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Abstract: We present an example of a one-stage three player game of
incomplete information played on a sequence space {0, 1}Z such that the
players’ locally finite beliefs are conditional probabilities of the canonical
Bernoulli distribution on {0, 1}Z, each player has only two moves, the payoff
matrix is determined by the 0-coordinate and all three players know that
part of the payoff matrix pertaining to their own payoffs. For this example
there are many equilibria (assuming the axiom of choice) but none that in-
volve measurable selections of behavior by the players. By measurable we
mean with respect to the completion of the canonical probability measure,
e.g. all subsets of outer measure zero are measurable. This example demon-
strates that the existence of equilibria is as much a philosophical issue as a
mathematical one. We consider the double-shift Bernoulli probability space
BZ

2

, where T1 is the shift in the first coordinate, T2 is the shift in the second
coordinate, and xi,j is the i, j-coordinate of x ∈ BZ

2

. Let C be a compact
and convex set with compact subsets (Ab | b ∈ B) indexed by the set B such
that ∩b∈BAb = ∅. We conjecture that measurable functions f : BZ

2

→ C
can not keep 1

4
(f(x) + f(T1(x)) + f(T2(x)) + f(T1 ◦ T2(x))) in Ax0,0 for all

x ∈ BZ
2

and that the inability of measurable functions to satisfy this prop-
erty (in expectation) is bounded below by a positive constant dependent on
the sets (Ab | b ∈ B). We give an example of a one-stage zero-sum game
played on BZ

2

that would not have a value (but would have equilibria!) if
this conjecture were valid.

Key words: Bayesian Equilibria, Belief Spaces, Sequence Spaces, Non-
measurable Sets



1 Introduction

An equilibrium of a game is a set of strategies, one for each player, such that
no player does better by choosing a different strategy, given that the other
players do not change their strategies. In a game of incomplete information,
what does it mean to do no better by choosing a different strategy? Should
one evaluate a player’s actions according to the subjective and local beliefs
of that player, or should one evaluate according to a probability distribution
determined objectively by the game?

When the subjective beliefs of the players are conditionals of a common
prior, a central question is whether there is a difference between the equilibria
defined according to the subjective local beliefs and the equilibria defined ac-
cording to a global functional evaluation. The former we call Bayesian equi-
libria and the latter we call Harsanyi equilibria. Harsanyi (1967-8) showed
that these equilibria are equivalent when the set of all possible situations in
the game is finite. Is there such an equivalence when the possible situations
of the game are infinitely many?

In this paper we look at games that satisfy the following conditions:
1) there is one stage of play,
2) there are finitely many players,
3) each player has finitely many moves,
4) there are finitely many payoff matrices,
5) there is a compact space Ω with a Borel probability distribution µ and
a finite partition into clopen subsets corresponding to the different payoff
matrices; (the payoffs at x ∈ Ω are determined by the matrix associated with
the partition member containing x),
6) at every point x ∈ Ω every player j has a discrete probability distribution
on Ω with a finite support set Sj(x) containing x such that at all the other
points in this finite support set Sj(x) the player j has the same discrete
distribution,
7) these discrete beliefs of the players change continuously (with respect
to the weak topology), and for any player j they are regular conditional
probability distributions of µ with respect to the sigma algebra F j := {B | B
is Borel and x ∈ B ⇔ Sj(x) ⊆ B}.
Such games we call ergodic games.

A strategy for a player in an ergodic game is a function from Ω to the
probability simplex of his moves that is constant on every finite support set
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that he could believe to be possible. We call a function on Ω measurable

when it is measurable with respect to the completion of µ, meaning that all
sets of outer measure zero are measurable.

We give an example of a three player ergodic game that has no Bayesian
equilibrium in measurable strategies (meaning also no Harsanyi equilibrium),
yet it has many Bayesian equilibria that are not measurable. This example
has the additional property that each player knows that part of the payoff
matrix that pertains to his own payoff.

In the context of most multi-agent epistemic logics, a statement concern-
ing the knowledge or belief of a player will correspond to a measurable subset
of our sequence space. When applicable, the lack of a measurable equilibrium
implies the impossibility for the behavior of the players in equilibrium to be
determined by syntactic formulations of knowledge or belief.

Because the existence of non-measurable sets in our probability space
can be denied by rejecting the axiom of choice, the existence of Bayesian
equilibria for this game could be considered to be a philosophical question.

Do zero-sum ergodic games have values?
The question is difficult to answer because one must define the concept of

value for ergodic games. A zero-sum game is a two-person game such that for
all possible payoff matrices and all combinations of moves the payoff for one
player is the negation of the payoff for the other player. Usually, a zero-sum
game is defined to have a value r ∈ R (as a payoff for the first player) when
for every positive ǫ the first player has a strategy such that no matter what
the second player does it guarantees to him an expected payoff of at least
r − ǫ, and vice-versa, the second player has a strategy such that no matter
what the first player does the payoff to the first player is held down to r+ǫ or
less. The problem with this definition of value is how to define the expected
payoff of an ergodic game. If the strategies are measurable, then a payoff
can be defined as an expectation over the probability space. But if strategies
are not measurable, meaning that the evaluations of the players are strictly
local in character, how should we define the expected payoff? Indeed, we
will show an example of a Bayesian equilibrium of a zero-sum ergodic game
that has an expected payoff for one player but not for the other player. We
believe that the only reasonable definition of a value for a zero-sum ergodic
game should be in relation to the set of measurable strategies.

We present an example of a zero-sum ergodic game and a conjecture
of ergodic theory whose affirmation would show that this game would have
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no value in measurable strategies, and yet this game would have Bayesian
equilibria.

The conjecture is the following. Let Ω = BZ
2

be the double-shift space
over a finite set B, with the canonical Bernoulli probability distribution µ
that gives equal probability to every b ∈ B in every coordinate position. Let
T1 and T2 be the measure preserving transformations on Ω associated with
shifting the first and second coordinates, respectively. Let C be a convex and
compact subset of an Euclidean space with compact subsets (Ab | b ∈ B) such
that ∩b∈BAb = ∅. For every measurable function f : Ω → C let df : Ω → R
be the non-negative function defined by df (x) being the distance between
1
4

(

f(x)+f(T1(x))+f(T2(x))+f(T1◦T2(x))
)

and the set Ax0,0 , where x0,0 ∈ B
is the 0, 0 coordinate of x ∈ Ω.
Conjecture: There a positive value w > 0 (dependent on the choice of the
(Ab | b ∈ B)) such that for every choice of measurable function f : Ω → C
the expected value of df over Ω must exceed w.

Due to Luzin’s theorem, one could replace in the conditions for the con-
jecture the measurability of f with the continuity of f .

Define the measure preserving involutions τ1, τ2 : Ω → Ω by (τ1(y))
i,j :=

y1−i,j and (τ2(y))
i,j := yi,1−j . For our game theoretic purposes, it would

suffice if the conjecture were true with the additional assumption that the
function f is τ1 and τ2 invarient, meaning for all x ∈ Ω that f(τ1(x)) = f(x)
and f((τ2(x)) = f(x).

