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Abstrat:

We give an alternative proof that every two-person non-zero-sum absorb-

ing positive reursive stohasti game with �nitely many states has approx-

imate equilibria, a result proven by Niolas Vieille. Our proof uses a state

spei� disount fator whih is similar to the onventional disount fator

only when there is only one non-absorbing state. Additionally we show that

if the players engage in time homogeneous Markovian behavior relative to

some �nite state spae of size n then for the existene of an �-equilibrium

it suÆes that one-stage deviation brings no more than an �

3

=(nM) gain to

a player, where M is a bound on the maximal di�erene between any two

payo�s.
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1 Introdution

A two-player stohasti game is played in stages. At every stage the game

is in some state of the world. Both players are informed of the whole his-

tory, inluding the urrent state, and based on this information they hoose

simultaneously a pair of ations. The urrent state and the pair of ations

hosen determine both a stage payo� for eah of the players and a probability

distribution aording to whih a new state is hosen.

For any � � 0, an �-equilibrium in a game is a set of strategies, one

for eah player, suh that no player an gain in payo� by more than � by

hoosing a di�erent strategy, given that all the other players do not hange

their strategies. A game has approximate equilibria if for every positive

� > 0 it has an �-equilibrium. The value of a zero-sum game, should one

exist, is the unique luster point of the �-equilibrium expeted payo�s (for

the �rst player) as � goes to zero. The un-disounted payo� of a player in a

stohati game with in�nitely many stages, when de�ned, is a limit as the

number of stages goes to in�nity of the average summed over the stages of

the player's expeted payo�s. Unless spei�ed, the payo�s of a stohasti

game are undisounted.

Shapley (1953) presented the model of stohasti games, and proved that

a disounted zero-sum games always have a value obtainable with stationary

optimal strategies. This result was generalized for equilibria in n-player non-

zero-sum disounted games by Fink (1964).

An absorbing state is suh that the play never leaves this state one it is

reahed. Kohlberg (1974) proved that every two-player zero-sum stohasti

game with only one non-absorbing state has a value. Based on the work of

Bewley and Kohlberg (1976), Mertens and Neyman (1981) generalized this

result, and proved that every zero-sum stohasti game has a value.

A stohasti game is reursive if the stage payo� at all non-absorbing

states is zero, no matter what the players do. A reursive stohasti game is

positive reursive if there is a player who reeives at all absorbing states only

positive payo�s. A positive reursive stohasti game is absorbing if the player

who reeives these positive payo�s an fore the play toward absorption.

Existene of approximate equilibria in two-player non-zero-sum stohas-

ti games with only one non-absorbing state was proven by Thuijsman and

Vrieze (1989). In their proof Thuijsman and Vrieze onsidered a sequene of

stationary equilibria of the disounted game as the disount fator tends to
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1, and they onstruted di�erent types of �-equilibrium strategies aording

to various properties of the sequene.

Vieille (2000a) showed that for approximate equilibria to exist in every

two-player non-zero-sum stohasti game with �nitely many states it is suf-

�ient to prove this for the sub-lass of absorbing positive reursive games.

Furthermore Vieille (2000b, 2000) proved that indeed all games in this sub-

lass have approximate equilibria.

In the present paper, we provide an alternative proof of the Vieille result

for absorbing positive reursive games. The primarily di�erene between our

proof and Vieille's lies in the use of a kind of disount fator rather than

Vieille's undisounted evaluation. This disount fator is state spei� and

is similar to the onventional disount fator only when there is only one

non-absorbing state. We were inspired by the Thuijsman and Vrieze artile

and their on�dene that their ideas ould deliver the same result for �nitely

many states. Our goal was to on�rm their optimism by demonstrating the

great versatility of the disounting onept.

In positive reursive games, disount fators for the player reeiving pos-

itive absorbing payo�s persuade him to make moves that push the game

toward absorption. Let us all this player the seond player. The serious

problem with generalizing the Thuijsman and Vrieze approah diretly is

that the usual disounted evaluation does not disriminate between the time

spent at the state at whih a deision is made and the other states that might

follow this deision. As long as the seond player at a given state hooses

between two moves that do not involve returning to that state, his evaluation

of those moves in an appropriate disounted game should be based upon his

undisounted evaluation. Play that never returns to this state before ab-

sorption but visits other states arbitrarily many times reeives no disount

whereas play that re-visits the initial state n times reeives a (1�Æ)

n

disount,

regardless of its visits to other states.

We see no way to generalize our proof to three player games (and it

appears highly unlikely). On the other hand, we an not dismiss the pos-

sibility; (see also Solan, 1999, where disounted evaluations were used to

understand some three player undisounted stohasti games). If the om-

pati�ation of a strategy spae reates disontinuities in the undisounted

payo�s a disounted evaluation may handle the points of disontinuity su-

essfully. A false impression that disounting is useless to understanding the

undisounted game may result from a lak of knowledge of how to turn o�
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the disount where one is suÆiently far from the points of disontinuity. As

we will see below, knowing when to turn o� the disount is entral to our

approah.

The seondary di�erene between our proof and Vieille's is that the math-

ematis we use is entirely elementary. No deep theorems of mathematis are

required; for example, there is no use of the theory of semi-algebrai fun-

tions. What we need from the theory of Markov hains is very elementary and

proved entirely in this paper. Due to our disounting approah we work with

taboo probabilities rather than the direted graphs perspetive of Freidlin

and Wentzell, (1984).

The only theorem we quote instead of proving is Doob's submartingale

inequality, a generalization of Kolmogorov's inequality and also an easy the-

orem to prove. Applying the inequality, we show that if the players engage

in time homogeneous Markovian behavior relative to some �nite state spae

of size n then for the existene of an �-equilibrium it suÆes that one-stage

deviation brings no more than an �

3

=nM gain to a player, where M is a

bound on the maximal di�erene between any two payo�s.

Countably many states

We developed our unorthodox approah to stohasti games with the

hope that it would deliver approximate equilibrium existene for all two-

person non-zero-sum stohasti games with ountably many states. We have

failed in this attempt.

The main problem is that our approah (and that of Vieille) rests ulti-

mately on the pideon-hole priniple. If the expeted number of visits to every

non-absorbing state is �nite then with probability one an absorbing state is

reahed. This does not hold if there are in�nitely many non-absorbing states.

In general, what is the diÆulty in proving approximate equilibrium ex-

istene for non-zero-sum two-person stohasti games with ountably many

states? Several important positive results need to be mentioned. Maitra

and Sudderth (1991) proved that all zero-sum stohasti games with ount-

ably many states have values. In a game of perfet information, the players

take turns making their moves and eah player knows the previous moves

of the other players; the lassi example is that of hess. A Blakwell game

is idential in transition struture to a stohasti game, but the payo�s are

determined by a funtion Borel measurable with respet to the histories of

play. Martin (1975) proved that all zero-sum Blakwell games of perfet
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information have values, and Mertens and Neyman (in Mertens 1987) ex-

tended Martin's result to non-zero-sum games with �nitely many players.

Using his result for games of perfet information, Martin (1998) proved that

all zero-sum Blakwell games have values.

The di�erenes between non-zero-sum stohasti games (with simultane-

ous moves) and either non-zero-sum Blakwell games of perfet information

or zero-sum Blakwell games with simultaneous moves are formidable. The

probability of absorption at a stage in a stohasti game an be also a min-

imal bound on that stage's deviation from pure equilibria; (for example see

the \Big Math" in Blakwell and Ferguson, 1968). With the �-equilibria

of many games, inluding the absorbing positive reursive variety, while ab-

sorption must beome a near ertainty the ulmulative opportunity to exploit

deviations must not exeed �. Therefore one needs that stage for stage ap-

proximate equilibria an translate to umulative approximate equilibria. In

zero-sum games this is not so problemati beause the gains to one player

from deviation equal the losses to the other player. But with two-person

non-zero-sum games, one must onsider funtions with values in R

2

; the po-

tential independene of the two values and need for a ooperative solution

frustrate attempts to generalize the approahs that were suessful with zero-

sum games. On the other hand if the moves are made simultaneously how

does one know the other player is adhering to a ooperative agreement? So

far the main answer has been to request from eah player Markovian behav-

ior, aompanied by statistial testing and punishment by the other player

in the event of signi�ant statistial deviation. With this approah, it is ne-

essary that the probability that an honest player will be punished unjustly

an be made arbitrarily small. As we will demonstrate with the following

proposition and ounter-example to a variation on this proposition, suh a

ontrol proess is unlikely in general for Markovian behavior that is arried

out essentially on a ountable state spae.

If S is a �nite or ountable set let �(S) stand for the spae of probability

distributions on S. A Markov hain is de�ned by a �nite or ountable state

spae S and for every s 2 S and stage i � 0 a probability distribution

p

s

i

2 �(S) governing the distribution on the states at the i + 1st stage,

given that s is the state on the ith stage. It is time homogeneous if p

s

i

is

indendendent of the i.

Proposition 4.2: Let X be a �nite spae. For every x 2 X let Y

x

be a
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�nite spae, with Y := [

x2X

Y

x

. (In the ontext of stohasti games, X will

be the state spae and Y

x

will be the set of moves that a player has at the

state x 2 X.) There are probability transitions (p

x

2 �(Y

x

) j x 2 X) from

X to Y and there are probability transitions (p

y

2 �(X) j y 2 Y ) from Y

to X, so that for every starting point x

0

2 X a time homogeneous Markov

hain on X [ Y is de�ned. On the even stages i = 0; 2; 4; : : : the proess is

in X and on the odd stages the proess is in Y . Let there be an evaluation

funtion v : X [ Y ! R that is harmoni with respet to the transitions

(meaning that a martingale is formed). Let M > 0 be a uniform bound for

the maximal di�erene between all values of v. For every pair x 2 X and

y 2 Y

x

suh that y is reahed from x with positive probability (aording to

p

x

) the di�erene between v(y) and v(x) is no more than Æ > 0.

Conlusion: If jXj = n, � < 1=2, and Æ � �

3

=Mn then the probability that

there exists an l with

P

l

i=0;2;:::

(v(y

i+1

)� v(x

i

)) � � does not exeed �.

The omplexity of the Y

x

play no role in the proof of Proposition 4.2, and

therefore it ould have many generalizations orresponding to variations in

the struture of the Y

x

.

To emphasize the importane of the �nite number jXj, the following is

a ounter-example to Proposition 4.2 if we assume that the bound for Æ is

independent of the ardinality of X. Furthermore, if we onsider proesses

that are not time-homogeneous, it does not help if for every stage the sum

over the states of the maximal di�erenes add up to no more than Æ.

Consider a random walk on n + 1 positions suh that at the left end (at

position 0) the player reeives an absorbing payo� of 0 and on the right end

(at position n) an absorbing payo� of 1. The spae X is the n+ 1 positions

and for every x 2 X the two-set Y

x

onsists of the two diretions \left" and

\right". Given any small Æ > 0, one an make n large enough so that at every

stage the hange in expeted payo� does not exeed Æ. Now reformulate the

randon walk so that at the kth stage of play there is no motion at any i

position with i 6= k (mod n�1), but at the k

0

= k (mod n�1) position there

is an equal 1=2 probability of moving either to the position k

0

�1 or to k

0

+1.

At eah stage the sum over the states of the di�erenes in expeted payo�s

remains no more than Æ, and yet we are no loser to satisfying the onlusion

of the proposition. (With n even and starting in the middle position with

an expeted payo� of 1=2, for every small positive � with probability lose

to 1=2 there will be motion to a position with an expeted payo� of at least
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1=2 + 2�.)

We expet no proof of approximate equilibrium existene for all non-

zero-sum stohasti games with ountable state spaes without a radially

di�erent approah. If a proof for ountably many states an be found, its

appliation to �nite state trunations of the ountable state game would pro-

vide approximate equilibria of the �nite state games suh that the average

number of stages before absorption would not explode with the inrease in

the �nite number of these states. In the proof below for a �xed � there is

no lower bound determined by the number of states on the rate for whih

an absorbing state is reahed. Indeed, beause suh a proof would imply the

existene of yet another alternative proof for �nitely many states with dra-

mati absorption rate properties, we suspet that there is a ounter-example.

Furthermore, it is possible that the omplexities from ountably many states

involved in a two-player ounter-example ould be mimiked by the introdu-

tion of more players in a stohasti game with �nitely many states, yielding

a ounter-example to approximate equilibria in this ontext as well.

We suspet that approximate equilibrium existene for a broad lass of

two-person stohasti games played on ountable state spaes must rest on

a fundamental assumption: that there is a uniform bound on the number

of states possible on any given stage of play. With a �nite number of suh

positions, it is still not lear how appropriate Markovian should be found.

Even with only one non-absorbing position, the possible in�nite variations,

inluding the number of moves for eah player and the order in whih similar

\types" may appear, make the problem formidable. At least the generaliza-

tion of Lemma 4.1 to Markov hains that are not time homogeneous will be

neessary. Another reason to present our alternative proof of the Vieille re-

sult is the hope that it will be relevant to this ase, whih we all the ase of

�nitely many positions. If for eah non-absorbing position one ould �nd an

appropriate ommon identity to an in�nite sub-sequene of states ouring

in that position, then the pideon hole priniple ould be applied suessfully.

Throughout this paper, we omment on the ase of �nitely many positions.

Organization

To exeute our proof eÆiently, we will assume that Player One has the

ability to send signals to Player Two that are independent of the transitions in

the games. The easiest way to formalize this property is to assume that every

move of Player One at a non-absorbing state is paired with another move
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at the same state that is its idential opy with respet to the transitions.

Without this assumption, the proof is formality more involved, less elegant,

however essentially equivalent. In the setion following the onlusion of the

main proof, we prove the result without this signaling assumption.

The argument and the paper are organized as follows.

Setion 2 introdues the model of absorbing positive reursive stohasti

games and the basi onepts of Markov hains. Additionally we introdue

an important onept with regard to the movement between states, alled

taboo probabilities. A taboo probability is the probability that one moves

from an initial state to some set of target states without travelling through

some seond set of \forbidden" states.

