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Abstract

Let K be a local field and G the group of K-rational points of an
unitary group over K. In [4], there is given a concrete interpretation
of the Bruhat-Tits-building of G as a space of “maximinorant” norms
on the vector-space associated to the natural representation of G. I
describe a method to find for any given two points in this building an
apartment, that contains both of them.

Introduction In [1] and [2] F. Bruhat and J. Tits construct to any
connected reductive algebraic group G defined over a local field K an affine
building, called the Bruhat-Tits-building of G, using root-data with valua-
tion. In the case that G is one of the classical groups, they give a concrete
realization of this building in [3] and [4] as an suitable space N = N(G(K))
of norms on the K-vector-space X of the natural representation of the group
G(K) of K-rational points of G as classical group. They do this defining a
G(K)-equivariant bijection from the building (resp. the ”enlarged building”
in the case that G is of type An , cf. [3] 2.4) onto N on which G(K) acts
by righttranslation. In this way one gets a very natural description of the
apartements of the building in terms of norms on X: To the apartements
correspond the sets of those norms in N, which are ”split” by a given ”canon-
ical” basis of X (I will give the correct definitions later). Since in a building
any two points are contained in a common apartement, it follows, that, given
two norms in N, there is at least one ”canonical” basis of X splitting them
simultaneously. In the case, that G is of type An, a direct and constructive
proof of this fact is easily found in the literature (e.g. [6] prop. 1.3 or [5]
prop. 2.3.4). Therefore I will give here an analogous proof for the unitary
groups, which is a generalization of a similar proof for maximal lattices in
orthogonal spaces by [7], p. 51-54 and a part of a direct proof, that these
spaces of norms can be endowed with the structure of a building (as [5] does
for the An-case), and may be usefull for computations.



2 W. FRISCH

Notations Let (K,ω) be a (commutative) field with a discrete valua-
tion, such that ω(K×) = Z. Let X be a finite-dimensional vector space over
K.

A norm α : X → R ∪ {∞} is a map which satisfies:

1. α(x) = ∞ ⇒ x = 0, for x ∈ X.

2. α(λx) = ω(λ) + α(x) for λ ∈ K, x ∈ X.

3. α(x+ y) ≥ inf(α(x), α(y)) for x, y ∈ X.

Let α be a norm of X and Y a subspace of X. A further subspace
Y ′ of X is called splitting complement of Y for α, if X = Y ⊕ Y ′ and
α(y + y′) = inf(α(y), α(y′)), for all y ∈ Y, y′ ∈ Y ′. A norm α of X is called
split, if there is a basis x1, . . . , xn of X, such that

α(
n∑

i=1

λixi) = inf
i
(ω(λi) + α(xi)) for λ1, . . . , λn ∈ K. (1)

If α is a split norm of X, then by [3] 1.5, all subspaces of X have a splitting
complement for α.

A norm is called discrete, if their values are discrete in R∪ {∞}. A split
norm is discrete, clearly.

Further, let the pair (f, q) consist of a bilinear map and a quadratic form
on X, such that one of the following cases are given1:

1. f is non-degenerate and alternating. Then put q = 0.

2. q is a semiregular quadratic form with associated symmetric bilinear-
form f , i.e. f(x, y) = q(x+y)−q(x)−q(y) for x, y ∈ X, where semireg-
ular means that either X as quadratic space is regular or char(K) = 2
and X = X ′⊥Kx with a nonisotropic element x ∈ X and a regular
quadratic subspace X ′ of codimension 1.

The Witt-index r of (X, f, q) is by definition the dimension of a maximal
isotropic subspace of X, which is well-defined by the Witt-theorem. Given a
maximal isotropic subspace X+ in X, there is another, but not unique max-
imal isotropic subspace X− “dual” to X+, such that X+ ⊕X− is hyperbolic

1My conventions above are more restrictive than those in [4] section 2, which include
hermitian forms. But I do not want to repeat all the notations here. Although the theorem
and his proof stay valid without changes in the more general situation, too.
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and X0 := (X+⊕X−)
⊥ is anisotropic, in particular there is a basis e1, . . . , er

of X+ and a basis e−1, . . . , e−r of X− with

f(ei, e−i) = 1, for i = 1, . . . , r, and
f(ei, ej) = 0, for i, j ∈ I := {±1, . . . ,±r}, i 6= −j.

(2)

Let x1, . . . , xk be a basis of X0. We call a decomposition of the form
X = X0 ⊥ (X+ ⊕X−) the Witt-decomposition of X (which is by the Witt-
theorem unique up to isometry) and a basis x1, . . . , xk, e1, . . . , er, e−1, . . . , e−r

of X as above a canonical basis of (X, f, q).
If X0 6= {0} we assume further, that

1. 1 ∈ q(X0).

2. 2ω(f(x, y)) ≥ ω(q(x)) + ω(q(y)), for x, y ∈ X0.

Condition 2. is satisfied, if K is henselian (see [4] 1.15).
As in [4] 2.1, a norm α is called maximinorant with respect to (f, q), if α

is maximal under the conditions:

α(x) + α(y) ≤ ω(f(x, y)) for x, y ∈ X.

2α(x) ≤ ω(q(x)) for x ∈ X.
(3)

Now, the appropriate space of norms is the set of all maximinorant norms
with respect to (f, q), which will be denoted by Nmm, cf. [4] 2.9 and 2.12,
where is proven, that for any α ∈ Nmm there is a Witt-decomposition X =
X0 ⊥ (X+⊕X−) and an associated canonical basis x1, . . . , xk, e1, . . . , er, e−1, . . . ,

e−r as above which splits α. Moreover

α(x) =
1

2
ω(q(x)) for x ∈ X0 (4)

and

α(ei) = −α(e−i) for i = 1, . . . , n. (5)

Theorem 1 If α, β ∈ Nmm are maximinorant norms with respect to (f, q),
then there is a canonical basis of X which splits α and β simultaneously.

