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Abstract

This paper presents a topological conjecture and demonstrates that its

con�rmation would establish the existence of approximate equilibria in all

quitting games. A quitting game is an un-discounted stochastic game with

�nitely many players where every player has only two moves, to end the game

with certainty or to allow the game to continue. If nobody ever acts to end

the game, all players receive payo�s of 0.
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1 Introduction and Background

A stochastic game is played in stages. At every stage the game is in some

state of the world, known by all players. The action combination that was

chosen by all the players, together with the current state, determine the stage

payo� that each player receives and the probability distribution according to

which the new state of the game is chosen.

For any � � 0, an �-equilibrium in a game is a set of strategies, one

for each player, such that no player can gain in payo� by more than � by

choosing a di�erent strategy, given that all the other players do not change

their strategies. An equilibrium is an �-equilibrium for � = 0. We say that

approximate equilibria exist if for every � there exists an �-equilibrium. The

un-discounted payo� of a player in a game with in�nitely many playing stages,

when well de�ned, is a limit as the number of stages goes to in�nity of the

player's expected average payo�.

A state is absorbing if once it is reached, the probability to leave it,

whatever the players do, is zero. A recursive game is a stochastic game

where the payo� for the players in all the non-absorbing states is identically

0, whatever the players do.

An outstanding open question of game theory is whether all un-discounted

stochastic games with �nitely many states and moves have approximate equi-

libria. The interest in this question has been made acute by the proof by N.

Vieille (1997a,b) of the existence of approximate equilibria for all two-person

un-discounted stochastic games with �nitely many states and moves. In this

paper, we consider a special class of recursive stochastic games with only one

non-absorbing state, called quitting games, introduced by Solan and Vieille

(1998a). In a quitting game each player at the non-absorbing state has only

two moves, c for continue and q for quit. As soon as one or more of the

players at any stage chooses q, the game stops (enters an absorbing state)

and the players receive their payo�s, which are determined by the subset of

players that choose simultaneously the move q. As long as no player has

stopped the game, all players receive a payo� of zero.

In this paper we show that all quitting games have approximate equilibria

if the following topological conjecture is true:

Let E be a Euclidean space and C a ball in E of the same dimension.

Let G � C � E be a compact set such that
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1) for every c 2 C fy 2 E j (c; y) 2 Gg is a non-empty contractible set, and

2) for every c 2 C there is a y 2 C such that (c; y) 2 G.

Let J : G� [0; 1]! E � E be a continuous function (homotopy) such that

3) for every c 2 �C and (c; y) 2 G J((c; y); t) = (c; y) for all t 2 [0; 1].

De�ne F := J(G; 1) � E � E.

Conjecture: There exist a sequence x

0

; x

1

; ::: in E such that (x

i�1

; x

i

) 2 F

for all i � 1.

It is not clear why quitting games should have approximate equilibria,

and the existing results concerning this question are limited.

With regard to stochastic games with only one non-absorbing state, E.

Solan (1997) proved that all such three player games have approximate equi-

libria. There is a proof of approximate equilibria by Solan and Vieille (1998a)

for a subset of quitting games, but it involves very restricted conditions on

the payo�s.

There are proofs by Solan and Vieille (1998b) and by Solan and Vohra

(1999) of the existence of approximate correlated equilibria for quitting games.

The Solan and Vieille proof is for all stochastic games with �nitely many

states and moves, and the Solan and Vohra proof is strictly for games with

only one non-absorbing state, however showing a special type of correlated

equilibrium. A correlation device is a machine that takes signals from the

players and gives back strategy suggestions to the players. This process

describes a correlated equilibrium when the players can do no better that

the suggestions they receive (when their choices of signals are included in

their strategy spaces). What makes a correlated equilibrium, and the rea-

son why it tends not to be a genuine equilibrium, is that the machine must

be impartial to the outcome of the game. Because of this impartiality, it

can convexify vector payo�s in the process of choosing an equilibrium solu-

tion for the players. This is a very powerful tool, allowing correspondences

with closed graphs to become convex valued, and therefore, by the Vietoris

mapping theorem, equivalent to continuous functions with regard to some

topological properties.

The complexity of quitting games lies in the potentially large number

of players involved. Even with four players, it is not clear why all quitting

games should have approximate equilibria. The players can be paired in two

teams, such that if a player decides to stop he gives himself a payo� of 1,
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gives his partner in the team a payo� of 10, and gives the other two players

payo�s of 0. This could lead conceivably to a lack of an �-equilibrium for

some � for the following reason. For any proposed �-equilibrium one must ask

why the player partnered with the one who stops with the highest probability

(with respect to the start of the game) would ever wish to stop the game.

If the answer is indeed that he should never choose the move q, then the

partner who stops with the highest probability should either stop the game

immediately or he should be the only player who stops the game. One can

choose appropriate payo�s for the players in the event of two or more players

stopping at the same time such that this situation would never describe an

�-equilibrium for su�ciently small �.

In general, the future expected payo�s for the players from an approxi-

mate equilibrium cannot remain constant as the stages of the game progress.

There is a four player example by Solan and Vieille (1998a) with some pair

�; � > 0 such that no �-equilibrium exists with the property at every stage

every player quits the game with probably no greater than �. For this exam-

ple there does exist approximate equilibria, and indeed for su�ciently small

� the future expected payo�s of any �-equilibrium change dramatically with

the progression of stages.

There is, however, a strong connection between quitting games and an-

other area of game theory usually not associated with stochastic games {

structure theorems used to establish stability properties of one-shot games.

We remind the readers of the main theorem of Mertens and Kohlberg, (1986).

Let N be a player set, (A

j

j j 2 N) the �nite sets of actions for the players, X

the space of all jA

1

j�: : :�jA

jN j

j matrices with vector payo� entries fromR

N

.

For any x 2 X let �

x

be the one shot game de�ned by the matrices deter-

mined by x. Let

~

A be

Q

j2N

�(A

j

), the strategy space, (where �(A

j

) is the

simplex of probability distributions on A

j

). Let E : X !!

~

A be the corre-

spondence de�ned by E(x) := fy 2

~

A j y is an equilibrium of the game �

x

g.