As we shall see, the conjecture is false if formulated for the usual single-
shift space {0, 1}Z (with df defined with respect to the distance between
1
2
(f(x) + f(T (x)) and the appropriate compact subset).
The basic ideas in this paper belong to ergodic theory. One chooses a

sequence space that allows for finitely many measure preserving involutions
σi whose orbits are almost everywhere dense in the space. (σi ◦ σi is the
identity, and for almost every x the subset of all the σi1◦σi2◦. . . σin(x) is dense
in the space.) To each player is associated a finite subset of involutions that
commute with eachtother, and for every point x, this player believes that only
the points in the finite orbit of his commuting involutions are possible. The
entries in the payoff matrix are determined by the topological position in the
sequence space, in particular, by some coordinate position. The conditions
defining Bayesian equilibria pertain to the orbits of the involutions σi, and
these orbits do not contruct the space in a measurable way.
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In the next section we define Bayesian and Harsanyi equilibria, prove
that the countability of a belief structure implies the existence of Bayesian
equilibria regardless of whether there exists a common prior, and we show
that a Harsanyi equilibrium for an ergodic game generates a measurable
Bayesian equilibrium for that game. In the third section we present the
example of an ergodic game without measurable Bayesian equilibria. In the
fourth section we discuss the conjecture and the present an example of a
zero-sum ergodic game that would have no value in measurable strategies if
the conjecture were true. In conclusion, we explore fundamental aspects of
zero-sum games.

2 Bayesian and Harsanyi Equilibria

∆(A) will stand for the set of regular Borel probability distributions of A,
where A is a topological space (and if A is finite then we give A the dis-
crete topology and ∆(A) is a simplex embedded in an Euclidean space). The
distance in an Euclidean space, including in a simplex embedded in an Eu-
clidean space, will be the Euclidean distance. Throughout this paper we will
assume the axiom of choice. Sometimes a player will be refered to as he and
sometimes as she.

2.1 Mertens-Zamir spaces

Ergodic games are a special case of games played on probability spaces that
satisfy the Mertens-Zamir definition for a belief space.

A Mertens-Zamir belief space (Mertens and Zamir, 1985) is a tuple (S,X, ψ,
N, (tj | j ∈ N)), where X is a compact parameter set, S is a compact set, ψ
is a continuous map from S to X, N is a finite set of players, for every j ∈ N
tj : S → ∆(S) is a continous function (with respect to the weak topology),
and for every player j and every pair of points s, s′ ∈ S if s′ ∈ support (tj(s))
then tj(s) = tj(s′).

Define a cell of a Mertens-Zamir belief space to be a minimal set C with
the property that at every point y in C every player’s support set for the
point y is contained in C (without the requirement that C must be compact).

Of special interest is the definition of mutual consistency for Mertens-
Zamir belief spaces. For every player j ∈ N and define T j to be the smallest
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Borel field of subsets of S such that the function tj is measurable. A proba-
bility distribution µ on S is defined to be consistent if for every Borel subset
A ⊆ S we have that µ(A) =

∫

tj(y)(A)dµ(y). Mertens and Zamir (1985)
showed that consistency is equivalent to the stronger statement that for ev-
ery B ∈ T j and Borel subset A ⊆ S we have µ(A ∩ B) =

∫

B t
j(y)(A)dµ(y).

We prefer to use the Borel field F j defined by F j := {B | B is Borel and
x ∈ B ⇔ support(tj(x)) ⊆ B}, the largest Borel field on which a Borel
measurable strategy for Player j can be defined. For the relation between
the cells of a Mertens-Zamir belief space and the common prior, see Simon
(2000).

For Mertens-Zamir belief spaces with a finite parameter space X it is
easy to construct games that are played on the space S. Let ψ : S → X
be the continuous function, N the finite player set, and for each j ∈ N
tj : S → ∆(S) the subjective beliefs of Player j. For each player j, there is
a finite action set Aj with nj := |Aj|. There are |X| different n1 × . . .× n|N |

matrices (Qx | x ∈ X); every entry of every matrix is a vector payoff for the
players in RN . Nature chooses a point in S according to the common prior
µ, which means also that a parameter in X is chosen through the function
ψ. The players choose moves in their respective Aj independently, and after
the choices are made the payoff to the players is the vector entry in Qx

corresponding to nature’s choice of the parameter in X and the moves of the
players. A Bayesian equilibrium for a point z in the belief space is an |N |-set
of functions (f j | j ∈ N), each f j from the cell that contains z to ∆(Aj), the
simplex of mixed strategies, with the following properties for every player
j ∈ N
1) f j is constant within all support sets of Player j,
2) for all j′ 6= j within the support set of tj

′

(z) the function f j is tj
′

(z)
measurable, and
3) within the support set of tj(z) Player j can do no better than f j(z) ∈
∆(Aj) in response to the other functions f j′ , j′ 6= j, as evaluated by tj(z).
When the |N |-set of functions is a Bayesian equilibrium for all points in a
cell, then we call it a cellular equlibrium. A Bayesian equilibrium for the
whole space is a collection of cellular equilibria, once for each cell.

If additionally the Mertens-Zamir belief space has a consistent common
prior µ, we define a Harsanyi equilibrium to be a set of functions (f j : S →
∆(Aj) | j ∈ N), each f j measurable with respect to the Borel field F j, such
that no player can attain a higher expected payoff as evaluated by µ by
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choosing another such measurable function, (given that the strategies of the
other players do not change).

Notice that ergodic games are special cases of games played on Mertens-
Zamir spaces with consistent priors. From now one will be use the terminol-
ogy of Mertens-Zamir spaces to describe an ergodic game, in particular the
tj to represent the belief of Player j; we will write support (tj(x)) instead of
Sj(x). We will adopt the term cell, though for all our examples a cell will be
an orbit of a non-abelian group acting on the probability space. (A confusion
with the orbits of a shift transformation T is avoided.) In an ergodic game,
the local measurability condition 2) of a Bayesian equilibrium dissapears,
leaving Bayesian equilibria with no measurability conditions at all.

2.2 Locally Finite Games

Now we define locally finite games, a class including the ergodic games, but
without the assumption of a common prior or a compact space.

Let S be a finite or countably infinite set. There is a finite or countably
infinite collection J and a map ν : J → 2S such that for every J ∈ J ν(J)
is a subset of S and for every s ∈ S the point s is contained in ν(J) for only
finitely many members J of J . A member of J is a player of our game. For
every J ∈ J there is a finite set AJ of moves and a sigma-additive probability
distribution pJ on the set ν(J) such that the support of pJ is the set ν(J).
For every s ∈ S define J (s) to be the finite subset of J whose projections
by ν contain the point s. For every s ∈ S there is a payoff matrix Qs of size
×J∈J (s)|A

J | with entries in RJ (s); for every choice of a ∈
∏

J∈J (s)A
J there

are corresponding payoffs for all the players in J (s).
A strategy of a player J ∈ J is a member of ∆(AJ). A Bayesian equi-

librium for a locally finite game is a set of strategies (fJ ∈ ∆(AJ) | J ∈ J ),
such that for every J ∈ J the player J cannot get a higher expected payoff
by choosing a move in AJ not in the support of fJ , given that the other
players remain with (fK ∈ ∆(AK) | K 6= J, K ∈ J )), with the expected
payoff of a move calculated according to the distribution pJ and the expected
payoffs from the matrices Qs at each of the states s ∈ ν(J),

Proposition 1: If for every player J ∈ J in a locally finite game there
is a uniform bound MJ on the absolute value of all payoffs to J in the set
ν(J), then there exists a Bayesian equilibrium.
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Proof: Let the set S be enumerated by S = {s1, s2, s3, . . .}. For every i =
1, 2, . . . define the game Γi to be that played on the set Si := {s1, . . . , si} with
the players Ji := {J ∈ J | ν(J) ∩ Si 6= ∅} and the probability distributions
pJi on Si (for the players in Ji) induced by pJi (B) := pJ(B)/pJ(Si) for all
B ⊆ Si. Since each Si and Ji are finite, there exists a Nash equilibrium
f̃i := (fJ

i ∈ ∆(AJ) | J ∈ Ji) to the game Γi for every i ≥ 1 (Nash, 1950).
Assigning any distribution to fJ

i when ν(J) has an empty intersection with
Si, we have a sequence fi in the set

Ã :=
∏

J∈J

∆(AJ).