Setion 3 gives proofs of all the needed lemmas on Markov hains. The

most entral lemma is Lemma 3.2; it states that when motions at a multitude

of states are removed whose frequenies are only a small fration of the total

motion toward a �xed state then the ow ontinues toward this �xed state

with about the same or greater tendeny.

Setion 4 ontains a proof of Proposition 4.2, whih also establishes gen-

eral suÆient onditions for the existene of approximate equilibria. We

reate new states from our old states, whih we all situations; at most three

situations are reated from eah original state. The method of reating the

situations we all polarization, introdued in Setion 3. Exept for the rare

possibility of punishment, our behavior strategies will be stationary on the

situations. Setion 4 onludes with Theorem 1, a demonstration of suÆient

onditions for approximate equilibrium existene in our games.

In Setion 5 we introdue the state spei� disounted evaluation for the

seond player. We de�ne the disounted evaluation suh that the disounting

rates are adjusted for states suÆiently lose together, aording to a metri

determined by the strategies. We selet a quantity � muh smaller than

�, and de�ne the disounted evaluation so that moves with more than an

� probability of non-return to the state are evaluated in an undisounted

way and moves with a  probability of no return with  < � are evaluated

as if their probability of no return was =�. Our hoie for � is guided by

Proposition 4.2.

A serious problem with the state spei� disounted evaluation is that

the motivations of the seond player at one state an be very di�erent from

that at another state. Essentially the seond player beomes a multitude of

players, one for eah state. This allows for the seond player at some states to

7



prefer moves that result in too slow a motion toward absorption and there-

fore also disounted evaluations below the zero-sum value. To avoid this

problem, in Setion 2 we de�ne a new orrespondene, alled the \jump"

orrespondene, based upon stationary strategies optimal in the onvention-

ally disounted game. The use of the jump orrespondene by the seond

player results in fast absorption. The \best-reply" orrespondene of the se-

ond player is a ombination of the jump orrespondene with a maximization

of the state spei� disounted evaluation { when the disounted evaluation

is too low, the jump orrespondene is ativated. For the �rst player, the

undisounted evaluation is used to de�ne her \best-reply" orrespondene.

With the \best-reply" orrespondenes for both player de�ned, we demon-

strate two important properties. Lemma 5.4 shows that at a �xed point the

jump orrespondene of the seond player has only very limited inuene on

the play. Lemma 5.5 ontains the key argument to our entire approah; it is

used repeatedly to solve the most diÆult problems. It shows that if there

is a meaningful disrepany between the disounted and undisounted eval-

uations for the seond player then the seond player seeks primarily motion

with the fastest absorption rate.

The synthesis of the previous setions lies in Setion 6. Theorem 2 proves

that the onditions of Theorem 1 are always satis�ed { implying the exis-

tene of approximate equilibria. Here we onsider sets suh that a signi�ant

proportion of all the motion leaving these sets are from Player Two moves

with payo�s for Player Two signi�antly below the set-average payo�. Fix-

ing any suh state in a set where suh moves take plae, we look at what

happens when Player One stops playing all moves performed with frequen-

ies small ompared to the motion toward this speial state. The result, for

whih Player One is indi�erent, involves almost exlusively the use of similar

suh moves by Player Two suh that the players an travel between these

moves without the danger that along the way Player Two prefers to provoke

punishment over performing one of these moves. Ultimately we show that

there is a onvex ombination of suh moves that all yield the same payo�

for Player Two and for whih Player One is approximately indi�erent.

In Setion 7 we onsider the problem of signaling, as desribed above;

and in Setion 8 we onlude in more detail with the problem of ountably

many states.
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2 Preliminaries

2.1 The Model

Let S be the set of states; A is the subset of absorbing states and N = SnA

is the subset of non-absorbing states.

For every s 2 S, A

s

1

and A

s

2

are the moves (pure ations) of the �rst

and seond players, respetively, at the state s. Without loss of generality,

we assume that jA

s

i

j = 1 for every s 2 A and i = 1; 2. Let r

1

: A !

[�1=2; 1=2℄ and r

2

: A ! [!; 1℄ be the �rst and seond players' evaluations

on absorbing states, respetively, with 0 < ! < 1. Let m be the maximal

number of moves for either player at any non-absorbing state, meaning m =

max

s2N

(jA

s

1

j; jA

s

2

j).

Let p(tjs; a; b) be the probability of moving from s to t when a 2 A

s

1

and b 2 A

s

2

are played. Let � be de�ned by � := min(p(tjs; a; b) j s; t 2

S p(tjs; a; b) > 0), the minimal non-zero transition probability. Notie that

in the ase of �nitely many positions one has suh a positive quantity for eah

stage. More relevant, however, would be a sequene �

i

of positive quantities

suh that the series �

i

is divergent but sums toward in�nity muh slower

than any divergent series of positive transition probabilities. Suh a series is

possible if there is a uniform bound on the number of moves. Additionally the

disount fator must be adjusted to this series, (possibly with the disount

fator equaling 1� Æ�

i

if there is only one non-absorbing state).

Let X :=

Q

s2N

�(A

s

1

) and Y :=

Q

s2N

�(A

s

2

) be the spaes of stationary

strategies of the players, with X

s

:= �(A

s

1

) and Y

s

:= �(A

s

2

). For a 2

A

s

1

, b 2 A

s

2

, x

s

2 X

s

and y

s

2 Y

s

we de�ne p(tjs; a; y

s

), p(tjs; x

s

; b) and

p(tjs; x

s

; y

s

) in the appropriate linear or bi-linear way. For any s 2 N ,

x

s

2 X

s

and a 2 A

s

1

, the quantity x

s

a

will stand for the probability, as

determined by x

s

, that the move a is used. The same applies for b 2 A

s

2

,

y

s

2 Y

s

and y

s

b

. De�ne a pair (x; y) 2 X � Y to be absorbing if from every

start with probability one an absorbing state is reahed.

We will say that two positive quantities a and b are di�erent by no more

than a fator of positive  < 1 if a � b(1� ) and b � a(1� ).
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2.2 Histories, Strategies, Equilibria

For every stage i � 0 and s 2 S de�ne H

s

i

:= f(s

0

; a

0

; b

0

); (s

1

; a

1

; b

1

); : : : ;

(s

i�1

; a

i�1

; b

i�1

); s

i

= s j 8 0 � k < i a

k

2 A

s

k

1

; b

k

2 A

s

k

2

; p(s

k+1

js

k

; a

k

; b

k

) >

0g, with H

s

0

= fsg for all s 2 S. De�ne H

s

:= [

1

i=1

H

s

i

, H

i

:= [

s2S

H

s

i

,

H := [

i=0

H

i

, and

~

H := f(s

0

; a

0

; b

0

); (s

1

; a

1

; b

1

); : : : j 8i � 0 the trunation

up to s

i

belongs to H

s

i

i

g, the set of in�nite sequenes.

A strategy of Player j = 1; 2 is a set of maps �

j

= (�

s

j

j s 2 N ) with �

s

j

a map from H

s

to �(A

s

j

) for all s 2 N .

With Blakwell games, a more general lass than stohasti games, we

assume that a player's evaluation on

~

H is a funtion that is measurable

with respet to the Borel subsets of

~

H, the sigma algebra indued by the

subsets of H

i

for all i � 0. In ase that a stohasti game is reursive, for

every member of

~

H it easy to de�ne an evaluation for both players. Either

the in�nite sequene reahes an absorbing state and the players reeive the

orresponding absorbing payo�s, or it never reahes an absorbing state and

both players reeive a payo� of zero.

For every initial state s and every pair of strategies �

1

; �

2

for both players

a distribution is indued on

~

H in a natural way, resulting in two evaluations

V

s

j

(�

1

; �

2

) for Player j = 1; 2 of the expeted values of the r

j

on

~

H. An �-

equilibrium is a pair �

1

; �

2

suh that for all s 2 S and alternative strategies ~�

1

and ~�

2

it holds that V

s

1

(~�

1

; �

2

) � V

s

1

(�

1

; �

2

)+� and V

s

2

(�

1

; ~�

2

) � V

s

2

(�

1

; �

2

)+�.

With absorbing positive reursive games and positive ! the lowest Player Two

absorbing payo� we get the additional property that there exists an N > 0

suh that with probability at least 1�

2�

!

the game has reahed an absorbing

state before the stage N .

2.3 Jump Funtion

For any positive real number 0 < � < 1 let G

�

be the onventionally de�ned

disounted zero-sum game played against Player Two suh that a visit to

any state is disounted aording to 1� �, and let G

0

be the orresponding

undisounted zero-sum game. For all positive � we de�ne 

�

: S ! R

to be the min-max value for Player Two in the zero-sum game G

�

, with



�

(s) = r

2

(s) for all s 2 A. Beause the game is positive reursive the 

�

are

monotonially non-dereasing and due to Mertens and Neyman (1981) the

point-wise limit is the undisounted value of the game G

0

, though for this

10



lass of games there is an elementary proof. Player Two hooses a stationary

optimal strategy of G

�

for an � > 0 suÆiently small so that 

�

is within �

of its point-wise limit and at stage i Player One hooses one of her optimal

strategies in the game G

�

i

where for every i � 0 

�

i

is within �=2

i+2

of the

point-wise limit and �

i

< �=2

i+2

.

For every x 2 X and positive 0 < � < 1 de�ne the jump funtion

j

�

x

: N ! R by

j

�

x

(s) = (1� �)max

b2A

s

2

X

t2S

p(tjs; x; b) 

�

(t)

{ the maximal payo� that Player Two an guarantee himself in the 1 � �

disounted game by being punished after the next stage if Player One uses x

at the present stage. If s is an absorbing state, de�ne j

�

(s) to be r

2

(s) for all

�. For all states it is lear that j

�

x

� 

�

, with equality when x is an optimal

strategy for Player One in the zero-sum game G

�

played against Player Two.

For every state s 2 N and x 2 X de�ne

J

�

x

(s) = argmax

b2A

s

2

X

t2S

p(tjs; x; b) 

�

(t):

Let n(s) denote the state following s, in our ontext a random variable. If

s is not an absorbing state and b 2 J

�

x

(s) then j

�

x

(s) � (1 � �)E

x

b

j

�

x

(n(s));

where E

x

b

is the expetation determined by the move b and the strategy x

s

.

This makes j

�

x

a sub-martingale.

For i = 1; 2 and a state s 2 S de�ne 

i

(s) to be the value for Player i of

the zero-sum undisounted game played against Player i starting at the state

s. For every Player i and every stationary strategy z of Player k 6= i de�ne

the jump funtion j

i

z

: S ! R by

j

2

z

(s) = max

b2A

s

2

X

t2S

p(tjs; z; b)

2

(t) or j

1

z

(s) = max

a2A

s

1

X

t2S

p(tjs; a; z)

1

(t)

{ the maximal payo� that Player i an guarantee himself against z if he is

punished on the next stage.

2.4 Taboo probabilities

For any time homogeneous Markov hain, a state s, and two disjoint sets

A and B of states we introdue the \taboo" probability P

A

(s; B) to be the

11



probability, with a start at the state s, of reahing the set B before the set A

at any stage following the initial stage at s. With t

C

:= inffn � 1 j s

n

2 Cg

P

A

(s; B) measures the event that t

B

<1 and t

B

< t

A

onditioned on s

0

= s.

If either set is a singleton, we an write its single member instead of the

set. If there is ambiguity onerning whih state spae or whih transitions,

we identify them with a subsript. In our ontext of stohasti games and

stationary strategies, P

A

x;y

(s; B) will be the taboo probability orresponding

to the time homogeneous Markov hain generated by (x; y) 2 X � Y .

De�ne a state of a time homogeneous Markov hain to be absorbing if

one this state is reahed then the motion remains in this state forever. The

Markov hain is absorbing if for any start with probability one an absorbing

state is reahed.

Before moving toward the proof, we must present some basi notions

using the taboo probabilities. These quantities will be de�ned �rst for time

homogeneous Markov hains and then applied to the games.

For any part p of a transition at a state s or an alternative transition p

for that state de�ne g(p) to be the probability that there is no return to s if

p is used at s and the transitions remain onstant at all other states. If p was

a part of the transition at s then de�ne f

p

to be the frequeny with whih

p is used at the state s. For every hoie (x; y) 2 X � Y and pair a 2 A

s

1

and b 2 A

s

2

of moves at the state s 2 N g

x;y

(a; b) is the probability that

there is no return to s given that Player One and Player Two at s play the

ations a and b, and elsewhere in the future the stationary strategies (x; y).

For a move b 2 A

s

2

of the seond player, de�ne g

b

x;y

to be

P

a2A

s

1

x

s

a

g(a; b), and

de�ne g

a

x;y

for all a 2 A

s

1

orrespondingly.

De�ne the absorption rate a(s) of a state s to be the probability that

after any visit to this state there is no return to this state, meaning that the

absorption rate is the expeted value of the funtion g. For the game the

absorption rate a

x;y

(s) of a state s is

P

a2A

s

1

; b2A

s

2

x

s

a

y

s

b

g

s

x;y

(a; b): Given that

(x; y) is absorbing a

x;y

(s) would be the taboo probability P

s

x;y

(s;A).

For any part p of the transition at a state s de�ne �(p) to be the proba-

bility that at the last visit to s the part p was used, or equivalently �(p) =

f

p

g(p)=a(s). We all this the importane of p. For a pair of moves a 2 A

s

1

and

b 2 A

s

2

at s 2 N and stationary strategies (x; y) the importane �

s

x;y

(a; b) is

x

s

a

y

s

b

g

x;y

(a; b)=a

x;y

(s). For any move a 2 A

s

1

de�ne �

a

x;y

to be

P

b2A

2

�

x;y

(a; b) =

x

a

g

a

x;y

=a

x;y

(s) and for any move b 2 A

s

2

de�ne �

b

x;y

in the same way.