Let � : X �

~

A ! X be the canonical projection. The structure theorem of

Kohlberg and Mertens states that there is a homotopy H(�; �) from X� [0; 1]

to X �

~

A such that � � H(x; 0) = x for all x 2 X, the image of H(�; 1)

is exactly the graph of the correspondence E, and the homotopy H can be

extended continuously to the one-point compacti�cation of X. (We have

slightly modi�ed the structure theorem, using the fact that

~

A is convex.)

For a quitting game, we can consider the following matrix: in all positions
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where at least someone has chosen q the corresponding absorbing payo� vec-

tor is placed. Where all players choose the move c we place a variable vector

payo� x 2 R

N

that represents the future expected payo�. We could consider

what structure theorems could say about the equilibrium correspondence

that lies over this subspace isomorphic to R

N

.

There are two problems with the above approach. First, we must un-

derstand how the equilibrium corresondences obtained from the structure

theorem behaves on subspaces of X. Even more critical is how the equilib-

rium correspondence behaves on subsets of vectors that are realized through

long term play. Second, as long as some player can receive more than a payo�

of zero by stopping the game alone, the part of the equilibrium correspon-

dence where every player chooses q with zero probability is useless to the

construction of an approximate equilibrium. Removing these parts of the

equilibrium correspondence may destroy important topological properties.

To overcome the two above mentioned problems of applying the Kohlberg-

Mertens structure theorem, we prove a new version of the structure theorem

that is especially suited to quitting games. In particular, we marginalize those

points of the equilibrium correspondence that involve zero probability for the

move q. This marginalization is the key step in proving that a con�rmation

of the topological conjection implies the existence of approximate equilibria.

The rest of this paper is organized as follows. The next section presents

the formal model of quitting games and de�nes more precisely the challenge

of proving the existence of approximate equilibria. The third section proves

our version of the structure theorem as suited to quitting games. The fourth

section establishes the connection between the topological conjecture and

the existence of approximate equilibria. The last section considers questions

related to the topological conjecture.

2 The Model and the Challenge

By a correspondence F : X !! Y we mean a subset F � X � Y . However

the formulation F : X !! Y re
ects that sometimes we must perceive it as

a multi-function. For any x 2 X we de�ne F (x) to be fy 2 Y j (x; y) 2 Fg.

By R

X

we mean the real vector space whose coordinates are in the set X.

For any r 2 R

X

and x 2 X by r

x

we mean the x coordinate of r. Likewise,

if � is a function taking values in R

X

, by �

x

we mean the function �

x

� �,
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where �

x

stands for the projection to the x-coordinate. If X is de�ned as a

subset of a Euclidean space E, �X will stand for the boundary of X relative

to E. The distance in Euclidean space will be the Euclidean distance.

The following presentation of quitting games is mostly a repetation of

Solan and Vieille (1998a), necessary to make this paper complete.

Let N be the set of players. Due to the above mentioned result of E.

Solan, we can assume that jN j � 4; however, for the sake of completeness

we will assume only that jN j � 2. There is only one non-absorbing state.

Each player at this state has exactly two moves, q and c, q for \quit" and c

for \continue".

A strategy pro�le for the players is a sequence of probabilities (p

i

j i =

0; 1; 2; : : :) such that for every stage i p

i

2 [0; 1]

N

. p

j

i

stands for the probability

that Player j will stop the game (with the move q) at stage i. Let 0 2 R

N

stand for the origin, so that 0 2 [0; 1]

N

means that all players choose the

move c with certainty.

The payo�s are de�ned as follows. For every non-empty subset A � N of

players there is a payo� vector v(A) 2 R

N

. At the �rst stage that any player

chooses the move q and A is the non-empty subset of players that choose

q, the players receive the payo� v(A). This means that Player i receives

v(A)

i

2 R. If nobody plays the move q throughout all stages of play, then

all players receive 0. The vector v 2 R

N

is de�ned by v

i

:= v(fig)

i

for every

i 2 N .

For every r 2 R

N

and p 2 [0; 1]

N

, let a

j

(p) be the expected payo� for

Player j if this player chooses q against the strategies (p

k

jk 6= j) and let

b

j

(p; r) be the expected payo� for Player j from the move c, given that the

other players choose the strategies (p

k

jk 6= j) and the players will receive

the payo� vector r if everyone chooses the move c. One can calculate a

j

(p)

and b

j

(p; r) easily. We have

a

j

(p) =

X

A�Nnfig

v(A [ fig)

j

Y

k 6=j; k2A

p

k

Y

k 6=j; k 62A

(1� p

k

)

and

b

j

(p; r) = r

j

Y

k 6=j

(1� p

k

) +

X

;6=A�Nnfig

v(A)

j

Y

k 6=j; k2A

p

k

Y

k 6=j; k 62A

(1� p

k

):

Every strategy pro�le p = (p

i

j i = 0; 1; 2; : : :) de�nes payo�s (r

i

2

R

N

j i = 0; 1; 2; : : :) for the players. r

j

i

is the future expected payo� for
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player j before the moves are made at the stage i, conditioned on the fact

that all players chose c at all stages before i. This means that r

i

is the

expected payo� vector for the game that begins at stage i.

A strategy pro�le p = (p

i

j i = 0; 1; 2; : : :) is an �-perfect 
-equilibrium if

it is a 
-equilibrium and for every stage i and every player j the following

holds:

i) if p

j

i

> 0, then a

j

(p

i

) � b

j

(p

i

; r

i

)� �,

ii) if p

j

i

< 1 then b

j

(p

i

; r

i

) � a

j

(p

i

)� �, and

iii) for every stage i the probability of q being played after the stage i ap-

proaches the quantity 1.

Solan and Vieille (1998a) discovered an interesting way to generate an �-

perfect 
-equilibrium. One can drop the condition that it is a 
-equilibrium,

and then there is a positive function 
 of � with 
(�) going to zero as � > 0

goes to zero such that either such an above object must be a 
-equilibrium or

there exists a slightly modi�ed 
-equilibrium such that one player ends the

game alone. The underlying justi�cation is the following: either over some

long period of near certain absorption the move toward absorption is due

almost exclusively to the actions of a single player, or over all long periods

of near certain absorption this motion is due to the actions of at least two

players. If the former is true, then there will an approximate equilibrium

resulting from the absorbing behavior of this one actor, and enforced by

punishment in the event that this player refuses to end the game. If the

latter is true, then the passivity of any player cannot prevent absorption and

the stage for stage equilbrium property will imply a su�cient cumulative

equilibrium property for some 
 (that is a constant multiple of a fractional

power of �). Solan and Vieille proved this result for the condition that by

ending the game alone every player receives a positive payo�. However their

proof uses only that every player can be e�ectively punished. Therefore we

can extend their result to the weaker condition that at no stage does any

player j receive an expected payo� more than � below what he can obtain

in response to any punishment strategy of his opponents realizable through

choices in [0; 1]

Nnfjg

. De�ne an �-perfect equilibrium to be as above, with

our additional condition concerning e�ective punishment, but without the

explicit property that it is a 
-equilibrium.