We give Ã the product topology. Due to Tychanov’s Theorem, Ã is compact,
and we can assume that there exists a convergent subsequence fin of the fi
converging to f ∈ Ã. Redefine the sequence (fi | i = 1, 2, . . .) so that the
new fn is the old fin .

We aim to show that f defines a Bayesian equilibrium of the original
game. Fix an ǫ > 0. We will show that f is an ǫ-Bayesian equilibrium.

Let Player J ∈ J be given. Let i0 be so large that pJ(Si0) ≥ 1 −
ǫ/4MJ . Let δ be the smallest positive probability by which Player J chooses
some move with the strategy fJ . Let Ni be the finite cardinality of the set
Ji. Now choose an i1 > i0 so large that l > i1 implies that fK

l is within
min(ǫ/4MJNi0 , δ/2) of fK for all the K ∈ Ji, including J . Given that all
other players K 6= J stay with their strategies fK , we need only show that
the differences in expected payoffs for Player J by choosing different moves
in support (fJ) do not exceed ǫ/2, and furthermore that Player J cannot
obtain more than ǫ/2 by choosing a move outside of support (fJ). Because
support (fJ) ⊆ support (fJ

l ) for any l > i1, both claims are easy to confirm.
✷

2.3 Measurable Equilibria

The following proof was explained to me by J.-F. Mertens.

Proposition 2: Any Harsanyi equilibrium of an ergodic game will gen-
erate a measurable Bayesian equilibrium of that game.

Proof: For all j ∈ N assume that f j : Ω → ∆(Aj) are Harsanyi equi-
libria, meaning also that they are Borel measurable functions (measurable
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with respect to the Borel fields F j, respectively). Let µ be the common prior
probability distribution on Ω. For all j ∈ N , all moves a ∈ Aj, and all
positive integers m define W j

0 (a,m) to be the subset of Ω such that Player j
can obtain a payoff of at least 1/m more by choosing the move a instead of
the distribution determined by f j, as evaluated by the subjective probability
distribution tj. Since fk for k 6= j is Borel measurable and the tj are contin-
uous in the weak topology, the sets W j

0 (a,m) are also Borel. If µ(W j
0 (a,m))

were positive for some j, a, and m, then the (f j | j ∈ N) would not have
been a Harsanyi equilibrium. We define W0 to be ∪j,a,mW

j
0 (a,m). Because

this union is countable, the set W0 is also Borel of measure zero. Now for
all l ≥ 1 define inductively the sets W j

l := {x ∈ Ω | tj(x)(Wl−1) > 0} and
Wl := ∪j∈NW

j
l . We claim for all l and j that W j

l is in F j, Wl is Borel, and
µ(Wl) = 0. We proceed by induction, assuming the claim for l − 1. That
Wl−1 is Borel implies that W j

l is in F j, and this implies that Wl = ∪j∈NW
j
l

is Borel. Due to the formula µ(Wl−1 ∩W
j
l ) =

∫

W
j

l

tj(y)(Wl−1)dµ(y) and the

fact that tj(y)(Wl−1) > 0 for all y ∈ W j
l , µ(W

j
l ) > 0 would imply that

µ(Wl−1) ≥ µ(Wl−1∩W
j
l ) > 0, a contradiction. Therefore we can assume also

that µ(Wl) = 0.
Define W := ∪∞

l=0Wl. We have two important properties, that W is
Borel with µ(W ) = 0, and also from the structure of ergodic games that W
is the union of cells. We can alter our Harsanyi equilibrium. We keep the
original functions on Ω\W , and for all the cells in the setW we introduce any
Bayesian equilibria obtained from Proposition 1. The result is a measurable
Bayesian equilibrium that we seek.

3 Many Bayesian Equilibria, none Measur-

able

3.1 The Example

Let a and b be two distinct states of nature. Define Ω to be {a, b}Z, where
Z is the set of integers, including both the positive and the negative. The
0-coordinate of a point in Ω determines the state of nature, so that if y ∈ Ω
and y0 = a then a is the state of nature at the point y. We define µ to be the
canonical Bernoulli distribution on Ω, giving equal probability independently
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to a and b in all coordinate positions.
There will be three players, Players One, Two, and Three. Let σ : Ω → Ω

be the measure preserving involution defined by (σ(y))i := y−i, where xi is
the ith coordinate of x ∈ Ω. σ is the reflection of the doubly infinite sequence
about the position zero. Let τ : Ω → Ω be the measure preserving involution
defined by (τ(y))i := y1−i. It follows that T := τ ◦ σ is the usual Bernoulli
shift operator (T (y))i = yi−1. The beliefs of the players are determined
as follows: at any point y ∈ Ω Player One considers only y and σ(y) to be
possible, and with equal probability; (if σ(x) = x then Player One believes in
x with full probability). At any x, both Player Two and Player Three believe
that only x and τ(x) are possible, and with equal probability. Because the
involutions σ and τ are continuous functions, our game is an ergodic game.
The cells will be the orbits of the involutions σ and τ . Player Two and Three
have the same beliefs. Player One always knows the state of nature, a or b,
but not always what the other players might know. Such a game is called
a game of incomplete information on one and a half sides (Sorin and Zamir
1985), though this term was invented with reference to infinitely repeated
zero-sum games.

Each player has two moves, L and R, standing for left and right. The
game is a variation of the well known game of matching pennies, with Player
One playing against both Player Two and Player Three. Player Two and
Three want to match the pennies, Player One wants to have a mismatch. The
differences to the conventional game of matching pennies has two aspects.
First, Player Two has a special relationship to the move L, her favorite move,
and likewise Player Three has a special relationship to her favorite move R.
Second, if both Players Two and Three choose their favorite moves, then the
payoff to Player One is dependent on the state of nature.

By playing L, Player One at x ∈ Ω receives
−1 if Player Two and Player Three both choose L,
1 if Player Two and Three both choose R,
0 if Player Two chooses R and Player Three chooses L, and
δa(x

0) if Player Two chooses L and Player Three chooses R. δ stands for
the Kroniker delta, which means that δa = 1 if the state of nature is a and
δa = 0 if the state of nature is b.

By playing R, Player One at x ∈ Ω receives
1 if Player Two and Player Three both choose L,
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−1 if Player Two and Three both choose R,
0 if Player Two chooses R and Player Three chooses L, and
δb(x

0) if Player Two chooses L and Player Three chooses R.

