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der Georg-August-Universität zu Göttingen

vorgelegt von

Zhaozhi Fan

aus Shandong, VR China

Göttingen 2001



D 7

Referent: Prof. Dr. Manfred Denker

Korreferent: Prof. Dr. Edgar Brunner

Tag der mündlichen Prüfung: 02.05.2001
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Chapter 1

Introduction

Statistical analysis and stochastic modelling are usually based on special assumptions

on the distribution of the parent population. The most widely accepted assumption is

normality.

This is based on the fact that any phenomenon, which is influenced by many inde-

pendent factors, none of these being dominant, is approximately normally distributed.

Moreover, normal distributions are simple to deal with and completely determined by

their means and variances. Furthermore, the class of normal distributions is closed

under convolution.

Contrary to this common model, in many situations of daily life one observes dominant

single factors leading to the conclusion that normality is not an appropriate model.

Another situation when normality is not an adequate description of a data set arise

with observations far away from the average. Here normal distribution is inadequate

to describe the experiment, unless one assumes a high variance. Stock returns, for

example, were originally supposed to follow a normal distribution or simple mixtures

of normal distributions (see [49]). However, empirical studies show so many outliers

such that normal distribution cannot be used to describe the data set (see Teichmöler

[47]). It is also known that the fluctuation of stock returns cannot be explained by a

white noise. The underlying distribution must possess a much fatter tail than a normal

distribution.

Similar situations appear in the fields of telecommunications (see [44]), hydrology (see

[50]), biology and sociology (see [25] and [51]).

In general, a distribution with fat tail will be called a heavy-tailed distribution.

Among the examples of heavy-tailed distributions are Pareto distributions, student

distributions and the family of �-stable distributions with 0 < � < 2.

Particularly interesting heavy-tailed distributions are those of polynomial form,

1



CHAPTER 1. INTRODUCTION 2

i.e.� as x!1,

P (X > x) � C

1

x

��

+ C

2

x

��

2

+ � � �+ C

n

x

��

n

;

P (X < �x) � D

1

x

��

+D

2

x

��

2

+ � � �+D

m

x

��

m

;

where

0 < � < �

2

< � � � < �

n

; 0 < � < �

2

< � � � < �

m

;

C

i

; D

j

2 R; i = 1; : : : ; n; j = 1; : : : ; m; C
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Because of their simplicity, they are of particular interest to the statistician. In this

thesis,a more general class is considered where

P (X > x) � x

��

L

1

(x);

P (X < �x) � x

��

L

2

(x);

as x ! 1. Here L
1

(�); L

2

(�) are slowly varying functionsy and � and � are positive

real numbers.

The numbers � and � are called the tail indices. They characterize the thickness of

the left and right tails, respectively.

We shall mainly be interested in the case where the two tails have the same index,

i.e. � = �. Furthermore, we shall restrict ourselves to the case L
1

(�) = C �L

2

(�); C 2

R

+.

If the index � takes values in the interval (0,2], then the associated distribution lies

in the domain of attraction of a stable law (see Feller[13], Ibragimov & Linnik[16]).

For an �-stable distribution, � 2 (0; 2)

z, the tail probabilities are of the form

P (X > x) � C

1

x

��

;

P (X < �x) � C

2

x

��

;

as x!1, where C
1

+ C

2

> 0.

Thus, �-stable distributions are a special type of heavy-tailed distributions with tail

index �, where � 2 (0; 2).

Mandelbrot (see [32, 33, 34, 35]) and Fama (see [10]) suggested to use stable distri-

butions with tail index 1 < � < 2 to model stock prices; however, stable distributed

samples are only rarely observed in practice. It is more suitable to model the observa-

tions with distributions in the domain of attraction of some stable law.

�For the explanation of the symbol � I refer to page 17.
ySee section 3.1 for details.
zThe case � = 2 corresponds to the normal distribution, which is not heavy tailed.
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Tail indices persist under convolutions and stable distributions appear as limit laws of

properly normalized means. For this reason parameter estimation of Tail indices has

been an important field of research for quite a long time.

Fama and Roll (see [11, 12]) started in 1968 to develop a method to estimate the index

of a stable distribution.

Some years later, Press (see [41]) found another approach to estimate the parameter

based on the empirical characteristic function of a stable distribution.z.

Yet another important approach is due to Zolotarev (see [52])in 1986. It uses moment

properties of the logarithm of the absolute value of a stable random variable and the

sign of the observationsx.

In the more general case of a heavy-tailed distribution the estimation of the tail index

is more complicated due to the slowly varying function L.

In 1975 Hill (see [23]) investigated the special case of a heavy-tailed distribution with

Pareto-type tail. He constructed a simple estimator for the tail index by maximizing

the conditional Likelihood function. In fact, Hill’s estimator is a plotting procedure.

It depends on the number k of largest observations chosen to calculate the estimate{,

where k is, of course, less than the sample size n.

In the same year Pickands (see [40]) constructed a different estimator for the same type

of distributions. In contrast to Hill, he selected four of the observations to estimate

the unknown parameter, namely the kth, the (2k)th, the (3k)th and the (4k)th order

statistics. Here 4k is less than n. Consistency of the estimator can be obtained by

choosing k appropriately.

De Haan and Resnick (see [21]) considered heavy-tailed distributions with regularly

varying tails. Using the properties of the regularly varying function, they constructed

a very simple estimatork.

The estimator of Csörgö, Deheuvels and Mason (see [9]), also constructed for heavy-

tailed distributions with regularly varying tail, has a very general form. Here a suitably

chosen kernel on the real line plays a very important role��.

In fact, the estimators of Hill and De Haan & Resnick are special cases of this

zSee page 9 and chapter 5.
xSee page 11 and chapter 5.
{For details I refer to section 2.2.1.
kSee section 2.2.2.
��See section 2.2.
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estimator, corresponding to special kernelsy, respectively.

In 1981 Teugels (see [48]) studied the case where the attracting distribution is asym-

metric stable. He ordered the sample in a special way: the observations were rear-

ranged into the order with ascending absolute values. Selecting k of the so ordered

statistics, k < n, he obtained a sequence of estimates.

Recently, De Haan and Pereira (see [20]) developed a further estimator based on the

order statistics. In contrast to the approaches mentioned above, they took into account

the conditions under which the distribution is attracted to a stable oneyy. They used all

but the k largest order statistics of the absolute values of the observations to calculate

the estimate. By choosing an adequate k one obtains consistency of the estimator.

Moreover, under certain assumptions on the slowly varying function involved in the

distribution tail, the estimator is asymptotically normally distributed.

One disadvantage of all these estimators lies in the fact that they are susceptible to

departures from the assumption that the distribution has Pareto- type tail.

If one confines the attention to data that are so far out in the tail that the Pareto

assumption is valid, then the effective sample size can be small. But in this case the

estimator of the tail index may have relatively large variance (see Feuerverger and Hall

[14]).

Finally, we want to mention the estimator of Meerschaert and Scheffler (see [37]),

which is robust to the assumption on the parent distribution. In their setting the distri-

bution of the parent population lies in the domain of normal attraction of an �-stable

law. In this case the distribution of the centralized sum of squares of the observations

converges to an �=2-stable distribution. The construction of the estimator is based on

this factzz.

For further estimation methods, we refer to Holt and Crow (see [26]), Mittnick and

Rachev (see [38]), and the bibliography of Zolotarev (see [52]).

As indicated above, none of the described estimators is perfect. From different point

of views, each one has some disadvantages. Indeed, they can hardly be used sim-

ply and effectively in practice. The best convergence rate, for example, is given by

(logn)

�1, unless one puts some other restrictions on the slowly varying function Lx.

For this reason the application of heavy tailed distributions is often avoided in practical

situations.

ySee section 2.2.
yySee Feller [13] page 312, theorem 1.
zzSee section 2.2
xSee chapter 3 for details.
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From a statistical viewpoint there is a need for simple, easy-to-calculate estimates.

This is particularly true for the “shape” parameter, or the tail index, � (see Hall [24]).

In this thesis we construct some estimators which serve the practical needs in a better

way. The estimators have a simpler structure and perform better in simulations. They

use not only some, but all the observations. Most importantly, the new estimators are

robust with respect to assumptions on the distribution of the parent population, i.e.

each of the estimators performs very well no matter whether the distribution of the

parent population is stable or has some other heavy tail. Moreover, the convergence

rate of our estimators, is better than (logn)

�1x.

In the following we want to describe the construction of the estimators briefly.

Suppose X
1

; X

2

; : : : ; X

n

are i.i.d. random variables with strictly stable distribution.

The sum-preserving property of stable laws says

X

1

+X

2

+ � � �+X

n

n

1=�

d

= X

1

;

and this leads to

logn

�

log j

P

n

i=1

X

i

j

logn

�

1

�

�

d

= log jX

1

j:

Let


�

n

=

logn

log j

P

n

i=1

X

i

j

; (1.1)

then 
�
n

! � in probability as n! 1.

It will be shown that this estimation method performs quite similar in the case of more

general heavy-tailed parent distributions�.

Let us first consider the case when the sample size n is large (n � 1000). The main

idea for the construction of a new type of estimator of � is the following. Partition

the sample X
1

; X

2

; :::; X

n

into k sub-samples X
j1

; X

j2

; :::; X

jm

; j = 1; 2; :::; k, each

having sample size m; m = [n=k℄. Every sub-sample provides an estimator b�
j

=

logm

log j

P

m

i=1

X

ji

j

; j = 1; 2; : : : ; k. Let b�
s

(k) denote the average of these estimators:

b�

s

(k) =

1

k

k

X

j=1

b�

j

:

Since the convergence of
�
n

to � is rather slow, the bias and variance of
�
n

is relatively

xSee chapter 3 for details.
�See chapter 3 for details.
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close to those of b�
j

; j = 1; 2; : : : ; k, even if n is large. This suggests the idea to replace


�

n

by the average b�
s

(k).

Obviously, the variances satisfy the equation

V ar( b�

s

(k)) =

1

k

� V ar( b�

j

); j = 1; 2; : : : ; k:

Hence, the variance of the new estimator b�
s

(k) tends to zero when k tends to infinity.

Another advantage of the estimator b�
s

(k) is the fact that it is asymptotically normally

distributed, as k !1.

If the sample size is small (n << 1000), we cannot proceed in the same manner

since the bias of the estimator 
�
n

, defined in (1.1), might be large if the size of the

sub-samples is small. But the theory of U-statistics provides the possibility to use a

generalized average. The estimator with U-statistics structure has the form


�

U

=

�

n

m

�

�1

X

1�i

1

<i

2

<:::<i

m

�n

h(X

i

1

; X

i

2

; : : : ; X

i

m

)

where h is some kernel function and m < n. In view of the form of 
�
n

we define the

kernel h as follows:

h(x

1

; x

2

; : : : ; x

m

) =

logm

log j

P

m

i=1

x

i

j

:

Note that in case of a large sample size, 
�
U

can be used to estimate �, too. Using the

theory of U-statistics its asymptotic normality is easily establishedy.

In general, the calculation of a U-statistic is elaborate, since we need to average
�

n

m

�

terms. However, because of the dependence of the involved terms, we can omit some

summands in 
�
U

without unduly inflating the variance. This gave us the idea of the

incomplete U-statistics. The sub-sample estimator b�
s

(k) is a special type of it.

The effort to simulate the U-statistic 
�
U

led to the following re-sampling procedure.

Suppose X
1

; X

2

; : : : ; X

n

are i.i.d. observations from a population, whose distribu-

tion is attracted to some �-stable law; let Y
1

; Y

2

; : : : ; Y

n

denote independent Bernoulli

random variables with parameter p, independent of X
1

; X

2

; : : : ; X

n

. For every obser-

vation y
1

; y

2

; : : : ; y

n

of Y
1

; Y

2

; : : : ; Y

n

, the following expression provides an estimator

of �:


�

r1

=

log

P

n

i=1

y

i

log j

P

n

i=1

X

i

y

i

j

:

ySee chapter 3.
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If
P

n

i=1

y

i

= L, we have chosen L of the n observations X
1

; X

2

; � � � ; X

n

for the

summation,
P

n

i=1

X

i

y

i

=

P

L

l=1

X

i

l

say, and


�

r1

=

logL

log j

P

L

l=1

X

i

l

j

has the same form as 
�
n

z with n = L.

Repeating this procedure k times, we obtain k estimates 
�
rj

; j = 1; 2; : : : ; k. The

average

d�

Rs

=

1

k

k

X

j=1


�

rj

is the so called re-sampling estimator.

By neglecting the extremal estimates from 
�

rj

; j = 1; 2; : : : ; k, we obtain a robust

estimator.

Again, assume thatX
1

; X

2

; � � � ; X

n

is a sequence of i.i.d. random variables, and let the

parent distribution be �
0

-stable (�
0

2 (0; 2) is the unknown parameter). We construct

an estimator for �
0

by minimizing the Kolmogorov distance between the empirical

distribution function 
F
n

, corresponding to the given sample, and a class F of distribu-

tions indexed by � 2 (0; 2), which is defined as follows: First, consider the random

variables

f

X

i

+X

j

2

1=�

; i; j = 1; 2; : : : ; ng

for all � 2 (0; 2); then, for every �, let fF �

n

denote their empirical distribution function.

Finally, F is defined by

F = f

f

F

�

n

j� 2 (0; 2)g:

The sum-preserving property of stable random variables guarantees, that there is only

one value of � 2 (0; 2), for which the corresponding Kolmogorov distance is minimal.