De�ne a function q : [0; 1]

N

! [0; 1] by q(p) := 1 �

Q

j2N

(1 � p

j

). The

function q is the total probability that at least one player chooses the move

q.
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We want to consider correspondences generated by moving backward from

stage i + 1 to stage i through a one shot approximate equilibrium. For any

�; � � 0 we construct correspondences E

�;�

: R

N

!! [0; 1]

N

and F

�;�

:

R

N

!! R

N

in the following way. We set

E

�;�

(r) := fp 2 [0; 1]

N

j p

j

> 0) a

j

(p) � b

j

(p; r)� �;

p

j

< 1) b

j

(p; r) � a

j

(p)� �; q(p) � �g:

For every r 2 R

N

and p 2 [0; 1]

N

de�ne a new member of R

N

, namely

f(r; p) := r

Y

j2N

(1� p

j

) +

X

;6=A�N

v(A)

Y

j2A

p

j

Y

j 62A

(1� p

j

):

We de�ne F

�;�

(r) := ff(r; p) j p 2 E

�;�

(r)g. E

�;�

are the one shot �-equilbria

with at least a � probability of absorption; F

�;�

are their corresonding payo�s.

Remark 1: To prove for all � > 0 that there existences an �-perfect

equilibrium (and therefore that there exists approximate equilibria) it su�ces

to show for all � that there exists a � > 0 such that the correspondence

F

�;�

has an orbit (meaning a sequence x

0

; x

1

; : : : 2 R

N

such that for every

i � 0 (x

i

; x

i+1

) 2 F

�;�

) and such that for every cluster point of the orbit all

players receive payo�s no smaller than � less than what they can guarantee

themselves. Let D be the set of cluster points of such an orbit. Due to the

closure of the sets D and F

�;�

, starting at any y

0

2 D we can construct a

sequence y

0

; y

1

; y

2

; : : : in D such that for every i � 0 we have (y

i+1

; y

i

) 2 F

�;�

.

From the associated probabilities in the corresondence E

�;�

we construct our

�-perfect equilibrium. The explicit argument is contained in Solan and Vieille

(1998a).

3 The Structure Theorem for Quitting Games

The quantity M is de�ned to be 2 + 3max

i2N ; ;6=A�N

jv(A)

i

j. De�ne the

set W := fr j r

j

� v

j

for some j 2 Ng. Let W

�

:= W \ fr j r

j

� 1 for all

j 2 Ng. We �x an � with 0 < � � 1.

De�ne

~

E

0;0

to be that subset of E

0;0

such that the p 2 [0; 1]

N

coordinate

obeys q(p) < 1. De�ne a map � from

~

E

0;0

to R

N

in the following way. Given

any (x; p) 2

~

E

0;0

� R

N

� [0; 1]

N

, we de�ne for every j 2 N

�(x; p)

j

:= f

j

(x; p)�

5NM

2

�

p

j

(1� p

j

)

N

+M

X

k 6=j

p

k

:
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Because we consider only those equilibria with q(p) < 1, the map � is well

de�ned and continuous.

Lemma 1: � is injective. Furthermore (x; 0) 2

~

E

0;0

if and only if x 2

fx 2 R

N

j x

j

� v

j

8j 2 Ng, and if so then �(x; 0) = x and (x; 0) is the only

member of

~

E

0;0

that maps by � to x.

Proof: Let (x; p) and (x̂; p̂) be two distinct equilibria in

~

E

0;0

. Clearly

if p = p̂ then q(p) 6= 1 implies that �(x; p) = �(x̂; p̂) if and only if x = x̂.

Therefore we assume that p 6= p̂, and we assume that j 2 N is a player such

that jp

j

� p̂

j

j = max

k2N

jp

k

� p̂

k

j. Without loss of generality we asssume

that p̂

j

> p

j

, and let t := p̂

j

� p

j

. Suppposing that �(x; p) = �(x̂; p̂), we

will show that Player j with (x; p) has a clear preference for choosing q, a

contradiction.

First, we compare what happens when Player j in both situations chooses

the move q. We get f

j

(x; p) � a

j

(p) > a

j

(p̂)�(1�(1� t)

N�1

)M = f

j

(x̂; p̂)�

(1 � (1 � t)

N�1

)M . The �rst inequality follows because with (x; p) Player

j does not choose q with certainty; the second inequality follows because t

is the largest di�erence in probability used by any player and all di�erences

in payo�s are less than 2M=3; the equality at the end follows because with

(x̂; p̂) Player j chooses q with some positive probability.

Since we have �

j

(x; p) = �

j

(x̂; p̂), we must also have f

j

(x̂; p̂)� f

j

(x; p) >

5NM

2

t

(1�t)

N

�M(N�1)t. Together with the last paragraph we haveM(N�

1)t+(1�(1�t)

N�1

)M > 5NM

2

t

(1�t)

N

. We conclude that (1�(1�t)

N�1

)M >

4NM

2

t

(1�t)

N

:

For a contradiction we need only show that

4Nt

(1�t)

N

�(1�(1�t)

N�1

) > 0 for

all 0 < t � 1, or equivalently that 4Nt+(1�t)

2N�1

�(1�t)

N

> 0. We take the

derivative in t for the function 4N�2N(1�t)

2N�2

+(1�t)

2N�2

+N(1�t)

N�1

,

which is strictly larger than N(1 � t)

N�1

+ (1 � t)

2N�2

for all 0 < t < 1.

Injectivity is proven.

If x

j

� v

j

for all j 2 N , then there exists at least one equilibrium in

~

E

0;0

(x), namely the strategy 0; by the de�nition of � we have that �(x; 0) = x.