By playing L, Player Two receives (independently of the state of nature)
2 if Player One and Player Three choose L,
1 if Player One chooses L and Player Three chooses R,
−1 if Player One chooses R.

By playing R, Player Two receives
−1 if Player One chooses L, and
1 if Player One chooses R.

By playing L, Player Three receives
1 if Player One chooses L, and
−1 if Player One chooses R.

By playing R, Player Three receives
−1 if Player One chooses L,
1 if Player One chooses R and Player Two chooses L, and
2 if Player One and Player Two choose R.

For all Players i = 1, 2, 3 let f i : Ω → [0, 1] be the behavior strategy
for Player i, with f i(x) representing the probability at x ∈ Ω that Player i
chooses the move L. The only a-priori requirement placed on the behavior
strategies (f i | i = 1, 2, 3) is that for all x ∈ Ω f 1(x) = f 1(σ(x)) and
f j(x) = f j(τ(x)) for either j = 2, 3.

Given any Player j ∈ {1, 2, 3} and two functions (f i | i 6= j) for the
other two players, one can calculate the expected payoff to Player j at every
x ∈ Ω for choosing L and for choosing R; for Player One one must aver-
age the expected payoffs of the moves with respect to (f i(x) | i 6= 1) and
(f i(σ(x)) | i 6= 1), and for Players Two and Three one must do the same
with respect to (f i(x) | i 6= j) and (f i(τ(x)) | i 6= j) for j = 2, 3. The three
functions (f i | i = 1, 2, 3) are a Bayesian equilibrium for the game if and only
if at every appropriate pair of points for every j if Player j chooses the move
D ∈ {L,R} with positive probability according to f j then the other move
E ∈ {L,R}, E 6= D must deliver to Player j no higher an expected payoff
than does the move D.

Define a pair of strategies (f 2, f 3) ∈ [0, 1]2 for Players Two and Three to
be a ballanced pair if and only if
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f 2 = 1 and f 3 < 1 or
f 3 = 0 and f 2 > 0.
The ballanced pairs are those for which at least one of the two players chooses
her favorite move with certainty and the other player is not choosing the same
move with certainty.

The two pairs of strategies (f 2, f 3) ∈ [0, 1]2 such that f 2 = f 3 = 0 or
f 2 = f 3 = 1 will be called the coordinated pairs. A strategy f 1 ∈ [0, 1] of
Player One that takes on the value of 0 or 1 will be called a pure strategy. A
strategy of Player One in [0, 1] that is not pure will be called mixed.

Lemma 1: In any Bayesian equilibrium behavior Players Two and Three
are using only pairs that are ballanced or coordinated.

Proof: Suppose for the sake of contradiction that f 2(x) < 1 and f 3(x) >
0. If f 1(x)+f 1(τ(x)) ≥ 1 then Player Two would prefer to choose L (f 2 = 1)
at the pair x and τ(x), and if f 1(x) + f 1(τ(x)) ≤ 1 then Player Three would
prefer to choose R (f 3 = 0) at the pair x and τ(x). ✷

Although the strategies available a-priori to Players Two and Three are
two dimensional, in Bayesian equilibrium only a one-dimensional subset will
be used. This will allow us to perceive the game much like a two-by-two
game played between two players. Notice that if both Players Two and Three
choose their favorite moves with certainty in a Bayesian equilibrium then it
is impossible for either player to prefer her favorite move over the other move
(since otherwise the other player would also prefer her non-favorite move).
For this reason we perceive the pair (f 2 = 1, f 3 = 0) as ballanced, although
strictly speaking both players are choosing pure strategies.

3.2 Strategy of the Proof

We suppose for the sake of contradiction that the three functions f i : Ω →
[0, 1] for i = 1, 2, 3 are measurable behavior strategies in Bayesian equilib-
rium. We will show that this leads to a contradiction. From Proposition 1
there would exist non-measurable Bayesian equilibria.

Our strategy is the following. We will divide Ω into two parts. The first
part will be the set of x ∈ Ω where Player One is using a mixed strategy and
Players Two and Three are using a ballanced strategy; the second part will
be its compliment. The measurability assumption will imply that both parts
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of Ω are of measure zero.
From ergodic theory, we will need a few well known results.
First, we need the Birkhoff Ergodic Theorem. If a transformation T on a

probability space Ω is measure preserving and f is an integrable function on
Ω then the Birkhoff Ergodic Theorem states that limn→∞

∑n−1
i=0 f(T

i(x)) con-
verges almost everywhere to an integrable function f ∗ such that the integral
of f ∗ over Ω is equal to that of f (Theorem 1.14, Walters, 1982).

Second, we need the property called ergodic. A measure preserving trans-
formation T of a probability space with a probability measure µ is ergodic if
the only measurable sets B with the property T−1(B) = B satisfy µ(B) = 0
or µ(B) = 1. A measure preserving transformation is ergodic if and only if
the only measurable sets B with µ(T−1(B)∆B) = 0 are those with µ(B) = 0
or µ(B) = 1 (Theorem 1.5, Walters, 1982), where here ∆ stands for the
symmetric difference. It is well known that the Bernoulli shift operator of
our example is ergodic.

The cells partition the space Ω. Because the σ and τ are measure pre-
serving, the smallest union of cells containing any measure zero subset of Ω
is also of measure zero. Notice that for almost all points x ∈ Ω that the
points T k(x) and T k ◦ τ(x) for all k ∈ Z are distinct and comprise the cell
containing x. Define such points and their cells to be doubly infinite.

For any finite k ≥ 1 any measurably defined behavior that occurs at most
k times in any doubly infinite cell must occur only in a set of measure zero,
since otherwise the distinctness of the points T k(x) and T k ◦ τ(x) for almost
all x ∈ Ω would imply that the space Ω has infinite measure.

Define a point x ∈ Ω to be normal if and only if Player One uses a mixed
strategy at x and Players Two and Three use a ballanced strategy at x.
Define a cell to be normal if and only if it contains at least one normal point.
The other cells will be called abnormal.

3.3 Normal cells

We define a homeomorphism between the ballanced pairs and the real num-
bers. Define k : (0, 1] → N0 = {0, 1, 2, . . .} and s : (0, 1] → [0, 1] by
r = 3−k(r)(1 − 2s(r)/3) for k(r) being the last number such that 3−k(r) ≥ r.
Define W to be the set of ballanced pairs, W := {(f 2, f 3) | f 2 = 1 or f 3 =
0}\{(0, 0), (1, 1)}. Define the homeomorphism φ : W → R by
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φ(1, 0) := 0,
φ(1, t) := k(1− t) + s(1− t), and
φ(t, 0) := −s(t)− k(t).

Lemma 2: If x is doubly infinite, f 1(x) is mixed and the strategy
pair (f 2(x), f 3(x)) is ballanced, then there is one and only one value for
f 1(τx) that preserves the Bayesian equilibrium property for Players Two
and Three and there is one and only one ballanced pair (f 2(σ(x)), f 3(σ(x)))
that preserves the Bayesian equilibrium property for Player One, namely
f 1(τ(x)) = 1− f 1(x) and

(

f 2(σ(x)), f 3(σ(x))
)

= φ−1
(

− 1δb(x
0) − φ(f 2(x), f 3(x))

)

.

