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Abstract

Let K be a local field and G the group of K-rational points of an
unitary group over K. In [4], there is given a concrete interpretation
of the Bruhat-Tits-building of G as a space of “maximinorant” norms
on the vector-space associated to the natural representation of G. 1
describe a method to find for any given two points in this building an
apartment, that contains both of them.

Introduction In [1] and [2] F. Bruhat and J. Tits construct to any
connected reductive algebraic group G defined over a local field K an affine
building, called the Bruhat-Tits-building of GG, using root-data with valua-
tion. In the case that G is one of the classical groups, they give a concrete
realization of this building in [3] and [4] as an suitable space N = N(G(K))
of norms on the K-vector-space X of the natural representation of the group
G(K) of K-rational points of G as classical group. They do this defining a
G(K)-equivariant bijection from the building (resp. the ”enlarged building”
in the case that G is of type A, , cf. [3] 2.4) onto N on which G(K) acts
by righttranslation. In this way one gets a very natural description of the
apartements of the building in terms of norms on X: To the apartements
correspond the sets of those norms in N, which are ”split” by a given ” canon-
ical” basis of X (I will give the correct definitions later). Since in a building
any two points are contained in a common apartement, it follows, that, given
two norms in N, there is at least one ”canonical” basis of X splitting them
simultaneously. In the case, that G is of type A,, a direct and constructive
proof of this fact is easily found in the literature (e.g. [6] prop. 1.3 or [5]
prop. 2.3.4). Therefore I will give here an analogous proof for the unitary
groups, which is a generalization of a similar proof for maximal lattices in
orthogonal spaces by [7], p. 51-54 and a part of a direct proof, that these
spaces of norms can be endowed with the structure of a building (as [5] does
for the A,-case), and may be usefull for computations.
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Notations Let (K,w) be a (commutative) field with a discrete valua-
tion, such that w(K*) = Z. Let X be a finite-dimensional vector space over
K.

A norm «: X — RU{oo} is a map which satisfies:
1. a(z) =00 =z =0, for r € X.

2. a(Ar) =w(A) + a(z) for N\ e K, z € X.

3. a(x +y) > inf(a(z), aly)) for z,y € X.

Let o be a norm of X and Y a subspace of X. A further subspace
Y’ of X is called splitting complement of Y for «, if X = Y &Y’ and
aly+vy) =inf(a(y),a(y')), for all y € Y,y € Y'. A norm a of X is called
split, if there is a basis x1, ..., x, of X, such that

a(z i) = irilf(w()\i) + a(x;)) for A,..., A\, € K. (1)

If a is a split norm of X, then by [3] 1.5, all subspaces of X have a splitting
complement for a.

A norm is called discrete, if their values are discrete in RU {oco}. A split
norm is discrete, clearly.

Further, let the pair (f,¢) consist of a bilinear map and a quadratic form
on X, such that one of the following cases are given':

1. f is non-degenerate and alternating. Then put ¢ = 0.

2. q is a semiregular quadratic form with associated symmetric bilinear-
form f,ie. f(z,y) = q(z+y)—q(x)—q(y) for x,y € X, where semireg-
ular means that either X as quadratic space is regular or char(K) = 2
and X = X'1 Kx with a nonisotropic element x € X and a regular
quadratic subspace X’ of codimension 1.

The Witt-index r of (X, f, q) is by definition the dimension of a maximal
isotropic subspace of X, which is well-defined by the Witt-theorem. Given a
maximal isotropic subspace X, in X, there is another, but not unique max-
imal isotropic subspace X_ “dual” to X, such that X, & X _ is hyperbolic

My conventions above are more restrictive than those in [4] section 2, which include
hermitian forms. But I do not want to repeat all the notations here. Although the theorem
and his proof stay valid without changes in the more general situation, too.
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and Xy := (X, @ X_)! is anisotropic, in particular there is a basis ey, .. ., e,
of X, and a basis e_q,...,e_, of X_ with

flei,e—y) =1, fori=1,...,r, and @)
f(ei,€j> =0, fori,jel :={xl,...,£r}, i# —j.

Let x1,...,z, be a basis of X;. We call a decomposition of the form
X = X L (X & X_) the Witt-decomposition of X (which is by the Witt-
theorem unique up to isometry) and a basis 1, ..., Tg, €1, ..., €, € 1,...,€_,
of X as above a canonical basis of (X, f,q).

If Xo # {0} we assume further, that

1. 1€ q<X0)

2. 2w(f(z,y)) 2 wlq(x)) +wlaly),  for z,y € Xo.

Condition 2. is satisfied, if K is henselian (see [4] 1.15).
Asin [4] 2.1, a norm « is called maximinorant with respect to (f,q), if «
is maximal under the conditions:

a(z) + a(y) < w(f(z,y)) for 7,y € X. (3)
20(x) < wlg(x)) for z € X.