If x

j

< v

j

for some j 2 N , then (x; 0) cannot be in

~

E

0;0

, since Player j would

strictly prefer choosing q over the move c. 2

Lemma 2: � is surjective, meaning that it is onto R

N

. Furthermore,

�

�1

is continuous.
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Proof: Let x 2 R

N

be arbitrary, and let � := 1 + maxf0;�v

j

;�x

j

j j 2

Ng. Take any 0 < t < 1 such that NM

2

1

(1�t)

N

> 2� + 2NM . Next consider

the set Y

t

:= f(x; p) j p 2 [0; t]

N

; 8j 2 N a

j

(p) = b

j

(p; x)g. Because t < 1,

given any p 2 [0; t]

N

we have a unique x with (x; p) 2 Y

t

. De�ne for all

p 2 [0; t]

N

x(p) to be that x such that (x(p); p) 2 Y

t

. We see also from t < 1

that x(p) is continuous in p. Consider what happens when � is applied to

the set Y

t

. We de�ne

~

� : [0; t]

N

! R

N

by

~

�(p) := �(x(p); p).

For surjectivity it su�ces to show that there exists a y 2

~

�([0; t]

N

) such

that x

j

� y

j

for all j 2 N and x

j

> y

j

implies that (

~

�

�1

(y))

j

= 0.

For every p 2 [0; t]

N

de�ne support (p) := fj 2 N j p

j

> 0g. By the

choice of t, if p

j

= t then

~

�(p)

j

< �� � 1.

Claim A: For every p 2 [0; t]

N

and every vector s 2 R

support(p)

with

s

j

� 0 for all j 2 support(p) and s

j

6= 0 there is a point p̂ 2 [0; t]

N

with

support(p̂) � support(p) such that the vector

~

�(p̂) �

~

�(p) when restricted

to the support(p) coordinates is a scaler multiple of s by some scaler � with

0 < � � 1, and furthermore if j 62 support(p) then the jth coordinate of

~

�(p̂)�

~

�(p) is negative.

Claim B: For every y 2

~

�([0; t]

N

) and z 2 [��;1)

N

such that z

j

� y

j

for all j 2 N it follows that z is also in

~

�([0; t]

N

).

Claim C:

~

� is a homeomorphism from [0; t]

N

to its image.

Proof of the Claims: Notice that the function

~

� is smooth and that by

considering maximal changes in the payo�s resulting from choosing the move

q we have M=3 <

@

~

�

j

@p

i

< 5M=3 for all i 6= j and

@

~

�

j

@p

j

< �4NM

2

for all j 2 N .

Claims A and B follow directly from the taking of convex combinations of

directional vectors. Claim A results from small decreases in the values of the

coordinates in the support of p, and Claim B results from small increases in

all coordinates of p. Claim C follows from Lemma 1 and the fact, easy to

con�rm, that the Jacobian determinant is bounded uniformly far away from

zero (on the negative side if N is odd).

We assume without loss of generality that x 62

~

�([0; t]

N

). De�ne a function

w from

~

�([0; t]

N

) \

Q

j2N

[��; x

j

] to R by w(z) := max

j2N ; z

j

<x

j
(

~

�

�1

(z))

j

.

By Claim B, we know that (��;��; : : : ;��) is in

~

�([0; t]

N

), and therefore

the domain of w is not empty. By Claim C

~

�

�1

is a continuous function,

therefore w is a lower-semi-continuous function and a minimum value ~w � 0

10



is obtained. If ~w = 0, then we are done. For the sake of contradiction,

we suppose that ~w is positive. From Claim A we can �nd another ẑ in the

domain with an even smaller value for w, a contradiction.

The continuity of �

�1

: R

N

!

~

E

0;0

follows from Claim C and the surjec-

tivity and injectivity of �. 2

Next de�ne � 2 R

N

to be that vector such that for every j 2 N �

j

is the

upper bound for what Player j can obtain in response to all strategy choices

of the other players. This means that �

j

is the min-max value for Player j in

the un-discounted zero-sum game where the payo� to all other players is the

negation of the payo� for Player j and these players in Nnfjg can use only

strategies in [0; 1]

Nnfjg

. This min-max value could be strictly greater than

the max-min value when there are at least two other players. For every 
 � 0

we de�ne

^

Z




to be the set

^

Z




:= fx 2 R

N

j 8j 2 N �

j

� 
 � x

j

� M=3g.

Remark 2: Notice that if for any x 2

^

Z

�

there is a member p of E

0;0

(x)

with q(p) = 1, then there is an �

0

-equilibrium for any �

0

> � such that at the

initial stage the players are requested to play p, following by punishment of

any player j with p

j

= 1 who did not choose q. If there is such an equilibrium

for any x 2

^

Z

�

, we say that there exists an instant �

+

-equilibrium. With

regard to the ultimate goal of this paper, we can assume that there is no

instant �

+

-equilibrium.

Lemma 3: If there is no instant �

+

-equilibrium then there exists an

R > 0 such that x 62 [�R;R]

N

implies that �

�1

(x) 62

^

Z

�

� [0; 1]

N

.

Proof: Since none of the [0; 1]

N

coordinates in E

0;0

\(

^

Z

�

�[0; 1]

N

) obtains

the value of 1 and the graph of the equilibrium correspondence E

0;0

is closed,

we know that these values attain a maximal positive value strictly less than

1, which we de�ne to be w. If w < 19=20, then we set w to be 19=20. We

conclude that R = 10M

2

N

2

=�(1� w)

N

su�ces. 2

Now we can state our version of the structure theorem for quitting games.

Theorem 1: There is a continuous function H(�; �) (homotopy) from

R

N

� [0; 1] to R

N

� [0; 1]

N

such that for all x 2 X

1)H(x; 0) = (x; 0),

2) the image of H(�; 1) is the graph of

~

E

0;0

,

3) for all x in the closure of the complement of W and for all t 2 [0; 1] we

have H(x; t) = (x; 0).

11



Furthermore, if the quitting game has no instant �-equilibrium then

4) there exists an R > 0 such that for any x 62 [�R;R]

N

and t 2 [0; 1] we

have that H(x; t) 62

^

Z

�

� [0; 1]

N

.

Proof: We de�ne the homotopy H : R

N

� [0; 1] ! R

N

� [0; 1]

N

by

H(x; t) := (1 � t)(x; 0) + t(�

�1

(x)). The results follow by the above three

lemmatta. q.e.d.