The proof is by induction on the Witt-index. But first I prove some
lemmas:
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Lemma 1 Let A (resp. B) be a canonical basis of (X, f, q), which splits α

(resp. β). If the Witt-index of (X, f, q) is positiv, then there is a pair of
isotropic vectors e1 ∈ A, ẽ−1 ∈ B and a λ ∈ K×, such that with e−1 := λẽ−1

f(e1, e−1) = 1, α(e1) = −α(e−1), β(e1) = −β(e−1)

and
α(e1)− β(e1) = sup

x∈X\{0}

(α(x)− β(x)).

Proof. First I assume, that α 6= β and

sup
x∈X\{0}

(α(x)− β(x)) ≥ sup
x∈X\{0}

(β(x)− α(x)), (6)

in particular
sup

x∈X\{0}

(α(x)− β(x)) > 0. (7)

Denote the vectors of B by u1, . . . , uk, f1, . . . , fr, f−1, . . . , f−r in the obvious
manner. As remarked in [3] 1.26, we can choose an u ∈ X \ {0}, such
that α(u) − β(u) is maximal. I put u =

∑k

i=1
λiui +

∑
i∈I µifi (where I =

{±1, . . . ,±r}), u0 :=
∑k

i=1
λiui and f0 :=

∑
i∈I µifi, hence u = u0 + f0.

By (7), we have 1

2
ω(q(u)) ≥ α(u) > β(u). Assume, that β(u0) < β(f0)

would hold. Then, by (4) and since β is minorant (f, q),

1

2
ω(q(u0)) = β(u0) < β(f0) ≤

1

2
ω(q(f0)),

and therefore
1

2
ω(q(u)) =

1

2
ω(q(u0)) = β(u0) = β(u),

contradiction. Thus β(u0) ≥ β(f0) and β(u) = β(f0), in particular f0 6= 0.
Take i0 ∈ I with β(u) = ω(µi0) + β(fi0) and put e−1 := ±µ−1

i0
f−i0 with a

suitable sign, such that f(u, e−1) = 1. Also q(e−1) = 0 and

β(e−1) = ω(µ−1

i0
) + β(f−i0) = −ω(µi0)− β(fi0) = −β(u)

holds by (5).
Now put e1 = u − q(u)e−1. This yields q(e1) = 0, and since ω(q(u)) +

β(e−1) > 2β(u)− β(u) = β(u), it follows, that

β(e1) = inf(β(u), ω(q(u)) + β(e−1)) = β(u).
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Now α(e1)− β(u) = α(e1)− β(e1) ≤ α(u)− β(u) implies

α(e1) ≤ α(u)

and from α(u)− β(u) ≥ β(e−1)− α(e−1) = −β(u)− α(e−1) we get

α(e−1) ≥ −α(u). (8)

But this yields also

α(e1) ≥ inf(α(u), ω(q(u)) + α(e−1)) ≥ inf(α(u), 2α(u) + α(e−1)) = α(u).

Thus α(e1) = α(u) and

α(e1)− β(e1) = α(u)− β(u) = sup
x∈X\{0}

(α(x)− β(x)).

Finally, since α is minorant f , one gets α(e−1) ≤ ω(f(e1, e−1)) − α(e1) =
−α(e1). On the other hand α(e−1) ≥ −α(u) = −α(e1), by (8).

Now, since α(e1) − β(e1) = β(e−1) − α(e−1), in (6) holds equality. So
this assumption is made without loss of generality. Moreover, it follows from
the proof above, that the difference β(x) − α(x) takes his supremum on an
isotropic vector of an arbitrary canonical basis which splits β. Hence we can
choose e1 = u ∈ A, by symmetry, as stated in the lemma. ✷

Lemma 2 Let α be a split maximinorant norm with respect to (f, q) and
X = X1 ⊥ X2 an orthogonal decomposition, which splits α. Then α|X1

, α|X2

are also split maximinorant norms with respect to the restricted forms.

Proof. We only have to show, that if α1 and α2 are minorant norms with
respect to (f, q) on X1 and X2 respectively, then α1 ⊥ α2, where

α1 ⊥ α2(x1 + x2) = inf(α1(x1), α2(x2)) for x1 ∈ X1, x2 ∈ X2

is also minorant with respect to (f, q). But this follows immediatly from

f(x1, x2) = 0 and q(x1 + x2) = q(x1) + q(x2).

The restrictions of α are split by [3] 1.5. ✷

Now we can finish the proof of the theorem 1 by induction on r:
Proof. If (X, f, q) is anisotropic, then every basis of X is canonical and we
can proceed as [6] in the An-case. So assume that r > 0 and choose e1



6 REFERENCES

and e−1 as in lemma 1. Then H := K[e1, e−1] is a hyperbolic plane. Take
x = λ1e1 + λ−1e−1 + z ∈ X with z ∈ H⊥. Then since α is minorant f and
f(e1, e−1) = 1, for j = ±1 we get, if λj 6= 0:

α(
∑

i=±1

λiei + z) ≤ −α(λ−1

j e−j) = α(λjej),

otherwise α(
∑

i=±1
λiei + z) ≤ α(λjej) = ∞ holds, clearly. This implies

α(
∑

i=±1

λiei + z) ≤ α(z).

So the decomposition Ke1 ⊕Ke−1 ⊥ H⊥ splits α and the same holds for β,
clearly. Hence, using lemma 2, the theorem follows by induction. ✷
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