For any distint pair s; t of states de�ne es(t; s) to be the probability of

12



never reahing s with a start at t. (es stands for \esape".) For the game we

have g

b

x;y

=

P

t2S

p(tjs; x; b)es

x;y

(t; s). (If (x; y) is absorbing, es

x;y

(t; s) is

P

s

x;y

(t;A) and is di�erent from P

s;t

x;y

(t;A), the probability of absorbing before

returning to either s or t).

For distint states s and t let �(s; t) be es(s; t)+ es(t; s), and otherwise

let �(s; s) = 0. � is a metri on the state spae. Reognize 1 � es(t; s) as

the probability of moving from t to s, and for mutually distint u; v; w we

have 1� es(u; w) � (1� es(u; v))(1� es(v; w)) � 1� es(u; v)� es(v; w).

Given that the Markov hain is absorbing with A the set of absorbing

states, the following relations for states s 6= t are easy to verify:

es(s; t) =

P

fs;tg

(s; A)

P

s

(s; t) + P

fs;tg

(s; A)

=

P

fs;tg

(s; A)

1� P

A[ftg

(s; s)

(1)

a(s) = P

s

(s; t)es(t; s) + P

fs;tg

(s; A) (2)

whih imply P

s

(s; t)�(s; t) � a(s) � �(s; t) and a(t)P

s

(s; t) � a(s) (3).

For all these quantities and following ones, we an drop the subsripts

and supersripts if there is no ambiguity.

2.5 Evaluations

We had extended the values r

i

: A! R on the absorbing states to funtions

r

i

on all paths in

~

H. For any stationary strategies (x; y) and players i = 1; 2

extend the de�nition of r

i

again to a harmoni funtion r

i

x;y

: S ! R with

r

i

x;y

(s) equal to the expeted value of r

i

on

~

H as determined by (x; y).

For any harmoni funtion r on S, and p a part of or an alternative

to the transition from a state s, de�ne v

r

(p) to be the expeted value of r

onditioned on the use of p and no return to the state s, with v

r

(p) de�ned to

be r(s) if there is return to s with ertainty. If the Markov hain is absorbing

and g(p) > 0 then v

r

(p) would be the new harmoni funtion value for s if

the transition from s were replaed by p. For every pair of moves a 2 A

s

1

and

b 2 A

s

2

v

i

x;y

(a; b) is de�ned to be v

r

i

x;y

of the part of the transition de�ned by

the pair (a; b) of moves. Likewise de�ne v

i

x;y

(a) and v

i

x;y

(b) with respet to

the pairs (a; y 2 Y

s

) and (x 2 X

s

; b), respetively. If (x; y) is absorbing we

have the relation

r

i

x;y

(s) =

P

a;b

x

s

a

y

s

b

v

i

x;y

(a; b)g

s

x;y

(a; b)

a

x;y

(s)

=

X

a;b

�

x;y

(a; b)v

i

x;y

(a; b):

13



For a 2 A

s

1

we have

v

i

x;y

(a) :=

P

b2A

s

2

y

s

b

v

i

x;y

(a; b)g

x;y

(a; b)=g

a

x;y

=

P

b

�

x;y

(a; b)v

i

x;y

(a; b)=�

a

x;y

and for b 2 A

s

2

we have

v

i

x;y

(b) :=

P

a2A

s

1

x

s

a

v

i

x;y

(a; b)g

x;y

(a; b)=g

b

x;y

=

P

a

�

x;y

(a; b)v

i

x;y

(a; b)=�

b

x;y

,

with both quantities r

i

(s) when the quotient is not well de�ned.

For any harmoni funtion r on S, and p, a part of or an alternative to

the transition from a state s, de�ne w

r

(p) to be the expeted value of r on

the following stage aording to the one-time use of p on that stage. We

have w

r

(p) = g(p)v

r

(p) + (1� g(p))r(s). For any pair of moves a 2 A

s

1

and

b 2 A

s

2

at s 2 N and i = 1; 2 w

i

x;y

(a; b) is the expeted value of r

i

x;y

on

the next stage if the players use the pair a and b on the present stage at s.

For all b 2 A

s

2

de�ne w

i

x;y

(b) :=

P

a2A

s

1

x

s

a

w

i

x;y

(a; b) and for all a 2 A

s

1

de�ne

w

i

x;y

(a) :=

P

b2A

s

2

y

s

a

w

i

x;y

(a; b).

The following is a entral lemma onerning the hanges in a harmoni

funtion.

Lemma 2.1: Let S be the �nite state spae of an absorbing time ho-

mogeneous Markov hain and r : S ! R a harmoni funtion. For ev-

ery non-absorbing s 2 S let p

s

be an alternative transition at s suh that

g(p

s

) > 0. De�ne a new time homogeneous Markov hain aording to the

p

s

. Let a

�

: S ! [0; 1℄ be the absorbing rates orresponding to the new time

homogeneous Markov hain and let r

�

: S ! R be a harmoni funtion with

respet to the new transitions suh that r

�

agrees with r on the absorbing

states. If jv

r

(p

s

) � r(s)j � Æ

s

and a

�

(s) � �

s

g(p

s

) for 0 < �

s

� 1 and all

non-absorbing s 2 S (with g(p

s

) = a(s) if p

s

was the original transition at s)

then the new Markov hain is absorbing and jr

�

(s)� r(s)j �

P

t

Æ

t

=�

t

for all

states s.

Proof: The new Markov hain is absorbing beause a

�

(s) > 0 for all

s 2 S. With a start at any state s

0

, we an bound the hange jr

�

(s

0

)� r(s

0

)j

by the sum over all states t 2 S of the one stage deviation at t multiplied by

the expeted number of visits to the state t. The deviation from one visit to a

state t is bounded by jw

r

(p

t

)�r(t)j, and sine 1=a

�

(t) is the expeted number

of visits to the state t we have the total deviation bounded by

P

t

jw

r

(p

t

)�r(t)j

a

�

(t)

.

jw

r

(p

t

)� r(t)j � g(p

t

)jv

r

(p

t

)� r(t)j implies jw

r

(p

t

)� r(t)j=a

�

(t) � jv

r

(p

t

)�

r(t)j=�

t

. 2
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3 Changes in Taboo Probabilities

In all the lematta of this setion, S is a �nite state spae of a time homoge-

neous Markov hain.

3.1 Reahing a State

For the �rst three lemmatta we look at what happens when a fration of

P

t

(t; s) is removed from the transitions at all t in a set T .

Lemma 3.1 Let s and t be two distint states and A and B two subsets of

states suh that A, B and fs; tg are mutually disjoint. Let p be a part of the

transition at t suh that at least positive  < 1 of the transition P

B[ftg

(t; A)

goes through p (meaning that if the omplement of p were removed and

replaed by motion that went bak to t on the next stage with ertainty then

the new quantity for P

B[ftg

(t; A) would be at least  times the old quantity).

If the existing transition at t were replaed by p (followed by normalization)

and the new transitions were indexed by � then P

B[ftg

�

(t; A) � P

B[ftg

(t; A)

and P

B[fsg

�

(s; A) � P

B[fsg

(s; A).

Proof: P

B[ftg

�

(t; A) � P

B[ftg

(t; A) is given. If there was never motion

from s to t or from t to s then the inequality P

B[fsg

�

(s; A) � P

B[fsg

(s; A)

would also be straightforward. So let us assume that there is some motion

in both diretions between s and t, and let A

0

be the set A unioned with all

the other states from whih there is no motion to either s or t.

To estimate P

B[fsg

�

(s; A) let b := P

B[fs;tg

(s; A),  := P

B[A

0

[fsg

(s; t),

d := P

B[A

0

[ftg

(t; s) and e = P

B[fs;tg

(t; A). Let d

�

and e

�

stand for the

ontributions to d and e made by the transitions in p, so that d

�

� d and

e

�

� e. By assumption we have e

�

+ d

�

b

b+

� (e + d

b

b+

). We suppose for

the sake of ontradition that P

s

(s; A) = (b+

e

d+e

) > b+

e

�

d

�

+e

�

= P

s

�

(s; A).

Re-write as (d

�

+e

�

)(be

�

+bd

�

+e

�

) > (be

�

+bd

�

+e

�

)(d+e) or d

�

+e

�

> d+e,

a ontradition. 2

Lemma 3.2: Let T and A [ U be mutually disjoint subsets of S. If

no more than a frequeny of P

T[fug

(u;A) is removed from the transitions

of all u 2 UnA for some fration 0 <  < 1=(2jU j) and no more than

a frequeny of  in the ase of u 2 U \ A, followed by normalization,

then for all x 2 SnA the new resulting probabilities P

T[fxg

�

(x;A) satisfy
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P

T[fxg

�

(x;A) � (1� jU j)P

T[fxg

(x;A) and for every a 2 A and x 62 A[ T

(1� 3jU j)P

T[A

�

(a; x) � P

T[A

(a; x).

Proof: For U = ; there is nothing to prove. Now assume the result for

Unfug, and let P

+

stand for the probabilities where the hanges are made in

Unfug. Sine by indution P

T[fug

+

(u;A) � (1 � jU j + )P

T[fug

(u;A), the

frequeny removal at u is no more than



1�jU j+

P

T[fug

+

(u;A). By Lemma 3.1

applied to the ase of only one hange at u, we have for all x P

T[fug

�

(x;A) �

(1 �



(1�jU j+)

)P

T[fxg

+

(x;A) � (1 �



1�jU j+

)(1 � jU j + ))P

T[fxg

(x;A) =

(1� jU j)P

T[fxg

(x;A).

For the seond half, if u 2 A then it follows by indution beause the

only way to inrease this probability is through the normalization. Oth-

erwise express P

T[A

�

(a; x) as P

T[A[fug

�

(a; x) +

P

T[A[fxg

�

(a;u)P

T[A[fug

�

(u;x)

1�P

T[A[fxg

�

(u;u)

. We

notie that 1 � P

T[A[fxg

�

(u; u) � P

u

�

(u; T [ A [ fxg) � P

T[fug

�

(u;A), so

that the hange 1 � P

T[A[fxg

+

(u; u) to 1 � P

T[A[fxg

�

(u; u) annot be a de-

rease by more than a fator of =(1� jU j + ) � 2. The rest follows by

(1� )P

T[A[fug

�

(u; x) � P

T[A[fug

+

(u; x), (sine the only way to inrease this

probability is through the normalization). 2

Lemma 3.3 Let T be a subset of S and let s be a �xed state suh that s is

reahed with positive probability from every t 2 T . For every t 2 T let q

t

be

a part of the transition at the state t satisfying f

q

t

P

t

q

t

(t; s) � P

t

(t; s) where

P

t

q

t

(t; s) is the resulting taboo probability if q

t

is a replaement transition at

t. Consider new transitions resulting from the removal of the part q

t

at every

t 2 T , followed by normalization. If jT j < 1 then s is also reahed with

positive probability from all of T after the hanges.

Proof: We prove by indution on the size of T ; by Lemma 3.1 the laim

holds for jT j = 1. With v 2 T also �xed, let us assume that there is some

state u 2 T suh that after the hanges from a start at v the state u is not

reahed at all. Whether or not one reahes s from v with the hanges annot

not be inuened by any hange made at u. Therefore by the indution

hypothesis, onsidering hanges made in the smaller set Tnfug, we have our

result.

Now assume that with the hanges all member of T are reahed from v.

For every pair t; u 2 T let w

t

(u) be the probability in the original Markov

hain with respet to a start at t that s is reahed and that the last visit to a
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state in T was at the state u. Beause starting at t rather than at u annot

be a better way to reah s through the state u, we have w

t

(u) � w

u

(u). But

then there must be a u 2 T suh that w

u

(u) �

1

jT j

P

t

w

t

(t) �

1

jT j

P

t

w

u

(t).

This means that at least

1

jT j

of the original motion P

u

(u; s) went diretly to

s without passing through any other member of T (and therefore after the

hanges there is still motion from u to s). 2

The following lemma onerns transitions in two person stohasti games,

but an be generalized to any time homogeneous Markov Chain whose tran-

sitions are determined by two independent variables.

Lemma 3.4 Let R be a subset of non-absorbing states, U a subset of

R, and (x; y) a pair of stationary strategies suh that there is some motion

between all pairs of states in R. Let s; t 2 U be speial states. Assume

for every u 2 Unfsg that no more than a frequeny of P

u

(u; s) is removed

from x

u

2 X

u

and no more than a frequeny of  from x

s

, followed by

normalization; let x stand for the result. Assume for the state t 2 U that

P

s

x;y

(s; t) � �P

s

x;y

(s; t). Let y

u

�

be a part of y

u

for any u 2 U with f

u

�

its

frequeny. Assume for all u 2 U and both z 2 fs; tg that f

u

�

P

u

x;(yjy

u

�

)

(u; z) �

ÆP

u

x;y

(u; z) where (yjy

u

�

) is the strategy that is y

v

when v 6= u and is y

u

�

otherwise. Let y stand for the result when y

u

�

is removed from y

u

for every

u 2 U , followed by normalization. Given that (1�4jU j)� > ÆjU j with (x; y)

there is some motion from all states in R to s and also some motion from s

to t.

Proof: Sine the part of P

u

x;y

(u; s) that was removed annot exeed Æ+

of the whole, we have from Lemma 3.3 that s is reahed from all states v in

R.

As with the proof of Lemma 3.3 we an assume by indution that all

u 2 Unftg are reahed from s with x and y. We aount for P

s

x;y

(s; t) by

onsidering the last state visited on the way from s to t. For any hoie of

(~x; ~y) let p

~x;~y

(u; t) := P

U

~x;~y

(u; t) be the probability of moving from u to t with

no other member of U in between. Let U

0

:= Unfs; tg. We have

P

s

~x;~y

(s; t) = p

~x;~y

(s; t) +

X

u2U

0

p

~x;~y

(u; t)P

ft;sg

~x;~y

(s; u)

1� P

fs;t;ug

~x;~y

(u; u)

;

sine

P

ft;sg

~x;~y

(s;u)

1�P

fs;t;ug

~x;~y

(u;u)

is the expeted number of times that u is visited before

17



reahing t or returning to s, with 1 � P

fs;t;ug

(u; u) = P

u

(u; fs; tg [ A) �

P

u

(u; s), where A is the set from whih there is no motion to the set R.

