
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Also, by choosing � > 0 to be su�ciently small, we can assume that z =2 J

�+�

. For r > 0

small, we then have that z =2 B

�+�

� j

k

(p

j

). Now, by the same arguments as those leading to

formula (4.12) in Case 2

0

, we have that

(r=K)

�

� (R(KQ)

p

i

+2

)

�1

((r=K)

�

)

1+(�+�)(p

j

+1)

: (4.17)

Hence, Theorem 3.5 and (4.16) imply that

�(z; r=K) �

 

(r=K)

�

(r=K)

�

!

(h�1)p

j

p

j

+1

: (4.18)

Write now

 

(r=K)

�

(r=K)

�

!

(h�1)p

j

p

j

+1

= (r=K)

�

= (r=K)

�

0

@

 

(r=K)

�

(r=K)

�

!

1

p

j

+1

1

A

�

and for every t 2 (0; 1) consider the number �(t) determined by the equation

 

t

(r=K)

�

!

(h�1)p

j

p

j

+1

= (r=K)

�

0

@

 

t

(r=K)

�

!

1

p

j

+1

1

A

�(t)

: (4.19)

We are interested in a su�ciently good lower bound on �(r=K). And indeed, solving equation

(4.19) for �(t), one easily deduces that the function t 7! �(t) is increasing throughout the

entire interval (0; 1). Therefore, invoking (4.17), we may assume that

(r=K)

�

= R(KQ)

p

i

+2

)

�1

((r=K)

�

)

1+(�+�)(p

j

+1)

� R(KQ)

p

i

+2

)

�1

((r=K)

�

)

1+�(p

j

+1)

:

Combining this and (4.16), we obtain

(r=K)� (r=K)

�

�

(r=K)

�

�

�

=

�

(r=K)

�

�

1+�

:

Then by combining this, (4.18) and (4.17), we get

�(z; r=K)�

�

(r=K)

�

�

(�+�)p

j

(h�1)

� (r=K)

p

j

(h�1)(�+�)

1+�

:

Substituting this latter inequality in (4.15), we obtain that

�(B(z; r))� r

h+�p

i

1+�+�p

i

+

�p

j

(h�1))

1+�

r

��+

�p

j

(1�h))

1+�

:

A straightforward calculation, using the facts that p

i

� p

j

and h �

p

j

p

j

+1

, shows that

h + �p

i

1 + � + �p

i

+

�p

j

(h� 1))

1 + �

�

h

1 + �

:

Hence, if � is chosen to be su�ciently small, we �nally obtain that

�(B(z; r))� r

h

1+�

��

:
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4.2. Limit laws for iterated function systems. Let us de�ne the set

I

�

:= fi

n

j : i 2 
; j 6= i; n � 1g \ (I n 
):

Note that a word ! 2 I

1

can be written uniquely as an in�nite word in elements from I

�

if

and only if ! is not of the form �i

1

for any i 2 
 and � 2 I

�

. Let

�

�

: I

1

�

! I

1

�

denote the shift map on I

1

�

. Also, for i 2 
 and ! 2 I

1

�

de�ne

Q

i

(!) :=

8

<

:

n if !

1

= i

n

j forsomen � 1 and j 6= i

0 otherwise:

In [MU1] we obtained that the iterated function system S

�

= f�

!

: ! 2 I

�

g is hyperbolic, and

furthermore that S

�

is regular if and only if S is regular. The shift map �

�

can be interpreted

as the symbolic representation of the system S

�

. As in the previous section, in this section

we shall always assume that S is a tame parabolic �nite iterated function system satisfying

(SSOSC), and that m is the associated conformal measure for S. Clearly, m is also conformal

for S

�

. Hence, there exist Borel probability measures ~m and �

�

on I

1

�

which are equivalent

to eachother (with uniformly bounded Radon-Nikodym derivatives) such that m = ~m � �

�1

and �

�

� (�

�

)

�1

= �

�

(see [MU1]). For � 2 IR, i 2 
 and n � 1, we de�ne

A

i;n

(�) :=

�

! 2 I

1

�

: Q

i

(!) � n

p

i

h+(h�1)p

i

��

�

and

A

i;1

(�) := f! 2 I

1

�

: �

�n

(!) 2 A

i;n

(�) for in�nitely many ng:

Lemma 4.4. For i 2 
 and � 2 IR we have that ~m(A

i;1

(�)) > 0 if and only if � � 0.

