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Abstract. We give examples of smooth Calabi-Yau 3-folds in P
6 of low de-

gree, up to the first difficult case, which occurs in degree 17. In this case we
show the existence of three unirational components of their Hilbert scheme,
all having the same dimension 23 + 48 = 71.

The constructions are based on the Pfaffian complex, choosing an appropri-
ate vector bundle starting from their cohomology table. This translates into
studying the possible structures of their Hartshorne-Rao modules.

We also give a criterium to check the smoothness of 3-folds in P
6.

Introduction

Constructions of smooth subvarieties of codimension 2 via a computer-algebra
program have been extensively studied in recent years, mainly following the ideas
presented in [DES93]. There the authors explicitely provide many constructions of
surfaces in P

4, showing that the problem to fill out all possible surfaces in P
4 not

of general type was indeed affordable, and this brought to a wide series of papers
with similar examples. The starting point of these construction is based on the
fact that a globalized form of the Hilbert-Burch theorem allows one to realize any
codimension 2 locally Cohen-Macaulay subscheme as the degeneracy locus of a map
of vector bundles. Precisely, for every codimension 2 subvariety X in P

n there is a
short exact sequence

0→ F
ϕ
−→ G

ψ
−→ OPn → OX → 0,

where F and G are vector bundles with rkG = rkF + 1 and ψ is locally given by
the maximal minors of ϕ taken with alternating signs.

In codimension 3 the situation is more complicated. Indeed in the local setting
the minimal free resolution of every Gorenstein codimension 3 quotient ring of a
regular local ring is given by a Pfaffian complex [BE77], but by globalizing this
construction one obtains only the so called Pfaffian subschemes, i.e. subschemes
defined locally by the 2r×2r Pfaffians of an alternating map ϕ from a vector bundle
of odd rank 2r + 1 to a twist of its dual. In particular, a Pfaffian subscheme in P

n

has the following resolution:

0→ OPn(−t− 2s)
ψt

−→ E∗(−t− s)
ϕ
−→ E(−s)

ψ
−→ OPn → OX → 0,

where the map ψ is locally given by the 2r × 2r Pfaffians of ϕ and ψt is the
transposed of ψ. Being Pfaffian, these subschemes are automatically subcanonical,
in the sense that its canonical bundle is the restriction of a multiple of OPn(1).
A recent result of Walter [Wal96] shows that under a mild additional hypothesis
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every subcanonical Gorenstein codimension 3 subscheme X in P
n is Pfaffian (see

[EPW01] for a description of the non-Pfaffian case), and therefore one can attempt
to get its equations starting from constructing its Pfaffian resolution.

In this paper we apply this method to build examples of smooth Calabi-Yau
3-folds in P

6. In order to build a Pfaffian resolution of a subcanonical Gorenstein
codimension 3 subscheme X, Walter shows an explicit way to choose an appro-
priate vector bundle, starting from its Hartshorne-Rao modules Hi

∗(IX): this is a
precise hint for constructing a resolution. But to find out what are the possible
structures for such modules is the hard part in the construction: indeed from the
invariants of X one can deduce only the “minimal” possible Hilbert functions of its
Hartshorne-Rao modules, and their module structures remain obscure. In this sense
the problems met in the constructions are the same as in the codimension 2 cases,
except that here the range of examples where the construction is straightforward
(and their Hilbert scheme component unirational) is rather short.

We construct examples of smooth Calabi-Yau 3-folds in P
6 having degree d in

the range 12 ≤ d ≤ 17. Such a bound can be better understood by looking at
hyperplane sections of the desired 3-folds. Since an hyperplane section of a Calabi-
Yau 3-fold is a canonical surface, a lower bound on the degree d of the desired
3-fold can be obtained easily by the Castelnuovo inequality : if the canonical map of
a surface S is birational, then K2

S ≥ 3pg − 7, c.f. [Cat97, p.24]. This gives d ≥ 11.
Furthermore, the case d = 11 is interesting, but no smooth examples were found
and we believe that they don’t exist: every Calabi-Yau threefold contructed has an
ordinary double point (A1 type), also over finite fields of high order; thus this seems
to be the “general” case. Thus degree 12 seems to be the good starting poing. Over
degree 17 we don’t know a general way to proceed: even constructing the module
becomes too hard. In particular, for degree 18 we were not able to find even the
module structure of the canonical surface given by a general hyperplane section
of our hypothetical 3-fold (surface which is a smooth codimension 3 subcanonical
scheme in P

5 and can therefore be constructed in the same way).
In all the cases examined the Hartshorne-Rao modules Hi

∗(IX) vanish for all
2 ≤ i ≤ 3, and only the module structure of H1

∗ (IX) has to be determined. This
structure is unique in the initial cases (up to isomorphisms), but not in the degree 17
case (and in the further cases), where the module has to be chosen in a subtle way,
not at all clear at the beginning. In [ST01] investigations with small finite fields
revealed strange properties of these special modules, there searched at random with
a computer-algebra program. Here we give a more detailed analysis of the problem,
which provides a completely unexpected geometric method to produce unirational
families of these modules: at the end we obtain three unirational families, in which
the desired modules are reconstructed starting from a smooth septic curve in P

2

endowed with a complete linear series g1d having degree d = 13, 12, 10 respectively.
This strong result, together with the analysis which brought us to it, gives easily
the following theorem, which is the main result of this paper.

Theorem 0.1. The Hilbert Scheme of smooth Calabi-Yau 3-folds of degree 17 in
P
6 has at least three irreducible connected components. These three components are

reduced, unirational, and have dimension 23+48. The corresponding Calabi-Yau 3-
folds differ in the number of quintic generators of their homogemeous ideals, which
are 8, 9 and 11 respectively.
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Note that it is enough to prove the irreducibility of the three families, since it
is well known by the work of Bogomolov [Bog78] and Tian [Tia87] (c.f. also the
recent results of Ran [Ran92] and [Kaw92]), that the universal local family of the
deformations of a Calabi-Yau manifold is smooth.