De�ne for all u 2 U

0

e(u) :=

P

ft;sg

x;y

(s;u)

1�P

s;t;u

x;y

(u;u)

, with e(s) = 1, and de�ne e

�

(u)

orrespondingly with respet to x and y, with e

�

(s) = 1. By Lemma 3.2 we

have (1� 4(jU j � 2))e

�

(u) � e(u) for all u 2 U

0

. We an onlude that

X

u2Unftg

e(u)p

x;y

(u; t) � (1� 4(jU j � 1))P

s

x;y

(s; t) �

�(1�4(jU j�1))P

s

x;y

(s; t) = �(1�4(jU j�1))

X

u2Unftg

e(u)p

x;y

(u; t): (4)

Next de�ne p

x;y

(u; t) := P

U

x;y

(u; t): By reognizing that p

x;y

(u; t)e(u)=P

s

(s; t),

the probability that the last visit to U was at u 2 U from a start at s, is less

than or equal to the probability that the last visit to U was u with a start at

u (both aording to (x; y)), we have from the de�ning ondition on y that

jp

x;y

(u; t)e(u)� p

x;y

(u; t)e(u)j � ÆP

s

(s; t). After summing over Unftg we get

X

u2Unftg

e(u)p

x;y

(u; t) � (1� ÆjU j + Æ)

X

u2Unftg

e(u)p

x;y

(u; t) (5):

To show that u reahes t for some u 2 Unftg, it suÆes to show that

p

x;y

(u; t) + p

x;y

(u; t) > p

x;y

(u; t) for some u 2 Unftg: But assuming that

p

x;y

(u; t)+p

x;y

(u; t) � p

x;y

(u; t) for all u 2 Unftg, from the above sums in (4)

and (5) we must onlude that 1� ÆjU j + �(1� 4jU j) < 1, a ontradition

to the initial assumption. 2

3.2 Continuity and Exiting

Beause of the unlimited number of stages, taboo probabilities and harmoni

funtions of time homogeneous Markov hains are not ontinuous with re-

spet to absolute hanges in transition probabilities. However, there is a on-

tinuity for relative hanges in these transitions. A result of the same spirit

but in a di�erent formal ontext is ontained in Freidlin and and Wentzell

(1984).

Lemma 3.5 Assume that the transitions p

s

2 �(S) at a subset U are

hanged suh that for all t 2 S, inluding s = t, the resulting p

s

�

(t) di�ers

from p

s

(t) by no more than a fator of positive  < 1=(2jU j) (neessarily

18



with p

s

�

(t) = 0 if and only if p

s

(t) = 0). Let P

T

�

(s; A) stand for the resulting

taboo probability. For all hoies of s, T , and A with T \ A = ;, P

T

(s; A)

di�ers from P

T

�

(s; A) by a fator of at most 4jU j. If the original Markov is

absorbing then the resulting Markov hain is absorbing and if r : S ! R is

a harmoni funtion with respet to the original Markov hain and r

�

is the

resulting harmoni funtion that agrees with r on all the absorbing states

then jr(s) � r

�

(s)j � 4jU jM for every s 2 S, where M is a bound on the

di�erene between the funtion values of r on these absorbing states.

Proof: Let U := fs

1

; : : : ; s

N

g. Let P

T

i

(s; A) stand for the taboo prob-

ability when the hanges are made only at the subset fs

1

; s

2

; : : : ; s

i

g, and

de�ne es

i

(t; s) in the same way.

First we laim that for every �xed hoie of s; T; A with s 2 T that

P

T

i

(s; A) and P

T

i�1

(s; A) di�er at most by a fator of 2. Sine both P

T

i

(s

i

; A)

and P

T

i�1

(s

i

; A) are expetations over the next stage of some probabilities, we

have our laim for P

T

i

(s

i

; A) and a fator of  by the de�ning assumption.

If s 6= s

i

then we get our result from the same observation and the formula

P

T

i

(s; A) = P

T[fs

i

g

i

(s; A)+P

T

i

(s; s

i

)P

T[fs;s

i

g

i

(s

i

; A)=P

s

i

i

(s

i

; T [B [A[ fsg),

where B is the set of states suh that in either the ith or i + 1st Markov

hain there is no motion to the state s

i

from the set B.

From formula (1) we have 1�es

N

(t; s) = P

s

N

(s; t)=(P

s

N

(s; t)+P

fs;tg

N

(s; B))

and from above that 1� es

N

(t; s) does not di�er from 1� es(t; s) by more

than a fator of 2N . Notie that 1 � a(s) an be written as the expeted

value of 1� es(t; s) on the next stage, and therefore 1� a(s) does not di�er

from 1 � a

N

(s) by more than a fator of 2N , where a

N

is the resulting

absorption rate. This implies that a(s) = 1 if and only if a

N

(s) = 1 and

in this ase we have P

T

N

(s; A) = P

T[fsg

N

(s; A), P

T

(s; A) = P

T[fsg

(s; A), and

our result. Given a(s) 6= 1 then by P

T

(s; A) = P

T[fsg

(s; A)=(1 � a(s)) and

P

T

N

(s; A) = P

T[fsg

N

(s; A)=(1 � a

N

(s)) we also have our result. The laim

onerning harmoni funtions follows by onsidering A to be any subset of

absorbing states. 2

Next we de�ne the onept of exit. (Due to the lak of the semi-algebrai

analysis, we will be more restritive in our de�nition of an exit than Vieille

2000a or Solan 2000.) For any subset P of non-absorbing states a system

of exits from P is a olletion of parts of the transitions at the states in P

suh that all motion from P to SnP must our through one of these parts.
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Eah part in the olletion is alled an exit. Given that the Markov hain is

absorbing any subset of non-absorbing states must have a system of exits.

Assume that there is a partition P of the states suh that fsg is in P

for every absorbing s and for every non-absorbing s 2 P 2 P q

s

2 �(S)

is the transition de�ned onditionally by the union of all the exits from P

at the state s. Let A be the set of absorbing states. For every P 2 P let

s

P

2 P be a representatative for the set P . We will reate two new time

homogeneous Markov proesses, one by extending the state spae and the

other by ontrating it. These onstrutions are also in Vieille (2000).

First we extend the state spae. For every s 2 P 2 P, reate two new

states s

a

and s

b

. De�ne S

�

:= fs

a

j s 2 Ag [

s2SnA

fs

a

; s

b

g, and the or-

responding Markov hain will be indexed by �. The states fs

a

j s 2 Ag

remain absorbing. At s

a

with s 2 P 2 P, the motion goes deterministially

to s

b

P

. At s

b

the transition is labeled p

s

b

�

2 �(S

�

). Let f

s

be frequeny

with whih q

s

is used. Let p

s

be the transition de�ned by p

s

onditioned

on the non-use of q

s

, given of ourse that f

s

6= 1. De�ne p

s

b

�

(t

a

) = f

s

q

s

(t)

and p

s

b

�

(t

b

) = (1 � f

s

)p

s

(t) (and otherwise zero if p

s

is not de�ned), with

p

s

b

�

(a) = p

s

(a) if a 2 A.

Given that the Markov hain is absorbing, next we ontrat the state

spae. De�ne S

℄

= fs

P

j P 2 Pg. A previously absorbing state remains

absorbing. For every non-absorbing state s

P

let the transition at s

P

be

indued by the distribution on the next state t

a

following s

b

P

in the above

Markov hain de�ned on S

�

. If t

a

is absorbing, then t is that next state.

If t

a

is not absorbing, the u = u

P

0

is the next state with t 2 P

0

2 P.

Sine the Markov hain on S

�

is absorbing, modulo events of zero probability

the transitions of S

℄

are well de�ned. In a di�erent ontext (without taboo

probabilities) a similar statement to the next lemma was proven by Vieille

(2000).

Lemma 3.6: Assume that the Markov hain is absorbing. Let r be a

harmoni funtion on S and M > 0 a uniform bound on all di�erenes in the

values of r. Let N be the number of the P that are not singletons, and let

0 < Æ <

1

2N

be given. Assume for every P 2 P and every distint pair s; t 2 P

that the probability of moving from t to s without passing through any exit

of P is at least 1� Æ. The new proesses on S

�

and S

℄

are absorbing and for

any pair of subsets A and T that are unions of members of P with A\T = ;

we have that P

A

�

�

(s; T

�

) di�ers from P

A

(s; T ) by no more than a fator of
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4NÆ, where B

�

:= fs

a

; s

b

j s 2 Bg for all subsets B. With r

�

representing

the new harmoni funtion on S

�

determined by the expeted value of r on

the absorbing states and r

℄

the same for S

℄

we have r

�

(s

a

R

) = r

℄

(s

R

) for all

representative states s

R

and jr

�

(s

a

)� r(s)j � 4MNÆ for all s 2 S.

Proof: De�ne two new transitions (p̂

s

j s 2 S) and (p

s

j s 2 Sg) on

S. p̂

s

is determined by the distribution on the next state t

a

in S

�

from a

start at s

a

2 S

�

. p

s

is de�ned likewise, however from a start at s

b

2 S

�

.

The distribution on the states outside of P with the p

s

is the same as with

the original transitions p

s

on S. Beause of our assumption onerning the

avoiding of exits, Lemma 3.5 applies to the di�erene between p̂ and p. The

laim for the taboo probabilities follows diretly from Lemma 3.5, as does

also the laim for the harmoni funtions. 2

Lemma 3.6 works beause it is based upon the rare use of an exit. Muh

more problemati is analysing the onsequenes of the ertain use of an exit.

This is the ontent of Lemma 3.7.

Lemma 3.7 Assume the ontext of Lemma 3.6 and that p is an exit from

P at t 2 P with g(p) > 0. We have

1) jg(p)� g

℄

(p)j � 4NÆ + Æ,

2) g(p) and g

℄

(p) di�er by a fator of no more than 4NÆ +

2Æ

�(p)

,

3) �(p) and �

℄

(p) di�er by a fator of no more than 4NÆ + 2Æ +

4NÆ+Æ

g(p)

,

4) j�(p)� �

℄

(p)j � 8NÆ + 4Æ,

5) jv

r

(p)� v

r

℄

(p)j �M minf8NÆ +

Æ

g(p)

; 8NÆ +

2Æ

�(p)

)g.

Proof: 1) We de�ne ĝ to be the probability that there is no return to the

set P after using the exit p in the original Markov hain. From Lemma 3.6

we see that ĝ is within a fator of 4NÆ of g

℄

(p). From the avoiding of exits

we get that jĝ � g(p)j � Æ, whih suÆes.

2) By de�nition g(p) � ĝ. First we show that es(u; t) � Æĝ=((1� Æ)�(p))

for all u 2 P . De�ne w

u

be the probability that p will be used before returning

to u from a a start at t (with w

u

� Æ for all u 2 P ). De�ne �

u

to be the

probability that the last visit to P is through the exit p from a start at u;

we have �

u

� w

u

ĝ=(w

u

ĝ + es(u; t)), whih translates to es(u; t) � w

u

ĝ=�

u

.

Finally notie that �

u

doesn't di�er from �(p) by a fator of more than Æ.

Next we ompare g(p) with ĝ. For every u 2 P let �

u

be the probability

that there is a return to P from the use of p in the original Markov hain
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and that u is the �rst member of P reahed. Notie that

P

u

�

u

= 1� ĝ. We

have g(p) = ĝ +

P

u

�

u

es(u; t). This suÆes for (1� 2Æ=�(p))g(p) � ĝ. Now

use Lemma 3.6 for the onlusion.

3) By de�nition �

�

(p) = f

p

g

�

(p)=a

�

(t

b

) and �(p) = f

p

g(p)=a(t). One way

to pereive a(t) is as the reiproal of the expeted number of visits to t from

a start at t. With this perspetive by Lemma 3.6 and the avoiding of exits

we get that a

�

(t

b

) and a(t) don't di�er by a fator of more than 4NÆ + Æ.

This means that if g

�

(p) and g(p) don't di�er by a fator of more than 

then �

�

(p) and �(p) don't di�er by more than a fator of  + 4NÆ+ Æ. Sine

�

℄

(p) is also equal to the probability that the last visit to P starting at s

b

P

in the Markov hain S

�

went through the exit p we have that �

�

(p) is within

a fator of Æ of �

℄

(p) and therefore �

℄

(p) and �(p) don't di�er by a fator

of more than  + 4NÆ + 2Æ. By the same argument as in Part 1 omparing

g

℄

(p) with g(p) we get jg

�

(p)� g(p)j � 4ÆN + Æ and therefore g

�

(p) and g(p)

annot di�er by a fator of more than

4ÆN+Æ

g(p)

and our onlusion.

4) The argument of Part 2 an be repeated with the Markov hain de�ned

on S

�

instead of the original on S. The quantity g(p) would be replaed

by g

�

(p) and ĝ would be replaed by g

℄

(p). We have g

�

(p) � g

℄

(p) and

g

�

(p) = g

℄

(p) + (1� g

℄

(p))es

�

(s

b

; t

b

).

If g(p) � g

�

(p) we need only g

�

(p) � g

℄

(p) and the onlusion of Part 2

to get g(p) � (1� 2Æ=�(p)� 4ÆN)g

�

(p). Combined with the arguments from

Part 3 we have our goal. On the other hand, if g

�

(p) � g(p) we get our result

from repeating Part 2 for g

�

(p) and g

℄

(p), the same arguments of Part 3, plus

the laim that (1� 4ÆN � Æ)es

�

(s

b

P

; t

b

) � es(s

P

; t).

es

�

(s

b

; t

b

) is no more than (w+w

2

+ : : :)h

�

where w is the probability of

reahing an exit of P from s

b

P

before returning to t

b

and the quantity h

�

is

the expeted value of g

℄

onditioned on the use of one of these exits. On the

other hand we have that es(s

P

; t) is at least w

^

h where

^

h is the probability

of no return to the set P in the original Markov hain onditioned on the use

of one of these exits. From Lemma 3.6 we have that

^

h and h

�

di�er by no

more than a fator of 4ÆN . That w � Æ ompletes the proof of the laim.