Proof. Using the de�nition of ~m and the conformality of m, we obtain

X

n�1

�

�

((�

�

)

�n

(A

i;n

(�))) =

X

n�1

�

�

(A

i;n

(�)) =

X

n�1

~m(A

i;n

(�))

=

X

n�1

X

k�n

p

i

h+(h�1)p

i

��

k

�

p

i

+1

p

i

h

�

X

n�1

n

�1+�

h+(h�1)p

i

p

i

:

(4.20)

Since we have that h + (h� 1)p

i

> 0 (see [MU2]), it follows that the series

X

n�1

�

�

((�

�

)

�n

(A

i;n

(�)))

converges for � < 0. Thus, the "weaker part of the Borel-Canteli lemma" gives that �

�

(A

i;1

(�)) =

0, which then implies that ~m(A

i;1

(�)) = 0. This proves one direction of the equivalence in

the lemma.



24 BERND O. STRATMANN AND MARIUSZ URBA

�

NSKI

In order to prove the remaining part of the lemma, recall the following well-known result

from elementary analysis.

� Let (X

n

)

n2N

be a sequence of events in a probability space (X;P ). If

P

n2N

P (X

n

) =1

and if P (X

n

\X

k

)� P (X

n

)P (X

k

) for all distinct n; k 2 N , then P (lim sup

n!1

X

n

)� 1.

By using once more formula (4.20), the `if-part' of the lemma follows from this general result

once we have shown that for all n; k 2 IN with n > k we have that

~m

�

(�

�

)

�k

(A

i;k

(�)) \ (�

�

)

�n

(A

i;n

(�))

�

� ~m

�

(�

�

)

�k

(A

i;k

(�))

�

~m

�

(�

�

)

�n

(A

i;n

(�))

�

:

Since �

�

and ~m are equivalent, and since �

�

is �

�

-invariant, it follows that in order to obtain

this latter inequality it is su�cient to show that

~m

�

A

i;k

(�) \ (�

�

)

�(n�k)

(A

i;n

(�))

�

� ~m(A

i;k

(�)) ~m(A

i;n

(�)):

Since the set A

i;k

(�) can be written as a union of S

�

-cylinders of length 1, it can be written also

as a union of cylinders of length (n � k). If A

i;k

(�) =

S

B

k

(�) denotes such a representation

by cylinders of length (n�k), then by the �

�

-invariance of �

�

and by the Bounded Distortion

Property (7) and the conformality of m, we have for each ! 2 A

i;n

(�) and � 2 B

k

(�) that

~m

�

(�

�

)

�k

(A

i;k

(�)) \ (�

�

)

�n

(A

i;n

(�))

�

� ~m

�

(�

�

)

�(n�k)

(A

i;n

(�)) \B

k

(�)

�

� j�

0

�

(�(!))j

h

~m(A

i;n

(�)) \ (�

�

)

n�k

(B

k

(�))):

This implies that

~m((�

�

)

�(n�k)

(A

i;n

(�)) \ B

k

(�))

~m(B

k

(�))

�

j�

0

�

(�(!))j

h

~m(A

i;n

(�))

j�

0

�

(�(!))j

h

= ~m(A

i;n

(�));

or equivalently that

~m((�

�

)

�(n�k)

(A

i;n

(�)) \ B

k

(�)) � ~m(A

i;n

(�)) ~m(B

k

(�)):

If in this latter inequality we sum up over all sets B

k

(�), then we obtain that

~m((�

�

)

�(n�k)

(A

i;n

(�)) \ A

i;k

(�)) � ~m(A

i;n

(�)) ~m(A

i;k

(�));

which in particular gives the desired inequality.

