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Abstract. We consider sequences of row�wise sums of triangular schemes

of f0; 1g�valued dependent random variables. We introduce su�cient con-

ditions that this sequences obey a Poisson limit law. The conditions are

stated in terms of vanishing quantities which give rise to explicite bounds

for the quality of the approximation.

1. Introduction

For a triangular scheme of f0; 1g�valued random variables

fY

n

i

: 1 � i � k

n

; n 2 Ng;

where (k

n

) is an increasing sequence of natural numbers, we are interested in

the asymptotic behaviour of the distribution of the random variable Y (n) :=

P

k

n

i=1

Y

n

i

, as n tends to in�nity.

First, let us recall the classical Poisson limit law: Consider the special

case of the scheme fY

n

i

� B(p

n

) : n 2 N ; 1 � i � ng of (row�wise) independed

identically Bernoulli distributed random variables with success probability

p

n

2 (0; 1) obeying np

n

! � > 0 as n ! 1. Then the distribution of Y (n)

converges weakly to the Poisson distribution with parameter �, i.e for all

k 2 N

0

P(Y (n) = k)! p

�

(k);

where

p

�

(k) :=

8

<

:

�

k

k!

e

��

for k 2 N

0

;

0 else:

We then say Y (n) obeys a Poisson limit law with parameter �.
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Le Cam (1960) proved the following estimate: Let Y

n

i

� B(p

n

i

) be mutually

independent, and �(n) :=

P

k

n

i=1

p

n

i

. Then

1

X

k=0

�

�

P(Y (n) = k)� p

�(n)

(k)

�

�

� 2

k

n

X

i=1

P(Y

n

i

= 1)

2

:(1)

Suppose the following two conditions are satis�ed.

(A) �"

n

:= max

1�i�k

n

fP(Y

n

i

= 1)g ! 0 as n!1.

(B) There exists a constant � > 0 such that

b"

n

:=

�

�

�

�

�

k

n

X

i=1

P(Y

n

i

= 1)� �

�

�

�

�

�

! 0 as n!1:

From this one easily deduces that Y (n) obeys a Poisson limit law with pa-

rameter �.

In this spirit bounds for the `error sum' have been provided by Ser�ing

(1975) also for the case of dependent Bernoulli random variables. Again, van-

ishing `error sums' guarantee weak convergence, though it is a much stronger

statement.

Slightly earlier Sevast'yanov (1972) introduced the conditions (A) and (B)

together with the following condition.

(C1) For r � 2 and n � 1 there is a family of (rare) sets I

n

(r) � J

n

(r), where

J

n

(r) := f(i

1

; : : : ; i

r

) : i

j

2 f1; : : : ; k

n

g; j < k ) i

j

< i

k

g;

such that for �xed r

"

n

(r) :=

X

(i

1

;::: ;i

r

)2I

n

(r)

P(Y

n

i

1

= 1; : : : ; Y

n

i

r

= 1)! 0 as n!1;

"

�

n

(r) :=

X

(i

1

;::: ;i

r

)2I

n

(r)

P(Y

n

i

1

= 1) � � �P(Y

n

i

r

= 1)! 0 as n!1;

and for the (residual) set I

�

n

(r) := J

n

(r)nI

n

(r) the quantity

�

n

(r) := sup

(i

1

;::: ;i

r

)2I

�

n

(r)

�

�

�

�

P(Y

n

i

1

= 1; : : : ; Y

n

i

r

= 1)

P(Y

n

i

1

= 1) � � �P(Y

n

i

r

= 1)

� 1

�

�

�

�

converges to 0 as n ! 1. (Subsequently we need the convention

�

n

(r) := 0 whenever I

�

n

(r) = ;.)

These conditions allow Sevast'yanov to apply the `method of moments' to

show that Y (n) obeys a Poisson limit law with parameter �. However, this

does not provide any explicit bound for the error terms. Nevertheless, the

above conditions are very useful for applications, as they are easily veri�ed

and are weaker than the condition, that the error terms provided by Ser-

�ing (1975) are vanishing. For instance quantitative recurrence properties of
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dynamical systems have been investigated by this means by Pitskel (1991),

Denker (1994), Kesseböhmer (1996) and Kesseböhmer/Stratmann (2000).

The aim of this paper is to use a slightly more general than condition

(C1) for an arbitrary triangular scheme of f0; 1g�valued random variables

(cf condition (C2) below) to derive a Poisson limit law for the row�wise sum,

and at the same time give explicite bounds for the error terms as a (linear)

function of the vanishing quantities de�ned in these conditions.

Since condition (C1) implies our condition (C2), we can immediately em-

ploy our theorem to derive estimates on the speed of convergence whenever

the theorem of Sevast'yanov has successfully been applied (cf Corollary 1).

2. Main Results

To state the main results we introduce the following condition, which

slightly generalize condition (C1).

(C2) With the notation from (C1) we have for �xed r � 2 that "

n

(r), "

�

n

(r),

and

"

�

n

(r) :=

X

(i

1

;::: ;i

r

)2I

�

n

(r)

�

�

P(Y

n

i

1

= 1; : : : ; Y

n

i

r

= 1)� P(Y

n

i

1

= 1) � � �P(Y

n

i

r

= 1)

�

�

all converge to 0 as n!1.