5) From the proof of Part 1 we had that ĝ � (1 � Æ=g(p))g(p) and from

Part 2 that ĝ � (1� 2Æ=�(p))g(p). The rest follows from Lemma 3.6. 2

Part 4 of Lemma 3.7 is remarkable beause the sum of � over all transi-

tions in a set P will be jP j rather than something lose to one.
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3.3 Polarization

The proess desribed below, of hanging the transitions through a onvex

ombination of two transitions, one giving a higher value and the other giving

a lower value of a harmoni funtion, with the onvex ombination yielding

the same value, we all polarization.

Lemma 3.8 Let s and t be two non-absorbing states of an absorbing

Markov hain.

(i) Let p be a part of the transition at t suh that �(p) � � > 0.

(ii) Let p be a replaement transition at t suh that g(p) � �.

(iii) Let p be a transition at t that is a onvex ombination of transitions

as desribed in (i) and (ii).

In all three above ases, if we replae the transitions at t by p, in the ase

of (i) or (iii) using normalization, the resulting proess is absorbing and the

absorption rate of s is at least � times what is was before the hanges were

made.

Proof: Let b, , d and e stand for the same quantities as in the proof of

Lemma 3.1, with A the set of absorbing sets and B the empty set.

(i) It follows from Lemma 3.1.

(ii) Let a

�

(s), d

�

and e

�

be the orresponding quantities when p is the

transition at t. We assume that e

�

+ d

�

b

b+

� �. Suppose for the sake of

ontradition that �(b +

e

d+e

) = �a(s) > a

�

(s) = b +

e

�

d

�

+e

�

. Then we have

be

�

+ e

�

+ bd

�

� (b+ )� � �(b+

e

d+e

) >

bd

�

+be

�

+e

�

d

�

+e

�

. This implies d

�

+ e

�

> 1,

also a ontradition.

(iii) First we must assume that b < �a(s), sine otherwise there would

be nothing to prove. Let a

i

, d

i

and e

i

for i = 1; 2 stand for the resulting

probabilities from (i) and (ii), respetively, and after normalization in the

ase of (i). With the onvex ombinations

~

d := �d

1

+ (1 � �)d

2

and ~e :=

�e

1

+(1��)e

2

being the new transition quantities, we have that our desired

result is equivalent to

~e

~e+

~

d

� �

e

e+d

+

�b�b



. But this follows from (i), (ii), and

the fat that

x

1

y

1

� z and

x

2

y

2

� z implies

�x

1

+(1��)x

2

�y

1

+(1��)y

2

� z for all non-negative

quantities x

i

; y

i

; z and 0 � � � 1. 2

Proposition 3.9 Let r

1

and r

2

be two harmoni funtions, and we assume

that the Markov hain is absorbing. Let N be the number of non-absorbing

states. Let 1 be a uniform bound on all di�erenes in the values of r

1

and
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r

2

. Let w

1

, w

2

, v

1

, and v

2

stand for w

r

1

, w

r

2

, v

r

1

, and v

r

2

, respetively.

Let 1=2 > � > Æ >  > 0, with Æ <

��

3N

2N(3N)

N

. Let p

�

s

be a part of the

transition at s suh that w

2

(p

�

s

) � r

2

(s)� � (inluding the possibility that p

�

s

is empty). Assume that if �(p

�

s

) �  then there is an alternative transition

p

s

at s suh that w

2

(p

s

) � r

2

(s) � �, jv

1

(p

s

) � r

1

(s)j � Æ, and there exists

another part q

s

of the transition at s suh that q

d

s

, the omplement of the

union of q

s

with p

�

s

, satis�es (v

2

(q

d

s

)� r

2

(s))�(q

d

s

) � NÆ=�. For every subset

T � fs j �(p

�

s

) � ; w

2

(q

s

) > r

2

(s)g de�ne a new time homogeneous Markov

hain by the transitions at t 2 T de�ned by �p

t

+ (1� �)q

t

with � satisfying

�w

2

(p

t

) + (1� �)w

2

(q

t

) = r

2

(t) and furthermore for every v 2 SnT the part

p

�

v

is disarded, followed by normalization. Let the subsript T stand for the

quantities determined by the new transitions with the hanges in T .

Conlusion: There is a subset T � fs j �(p

�

s

) � ; w

2

(q

s

) > r

2

(s)g suh

that the new proess is absorbing and for both i = 1; 2 and all s 2 S jr

i

T

(s)�

r

i

(s)j � �

Proof: First we onsider what happens when the hanges are made only

at a set T (meaning that the part p

�

s

is kept in for v 62 T ), whih we will

label with T; �. Beause r

2

remains a harmoni funtion after the hanges

are made and there is always a positive probability at all states in T that

the harmoni funtion drops by �, the resulting time homogeneous Markov

hain is absorbing with r

2

T;�

(s) = r

2

(s) for every s 2 S.

Next we must determine whih subset T will be hosen. Choose any t

1

suh that �(p

�

t

1

) � �

2

=2N , and put t

1

in T . If there exists no suh t 2 S then

let T be the empty set. At any set T with jT j = k � 1 formed so far, put

into T any t

k

suh that �

T;�

(p

�

t

k

) � �

2

=2N , and stop if there is no suh new

state t

k

.

Claim: For any set T that has been already hosen and any t 62 T that

ould be added to T we have a

T[ftg;�

(u) �

�

3

3N

a

T;�

(u) �

�

3

3N

�

3jT j

(3N)

jT j

a(u) for all

u 2 S, g

T;�

(q

t

) �

�

3

3N

�

3jT j

(3N)

jT j

g(q

t

) and w

2

(q

t

) > r

2

(t).

Proof of Claim: Assume that t will be added to T . Look at the tran-

sition q

d

t

and the indentities w

2

T;�

(q

d

t

)� r

2

T;�

(t) = w

2

(q

d

t

)� r

2

(t) = (v

2

T;�

(q

d

t

)�

r

2

T;�

(t))g

T;�

(q

d

t

) = (v

2

(q

d

t

)� r

2

(t))g(q

d

t

) from the fat that r

2

remains the har-

moni funtion. Consider the de�nitions �

T;�

(q

d

t

) = f

q

d

t

g

T;�

(q

d

t

)=a

T;�

(t) and

�(q

d

t

) = f

q

d

t

g(q

d

t

)=a(t); they show that the new absorption rate determines

alone the new value (v

2

T;�

(q

d

t

)� r

2

T;�

(t))�

T;�

(q

d

t

). From the indution assump-
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tion we must onlude that �

T;�

(q

d

t

)(v

2

T;�

(q

d

t

)� r

2

(t)) �

(3N)

jT j

�

3jT j

�(q

d

t

)(v

2

(q

d

t

)�

r

2

(t)) �

(3N)

jT j

�

3jT j

NÆ

�

< �

3

=6N . If q



t

is the union of q

d

t

with p

�

t

from �

T;�

(p

�

t

) �

�

2

=2N and w

2

T;�

(p

�

t

) � r

2

(t)� � we get that �

T;�

(q



t

)(v

2

T;�

(q



t

)� r

2

(t)) � �

�

3

3N

,

whih implies that w

2

(q

t

) > r

2

(t) and �

T;�

(q

t

) � �

3

=(3N).

Next suppose for the sake of ontradition that g

T;�

(q

t

) <

�

3

3N

�

3jT j

(3N)

jT j

g(q

t

).

Sine �(q

t

) = f

q

t

g(q

t

)=a(t), �

T;�

(q

t

) = f

q

t

g

T;�

(q

t

)=a

T;�

(t) and �

T;�

(q

t

) � �

3

=(3N),

by the indution assumption we would be fored to aept �(q

t

) > 1, an im-

possibility.

By Lemma 3.8 we have our laim on the absorbing rates for all states

other than t. For the state t we have g

T;�

(q

t

) � f

q

t

g

T;�

(q

t

) = �

T;�

(q

t

)a

T;�

(t) �

�

3

a

T;�

(t)=(3N). With g

T;�

(p

t

) � � our laim is proven.

With the laim we onlude from Lemma 2.1 that jr

1

T;�

(s) � r

1

(s)j �

(3N)

jT j

�

3jT j

ÆN � �=2 for all s 2 S.

Next, we must show that it is impossible for any state s to satisfy �

T;�

(p

�

s

) �

�

2

=N . This holds for all states with �(p

�

s

) � , by onstrution. Let's assume

that �(p

�

s

) < ; this means that the probability of ever using p

�

s

in the original

Markov hain annot exeed =�. But by the above laim we know addition-

ally that the probability of using p

�

s

in the altered Markov hain indexed by

T; � annot exeed



�

�

3(N�1)

(3N)

N�1

< �

2

=2N .

Next we must onsider the inuene of the removed p

�

t

in the above

Markov hain indexed by T; �. For any s with �

T;�

(p

�

s

) � �

2

=2N the hane

of ever using the transition p

�

t

annot exeed �=2N , and so they annot on-

tribute an average of more than �=2 to either the funtion r

1

or r

2

. 2

4 From Markov Chains to Equilibria

4.1 Appliation of the Doob-Kolmogorov Inequality

We must prove Proposition 4.2, a ornerstone of our analysis.

Lemma 4.1: Let X be the �nite state spae of a time homogeneous

Markov hain with probability transitions (p

x

2 �(X) j x 2 X). Let v :

X ! R be a harmoni funtion and let M > 0 be a bound for the maximal

di�erene between all values of v.

For every x 2 X de�ne the non-negative quantities w(x) by w(x) =
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P

y2X

p

x

(y)jv(y)�v(x)j. Let n be the number of states x suh that w(x) > 0.

For any path p = (x

0

; x

1

; x

2

; :::) in X de�ne w(p) =

P

1

i=0

w(x

i

).

Conlusion: The expeted value of the funtion w does not exeed Mn.

Proof: We isolate the problem, handling eah state x separately. Sine

jv(y)� v(x)j is always less than or equal to M times es(y; x), we have that

w(x) � a(x)M . Therefore the part of the sum that omes from visits to x

does not exeed a(x)M

P

1

i=0

(1� a(x))

i

=M . 2

Proof of Proposition 4.2 (as stated in the introdution):

De�ne the random variable r

i

on the odd steps i to be v(y

i

) � v(x

i�1

),

and R

i

to be the sum of the r

k

for odd k � i. For y 2 Y

x

de�ne r(y) to be

v(y)� v(x).

De�ne a new quantity, ~w(x) :=

P

y2Y

x

p

x

(y)jv(y)�v(x)j. Let w(x) be the

old quantity on the Markov hain from Lemma 4.1 de�ned only on the X, {

we ignore the visits to the Y

x

sets, and onsider only the motions from X to

X.

The Doob submartingale inequality states that if (S

i

j i = 0; 1; : : : ; n)

is a martingale with zero expetation then for every n � 0, positive value

 > 0 and exponent p � 1 the probability that max

i�n

jS

i

j >  is less than

E(jS

n

j

p

)=

p

(Williams 1991, Setion 14.6). Sine the martingale property

implies that E(S

2

n

) is equal to the sum over all the stages 1 � i � n of E(s

2

i

)

where s

i

is the hange in value between the i� 1st stage and the ith stage,

we have for every �nite even and positive Q

Probability

�

max

i<Q

jR

i

j > �

�

<

1

�

2

E

�

X

i<Q; y2Y

x

i�1

p

x

i�1

(y)r(y)

2

�

:

By taking the limit as Q goes to in�nity and Æ � jr(y)j we get

Probability

�

max

i<1

jR

i

j > �

�

<

1

�

2

E

�

X

i<1; y2Y

x

i�1

p

x

i�1

(y)r(y)

2

�

�

Æ

1

�

2

E

�

X

i<1; y2Y

x

i�1

p

x

i�1

(y)jr(y)j

�

= Æ

1

�

2

E

�

X

i<1; y2Y

x

i�1

~w(x

i�1

)

�

:

Sine by the triangle inequality ~w(x) � w(x) for all x, we have

Probability

�

max

i<1

jR

i

j > �

�

< Æ

1

�

2

E

�

X

i<1; y2Y

x

i�1

w(x

i�1

)

�

;
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and by Lemma 4.1 this is no more than ÆMn=�

2

. So with � � 1=2, we have

our result from the size of Æ. 2

The problem of extending Proposition 4.2 to Markov hains that are not

time homogeneous (or have ountably many states) lies with Lemma 4.1 and

not in the proof of Proposition 4.2.

The following orollary relates the above work on Markov hains to our

two-person stohasti games. Beause the appliation of this orollary in-

volves an altered state spae, this result should be understood in an abstrat

way.

Corollary 4.3: Let (x; y) 2 X � Y be stationary absorbing strategies.

Assume that

1) for both players k = 1; 2 and s 2 S r

k

x;y

(s) is greater than j

k

z

(s) � � with

z = x if k = 2 and z = y if k = 1, and that

2) for both player k = 1; 2 and all moves  used with positive probability

with (x; y) by Player k the value w

k

x;y

() is within Æ of r

k

x;y

(s).

Conlusion: For any positive � < 1=2 if Æ is no more than

�

3

n

then the

strategies (x; y) generate a 4�-equilibrium of the stohasti game.

