On the Bruhat-Tits-Building of Unitary Groups: Simultaneous Diagonalization of Real Norms

Winfried FRISCH

Abstract

Let K be a local field and G the group of K-rational points of an unitary group over K. In [4], there is given a concrete interpretation of the Bruhat-Tits-building of G as a space of "maximinorant" norms on the vector-space associated to the natural representation of G. I describe a method to find for any given two points in this building an apartment, that contains both of them.

Introduction In [1] and [2] F. Bruhat and J. Tits construct to any connected reductive algebraic group G defined over a local field K an affine building, called the Bruhat-Tits-building of G, using root-data with valuation. In the case that G is one of the classical groups, they give a concrete realization of this building in [3] and [4] as an suitable space $\mathcal{N}=\mathcal{N}(G(K))$ of norms on the K-vector-space X of the natural representation of the group $G(K)$ of K-rational points of G as classical group. They do this defining a $G(K)$-equivariant bijection from the building (resp. the "enlarged building" in the case that G is of type A_{n}, cf. [3] 2.4) onto \mathcal{N} on which $G(K)$ acts by righttranslation. In this way one gets a very natural description of the apartements of the building in terms of norms on X : To the apartements correspond the sets of those norms in \mathcal{N}, which are "split" by a given "canonical" basis of X (I will give the correct definitions later). Since in a building any two points are contained in a common apartement, it follows, that, given two norms in \mathcal{N}, there is at least one "canonical" basis of X splitting them simultaneously. In the case, that G is of type A_{n}, a direct and constructive proof of this fact is easily found in the literature (e.g. [6] prop. 1.3 or [5] prop. 2.3.4). Therefore I will give here an analogous proof for the unitary groups, which is a generalization of a similar proof for maximal lattices in orthogonal spaces by [7], p. 51-54 and a part of a direct proof, that these spaces of norms can be endowed with the structure of a building (as [5] does for the A_{n}-case), and may be usefull for computations.

Notations Let (K, ω) be a (commutative) field with a discrete valuation, such that $\omega\left(K^{\times}\right)=\mathbb{Z}$. Let X be a finite-dimensional vector space over K.

A norm $\alpha: X \rightarrow \mathbb{R} \cup\{\infty\}$ is a map which satisfies:

1. $\alpha(x)=\infty \Rightarrow x=0, \quad$ for $x \in X$.
2. $\alpha(\lambda x)=\omega(\lambda)+\alpha(x) \quad$ for $\lambda \in K, x \in X$.
3. $\alpha(x+y) \geq \inf (\alpha(x), \alpha(y)) \quad$ for $x, y \in X$.

Let α be a norm of X and Y a subspace of X. A further subspace Y^{\prime} of X is called splitting complement of Y for α, if $X=Y \oplus Y^{\prime}$ and $\alpha\left(y+y^{\prime}\right)=\inf \left(\alpha(y), \alpha\left(y^{\prime}\right)\right)$, for all $y \in Y, y^{\prime} \in Y^{\prime}$. A norm α of X is called split, if there is a basis x_{1}, \ldots, x_{n} of X, such that

$$
\begin{equation*}
\alpha\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)=\inf _{i}\left(\omega\left(\lambda_{i}\right)+\alpha\left(x_{i}\right)\right) \quad \text { for } \lambda_{1}, \ldots, \lambda_{n} \in K \tag{1}
\end{equation*}
$$

If α is a split norm of X, then by [3] 1.5, all subspaces of X have a splitting complement for α.

A norm is called discrete, if their values are discrete in $\mathbb{R} \cup\{\infty\}$. A split norm is discrete, clearly.

Further, let the pair (f, q) consist of a bilinear map and a quadratic form on X, such that one of the following cases are given ${ }^{1}$:

1. f is non-degenerate and alternating. Then put $q=0$.
2. q is a semiregular quadratic form with associated symmetric bilinearform f, i.e. $f(x, y)=q(x+y)-q(x)-q(y)$ for $x, y \in X$, where semiregular means that either X as quadratic space is regular or $\operatorname{char}(K)=2$ and $X=X^{\prime} \perp K x$ with a nonisotropic element $x \in X$ and a regular quadratic subspace X^{\prime} of codimension 1 .