The existence of a mirror (for details see e.g. [Bat94, CK99]) for the Calabi-Yau
3-folds presented here is still an open problem. Since from a commutative algebra
point of view nearly all the examples of Calabi-Yau 3-folds studied so far in physics
(cf. [CdlOK95]) are hypersurfaces or complete intersections on toric varieties, or
zero loci of sections in homogeneous bundles on homogenous spaces, these new
families could be an important test for the mirror conjecture. In the following
picture, taken from [CdlOK95], we report our constructed families of Calabi-Yau
3-folds. The Euler characteristic χtop = 2(b1,1 − b2,1) is plotted horizontally and
the number b1,1 + b2,1 vertically.
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qd = 12

Structure of the paper. In the first section we explain our construction method.
In the second one we briefly sketch the initial cases. In the third one we give
a detailed analysis of the degree 17 case and explain the geometric method to
build such modules. Finally the last two sections involve tools needed to lift the
constructed examples to characteristic 0 and to check their smoothness, since for
computational reasons the examples are computed over finite fields.
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1. The method

Pfaffian complex. Let E be a vector bundle of odd rank rk E = 2r + 1 over P
n

and

ϕ : E∗ ⊗OPn(−t)→ E

an alternating morphism. We can regard ϕ as a section of H0(Pn,∧2E ⊗ OPn(t))
and the rth divided power of ϕ as the section ϕ(r) = 1

r! (ϕ∧· · ·∧ϕ) ∈ H
0(Pn,Λ2rE⊗

OPn(rt)). The wedge product with ϕ(r) defines a morphism

E
ψ
−→ Λ2r+1E ⊗OPn(rt) = OPn(s).

where s = c1(E) + rt. The twisted image I = im(ψ) ⊗ OPn(−s) ⊂ OPn is called
the Pfaffian ideal of ϕ, because locally working with frames it is generated by the
2r × 2r Pfaffians of the matrix describing ϕ.

Theorem 1.1. [BE77]. The following

(1.1) 0→ OPn(−t− 2s)
ψt

−→ E∗(−t− s)
ϕ
−→ E(−s)

ψ
−→ OPn → OX → 0,

is a complex. X = V (I) ⊂ M has codimension ≤ 3 at every point, and in case
equality holds (everywhere along X) then this complex is exact and resolves the
structure sheaf OX = OPn/I of the locally Gorenstein subscheme X.

A codimension 3 subscheme X of Pn admitting such a resolution is said to be a
Pfaffian scheme. In particular, it is subcanonical and ωX ∼= OX(t+ 2s− n− 1).

The following result of Walter guarantees the existence of a Pfaffian presentation
for every subcanonical embedded 3-fold in P

6:

Theorem 1.2. [Wal96] Let k a field not of characteristic 2. Suppose X ∈ P
n+3 is

a locally Gorenstein subscheme of equidimension n > 0. If n 6≡ 0 (mod 4) then

(1.2) X is a Pfaffian iff X is subcanonical.

If n ≡ 0 (mod 4) then (1.2) is still true provided that in case l is even χ(OX(l/2))
is also even, where ωX ∼= OX(l).

Cohomology table. Let now be X a Calabi-Yau 3-fold in P
6. Here we have

t+2s = 7. Up to an opportune twist we can assume that s = 3 so that ϕ has linear
entries. In particular (1.1) becomes

(1.3) 0→ OPn(−7)
ψt

−→ E∗(−4)
ϕ
−→ E(−3)

ψ
−→ IX → 0.

Let H denote an hyperplane section on X and d = H3 the degree of X.
A Riemann-Roch formula for divisors D on a smooth Calabi-Yau 3-folds is
χ(OX(D)) = 1

6 D
3 + 1

12 D.c2(X). Applying this to H we get H.c2(X) = 84 − 2d,
which gives:
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Proposition 1.3 (Riemann-Roch). Let X be a smooth Calabi-Yau 3-fold in P
6

and H its hyperplane divisor class. Then

χ(mH) =
1

6
m3 d+

1

12
m (84− 2d).

In order to choose a reasonable cohomology table for the desired Calabi-Yau
3-fold X, a reasonable assumption is the following one.

Assumption 1.4 (Maximal rank assumption). The restriction map

H0(P6,OP6(m))→ H0(X,OX(m))

has maximal rank for all m > 0.

Indeed, by the Riemann-Roch theorem, the projective normality is a too strong
requirement if we want to go beyond degree 14 (see Prop. 1.5 or cf. [Cat97, p. 26]).
Such a cohomology table for IX is then easily computable from the short exact
sequence

0→ IX → OP6 → OX → 0

by applying Riemann-Roch, Serre duality, and Kodaira Vanishing theorems.

Proposition 1.5 (Cohomology table). Let X be a smooth Calabi-Yau 3-fold in
P
6 of degree d satisfying the maximal rank assumption. Then the cohomology table
hi(IX(j)) is the following:

x







i

21+4d 14+d 7 1

h1IX(2) h1IX(3) h1IX(4)

h0IX(2) h0IX(3) h0IX(4)
−→
j

where for j = 2, 3, 4 the numbers h0(IX(j)) − h1(IX(j)) are respectively 14 − d,
63− 4d, 182− 10d, under the condition that h0(IX(2))h1(IX(2)) = 0.

As in the sequel, empty boxes represent zero entries.

The construction. The final step is to determine an appropriate E starting from
the exact sequence (1.3) and from the cohomology table of IX . The cohomology
table of IX for a Pfaffian codimension 3 subscheme X is somewhat “symmetric”,
in the sense that the cohomology of E determines the lower-half part of the table,
while the cohomology of the other two sheaves in (1.3) determines the remaining
upper-half part of the table. In particular, for a 3-fold the bundle E depends only
on the first two Hartshorne-Rao modules (see the construction in [Wal96, sect. 3]).