De�ne �

1

; �

2

: R

N

� [0; 1]

N

! R

N

; [0; 1]

N

to be the projections onto the

two respective spaces, and let the same be true for �

L

; �

R

: R

N

�R

N

! R

N

.

The following proposition is central to understanding the correspondence �.

Proposition 1: Given that 
 < 1=5, if x is within 
 of W

�

then

1) q � �

2

(�

�1

(x)) < 
=4M ,

2) �

j

1

� �

�1

(x) > v

j

� 
=3 and f

j

(�

1

� �

�1

(x); �

2

� �

�1

(x)) > v

j

� 
=6 for all

j 2 N , and

3) if x 2 WnW

�

and x

j

� v

j

then Player j choose q with positive probability,

and for all players k that choose q with positive probability we have �

k

1

�

�

�1

(x) < v

k

+ 
=2, a

k

(�

2

� �

�1

(x)) = f

k

(�

1

� �

�1

(x); �

2

� �

�1

(x)) < v

k

+ 
=6

and x

k

< v

k

+ 
=2.

On the other hand, if x 2 WnW

�

is at least a distance of 
 > 0 from W

�

,

then

4) q � �

2

(�

�1

(x)) > 
�=10N

2

M

2

:

Proof: Let (y; p) 2

~

E

0;0

be de�ned by �(y; p) = x, and let z = f(y; p).

1) Let t be max

j2N

p

j

, and let k be a player such that p

k

= t. By the

initial assumption we have x

k

� v

k

�
. We have x

k

� z

k

�

5NM

2

t

(1�t)

N

+(N�1)Mt

from the de�nition of t and �. We have a

k

(p) = z

k

< v

k

+

2

3

(N � 1)Mt from

considering what happens when Player k chooses q. But all three inequalities

together imply that

5NM

2

t

(1�t)

N

< 
 +

5

3

(N � 1)Mt, which su�ces for our claim.

2) a

j

(p) > v

j

� 
=6 follows directly from Part 1, and therefore the same

holds for z

j

since z

j

� a

j

(p). Also from Part 1 we have b

j

(y; p) < (1 �


=4M)y

j

+ 
=12. From a

j

(p) � b

j

(y; p) we have (1 � 
=4M)y

j

> v

j

� 
=4.

y

j

> v

j

� 
=3 follows from jv

j

j < M=3.

3) For the sake of contradition we suppose that p 6= 0, p

j

= 0 and x

j

� v

j

.

From the de�nition of �, z

j

is no more than v

j

�Mq(p). On the other hand,

from choosing q Player j would receive at least v

j

�

2M

3

q(p), a contradiction.
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Now assuming that j is any player that chooses q, by the de�nition of �

and Part 1 we have x

j

< z

j

+
=4. But also from Part 1 we have z

j

= a

j

(p) <

v

j

+
=6, which implies x

j

< v

j

+
=2. If y

j

were at least v

j

+
=2 then by not

choosing q Player j would receive at least (1�




4M

)(v

j

+




2

)�




4M

M

3

> v

j

+




5

(from 
 < 1=5), a contradition to his receiving no more than v

j

+




6

from

choosing q.

4) We suppose for the sake of contradiction that q(p) � 
�=10N

2

M

2

,

which also means p

j

� 
�=10N

2

M

2

for all j 2 N . The �rst consequence is

that z

j

� a

j

(p) � v

j

� 2
�=30N

2

M for all j 2 N . From the de�nition of

� we have x

j

� z

j

�

5
�M

2

N=10N

2

M

2

�(1�
�=10N

2

M

2

)

N

> z

j

�




2N

for all j 2 N (from � � 1,


 � 1=5, M � 2, and N � 2). But these two inequalities contradict the

initial assumption of x

j

� v

j

� 
=N for some j 2 N . 2

4 From Topological Conjecture to Approxi-

mate Equilibrium Existence

We must construct a sub-correspondence of E

�;


for some positive 
 with

nice topological properties. We will glue the equilibrium correspondence E

0;0

to another correspondence that guarantees su�cient absorption rates. The

same idea with a simpler topological context is in Solan and Vieille (1998a).

We �x � to be �=20NM . Consider the strategy tuple s

j;�

in [0; �]

N

de�ned

by s

j

j;�

:= � and s

k

j;�

= 0 for all k 6= j: Player j chooses q with probability �

and all other players choose c. At a point x 2 W

�

let j 2 N be any player

such that x

j

= v

j

. The strategy tuple s

j;�

will bring the play from x back

into the set W .

We could have a problem, however, with a player who cannot be the only

player choosing the move q. Recall the de�nition of the vector � 2 R

N

. For

any positive 
 de�ne a player j 2 N to be a 
-normal player when �

j

< v

j

+
,

and de�ne N




to be the subset of 
-normal players in N . A player j in N




can be punished e�ectively (relative to the quantity 
) for not ending the

game alone, either immediately or with small probabilities over a protracted

period of time.

Remark 3: For any non 
-normal player j we know that v

j

� �
, since

otherwise the other players could try to punish j by never ending the game
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and we would have �

j

� maxf0; v

j

g, a contradiction. As a consequence, if

no player was 
-normal then all players choosing c at all stages would be

an equlibrium. Therefore in what follows we assume that the set N

�=2

of

�=2-normal players is non-empty.

De�ne r : W ! W

�

to be the canonical nearest point retraction. For

any point x 2 W

�

de�ne A(x) := fi 2 N j x

i

= v

i

g. For all x 2 W we

have A(r(x)) = fi j x

i

� v

i

g. De�ne the function b

W

: W ! [0; 1] by

b

W

(x) = maxf0; 1�

1

�

distance(x;W

�

)g.

De�ne the sets

~

W := fx 2 R

N

j x

j

� v

j

for some j 2 N

�=2

g and

^

W :=

fx 2 R

N

j x

j

� v

j

for some j 62 N

�=2

g, so that

~

W [

^

W = W . De�ne

a correspondence U :

~

W !! [0; 1]

N

by U(x) := convex hullfs

i;�

j i 2

A(r(x)) \ N

�=2

g and another correspondence U

F

:

~

W !! R

N

by U

F

(x) :=

fy j y = f(x; p) for some p 2 U(x)g.