The Witt-index r of (X, f, q) is by definition the dimension of a maximal isotropic subspace of X, which is well-defined by the Witt-theorem. Given a maximal isotropic subspace X_{+}in X, there is another, but not unique maximal isotropic subspace X_{-}"dual" to X_{+}, such that $X_{+} \oplus X_{-}$is hyperbolic

[^0]and $X_{0}:=\left(X_{+} \oplus X_{-}\right)^{\perp}$ is anisotropic, in particular there is a basis e_{1}, \ldots, e_{r} of X_{+}and a basis e_{-1}, \ldots, e_{-r} of X_{-}with
\[

$$
\begin{align*}
& f\left(e_{i}, e_{-i}\right)=1, \text { for } i=1, \ldots, r, \text { and } \\
& f\left(e_{i}, e_{j}\right)=0, \text { for } i, j \in I:=\{ \pm 1, \ldots, \pm r\}, \quad i \neq-j . \tag{2}
\end{align*}
$$
\]

Let x_{1}, \ldots, x_{k} be a basis of X_{0}. We call a decomposition of the form $X=X_{0} \perp\left(X_{+} \oplus X_{-}\right)$the Witt-decomposition of X (which is by the Witttheorem unique up to isometry) and a basis $x_{1}, \ldots, x_{k}, e_{1}, \ldots, e_{r}, e_{-1}, \ldots, e_{-r}$ of X as above a canonical basis of (X, f, q).

If $X_{0} \neq\{0\}$ we assume further, that

1. $1 \in q\left(X_{0}\right)$.
2. $2 \omega(f(x, y)) \geq \omega(q(x))+\omega(q(y)), \quad$ for $x, y \in X_{0}$.

Condition 2. is satisfied, if K is henselian (see [4] 1.15).
As in [4] 2.1, a norm α is called maximinorant with respect to (f, q), if α is maximal under the conditions:

$$
\begin{array}{ll}
\alpha(x)+\alpha(y) \leq \omega(f(x, y)) & \text { for } x, y \in X . \tag{3}\\
2 \alpha(x) \leq \omega(q(x)) & \text { for } x \in X .
\end{array}
$$

Now, the appropriate space of norms is the set of all maximinorant norms with respect to (f, q), which will be denoted by $\mathcal{N}_{m m}$, cf. [4] 2.9 and 2.12, where is proven, that for any $\alpha \in \mathcal{N}_{m m}$ there is a Witt-decomposition $X=$ $X_{0} \perp\left(X_{+} \oplus X_{-}\right)$and an associated canonical basis $x_{1}, \ldots, x_{k}, e_{1}, \ldots, e_{r}, e_{-1}, \ldots$, e_{-r} as above which splits α. Moreover

$$
\begin{equation*}
\alpha(x)=\frac{1}{2} \omega(q(x)) \quad \text { for } x \in X_{0} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha\left(e_{i}\right)=-\alpha\left(e_{-i}\right) \quad \text { for } i=1, \ldots, n . \tag{5}
\end{equation*}
$$

Theorem 1 If $\alpha, \beta \in \mathcal{N}_{m m}$ are maximinorant norms with respect to (f, q), then there is a canonical basis of X which splits α and β simultaneously.

The proof is by induction on the Witt-index. But first I prove some lemmas:

Lemma 1 Let \mathcal{A} (resp. B) be a canonical basis of (X, f, q), which splits α (resp. β). If the Witt-index of (X, f, q) is positiv, then there is a pair of isotropic vectors $e_{1} \in \mathcal{A}, \tilde{e}_{-1} \in \mathcal{B}$ and $a \lambda \in K^{\times}$, such that with $e_{-1}:=\lambda \tilde{e}_{-1}$

$$
f\left(e_{1}, e_{-1}\right)=1, \alpha\left(e_{1}\right)=-\alpha\left(e_{-1}\right), \beta\left(e_{1}\right)=-\beta\left(e_{-1}\right)
$$

and

$$
\alpha\left(e_{1}\right)-\beta\left(e_{1}\right)=\sup _{x \in X \backslash\{0\}}(\alpha(x)-\beta(x)) .
$$

Proof. First I assume, that $\alpha \neq \beta$ and

$$
\begin{equation*}
\sup _{x \in X \backslash\{0\}}(\alpha(x)-\beta(x)) \geq \sup _{x \in X \backslash\{0\}}(\beta(x)-\alpha(x)), \tag{6}
\end{equation*}
$$

in particular

$$
\begin{equation*}
\sup _{x \in X \backslash\{0\}}(\alpha(x)-\beta(x))>0 . \tag{7}
\end{equation*}
$$

Denote the vectors of \mathcal{B} by $u_{1}, \ldots, u_{k}, f_{1}, \ldots, f_{r}, f_{-1}, \ldots, f_{-r}$ in the obvious manner. As remarked in [3] 1.26, we can choose an $u \in X \backslash\{0\}$, such that $\alpha(u)-\beta(u)$ is maximal. I put $u=\sum_{i=1}^{k} \lambda_{i} u_{i}+\sum_{i \in I} \mu_{i} f_{i}$ (where $I=$ $\{ \pm 1, \ldots, \pm r\}), u_{0}:=\sum_{i=1}^{k} \lambda_{i} u_{i}$ and $f_{0}:=\sum_{i \in I} \mu_{i} f_{i}$, hence $u=u_{0}+f_{0}$.