Once the intermediate cohomology of E is determined, the construction of E , up
to a possible direct sum of line bundles, can be done, for example, by means of
syzygy-bundle construction or Beilinson’s monad/spectral sequence, as described
in [DS00, sect. 5]. Another possible way to construct E is to follow step by step
Walter’s choice, using Horrock’s correspondence (again see [Wal96, sect. 3]).
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In our case, being X also a Calabi-Yau (thus H2
∗ (IX) = 0), both ways show that

E(−3) is the sheafified first syzygy module Syz 1 H1
∗ (IX) plus a possible direct sum

of line bundles, so that there is a surjection from H0
∗ (E(−3)) to H

0
∗ (IX). Thus the

construction of a Calabi-Yau 3-fold X in P
6 relies on determining an appropriate

Hartshorne-Rao module H1
∗ (IX).

Fixed a copresentation of E , a mapping cone is used for computing the ideal
sheaf IX(3) of the dependency locus of ϕ : E∗(−1) → E , as described in [DS00,
Prop. 5.12].

Hodge diamonds. Once each case is constructed, we report also its corresponding
Hodge diamond. Indeed this could be useful to try the mirror construction of
the families so constructed. We determine the Hodge diagram of an exampe by
computing its embedded first-order infinitesimal deformations.

Indeed, let X be a smooth Calabi-Yau 3-fold in P
6, e.g. a constructed example.

Denote by ci the i-th Chern class of X, i.e. ci(ΘX) and H a generic hyperplane
section. Then, recalling that χ(X,C) = ctop(X) = c3, we have

χ(X,Ω1
X) = −h1,1 + h1,2 = −

1

2
c3.

On the other side the analogous of the double point formula for nonsingular three-
folds in P

6 (see [LT82, p. 467])

d2 − 35d− 48χ(OX) = c31 + 7c21H + 21c1H
2 − 7c2H − c3

gives

χtop(X) = c3 = −d2 + 49d− 588.

We claim that h1,2 = h2(Ω1
X) = h1(ΘX) is given by the formula

h1(ΘX) = h0(NX)− 48.

Indeed, applying to the standard exact sequence

0→ N ∗
X → ΩP6|X → ΩX → 0

the functor HomOX
(·,OX), we get the standard long exact sequence

(1.4) 0→ H0(ΘX)→ H0(ΘP6|X)→ H0(NX)→ H1(ΘX)→ H1(ΘP6|X).

Clearly by Serre duality and Hodge decomposition we easily get H0(ΘX)∗ =

H3(Ω1
X) = H1(Ω3

X) = H1(OX) = 0, since X is a Calabi-Yau threefold. The
vanishing of H1(ΘP6|X) = 0 follows easily from Prop. 1.5 by taking the restriction
to X of the Euler exact sequence:

0→ OX → 7OX(1)→ ΘP6|X → 0.

Therefore the exact sequence (1.4) becomes

0→ H0(ΘP6|X)→ H0(NX)→ H1(ΘX)→ 0.

Since X is non-degenerate, a standard calculation shows that the restriction map
H0(ΘP6) → H0(ΘP6|X) is an isomorphism. Thus H0(ΘP6 |X) ∼= PGL(7) and the
claim is proved.
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2. Calabi-Yau 3-folds of low degree

The minimal possible degree d for a Calabi-Yau 3-fold X ⊂ P
6 is 11. This

follows from a well-known result of Castelnuovo about canonical maps of surfaces,
by applying it to an hyperplane (smooth) section of X:

Theorem 2.1. (Castelnuovo inequality) If the canonical map is birational then
K2 ≥ 3pg − 7.

By proposition (1.5), the Hartshorne-Rao module H1
∗ (IX) is zero for d ≤ 14,

while for d ∈ {15, 16, 17, 18} it has Hilbert function which, starting from de-
gree 0, takes values respectively (0, 0, 1, 0, . . .), (0, 0, 2, 1, 0, . . .), (0, 0, 3, 5, 0, . . .) and
(0, 0, 4, 9, 0, . . .).

Up to degree d ≤ 15 the Hilbert function of the Hartshorne-Rao module of a
Calabi-Yau 3-fold X of that degree determines uniquely this module and there-
fore the vector bundle E . For d ∈ {11, 12, 13, 14} the bundle E is respectively
3O(1) ⊕ 2O, 2O(1) ⊕ O, O(1) ⊕ 4O, 7O, and an arithmetically Cohen-Macaulay
X is readily found. Notice that these 3-folds can be easily extended to any higher
dimensional Fano scheme. Unfortunately the case d = 11 do not give a smooth
variety: “generically” (i.e. for random choices over Fp with p “big” prime) X
has an ordinary double point. For d = 15 the bundle E is Ω1(1) ⊕ 3O, and the
extension to higher dimensions is more delicate. However these 3-folds can be
extended straighforwardly up to a Fano Pfaffian codimension 3 subscheme of P9.
Indeed, since restricting the Euler sequence to an hyperplane one gets the exact
sequence 0→ Ω1

Pn−1(1)⊕OPn−1 → (n+1)OPn−1 → OPn−1 → 0, it is enough to take

E = Ω1
P9−l(1)⊕ lOP9−l to get the extension in P

9−l.

For degree d = 16 the vector bundle E is Syz 1(M), where M is a module
whose Hilbert function, starting from degree −1, takes values (2, 1, 0, 0, . . .). If
we assume that M is generated in degree −1, then there is a unique such generic
module M up to isomorphisms. It is indeed the dual of the module with one
generator and multiplication table given by

(

x0 x1
)

, where V =< x0, . . . , x6 >

denotes H0(P6,O(1)). The unirationality of these families is evident, as well as the
existence of liftings over the complex numbers.

2.1. d = 12. Complete intersection of type (2, 2, 3).

Construction E = 2O(1)⊕O
Syzygies of IX
total : 1 3 3 1

0 : 1 − − −
1 : − 2 − −
2 : − 1 1 −
3 : − − 2 −
4 : − − − 1

Hodge Diamond

1
0 0

0 1 0
1 73 73 1
0 1 0
0 0
1

2.2. d = 13.

Construction E = O(1)⊕ 4O
Syzygies of IX
total : 1 3 3 1

0 : 1 − − −
1 : − 1 − −
2 : − 4 4 −
3 : − − 1 −
4 : − − − 1

Hodge Diamond

1
0 0

0 1 0
1 61 61 1
0 1 0
0 0
1
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2.3. d = 14.