Lemma 4.5. For i 2 
 and � � 0 we have that ~m(A

i;1

(�)) = 1:

Proof. Let i 2 
 and � > 0 be �xed. Clearly, we have that �

�

(A

i;1

(�)) � A

i;1

(�). Hence,

using the ergodicity of the map �

�

and the previous lemma, the statement of the lemma

follows.

Theorem 4.6. (Limit Law (I)) For ~m-almost every ! 2 I

1

�

and for all i 2 
 we have that

lim sup

n!1

logQ

i

((�

�

)

n

(!))

logn

=

p

i

h + (h� 1)p

i

:
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Proof. In order to obtain the lower bound for the `lim sup' in the lemma, �x some i 2 


and note that by Lemma 4.5 we have that ~m(A

i;1

(0)) = 1. If ! 2 A

i;1

(0), then by de�nition,

there exists a sequence (k

j

)

j2IN

of natural numbers k

j

, such that (�

�

)

k

j

(!) 2 A

i;k

j

(0) for all

j 2 N . This implies for all j that

Q

i

((�

�

)

k

j

(!)) � k

p

i

=(h+(h�1)p

i

)

j

;

and hence that

lim sup

n!1

logQ

i

((�

�

)

n

(!))

logn

�

p

i

h+ (h� 1)p

i

:

In order to obtain the upper bound for the `lim sup' in the lemma, let � < 0 and i 2 
.

By Lemma 4.4, there exists a set F

i

(�) such that ~m(F

i

(�)) = 1, and such that if ! 2 F

i

(�)

then there exists a number n

0

= n

0

(!) 2 IN with the property that (�

�

)

n

(!) =2 A

i;n

(�) for all

n � n

0

. Hence, for ! 2 F

i

(�) we have for all n � n

0

that

lim sup

n!1

logQ

i

((�

�

)

n

(!))

logn

�

p

i

h+ (h� 1)p

i

� �:

If we put F

i

=

T

n�1

F

i

(�

1

n

), then ~m(F

i

) = 1 and for each ! 2 F

i

we have that

lim sup

n!1

logQ

i

((�

�

)

n

(!))

logn

�

p

i

h+ (h� 1)p

i

:

Hence, for ! 2 A

i;1

(0) \ B

i

we obtain the equality stated in the theorem.

Note that if Q

i

(!) = n, then it follows from (3.3) that jx

i

� �(!)j � (n + 1)

�1=p

i

. This now

leads to our second limit law.

Theorem 4.7. (Limit Law (II)) For ~m-almost every ! 2 I

1

�

we have for all i 2 
 that

lim sup

n!1

� log j(�

�

)

n

(!)� x

i

j

logn

=

1

h+ (h� 1)p

i

:

Proof. Fix ! 2 I

1

�

and i 2 
. By de�nition of Q

i

and using (3.3), we have for n 2 IN that

j�((�

�

)

n

(!))� x

i

j � (Q

i

((�

�

)

n

(!)) + 1)

�1=p

i

:

Hence, it follows that

lim

n!1

�

�

�

�

�

� log j�((�

�

)

n

(!))� x

i

j

logn

�

logQ

i

((�

�

)

n

(!))

p

i

logn

�

�

�

�

�

= 0:

Using Limit Law (I), we obtain for ~m-almost all ! 2 I

1

�

that

lim sup

n!1

� log j�((�

�

)

n

(!))� x

i

j

logn

=

1

p

i

lim sup

n!1

logQ

i

((�

�

)

n

(!))

logn

=

1

h+ (h� 1)p

i

:
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Since ~m is ergodic and positive on non-empty open sets, we have that ~m-almost every point

in I

1

�

has arbitrarily long blocks with parabolic entries only. Taking this observation into

account, we now modify on a set of full measure the de�nition of the hyperbolic zoom (r

j

(!))

j

as follows. For a given i 2 
 we include only those elements in the hyperbolic zoom for which

n

j

(!) � n

j�1

(!) + 2 and i(!; j) = i. With other words, we consider subsequences (r

j

k

(!))

k

and (n

j

k

(!))

k

, such that n

j

k

(!) � n

j

k

�1

(!) + 2 and !

n

j

k

�1

(!)