By (7), we have $\frac{1}{2} \omega(q(u)) \geq \alpha(u)>\beta(u)$. Assume, that $\beta\left(u_{0}\right)<\beta\left(f_{0}\right)$ would hold. Then, by (4) and since β is minorant (f, q),

$$
\frac{1}{2} \omega\left(q\left(u_{0}\right)\right)=\beta\left(u_{0}\right)<\beta\left(f_{0}\right) \leq \frac{1}{2} \omega\left(q\left(f_{0}\right)\right),
$$

and therefore

$$
\frac{1}{2} \omega(q(u))=\frac{1}{2} \omega\left(q\left(u_{0}\right)\right)=\beta\left(u_{0}\right)=\beta(u),
$$

contradiction. Thus $\beta\left(u_{0}\right) \geq \beta\left(f_{0}\right)$ and $\beta(u)=\beta\left(f_{0}\right)$, in particular $f_{0} \neq 0$.
Take $i_{0} \in I$ with $\beta(u)=\omega\left(\mu_{i_{0}}\right)+\beta\left(f_{i_{0}}\right)$ and put $e_{-1}:= \pm \mu_{i_{0}}^{-1} f_{-i_{0}}$ with a suitable sign, such that $f\left(u, e_{-1}\right)=1$. Also $q\left(e_{-1}\right)=0$ and

$$
\beta\left(e_{-1}\right)=\omega\left(\mu_{i_{0}}^{-1}\right)+\beta\left(f_{-i_{0}}\right)=-\omega\left(\mu_{i_{0}}\right)-\beta\left(f_{i_{0}}\right)=-\beta(u)
$$

holds by (5).
Now put $e_{1}=u-q(u) e_{-1}$. This yields $q\left(e_{1}\right)=0$, and since $\omega(q(u))+$ $\beta\left(e_{-1}\right)>2 \beta(u)-\beta(u)=\beta(u)$, it follows, that

$$
\beta\left(e_{1}\right)=\inf \left(\beta(u), \omega(q(u))+\beta\left(e_{-1}\right)\right)=\beta(u) .
$$

Now $\alpha\left(e_{1}\right)-\beta(u)=\alpha\left(e_{1}\right)-\beta\left(e_{1}\right) \leq \alpha(u)-\beta(u)$ implies

$$
\alpha\left(e_{1}\right) \leq \alpha(u)
$$

and from $\alpha(u)-\beta(u) \geq \beta\left(e_{-1}\right)-\alpha\left(e_{-1}\right)=-\beta(u)-\alpha\left(e_{-1}\right)$ we get

$$
\begin{equation*}
\alpha\left(e_{-1}\right) \geq-\alpha(u) \tag{8}
\end{equation*}
$$

But this yields also

$$
\alpha\left(e_{1}\right) \geq \inf \left(\alpha(u), \omega(q(u))+\alpha\left(e_{-1}\right)\right) \geq \inf \left(\alpha(u), 2 \alpha(u)+\alpha\left(e_{-1}\right)\right)=\alpha(u) .
$$

Thus $\alpha\left(e_{1}\right)=\alpha(u)$ and

$$
\alpha\left(e_{1}\right)-\beta\left(e_{1}\right)=\alpha(u)-\beta(u)=\sup _{x \in X \backslash\{0\}}(\alpha(x)-\beta(x)) .
$$

Finally, since α is minorant f, one gets $\alpha\left(e_{-1}\right) \leq \omega\left(f\left(e_{1}, e_{-1}\right)\right)-\alpha\left(e_{1}\right)=$ $-\alpha\left(e_{1}\right)$. On the other hand $\alpha\left(e_{-1}\right) \geq-\alpha(u)=-\alpha\left(e_{1}\right)$, by (8).