Proof: By symmetry we assume that f 2(x) = 1. The condition that
f 1(τ(x)) = 1 − f 1(x) follows by the indifference of Player Three (and for
both players in the case that f 3(x) = 0, as discussed above).

Again, assuming f 2(x) = 1, we must divide the argument into three
cases. Case A is that of 0 ≤ f 3(x) ≤ 2/3 and x0 = a, Case B is that of
x0 = b, and Case C is that of 2/3 ≤ f 3(x) < 1 and x0 = a. By Lemma 1
we need only consider the ballanced pairs and the coordinated pairs. Notice
that increasing values for φ in both cases of x0 = a and x0 = b imply an
increasing preference by Player One for the move R, so that if we find one
ballanced pair that delivers indifference to Player One then we have found
the only such ballanced pair, and furthermore neither coordinated pair could
deliver such an indifference.

Case A: Consider the strategy pair g2 = 1 and g3 = 2/3− f 3(x), which
satisfy φ(f 2(x), f 3(x))+φ(g2, g3) = 1. If Player One chooses L, he can expect
a payoff of 1

2
(−f 3(x) + 1− f 3(x)− g3 + 1− g3) = 1/3. By playing R he can

expect a payoff of 1
2
(f 3(x) + g3) = 1/3.

Case B: Consider the strategy pair g3 = 0 and g2 = (1−f 3(x))/3, which
satisfy φ(f 2(x), f 3(x)) + φ(g2, g3) = −1. If Player One chooses L, he can
expect a payoff of 1

2
(−f 3(x)+1− g2) = (1− f 3(x))/3. If Player One chooses

R, he can expect a payoff of 1
2
(f 3(x)+1−f 3(x)−(1−g2)+g2) = (1−f 3(x))/3.

Case C: Consider the strategy pair g3 = 0 and g2 = 3(1− f 3(x)), which
satisfy φ(f 2(x), f 3(x))+φ(g2, g3) = 1. If Player One chooses L, he can expect
a payoff of 1

2
(−f 3(x) + 1 − f 3(x) + g2 + 1 − g2) = 1 − f 3(x). By playing R

he can expect a payoff of 1
2
(f 3(x)− (1− g2)) = 1− f 3(x). ✷
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Lemma 3: The measure of the union of all normal cells must be zero or
one.

Proof: By Lemma 2 a doubly infinite cell is normal (contains a normal
point) if and if all the points in the cell are normal. This means that the
set of normal points is a T -invarient set, and therefore by the ergodicity of
T they must be of measure zero or one. ✷

Lemma 4: Let f : Ω → R be a function with f(Tx) + f(x) = −1δb(x
0)

for almost all x ∈ Ω. Conclusion: The function f cannot be measurable.

Proof: Suppose for the sake of contradiction that the function f is mea-
surable. This would imply that there exists an M > 0 such that the proba-
bility that f is in [−M + 2,M − 2] is at least 9/10.

Now consider the function gM : Ω → [0, 1] defined by

gM(x) := lim
n→∞

inf
|{k | |k| ≤ n, |f(T kx)| ≥M}|

2n+ 1
.

Now consider the transformation T 2. The action of T 2 is that of a random
walk, with
f(T 2x)− f(x) = 2 if x0 = b and x−1 = a,
f(T 2x)− f(x) = −2 if x0 = a and x−1 = b, and
f(T 2x) = f(x) if both x0 and x−1 have the same value.
Therefore for almost all x there is a k ∈ Z with f(T kx) > M + 1, which
means that gM(x) ≥ 1/2 for almost all x ∈ Ω. But by the Birkhoff Ergodic
Theorem, the expected value of gM must equal the probability in Ω that the
function f exceeds the value of M , a contradiction. ✷

Proposition 3: The union of all normal cells is of measure zero.

Proof: This result follows directly from Lemmatta 2, 3 and 4. ✷

3.4 Abnormal cells

Define x ∈ Ω to be a pure point if and only if f i(x) ∈ {0, 1} for all i = 1, 2, 3
with f 2(x) = f 3(x) (meaning that Player One uses a pure strategy at x and
Players Two and Three use a coordinated pair). Define the wind direction
from a doubly infinite pure point x to be the direction on the cell of the y
adjacent to x (equal to either σ(x) or τ(x)) such that y = σ(x) if all three of
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the f i(x) have the same value in {0, 1}, and otherwise y = τ(x) if Player One
chooses a different move from that chosen by Players Two and Three. Define
the lee direction from a doubly infinite pure point to be the direction opposite
to the wind direction. Define a pure point x to be a book end if additionally
either Player One at x has a clear preference for his chosen move or the player
among Players Two or Three who is not choosing her favorite move has a
clear preference for her chosen and non-favorite move.

Lemma 5:

(1) The behavior of all players on the wind side of a doubly infinite pure
point is determined; all of the points on the wind side of a doubly infinite
pure point are also pure, alternating in values, and none are book ends.

(2) There can be at most two book ends in any doubly infinite abnormal
cell.

(3) If there are no book ends in a doubly infinite abnormal cell, then either
Player One or Players Two and Three are performing alternating behavior,
meaning that choosing any point x in the cell we have that either the value
f 1(T n(x)) ∈ {0, 1} is determined by the parity of n or the value f 2(T n(x)) =
f 3(T n(x)) ∈ {0, 1} is determined by the parity of n.

Proof:
(1) By symmetry, we can assume that Players Two and Three choose

the move L at x. We consider two cases, (A) that Player One chooses L
and (B) that Player One chooses R. In Case (A) the point σ(x) (and the
transformation T ) defines the wind direction. If Players Two and Three did
not both choose R at σ(x), then it would have been in the interest of Player
One to choose R at x. In Case (B) the point τ(x) (and T−1) defines the wind
direction. If Player One did not choose L at the point τ(x) then it would
have been in the interest of Player Three to choose R at x. The rest follows
by induction.

(2) For the sake of contradiction, let us assume that there is at least three
book ends x in a doubly infinite cell. One of these three book ends must be
between the other two. By Part 1, in one of the two directions from this
middle book end there are no book ends, a contradiction.

(3) We consider three cases, (A) that there are no pure points in the cell
and that Player One chooses a pure strategy at x, (B) that there are no pure

15



points in the cell and Players Two and Three choose a coordinated pair at
x, and (C) x is a pure point in the cell.

Case (A): If Player One is choosing L at x, then the lack of a pure
point implies that Players Two and Three are choosing ballanced strategies
at both x and σ(x). To maintain the indifference of these ballanced choices
by at least one of either Players Two or Three, Player One must choose R
at Tx and T−1x. The rest follows by induction.

Case (B): If Players Two and Three are both choosing L at x, then the
lack of a pure point implies that Player One is choosing mixed strategies at
both x and τ(x). To maintain the indifference of Player One, Players Two
and Three are both choosing R at both Tx and T−1x. The rest follows by
induction.

Case (C): Assume that x is a pure point, that Players Two and Three
are choosing L at x, and Player One is choosing either L or R at x. If Player
One is choosing L at x, then the lack of a book end implies that Player One
is choosing R at T−1(x), in the lee direction of x. If Player One is chossing
R at x, then the lack of a book end implies that Players Two and Three are
both choosing R at T (x), in the lee direction of x. By induction and Part 1
we conclude that the whole cell consists of alternating behavior by all three
players. ✷

Proposition 4: The union of all the abnormal cells is a measure zero
set.