= i. A subsequence of this type

will be referred to as the i-restricted hyperbolic zoom, and the i-restricted optimal sequence

respectively.

Theorem 4.8. (Limit Law (III)) For each i 2 
 the i-restricted optimal sequence at ~m-

almost every ! 2 I

1

�

has the property that

lim sup

k!1

log(n

j

k

+1

(!)� n

j

k

(!))

log j

k

=

p

i

h+ (h� 1)p

i

:

Proof. Let i 2 
 and ! 2 I

1

�

. De�ne the function N

n

: I

1

�

! IN by (�

�

)

n

(!) = �

N

n

(!)

(!),

for every n � 1. Then we have by induction that N

j

(!) = n

j

(!), for all j 2 IN (this

follows, since n

1

(!) = N

1

(!) and, assuming that n

j

(!) = N

j

(!), since n

j+1

(!) = n

j

(!) +

N

1

(!)(�

n

j

(!)

(!)) = N

j+1

(!)).

Using Limit Law (II) and the fact that j�(�

N

j

k

(!)

(!))� x

i

j � (N

j

k

+1

(!)�N

j

k

(!))

�1=p

i

, it

follows that for ~m-almost all ! we have that

lim sup

k!1

log(n

j

k

+1

(!)� n

j

k

(!))

log j

k

= lim sup

k!1

log(N

j

k

+1

(!)�N

j

k

(!))

log j

k

= lim sup

k!1

�p

i

log j�(�

N

j

k

(!)

(!))� x

i

j

log j

k

= lim sup

k!1

�p

i

log j�((�

�

)

j

k

(!))� x

i

j

log j

k

=

p

i

h + (h� 1)p

i

:

Theorem 4.9. (Limit Law (IV)) For each i 2 
 the i-restricted hyperbolic zoom at ~m-almost

every ! 2 I

1

�

has the property that

lim sup

k!1

log (r

j

k

(!) = r

j

k

+1

(!))

log j

k

=

1 + p

i

h+ (h� 1)p

i

:

Proof. For i 2 
 and ! 2 I

1

�

we already saw in the proof of Theorem 3.5 that for k 2 IN

we have that

r

j

k

(!)

r

j

k

+1

(!)

� (n

j

k

+1

(!)� n

j

k

(!))

(1+p

i

)=p

i

:
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Combining this estimate and Limit Law (III), it follows for ~m-almost all ! 2 I

1

�

that

lim sup

k!1

log (r

j

k

(!) = r

j

k

(!))

log j

k

= lim sup

k!1

1 + p

i

p

i

log(n

j

k

+1

(!)� n

j

k

(!))

log j

k

=

1 + p

i

h+ (h� 1)p

i

:

The following theorem presents the main results in this section.

Theorem 4.10. (The Khintchine Limit Law for parabolic iterated function systems) The

hyperbolic zoom at ~m-almost every ! 2 I

1

�

has the property that

lim sup

j!1

log (r

j

(!) = r

j+1

(!))

log log

1

r

j

(!)

=

1 + p

max

h + (h� 1)p

max

;

where we have set p

max

:= maxfp

i

: i 2 
g.

Proof. Observe that for ~m-almost all ! 2 I

1

�

we have that

lim

j!1

log r

j

(!)

j

= lim

j!1

log j�

0

n

j

(!)

(�(�

n

j

(!)

(!)))j

j

= lim

j!1

log j�

0

N

j

(!)

(�(�

N

j

(!)

(!)))j

j

= lim

j!1

log j�

0

N

j

(!)

(�(�

�

)

j

(!))j

j

= �;

where the latter equality follows from the Birkho� Ergodic Theorem, using the facts that

(I

1

�

; �

�

; �

�

) is an ergodic system and that

� :=

Z

I

1

�

log j�

0

!