Construction E = 7O
Syzygies of IX
total : 1 3 3 1

0 : 1 − − −
1 : − − − −
2 : − 7 7 −
3 : − − − −
4 : − − − 1

Hodge Diamond

1
0 0

0 1 0
1 50 50 1
0 1 0
0 0
1

2.4. d = 15.

Construction E = Ω1(1)⊕ 3O
Syzygies of IX
total : 1 14 34 36 21 7 1

0 : 1 − − − − − −
1 : − − − − − − −
2 : − 3 − − − − −
3 : − 11 34 35 21 7 1
4 : − − − 1 − − −

Hodge Diamond

1
0 0

0 1 0
1 40 40 1
0 1 0
0 0
1

2.5. d = 16.

Construction
E = Syz 1(M), where M has syzygies of type

total : 2 13 36 55 50 27 8 1
−1 : 2 13 35 50 40 17 3 −
0 : − − 1 5 10 10 5 1

Syzygies of IX
total : 1 23 53 51 27 8 1

0 : 1 − − − − − −
1 : − − − − − − −
2 : − − − − − − −
3 : − 22 48 40 17 3 −
4 : − 1 5 11 10 5 1

Hodge Diamond

1
0 0

0 1 0
1 31 31 1
0 1 0
0 0
1

3. Analysis of the Hartshorne-Rao module for degree 17

In view of Prop. (1.5) and the notation in (1.3), the cohomology table for IX is
the following one.

x







i

89 31 7 1

3 5

12
−→
j

Hence E is given by Syz 1 M , where M is a module of lenght 2 whose Hilbert
function, starting from degree −1, takes values (3, 5, 0, . . .). Such a module M is
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not determined by its Hilbert function. Assuming that the module M is generated
in degree −1, its presentation is

0←M ← 3S(1)
b
←− 16S,

where S is the coordinate ring of P6. Therefore a parameter space for such modules
is the Grassmannian G = G(16,M−1 ⊗ V ) = G(16, 21).

Remark 3.1. A generic point p ∈ G, which corresponds to a generic matrix b,
parametrizes a module M with syzygies

total : 3 16 28 70 112 84 32 5
−1 : 3 16 28 − − − − −
0 : − − − 70 112 84 32 5 .

For such a generic choice, the space of skew–symmetric maps Homskew(E
∗(−1) , E)

is zero. Indeed, any map ϕ : E∗(−1)→ E is induced by a map of complexes on the
free resolutions

0 Eoo 28O(−1)oo 70O(−3)oo 112O(−3)oo

0 E∗(−1)

ϕ

OO

oo 16O(−1)

ϕ0

OO

oo 3O(−2)

ϕ1

OO

oo 0oo

and therefore it must be zero, since ϕ1 = 0 for degree reasons.

In other words, we search for modules M having dimTorS3 (M,F)2 = k and
syzygies of type

total : 3 16 28 70 112 84 32 5

−1 : 3 16 28 k − − − −
0 : − − k 70 112 84 32 5 ,

where k ≥ 1.

3.1. Where do modules with extra–syzygies come from. The key point is
to look at the variety of the rank 1 syzygies of M .

Definition 3.2. [Gre99] Let V be a vector space and M = ⊕q≥dMq be a finitely
generated S∗V –module. Then a decomposable element of Md ⊗ V in the kernel of
the multiplication map µ : Md ⊗ V →Md+1 is called a rank 1 linear syzygy of M .

In our case d = −1 and, regarding µ : M−1 ⊗ V →M0 as an element in (M−1 ⊗
V )∗ ⊗M0, the (projective) variety of the rank 1 syzygies of M is exactly

Y = (P2 × P
6) ∩ P

15 ⊂ P
20,

where P
2 = P(M−1), P

6 = P(V ), and P
15 = P(kerµ) inside the Segre space P

20 =
P(M−1⊗V ). Denote with S the ring S∗V , the coordinate ring of our base P6. The
projection Y → P

2 has linear fibers, and the general fiber is a P
1. However, if Y has

a special fiber of dimension 2, we can recover from this fiber 3 linearly independent
rank 1 syzygies for M and, up to a base change over P

2 = P(M−1), the matrix b
has the following form:

b =





0 0 0 ∗ . . .
0 0 0 ∗ . . .
l1 l2 l3 ∗ . . .



 ,

where l1,l2,l3 are linear forms. Such a block gives a Koszul complex

S(1)← 3S ← 3S(−1)← S(−2)
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sitting inside a minimal free resolution of M and a distinguished section s ∈
H0(P6,∧2E ⊗ O(1)): if i : 3S → 16S denotes the inclusion of the Kozsul com-
plex into a minimal free resolution of M , the section s is obtained by composing
the skew-symmetric syzygy matrix





0 −l3 l2
l3 0 −l1
−l2 l1 0





with i on the left and it on the right.

We proceed with the analysis. In the sequel, let us denote the coordinate ring of
a projective space Pn with SPn . Since P15 ⊂ P

20 is defined by the 5 linear equations
obtained by considering µ as an element in S∗(M−1⊗V )∗⊗M0, Y is defined by the 5
linear equations obtained by considering µ as an element in S∗(M−1)

∗⊗S∗V ∗⊗M0.
Moreover, if we regard the variety P

2×P
6 as the projectivization of the P

2–bundle
7OP2 , Y is the projectivization P(G) of the sheaf G given as kernel of the map

η : 7OP2 → 5OP2(1),

obtained by sheafifying the map V ⊗ SP2 →M0 ⊗ SP2(1) induced by µ.
Motivated by this, we define Mk = {M ∈ G | Y has k extra P

2–fibers over P2}.
Notice that if the k fibers gives k linearly independent elements in M−1⊗∧