This value of �, denoted by d�
md

, is the minimum distance (MD) estimate of the un-

known parameter �
0

. The MD estimator can also be explained as a U-statistic. Hence

it shares their propertiesy.

The organisation of the thesis is as follows: In chapter 2, we review some of the most

competitive existing estimators for the tail index. This is done for both cases when the

parent distribution is stable and when it is a heavy-tailed distribution.

zSee page 5
ySee chapter 4.
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In chapter 3, we propose some new estimators for the tail index of heavy-tailed dis-

tributions. A re-sampling estimator, an estimator with U-statistic structure and a sub-

sample estimator are developed. Large deviation probabilities of the estimators are

studied.

In chapter 4, we construct an estimator for the stable exponent. The construction is

based on the Minimum-Distance consideration.

In chapter 5, we analyse the results of the simulations. Some comparisons with other

estimators are given. The simulations show in the case of a large sample size,that our

sub-sample estimator is similar to that of Press or Zolotarev in the sense that all of

them are unbiased and have very small standard deviations. When the sample size is

small, our re-sampling estimator for the stable index performs even better than that of

Press and Zolotarev. The new estimators perform better than those of Hill and Resnick

& de Haan when estimating the tail index. Finally, the estimator 
�
n

is compared with

the re-sampling estimator in the case of a small sample size. The simulation result

shows that the latter one has a much smaller bias and a smaller standard deviation.



Chapter 2

Overview

In this chapter we briefly review some of the most popular estimators in the case of a

stable parent population, Pareto type population and more general heavy-tailed popu-

lations. We refer to the corresponding references for details. We shall compare their

performance with our new estimators (in the appropriate setting of the parent distribu-

tion) by simulations. The results will be displayed in chapter 5.

2.1 Estimators of stable exponents

We begin with an introduction to estimators of stable exponents.

Starting with the work of Fama and Roll[11, 12], the estimation theory for the sta-

ble index has drawn some attention. Popular estimators are nowadays the meth-

ods of Press(1975), Zolotarev(1986), and the procedures based on point process(see

Marohn[36] and the references there) or on regression of tail probabilities against the

logarithm of the corresponding arguments (see Samorodnitsky and Taqqu[45], chapter

1), or on conditions of convergence towards a stable distribution (see De Haan and

Pereira[20]). We begin with the first two.

2.1.1 The estimator of Press

The density of stable distributions have closed analytical form only in rare situations.

If � takes values of 2; 1; 1=2, the corresponding distributions are respectively normal,

Cauchy and Lévy distribution. However, their characteristic functions are known ex-

plicitely in an analytical form. The log characteristic function for a random variable

X following a stable law is of form:

log(�(t)) = i�t� jt�j

�

[1 + i�sign(t)!(t; �)℄ (2.1)

9
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where

!(t; �) =

(

tan(��=2); for � 6= 1;

2

�

log(jtj); for � = 1:

If the parameter � in equation (2.1) equals 0, the underlying stable distribution is strict,

and if � = 0, the stable distribution is symmetric.

Consider the empirical characteristic function as an estimate of the theoretical one.

Clearly, this is an unbiased and consistent estimator. It is possible to calculate estima-

tors of the unknown parameters from the analytical form of the characteristic function.

Since the empirical characteristic function is consistent the derived estimators are eas-

ily seen to be consistent as well. This kind of estimator is due to Press (see [41]).

Let n independent observations X
1

; X

2

; : : : ; X

n

be given.

Denote the empirical characteristic function of the parent distribution by

b

�(t) =

1

n

n

X

j=1

exp(itX

j

):

b

�(t) is computable for all values of t. And for every given value of t, the terms

included in the summation of b�(t) are i.i.d. and bounded above by 1. By the law of

large number it is a consistent estimator of �(t).

Different ways can be used to get estimators of the corresponding parameters. An

analytical estimator which involves minimal computation is a version of the method of

moments based on the empirical characteristic function.

We begin with the simplest situation:

j�(t)j = exp(�
jtj

�

):

For two different non-zero values of t, say t
1

; t

2

, we get two equations


jt

1

j

�

= � log(j�(t

1

)j);


jt

2

j

�

= � log(j�(t

2

)j):

Solving these two equations and replacing �(t) by its estimated values, gives the fol-

lowing estimator of �:


�

p

=

log

 

�

�

�

�

�

log

�

�

�

[

�(t

1

)

�

�

�

log

�

�

�

[

�(t

2

)

�

�

�

�

�

�

�

�

!

log

�

�

�

t

1

=t

2

�

�

�

The asymptotic normality of
�
p

has been proved (see Press[41]).
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2.1.2 Estimator of Zolotarev

The estimator of Zolotarev is a kind of moment estimator derived from specially trans-

formed original data.

�-stable random variables have finite moments only of order smaller than �. Hence the

traditional moment method can not be used in this situation. However, the logarithm

of the absolute values of the stable random variables have finite moments of any order.

In the case of strict stable distribution, one has simple analytical representations of

their moments (see Zolotarev[52]). Together with the moments of the sign variable of

the stable variable, one can get estimates of the unknown parameters by the method of

moments. The estimates of the parameters are due to Zolotarev (see [52]).

Suppose X is a random variable with an �-stable distribution. Define two random

variables U and V in the following way:

U = sign(X); V = log(jXj):

When the stable distribution is strict, we have the following relationz:

1

�

2

=

6

�

2

�Var(V) �

3

2

Var(U) + 1

Let X
1

; X

2

; : : : ; X

n

be i.i.d. samples from some population, which has a strict

�-stable distribution. We can construct two i.i.d. sequences U
1

; U

2

; : : : ; U

n

and

V

1

; V

2

; : : : ; V

n

. Denote by S2

v

and S2

u

the corresponding sample variances,

S

2

v

=

1

n�1

P

n

i=1

(V

i

� V )

2

;

S

2

u

=

1

n�1

P

n

i=1

(U

i

� U)

2

;

where U and V are the corresponding sample means.

Now one obtains the estimator of 1

�

2

:

d

�

�2

z

=

6

�

2

� S

2

v

�

3

2

� S

2

v

+ 1:

As an estimator of �2, 
�2 is unbiased and consistent (see [52],chapter 4).

2.2 Estimators of the tail index of heavy-tailed distri-

butions

Now we come to the case of the heavy-tailed population.

The estimators of the tail index are mainly based on two approaches: the maximum

zSee Zolotarev [52], chapter 4



CHAPTER 2. OVERVIEW 12

likelihood and the moment properties of the corresponding order statistics. Some ex-

amples are Hill(1975), Pickands(1975), de Haan & Resnick(1980), Teugels(1981),

Csörgö, Deheuvels & Mason(1985), Hosking, Wallis & Wood(1985).

Most of them are using the largest order statistics. Hill’s estimator is mostly used when

the distribution tail is of Pareto type.

2.2.1 Hill’s estimator

Suppose X
1

; X

2

; : : : ; X

n

are i.i.d. positive random variables with a distribution F of

Pareto type with index �, that is

1 � F (x) � C � x

��

; as x �!1;

and let X
(1)

� X

(2)

� � � � � X

(n)

denote the order statistic.

In the special case of F (x) = Cx

� when x � D for some D > 0, one can easily

calculate the maximum likelihood estimator of �. This is called Hill’s estimator. It is

formally defined by

d

�

�1

H

=

1

k

k

X

i=1

log(X

(i)

) � log(X

(k+1)

): (2.2)

When k, as a function of n, is chosen to satisfy the following conditions:

k(n) ! 1; k(n) = o(n); as n ! 1;

Hill’s estimator is consistent. The asymptotic normality of the estimator has been

shown under suitable assumptions (see [22], [43] and the references there).

However, as pointed out in [43], Hill’s estimator fails to give an accurate estimate of

the tail index, in particular for stable distributions as a special kind of heavy-tailed

distribution with Pareto type tails.x. It is another disadvantage that it uses only a part

of the observations to estimate the unknown parameter.

2.2.2 Other estimators

The following estimators are based on similar assumptions on the parent distribution.

Suppose X
1

; X

2

; : : : ; X

n

are i.i.d. positive random variables with a heavy-tailed

distribution,let us say,

1� F (x) � C � x

��

; x �!1:

Let Z
1

� Z

2

� � � � � Z

n

denote the associated order statistics in descending order.

xsee [43], fig.4
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Pickands estimator

Under the assumptions we described in this section, Pickands constructed an estimator

of ��1 as follows,

\

�

�1

pi
ands

= (log(2))

�1

log(

Z

m

� Z

2m

Z

2m

� Z

4m

):

When m is appropriately selected, the estimator is consistent{.

De Haan & Resnick estimator

Based on the same assumptions as above, De Haan and Resnick developed the follow-

ing estimator:

d

�

�1

DR

= (log(k))

�1

flog(Z

1

) � log(Z

k

)g:

For the consistency and asymptotic normality of the estimator, the parameter k should

be appropriately chosen. In fact, k should satisfy the following conditions:

k ! 1; k=n ! 0; asn!1:

Csörgö, Deheuvels & Mason estimator

Csörgö, Deheuvels & Mason proposed an estimator when the upper tail of the distri-

bution is regularly varying with order ��y. The estimator has the form:

a

n

= a

n;�

= (

n

X

j=1

K(

j

n�

)flog

+

(Z

j

) � log

+

(Z

j+1

)g)

�1

(

Z

1=�

0

K(v)dv);

or the following discrete form,

ea

n

= ga

n;�

= (

n

X

j=1

K(

j

n�

)flog

+

(Z

j

) � log

+

(Z

j+1

)g)

�1

(

n

X

j=1

1

n�

K(

j

n�

));

{See [40] for details.
ySee [19] for details.
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where K(�) is a kernel and � is the bandwidthz.

When K(u) = 1

f0<u<1g

or K(u) = u

�1

1

f0<u<1g

and � = k=n, ea
n

is the estimator of

Hill or De Haan & Resnick, respectively.

Teugels’ estimator

In fact, Teugels’ estimator is used for the parameters included in the distribution at-

tracted to a stable law. The parameters � and p, which are to be estimated, satisfy the

following relations:

1 � F (x) � px

��

L(x)

F (�x) � qx

��

L(x);

when x ! 1.

Suppose now that X
1

; X

2

; : : : X

n

are i.i.d. observations from the population F ,

and ~

X

1

;

~

X

2

; : : :

~

X

n

are reordered as follows:

j

~

X

1

j � j

~

X

2

j � � � � � j

~

X

n

j

With a special choice of k
n

,

b
 =

T

n;k

n

k

n

is an asymptotically unbiased estimator of

�

1� �

(p� q) := 
;

where k
n

! 1 and k

n

= o(n) as n ! 1 and where

T

k

n

= (

n�k

n

X

i=1

~

X

i

� (n� k

n

)�)=

~

X

n�k

n

+1

with

� =

�

0; if 0 < � < 1

� := E(X); if 1 < � < 2

The estimator of Meerschaert and Scheffler

zA kernel is a nonnegative non-increasing function k(u) defined on R+ and satisfies
R

1

0

k(u)du =

1. The bandwidth is the reciprocal of the length of the interval, on which one takes an average.
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At the end of this chapter, we introduce the estimator of Meerschaert and Scheffler.

Suppose X
1

; X

2

; : : : ; X

n

are i.i.d. random variables with distribution in the domain

of normal attraction of an �-stable law. Then the distribution of the sum of the centred

squares

S

n

=

n

X

i=1

(X

i

�X)

2

;

where X =

1

n

P

n

i=1

X

i

, converges to some �=2-stable law when n ! 1. Based on

this fact, the following estimator is constructed (see [37]):

b


n

=

log

+

P

n

i=1

(X

i

�

�

X)

2

2 logn

where log

+

(x) = maxflogx; 0g.

In theorem 1 of [37] it is shown that the estimator is consistent, asymptotically

unbiased and L2-convergent.



Chapter 3

Estimating the stable index

In the previous chapter, we have introduced some known estimation methods for the

tail index of distributions with heavy tails. Because of the difficulty in treating the

involved slowly varying function, and also because the distribution functions have no

closed analytical form, they use either only the largest order statistics, or they are lim-

ited to use the empirical characteristic functions. Hence their applications are limited

to the situations of their own assumptions.

In this chapter we construct simpler estimators which are robust with respect to the

assumptions on the parent distributions. This is the most important advantage of our

new estimators over their competitors.

Starting from the sum-preserving property of stable random variables, we construct

a consistent estimator for the stable index. Since the estimator only satisfies a large

deviation principle of polynomial order, its convergence rate is very slow. The variance

of the estimator can be relatively large even when the sample size is large. We develop

an estimator with U-statistics structure to improve the variance.

The calculation of the U-statistic estimator using a large sample is quite cumbersome

because the asymptotic variance has to be estimated.

In order to simplify the calculation, we suggest to use incomplete U-statistics. A re-

sampling procedure is proposed – this is in fact an incomplete U-statistic with random

ordery.

LetX
1

; X

2

; :::; X

n

be i.i.d. observations from populationX with distribution F , which

is attracted to an �-stable distribution, denoted by F 2 DA(�).

ySee section 3.2 for details.

16
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3.1 Construction of the Estimator

Any �-stable distribution belongs to its own domain of attraction. Hence it has a heavy

tail. The corresponding tail index, called the stable index, is denoted by �. We start

with the situation that F is a strictly �-stable distributiony.