Now, the appropriate space of norms is the set of all maximinorant norms
with respect to (f,q), which will be denoted by N, cf. [4] 2.9 and 2.12,
where is proven, that for any a € N,,,, there is a Witt-decomposition X =
Xo L (X;®X ) and an associated canonical basis 1, ...,z e1,... €, €1, ...
e_, as above which splits a. Moreover

a(x) = %w(q(w)) for z € Xy (4)
and
ale;) = —ale;) fori=1,...,n. (5)

Theorem 1 If «, 5 € Ny, are maziminorant norms with respect to (f,q),
then there is a canonical basis of X which splits o and B simultaneously.

The proof is by induction on the Witt-index. But first I prove some
lemmas:
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Lemma 1 Let A (resp. B) be a canonical basis of (X, f,q), which splits «
(resp. (). If the Witt-index of (X, f,q) is positiv, then there is a pair of
isotropic vectors e € A, é_1 € B and a A € K*, such that with e_1 := \é_,

fler,e1) =1, ale;) = —a(e1), Bler) = —B(e-1)
and
aler) — Bler) = sup (a(z) — B(z)).

zeXx\{0}

Proof. First I assume, that a # g and

sup (a(z) = fB(z)) > sup (B(z) — alz)), (6)
zeX\{0} zeX\{0}
in particular
sup (a(z) — fB(z)) > 0. (7)
zeX\{0}

Denote the vectors of B by wuy, ..., ug, f1,--- fr, fo1,--., f— in the obvious
manner. As remarked in [3] 1.26, we can choose an u € X \ {0}, such
that a(u) — f(u) is maximal. T put u = Zle Al 4+ Y icq i fi (where I =
{£1,...,%+r}), ug := Zle A and fo := >, pi fi, hence u = ug + fo.

By (7), we have iw(q(u)) > a(u) > B(u). Assume, that 5(uo) < 5(fo)
would hold. Then, by (4) and since /3 is minorant (f, q),

*al)) = Blug) < B(o) < 2e(alfo)).

and therefore )
sw(q(u)) = swlq(uo)) = Bluo) = B(u),

contradiction. Thus S(ug) > 5(fo) and S(u) = B(fo), in particular fy # 0.
Take ig € I with f(u) = (u ) + B(fi,) and put e_y := Hp; " f-;, with a
suitable sign, such that f(u,e_;) =1. Also g(e_;) =0 and
Ble—1) = wlps,) + B(f-in) = —wtsy) — B(fir) = —B(u)

holds by (5).
Now put e; = u — q(u)e_;. This yields g(e;) = 0, and since w(q(u)) +
Ble—1) > 2B(u) — B(u) = B(u), it follows, that

Bler) = inf(B(u),w(q(u)) + Ble-1)) = B(u).

l\D
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Now a(er) — B(u) = aler) — B(e1) < a(u) — B(u) implies
aler) < a(u)
and from a(u) — B(u) = B(e-1) — ale-1) = —B(u) — afe-1) we get
a(e-1) = —a(u). (8)
But this yields also
aler) > inf(a(u),w(q(u)) + ale-1)) > inf(a(u), 2a(u) + ale-1)) = a(u).
Thus a(e1) = a(u) and

aler) = fler) = a(u) = fu) = sup (a(z) - f(x)).

zeXx\{0}

Finally, since a is minorant f, one gets a(e_1) < w(f(e1,e_1)) — ale;) =
—af(e1). On the other hand a(e_;) > —a(u) = —a(ey), by (8).

Now, since a(e;) — B(e1) = Pe—1) — a(e—1), in (6) holds equality. So
this assumption is made without loss of generality. Moreover, it follows from
the proof above, that the difference 5(z) — a(z) takes his supremum on an
isotropic vector of an arbitrary canonical basis which splits 5. Hence we can
choose e; = u € A, by symmetry, as stated in the lemma. O

Lemma 2 Let o be a split maziminorant norm with respect to (f,q) and
X = X L Xy an orthogonal decomposition, which splits ov. Then a|x,, a|x,
are also split maximinorant norms with respect to the restricted forms.

Proof. We only have to show, that if a; and «s are minorant norms with
respect to (f,q) on X; and X, respectively, then oy L g, where

a; L as(xy + xe) = inf(ay (z1), az(x2)) for r1 € X1, 19 € Xo
is also minorant with respect to (f,¢). But this follows immediatly from
f(z1,29) =0 and q(z1 + 72) = q(21) + q(22).

The restrictions of « are split by [3] 1.5. 0
Now we can finish the proof of the theorem 1 by induction on 7:

Proof. If (X, f,q) is anisotropic, then every basis of X is canonical and we

can proceed as [6] in the A,-case. So assume that r > 0 and choose ¢,
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and e_; as in lemma 1. Then H := Klej,e_q] is a hyperbolic plane. Take
T = M\ep +A1e_1 + 2 € X with z € H+. Then since « is minorant f and
f(e1,e—1) =1, for j = £1 we get, if \; # 0:

a(z Xiei +2) < —a(Xes;) = a(Xe;),
i=+1
otherwise o(),_,; Aie; + 2) < a(Aje;) = oo holds, clearly. This implies

a(z Xiei + 2) < afz).

i=+1

So the decomposition Ke; @ Ke_; L H* splits o and the same holds for 3,
clearly. Hence, using lemma 2, the theorem follows by induction. O
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