3V , the
Betti numbers of M are expected to be

total : 3 16 28 + k 70 + k 112 84 32 5

−1 : 3 16 28 k − − − −
0 : − − k 70 112 84 32 5

and this M satisfies dimH0(∧2Syz 1(M) (1)) ≥ k, if the k distinguished sections
are linearly independent. Moreover, since for a randomly chosen module M ∈ Mk

we have that dimH0(∧2Syz 1(M) (1)) = k and H0(∧2Syz 1(M) (1)) is spanned
by the k distinguished sections, in a Zariski open set M

0
k ⊂ Mk the dimension of

H0(∧2Syz 1(M) (1)) is exactly k and these k sections are independent.
Anyway, in order to obtain an explicit parametrization of Mk, it is better to

look at the dual picture: the (projective) variety Ỹ of rank 1 syzygies of M∗ is the

projectivization P(G̃) over P4 = P((M0)
∗) of the sheaf G̃ given as kernel of the map

ζ : 7OP4 → 3OP4(1),

obtained again by sheafifying the map V ⊗ SP4 → M−1 ⊗ SP4(1) induced by µ. A

tautological fact ensures that the special fibers of Ỹ corresponds bijectively with
the special fibers of Y :

Lemma 3.3. Under the above notation, Y has k exceptional P2 fibers if and only
if Ỹ has k exceptional P4 fibers.

Proof. The map η drops rank (by one) in a point [m′] ∈ P(M−1) if and only if there
exists a linear combination of the rows of η(m′) which is identically zero. This means
that there exists a non-zero element m′′ ∈ (M0)

∗ such that 〈m′′, η(m′) (v)〉 = 0 for
every v ∈ V . But 〈m′′, η(m′) (v)〉 = 〈m′, ζ(m′′) (v)〉 and therefore 〈m′, ζ(m′′) (v)〉 =
0 for every v ∈ V , so ζ drops rank (by one) in [m′′] ∈ P((M0)

∗). �
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Now we parametrize Mk by joining other 2 variables in P
4 = P((M0)

∗) and then
by restricting to special P4 planes. Indeed, a map

ζ ′ : 7OP6 → 3OP6(1)

is expected to drop rank along a curve C ⊂ P
6. Therefore its restriction ζ to a P

4

k–secant plane to C gives a module M ∈ Mk. The codimension of the space of P4

k–secant planes to C is of expected codimension k in the space of all P4 and we
expect only a finite number of P4 10–secant planes to C.

Remark 3.4. More precisely, this number is given by the general secant plane for-
mula, see [ACGH85, Prop. 4.2, p. 350]. An explicit calculation of this formula for
(2r−2)–secant (r−2)–planes to a curve C ⊂ P

r is done, for example, in [ELMS89,
Thm. 1.2]: if C has degree d and genus g then this number is

C(d, g, r) =
∑r−1
i=0

(−1)i

r−i

(

d−r−i+1
r−1−i

)(

d−r−i
r−1−i

)(

g
i

)

.

In our case C has degree 21 and genus 15, since its resolution is given by the
Eagon-Northcott complex

0← IC ←
(

7
3

)

O(−3)← 3
(

7
4

)

O(−4)← 6
(

7
5

)

O(−5)

← 10
(

7
6

)

O(−6)← 15
(

7
7

)

O(−7)← 0.

Therefore the expected number of P4 10–secant planes to C is 123123. It is not a
fortuity that this number is a multiple of 11, as we will see in the case k = 10 in
the next subsection.

Moreover, there is an exact sequence

7OP6

ζ′

−→ 3OP6(1)→ LC → 0,

where LC is a line bundle over C. The resolution of LC is given by the Buchsbaum-
Rim complex

0← LC ← 3O(1)← 7O ←
(

7
4

)

O(−3)← 3
(

7
5

)

O(−4)

← 6
(

7
6

)

O(−5)← 10
(

7
7

)

O(−6)← 0,

from which we easily get h0(P6,LC) = 3. Hence the global sections of LC give a
map

ϕL : C → P
2.

A straighforward check shows that ϕL is an isomorphism between C and C ′ =
imC ⊂ P

2. Regarding the 7× 3 matrix ζ ′ as a 7× 7 matrix ζ ′′ in P
2, we obtain the

exact sequence

0← H← 7OP2

ζ
←−

′′

7OP2(−1)← 0,

where H = OP6(1)|C ⊗ OC′ . Since H, as divisor class over C ′, corresponds to the
hyperplane sections of C ⊂ P

6, H has degree 21 and is non-special.

Proposition 3.5. According to the previous notation, the expected codimension of
Mk ⊂ G is k.
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Proof. Consider the parameter spaces

N = {(C, i, j,H) | C is a smooth curve of genus 15,

i : C → P
2 is an embedding of degree 7,

j : C → P
6 is an embedding of degree 21 given

by a nonspecial divisor H ∈W 6
21(C),

H is a 4-plane in P
6 quasi-transversal to j(C)}

and

Nk = {(C, i, j,H) ∈ N | deg(H ∩ j(C)) = k}.

Since the expected dimension ofW 6
21 is the Brill-Noether number ρ = 15−7·0 = 15,

the dimension of N is 35 + 15 + 48 + 10 = 108 while the codimension of Nk ⊂ N is
k. Now notice that Mk ⊂ G is obtained by taking the restriction of the matrix ζ ′

to H. �

Remark 3.6. For a description on how to pick modules M in Mk by considering
random modules M ∈ G and then checking if they are in Mk, we remaind to the
work [ST01].

3.2. A geometric construction of modules with extra syzygies. The ana-
lysis in the previous section deliver us a geometric method to construct modules
M ∈ M

0
k. Indeed, according to the notation in the previous subsection, let ζ ′ be a

matrix for which the curve C ⊂ P
6 is smooth. Projecting from a P

4 k-secant plane
to a P

1 ⊂ P
6 which is complementary to the chosen P

4, one obtains a complete
linear series g121−k for the curve C ′ ⊂ P

2 such that

(3.1) | H |⊃ g121−k + p1 + . . .+ pk ∈W
6
21 \W

7
21,

where the points p1, . . . , pk are the intersections of the P
4 secant plane with C.

Moreover, a divisor D ∈ g121−k is special, since h0(D) = 2 and by Riemann-Roch

2 − h1(D) = (21 − k) + 1 − 15, formula which gives positive values of h1(D) for
k > 5.