By the property of stable distributions we know that

S

n

=

n

X

i=1

X

i

d

= n

1

�

X:

It follows that

d

�

�1

n

=

log(j

P

n

i=1

X

i

j)

log(n)

=

log(jS

n

j)

log(n)

(3.1)

is a reasonable choice for an estimator of the parameter ��1. It is log-stable distributed.

As to the more general situation of stable attraction, we have a similar relation in the

sense of weak convergence. A slowly varying function is added to the calculation.

According to the property of slowly varying functions, the same form of estimation

can still be used.

Suppose now X

1

; X

2

; :::; X

n

are i.i.d. copies of X with distribution F attracted to

a strict �-stable law, such that

x

�

(1� F (x)) �

�

pL(x);

x

�

F (�x) � qL(x);

as x ! 1 where p; q � 0; p + q = 1; and L(x) is a slowly varying function with

Karamata’s representation

L(x) = 
(x) exp(

Z

x

B

"(t)

t

dt);


(t)! 
; "(t)! 0 as t!1; B > 1 and 
 is some constant.

The normalizing constants a
n

of the convergence of the partial sum to a stable law

can be chosen to satisfy the following equation,

nL(a

n

) = a

�

n

�

�(2� �)

j1� �j

� j 
os

��

2

j

z

;

and we will always assume this choice.

ySee page 9 for detail.
�We use “�” to denote the equivalence of two limiting process in the sense: A

n

� B

n

iff

lim

n!1

A

n

=B

n

= 1 through the text.
zThe righthand side equals a�

n

�

�

2

, when � = 1.
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According to theorem 2.1.1 of [16], a
n

must be of the form

a

n

= n

1

�

h(n);

and h(n) is also slowly varying in the sense of Karamata. That is we have

P

n

i=1

X

i

n

1=�

h(n)

)

y

S;

where S is some stable distributed random variable.

Theorem 3.1.1. Let d��1

n

be defined by (3.1). For any given � > 0, we have the fol-

lowing large deviation principle:

lim

n!1

logPf

d

�

�1

n

� �

�1

< ��g

logn

= ��;

lim

n!1

logPf

d

�

�1

n

� �

�1

> �g

logn

= ���:

Remark: The proof of the theorem is a straight forward calculation of the cor-

responding large deviation probabilities using a lemma of Heyde [17] for the second

equation and the Fourier inversion formula for the first one.

Lemma 3.1.2. Suppose S
n

; a

n

; X;X

n

are defined as above and b
n

!1

as n!1: Then

lim

n!1

PfjS

n

j > a

n

b

n

g

nPfjXj > a

n

b

n

g

= 1:

or equivalently,

lim

n!1

PfjS

n

j > a

n

b

n

g

Pfmax

1�k�n

jX

k

j > a

n

b

n

g

= 1:

The proof of theorem 3.1.1:

Proof. For any given � > 0; as n!1,

Pf

d

�

�1

n

� �

�1

> �g = Pf

d

�

�1

n

� �

�1

�

log(h(n))

log(n)

> ��

log(h(n))

log(n)

g

= Pf

jS

n

j

a

n

> n

�

=h(n)g

yThrough out the text,“)” means convergence in distribution.
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lemma3:1:2

� nPf

jXj

a

n

> n

�

=h(n)g

= nPfjXj > a

n

n

�

=h(n)g

= nPfjXj > n

1=�+�

g

� n � (n

1=�+�

)

��

L(n

1=�+�

)

= n

���

L(n

1=�+�

);

where L is slowly varying at infinity. Taking the logarithm of the last term and

dividing it by logn, we obtain the second equation.

The first part of the theorem can be proved as follows:

P f

d

�

�1

n

� �

�1

< ��g = Pf

jS

n

j

n

1

�

< n

��

g

=

�

1

2�

Z

1

�1

exp (i � n

��

t)� exp (�i � n

��

t)

it

f

n

(t)dt

=

1

2�

Z

1

�1

2 sin(n

��

t)

t

f

n

(t)dt

=

1

2�

Z

1

�1

2 sin(n

��

t)

t

[f(

t

n

1=�

)℄

n

dt

�

y

2

�

n

��

Z

1

0

exp(�


0

jtj

�

L(n

1=�

) � (1� i�sign(t) tan(
��

2

))(1 + o(1)))dt

�

2

�

n

��

Z

1

0

exp(�


0

t

�

L(n

1=�

)(1 + o(1))) 
os(


1

t

�

L(n

1=�

)(1 + o(1)))dt

� n

��




�1=�

0

L(n

1=�

)

�1=�

2

��

Z

1

0

exp(�u)u

1

�

�1


os(


1

u)du

= n

��




�1=�

0

L(n

1=�

)

�1=�

2�(

1

�

)

��

�

�

1 + �

2

tan

2

(��=2)

�

�

1

2�

� 
os

�

1

�

tan

�1

(j�j tan(��=2))

�

def

= Cn

��




�1=�

0

L(n

1=�

)

�1=�

�

2�(

1

�

)

��

n

��




�1=�

0

L(n

1=�

)

�1=�

;

�The inversion formula is used here. f
n

(t) is the characteristic function of S
n

=n

1=�.
yIf a distribution F is attracted to an �-stable law, then its characteristic function is of the form:

f(

t

n

1=�

) = expf�


0

(jtj=n

1=�

)

�

L(n

1=�

=jtj) �(1� i�sign(t) tan(��
2

))+o((jtj=n

1=�

L(n

1=�

=jtj))

�1

)g,

if � 6= 1 and F is centred (see [16] theorem 2.6.5). If � = 1, the imaginary part of the characteristic is

different (see [1] theorem 2).



CHAPTER 3. ESTIMATING THE STABLE INDEX 20

where 

0

=

�(2��)

j��1j

j 
os

��

2

j, 

1

= j�j tan(

��

2

), and

C =

2�(

1

�

)

��

�

�

1 + �

2

tan

2

(��=2)

�

�

1

2�

� 
os

�

1

�

tan

�1

(j�j tan(��=2))

�

:

If � = 0, then

C =

2�(

1

�

)

��

Note that for small sample sizes the slowly varying term in the previous proof can be

relatively large, since we have only a polynomial large deviation principle. Hence we

use the following large deviation probabilities to construct test to some given hypothe-

ses:

Let L(x) be a slowly varying function such that in Karamata’s representation the

function " satisfies

"(t) = o(

1

log(t)

); (t!1):

In this case for any � > 0, as n!1,

Pf

d

�

�1

n

� �

�1

�

log(h(n))

log(n)

> �g = Pf

jS

n

j

a

n

> exp(� log(n))g

lemma3:1:2

� nPf

jXj

a

n

> exp(� log(n))g

= nPfjXj > a

n

exp(� log(n))g

�

nL(a

n

n

�

)

a

�

n

n

��

= n

���

nL(a

n

n

�

)

nL(a

n

)

= n

���

nL(n

1

�

+�

h(n))

nL(n

1

�

h(n))

�

� n

���

:

Here the relation (*) holds, because

L(n

1

�

+�

h(n))

L(n

1

�

h(n))

� exp(

Z

L(n

1

�

+�

h(n))

n

1

�

h(n)

"(t)

t

dt)
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= exp(

Z
1

�

+�+

log(h(n))

log(n)

1

�

+

log(h(n))

log(n)

log(n)"(n

z

)dz)

( set t = n

z

)

� exp(log(n)

Z
1

�

+�

1

�

"(n

z

)dz)

= exp(�"(n

1

�

+ �Æ) log(n))

( Æ 2 [0; 1℄)

! exp(0) = 1:

The other probability can be calculated as follows:

P f

d

�

�1

n

� �

�1

�

log(h(n))

log(n)

< ��g = Pf

jS

n

j

n

1

�

h(n)

< n

��

g

=

1

�

Z

1

�1

sin(n

��

t)

t

[f(jtj=n

1=�

h(n))℄

n

dt

�

1

�

n

��

Z

1

�1

exp(�


0

jtj

�

L(n

1=�

h(n))

h

�

(n)

(1� i�sign(t) tan(

��

2

))(1 + o(1)))dt

�

1

�

n

��

Z

1

�1

exp(�jtj

�

(1� i� sign(t) tan(
��

2

)))dt

= n

��

2�(

1

�

)

��

�

�

1 + �

2

tan

2

(��=2)

�

�

1

2�

� 
os

�

1

�

tan

�1

(j�j tan(��=2))

�

:= Cn

��

�

2�(

1

�

)

��

n

��

:

where 

0

=

�(2��)

j��1j

j 
os

��

2

j, and

C =

2�(

1

�

)

��

�

�

1 + �

2

tan

2

(��=2)

�

�

1

2�

� 
os

�

1

�

tan

�1

(j�j tan(��=2))

�

:

And if � = 0, then

C =

2�(

1

�

)

��

The large deviation probabilities can be used to construct test procedure for hypotheses

on �. Hence it is of importance for the practical purposes.

For example, suppose that the following hypothesis is to be tested:

H

0

: � = �

0

; H

1

: � 6= �

0

:
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Theorem 3.1 provides the following test with the confidence level A:

Reject H
0

, if d��1

n

> �

�1

0

+

log h(n)

log n

+ �

+

, or d��1

n

< �

�1

0

+

log h(n)

log n

� �

�

,

where �
+

satisfies n��0�+ � A=2 and �
�

satisfies
2�(

1

�

0

)

��

0

n

��

�

t A=2; otherwise

we say there is no significant differences between �
0

and the stable index of the the

observed population. Note that the rejection region depends partly on the slowly vary-

ing function. In the situation where the slowly varying function is unknown and the

sample size is large, we can approximately omit it. But at this time, we should take a

smaller rejection region.

3.2 Estimating the stable index using estimator with U-

statistic structure

3.2.1 U-statistic as an estimator

It is well known that U-statistics have usually better statistical properties when used

to estimate an unknown parameter. Based on the statistic we have used to estimate

the index of an attracting law, we can construct the following estimator of ��1 with

U-statistic structure.

Suppose now, that X
1

; X

2

; :::; X

n

are i.i.d. copies from X with a distribution F

being attracted to an �-stable law S. Let m < n, and denote by h the function

h(x

1

; x

2

; :::; x

m

) =

log j

P

m

i=1

x

i

j

logm

: (3.2)

h is considered as the kernel of a U-statistic defined by

d

�

�1

U

= U

n

(h) =

�

n

m

�

�1

X

1�i

1

<i

2

<���<i

m

�n

h(X

i

1

; X

i

2

; :::; X

i

m

): (3.3)

This is an estimator of ��1.

By the discussion above we know that when m is large enough,

Eh(X

1

; X

2

; :::; X

m

)

k

<1 (3.4)

for every k 2 N . In fact, if m!1, we have (see [37], theorem 2)

E(h(X

1

; X

2

; :::; X

m

) �

1

�

) ! 0; (3.5)

E(h(X

1

; X

2

; :::; X

m

) �

1

�

)

2

! 0 (3.6)

that is, the expectation of h tends to ��1 and the mean square error tends to 0.
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The distribution of d��1

U

here is difficult to obtain, its asymptotic variance also. A

very good calculation method to overcome this difficulty is jackknifing the variance([2]).

Let U0

n

denote the U-statistic based on the observations X
1

; X

2

; :::; X

n

and U i

n�1

the

U-statistic based on all observations except X
i

, that is X
1

; X

2

; :::; X

i�1

; X

i+1

; :::; X

n

.

Let U
n�1

denote the average of the U i

n�1

; i = 1; 2; :::; n. It is known that

S

2

n

:= (n� 1)

�1

n

X

i=1

�

U

i

n�1

� U

n�1

�

2
p

�! m

2

�

1

; (3.7)

where �
1

= V ar(E(h(X

1

; X

2

; � � � ; X

m

)jX

1

) � Eh(X

1

; X

2

; � � � ; X

m

))

In this way we obtain the consistency of d��1

U

as an estimator of ��1 and also its

asymptotic normality :

Theorem 3.2.1. Suppose X
1

; X

2

; :::; X

n

are i.i.d. observations with distribution F ,

which is attracted to some �-stable law, and let d��1

U

be defined by (3.3). As an esti-

mator of ��1, d��1

U

is consistent, when m!1, m < n. In addition, if m is fixed, we

have also

p

n � S

�1

n

�

d

�

�1

U

� E

d

�

�1

U

�

) N(0; 1); as n!1: (3.8)

Proof. The consistency ofd��1

U

follows directly from the a.s.convergence of U-statistics

and the consistency of d��1.

We have obviously, �
m

< 1, so by the asymptotic normality of U-statistics, it

holds, as n!1, m is fixed,

p

n

�

U

n

(h)� E

d

�

�1

U

�

) N(0; m

2

�

1

);

that is

p

n

m�

1

2

1

�

�

U

n

(h)� E

d

�

�1

U

�

) N(0; 1): (3.9)

Moreover, by (3.7)

p

n

 

S

�1

n

�

1

m�

1

2

1

!

�

�

U

n

(h)� E

d

�

�1

U

�

� �

(S

2

n

�m

2

�

1

)

2m

2

�

1

�

p

n

m�

1

2

1

�

�

U

n

(h)� E

d

�

�1

U

�

;

hence from (3.7) and (3.9) we get the result.



CHAPTER 3. ESTIMATING THE STABLE INDEX 24

Note that the conclusion in the above theorem can also be described in the follow-

ing way: X
1

; X

2

; : : : ; X

n

are i.i.d. copies of X in the domain of attraction of stable

law, then we have

p

n � S

�1

n

�

d

�

�1

U

�

1

�

+ 


m

�

d

) N(0; 1); as n!1: (3.10)

where 

m

! 0 as m !1. That is d��1

U

is an asymptotically normal estimator of ��1

with very small bias when the sample size is large.