Proof: Due to Part Two of Lemma 5, the measure of the set of all doubly
infinite book ends is zero, and therefore also of all the cells containing a book
end.

Let us define A to be the set of all points where Player One chooses the
pure strategy L, and B the set where Player One chooses the pure strategy
R. By assumption both A and B are measurable sets and by Lemma 5
T (A) = B and T (B) = A (modulo sets of measure zero). By the ergodicity
of T we must have that µ(A) = 0 or µ(A) = 1. Since A and B are sets of the
same measure, we must conclude that both are of measure zero. We proceed
the same way with the sets where Players Two and Three both choose either
L or R. By Lemma 5 we have exhausted the abnormal cells. ✷

Theorem 1: (f 1, f 2, f 3), an arbitrary Bayesian equilibrium, could not
have consisted of measurable functions, (and therefore there could not have
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been a Harsanyi equilibrium by Proposition 2).

Proof: The result follows directly from Propositions 3 and 4. ✷

4 The Challenge of Approximate Equilibria

4.1 The Example

The following is an example of a zero-sum ergodic game for which there
would be no value in measurable strategies if the conjecture (presented in
the introduction) were true, though (from Proposition 1) there would exist
Bayesian equilibria.

There are eleven states of nature, with B = {b0, . . . , b10}. The space is
Ω := BZ

2

, with the canonical Bernoulli distribution µ. The 0, 0 -coordinate
determines the state of nature, so that if y ∈ Ω and y0,0 = bi then the payoffs
are determined by the state bi.

There are two players, Player One and Player Two, and at each state
each player has eleven moves. It is a zero-sum game, so that the payoffs
presented will be those of the first player. The following payoffs are for the
state i, modulo 11, and the moves, also modulo 11.

If Player One chooses the move i, then the payoff is
−100 if Player Two chooses i,
11 if Player Two chooses i− 1 (modulo 11), and
10 if Player Two chooses any other move k 6∈ {i, i− 1}.

If Player One chooses the move k 6= i, then the payoff is
−100 if Player Two chooses k, and
10 if Player Two chooses l 6= k, including l = i.

Next, consider the measure preserving involutions σ1, σ2 : Ω → Ω defined
by (σ1(y))

i,j := y−i,j and (σ2(y))
i,j := yi,−j . Notice that the σ1 and σ2

commute, so that for every x ∈ Ω we get at most four distinct points in the
orbit of σ1 and σ2 applied to x. At every x ∈ Ω define t1(x) so that Player
One believes that x, σ1(x), σ2(x), σ2 ◦ σ1(x) are given each 1/4 probability,
(with i/4 probability given to a point that appears with multiplicity i). As
before with the previous example, Player One always knows the state of
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nature, but not necessary what Player Two believes.
The measure preserving involutions τ1, τ2 : Ω → Ω are defined by (τ1(y))

i,j :=
y1−i,j and (τ2(y))

i,j := yi,1−j . Likewise, the τ1 and τ2 commute, with at least
four possibilities. At every x ∈ Ω define t2(x) so that Player Two believes
that x, τ1(x), τ2(x), τ2 ◦ τ1(x) are given 1/4 probability each, (with i/4 prob-
ability given to a point that appears with multiplicity i). It follows that
τ1 ◦ σ1 is the shift T1 : Ω → Ω defined by T (y)i,j = yi−1,j and τ2 ◦ σ2 is the
shift T2 : Ω → Ω defined by T (y)i,j = yi,j−1. Define F1 := {B | B is Borel
and x ∈ B ⇔ {x, σ1(x), σ2(x), σ1 ◦ σ2(x)} ⊆ B}, and define F2 correspond-
ingly with τ1 and τ2. As before, for every Player j tj is a regular conditional
probability distribution of µ with respect to the Borel field F j.

4.2 Application of the Conjecture

Lemma 6: In Bayesian equilibrium, at every quartet of points considered
possible by Player One, she receives an expected payoff of at least 0.

Proof: It suffices to consider the strategy that puts an equal weight of
1/11 to all moves. Regardless of the state of nature and the strategies of
Player Two, this strategy of Player One delivers to her a payoff of at least 0.
✷

Lemma 7: If Q is a member of F1 of positive measure and Player One
uses a single move i with a probability of at least 1−δ at all points of Q then
there will be a Q′ ∈ F2 containing Q where on the average Player Two holds
Player One down to a payoff of no more than −67/4 + 111δ/4 and there is
a Q∗ ∈ F1 containing Q′ where Player One is obtaining on the average no
more than −4/3 + 37δ/3.

Proof: For almost all points x ∈ Ω, the structure of the cell containing
x will be that of the two dimensional lattice Z2. To see this, we define the
actions of σ1, σ2, τ1, τ2 on the set D := Z2 in the following way.
If i is even, then σ1(i, j) = (i+ 1, j) and τ1(i, j) = (i− 1, j),
if i is odd, then σ1(i, j) = (i− 1, j) and τ1(i, j) = (i+ 1, j),
if j is even, then σ2(i, j) = (i, j + 1) and τ2(i, j) = (i, j − 1),
if j is odd, then σ2(i, j) = (i, j − 1) and τ2(i, j) = (i, j + 1).

We have that T1(i, j) := τ1 ◦ σ1(i, j) = (i + 2, j) if i is even and equal to
(i − 2, j) if i is odd, and that T2(i, j) := τ2 ◦ σ2(i, j) = (i, j + 2) if j is even
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and (i, j − 2) if j is odd.
To confirm that this lattice structure represents correctly the generic cell
and the actions of the involutions, we need to know two things, that points
identified by D came from identical points in Ω, and that generically distinct
points in D come from distinct points of Ω. For the former, if we start at any
point in D and choose two pathways defined by our involutions that lead to
the same point in D then we need to know that these involutions induce the
same action on Ω. We must check that moving from (i, j) to (i+1, j+1) (and
also the corresponding paths to (i+ 1, j − 1), (i− 1, j + 1), or (i− 1, j − 1))
through either (i + 1, j) or (i, j + 1) correspond to the same action on Ω.
This is confirmed by some pairs of involutions commuting, namely σ1 with
σ2, τ1 with τ2, τ1 with σ2, and σ1 with τ2. For the latter, we notice for almost
all x ∈ Ω that the points Tm

1 ◦ T n
2 (x), T

m
1 ◦ T n

2 ◦ τ1(x), T
m
1 ◦ T n

2 ◦ τ2(x) and
Tm
1 ◦ T n

2 ◦ τ1 ◦ τ2(x) for all m,n ∈ Z are distinct and comprise the orbit of x.
(The probability that any given pair are equal is a set of measure zero, and
the rest follows by sigma additivity.)