Remark 3.7. Fixed a g121−k, for k > 7 we have

(g121−k +W 0
k ) ∩ (W 6

21 \W
7
21) 6= ∅.

Proof. Indeed the expected dimension of W 0
k is g− (g− k) = k, while the expected

dimension of W 7
21 is g − 8(g − 14) = 7. �

We build a special complete linear series g121−k over a smooth septic curve C ′ ⊂
P
2 via linkage. Consider again a special complete linear series g121−k coming from a

matrix ζ ′. Let f be an equation of C ′ and D ∈ g121−k an effective divisor. Choose
a polynomial g of minimal degree such that D ⊂ V (f, g). Let us denote with H
the restriction of the hyperplane class of P2 to the curve C ′. Since the canonical
bundle KC′ is linearly equivalent to 4H, there exists an effective divisor R over C ′

such that

V (f, g) = D +R ∼ KC′ + (deg(g)− 4)H.

It easily follows that deg(g) ≤ 4. Indeed, being D special, we have h1(D) =
h0(KC′ −D) = h0 (R− (deg(g)− 4)H) > 0, and on the other hand, by the mini-
mality of the degree of g, R does not contain any hyperplane section.
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Therefore, if the curve C ∼= C ′ is smooth, D is linked via an equation g of degree
at most 4 to an effective divisor R of degree 7 deg(g)−21+k and we can recover the
g121−k as the pencil L = |gH − R|. At this point the analysis develops in different
ways for the various values of k.

Case k = 11. Let us assume that the minimal possible degree of g is four. Then
R is r1 + . . . + r18 and L is a pencil of quartics through the 18 points r1, . . . , r18.
But such a pencil is reducible, since two quartics intersect in 16 points, and this
contraddicts our assumption on the degree of g. Similar is the case of degree three.
Hence the minimal degree of g is two, and R = r1 + . . .+ r4.

A unirational construction of M11 is then given by the following description:
1. Take 15 generic points p1, . . . , p11 and r1, . . . , r4.
2. Take a generic septic C ′ ∈| 7H − r1 − . . .− r4 − p1 − . . .− p11 |.
3. Take a generic quadric Q ∈| 2H − r1 − . . .− r4 |.
4. Compute the divisor d1 + . . .+ d10 linked to r1 + . . .+ r4 via (C ′, Q).
5. Compute the ideal I = Id1+...+d10 ∩ Ip1+...+p11 .

Since there is no quintic through these points, the Hilbert function of the quotient
ring of I is then (1, 3, 6, 10, 15, 21, 21, 21, . . .), and by the Hilbert-Burch theorem the
Betti numbers of I are:

total : 1 7 6
0 : 1 − −
5 : − 7 6 .

Join the equation of C ′ to a minimal set of generators of I. The Betti numbers of
the resulting matrix are:

total : 1 7 7
0 : 1 − −
5 : − 7 7
6 : − 1 − ;

where the extra syzygy express the equaton of C ′ in term of the seven sestics which
generates I. Let ψ be the 7 × 7 matrix of the linear syzygies of Ĩ. Again by the
Hilbert–Burch theorem detψ is an equation of C ′.

6. Now we go back to the original ζ. By construction, the matrix ζ ′′ is the
transposed of ψ and ζ ′ simply a flip of the matrix ζ ′′. In order to find out what is
the restriction of ζ ′ to the 11–secant P4–plane containing the image of p1, . . . , p11 in
P
6, we proceed in the following way. The image of the point pi in P

6 has coordinates
[vi], where vi = coker ζ ′′ |pi= kerψ |pi for i = 1, . . . , 11. Five generic vectors in
< v1, . . . , v11 > form a basis for the 11–secant P

4–plane. Concatenate these 5
vectors in a 7× 5 matrix A: the matrix η is just the trasposed of the 7× 5 matrix
ψ ◦A, and ζ is a flip of η.

7. Finally compute: a presentation matrix b for the module M ∈ M11 corre-
sponding to ζ, the space H0(∧2(Syz 1(M)) ⊗ OP6(1)). Check that the k distin-
guished sections form a basis for H0(∧2(Syz 1(M)) ⊗ OP6(1)), and compute the
locus where a generic map ϕ ∈ H0(∧2(Syz 1(M))⊗OP6(1)) drops rank, which is a
smooth Calabi- Yau threefold of degree 17.

Of course, when doing the construction with a computer algebra, we replace
“generic” with “randomly chosen” and we hope that this choice gives us everything
as expected (and this is usually the case). At the end we obtain the following
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unirational family of Calabi-Yau 3-folds in P
6:

Syzygies of IX
total : 1 23 78 113 84 32 5
0 : 1 − − − − − −
1 : − − − − − − −
2 : − − − − − − −
3 : − 12 8 − − − −
4 : − 11 70 113 84 32 5

Hodge Diamond

1
0 0

0 1 0
1 23 23 1
0 1 0
0 0
1

The other cases have a similar treatment. We shortly sketch them.

Case k = 10. This case is not possible if C ′ is smooth. Indeed the unique possibility
is the case where g is a quadric and R = r1 + r2 + r3. But then L comes out to be
not complete, unless L has a further fixed point r4.

Hence every 10–secant P4 to a smooth C is an 11–secant P4, and every 11–secant
P
4 gives rise to 11 different “degenerate” 10–secant P

4. This was suggested from
the fact that the expected number of 10–secant P4 to C is a multiple of 11.

Case k = 9. Two different constructions can be done.
If g is a quartic, then R = r1+ . . .+ r16. Thus the points r1, . . . , r16 should be in

special position in order to admit a pencil of quartic through them: precisely they
should be the intersection of 2 quartics. This gives one construction.

Otherwise g is a cubic and R = r1+. . .+r9. Also in this case the points r1, . . . , r9
are in special position, and are precisely the intersection of 2 cubics.