Note The asymptotic normality of d��1

U

holds only when m is fixed or m = o(n

1=2

);

Otherwise its asymptotic limit can be some Wiener-Ito stochastic integral with respect

to some Wiener measure or Poisson measure. It is a U-statistic with infinite degree m.

The convergence is seriously affected by the growth rate ofm (see Rempala and Gupta

[42]). In fact, we have the following theorem:

Theorem 3.2.2. Suppose X
1

; X

2

; :::; X

n

are i.i.d. observations with the same distri-

bution F , which is attracted to an �-stable law , and let d��1

U

be defined by (3.3). If

m!1 and m = o(n

1=2

), as n!1, then

p

n � S

�1

n

�

d

�

�1

U

� E

d

�

�1

U

�

) N(0; 1); as n!1: (3.11)

Proof. Let

g




(X

1

; X

2

; :::; X




) = E(h(X

1

; X

2

; :::; X

m

)jX

1

; X

2

; :::; X




)�Eh(X

1

; X

2

; :::; X

m

),


 = 1; 2; :::; m. Hoeffding’s decomposition of the U-statistic d��1

U

has the form

d

�

�1

U

� Eh(X

1

; X

2

; :::; X

m

) =

m

n

n

X

i=1

g

1

(X

i

) +R

n

:

The main part of the proof is to verify that the variance of the remainder term R

n

is of

smaller order compared with the first sum.

As we know, if X has a distribution in the domain of attraction of an �-stable law,

then X2sign(X) has a distribution attracted to an �=2-stable law. So that without loss

of generality, we can suppose that the stable index � is less than 1. The kernel of the

U-statistic can be written in the form:

h(X

1

; X

2

; :::; X

m

) =

log(m� 1)

� logm

+

log l(m� 1)

logm

+

log jY

m�1

j

logm

+

log j1 +

X

1

Y

m�1

(m�1)

1=�

l(m�1

)j

logm

;

where Y
m�1

=

P

m

i=2

Xi

(m�1)

1=�

l(m�1)

is independent with X
1

.
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Hence

�

1

=V ar(g

1

(X

1

))

=

V ar(E(log j1 +

X

1

Y

m�1

(m�1)

1=�

l(m�1)

j jX

1

))

(logm)

2

:=

V arZ

(logm)

2

:

While

EZ �

1

�m

;

using the following inequality we have,

EZ

2

�m

2

jEZj

2

P (jZj � mjEZj)

�

1

�

2

P (jZj �

1

�

)

=

1

�

2

P (

X

1

Y

m�1

� (m� 1)

1=�

l(m� 1)(e

1=�

� 1))

+

1

�

2

P (

X

1

Y

m�1

� �(m� 1)

1=�

l(m� 1)(1 + e

1=�

))

+

1

�

2

P (

X

1

Y

m�1

� �(m� 1)

1=�

l(m� 1)(1� e

�1=�

))

�

1

�

2

P (

X

1

Y

m�1

� �(m� 1)

1=�

l(m� 1)(1 + e

�1=�

))

:= I

1

+ I

2

+ I

3

� I

4

:

Now we calculate I
1

, the other terms are in the same order as I
1

.

�

2

I

1

:=P (

X

1

Y

m�1

� A

m

)

=

Z

+1

0

P (X

1

� A

m

s)f

Y

m�1

(s)ds+

Z

0

�1

P (X

1

� A

m

s)f

Y

m�1

(s)ds

�

Z

+1

�

P (X

1

� A

m

s)f

Y

m�1

(s)ds+

Z

��

�1

P (X

1

� A

m

s)f

Y

m�1

(s)ds

�




1

m� 1

Z

+1

�

s

��

f(s)ds+




2

m� 1

Z

��

�1

jsj

��

f(s)ds

�

y

1

m

� d

1

;

where A
m

= (m � 1)

1=�

l(m � 1) � (e

1=�

� 1), Y
m�1

=

P

m

i=2

X

i

(m�1)

1=�

l(m�1)

, l is slowly

yIn this approximation we have used the theorem of uniforme convergence of regularly varying

functions with negative index ([5] pp23, theorem 1.5.2) and the property of the normalizing constant of

the partial sum. The convergence of the last step is because that s�1 is bounded on integration intervals.

The integrals are finite because � < 1.
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varying at infinity, f
Y

m�1

is the density of Y
m�1

, f is the density of a stable distribution,




1

; 


2

; d

1

are positive constants.

�

1

=

V ar(Z)

(logm)

2

�

d

m(logm)

2

;

where d is some positive constant.

Furthermore, following the method of [37] theorem 2, we have

�

m

�

V ar(log jY j)

(logm)

2

;

where Y is an �-stable random variable, and by the theory of U-statistics we have

�

1

�

�

2

2

�

�

3

3

� : : : �

�

m

m

;

whence we obtain that

V ar(R

n

) =

m

X


=2

�

m




�

2

�

n




�

�1

�




=

m

2

n

V ar(g

1

(X

1

)) �O(m

2

=n):

The condition m = o(n

1=2

) and the Jackknifing estimate of m2

�

1

complete the proof.

Note: Using U-statistics to estimate the stable index does not reduce the bias of the

estimator, but the variance becomes smaller. Our estimator is improved in the sense

that it possesses smaller mean square error (MSE).

3.2.2 Estimating the stable index using incomplete U-statistics

The estimator of a stable index with U-statistics structure has very nice properties.

However, if the sample size n or the degree m is large, the calculation of d��1

U

can be

quite elaborate, since it involves averaging
�

n

m

�

terms. Because of the dependence of

the involved summands, we can omit some summands of d��1

U

without unduly inflating

the variance. We are thus led to consider a special form of incomplete U-statistics.
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Let the assumptions be the same as in the previous section.

Suppose that the sample size has the form n = km, otherwise we delete some terms.

The i.i.d. observations X
1

; X

2

; :::; X

n

are partitioned into k independent sub-samples,

each having a sample size m. From each of the sub-samples we get one estimator

of the stable index, d��1

mj

; j = 1; 2; :::; k, and the average of these estimators is our

incomplete U-statistic

d

�

�1

U0

=

1

k

k

X

j=1

d

�

�1

mj

:

In this case, the variance of d��1

U0

is

V ar(

d

�

�1

U0

) =

1

k

V ar(

d

�

�1

mj

); j = 1; 2; :::; k:

Comparing it with the variance that of the complete U-statistic, we get its asymp-

totic relative efficiency (ARE) as:

ARE = lim

n!1

V ar(

d

�

�1

U

)=V ar(

d

�

�1

U0

) = m�

1

=�

m

;

for given m. By lemma 1.1.4 of [30] we have

m�

1

=�

m

< 1:

So the ARE depends on the ratio �
1

=�

m

and may be close to 1.

The asymptotic normality of the estimator can be obtained directly from the prop-

erties of U-statistics. For practical use, we have also the following result:

Theorem 3.2.3. Let d��1

U0

and d��1

mj

j = 1; 2; :::; k be defined as above, and

s

2

k

=

1

k � 1

k

X

i=1

�

d

�

�1

mj

�

d

�

�1

U0

�

2

:

Then if n!1, and m is fixed, we have the following normal approximation:

p

k

d

�

�1

U0

� E

d

�

�1

U0

s

k

) N(0; 1): (3.12)

Proof. The proof of the theorem is direct. From the partition of the sample we have

that the sub-estimatorsd��1

mj

; j = 1; 2; :::; k are independent and identically distributed

random variables, and d��1

U0

is exactly the sample mean.

The expectations of d��1

U0

and d��1

mj

; j = 1; 2; :::; k are all equal to each other. The

result follows now from routine calculations.
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Note that the exact distribution of d��1

U0

is almost impossible to obtain, so we can-

not construct the exact confidence interval of ��1. But from the above theorem we

can asymptotically construct tests for hypotheses on ��1 by constructing asymptotic

confidence intervals.

Our incomplete U-statistic is obtained by choosing k disjoint subsets of the sample suc-

cessively. We can use other methods to select subsamples. For example, it is possible

to choose the subsets at random with replacement. This is indeed a type of bootstrap.

Suppose we have selected L subsets, or subsamples say, each having sample size m,

at random with replacement. Then the estimator with incomplete U-statistic structure

has the variance

V ar(

d

�

�1

U0

) = �

m

=L + (1� L

�1

)V ar(

d

�

�1

U

):

Hence, repeating the resampling procedure infinitely often, we obtain a variance asymp-

totically very close to that of the complete U-statistic.

The random resampling procedure without replacement has similar properties.

Furthermore, the resampling procedure can also be designed to get smallest variance

for a given subsample size m.

From the discussion above we know, that the degreem of the underlying U-statistic can

be freely chosen in the range of the sample size. But for differentm, the corresponding

U-statistics have different variances. Hence it is necessary to optimize the choice of

m.

We discuss the optimization problem of our estimator d��1

U0

with Incomplete U-

statistic structure.

We start with the simplest case where the parent distribution is stable. According

to the properties of stable random variables, we know that

d

�

�1

U0

� �

�1

=

1

k

k

X

j=1

(

d

�

�1

mj

� �

�1

)

d

=

1

k

k

X

j=1

log jX

j

j

logm

:

Its mean square error can be calculated as:

MSE(

d

�

�1

U0

) =E

 

1

k

k

X

j=1

log jX

j

j

logm

!

2

=

1

k

E(log jX

1

j)

2

(logm)

2

+

k � 1

k

(E log jX

1

j)

2

(logm)

2
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=

y

�

2

(logm)

2

+

1

k(logm)

2

�

2

12

(

2

�

2

+ 1);

where X
1

; X

2

; :::; X

n

are i.i.d. random variables with strictly stable distribution, and

� = E log jX

1

j. In the case of a standard stable distribution i.e. the scale parameter

� = 1, then � = C(1=�� 1), here C = 0:5772 is the Euler constant.

Now we can start the optimization procedure with a given initial value of ��1

0

.

The optimal value of m is that minimizing the mean square error of d��1

U0

. This can be

carried out by iteration.

In case that the parent distribution is attracted to a stable law, we have to consider the

slowly varying function in addition. We suggest a similar procedure as in the case of

stable distribution, but we need further information about the slowly varying function.

3.2.3 Estimating the stable index by resampling

The estimator of ��1 with the structure of U-statistic can be treated as a special kind

of resampling from the known observations. In the following we give a randomized

resampling procedure.

Suppose that X
1

; X

2

; :::; X

n

are i.i.d. observations from some population attracted

to an �-stable law, and let Y
1

; Y

2

; :::; Y

n

be i.i.d. copies of a Bernoulli distributed

parent random variable Y with parameter p, independent of X . Define a new random

sequence of Z
i

; i = 1; 2; :::; n by

Z

i

= X

i

� Y

i

;

then, as z !1,

P fjZ

i

j > zg = P fjX

i

j � Y

i

> zg

= P fjX

i

j > zg � p

� p � z

��

L(z):

Hence we have the normalizing constant

a

n

= (np)

1

�

l(n);

for the convergence of the partial sum of Z
i

; i = 1; 2; :::; n, where l(n) is a slowly

varying function.

Considering the attraction property for the re-sampled observations, we have

log j

P

n

i=1

Z

i

j

lognp

!

1

�

;

ySee Zolotarev [52] chapter 4. We assume further the underlying stable distribution is symmetric.
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as n!1.

Furthermore, by the strong law of large numbers, we have also

P

n

i=1

Y

i

n

a:s:

�! p:

Summarizing we obtain the following theorem:

Theorem 3.2.4. Suppose X
i

; i = 1; 2; :::; n; are i.i.d. copies of X � F , which is at-

tracted to some �-stable law and let Y
i

; i = 1; 2; :::; n be observations from a Bernoulli

distribution with parameter p. X and Y are assumed to be independent. Then

d

�

�1

r1

=

log j

P

n

i=1

X

i

� Y

i

j

log

P

n

i=1

Y

i

is a consistent estimator of ��1.

Suppose further that we have k i.i.d. Bernoulli samples of size n, Y
ij

; i = 1; : : : ; n; j =

1; : : : ; k. From every Bernoulli sample we get a resample from that in the domain of

stable attraction. Then we have k estimates of ��1 from the re-sampled observations.

The average of the estimates is our re-sampled estimator:

d

�

�1

R

=

1

k

k

X

j=1

d

�

�1

rj

;

where

d

�

�1

rj

=

log j

P

n

i=1

X

i

� Y

ij

j

log

P

n

i=1

Y

ij

The above theorem is derived from d

�

�1

n

by a minor change. Note however, that

it opens another possibility to do simulations for U-statistic in a simpler way. We

can also omit the upper and lower extremal values of the repeated estimates of this

procedure to get a robust estimate of the stable index. Using this method, we get a

good estimate of the unknown parameter in a simple way which may be close to the

complete U-statistic. This method is simpler than that of the incomplete U-statistic,

which takes re-samples at random without replacement.

d

�

�1

R

is a consistent estimator of ��1 and also has the property of asymptotic normality.

3.3 Estimating stable index in the case of dependence

Now we consider dependent sequences of random variables.