Proof: We de�ne the following strategy for Player k. For every starting

point s

0

2 S let n

s

0

be large enough suh that with a start at s

0

and the

play aording to (x; y) the probability that there is no absorption before the

n

s

0

th stage is less than �=10. Let s

0

; s

1

; : : : be any sequene of states reahed

in the game and for both k let 

k

0

, 

k

1

; : : : be the sequene of moves made by

Player k. For k

0

6= k as long as

P

l

i=0

(w

k

0

x;y

(

k

0

i

) � r

k

0

x;y

(s

i

)) � � and the stage

l does not exeed n

s

0

and Player k

0

never hooses 

k

0

i

outside of the support

set of his stationary strategy, then Player k ontinues to at aording to

his stationary strategy. As soon as one of the above onditions is violated

at some stage l then on the next stage l + 1 both players punish eahother

aording to the funtions 

1

+ � and 

2

+ �. (The mutual punishment is

neessary beause otherwise a player ould intentionally prolong the game

with an interest in punishing the other player. The result an be extended

to multi-player stohasti games if it an be determined who should punish

whom in all situations!) That no player k an obtain an expeted payo�

more than 2� above the funtion r

k

by hoosing a di�erent strategy is self

explanatory. That punishment ours before absorption with probability no

more than 2� if both players adhere to the suggested strategies follows from
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Proposition 4.2. 2

4.2 Situations

Next we reate an expanded state spae from the original state spae through

partitions of the histories. For every s 2 S let P

s

be a partition ofH

s

. De�ne

^

S to be the disjoint union [

s2S

P

s

. For every t 2

^

S let b(t) 2 S be the member

of S suh that t 2 P

b(t)

. A member of

^

S we all a situation. We de�ne the

situations

^

S to be normal if and only if the next u 2

^

S following a t 2

^

S

is determined by the situation t, the hoie of moves by the players at t,

and the next s 2 S with b(u) = s. Normaly implies that one an de�ne a

stohasti game on the situations as a new state spae.

Corollary 4.4: Let the situations

^

S be normal, let absorbing stationary

strategies (x; y) 2

Q

s2

^

S

�(A

b(s)

1

)�

Q

s2

^

S

�(A

b(s)

2

) be de�ned on the situations

^

S, with r̂

k

x;y

:

^

S ! R the expeted payo� for Player k as determined by the

above stationary strategies and the funtions r

k

on the absorbing states and

ŵ

k

x;y

the orresponding expeted value of r̂

k

x;y

on the next stage. Assume that

1) for every s 2

^

S r̂

k

(s) � j

k

z

(b(s)) � � where z = x if k = 2 and z = y if

k = 1 and

2) for every move  used with positive probability at a situation s by Player

k jŵ

k

x;y

()� r̂

k

x;y

(s)j � Æ.

If Æ is no more than

�

3

j

^

Sj

then these stationary strategies generate a 4�-

equilibrium of the original stohasti game.

Proof: Beause a stohasti game is de�ned by the normality of

^

S and

the onditions of Corollary 4.3 are preserved, the result follows by Corollary

4.3. 2

4.3 First Main Theorem

For any subset R � N and a state s 2 R, a pair a 2 A

s

1

and b 2 A

s

2

of moves

is alled a primitive exit from the set R if with positive probability there is

motion from s to SnR using the pair a and b. By the de�nition of �, any use

of a primitive exit at s results in a probability of at least � of reahing the

omplement of R.

For every subset B of Player Two moves in a set R we de�ne a B exit (or
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simply exit if there is no ambiguity) from R to be any pair (a; b) of moves at

an s 2 R suh that (a; b) is already a primitive exit from R or b 2 B. Let

E

B

(R) stand for the set of all B exits from R.

De�ne B



x;y

(s) to be those moves of Player Two at the state s with

w

2

x;y

(b) � r

x;y

(s) � , and let B



x;y

(R) be the union of all the B



x;y

(s) for

all s 2 R. For every s 2 N de�ne z



x;y

(s) to be

P

b2B



x;y

(s)

�

b

. For any subset

R � N de�ne z



x;y

(R) :=

P

s2R

z



x;y

(s).

For any stationary strategy x 2 X (or y 2 Y ) de�ne a simpliation of x to

be another stationary strategy x 2 X obtained from x by dropping the use of

ertain moves, followed by normalizing what remains. Call the simpli�ation

a -simpliation if the frequeny of the moves removed did not exeed . The

simpliation is within a set T of states if hanges were made only within the

set T .

Theorem 1: Assume for every hoie of positive 1=2 > � > � > �̂ > ~� > 0

with � < �

3

=(50jN j), �̂ <

� �

3jNj

5(3jN j)

jNj

jN j

and ~� < � �̂=40jN j that

1) there are absorbing stationary strategies (x; y) 2 X � Y with

a) r

2

x;y

(s) � j

2

x

(s)� �=2 for all s 2 N ,

b) r

1

x;y

(s) � j

1

y

(s)� �=2 for all s 2 N , and

) for every move a of Player One used in x with positive probability at s we

have jw

1

x;y

(a)� r

1

x;y

(s)j � ~�,

2) a partition R of a subset P � N and for every R 2 R a set B

R

of Player

Two moves in R ontaining B

�

x;y

(R) suh that

a) 8s 62 P z

2:5�

x;y

(s) < ~� and

b) for every distint s; t 2 R 2 R the probability of reahing s from t before

using a member of E

B

R

(R) is at least 1� 

�

with 

�

:= ~� �=(40njN j),

and for any R 2 R if z

2:5�

x;y

(R) � ~� then there is a speial subset D

R

� R, a

representative s

R

2 D

R

and

3) an ~� simpliation y

R

of y within R reated by removing the set B

R

of

moves suh that

a)v

2

x;y

(b) � r

2

(s) for every b 2 B

R

\ A

2

s

and

b) jr

1

x;y

R

(s

R

)� r

1

x;y

(s

R

)j � �̂,

4) ~�-simpliations (x

C

; y

C

) of (x; y) within D

R

suh that with (x

C

; y

C

) the

play never leaves the set D

R

and from any state in D

R

all other states in D

R

are reahed with probability one, and

5) a strategy y

D

reated from y

C

by adding to y

C

in the setD

R

small probabil-
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ities of using a subset of Player Two moves V

R

used inD

R

with V

R

� B

2:4�

x;y

(R)

and a real positive value �

R

� r

2

x;y

(s

R

)� 2:4� suh that

a) with (x

C

; y

D

) for every pair s; t 2 D

R

the probability of reahing s from t

before using a member of V

R

is at least 1� 

�

b) �

R

� j

2

x

(t)� � for all t 2 D

R

,

) for all moves b 2 V

R

jw

2

x;y

(b)� �

R

j � ~�, and

d) jr

1

x

C

;y

D

(s)� r

1

x;y

(s)j � �̂.

Conlusion: With the assumption that Player One an send transition in-

dependent signals, the stohasti game has approximate equilibria.

Proof: We de�ne the set B of Player Two moves to be [

R2R

B

R

[

s 62P

B

s

2

,

and de�ne the exits to be the B exits. Let the orresponding state spaes S

�

and S

℄

from Lemma 3.6 be indued by (x; y) and the partition R[ffsg j s 62

Pg. For every s

R

2 S

℄

let p

�

R

be the transition at s

R

in S

℄

indued by

the Player Two moves in B

2:5�

x;y

(R). For every R 2 R de�ne p

R

to be the

alternative transition from s

R

in S

℄

indued by the Player Two moves V

R

aording to (x

C

; y

D

). De�ne q



R

to be the transition indued by the moves

in B

R

, and de�ne q

d

R

so that q



R

is the disjoint union of q

d

R

with p

�

R

.

We will on�rm the onditions of Proposition 3.9 on the state spae S

℄

,

with 2:4�, 2�̂, and 2~� the quantities �, Æ, and  of that lemma, respetively.

First, by Lemma 3.6 the Markov hain on S

℄

is absorbing. For i = 1; 2

let r

i

℄

: S

℄

! R be the harmoni funtion that agrees with the funtion r

i

on

the absorbing states. If �

℄

(p

�

s

R

) � 2~� then by Lemma 3.7 z

2:5�

x;y

(R) � 3~�=2 and

if s 62 P then �

℄

(p

�

s

) � 1:1z

2:5�

x;y

(s) � 1:1~�. By Lemma 3.6 we have for every

representative s

R

that r

i

℄

(s

R

) is within 4

�

jN j of r

i

x;y

(s

R

). Equally important,

Lemma 3.7 implies that w

r

2

℄

(p

�

R

) � r

2

℄

(s

R

) � 2:4�, and jv

r

1

℄

(p

R

) � r

1

℄

(s

R

)j �

11�̂=10. Sine q

d

R

is indued by some B

R

moves by Lemma 3.7 and Condition

3a we have (v

r

2

℄

(q

d

R

)� r

2

℄

(s

R

))�

℄

(q

d

R

) < 2~�.

Left to on�rm is that jv

r

1

℄

(q

R

)�r

1

℄

(s

R

)j � 2�̂. We apply Lemma 3.6 to the

pair (x; y

R

) and the transitions it indues on S

℄

. Sine the avoiding of exits by

(x; y) implies the same for the pair (x; y

R

), we have that jr

1

(s

R

)�r

1

x;y

R

(s

R

)j �

4

�

jN j, where r

1

is the harmoni funtion indued by (x; y

R

) on S

℄

. r

1

(s

R

)

is equal to v

r

1

℄

(q

R

). With the given jr

1

x;y

R

(s

R

) � r

1

x;y

(s

R

)j � �̂ and the above

relation of r

1

x;y

to r

1

℄

we are done establishing the onditions of Proposition

3.9.

We apply Proposition 3.9 to S

℄

with T the subset of R that has been
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polarized. We onlude that the new harmoni funtions ~r

i

T

:= (r

i

℄

)

T

on S

℄

satisfy j~r

i

T

(s)� r

i

x;y

(s)j � 3� for all s 62 P and j~r

i

T

(s

R

)� r

i

x;y

(s

R

)j � 3� for all

R 2 R.

Next we de�ne the situations

^

S, with one, two, or three situations de�ned

for eah original state in S. For any s 62 P or for s 2 R 2 R with R 62 T

not polarized there is only the situation s

e

(inluding the ase of absorbing

states). We always start the game at an s

e

. At any situation s

e

for s 62 P

or s in a non-polarized R 62 T the players perform (x

s

; ŷ

s

) where ŷ

s

is the



�

simpliation of y

s

resulting from the removal of all Player Two moves in

B

2:5�

x;y

(s). If s is in a polarized R 2 T and is not the representative s

R

the

players perform (x; y

R

). Following any s

e

other than s = s

R

the next situation

is a t

e

, where t is the next state in S. Also following the performane of an

exit, no matter what the situation was on the previous stage, if t 2 S ours

on the following stage then the next situation is also t

e

. This means that

only motion inside of an R 2 T involves situations other than those with the

subsript e.

At any s 2 R 2 T there is either two situations s

e

and s

f

if s 62 D

R

or

three situations s

e

, s

f

, and s

g

if s 2 D

R

. For suh an R 2 T let �

R

be the

quantity determined by the appliation of Proposition 3.9 to the transitions

on S

℄

. Sine Player One an send signals, for every s

R

2 D

R

for a polarized

R 2 T we assoiate one of every pair of her moves with the symbol f and the

other with the symbol g. If s

e

R

is the present situation then with probability

�

R

Player One hooses a move assoiated with the symbol g and with 1��

R

a move assoiated with the symbol f ; in both ases the players perform

(x

C

; y

C

). (Beause all moves are paired, we an modify x

C

to use only those

moves orresonding to f or only moves orresponding to g without hanging

the transition probabilities in the spae S.) If t is the next state and a move

orresponding to f was used, then t

f

is the next situation; otherwise the next

situation is t

g

. At any s

f

with s 2 R 2 T the play ontinues aording to

(x; y

R

), always to a next situation t

f

if there was no use of an exit. On the

other hand, from any s

g

with s 2 D

R

the motion follows (x

C

; y

D

), and unless

a move from V

R

is used the next situation is a t

g

, neessarily with t 2 D

R

.

De�ne r̂

i

to be the harmoni funtion on

^

S determined by the above

de�ned stationary behavior and r̂

i

= r

i

on the absorbing states. Given the

above onditions, to apply Corollary 4.4 it suÆes that neither player i an

hange the expeted value of r̂

i

by more than 10� at any one stage. With
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the role of the �

R

we need only show that r̂

i

is within � of r

i

℄

on all the s

R

and the s 62 P . To do this, we introdue two new transitions de�ned on

S, indexed by Æ and o. p

o

and p

Æ

are idential on states s that are not in

a polarized R, and then it is that indued by the behavior at the situation

s

e

. At s in a polarized R 2 T p

s

o

is the distribution determined by the

next situation t

e

following the situation s

e

. p

s

Æ

is determined by the next

situation t

e

onditioned on having reahed either s

f

R

or s

g

R

before any exit

was performed. The p

s

Æ

transitions generate harmoni funtions r

i

Æ

that are

idential to r

i

℄

on the S

℄

, and the p

o

transitions generate harmoni funtions

r

i

o

that are idential to r̂

i

on the subset fs

e

j s 2 Sg. Beause �

R

annot be

greater than 1� 2� and the probability from a situation s

e

that an exit from

the stationary strategies (x; y

R

) is used before getting to s

e

R

is no more than

than 

�

, for every s; t 2 S the transition probability p

s

o

(t) does not di�er by

more than a fator of 

�

=� from p

s

Æ

(t). Finally Lemma 3.5 implies that the

funtions r

i

Æ

and r

i

o

do not di�er by more than 4

�

jN j=� < ~�. 2

5 The auxiliary game

The main issue is to de�ne the \orret" disounted evaluation of Player

Two, sine, as shown in Solan (2000), a naive de�nition of his disounted

evaluation does not prove equilibrium existene when there are a multitude

of non-absorbing states.

We assume that positive � and � have been �xed.

5.1 The funtion �

Let b be any move of Player Two at a state s 2 N .

For any (x; y) 2 X � Y de�ne

~g

b

x;y

=

(

1 g

b

x;y

� �

g

b

x;y

=� g

b

x;y

< �:

De�ne the auxiliary absorption rate by ~a

x;y

(s) =

P

b2B

y

s

b

~g

b

x;y

: Note that

a(s) � ~a(s) � a(s)=�.

De�ne ~v

2

(b) = (1�

g

b

~g

b

)r

2

(s) +

g

b

~g

b

v

2

(b) (6)
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with ~v

2

(b) := r

2

(s) if g

b

= ~g

b

= 0.

Next we need to use large quantities Q

1

> 1 and Q

2

> 1 that will be

determined preisely later (in the next setion) by the hoie of �, �, �, �̂ and

~�. De�ne L := Q

1

Q

2

and de�ne K := L

jN j

.