Remark 4: We make additional assumptions on the payo� structure

fv(A) 2 R

N

j ; 6= A � Ng so that the mapping � : U ! U

F

de�ned by

�(x; p) := (x; f(x; p)) is a homeomorphism. We can do this by changing

some coordinate values in fv(A) j ; 6= A � Ng by no more than �NM . (It

su�ces that the determinate is not zero of the matrices de�ned by the entries

a(i; j) := v(fig)

j

+b

i;j

for all b

i;j

with jb

i;j

j � 2�MN=3(1��). The b

i;j

are the

possible distortions in payo�s from two or more players quitting together.) It

follows that an �-perfect equilibrium for the game with the modi�ed payo�s

will be a 11�=10-perfect equilibrium for the original game. Therefore this

additional assumption does not bring us away from our ultimate goal.

By Remark 4 there is a continuous function p : U

F

! [0; 1]

N

such that

p(x; y) is the unique member of [0; 1]

N

with f(x; p(x; y)) = y. We de�ne a

continuous map  

F

: U

F

! R

N

�R

N

by

 

F

(x; y) :=

�

b

W

(x)x + (1� b

W

(x))�

1

� �

�1

(x) ;

f

�

b

W

(x)x+(1�b

W

(x))�

1

��

�1

(x) ; b

W

(x)p(x; y)+(1�b

W

(x))�

2

��

�1

(x)

��

:

Proposition 2: The image of  

F

is in the correspondence F

�=10 ; ��=20N

2

M

2

.

Proof: First we prove the equilibrium property with Cases 1 and 2, and

then the absorbing rate property with Cases a and b. We let (x; y) 2 U

F

be

arbitrary, with �(ŷ; p̂) = x and p̂ = �

2

� �

�1

(x).

14



Case 1; b

W

(x) = 0: The equilibrium property is guaranteed trivially.

Case 2; b

W

(x) > 0: By Part 1 of Proposition 1 we have q(~p) � � for

~p = b

W

(x)p(x; y) + (1� b

W

(x))p̂.

Case 2a; x 62 W

�

:

Let j be any player that chooses q with positive probability from either

the correspondence U or from the p̂. If j acts due to the correspondence U ,

then by the third part of Proposition 1 p̂

j

> 0 also applies. From the second

and third parts of Proposition 1 we have that x

j

and ŷ

j

are both within �=2

of v

j

. The su�cient indi�erence between acting or not acting for Player j

follows by the relationship between � and �.

On the other hand, if a player should choose q with zero probability, the

su�cient acceptability of this choice follows from Part 2 of Proposition 1.

Case 2b; x 2 W

�

:

All quitting behavior comes from the correspondence U . A player j can

choose q with positive probability only if x

j

= v

j

. The rest follows exactly

as with Case 1a.

Case a; b

W

(x) � 1=2: The su�cient absorption rate property follows

from Part 4 of Proposition 1.

Case b; b

W

(x) � 1=2: From the de�nition of U we have an absorption

rate of at least �=3. 2

We must modify the set W and the correspondence U

F

slightly. For any

non �=2-normal player j we would have problems with the subset

^

W

j

:=

fx 2 W j x

j

< v

j

; x

k

� v

k

8k 6= jg �

^

W . Therefore we de�ne the subset

W

]

� W byW

]

:= Wn([

j 62N

�=2

^

W

j

). We de�ne the set C to be [�R;R]

N

\W

]

.

We see that both the sets [�R;R]

N

\W and C are homeomorphic to jN j-

dimensional balls. (In both cases, they are star shaped sets with the point

(�R + 1;�R + 1; : : : ;�R + 1) as a center.)

De�ne the vector v̂ 2 R

N

by v̂

j

= v

j

if j is �=2-normal and v̂

j

= 2M if j

is not �=2-normal. We will call the trivial correspondence any corresondence

which maps its domain to the singleton fv̂g.

De�ne the set H to be the closure of Wn(

~

W \ C). De�ne the function

b

H

:

~

W \ C ! [0; 1] by b

H

(x) = maxf0; 1�

1

�

distance(x;H)g.

Now de�ne the correspondence

~

U

F

:

~

W \ C !! R

N

by

~

U

F

(x) :=

b

H

(x)fv̂g+(1�b

H

(x))U

F

(x). By the same argument in Remark 4 we can as-
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sume that there exists a continuous function y : f(x; y) 2

~

U

F

j b

H

(x) < 1g !

[�M;M ]

N

such that y = (1� b

H

(x))y(x; y) + b

H

(x)v̂ with (x; y(x; y)) 2 U

F

.

For the sake of formality, if b

H

(x) = 1, let y(x; y) be any vector in [�M;M ]

N

.

Since y is bounded, we have a continuous function

~

 :

~

U

F

! R

N

�R

N

de�ned

by

~

 (x; y) := (1� b

H

(x)) 

F

(x; y(x; y)) + b

H

(x)b

W

(x)(x; v̂)+

b

H

(x)(1� b

W

(x))

�

�

1

� �

�1

(x); f(�

1

� �

�1

(x); �

2

� �

�1

(x))

�

:

Finally de�ne the correspondence G : C !! R

N

by G(x) :=

~

U

F

(x)

if x 2

~

W \ C and G(x) := fv̂g if x 2 Cn

~

W . Likewise de�ne a function

 : G! R

N

�R

N

by  (x; y) =

~

 (x; y) if x 2

~

W \ C and otherwise

 (x; y) = b

W

(x)(x; v̂) + (1� b

W

(x))

�

�

1

� �

�1

(x); f(�

1

� �

�1

(x); �

2

� �

�1

(x))

�

if x 62

~

W .

De�ne the set C

�

to be the closure of the set �Cn(

~

W \W

�

). De�ne the

function b

C

: C ! [0; 1] by b

C

(x) = maxf0; 1�

1

�

distance(x; C

�

)g.

Now we can de�ne our desired homotopy. De�ne J : G� [0; 1]! E � E

by

J(g; t) := (1� t)g + tb

C

(�

L

g)g + t(1� b

C

(�

L

g)) (g):

Lemma 4: Given that there exists at least one �=2-normal player, the

function J satis�es all the properties of the topological conjecture.

Proof: J is continuous because all functions de�ning it are continuous.

G is convex valued, but after deforming C to be a ball the corresponding sets

are contractible.

Let x 2 C be arbitrary.

If x 2

~

W , then there is some �=2-normal j 2 N such that x

j

� v

j

.