Now, since $\alpha\left(e_{1}\right)-\beta\left(e_{1}\right)=\beta\left(e_{-1}\right)-\alpha\left(e_{-1}\right)$, in (6) holds equality. So this assumption is made without loss of generality. Moreover, it follows from the proof above, that the difference $\beta(x)-\alpha(x)$ takes his supremum on an isotropic vector of an arbitrary canonical basis which splits β. Hence we can choose $e_{1}=u \in \mathcal{A}$, by symmetry, as stated in the lemma.

Lemma 2 Let α be a split maximinorant norm with respect to (f, q) and $X=X_{1} \perp X_{2}$ an orthogonal decomposition, which splits α. Then $\left.\alpha\right|_{X_{1}},\left.\alpha\right|_{X_{2}}$ are also split maximinorant norms with respect to the restricted forms.

Proof. We only have to show, that if α_{1} and α_{2} are minorant norms with respect to (f, q) on X_{1} and X_{2} respectively, then $\alpha_{1} \perp \alpha_{2}$, where

$$
\alpha_{1} \perp \alpha_{2}\left(x_{1}+x_{2}\right)=\inf \left(\alpha_{1}\left(x_{1}\right), \alpha_{2}\left(x_{2}\right)\right) \quad \text { for } x_{1} \in X_{1}, x_{2} \in X_{2}
$$

is also minorant with respect to (f, q). But this follows immediatly from

$$
f\left(x_{1}, x_{2}\right)=0 \quad \text { and } \quad q\left(x_{1}+x_{2}\right)=q\left(x_{1}\right)+q\left(x_{2}\right) .
$$

The restrictions of α are split by [3] 1.5.
Now we can finish the proof of the theorem 1 by induction on r :
Proof. If (X, f, q) is anisotropic, then every basis of X is canonical and we can proceed as [6] in the A_{n}-case. So assume that $r>0$ and choose e_{1}
and e_{-1} as in lemma 1. Then $H:=K\left[e_{1}, e_{-1}\right]$ is a hyperbolic plane. Take $x=\lambda_{1} e_{1}+\lambda_{-1} e_{-1}+z \in X$ with $z \in H^{\perp}$. Then since α is minorant f and $f\left(e_{1}, e_{-1}\right)=1$, for $j= \pm 1$ we get, if $\lambda_{j} \neq 0$:

$$
\alpha\left(\sum_{i= \pm 1} \lambda_{i} e_{i}+z\right) \leq-\alpha\left(\lambda_{j}^{-1} e_{-j}\right)=\alpha\left(\lambda_{j} e_{j}\right),
$$

otherwise $\alpha\left(\sum_{i= \pm 1} \lambda_{i} e_{i}+z\right) \leq \alpha\left(\lambda_{j} e_{j}\right)=\infty$ holds, clearly. This implies

$$
\alpha\left(\sum_{i= \pm 1} \lambda_{i} e_{i}+z\right) \leq \alpha(z)
$$

So the decomposition $K e_{1} \oplus K e_{-1} \perp H^{\perp}$ splits α and the same holds for β, clearly. Hence, using lemma 2, the theorem follows by induction.

References

[1] Bruhat F., Tits J., Groupes réductifs sur un corps local I: Données radicielles valluées, Publ. Math. I.H.E.S. 41 (1972) 5-521.
[2] Bruhat F., Tits J., Groupes réductifs sur un corps local I: Données radicielles valluées, Publ. Math. I.H.E.S. 60 (1984) 259-301.
[3] Bruhat F., Tits J., Schémas en groupes et immeubles des groupes classiques sur un corps local I: le groupe linéaire générale, Bull. Soc. Math. France 112 (1984) 259-301.
[4] Bruhat F., Tits J., Schémas en groupes et immeubles des groupes classiques sur un corps local II:groupes unitaires, Bull. Soc. Math. France 115 (1987) 141-195.
[5] Gerardin P., Immeubles des groupes linéaires généraux, in: Carmona J. Vergne M., Harmonic Analysis and Lie Groups, Springer Verlag LNM 880,1981,pp. 138-178.
[6] Goldman O., Iwahori N., The space of p-adic norms, Acta Math. 109 (1963) 137-177.
[7] Eichler M., Quadratische Formen und orthogonale Gruppen, SpringerVerlag, 1952.

Winfried Frisch
Mathematisches Institut der Universität Göttingen, Bunsenstraße 3-5, 37073 Göttingen, Germany
E-mail: frisch@uni-math.gwdg.de

[^0]: ${ }^{1}$ My conventions above are more restrictive than those in [4] section 2, which include hermitian forms. But I do not want to repeat all the notations here. Although the theorem and his proof stay valid without changes in the more general situation, too.