Syzygies of IX
total : 1 21 76 113 84 32 5
0 : 1 − − − − − −
1 : − − − − − − −
2 : − − − − − − −
3 : − 12 6 − − − −
4 : − 9 70 113 84 32 5

Hodge Diamond

1
0 0

0 1 0
1 23 23 1
0 1 0
0 0
1

Case k = 8. There are again two possibilities.
If g is a quartic, then R = r1 + . . .+ r15. Again the points r1, . . . , r15 should be

in special position in order to admit a pencil of quartic through them: the Hilbert
function of their quotient ring is (1, 3, 6, 10, 13, 15, 15, 15, . . .), and by the Hilbert-
Burch theorem the ideal of R is given by the size 2 minors of a generic matrix
2OP2 ⊕OP2(−2)← 2OP2(−3).

Otherwise g is a cubic and R = r1 + . . .+ r8. The points r1, . . . , r9 are this time
in general position.

Syzygies of IX
total : 1 20 75 113 84 32 5
0 : 1 − − − − − −
1 : − − − − − − −
2 : − − − − − − −
3 : − 12 5 − − − −
4 : − 8 70 113 84 32 5

Hodge Diamond

1
0 0

0 1 0
1 23 23 1
0 1 0
0 0
1
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Case k = 7. The polynomial g is a quartic and R = r1+ . . .+r14 (for lower degrees
of g the linear series L is not complete). Again, the points r1, . . . , r14 should be
in special position in order to admit a pencil of quartic through them. Their
Hilbert function is (1, 3, 6, 10, 13, 14, 14, . . .) and by the Hilbert-Burch theorem the
ideal of R is given by the size 2 minors of a generic matrix 2OP2 ⊕ OP2(−1) ←
OP2(−2) ⊕ OP2(−3). Anyway, all the 3-folds constructed (even over “big” finite
fields Fq) have a singular ordinary double point: the tangent space in this point is
a P

4 and the tangent cone is a nondegenerate quadric.

Case k ≤ 6. It is clear that all the 16 relations of M should take part in the
desired skw-symmetric morphism ϕ : E∗(1) → E in order to have a chance that ϕ
drops rank correctly. Thus we need k ≥ 6. For the case k = 6, g is a quartic and
R = r1+ . . .+ r13 (again, for lower degrees of g the linear series L is not complete).
The 13 points r1, . . . , r13 are then in general position. Unfortunately, even in this
case, it seems that no morphism ϕ : E∗(1)→ E drops rank correctly.

4. Lift to characteristic zero

At this point we have constructed examples over a finite field Fq. However our
main interest is the field of complex numbers C. The unique non straighforward
step is the lift of the Calabi-Yau 3-folds of degree 17, for which special modules
have to be chosen. In this case the existence of a lift to characteristic zero follows
by the following argument.

Suppose that M ∈ Mk(Fq) is a module for which the expected codimension of
Mk(Fq) is achieved and H0(P6(Fq),∧

2E⊗OP6(1)) is spanned by the k distinguished
sections. By the first condition Mk is smooth at this point, and taking a transversal
slice defined over Z through this point we find a number field K and a prime p in
its ring of integers OK with OK/p ∼= Fp such that M is the specialization of an
OK,p-valued point of Mk. Over the generic point of SpecOK,p we obtain aK-valued
point. The second condition ensures then that

H0(P6
Z
× SpecOK,p,Λ

2E ⊗ O(1))

is free of rank k over OK,p. Hence a morphism ϕ ∈ H0(P6(Fq),∧
2E ⊗ OP6(1))

extends to OK,p as well, and, if ϕ drops rank correctly along a smooth Calabi-
Yau 3-fold, by semi-continuity we obtain a smooth Calabi-Yau 3-fold defined over
K ⊂ C.

Combining this argument with the results in the previous section, we get the
following theorem.

Theorem 4.1. The Hilbert Scheme of smooth Calabi-Yau 3-folds of degree 17 in
P
6 has at least three irreducible connected components. These three components are

reduced, unirational, and have dimension 23+48. The corresponding Calabi-Yau 3-
folds differ in the number of quintic generators of their homogemeous ideals, which
are 8, 9 and 11 respectively.

Proof. For k = 8, 9, 11 the unirationality of Mk gives a unirational family of smooth
Calabi-Yau 3-folds of degree 17 in P

6. The fact that for modulesM in a Zariski open
set of Mk the expected codimension is achieved and the k distinguished sections
form a basis for H0(P6(Fq,∧

2E ⊗ OP6(1)) implies that this family has dimension
(dimG−k)+(k−1)−dimPGL(3) = 23+48 and that the Hilbert scheme is smooth
in that point. �
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A construction of mirror families of these Calabi-Yau 3-folds is an open problem.

5. Smoothness

Notation 5.1. Let S = K[x0, . . . , x6] be the homogeneous coordinate ring of P6,
and f1, . . . , fN a set of homogeneous polynomial such that I := 〈f1, . . . , fN 〉 is the
ideal of a codimension 3 variety X ⊂ P

6. We denote with

J :=
〈 ∂fi
∂xj

∣

∣

∣
1 ≤ i ≤ N, 0 ≤ j ≤ 6

〉

the jacobian ideal of I and with Ik(J) the ideal of the k×k minors of J . Moreover,
we denote with J≤e the part of the jacobian matrix formed by the rows of J having
degree ≤ e and by Ik(J)≤e for the k × k minors of J≤e.

If f1, . . . , fn are different generators of I, we write Ik(J(f1, . . . , fn)) for the
k × k minors of the jacobian ideal of (f1, . . . , fn), and with Ik(f1, . . . , fn) (resp.
Ik(f1, . . . , fn)≤e) for the ideal of the k × k minors of J (resp. J≤e) which involve
the rows corresponding to f1, . . . , fn.

The Jacobian criterion is given by the implicit function theorem.

Theorem 5.2. (Jacobian Criterion) A subscheme X ⊂ P
6 of pure codimension 3

is smooth iff

X ∩ V (I3(J)) = ∅,

that is iff

I3(J) + I is 〈x0, . . . , x6〉-primary.