Choosing that member of U(x) which gives all weight to s

j;�

, no matter how

this must be mixed with the trivial correspondence (sending everything to

v̂) we get a y 2 G(x) with y

j

� v

j

. jx

k

j � R for all k 2 N implies the same

for y, and thus y is also in

~

W \ C.

If x 62

~

W , then G(x) = fv̂g, a member of C by Remark 3.

It remains to show that x 2 �C implies that J((x; y); t) = (x; y) for all

t 2 [0; 1]. It su�ces to show that

~

 (x; y) = (x; y) if x 2 �C \

~

W \W

�

. But

this follows directly from the de�nition of

~

 . 2

16



Proposition 3: Assume that there is no instant �

+

-equilibrium. Any

cluster point x 2 R

N

of an orbit of the correspondence J(G; 1) satis�es

x

j

� �

j

� 2�=3 for any j 2 N . Furthermore, the trivial correspondence (that

which sends everything to v̂) is never used in de�ning the correspondence

J(G; 1) for such cluster points.

Proof: Let the set T be the set of cluster points of any orbit of the

correspondence J(G; 1). T is a compact subset of R

N

such that for every

x 2 T there are points y; z 2 T such that (x; y) and (z; x) are in J(G; 1).

Furthermore, from the second coordinates of the correspondences de�ning

J(G; 1) we know that for every non-�=2-normal player the coordinates of the

points in T are between �M=3 and 2M , while for �=2-normal players they

are between �M=3 and M=3.

Step i; For all players j that are not �=2-normal and for all x 2 T

show that x

j

� �

j

� �=5.

Let j be any non-�=2-normal player and let w < �

j

� �=5 be the lowest

value for the j-coordinate of all the vectors in T . Let x 2 T be any choice such

that x

j

= w, and we assume that (z; x) 2 J(G; 1) with z 2 T . We assume

that z = �

1

� + �

2

� + �

3

� with � the vector such that (z; x) 2 J(�; 1), �

1

the weight given to the trivial correspondence, �

2

the weight given to the

U correspondence, �

3

the weight given to the

~

E

0;0

correspondence, and with

�(�; p) = � and c = f(�; p).

Case 1; �

2

> 0:

By considering arbitrarily small probabilities that a player k could choose

the move q, we have that v(fkg)

j

� �

j

for every k 6= j. (This analysis

holds only for non-normal players.) That means that the payo� to Player j

conditioned on absorption from any p 2 [0; �]

N

from the U correspondence

is at least �

j

�

2(N�1)M

3(1��)

� > �

j

� �=20.

Case 1a; �

j

� �

j

� �=5:

By the de�nition of � we have c

j

� �

j

. From Part 1 of Proposition 1 we

know that �

j

is no more than �

j

+ � < �

j

+ �=20. From �

2

> 0 and that

the payo� for Player j conditioned on absorption from the U corresondence

is strictly greater than �

j

, we have x

j

> z

j

, a contradiction.

Case 1b; �

j

> �

j

� �=5:

From the de�nition of � we have c

j

> �

j

� �=5. Considering the pay-
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o� to Player j from the U correspondence, we have also x

j

> �

j

� �=5, a

contradiction.

We continue with the assumptions that �

2

= 0 and �

3

> 0.

Suppose for the sake of contradiction that p

l

= 0 for all l 6= j. We must

assume that � 62 W

�

and �

k

� v

k

for some k 6= j, otherwise we would have

� 2 �C \W

�

, �

3

= �

2

= 0 and x

j

= 2M , a contradiction. But then by the

third part of Proposition 1 we have that indeed p

k

> 0.

Now that we have p

l

> 0 for some l 6= j, we can conclude that for every


 > 0 either �

j

� �

j

�
 and c

j

> �

j

or that both �

j

and c

j

are strictly greater

than �

j

� 
 (since otherwise in the �rst case repetitive use of (p

l

j l 6= j)

would generate a contradiction to the de�nition of �).

Case 2; �

j

� �

j

� �=5:

From c

j

> �

j

and 2M � �

j

we must conclude that x

j

> z

j

, a contradic-

tion.

Case 3; �

j

> �

j

� �=5:

Since x

j

is a convex combination of c

j

and 2M , and c

j

> �

j

� �=5, we

must conclude that x

j

> �

j

� �=5, a contradiction.

Step ii; Show that the trivial correspondence can be used on

the set T only where for some j 2 N the jth coordinate is less than

�R + �.

Let us assume that x is any member of T , and that x = �

1

� + �

2

� +

�

3

�, where as before �

1

is the weight given to the trivial correspondence, �

2

the weight given to the correspondence U , and �

3

the weight given to the

equilibrium correspondence E

0;0

. Assume that � = �(�; p) and c = f(�; p).

For the sake of contradiction we suppose that j is a non-�=2-normal player

such that �

j

� v

j

+ �, and of course �

k

� v

k

� � for all �=2-normal k and

there are no two non-�=2-normal players l such that �

l

� v

l

� �.

From Step i, we must assume that � 62 W

�

, �

3

> 0, and �

j

> �

j

� �=5 �

v

j

+3�=10. From the de�nition of �, �

j

< �

j

implies that Player j had chosen

q with positive probability. This is possible only if the total probability that

the other players had chosen q exceeds 3(�

j

� v

j

)=2M . Examining a player

k 6= j who chooses q more than any other player (other than the player j), we

have p

k

� 3(�

k

� v

k

)=2NM . This means that �

k

� c

k

+M + p

k

(N � 2)M �

p

k

5NM

2

�

. Since we have p

k

�

9

20

�=NM andM � 2, we also have �

k

� c

k

�M .

Since the value of c

k

cannot exceed M=3, we have �

k

< �2M=3 < v

k

�M=3.
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This is possible only if k is also not �=2-normal. We must conclude from Step

i that �

k

> �

k

� �=5. But then by switching roles, we have �

l

< v

l

�M=3

for some l 6= k, a contradiction.

Step iii; For every �=2-normal player j and every x 2 T show

that x

j

> �

j

� 3�=5.

As with Step i, given an �=2-normal player j, we assume that x 2 T attains

the lowest possible value for the j-coordinate in T , with x

j

� �

j

� 3�=5. We

assume that z 2 T maps to x by the corresondence J(G; 1).

By Proposition 1 the U correspondence is not used. As before, we assume

that z = �

1

� + �

3

�, where �

1

> 0 is the weight given to the trivial corre-

spondence and �

3

the weight given to the correspondence E

0;0

, �(�; p) = �

and c = f(�; p).