Theorem 3.3.1. Let (X
n

; n � 1) be a strictly stationary sequence of random variables

such that,
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PfjX

1

j > xg = x

��

L(x) (x > 0);

where 0 < � < 2 andL(x) is a slowly varying function with Karamata’s representation

such that

"(t) = o(

1

log(t)

):

Define b
n

by the following relation,

lim

n!1

nPfjX

1

j > b

n

g = 1:

Suppose that (X
n

; n � 1) is exponentially  -mixing (i:e:  (n) � K�

n

; n =

1; 2; ::: for some K > 0; and 0 < � < 1) and such that

 (1) <1:

Then, for all x
n

= O(n

d

), where d 2 R+, as n!1,

x

�

n

jP (

S

n

b

n

2 x

n

A)� nP (

X

1

b

n

2 x

n

A)j ! 0;

for all A 2 B, where B is Borel �-algebra, (0

�

2

�

A).

In particular,

nP (

X

1

b

n

2 A)! �(A)

implies

x

�

n

P (

S

n

b

n

2 x

n

A)! �(A)

as n!1:

Proof. Without loss of generality, we can suppose that A = (1;1);

then we have

x

�

n

X

1�i<j�n

P (X

i

> b

n

x

n

; X

j

> b

n

x

n

)

� x

�

n

X

1�i�n

(n� i)(K�

i

+ 1)P (X

1

> b

n

x

n

)

2

� x

�

n

n(n� 1)

2

(1 +K)(x

��

n

b

��

n

L(x

n

b

n

))

2

= x

��

n

(1 +K)

n(n+ 1)

2n

2

(

L(x

n

b

n

)

L(b

n

)

)

2
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�

1 +K

2

x

��

n

! 0;

where

L(x

n

b

n

)

L(b

n

)

= exp(

Z

x

n

b

n

b

n

"(t)

t

dt)

= exp(

Z
1

�

log(n)+log(h(n))+log(x

n

)

1

�

log(n)+log(h(n))

"(exp(z))dz)

� exp(

Z 1

�

+

log(x

n

)

log(n)

1

�

"(exp(x log(n))) log(n)dx)

= exp(log(x

n

)"(n

Æ

))

(

1

�

< Æ <

1

�

+

log(x

n

)

log(n)

)

= exp(log(x

n

)o(

1

Æ log(n)

))

= exp(0(

log(x

n

)

Æ log(n)

)) = 1

Repeating the proof in [4], we have,

x

�

n

jP (

S

n

b

n

> x

n

)� nP (

X

1

b

n

> x

n

)j

� x

�

n

X

1�i<j�n

P (X

i

> b

n

x

n

; X

j

> b

n

x

n

)

! 0:

From theorem 3.3.1 we have the following corollary:

Corollary 3.3.2. Under the conditions of theorem 3.3.1, we have that the sequence
S

n

b

n

; n � 1 converges weakly to a strictly �-stable law �, whose Lévy measure has

density

f(x) = jxj

�1��

(
11

fx>0g

+ (1� 
)11

fx<0g

);

and where b
n

= n

1

�

h(n):

Similar to the independent case, we have the following theorem.
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Theorem 3.3.3. Under the assumptions of theorem 3.3.1,

d

�

�1

n

=

log(j

P

n

i=1

X

i

j)

log(n)

is a consistent estimator of ��1

:

Proof. The proof follows directly from theorem 3.3.1 and some simple calculations.

Note that the hypotheses testing can be constructed in the similar way to the indepen-

dent case.

3.4 Estimating the stable index using the maximum

It is well known that the statistical properties of the sum of a sample from some law

attracted to a stable distribution is seriously influenced by its maximum. From Heyde’s

lemma 3.1.2 we know that we can do some inferences based on the maximum.

Suppose that X
1

; X

2

; :::; X

n

; ::: , are i.i.d. random variables having distribution func-

tion F , and F belongs to the domain of attraction of an �-stable law. Define ,

M

n

= max

1�k�n

fjX

k

jg;

then we have the following results:

Theorem 3.4.1. Let X
1

; X

2

; � � � ; X

n

be i.i.d. random variables with distribution F ,

which is attracted to an �-stable law. Then

d

�

�1

m

=

log(M

n

)

log(n)

is a consistent estimator of ��1.

The large deviation probabilities of d��1

m

are as follows,

Theorem 3.4.2. Under the same conditions as theorem 3.4.1, for any given � > 0 ,

Pf

d

�

�1

m

� �

�1

�

logh(n)

logn

< ��g � exp(�n

��

); (n!1):

Furthermore, if in Karamata’s representation of L(x)

"(x) = o(

1

log(x)

); (x!1);
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then,

Pf

d

�

�1

m

� �

�1

�

log h(n)

logn

> �g � n

���

; (n!1):

Proof. The first part of the theorem follows from the uniform convergence of the ex-

tremal distribution in finite intervals.

The second part follows immediately from lemma 3.1.2 and the proof of theorem

3.1.1.

In fact, we have also the approximate distribution of d��1

m

:

Theorem 3.4.3. If in Karamata’s representation of the slowly varying function L(�)

holds that

"(t) = o(

1

log(t)

) (t!1);

then for any given y, we have the following approximation,

P

�

d

�

�1

m

� �

�1

�

log h(n)

logn

< y

�

� exp

�

�n

��y

	

; (3.13)

as n!1.

Proof. For any given y < 0, we have,by the uniform convergence of extremal distri-

bution in a finite interval,

P

�

d

�

�1

m

� �

�1

�

log h(n)

logn

< y

�

=P

�

d

�

�1

m

� �

�1

< y +

log(h(n))

log(n)

�

=P

�

M

n

a

n

< n

y

�

� exp

�

�n

��y

	

:

as n ! 1, where h(n) is a slowly varying function defined by the normalizing con-

stant a
n

= n

1=�

h(n).

By lemma 3.1.2 and the proof of Theorem 3.1.1, we have, for y > 0,

P

�

d

�

�1

m

� �

�1

�

log h(n)

logn

< y

�

=P

�

d

�

�1

m

� �

�1

< y +

log(h(n))

log(n)

�

=P

�

M

n

a

n

< n

y

�

�1� n

��y

� exp

�

�n

��y

	

:
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From the above theorem we can also construct a test of the hypothesis in section 3.1.

3.4.1 Pareto distribution as an example

In the case of a Pareto distribution with parameter � > 0, we know from the theory

of extreme values, that the suitable normalized maximum of the observations has an

extremal asymptotic distribution.

Suppose now the observationsX
1

; X

2

; � � � ; X

n

are i.i.d. copies of a Pareto distribution

with parameters � > 0 and � 2 R+, that is the distribution has the form:

F (x) = 1�

�

�

x

�

�

; x > �;

then from Pfeifer[39] we have that, for x > 0,

P

�

M

n

n

1=�

< x

�

�! exp(�x

��

); (n!1)

whereM
n

= maxfX

1

; X

2

; � � � ; X

n

g, is the maximum or the largest order statistics of

X

1

; X

2

; � � � ; X

n

.

From here we have in fact,

P

n

d

�

�1

m

� �

�1

< y

o

=P

�

M

n

n

1=�

< n

y

�

�! expf�n

��y

g:

So we know now that the corresponding estimator of the Pareto index is consistent.

3.5 Methods to improve the estimator of �

As we already mentioned above, the maximum of the observations seriously influence

the statistical properties of the sample sum. The amplitude of the maximum usually

does not perform very regularly. This means that sometimes we will see large bias

when we are estimating the parameters of interest using d��1

n

.

On the other hand, the convergence rate of our estimator is very slow. The scale pa-

rameter will provide great bias when it is not equal to 1 even when the sample size is

very large.
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Consequently, an improvement of the estimator of � is necessary, from the considera-

tion of both minimizing the variance and obtaining robustness.

In the following we consider some ways to improve the estimator.

The estimator as Incomplete U-statistic

Let X be strictly distributed stable random variable with scale parameter � and index

�. From Zolotarev(1986)[52] (chapter 4, pp218-220) we know that

E log jXj = log� + C � (

1

�

� 1);

where C = 0:577216 is the Euler constant.

If we have i.i.d. sampleX
1

; X

2

; � � � ; X

n

from the parent population X , then an unbi-

ased estimator of the right hand side of the above equation is

z }| {

log� + C � (

1

�

� 1) =

1

n

n

X

i=1

log jX

i

j

Suppose now we haveN = kn observations from some strictly stable distribution with

index� and scale parameter �. The observations are partitioned into the following way,

X

11

; X

12

; :::; X

1n

; X

21

; X

22

; :::; X

2n

; :::X

k1

; X

k2

; :::; X

kn

From every sub-sample X
i1

; X

i2

; :::; X

in

, we can get an estimator of ��1, say d��1

ni

;

i = 1; 2; :::; k, and we have

logn(

d

�

�1

ni

�

1

�

)

d

= log jS

i

j;

where S
i

, i = 1; 2; : : : ; nk are random variables with the same distribution as that of

X .

Taking the average of the k estimators d��1

i

; i = 1; 2; :::; k, we have

d

�

�1

U0

=

1

k

k

X

i=1

d

�

�1

i

(3.14)

and

logn(

d

�

�1

U0

�

1

�

)

d

=

1

k

k

X

i=1

log jS

i

j:
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If k is large enough, the right hand side of the above equation tends to the expec-

tation of log jS

i

j and can be estimated from the sample mean of log jX

1

j; log jX

2

j;

� � � ; log jX

n

j. Now we get our unbiased estimator of 1=� as follows:

d

�

�1

U0s

=

d

�

�1

U0

�

1

kn � logn

k

X

i=1

n

X

j=1

log jX

ij

j: (3.15)

Theorem 3.5.1. Suppose X
1

; X

2

; :::; X

N

are i.i.d. observations from an strictly �-

stable distribution, N = kn. Let d��1

U0s

be defined by (3.15), then we have

E

d

�

�1

U0s

=

1

�

:

If both k and n go to infinity, we have asymptotic normality of d��1

us

which is unbiased

and has an improved variance.

The scale parameter can be estimated as follows:

[

log � =

1

kn

k

X

i=1

n

X

j=1

log jX

ij

j � C � (

1

d

�

�1

us

� 1):

Note that[log � is an asymptotically unbiased estimator of log �.

In the case of other heavy-tailed distributions, we can also use the estimator d��1

U0s

as an

approximation. The simulation shows that it will overestimate the real parameter by

about 10%.

From the above partition of the sample, we get the estimator of the corresponding

parameter ��1, both from the sample sum and from the maximum of the observations.

The two kinds of estimators are usually not equal to each other but the consistency

of the two estimators we have already proved. Furthermore the two estimators are

linearly dependent. This gives us a very important hint to improve the estimator of the

parameter. One way to do this is simply taking the average of both of them and get a

new estimator as follows:

d

�

�1

mu

=

1

2

�

d

�

�1

U0

+

d

�

�1

m

�

: (3.16)

where d��1

U0

is defined as above and d��1

m

is the average of the sub-estimators based

on the sub-maximum of the partitioned sample:

d

�

�1

m

=

1

k

k

X

i=1

d

�

�1

mi

(3.17)
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:=

1

k

k

X

i=1

log(M

i

n

)

log(n)

: (3.18)

Here M i

n

= max fX

i1

; X

i2

; : : : ; X

in

g

The asymptotic normality of d��1

mu

will also hold. Both of the two estimators have finite

variances, very small absolute deviations when the sample sizem is large enough. The

average of the two estimators has smaller variance. The simulation results in chapter 5

will show this.

In fact, we can prove that the joint limit of (S
n

; M

n

) is (U; V ), where U is some �-

stable random variable and V has an extremal distribution by considering the hybrid

form of characteristic and distribution function in the following way:

�

n

(t; v) := E[exp(itS

n

) � 11fM

n

� vg℄:

The so called hybrid function has a limit under suitable normalising of the arguments

S

n

and M

n

(see [7] for detail.). So the consistency of the averaged estimator d�
mu

holds.

3.6 The case of non-strict population

In the above sections we have discussed the estimating method of the stable index �

and the corresponding properties of the estimators. All what has been said so far as-

sumed that the corresponding parent population is strictly distributed. If the strictness

assumption does not hold, then the estimator can usually not be used in the case when

� > 1. If we want the estimator still to be applicable, we should first of all, make the

observations strictly distributed. In what follows we have some suggestions how to

transform the non-strictly distributed observations into a symmetric one.

Suppose X
1

; X

2

; � � � ; X

n

be i.i.d. copies of some population X attracted to a stable

law, X is not necessarily strictly distributed.

Let now Y

1

; Y

2

; � � � ; Y

n

be i.i.d. random variables with the distribution

PfY

i

= 1g = PfY

i

= �1g =

1

2

;

and define new random variables by

Z

i

= X

i

� Y

i

; i = 1; 2; � � � ; n:
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Then we have, for any given x > 0,

PfZ

i

< xg =

1

2

� [PfX < xg+ PfX > �xg℄ ;

PfZ

i

> �xg =

1

2

� [PfX < xg+ PfX > �xg℄

that is the random variablesZ
i

; i = 1; 2; � � �n are symmetric, and of course also strictly

distributed.

Furthermore, if the attracting stable law has index �, we have, as x!1,

PfZ

i

> xg =

1

2

[PfX > xg + PfX < �xg℄ �

1

2

x

��

L(x);

PfZ

i

< �xg =

1

2

[PfX > xg+ PfX < �xg℄ �

1

2

x

��

L(x):

Note that the procedure can also be repeated, and an average of the estimators is avail-

able.