Now let us assume that at some point x ∈ Ω Player One puts a weight
of at least 1 − δ on the move k ∈ {0, 1, . . . , 10}. Without loss of generality,
let us assume that x is represented by the point (0, 0) in D. This means also
that a weight of at least 1−δ is put on the move k at the points σ1(x), σ2(x),
σ1 ◦σ2(x), which are now mapped to (0, 1), (1, 0) and (1, 1) in D. Since at all
four of these points Player Two could respond with the move k, the average
payoff for Player One at the points mapped to {(i, j) | −1 ≤ i, j ≤ 2} cannot
exceed 1

16
(12·11−4·100)(1−δ)+11δ = −67/4+111δ/4. Now consider the 36

different positions inD defined by {(i, j) | −2 ≤ i, j ≤ 3}. The average payoff
for Player One on this set cannot exceed 1

36
(32 · 11− 4 · 100)(1− δ) + 11δ =

−4/3 + 37δ/3. ✷

For every k ∈ {0, . . . , 10} and distinct pair m,n ∈ {0, . . . , 10} define

E
(m,n)
k to be the subset of mixed strategies of Player Two in ∆({0, . . . , 10})

against which the moves m and n both maximize Player One’s payoff at the
state bk (meaning also that Player One is indifferent between the moves m

and n). Define Ek := ∪m 6=nE
(m,n)
k .

Lemma 8: The intersection ∩k∈{0,...,10}Ek is empty, and for every strategy
g ∈ ∆({0, . . . , 10}) that is a positive distance of δ > 0 away from the set Ek

there is a move of Player One that is prefered to all other moves at the state
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k by a value of at least δ/5.

Proof: Let q ≥ 0 be the least weight given by g to any move in {0, . . . , 10}.
If q = 1/11 and g gives equal weight to all moves, then at any state bk the
move k will be prefered to all others by Player One. One the other hand, if
q < 1/11, then choose any k ∈ {0, . . . 10} such that g gives strictly more than
q to the move k − 1 (modulo 11) and gives exactly q to the move k (modulo
11). At the state bk the move k will be prefered by Player One to all other
moves.

The last claim follows directly from the fact that 1 is the smallest positive
difference between any of the payoffs and the diameter of the simplex is
strictly smaller than 5. ✷

Theorem 2: If the conjecture is valid, then there is a zero-sum ergodic
game with no value in measurable functions.

Proof: Define the variable dg in relation to the subsets Ei as stated by
the conjecture. By the conjecture (and Lemma 8) the expected value of dg is
at least w > 0 for all measurable functions g. Without loss of generality we
will assume that w ≤ 1. We will show that there cannot be a value v ∈ R
and strategy functions (f, g) for Players One and Two, measurable in F1 and
F2 respectively, such that the combination (f, g) delivers an expected payoff
of v to Player One, f guarantees a payoff of at least v − w2/10, 000 against
all measurable strategies of Player Two and g holds Player One down to a
payoff of no more than v + w2/10, 000 against all measurable strategies of
Player One.

Let Q be the measurable subset in F1 where according to f Player One
uses a single move with probability of at least 1− 1/90. By Lemma 7 there
is an even larger set Q∗ ∈ F1 where Player One is getting an average payoff
of no more than −4/3 + 37/270 < −1. Since by Lemma 6 Player One can
guarantee a payoff of at least 0 in the set Q∗, by the approximate optimality
of g we must assume that the measure of Q∗ (and also Q) is no greater than
w2/10, 000.

Now let us look at a point x such that x0,0 = bk and 1
4
(g(x) + g(T1(x)) +

g(T2(x)) + g(T1 ◦ T2(x)) is a distance of positive r > 0 from the set Ek. We
notice that T1(x) = τ1◦σ1(x), T2(x) = τ2◦σ2(x), and T1◦T2(x) = τ2◦τ1◦σ1◦
σ2(x). Since the behavior of Player Two remains constant within the finite
orbit of the τ1 and τ2, we see that

1
4
(g(x)+g(σ1(x))+g(σ2(x))+g(σ1◦σ2(x)))
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is a distance of positive r from the set Ek. By Lemma 8, Player One has a
single move at x that delivers to her r/5 more than any other move. By the
conjecture the distance r = w/2 is exceeded in a member of F1 of measure at
least w/10 (since the diameter of the simplex is less than 5). Since the set Q
where Player One chooses one move with frequency greater than 1−1/90 is so
small, we conclude that there is a set P ∈ F1 of measure at least w/11 where
the distance to the appropriate Ek (the k with bk = x0,0) is at least w/2 and
Player One does not use any move with more than 1− 1/90 probability. But
now we can conclude by Lemma 8 that Player One can improve her expected
payoff by at least 1

90
w
10

in this subset of measure at least w
11

by choosing some
single move. Due to the measurability of g, a decision concerning which move
is sufficient to obtain a payoff gain of 1

90
w
10

can be done in a measurable way.
✷

4.3 Single-Shift Spaces

Now we look at how the conjecture fails for single-shift spaces.
Let us consider the following example. C = [0, 2], A1 = {1/3, 4/3},

A2 = {2/3, 5/3}, and Ω = {1, 2}Z. We assume for all x ∈ Ω that 1
2
(f(x) +

f(T (x))) ∈ Ax0 . Modulo one, the determination of f(x) for any x ∈ Ω will
determine f(T kx) for all k ∈ Z. From now on we will view everything in terms
of modulo one. By the axiom of choice, we have a function f defined on all of
Ω. First we show that f cannot be measurable, and second that measurable
functions f can however approximate the requirement 1

2
(f(x) + f(T (x))) ∈

Ax0 .
If f were measurable, by Luzin’s Theorem, we should be able to approx-

imate our function f in probability with continuous functions, meaning that
for every ǫ > 0 there exists a continuous function g : {1, 2}Z → [0, 1] (mod-
ulo 1) such that f and g differ only on a set of measure ǫ. Let ǫ be 1/100.
Again by Luzin’s Theorem we know that there is a cylinder set E and a value
r ∈ [0, 1] (modulo 1) such that within the set E the probability (conditioned
on membership in E) that the value of f is further than ǫ from r is less than
ǫ. Without loss of generality, we can assume that our cylinder set is defined
by the choice of coordinates y−k, . . . , y0, . . . , yk−1 for some positive integer k.
We define the value q (modulo 1) by it being the functional value of T−k(x)
(modulo 1) for any x with f(x) = r and define the value s to be the cor-
responding value of the T k(x) (modulo 1). As long as x ∈ E is mapped to
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within ǫ of r, T−k(x) and T k(x) (modulo 1) will be mapped to within ǫ of q
and s, respectively. The occurances of the cylinder set E in a typical orbit
of T will be separated by many different sequences of intermediate values for
the 0-coordinate. By our assumption, these seperating sequences must, with
probability at least 1− 2ǫ, connect values within ǫ of s to values within ǫ of
q, an absurdity as long as ǫ is small compared to the distance between 1/3
and 2/3.

Looking at the same example, for any 0 < δ < 1/3 let us require instead
that |1

2
(f(x) + f(T (x))) − 1/3| ≤ δ (modulo 1) if x0 = 1 and |1

2
(f(x) +

f(T (x))) − 2/3| ≤ δ (modulo 1) if x0 = 2. Let N be larger than 3
δ
. Call

an orbit typical if there are infinitely many points x with x0 = 2 and also
infinitely many points x of the orbit such that (T n(x))0 = 1 for all −N ≤
n ≤ N . The latter kind of point we call a center point. We will define a map
f : Ω → [0, 1] (modulo 1) on the typical orbits in the following way. Every
center point gets mapped to 1/3 (modulo 1). For every center point x let
m(x) > N be the first number such that Tm(x)+N(x) is a center point and

(T k(x))0 = 2 for some k < m(x). (m(x) will be finite for all center points
of typical orbits). For all points of the form y = T k(x) for 0 ≤ k ≤ m(x),
determine f(y) inductively according to the rule 1

2
(f(y) + f(T (y))) = 1/3

(modulo 1) if y0 = 1 and = 2/3 (modulo 1) if y0 = 2. For the row y =
Tm(x)(x), Tm(x)+1(x), . . . Tm(x)+N(x) we define f so that |1

2
(f(y)+f(T (y)))−

1/3| < δ (modulo 1) and f(Tm(x)+N(x)) = 1/3, (with Tm(x)+N(x) the next
center point after Tm(x)(x)). We claim that these motions back to 1/3 can
done in a deterministic and measurable way with respect to the starting point
Tm(x)(x). Because the definition of f on the typical orbits can be broken
down according to the distances to the next center points, the definition of
f as restricted to the typical orbits would be measurable in character. But
since almost all points belong to typical orbits, that would be sufficient for
the measurability of f .