Case 1; �

j

< �R + �:

Case 1a; �

j

� �

j

� 3�=5:

Because Player j can get v

j

by acting alone, another player must have

chosen q with positive probability. c

j

� �

j

would then be a contradiction

to the de�nition of �. From �

j

< �R + � we conclude that x

j

> z

j

, a

contradiction.

Case 1b; �

j

> �

j

� 3�=5: From the de�nition of � we have that c

j

>

�

j

� 3�=5. From v̂

j

= v

j

> �

j

� 3�=5 we must have x

j

> �

j

� 3�=5, a

contradiction.

Case 2; �

j

� �R + � but �

k

< �R + � for some other player k:

Because all the k coordinates in T are between �M=3 and 2M , we have

that �

1

�

3M

R

<

�

200NM

(from the choice of w � 19=20 in the proof of Lemma

3). Also, because v̂

j

= v

j

, we must assume that c

j

< �

j

� 3�=5.

Case 2a; �

j

� �

j

� 3�=5:

By the de�nition of R, we have p

k

> 9=10. By the fact that �

1

<

�

200NM

,

for a contradiction it su�ces to show that c

j

� �

j

+ �=20. Consider what

happens when all players except for j act according to p at all stages of play.

By choosing q at any stage, Player j would receive no more than c

j

. If c

j

were

less than �

j

+ �=20, then (by the de�nition of �) by not choosing q Player j

must receive at least �

j

. This would mean that c

j

�

9

10

�

j

+

1

10

�

j

� �

j

+ �=2.

Case 2b; �

j

> �

j

� 3�=5: From the de�nition of � we know that c

j

>

19



�

j

�3�=5. With v̂

j

= v

j

> �

j

�3�=5 we have x

j

> �

j

�3�=5, a contradiction.

Case 3; �

k

� �R + � for all k 2 N :

From Step ii we have �

1

= 0, z = � and c = x. Because Player j can get v

j

by acting alone, another player must have chosen q with positive probability.

x

j

> z

j

follows from the de�nition of �, a contradiction.

Step iv; Show that the trivial correspondence on T is never used.

Now that we have x

j

� �

j

� 3�=5 for all j 2 N and all x 2 T , by Lemma

3 (and Step ii) it is impossible that the trivial correspondence is used from

any point in T . 2

Theorem 2: An a�rmation of the topological conjecture also a�rms

the existence of approximate equilibria in quitting games.

Proof: Fix � > 0. First, due to Remarks 2 , 3 and 4, we can assume the

properties discussed there. As mentioned in Remark 1, it su�ces to show the

existence of an orbit for the correspondence F

�;


for any positive 
, with the

e�ective punishment property. By Lemma 4 (and the topological conjecture)

there is an orbit of J(G; 1). We can restrict ourselves to the cluster points of

any orbit of J(G; 1). Proposition 3 delivers the e�ective punishment property.

Now we claim that 
 = ��=20N

2

M

2

su�ces. If (x; y) 2 J(G; 1), with both

x and y cluster points, by Proposition 3 we have that (x; y) is in the image

of  

F

or y = f(x; p) for (x; p) 2 E

0;0

with �(x; p) a distance of at least �

from W

�

. Either Proposition 2 or Part 4 of Proposition 1 applies to put y in

F

�;


(x). q.e.d.

5 Related Questions

Question 1: Let us assume that condition 2) of the topological conjecture

holds only for c 2 �C; does the correspondence G contain an orbit?

A correspondence J(G; t) from the topological conjecture for some t >

0 could satisfy the conditions of Question 1. If we knew that there were

continuous functions f : C ! E approximating G with f(x) 2 C for all

x 2 �C, then we could apply a �xed point argument. But the contractible

rather than convex property of the images of G prevents this. (See Theorem

3.7.11 of Aubin, 1991, where the motions are time-discrete and the convexity

of both the space and images is assumed.)
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Question 2: Let C be any connected subset of E, a Euclidean space.

Let f : C ! E be a continuous function such that for all x 2 �C f(x) 2 C.

Does there exist an orbit for the function f?

Question 2 is very natural to formulate; it has been surprising to learn

from several experts in dynamical systems of a lack of acquaitance with this

question.

First, if C is a ball, then a well known variation of Brouwer's �xed point

theorem can be applied for the existence of a �xed point. Second, if C is a

one-dimensional sphere embedded in R

2

, then all points of C are in �C and

the statement is true trivially, however not necessarily with a �xed point.

De�ne A

n

to be the subset fx 2 C j f

n

(x) 2 Cg, with f

n

the nth iteration

of the function f . De�ne A

0

:= C. If one can show that A

n

is not empty

for all n, the compactness of the A

n

would imply the non-emptiness of the

(f -invariant) set A

1

:= \

n

A

n

. Consider any point z in �A

i

that is not in

�A

i�1

; f

i

(z) would be in �C and therefore f

i+1

(z) 2 C and z 2 A

i+1

. (We

cannot make this conclusion for all points in �A

i

because f

i

is de�ned only

on A

i�1

.) The problem with this approach is that A

n

and A

n�1

may coincide

in some connected components of A

n�1

. If the two sets coincide everywhere,

e.g. A

n

= A

n�1

, then this set is invariant with respect to f , and we are

done. But the following is plausible. For some n A

n

has two connected

components, B

1

and B

2

, with A

n+1

equal to B

2

. B

1

is mapped by f into the

complement of C, and B

2

is mapped to B

1

. Such a situation would generate

a counter-example, though we suspect that the original connectedness of C

prevents its occurance.

The following example shows that the connectedness of C is a necessary

condition. It is a variation of an example shown to me by Tamas Wiandt.

Example : Let C := [0; 2] [ [5; 7]. De�ne a function f : C ! R by

f(x) := 2x + 2 if x 2 [0; 2] and f(x) := 2(x � 5) + 2 = 2x � 8 if x 2 [5; 7].

Notice that the f values of all the points in f0; 2; 5; 7g lie in C.

We claim that the longest orbit of f is that starting at 3=2 or 13=2 and

going to 5, 2 and 6 before leaving the set C with f(6) = 4. We see that the

image of f is [2; 6], for which only the point 2 and [5; 6] are in C. f maps

[5; 6] to [2; 4], for which only 2 is in C.
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