Another way to make our estimators available under non-strict assumption is to make

the exponent smaller, less than 1, say. Then the attracting property holds without

adding a corresponding constant term, that is the convergence is the same as in the

strict case. In fact, if X � F , and F is in the domain of attraction of �-stable law, let

Y = jXj

2

� sign(X), then Y is also in the domain of attraction of stable law, but the

index of the attracting stable distribution will be changed to �=2. From the assumption

that � < 2 we know, �=2 < 1. Then we have the corresponding estimator of � as

follows:

d

�

�1

q

=

log j

P

n

i=1

Y

i

j

2 logn

:

The simulation result shows that even when the parent population is strict, the

above adjustment gives also better estimates.

There is still another methods to make a distribution strict: Suppose X
1

; X

2

; :::; X

n

,

where n = 2m, are i.i.d. observations from a distribution F . Then the random vari-

ables Y
1

; Y

2

; :::; Y

m

, where Y
i

= X

2i�1

�X

2i

; i = 1; 2; :::; m are strictly distributed.

Now all the estimators based on the properties of attraction we have used before can

be applied.



Chapter 4

Estimation of stable index with

Minimum-Distance

In this chapter, we construct an estimator for the stable index when the parent distribu-

tions are in a special class of heavy-tailed distributions – strictly stable distributions.

The sum-preserving property led us to the construction of new samples and, further-

more, their empirical distribution functions. We construct an estimator for the stable

index by minimizing the Kolmogorov distance of distribution functions. The MD esti-

mator can also be explained as a U-statistic. So it possesses “double” good properties.

4.1 The construction of the estimator

When the involved stable distribution F is supposed to be strict, we know from the

definition of stable distribution that, if X
1

; X

2

are independent random variables with

the same distribution F , then the sum of them is also stably distributed, that is,

X

1

+ X

2

2

1=�

d

= X

1

where
d

= means equivalence in distribution.

Suppose now X

1

; X

2

; � � � ; X

n

are i.i.d. copies of a strictly distributed stable ran-

dom variable X with exponent �
0

.

Let h denote the kernel

h(x

1

; x

2

) = 11

(

x

1

+x

2

� 2

1=�

�t

)

�

1

2

�

11

(x

1

�t)

+ 11

(x

2

�t)

�

;

where t 2 R and 0 < � < 2,

and let a U-statistic with kernel h be defined by

40
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U

n

(�; t) =

�

n

2

�

�1

X

1�i<j�n

h(X

i

; X

j

):

The properties of U-statistics guarantee that U
n

(�; t) is a strongly consistent esti-

mator of

E(h(X

1

; X

2

)) = P (X � 2

1

�

�

1

�

0

� t) � P (X � t):

Let

A(�) = sup

t2R

jEh(X

1

; X

2

)j:

We know that A(�) is monotone in 1

�

�

1

�

0

and attains its minimum only when

� = �

0

.

Now we have the estimator of � based on the above analysis:

d�

md

= arg min

�2[0;2℄

sup

t2R

jU

n

(�; t)j: (4.1)

Theorem 4.1.1. Suppose X
1

; X

2

; � � � ; X

n

are i.i.d. copies of X with strictly �

0

-

stable distribution. Let d�
md

be defined as in 4.1.Then as an estimator of �
0

, d�
md

is

consistent.

Proof. Fix � and t. Since the kernel of the U-statistic is bounded, that is,

jh(x

1

; x

2

)j � 1;

it follows from the strong consistency of U-statistics that, as n!1

U

n

(�; t) �! E(h(X

1

; X

2

)) a:s:

If the exponent of X is equal to �
0

, then

Eh(X

1

; X

2

) = P (X � 2

1

�

�

1

�

0

� t) � P (X � t);

especially we have for all t 2 R

U

n

(�

0

; t) �! 0 a:s:

as n !1.

The convergence in the above situation is in fact uniformly in t, that is, we have

also, as n !1

sup

t2R

jU

n

(�

0

; t)j ! 0 a:s:

Now we have, for any given � > 0, if n is large enough,

sup

t2R

jU

n

(�

0

; t)j < �; a:s:
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so that, for n !1,

0 < sup

t2R

jU

n

(�

0

; t)j � min

�2[0;2℄

sup

t2R

jU

n

(�; t)j � � a:s:

that is

sup

t2R

jU

n

(�

0

; t)j � min

�2[0;2℄

sup

t2R

jU

n

(�; t)j + � a:s::

On the other hand, if � 6= �

0

, we have, for some t
0

6= 0,

jP (X � 2

1

�

�

1

�

0

� t

0

) � P (X � t

0

)j = Æ > 0

hence, for n large enough,

jU

n

(�; t

0

)j � jP (X � 2

1

�

�

1

�

0

� t

0

) � P (X � t

0

)j �

Æ

2

>

Æ

2

a:s:

and

sup

t2R

jU

n

(�; t)j � jP (X � 2

1

�

�

1

�

0

� t

0

) � P (X � t

0

)j �

Æ

2

>

Æ

2

a:s:

Let � = Æ=4, we have

sup

t2R

jU

n

(�; t)j > min

�2[0;2℄

sup

t2R

jU

n

(�; t)j +

Æ

2

�

Æ

4

= min

�2[0;2℄

sup

t2R

jU

n

(�; t)j +

Æ

4

;

that is: �
0

is almost sure the unique asymptotic solution to

sup

t2R

jU

n

(�; t)j = min

�2[0;2℄

sup

t2R

jU

n

(�; t)j:

Finally it follows that

d�

md

�! �

0

; a:s:

4.2 Another look at the estimator

The estimator d�
md

is in fact the minimum-distance estimator with respect to a special

distance – Kolmogorov-distance:

d

k

(F; G) = sup

t2R

jF (t) � G(t)j;

where F; G are two distribution functions.
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Suppose now that X
1

; X

2

; � � � ; X

n

are i.i.d. copies of the parent population X ,

with distribution F and F 2 F , a class of distribution functions.

Let

G

n

(x) =

1

n

n

X

i=1

11

(X

i

�x)

be the empirical distribution function, then the corresponding minimum-distance esti-

mator of F based on Kolmogorov-distance is the function F
0

2 F , such that

d

k

(F

0

; G

n

) = min

F2F

d

k

(F; G

n

):

The consistency of the minimum-distance estimator under some conditions holds

as in the following proposition of Parr and Schucany[53]:

Proposition 4.2.1. Let T
n

be the asymptotic minimum-distance estimator based on

the empirical distribution function G
n

with respect to Kolmogorov-distance

d

k

(F; G) = sup

x2R

jF (x) � G(x)j:

If (i) there is a point �
0

2 
, the parameter space, such that

inf

�2


d

k

(F

�

; G) = d

k

(F

�

0

; G);

(ii) lim
l!1

d

k

(F

�

l

; G) = d

k

(F

�

0

; G) implies lim
l!1

�

l

= �

0

,

then

P ( lim

n!1

T

n

= �

0

) = 1

In our assumptions here, the sample comes from some stable population F with

exponent �
0

2 [0; 2℄.

The sum-preserving property of the stable distributions guarantees that,

X

1

+ X

2

2

1

�

0

d

= X

1

;

hence for �
0

2 [0; 2℄, we have also a corresponding empirical distribution function of

U-statistic structure:

^

F

n

(�; t) =

�

n

2

�

�1

X

1�i<j�n

11

 

X

1

+X

2

2

1

�

0

� t

!

:

If �
0

is the exponent, then

E11

 

X

1

+X

2

2

1

�

0

� t

!

= P (X � t) = F (t);
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and the boundedness of the kernel guarantees the strong consistency of the empir-

ical distribution function ^F
n

(�

0

; �) with respect to F (�).

Now we consider the class of distributions

F = f

^

F

n

(�; �) : � 2 [0; 2℄g

A distribution or equivalently a value of �
0

2 [0; 2℄ is to be chosen by minimizing

the Kolmogorov-distance between ^F
n

(�; �) and the empirical distribution function

G

n

(�) =

1

n

n

X

i=1

11

(X

i

��)

:

That is we are choosing the value of d�
md

, such that

min

�2[0;2℄

d

k

(

^

F

n

(�; �); G

n

(�)) = d

k

(

^

F

n

(d�

md

; �); G

n

(�))

From the properties of minimum-distance estimators, we know that our estimator is

consistent. And also as an M-estimator, it is robust.



Chapter 5

Simulations

In this chapter we compare our estimators to the most commonly used ones by simu-

lation. Our estimators are simulated in the following two cases:

(1) the parent distribution is stable;

(2) the parent distribution is attracted to some �-stable law.

For different kind of parent distributions we have simulated our estimators with small

sample size and large sample size.

5.1 Simulation of the estimators for stable index

5.1.1 The simulation results aboutd��1
n

We begin our simulation with the comparison of our estimator

d

�

�1

n

=

log(j

P

n

i=1

X

i

j)

log(n)

;

with that of Press and Zolotarev. The first parent population is chosen to have a Cauchy

distribution, i.e. the stable index of the distribution is equal to 1. The sample size of the

simulated sample is 1000. 1000 repetitions are performed. In the estimator of Press,

we choose two different values of t’s, 0:1 and 0:9 say, to calculate the estimate.

The random observations are easily taken by using SAS random number generating-

programme. The simulation result shows, that all the three estimators are unbiased and

all have very small standard deviations:

estimating � when Cauchy, n = 1000, 1000 times

ESTIMATOR MEAN STD MAX MIN


�

n

0.99 0.067 1.256 0.795

AL

Z

1.00 0.040 1.15 0.895

AL

P

1.00 0.039 1.13 0.863

45
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Under the same assumption, we have simulated our resampling estimator 100 times.

We take the sample size n = 500 and 2000 times re-sampled, the corresponding resam-

pling rates are p1 = exp(�1); p2 = exp(�2). This time we have chosen 1 and 2 as

the values of t in the estimator of Press. The simulation results are shown as follows:

estimating the index of Cauchy, n = 500, 100 times

ESTIMATOR MEAN STD MAX MIN


�

n

1.011079 0.221422 1.685062 0.615358

b�

r1

0.992299 0.160639 1.454322 0.713796

b�

r2

0.991106 0.115437 1.250524 0.757033

AL

p

1.002055 0.212363 1.79101 0.504879

AL

z

1.016161 0.073563 1.204795 0.876207

From the results above we know, that the estimator of Zolotarev performs best in this

situation. And our resampling estimator with resampling rate r2 performs almost as

good as that of Zolotarev.

The simulation results of the estimator of Press depend seriously on the choice of the

corresponding t values, therefor a regression procedure has been proposed in [31].

We continue with the simulation results of the estimator d�
U0

with incomplete U-

statistic structure. The parent populations are stable lawsy but not necessarily Cauchy

distribution. The sample size is 20 �50 = 1000. We have partitioned the sample into 20

groups, or subsamples say, each with a sample size of 50. 1000 repetitions are taken.

The simulated mean, standard deviation, the maximal and minimal observation and the

95%-,5%-quantiles are in the table.

The simulation results show that the estimator is asymptotically unbiased and the

simulated standard deviations are very small. The simulated 90% confidence intervals

of the parameters have very short lengths.

yThe simulation of the stable random variables are based on the method of Chambers, Mallows and

Stuck [6], i.e.

S(�; �) =

sin�(�� �

0

)

(
os�)

1=�

�

�


os(�� �(�� �

0

))

W

�

(1��)=�

; � 6= 1;

whereW is standard exponential variable,� is uniformly distributed on (��

2

;

�

2

), �
0

= �

�

2

�(k(�)=�),

k(�) = 1� j1� �j, � is the skewness of the stable distribution. We take � = 0 here for simplicity.
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simulation–stable–1000 times

� MEAN STD MAXL MINL 95% 5%

0.1 0.0885 0.005645 0.110968 0.070367 0.097555 0.079778

0.2 0.179975 0.011743 0.233847 0.142098 0.199641 161013

0.3 0.272814 0.018714 0.339677 0.222868 0.30479 0.243001

0.4 0.368623 0.025317 0.452184 0.299404 0.410056 0.327046

0.5 0.468771 0.035003 0.616874 0.375852 0.528203 0.412902

0.6 0.565932 0.041946 0.719763 0.453906 0.636796 0.500755

0.7 0.674596 0.052877 0.873042 0.540581 0.770397 0.592311

0.8 0.780657 0.060605 1.036442 0.606317 0.886737 0.686527

0.9 0.885335 0.073696 1.206059 0.689409 1.010124 0.770722

1.0 0.986729 0.0797 1.338058 0.754691 1.122484 0.859136

1.1 1.096306 0.091665 1.446826 0.800295 1.256774 0.954191

1.2 1.200678 0.104251 1.761665 0.921855 1.384139 1.003652

1.3 1.305742 0.12012 1.892169 1.002769 1.523353 1.131205

1.4 1.406406 0.129193 2.060279 1.088249 1.641126 1.220774

1.5 1.512264 0.134448 2.115736 1.212528 1.761875 1.322811

1.6 1.602115 0.155149 2.473736 1.267983 1.886896 1.399116

1.7 1.700103 0.16121 2.53578 1.371294 1.985334 1.475616

1.8 1.783365 0.17714 2.633028 1.43042 2.079229 1.543659

1.9 1.864068 0.185169 2.814284 1.488579 2.193833 1.60923

Next we present the comparison simulation of our estimator d�
U0

with that of Press and

Zolotarev. The estimator of Press performs better when � > 1 and that of Zolotarev

is better when � < 1. Our estimator d�
U0

performs almost as good as the best of Press

and Zolotarev estimator all the time. Note that the estimator of Press is difficult to be

simulated 1000 times when the parameter � < 0:4. The computer refused to calculate

the cosine or sine transformation of the observed data. The estimator of Zolotarev has

also a problem. We have observed many samples from some stable distribution, where

the associated estimates of 1=�

2 take negative values. In the following two tables,

MEAN
U0

and STD
U0

denote the simulated mean values and the standard deviations of

our estimator d�
U0

, MAX
U0

and MIN
U0

the maximums and the minimums. The sub-

index -z and -p represent that of Zolotarev estimator and Press estimator. The sample

size here is 20 � 50 = 1000
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comparison simulation–stable–n = 1000, 1000 times