We believe that careful anaylsis of the example in Section 3 would reveal
a similar mechanism to generate measurable ǫ-Bayesian equilibria for every
positive ǫ, and we suspect that there exist measurable approximate Bayesian
equilibria for all ergodic games played on Bernoulli single-shift spaces. On
the other hand we see no such similar mechanism for getting measurable
approximate Bayesian equilibria for games played on double-shift spaces or
more exotic probability spaces with measure preserving transformations.
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5 Conclusion: Zero-sum games

We are interested in zero-sum ergodic games because of the possibilities for
violating conventional game theory. For the finite dimensional matrix games
for which the original min-max theorem was proven (Von Neumann 1928),
the value of the game is the expected payoff from all equilibrium strate-
gies. Equilibrium strategies are also called optimal strategies, because if
one exchanges the strategies in two pairs of equilibria, one obtains again an
equilibrium.

Even if a zero-sum ergodic game does has measurable Bayesian equi-
libria, the non-measurable varieties can play havoc with the conventional
understanding of value, expected payoff, equilibrium, and optimality. Let us
look at a very simple example.

Let Ω be {a, b}Z with the same belief structure as the example in Section
3, but with only two players, Player One and Player Two. We assume that
there is only one payoff matrix, that corresponding to the game of matching

pennies. Both players have only two moves, 0 and 1, and if the sum of their
moves is even then Player One receives 1 and if this sum is odd than Player
One receives −1. Let f j : Ω → [0, 1] for j = 1, 2 represent the probability
that Player j chooses the move 0.

We will consider two pairs of Bayesian equilibrium strategies for the play-
ers, (f 1

1 , f
2
1 ) and (f 1

2 , f
2
2 ). For both pairs the payoff will not be a measurable

function on Ω, however for the first pair for each player there will be an
expected payoff of 0 at all his pairs of states. For the second pair, however,
Player Two will have an expected payoff of 0 at all his pairs of states, but
the payoff to Player One will have no measurable interpretation. Exchanging
these pairs of strategies will not create a new Bayesian equilibrium.

To define the pair (f 1
1 , f

2
1 ) choose any doubly infinite x ∈ Ω and define

f 1
1 (x) = f 2

1 (x) = 1, but also f 1
1 (τ(x)) = f 1

1 (σ ◦ τ(x)) = 0 and f 2
1 (σ(x)) =

f 2
1 (τ ◦ σ(x)) = 0. Continue defining the strategies f 1

1 and f 2
1 on the cell

containing x in an alternating way so that at all y in the cell we have f 1
1 (y)+

f 1
1 (τ(y)) = 1 and f 2

1 (y) + f 2
1 (σ(y)) = 1, with the values for f 1

1 and f 2
1 always

either 0 or 1. This defines an equilibrium on the cell, and repeat this process
for all the doubly infinite cells.

For x being any doubly infinite point with f 1
1 (x) = f 2

1 (x) = 1, for all
points y = T kx with k ≥ 1 define f 2

2 (y) to be the same as f 2
1 (y), but for all

y = T−k(x) with k ≥ 0 switch the values, meaning that f 2
2 (y) + f 2

1 (y) = 1.
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For any y on this same cell, define f 1
2 by f 1

2 (y) + f 1
1 (y) = 1. Notice that

f 1
2 and f 2

2 are also in Bayesian equilibrium, but with the difference that for
every doubly infinite cell there is one special pair of points considered possible
by Player One, namely our chosen x and σ(x), where Player One expects a
payoff of 1 instead of 0.

The pair (f 1
1 , f

2
2 ) is not in Bayesian equilibrium, because Player One is

very dissatisfied in his choice at the point x. One could object: Player
One’s dissatifaction at only one point in the cell means that he is satisfied
almost everywhere. This objection is flawed, for two reasons. First, since
an adjacent point on a cell is evaluated to have a probability of one-half
by some player, once the equlibrium property is destroyed at one point, it
could be destroyed inductively for the entire containing cell. Second, since
such behavior is repeated for almost all cells, the extreme dissatisfaction of
Player One would not be limited to a set of measure zero. A set of points
that intersect every cell in one and only one point is a non-measurable set,
meaning that it has positive outer measure. It follows by the same argument
that with the Bayesian equilibrium (f 1

2 , f
2
2 ) there is no expected payoff for

Player One.
One could try to define the value of a zero-sum ergodic game as some kind

of limiting average payoff on the cells. Although the payoff function may not
be measurable, perhaps this limiting average payoff is measurable and well
behaved (e.g. the conclusion of the Birkhoff Ergodic Theorem without the
conditions being satisfied). The problem with this approach is that it is
uncertain what kind of interpretation should be given to such a limiting
average. The measure preserving transformations in our situation do not
represent the flow of time, the usual justification for ignoring finite subsets
of a sequence. As argued above, we don’t understand why within a cell the
players should consider arbitrary finite subsets to be insignificant.

Acknowledgements: The belief space of the first example, without the
payoff matrices, is a variation of a belief space given in Simon (2000), but
its precise formulation in this paper is due to Robert Aumann. The proof
of Proposition 2 was based on a conversation with J.-F. Mertens. Discus-
sions with Robert Aumann, Zbigniew Nitecki, and Benjamin Weiss were very
helpful.

24



6 References

HARSANYI, J. C., (1967-8). “GamesWith Incomplete Information Played
by Bayesian Players: Parts I, II, III”, Management Science 14 (3,5,7).

MERTENS, J.-F. and ZAMIR, S., (1985). “Formulation of Bayesian
Analysis for Games with Incomplete Information”, International Jour-
nal of Game Theory, Vol. 14, Issue 1, pp. 1-29.

NASH, J., (1950). “Equilibrium Points in n-person Games”, Proceedings
of the National Academy of Sciences, 36, pp. 48-49.

VON NEUMANN, J., (1928). “Zur Theorie der Gesellschaftsspiele”, Math-
ematische Annalen 100, pp. 295-320.

SIMON, R. (2000). “The Common Prior Assumption in Belief Spaces: An
Example”, Discussion Paper 228, (December 2000), Center for Ratio-
nality and Interactive Decision Theory, Hebrew University, Jerusalem.

SORIN, S. and ZAMIR, S. (1985). “A Two-Person Game with Lack of
Information on One and One-Half Sides,” Mathematics of Operations

Research 10, 17-23.

WALTERS, P., (1982). An Introduction to Ergodic Theory. Graduate
Texts in Mathematics 79, Springer Verlag.

25