Remark 5.3. To check the smoothness by this criterion means to compute the
codimension of I3(J) + I. This is very expensive because:

(1) the computation of the ideal I3(J) amounts to compute
(

7
3

)(

N
3

)

3×3 minors;
(2) a Gröbner basis of I3(J) + I is big, since I3(J) + I has codimension 7.

An alternative method is given in [DES93] for surfaces in P
4, in the script

speedy_smooth, and now explained in details in [DS00, section 7]. This method
is by far faster than the Jacobian criterion, since the check is subdivided in more
steps, and each one involves the computation of fewer minors and of Gröbner basis
of ideals with lower codimensions. We now adapt this method to codimension three
3-folds.

Notation 5.4. If e ∈ N is a positive integer, we denote with Ne and Pe(t) the
integer and the polynomial defined by:

Ne :=c3(N
∗
X(e));

Pe(t) := deg c2(N
∗
X(e)) t+ χ(OX) + χ(2OX(−c1(N

∗
X)− 3e))+

− χ(N ∗
X(−c1(N

∗
X)− 2e)).

Moreover, given a variety Z ⊂ P
6 denote with HP (Z) its Hilbert polynomial.

Theorem 5.5. Let X ⊂ P
6 be a locally Gorenstein 3-fold and f, g two generators

of I having degree e. Suppose that X has at most a finite set of singular points and
that

( i ) V ((I1(J)≤e + I) = ∅,
( ii ) V (I2(g)≤e + I) is finite and

deg V (I2(g)≤e + I) = deg V (J(g) + I) = Ne;
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( iii ) V (I3(f, g) + I) is a curve and

HP (V (I3(f, g) + I)) = HP (V (I2(J(f, g)) + I)) = Pe(t).

Then X is smooth.

Proof. The crucial ingredient is that codimX ≤ dimX and that X is locally Goren-
stein. By (i) the embedded dimension in each point p ∈ X is at most 5 = dimX+2.
Hence X has at most a finite number of isolated complete intersection singularities,
the conormal bundle N ∗

X = I/I2 is locally free of rank 3 and the sequence

0→ I/I2 → Ω1
P6 ⊗OX → Ω1

X → 0

is exact.
The polynomials f and g induce sections σ1 and σ2 of N ∗

X(e). Let σ̃1 and σ̃2 be
the sections of Ω1

P6 ⊗ OX corresponding to σ1 and σ2 via the conormal sequence.
SingX is clearly contained in V (I3(f, g)+I) by the implicit function theorem. The
ideal J(f, g)+I describes the zero locus of the section σ̃1∧ σ̃2, which coincides with
the zero locus of σ1 ∧ σ2 when σ̃1 ∧ σ̃2 does not vanish in the singular points of X.
By (iii) both zero loci are curves.

On the other hand the Hilbert Polynomial of the zero locus Z of σ1 ∧ σ2 is
exactly Pe(t). Indeed the expected degree of Z is c2(N

∗
X(e)), and a resolution of

OZ is provided by the Eagon-Northcott complex

0→ 2O(−e)
(σ1,σ2)
−−−−→ N ∗

X → ∧
2(2O(e))⊗ ∧3N ∗

X
∼= OX(m)→ OZ(m)→ 0,

where m = c1(N
∗
X) + 2e. Thus (iii) implies that

V (I3(f, g) + I) = V (J(f, g) + I) = V (σ1 ∧ σ2).

For an arbitrary fλ ∈ Ie we have

V (I3(fλ, g) + I) ⊃ V (J(fλ, g) + I) ⊃ V (σλ ∧ σ2),

where σλ denotes the section of N ∗
X(e) induced by fλ. By semicontinuity

HP (V (I3(f, g) + I)) ≥ HP (V (I3(fλ, g) + I))

for fλ in a Zariski dense subset of Ie. Thus these pairs (fλ, g) satisfy (iii) as well,
and since SingX is closed we get SingX ⊂ V (I2(g)≤e + I).

By (ii), a repetition of the argument for I2(g)<e shows that SingX ⊂
V (I1(J)≤e + I), which is empty by (i). �

Remark 5.6. (Computations of Ne and Pe) Let X be a locally Gorenstein Calabi-
Yau 3-fold of degree d having at most a finite number of isolated complete intersec-
tion singularities. Then the normal sheaf is a bundle too, c3(NX) = d2 and hence
c3(N

∗
X) = −d2. Denote the Chern polynomial of ΩX as ct(ΩX) = 1+c2t

2+c3t
3. Us-

ing the conormal sequence of X we obtain c1(N
∗
X) = −7H and c2(N

∗
X) = 21H2−c2.

Therefore, by a standard computation, we get c1(N ∗
X(e)) = (3e−7)H, c2(N ∗

X(e)) =
(21− 14e+ 3e2)H2 − c2, and c3(N

∗
X(e)) = −d2 + (21e− 7e2 + e3)d− ec2.H.

In order to compute c2.H, take a generic hyperplane H not passing through the
singular points of X and denote with S the intersection X∩H. Since S is canonical,
the conormal sequence of S with respect to X becomes

0→ N ∗
X|S = OS(−H) = −KS → ΩX ⊗OS → ΩS → 0,

and hence ct(ΩX ⊗OS) = (1−KSt)(1+KSt+ c2(S)t
2) = 1+(c2(S)−K

2
S)t

2. Now
K2
S = d and the Noether’s formula gives c2(S) = 84 − d. Thus c2.H = 84 − 2d,
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and by replacing back we finally get Ne = −84e + (23e − 7e2 + e3)d − d2 and
deg c2(N

∗
X(e)) = −84 + (23− 14e+ 3e2)d.

We compute instead χ(N ∗
X(7− 2e)) (resp. χ(2OX(7− 3e))) as the value of the

Hilbert Polynomial of H0
∗ (N

∗
X) (resp. H0

∗ (2OX)) in degree 7− 2e (resp. 7− 3e).

Remark 5.7. (Comparison with the Jacobian Criterion) The main step in this
method consists in computing (N − 2)

(

7
3

)

3 × 3 minors and a Gröbner basis of
the ideal of a curve, which has codimension 5.
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