� MEAN
U0

MEANz MEANp STD
U0

STDz STDp

0.4 0.370 0.401 0.400 0.0243 0.0137 0.0354

0.5 0.468 0.501 0.501 0.0327 0.0171 0.0369

0.6 0.565 0.599 0.600 0.0420 0.0218 0.0376

0.7 0.674 0.701 0.703 0.0539 0.0266 0.0414

0.8 0.785 0.803 0.802 0.0664 0.0324 0.0438

0.9 0.887 0.904 0.900 0.0723 0.0402 0.0455

1.0 0.991 1.003 1.000 0.0847 0.0498 0.0505

1.1 1.094 1.102 1.103 0.0865 0.0547 0.0516

1.2 1.203 1.207 1.203 0.1010 0.0679 0.0570

1.3 1.310 1.309 1.303 0.1126 0.0811 0.0562

1.4 1.405 1.415 1.407 0.1197 0.0971 0.0619

1.5 1.505 1.507 1.505 0.1302 0.1188 0.0645

1.6 1.61 1.61 1.605 0.1550 0.1337 0.0646

1.7 1.69 1.71 1.705 0.1568 0.1647 0.0648

1.8 1.79 1.82 1.80 0.1825 0.1860 0.05859

1.9 1.88 1.94 1.90 0.2165 0.2221 0.0500

comparison simulation–stable–1000 times

� MAX
U0

MAXz MAXp MIN
U0

MINz MINp

0.4 0.44 0.45 0.54 0.30 0.36 0.29

0.5 0.58 0.56 0.61 0.37 0.44 0.37

0.6 0.70 0.67 0.74 0.45 0.54 0.49

0.7 0.86 0.81 0.86 0.53 0.61 0.57

0.8 1.08 0.93 0.93 0.64 0.69 0.68

0.9 1.11 1.05 1.05 0.71 0.79 0.78

1.0 1.30 1.21 1.18 0.76 0.87 0.87

1.1 1.43 1.29 1.27 0.84 0.93 0.95

1.2 1.61 1.44 1.42 0.94 0.97 1.05

1.3 1.70 1.66 1.47 1.06 1.07 1.14

1.4 1.87 1.79 1.62 1.13 1.17 1.23

1.5 2.01 1.95 1.71 1.20 1.19 1.31

1.6 2.24 2.15 1.78 1.31 1.28 1.41

1.7 2.32 2.46 1.90 1.36 1.27 1.50

1.8 2.65 2.66 1.95 1.4 1.32 1.59

1.9 2.80 3.08 2.01 1.47 1.42 1.75

In the case of small sample size, n = 200, for example, we have simulated our resam-

pling estimator 200 times with stable parent distributions. Our resampling procedure
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gives very good estimates of the unknown parameters. The estimators of Press or

Zolotarev perform not so well.

When � takes values greater than 1, the estimator of Zolotarev performs not well,

but our resampling estimator and Press estimator perform very well in this situation.

When � takes values less than 1, all three estimators perform well, but the Press

estimator performs relatively worse.

In the following there are some results of the above simulation. Here MEAN,STD,R,Q31

represent the simulated mean, standard deviation, range and the interquartile-range of

the estimators respectively, the sub-index -r, -z, -p denote our resampling estimator,

the estimator of Zolotarev and that of Press, accordingly.

comparison simulation–stable–200 times

� MEANr MEANz MEANp STDr STDz STDp

0.3 0.277025 0.300399 0.288717 0.032808 0.022099 0.067261

0.6 0.570816 0.600956 0.600964 0.067654 0.049142 0.08977

0.9 0.903337 0.923222 0.916601 0.115214 0.086165 0.100267

1.2 1.201662 1.213172 1.20449 0.149892 0.171192 0.134035

1.5 1.55455 1.631239 1.537978 0.182088 0.330738 0.144458

1.8 1.876307 2.023097 1.819125 0.161744 0.730564 0.107914

comparison simulation–stable–200 times

� Rr Rz Rp Q31r Q31z Q31p

0.3 0.166538 0.119223 0.351355 0.047731 0.032222 0.089129

0.6 0.373284 0.238977 0.465285 0.080948 0.067191 0.11831

0.9 0.588226 0.470496 0.561045 0.160312 0.110152 0.141955

1.2 0.805052 1.256783 0.7073 0.180267 0.181793 0.1694

1.5 0.998092 2.913216 0.80398 0.251428 0.357218 0.187832

1.8 0.804096 6.916831 0.572065 0.214085 0.529533 0.146426

5.2 The simulation of estimators of the tail index

Now we come to the simulation of the estimators for the tail index of heavy-tailed

distributions.

The simulation of the random variables, whose distributions have heavy tails, is based

on the following theorem. We have generated all our observations in the same way.

Theorem 5.2.1. Let X be a random variable with probability density f(x); x 2 R;

and satisfying the following condition:

lim

x!0

f(x) = m > 0:
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Then

Y = sign(X) � jXj

�

1

�

has a distribution with heavy tails of tail index �, i.e.

y

�

PfjY j > yg � L(y); (y !1);

where L(y) is slowly varying at infinity.

Proof. For any real y > 0,

y

�

PfjY j > yg = y

�

PfjXj

�

1

�

> yg

= y

�

PfjXj < y

��

g

= y

�

Z

y

��

�y

��

f(t)dt

=

Z

1

�1

f(zy

��

)dzb=L(y)

Now for any given � > 0 ,

L(�y)

L(y)

=

R

1

�1

f(z�

��

y

��

)dz

R

1

�1

f(zy

��

)dz

!

R

1

�1

lim

t!0

f(t)dz

R

1

�1

lim

t!0

f(t)dz

= 1

( y !1)

It follows that L(y) is slowly varying and the distribution of Y has heavy tails of index

�.

Based on the above theorem, we have simulated our estimator d�
U0

of tail index

when the parent distributions have heavy tails. Here the tail indices are taken to be

equal to 0:1 to 1:9 with step size 0:1.

For each value of �, we have taken a sample of size 30 � 100 = 3000. 1000 times

are simulated.

The simulation results show that our estimator d�
U0

underestimates the real pa-

rameters a little, about 5% lower than what we are estimating, however the standard

deviations are very small. All the 1000 estimates are distributed very near to the the-

oretical value we want to estimate. The simulated ranges of the estimator are very

narrow. See the following table for detail.
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simulation result–DA(�)–1000 times

� MEAN STD MAXL MINL

0.1 0.092987 0.004282 0.109353 0.080635

0.2 0.1857 0.008701 0.215748 0.161254

0.3 0.27933 0.01327 0.325539 0.242901

0.4 0.372936 0.017568 0.429575 0.319699

0.5 0.466254 0.022651 0.539905 0.40122

0.6 0.560768 0.027235 0.660525 0.488642

0.7 0.655925 0.031885 0.767183 0.556924

0.8 0.752233 0.038655 0.869054 0.632564

0.9 0.847303 0.040948 1.022709 0.727041

1.0 0.942731 0.04766 1.114957 0.804083

1.1 1.040359 0.053285 1.233191 0.892092

1.2 1.136058 0.056685 1.305414 0.959664

1.3 1.232885 0.065645 1.497309 1.038785

1.4 1.32609 0.07605 1.579052 1.157234

1.5 1.425414 0.080079 1.734725 1.203831

1.6 1.525933 0.086198 1.845454 1.287219

1.7 1.622746 0.090743 1.93784 1.378038

1.8 1.718552 0.101254 2.097628 1.451296

1.9 1.810259 0.10826 2.156351 1.542873

5.2.1 The simulation results ofd��1
mu

As we have pointed out in chapter 3, when we use our estimator with incomplete U-

statistic structure, we get at the same time another estimator from the maxima of every

subsamples. The two estimators are different but both of them are consistent estimators

of the tail index. Hence their average should perform better than both of them.

Suppose now the observations are partitioned into the following way:

X

11

; X

12

; : : : ; X

1n

1

; X

21

; : : : ; X

2n

2

; : : : ; X

k1

; : : : ; X

kn

k

:

From every subsample we get two different estimators of the corresponding pa-

rameter ��1 based on respectively the sum and the maximum of the subsamples. The

average of the two estimators is denoted by d��1

mu

Here are simulation results for � = 0:1 to 1:9 with sample size 30 � 100 = 3000.

1000 repetitions are computed.

From the simulation results we know that the performance of the averaged estima-

tor d��1

mu

is perfect both in the sense of unbiasedness and standard deviation. The ranges

of the simulated estimates are very short.
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simulation results for d�
mu

n=3000, 1000 times

� MEAN STD MAX MIN

0.1 0.100129 0.004868 0.11461 0.084937

0.2 0.200443 0.009037 0.233376 0.167738

0.3 0.300843 0.013788 0.350241 0.257719

0.4 0.403175 0.018217 0.462523 0.347983

0.5 0.502868 0.023505 0.574583 0.427065

0.6 0.605573 0.029425 0.694585 0.506735

0.7 0.707793 0.033489 0.807223 0.596969

0.8 0.810774 0.038715 0.942016 0.695136

0.9 0.912324 0.045318 1.069898 0.773246

1.0 1.012038 0.049916 1.185196 0.848996

1.1 1.115918 0.053939 1.329899 0.959299

1.2 1.213177 0.060468 1.433545 1.012969

1.3 1.314458 0.068438 1.567453 1.088237

1.4 1.415756 0.069709 1.705125 1.223999

1.5 1.50704 0.076623 1.771287 1.29424

1.6 1.60049 0.083238 1.943089 1.397052

1.7 1.687451 0.089191 2.033835 1.42573

1.8 1.782468 0.096933 2.173826 1.506238

1.9 1.867337 0.098592 2.144365 1.589966

Next consider the simulation results of the resampling procedure. The sample size

here is 400. We have compared the unimproved and the resampling estimator of �.

The resampling rate is 0:1, 2000 re-samples and 100 repetitions are taken.

The simulation results show that the estimator without resampling adjustment be-

haves very badly when the sample size is small. But when the resampling procedure

is used, we get a great improvement both in the sense of unbiasedness and standard

deviation.

Let[�
rmu

denote the estimator d�
mu

when it is used in the resampling procedure. In

the following table, the MEAN and STD denote the means and the standard deviations

of the estimator 
�
n

. MEANr and STDr denote those of the estimator re-sampled.

The simulation results tell us that it is very dangerous to use the unadjusted estima-

tor 
�
n

directly, especially in the case when � is larger than 1. However, the re-sampled

estimator performs very well. The unbiasedness of the estimator holds and the simu-

lated standard deviations are very small.
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simulation results for[�
rmu

y

� MEAN MEANr STD STDr

0.1 0.096865 0.099792 0.01913 0.00915

0.2 0.20038 0.204956 0.034985 0.018902

0.3 0.288847 0.301298 0.055859 0.030822

0.4 0.399371 0.408202 0.082475 0.038405

0.5 0.507288 0.508608 0.108042 0.041682

0.6 0.631442 0.610819 0.262979 0.059225

0.7 0.703653 0.721994 0.124382 0.070203

0.8 0.811178 0.809378 0.209398 0.071019

0.9 0.915695 0.917442 0.35802 0.090973

1.0 1.021822 1.011007 0.396262 0.105381

1.1 1.002088 1.134574 1.06149 0.104662

1.2 1.400864 1.261483 1.090945 0.111339

1.3 1.362876 1.319596 1.336016 0.114629

1.4 1.576241 1.415312 0.928443 0.121628

1.5 1.526868 1.540436 0.446798 0.143157

1.6 2.360023 1.637475 8.937643 0.142141

1.7 2.305255 1.692761 2.809973 0.152969

1.8 1.634679 1.792639 1.760745 0.147203

1.9 1.682808 1.860281 1.508459 0.169249

5.3 Comparison with the most popular estimators

The most important advantages of our estimator are that we have used all of the ob-

servations and the formula is very simple. The following simulated comparisons show

that our estimator performs very well also. In the simulation study, our averaged es-

timator are simulated together with the sub-sampling procedure. Our estimator is un-

biased and has always the smallest standard deviations comparing with that of Hill’s

estimator and Resnick & De Haan’s estimator. Furthermore, our estimator has the

smallest maximal estimate and largest minimal of the three estimators.