1

(�(�

�

)(!))j dm

�

(!) > �1:

Hence, we have that

lim

j!1

log log

1

r

j

(!)

log j

= 1:

Now the theorem follows by combining this equality and Limit Law (IV), and noting that

max

i2


1 + p

i

h + (h� 1)p

i

=

1 + p

max

h+ (h� 1)p

max

:

Corollary 4.11. For the function � of the h-conformal measure m (see Theorem 3.5) asso-

ciated with a tame parabolic �nite iterated function system satisfying (SSOSC) the following

holds.
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(i): For h = 1, we have for all ! 2 I

1

�

and 0 < r < diam(I

1

�

) that

�(!; r) � 1:

(ii): For h < 1, we have for ~m-almost every ! 2 I

1

�

that

lim sup

r!0

log �(!; r)

log log

1

r

=

(1� h)p

max

h+ (h� 1)p

max

:

(iii): For h > 1, we have for ~m-almost every ! 2 I

1

�

that

lim inf

r!0

log �(!; r)

log log

1

r

=

(1� h)p

max

h+ (h� 1)p

max

:

Proof. The statement (i) of the corollary is an immediate consequence of Theorem 3.5. In

order to prove the statement (ii), let ! 2 I

1

�

and r > 0 su�ciently small be given. Without

loss of generality we may assume that r

j+1

(!) � r < r

j

(!) and that !

n

j

(!)+1

= i, for some

i 2 
. For r in this range, an elementary calculation shows that the maximal value of �(!; r)

is achieved if r is comparable to r

j;max

(!) := r

j

(!)

�

r

j+1

(!)

r

j

(!)

�

1=(1+p

i

)

. For this value of r we have

that

�(!; r

j;max

(!)) �

 

r

j

(!)

r

j+1

(!)

!

(1�h)p

i

=(1+p

i

)

:

As we have seen above in the proof of the Khintchine law, for ~m-almost all ! 2 I

1

�

it is

su�cient to restrict the discussion to those indices j for which !

n

j

(!)

= i, with p

i

= p

max

. It

follows that for all � > 0 and for m-almost all ! 2 I

1

�

we eventually have that

(1� �) (1 + p

i

)

h+ (h� 1)p

i

log log

1

r

j

(!)

�

i:o:

log

r

j

(!)

r

j+1

(!)

�

(1 + �)(1 + p

i

)

h + (h� 1)p

i

log log

1

r

j

(!)

(where `�

i:o:

' indicates that the inequality holds `in�nitely often', i.e. for some in�nite subse-

quence (r

j

i

(!)=r

j

i

+1

(!))

i

). Hence, the above estimate implies that

 

log

1

r

j

(!)

!

(1��)(1�h)p

max

=(h+(h�1)p

max

)

�

i:o:

�(!; r

j;max

(!))�

 

log

1

r

j

(!)

!

(1+�)(1�h)p

max

=(h+(h�1)p

max

)

:

This proves the statement (ii) in the corollary. The statement (iii) follows from a similar

argument, and we omit its proof.

We are now in the position to derive a re�nement of the description of the geometric nature

of the h-conformal measure given in Theorem 3.8 . Namely, using the latter corollary, we

have the following statements concerning its relationship to the packing measure P

 

�

and
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Hausdor� measure H

 

�

with respect to the dimension function  

�

. Here, the function  

�

is

given for � 2 IR and positive r by

 

�

(r) := r

h

�

log

1

r

�

(1+�)(1�h)p

max

=(h+(h�1)p

max

)

:

Corollary 4.12. If S is a regular tame parabolic iterated function system satisfying (SSOSC),

then we have the following table.

� vs: h h < 1 h > 1

� > 0 m << H

 

�

and H

 

�

(J) =1 9E

�

; m(E

�

) = 1 s.t. P

 

�

(E

�

) = 0

� � 0 9F

�

; m(F

�

) = 1 s.t. H

 

�

(F

�

) = 0 m << P

 

�

and P

 

�

(J) =1

The symbol `<<' indicates absolute continuity between two measures.
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