De�ne the funtion h : [1;1) ! [1; K℄ by h(r) = minfr;Kg. Order the

members fs

1

; : : : ; s

m

g of N with ~a

x;y

(s

1

) � ~a

x;y

(s

2

) � : : : ~a

x;y

(s

m

). De�ne

~w

x;y

(s

k

) =

m�1

Y

j=k

h(

~a

x;y

(s

j+1

)

~a

x;y

(s

j

)

):

For any move b at a state s 2 N de�ne g

b

x;y

to satisfy

(1� ~g

b

x;y

) = (1� g

b

x;y

)(1� g

b

x;y

): (7)

If ~g

b

x;y

= 1, then g

b

x;y

= 1 as well. Note that

g

b

v

2

(b) + (1� g

b

)g

b

r

2

(s) = g

b

v

2

(b) + (~g

b

� g

b

)r

2

(s) = ~g

b

~v

2

(b): (8)

For every s 2 N and h 2

~

H denote N

s

(h) = #fn 2 N j s

n

= sg 2 N[1:

For 1 � i � N

s

(h) let n

s

i

(h) be the stage with the ith ourrene of the state

s in h. If the initial state of h is s, then n

s

1

= 0 and N

s

(h) � 1.

De�ne the disounted evaluation of a move b at a state s 2 N aording

to

�

b

x;y

= E

b

x;y

r

2

(h) [

N

s

(h)�1

X

i=1

g

b

n

s

i

(h)

(1�

Æ

~w

x;y

(s)

)

i�1

i�1

Y

k=1

(1� g

b

n

s

k

(h)

)+

(1�

Æ

~w

x;y

(s)

)

N

s

(h)�1

N

s

(h)�1

Y

k=1

(1� g

b

n

s

k

(h)

) ℄ ; (9)

where E

b

x;y

stands for the expetation over all in�nite histories h 2

~

H with

initial state s

0

= s, assuming that Player Two plays the ation b at stage

0, the �rst stage, and afterwards follows y, whereas Player One follows x

always.

Lemma 5.1 The funtion �

b

x;y

obeys the properties

�

b

x;y

= ~g

b

x;y

~v

2

x;y

(b) + (1�

Æ

~w

x;y

(s)

)(1� ~g

b

x;y

)�

x;y

(s) (10)
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and

r

2

x;y

(s) = �

x;y

(s)

 

1 +

Æ(1� ~a

x;y

(s))

~w

x;y

(s)~a

x;y

(s)

!

(11)

where �

x;y

(s) =

P

b2A

s

2

y

s

b

�

b

x;y

.

Proof:

We now verify that � satis�es (10) and (11). Separate the summation in

(9) into three parts.

� All histories suh that N

s

(h) = 1. The probability of this event is g

b

,

and the onditional expetation is v

2

(b).

� All histories suh that N

s

(h) > 1 and i = 1. The probability of this

event is 1� g

b

, and the onditional expetation is g

b

r

2

(s).

� All histories suh that N

s

(h) > 1 and i > 1. The probability of this

event is 1�g

b

. Fator out one power of (1�g

b

)(1�

Æ

~w

); the onditional

expetation is (1 � g

b

)(1 �

Æ

~w

)�(s). By (7) this part ontributes (1 �

~g

b

)(1�

Æ

~w

)�(s) to the sum.

Putting together the three parts, with (8) onneting the �rst two parts, we

get (10). For equation (11) we use (10) and take the expetation with respet

to the moves. 2

Notie that formula (11) is a slight variation of the standard relation-

ship between disounted and undisounted evaluations. � will serve as the

auxiliary disounted payo� evaluation of Player Two. Note that r

2

x;y

(s) �

�

x;y

(s) 8s 2 N : De�ne �

x;y

(s) to be maximal value max

b2A

s

2

�

b

x;y

.

Lemma 5.2: For every s; t 2 N ,  > 0, and (Æ; x; y) 2 (0; 1℄�X � Y

� ~a

x;y

(t) � K~a

x;y

(s) implies that ~w

x;y

(t)~a

x;y

(t) � ~w

x;y

(s)~a

x;y

(s),

� ~w

x;y

(s)~a

x;y

(s) � ~w

x;y

(t)~a

x;y

(t) and r

2

x;y

(s) � r

2

x;y

(t) +  imply that

�

x;y

(s) � �

x;y

(t) +  + Æ.

Proof: The �rst part follows diretly from the de�nition of ~w. For the seond

part, note that for every r; ~w; a > 0 and 0 < Æ < 1

r ~wa

~wa + Æ(1� a)

�

r ~wa

~wa + Æ

=

r ~wa

2

Æ

( ~wa + Æ)( ~wa+ Æ � Æa)

�

r ~wa

2

Æ

2

~w

2

a

2

=

rÆ

~w

:
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Moreover,

r ~wa

~wa+Æ

is an inreasing funtion in ~wa. Given ~w � 1, from the above

we have that r

2

(s) and ~w(s)~a(s) determine �(s) exept for a quantity of no

more than Æ. 2

5.2 The Best Reply Correspondene

For every state s 2 N de�ne

B

s

Æ;1

(x; y) = argmax

a2A

s

1

w

1

x;y

(a)

B

s

Æ;2

(x; y) = argmax

b2A

s

2

�

b

x;y

if �

x;y

(s) > j

�

x

(s)

B

s

Æ;2

(x; y) = J

�

x

(s) [ argmax

b2A

s

2

�

b

x;y

if �

x;y

(s) = j

�

x

(s):

B

s

Æ;2

(x; y) = J

�

x

(s) if �

x;y

(s) < j

�

x

(s):

Player One maximizes her un-disounted payo�, while Player Two maximizes

his auxiliary payo�, given that it is not too small.

Let the orresondenes B

s

Æ;1

and B

s

Æ;2

be those de�ned by the losure of the

graphs of the orrespondenes B

s

Æ;1

and B

s

Æ;2

in (X�Y )�A

s

1

and (X�Y )�A

s

2

,

respetively. De�ne onv (B

s

Æ;1

) and onv (B

s

Æ;2

) to be the orrespondenes

with graphs in (X � Y )�X

s

and (X � Y )� Y

s

, respetively, suh that z 2

onv (B

s

Æ;1

(x; y)) if and only if fa 2 A

s

1

j z

a

> 0g is a subset of B

s

Æ;1

(x; y)

and z 2 onv (B

s

Æ;2

(x; y)) if and only if fb 2 A

s

2

j z

b

> 0g is a subset of

B

s

Æ;2

(x; y). De�ne the orrespondenes B

Æ;1

from X�Y to X so that (x; y) in

the domain orresponds to the sets B

s

Æ;1

(x; y) in the range, and likewise de�ne

the orrespondene B

Æ;2

from X � Y to Y . We de�ne the orrespondene

F

Æ

: X � Y !! X � Y by F

Æ

(x; y) = (B

Æ;1

(x; y); B

Æ;2

(x; y)). By Kakutani's

�xed point theorem for every Æ > 0 the orrespondene F

Æ

has a �xed point.

5.3 Two Lemmas on Fixed Points

We assume in the rest of the setion that (x; y) is a �xed point for F

Æ

. We

prove Lemmatta 5.4 and 5.5, desribed in the introdution.

Remark 5.3: Sine the jump orrespondene is used before � gets lose

to 0, any �xed point (x; y) of F

Æ

is absorbing. This implies that r

2

x;y

(s) �

j

�

x

(s) 8s 2 N : Indeed, suppose for the sake of ontradition that r

2

x;y

(s) <

j

�

x

(s). Denote by e the stopping time that is de�ned by the �rst stage in whih

the game leaves the set fu j �

x;y

(u) < j

�

x

(u)g. Reall from Setion 2 that j

�

x

is
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a sub-martingale. Sine for every absorbing state s 2 A �(s) = j

�

(s) = r

2

(s)

we have j

�

x

(s) � Ej

�

x

(s

e

) � E�

x;y

(s

e

) � Er

2

x;y

(s

e

) = r

2

x;y

(s); as desired.

Lemma 5.4 If � � !�=4 then there is a hoie for L

�

> 1 and Æ

�

> 0

suh that if L � L

�

and 0 < Æ � Æ

�

and (x; y) is a �xed point of F

Æ

then

1) �

x;y

(s) � j

�

x

(s) for all s 2 N ,

2) if the jump orrespondene is used at s then �

x;y

(s) � r

2

x;y

(s)� 3�

3) for any ation b from J

�

x

(s) used in y

s

g

b

x;y

< � , and

4) the overall probability that Player Two plays an ation from J

�

x

(s) at any

s 2 N is at most !�=20.

Proof: Let L

�

=

100jN j

!

2

�

2

�

and Æ

�

= ��

3

!

3

=(300jN j). Choose t to be a

member of N with the largest di�erene j

�

x

(t)� �(t), and we must presume

that this di�erene is non-negative. We will show that this di�erene an be

no more than 0 and that the frequeny devoted to the jump orrespondene

at any suh state an be no more than �!=20.

We presume for the sake of ontradition that the frequeny devoted to

the jump orrespondene at t is at least �!=20. Sine r

2

� j

�

x

the expeted

value of the jump funtion j

�

x

at the states reahed on the next stage after

t using the jump orrespondene J

�

x

is at least �! more than j

�

x

(t), we

must assume for any move from J

�

x

(t) that there is at least one state u

reahed by this move with a probability of at least

�

2

!

2

40jN j

suh that j

�

x

(u) �

j

�

x

(t) + �!=2, neessarily with es(u; t) � �!=4. (If es(u; t) > �!=4 then

a(t) � �

3

!

3

=(160jN j) and by (11) and the size of Æ

�

we have made �(t) too

lose to r

2

(t) ontraditing j

x

(t) � r

2

(t) � �!=2, { whih must follow by

Remark 5.3 sine otherwise any move from the jump orrespondene would

be evaluated in an undisounted way stritly above the level j

�

x

(t).) By the

de�nition of ~w, the size of L

�

and (3) we have ~w(t)~a(t) � ~w(u)~a(u). By

es(u; t) � !�=4 it follows that jr

2

(t) � r

2

(u)j � !�=4. But by Lemma

5.2 we have �(t) � �(u) � Æ � �!=4. With the size of Æ

�

this ontradits

j

�

x

(u) � j

�

x

(t) + �!=2 and the hoie of t.

Next, suppose for the sake of ontradition that J

�

x

is used at s and g

b

� �

for some move b 2 J

�

x

(s). Indeed, g

b

� � implies that ~g

b

= 1. In partiular,

using Remark 5.3, �

b

x;y

= w

x;y

(b) �

P

t

p(tjs; x; b)j

�

x

(t) � j

�

x

(s) + !�: Thus,

for every b

0

2 B

2

Æ

(x; y) that maximizes �, �

b

0

x;y

� �

b

x;y

� r

2

x;y

(s) � j

x

(s)+!�=2.

Sine the overall probability to play ations from the jump orrespondene

is smaller than !�=20, this ontradits the assumption �(s) � j

�

x

(s).

36



Now we presume for the sake of ontradition that �(s) � r

2

(s)� 3� and

the J

�

x

orrespondene is used at s. Sine we must assume that �(s) = j

�

x

(s),

we have an inrease in the value of r

2

of at least !��3� from a move in J

s

x

. By

the dominane of !� over 4�, we must onlude that g

b

> �, a ontradition.

2

Lemma 5.4 is the most problemati aspet of extending this proof to the

ase of �nitely many positions. Any identi�ation of in�nitely many states

as a single state may be meaningless if the states reahed from it are not

also identi�ed. A more exible de�nition of the disounted evaluation may

be neessary. For example, at a state s one ould disount future visits to

other states t aording to the di�erene between Player Two's undisounted

expeted payo�s from these two states.

The following lemma laims that if the auxiliary payo� is too far from

the real payo� and the ation auses absorption with small probability, then

this probability is very small. This radial disontinuity is the key argument

to our whole approah.

Lemma 5.5 For L, �, � and Æ satisfying the onditions of Lemma 5.4

and (x; y) a �xed point of F

Æ

if �(s) � r

2

(s) � 2� and g

b

� � then g

b

�

1:1 Æ�(s)= ~w(s) and g

b

� 2:3 �~a(s) � 2:3 a(s).

Proof: First we laim that �(s)� �(s) <

Æ�!

19 ~w(s)

�(s).

If the jump orrespondene at s is used and b is suh a move, sine g

b

� �

(from Lemma 5.4) it follows that ~g

b

= g

b

=�. Hene from (6) we have

~v

2

(b) = (1� �)r

2

(s) + �v

2

(b) � r

2

(s)� � � �(s) + �: (12)

Moreover, from (10) and (12) we have

�

b

� �(s) + ~g

b

(~v

b

� �(s))� Æ�(s)= ~w(s) � �(s)(1� Æ= ~w(s));

and by Lemma 5.4, sine �(s) is the average of �(s) and suh �

b

, we have

(1� �!=20)(�(s)� �(s)) �

Æ�!�(s)

20 ~w(s)

, so the laim follows.

Considering now any move b 2 A

s

2

that is used with g

b

� � and looking

again at formula (10) we have �(s) � �

b

� ~g

b

(~v

b

� �(s)) + (1 � Æ= ~w(s))�(s)

and hene ~g

b

(~v

b

� �(s)) � 1:1 Æ�(s)= ~w(s), sine by the above laim �(s) �

�(s) is small ompared to

Æ

~w(s)

�(s). First onsider the onsequene of ~v

b

�

�(s) � �, namely g

b

= �~g

b

� 1:1 Æ�(s)= ~w(s). Seond, onsider ~g

b

�
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1:1 Æ�(s)

(~v

b

��(s)) ~w(s)

�

1:1 Æ�(s)

(r

2

(s)��(s)��) ~w(s)

, proven above. Sine

r

2

(s)��(s)��

r

2

(s)��(s)

� 1=2, we

get ~g

b

�

2:2Æ�(s)

(r

2

(s)��(s)) ~w(s)

: Now apply formula (11) for 2� � r

2

(s) � �(s) =

�(s)

Æ(1�~a(s))

~a(s) ~w(s)

. Sine ~w(s) � 1 and �(s) � 1 we have Æ(1 � ~a(s)) � 2�~a(s),

and from Æ < �=25 we have ~a(s) � 1=50. This allows us to onlude with

g

b

�

= ~g

b

�

25

24

2:2 ~a(s) � 2:3 ~a(s) �

2:3 a(s)

�

. 2

6 Seond Main Theorem

The goal of this setion is to prove Theorem 2, whih states that the ondi-

tions of Theorem 1 are always satis�ed. First we need a simple but useful

lemma.