Here are the simulations of a comparison with Hill’s estimator and that of Resnick

& de Haan, where the parent distributions are in the domain of attraction of stable

distribution and the sample size is 20 � 50 = 1000. 1000 repetitions are computed.

yHere the sample size is n = 400, resampling rate r = 0:1, 2000 times re-sampled, 100 times

simulated.
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Comparison simulation results –with Hill’s and R & D’s estimators

� MEAN MEANh MEANrd STD STDh STDrd

0.1 0.100138 0.100113 0.094118 0.006377 0.010028 0.021495

0.2 0.200255 0.200443 0.187498 0.013125 0.020616 0.043228

0.3 0.300065 0.30113 0.280856 0.019625 0.030194 0.063631

0.4 0.400841 0.402636 0.376279 0.026961 0.041024 0.085248

0.5 0.500449 0.49651 0.468862 0.034278 0.050213 0.103935

0.6 0.602717 0.600002 0.563899 0.040459 0.059673 0.128889

0.7 0.703386 0.703505 0.655011 0.046491 0.068876 0.143837

0.8 0.804661 0.799965 0.756091 0.053867 0.078057 0.17507

0.9 0.904469 0.899727 0.835005 0.058458 0.086739 0.191711

1.0 1.007727 1.002484 0.942006 0.068427 0.102838 0.215082

1.1 1.105628 1.100189 1.018997 0.072097 0.108952 0.237571

1.2 1.210411 1.199682 1.118505 0.082714 0.121091 0.264387

1.3 1.320271 1.305397 1.227301 0.087078 0.130423 0.280187

1.4 1.424354 1.403946 1.322749 0.096013 0.141552 0.298518

1.5 1.520911 1.504556 1.40251 0.103351 0.155608 0.387344

1.6 1.623432 1.603543 1.487837 0.113431 0.160963 0.39942

1.7 1.723349 1.697324 1.60345 0.116472 0.16677 0.424284

1.8 1.821861 1.797191 1.671671 0.126096 0.17903 0.446097

1.9 1.927302 1.900913 1.775463 0.132651 0.191674 0.468612

2.0 2.027878 1.999309 1.869232 0.143364 0.201738 0.439047

N 2.06267 3.461711 5.078234 0.197853 0.312094 0.612247

In the above table, MEAN, STD denote the simulated mean values and standard devi-

ations of our estimator and that with the sub-index -h or -rd represent that of Hill’s or

Resnick and De Haan’s estimators. N denotes the standard normal distribution.

The simulation results in the above table show that, our estimator performs always

better than that of Hill’s estimator and Resnick & De Haan’s estimator. In fact, the

variance of Hill’s estimator is about 2 times that of ours. And the estimator of Resnick

and De Haan preforms worse.

One more thing to note: When the three estimators are used to estimate the index

of a normal distribution, only our estimator performs very well. The estimates of the

other two estimators are totally misleading.



CHAPTER 5. SIMULATIONS 55

Comparison simulation results –with Hill’s and R & D’s estimators

� MAX MAXh MAXrd MIN MINh MINrd

0.1 0.120088 0.135445 0.182661 0.083024 0.073885 0.040132

0.2 0.243224 0.288085 0.353281 0.15307 0.141522 0.075422

0.3 0.363572 0.420337 0.547133 0.238139 0.20962 0.098449

0.4 0.50867 0.532018 0.70949 0.33076 0.300739 0.128819

0.5 0.620336 0.685364 0.921321 0.399494 0.354632 0.165548

0.6 0.745266 0.844892 1.106638 0.488072 0.444192 0.255988

0.7 0.851254 0.967654 1.224282 0.565276 0.47959 0.28343

0.8 0.977676 1.150082 1.369684 0.618817 0.60449 0.26943

0.9 1.107294 1.257708 1.550806 0.710638 0.670727 0.337919

1.0 1.275338 1.440594 1.910853 0.805363 0.748811 0.373364

1.1 1.351287 1.500437 1.863937 0.878313 0.832397 0.398581

1.2 1.475956 1.674282 2.194764 0.974076 0.833509 0.414142

1.3 1.629395 1.784487 2.321554 1.03133 0.982383 0.511172

1.4 1.767652 1.919196 2.714056 1.050087 1.021057 0.579257

1.5 1.938837 2.042981 3.451483 1.226818 1.06383 0.444437

1.6 2.019092 2.126089 3.192805 1.259138 1.197484 0.625627

1.7 2.070122 2.340255 3.18834 1.360355 1.264621 0.629478

1.8 2.349523 2.414025 3.330987 1.416648 1.335004 0.681997

1.9 2.364064 2.54558 3.554365 1.519032 1.384768 0.74339

2.0 2.47429 2.86183 3.467732 1.557095 1.486861 0.634264

N 3.224972 4.62248 7.685469 1.574036 2.595376 3.383567

In the above table, MAX and MIN denote the simulated maxima and minima of

our estimator. Q1 and Q2 in the following table represent the 75%- and 25%-quantiles.

The sub-index -h and -rd have the same meaning as in the the first of the three tables.
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Comparison simulation results –with Hill’s and R & D’s estimators

� Q3 Q3h Q3rd Q1 Q1h Q1rd

0.1 0.104363 0.106163 0.108204 0.095656 0.093032 0.079869

0.2 0.208384 0.213763 0.214676 0.191320 0.185119 0.15801

0.3 0.313654 0.319967 0.322934 0.286756 0.280372 0.234297

0.4 0.418531 0.428573 0.432264 0.38157 0.374048 0.317244

0.5 0.522876 0.527888 0.537657 0.47756 0.460333 0.39434

0.6 0.628345 0.637337 0.644066 0.575528 0.558848 0.47359

0.7 0.735566 0.748173 0.752742 0.671235 0.652653 0.551986

0.8 0.840669 0.84967 0.866935 0.767874 0.745637 0.632138

0.9 0.942857 0.95279 0.95965 0.865663 0.842034 0.699513

1.0 1.049555 1.070124 1.086386 0.963795 0.923967 0.784944

1.1 1.149199 1.168573 1.17295 1.057588 1.022129 0.850167

1.2 1.261828 1.274544 1.282971 1.153871 1.113055 0.925446

1.3 1.377075 1.390275 1.400111 1.261696 1.208544 1.02469

1.4 1.48905 1.491054 1.520387 1.358809 1.308554 1.12328

1.5 1.585922 1.600973 1.617019 1.448175 1.393673 1.129653

1.6 1.689838 1.708122 1.706942 1.5509 1.485379 1.217758

1.7 1.799079 1.806959 1.873999 1.64807 1.579655 1.29533

1.8 1.908234 1.901308 1.954876 1.731427 1.68426 1.351689

1.9 2.01281 2.01027 2.061363 1.831409 1.77006 1.441274

2.0 2.12237 2.130897 2.140291 1.937691 1.8553 1.556845

N 2.166033 3.662734 5.463011 1.921625 3.244746 4.668475

The case of small sample size When the sample size is not large, 200 say, we have

compared our estimator to the other two also. We have used our resampling procedure.

Our simulation results show that the standard deviations of Hill’s estimator are getting

too large. But our resampling procedure can still help to get very good estimates. The

comparison is simulated when � = 0:3; 0:6; 1:2; 1:6. 200 repetitions are calculated.

The resampling rate here is 15% and the corresponding k –the number of the largest

order statistics in Hill’s or R&D’s estimators is taking to be 20.

Comparison simulation results –with Hill’s and R & D’s estimators

� MEAN MEANh MEANrd STD STDh STDrd

0.3 0.280791 0.307381 0.280648 0.034833 0.069951 0.097299

0.6 0.568137 0.636665 0.564266 0.065783 0.135139 0.184693

1.2 1.15863 1.287416 1.17409 0.141467 0.285386 0.389861

1.6 1.545009 1.740074 1.548522 0.184832 0.417576 0.551903
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Comparison simulation results –with Hill’s and R & D’s estimators

� R Rh Rrd Q31 Q31h Q31rd

0.3 0.175789 0.373111 0.572837 0.046683 0.08476 0.120882

0.6 0.345151 0.826827 1.12011 0.093912 0.180731 0.230578

1.2 0.804151 1.758115 2.141391 0.205987 0.381218 0.534697

1.6 1.127301 2.656967 3.731009 0.213468 0.493332 0.687471

As we have mentioned above, the estimators of Hill and Resnick & De Haan are

in fact plotting procedures. It means one can only get an estimate from a given sample

by observing the plot. In what follows there are some figures comparing our estimator

to that of Hill or Resnick and De Haan. We know from the following pictures that

the estimator of Resnick and De Haan is relatively non-sensitive to the choice of the

corresponding parameter k. The situation of Hill estimator is not the same. That is

also the reason why we take k = 100 when the sample size is 1000. In this situation

the Hill’s estimator performs almost best.

Figure 5.1: DA(�), n = 1000; � = 1:5; b� = 1:4621396

In picture (5:1) we have simulated the three estimators when the parent distribution

is attracted to a 1:5-stable law. The value of � is supposed to be 1:5. Our estimate is

1:4621396. The estimates from Hill or Resnick and De Haan are smaller.
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In picture (5:2), the value � = 1:5 of the stable exponent is to be estimated. Our

estimator gives value of 1:5235288. From the plots of Hill or Resnick and De Haan we

can not get meaningful estimates.

Figure 5.2: Stable(�), n = 1000; � = 1:5; b� = 1:5235288

A Notation

From the simulation results above we know that, our estimator preforms always

very well. But we want give some further hints how to use it.

When the sample size is large enough, that is we have enough observations, we

suggest a procedure of sub-sampling. That is we should partition the sample in to

subsamples. Because the rate of convergence of our estimator is only of order logn,
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n is the sample size, but at the same time the convergence region is very narrow. It

means we can get from every subsample an estimator almost as good as that from the

whole sample. When taking average of the sub-estimators we can improve the standard

deviations considerably.

When the sample size is not so large, we cannot get much by sub-sampling proce-

dures. In this situation we can use our resampling procedure. By deleting the extremal

estimates in the resampling procedure, we can get an relatively robust estimate of the

corresponding parameter with small standard deviation. Or we can use our estimator

with U-statistic structure. That is the best estimator we can get from the sum preserv-

ing property.

5.3.1 The simulation results ofd�
md

The minimum-distance estimator d�
md

is simulated 50 times with sample size 200 when

� = 0:3; 0:6; 0:9; 1:2; 1:5; 1:8. The results show that, even with a sample size of

only 200, the estimates are already very good. The estimators of Press and Zolotarev

are also simulated. All the three estimators perform good when � is less than 1, and

our MD estimator performs the best when � is greater than 1.

simulation–d�
md

–50 times

� MEANmd MEANp MEANz STDmd STDp STDp

0.3 0.307 0.300574 0.303741 0.027683 0.079809 0.024684

0.6 0.614 0.58393 0.609143 0.059367 0.08769 0.048202

0.9 0.9285 0.924629 0.9346 0.101017 0.112087 0.082291

1.2 1.2405 1.233229 1.227397 0.132084 0.122718 0.193122

1.5 1.549 1.587643 1.636426 0.198204 0.124703 0.318997

1.8 1.8015 1.845927 1.848307 0.162601 0.101778 0.368223
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Chapter 6

SAS Programme

Programme 1 –when the parent is stable or in DA(�) data al;

input ala;

cards;

0

;

run;

data a(keep=ala);

set al;

do i = 1 to 1000;

output;

end;

run;

proc iml;

ala=j(1000,1,0);

do ns = 1 to 1000;

ma=j(20,1,0);

m=j(20,1,0);

do k = 1 to 20;

x1=ranexp(j(50,1,-1));

x2=(ranuni(j(50,1,-1))-1/2)#3.14159;

y=sin(1.9#x2)/(cos(x2))##(1/1.9)#(cos((1-1.9)#x2)/x1 )##(1/1.9-1);

/*x = rannor(j(50.1.-1));

y = abs(x)##(-1/1.9)#sign(x);*/

u = abs(sum(y));

z = abs(max(y));

m[k]= (log(u))/(log(50));

ma[k]=m[k]#(m[k]¿1/2)+(m[k]¡1/2)#log(u+50##(m[k]))/log(50);

al = 20/sum(m);

ala[ns]=20/sum(ma);

end;

61



CHAPTER 6. SAS PROGRAMME 62

end;

edit a;

replace all varala;

quit;

proc univariate data=a normal;

var ala;

run;

Comparison with Hill or Resnick and De Haan estimator

data alpa;

input alp alpb;

cards;

0 0

;

run;

data alpha;

set alpa;

do i=30 to 500 by 1;

output;

end;

run;

proc iml;

ma=j(20,1,0);

m=j(20,1,0);

do k = 1 to 20;

x = rannor(j(50,1,-1));

y = abs(x)##(-1/1.9)#sign(x);

/*x1=ranexp(j(50,1,-1));

x2=(ranuni(j(50,1,-1))-1/2)#3.14159;

y=sin(1.9#x2)/(cos(x2))##(1/1.9)#(cos((1-1.9)#x2)/x1 )##(1/1.9-1);*/

u = abs(sum(y));

z = abs(max(y));

m[k]= (log(u))/(log(50));

ma[k]=m[k]#(m[k]¿1/2)+(m[k]¡1/2)#log(u+50##(m[k]))/log(50);

al = 20/sum(m);

ala=20/sum(ma);

w = w//y;

end;

print al ala;

v=w;

w[1001-rank(w),]=v;

a = j(1000,471,0);

b=j(1000,471,0);

do i = 1 to 1000;
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do j = 1 to 450;

a[i,j]=1/(j+20)#(i¡=j+20)+(-1)#(i=j+21);

b[i,j]=1/log(j+20)#((i=1)-(i=j+20));

end;

end;

lv =log(abs(w));

alp = (lv‘*a)##(-1);

alpb= (lv‘*b)##(-1);

edit alpha;

replace all varalp alpb;

quit;

data alph;

set alpha;

j=i;

output;

run;

proc gplot data=alph;

plot alp*j=’+’ alpb*j=’.’/ overlay ;

run;
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