Theorem 1. Under the conditions (A), (B) and (C2) Y (n) obeys a Poisson

limit law with parameter �, and for all k 2 N

0

we have

jP(Y (n) = k)� p

�

(k)j � E

n

(k) + E

n

(k � 1) + 2�"

n

(�+ "̂

n

) + 2"̂

n

! 0;

where

E

n

(k) :=

�

"

n

(k + 1) + "

�

n

(k + 1) + "

�

n

(k + 1) for k � 1;

0 else:

Note that (B) and (C1) imply (C2), since

"

�

n

(r) � �

n

(r)

X

(i

1

;::: ;i

r

)2I

�

n

(r)

P(Y

n

i

1

= 1) � � �P(Y

n

i

r

= 1)

� �

n

(r)(r!)

�1

 

k

n

X

i=1

P(Y

n

i

= 1)

!

r

! 0 as n!1:

Thus, as an immediate consequence we derive the following corollary.

Corollary 1. Under the conditions (A), (B) and (C1) Y (n) obeys a Pois-

son limit law with parameter �, and for all k 2 N

0

we have

jP(Y (n) = k)� p

�

(k)j � E

0

n

(k) + E

0

n

(k � 1) + 2�"

n

(�+ "̂

n

) + 2"̂

n

! 0;
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where

E

0

n

(k) :=

8

<

:

"

n

(k + 1) + "

�

n

(k + 1) + �

n

(k + 1)

(�+ "̂

n

)

k+1

(k + 1)!

for k � 1;

0 else:

Proof of Theorem 1. Consider the triangular scheme of f0; 1g�valued inde-

pendent random variables fX

n

i

: 1 � i � k

n

: n 2 Ng

1�i�k

n

with

P(X

n

i

= 1) = P(Y

n

i

= 1) for i = 1; : : : ; k

n

. Set X(n) :=

P

k

n

i=1

X

n

i

and

�(n) :=

P

k

n

i=1

P(X

n

i

= 1). The inequality (1) of Le Cam gives

1

X

k=0

�

�

P(X(n) = k)� p

�(n)

(k)

�

�

� 2

k

n

X

i=1

(P(X

n

i

= 1))

2

:

By using (A) and (B) we conclude

1

X

k=0

jP(X(n) = k)� p

�

(k)j �

1

X

k=0

�

�

p

�

(k)� p

�(n)

(k)

�

�

+2

k

n

X

i=1

(P(X

n

i

= 1))

2

� 2"̂

n

+ 2�"

n

(�+ "̂

n

):(2)

Since for any N

0

�valued random variable Z we have

P(Z = k) = P(Z > k � 1)� P(Z > k)

we are left to show that

jP(Y (n) > k � 1)� P(X(n) > k � 1)j � E

n

(k � 1):(3)

This inequality is for k = 0 trivially ful�lled. For k > 0 we have

P(Y (n) > k � 1) =

X

J

n

(k)

P(Y

n

i

1

= � � � = Y

n

i

k

= 1);

P(X(n) > k � 1) =

X

J

n

(k)

P(Y

n

i

1

= 1) � � �P(Y

n

i

k

= 1):

Thus, (3) is also ful�lled for k = 1. Finally we consider the case k > 1. We

use the condition (C2) to obtain
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jP(Y (n) > k � 1)� P(X(n) > k � 1)j

=

�

�

�

�

�

�

X

J

n

(k)

P(Y

n

i

1

= � � � = Y

n

i

k

= 1)� P(Y

n

i

1

= 1) � � �P(Y

n

i

k

= 1)

�

�

�

�

�

�

=

�

�

�

�

�

�

0

@

X

I

n

(k)

+

X

I

�

n

(k)

1

A

P(Y

n

i

1

= � � � = Y

n

i

k

= 1)� P(Y

n

i

1

= 1) � � �P(Y

n

i

k

= 1)

�

�

�

�

�

�

� "

n

(k) + "

�

n

(k) +

�

�

�

�

�

�

X

I

�

n

(k)

P(Y

n

i

1

= � � �= Y

n

i

k

= 1)� P(Y

n

i

1

= 1) � � �P(Y

n

i

k

= 1)

�

�

�

�

�

�

� "

n

(k) + "

�

n

(k) + "

�

n

(k) = E

n

(k � 1):

The inequalities (2) and (3) yield the theorem.

There are important applications where an even stronger condition than

(C1) is ful�lled:

(C3) With the notation from (C1) we �nd sequences �

n

, �

�

n

, and ��

n

such that

1

X

r=2

"

n

(r) � �

n

! 0 as n!1;

1

X

r=2

"

�

n

(r) � �

�

n

! 0 as n!1;

sup

r�2

�

n

(r) � ��

n

! 0 as n!1:

The next corollary demonstrates how condition (C3) can be used to improve

the result of Theorem 1.

Corollary 2. Consider the conditions (A), (B) and (C3). Then we have

1

X

k=0

jP(Y (n) = k)� p

�

(k)j � 2�

n

+ 2�

�

n

+ 2��

n

exp (�+ "̂

n

)

+2"̂

n

+ 2�"

n

(�+ "̂

n

)! 0 as n!1:

Proof. The condition (C3) guarantees that E

0

n

(k) is summable over k and

the sum is less than �

n

+ �

�

n

+ ��

n

exp (�+ "̂

n

). Hence, by taking inequality

(2) into consideration the corollary follows from Theorem 1.
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