Lemma 6.1 For every two distint non-absorbing states s; t with es(t; s) �

 < 1 in an absorbing time homogeneous Markov hain P

t

(t; s)�(s; t) does

not di�er from a(t) by more than a fator of 2, es(t; s)=�(t; s) is within a

fator of 3 to the ratio that, starting at t or s, the last visit before absorp-

tion was at t rather than at s. Furthermore, with or without the assumption

that the Markov hain is absorbing and with a start at either s or t, the ratio

of the expeted number of visits to s to those at t is at least 1 � 4 times

the ratio of P

t

(t; s) to P

s

(s; t).

Proof: The �rst two laims follow diretly from the formulas (1) and (2).

The third laim follows from the �rst laim if the Markov hain is absorbing.

Otherwise we reognize in 1=P

t

(t; s) the expeted number of visits to t before

reahing s. 2

Remark 6.2 At a �xed point of F

Æ

satisfying the properties of Lemmatta

5.4 and 5.5, if �(s) � r

2

(s) � 2� and b is a move at s with g

b

� � then

w

2

(b) = �(s), whih is by Lemma 5.5 also within Æ=20 of �(s).

Theorem 2: For any hoie of positive �, �, �̂, and ~� satisfying the

inequalities stated in Theorem 1 all onditions of Theorem 1 are satis�ed.

Proof: Beause it is suÆient to demonstrate the onlusion of Theorem

1 with smaller hoies for �, �̂ and ~�, we will assume without loss of generality

that � is small enough so that for every s 2 S 

�

(s) is within �=2 of the

undisounted zero-sum value 

2

(s), as desribed in Setion 2, and � < �!=4.

De�ne � :=

1

2

~��̂

jN j

=(3

jN j

jN j). We require that L := Q

1

Q

2

is large enough
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to satisfy the onditions of Lemma 5.4 and also that

Q

1

> 80jN j

3

m

2

=(� �

2

�̂

2

~�

2

�

2

) and Q

2

> 80mjN j=(� � �̂ ~�).

We begin with Æ suÆiently small, so that the ondition of Lemma 5.4

holds. Next, we onsider �xed points of F

Æ

orresponding to dereasing Æ > 0

that have onvergent subsequenes for ertain variables living in ompat

spaes { the stationary strategies in the spae X � Y , the values �(a; b) for

all pairs of moves at all states, the expeted payo�s r

1

(s), r

2

(s), and the

absorption rate a(s) for every s 2 N , and the probabilities es(t; s) for all

pairs of states.

We de�ne a move a 2 A

s

1

or b 2 A

s

2

to be a limit move if and only if the

frequeny of its use does not onverge to zero as Æ goes to zero, and de�ne q̂

to be the minimal positive limit value for a frequeny of a limit move hosen

by either player. We de�ne the quantity �̂ to be the minimal positive limit

value for es(s; t), �̂ to be the minimal positive limit value for �(a; b), and â

the minimal positive limit value for a(s).

Next we must de�ne the partition R of a subset P . De�ne a direted

graph on the spae N by t! s if and only if in the limit es(t; s) approahes

zero. The relation is transitive, but not neessarily symmetri. It has an

additional property, that if t ! s

1

and t ! s

2

then either s

1

! s

2

or

s

2

! s

1

. This is easy to on�rm, beause if s

1

was not reahed with proba-

bility approahing one on the way from t to s

2

then it must be reahed with

probability approahing one after the state s

2

. Next de�ne a relation � that

is symmetri, transitive, and reexive on a appropriate subset; s � t if and

only if �(s; t) approahes zero, and s � s if and only if a(s) approahes zero.

� de�nes a partition P of a subset P

0

of N . Now we relate! to �. De�ne R

to be the subset of P de�ned by A 2 R � P if and only if u 2 A and u! s

implies that s 2 A. Any state s 62 A 2 R suh that es(s; u) approahes zero

for any (equivalently some) state u 2 A 2 R is alled a satelite of A. Due to

the above, a satelite of A 2 R annot be a satelite of any other member of

R and every member of Q 2 P suh that Q is not in R must be a satelite of

the same A 2 R. We all an primitive exit (a; b) from R 2 R to be a satelite

exit if with ertainty the exit results in motion that doesn't leave R or its

olletion of satelites.

For every R 2 R we de�ne the set B

R

of Player Two moves in R to be

B

R

:= fb 2 A

s

2

j for some limit move a 2 A

s

1

(a; b) is an primitive exit from

R that is not a satelite exitg.

If s is a satelite of R 2 R then in the limit the probability that the last
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visit to the pair s or any u 2 R was the state s must go to zero. Therefore

�(a; b) approahes zero for any satelite exit (a; b) at u 2 R 2 R. These

fats follow diretly from Lemma 6.1 and es(s; u)=�(u; s) going to zero in

the limit.

We show for every R 2 R and pair s; t 2 R that the probability of using

some exit in E

B

R

(R) before reahing t from s also approahes zero. First

this holds for any non-satelite primitive exit from R, beause the probability

of reahing a non-satelite outside of R would be at least � and therefore the

probability of absorbing before reahing t must be in the limit at least the

probability of using this exit times �̂�. The same arguments holds for the

use of any move in B

R

, but with the quantity �̂�q̂ instead of �̂�.

More diÆult is to show that the above holds for any satelite exit (a; b) at

u 2 R. Let v be any satelite of R reahed with positive probability from this

exit. Let � be the probability of using (a; b) before reahing t from a start at

s and let � be a bound on the probability of not reahing any member of R

from any other member of R or from a satelite of R. Let ̂ be the probability

of reahing v from s before reahing t, with ̂ � ��. Going through the state

v, the probability of reahing t is at least 1� � and the ombined probability

of reahing t from s is also at least 1� �. This means that the probability of

reahing t from s onditioned on not going through v is at least 1�

�

(1�̂)

. So

onditioned on not arriving at v before t there is at most a

2�

1�̂

probability

of absorbing before getting bak to s. In the limit

2�

1�̂

annot stay above

1, beause � goes to zero and in the limit ̂ annot go above 1 � �̂. This

means that eventually the probability of reahing v from s must be at least

̂

P

1

i=0

(1� ̂)

i

(1�

2�

1�̂

)

i

= ̂

P

1

i=0

(1� 2� � ̂)

i

=

̂

2�+̂

. But this probability

to reah v from s annot go above 1� �̂ in the limit, whih is possible only

if � goes to zero as � goes to zero also.

De�ne �

�

to be (�̂�̂q̂â=K)

3jN j

. We require of a �xed point of F

Æ

that the

values for whih we have onvergent subsequenes are within �

�

of their limit

values. We require that the probability of using any exit before moving from

any s to t for any pair s; t 2 R 2 R is no more than �

�

and for every R 2 R

that the sum of �(a; b) over all the satelite exits (a; b) 2 E

B

R

(R) is no more

than �

�

(as demonstrated above). Furthermore we require that Æ < (�

�

)

2

. We

let (x; y) be a �xed point of F

Æ

satisfying these properties. If the stationary

strategy is not spei�ed, then (x; y) is intended.

Step 1; For every s 2 R 2 R show that if z

2:5�

x;y

(s) � � then there
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exists an ~� simpliation x of x suh that z

2:4�

x;y

(R) � 1� 3jRj=Q

1

� and

for all t 2 R that z

2:4�

x;y

(t)=z

2:4�

x;y

(s) � (1�

m

2�Q

2

�

�

4mjRj

�Q

2

)(z

2:4�

x;y

(t)=z

2:4�

x;y

(s)):

For every d � 1 de�ne

T

d

= ft 2 R j �(s; t) � d~a(s)g [ fsg:

Denote T = T

d

, where d 2 (1; L

jN j�1

) satis�es T

Ld

n T

d

= ;. Sine K = L

jN j

,

for every t 2 T we have ~a(t) � a(t)=� � �(s; t)=� � d~a(s)=� � K~a(s), and it

follows that ~w(t)~a(t) � ~w(s)~a(s):With �(s) � r(s)�2:5� we have by (11) that

~a(s) � Æ=�, a(s) � Æ=�, and �(s; t) � ÆK=� < �

�

, meaning that T is a subset

of R. Sine t 2 T satis�es jr

2

(s)� r

2

(t)j � �

�

we have �(t) � �(s) + (�

�

+ Æ).

De�ne a quantity

p

t

=

(

a(t)=Q

2

�(s; t) t 2 T n fsg

1=Q

2

t = s

De�ne the stationary strategy x by removing from x all Player One moves at

states t 2 T that are played with probability smaller than p

t

=�, and normalize

the remaining vetor. This means that if u is reahed in one stage from t 2 T

by x and a Player Two move b, then p(ujt; x; b) � p

t

.

We use ritially from Lemma 6.1 that a(u)=�(u; s) is approximately

P

u

(u; s) (within a fator of 2�

�

) for any u 2 R, so that from Lemma 3.2

and Lemma 6.1 with the hange from (x; y) to (x; y) the ratio of visits at

t 2 R to those at s annot inrease by more than a fator of

8jT jm

�Q

2

. Fur-

thermore, by the de�nition of x, �̂, Æ � (�

�

)

2

and Lemma 5.5 there are no

non-satelite exits performed inside of T other than those generated by Player

Two moves b 2 A

t

2

with w

x;y

(b) = �

x;y

(t). Combined with the fat that the

absorption rate of any move b with g

b

� 2:4� is altered by a fator or no more

than m=(2��Q

2

) by the swith to x and that 2�

�

is greater than the probabil-

ity that the last visit to R was at a satelite exit, we have everything but the

laim that there is only insigni�ant motion with (x; y) toward absorption

from states in R outside of the set T .

We an break up the absorption from R generated by the strategies (x; y)

in terms of where was the last visit in R. Let t 2 T , u 2 R n T and b 2 B

be a move suh that p(ujt; x; b) > 0, neessarily with p(ujt; x; b) � p

t

. To

omplete the laim of Step 1 it suÆes to show that

es

x;y

(u;t)

�

x;y

(u;t)

�

2:5

Q

1

for every

suh u 2 RnT .
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Case 1; u 2 RnT is reahable from T only by Player Two moves

b with g

b

� �:

It follows immediately from the fat that Player Two has no more than

mjRj moves in R that

es(u;t)

�(u;t)

is smaller than 2:5=Q

1

, sine any suh move

doesn't return to R with a probability of at least 2:5� and with at least 1�2�

�

probability there is motion from u bak to t 2 T .

Case 2; t 6= s, and u 2 RnT is reahable by (x; y) from a t 2 T by

a move b of Player Two with g

b

< �:

By Lemma 5.5 we have

p

t

es(u; t) � g

b

� 2:3 a(t):

Sine p

t

=

a(t)

Q

2

�(s;t)

we have es(u; t) � 2:3 Q

2

�(s; t). Sine � is a metri we

have from �(s; u) � L�(s; t)

es(u; t)

�(u; t)

�

2:3 Q

2

�(s; t)

�(u; t)

�

2:3 Q

2

L� 1

�

2:4

Q

1

:

Case 3; u 2 RnT is reahable by (x; y) from s by a move b of

Player Two with g

b

< �:

We have p

s

= 1=Q

2

, p

s

es(u; s) � g

b

� 2:3a(s) and

es(u; s)

�(u; s)

�

2:3 a(s)Q

2

�(u; s)

�

2:3 a(s)Q

2

L~a(s)

�

2:3

Q

1

:

In all arguments that follow onerning members of a set T as reated

above, for onveniene we will write z

�

or B

�

instead of z



or B



for  > �.

By Lemma 5.5 there will be no di�erene in these expressions.

Step 2; For any hoie of s 2 R from Step 1 there is an ~� simpli-

ation y of Player Two's strategy y suh that together with x the

state s and all states t 2 T with z

�

x;y

(t) � �̂ � z

�

x;y

(s)=(4jN j) are reahed

by (x; y) from all of R, and furthermore from inside of T no state

outside of T is reahed:

We de�ne y

t

for all t 2 T by removing from y

t

all moves made by Player

Two with a frequeny of L=(L� 1)Q

1

or less, followed by normalization.

Any t 2 T that satis�es z

�

x;y

(t) �

�̂ � z

�

x;y

(s)

4jN j

by Step 1 also satis�es

P

s

x;y

(s; t) �

� �̂ �

4:5jN j

P

s

x;y

(s; t) and z

�

x;y

(t) �

� �̂ �

4:5jN j

. Notie that this last ondition
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is satis�ed by the state t = s. For any t 2 T with P

s

x;y

(s; t) �

� �̂ �

4:5jN j

P

s

x;y

(s; t)

and z

�

x;y

(t) �

� �̂ �

4:5jN j

to show that t is reahed from all of T with (x; y) by

Lemma 3.4 it suÆes to show that for any w 2 T and any t 2 T satisfying

z

�

x;y

(t) �

� �̂ �

4:5jN j

, inluding s = t, we have that the hange from y

w

to y

w

doesnot redue P

w

x;y

(w; t) by more than a fator of ��̂�=(12jN j

2

).

If b 2 A

w

2

is a Player Two move with g

b

� �, removing b to form y

w

from y

w

annot redue P

w

x;y

(w; t) by anything more than a fator of �

�

=�. Assuming

that g

b

< � and removing b to make y

w

removes at least

� �̂ �

12mjN j

2

of the

motion P

w

x;y

(w; t) we would have from Lemma 5.5 that 2:3 a(w)L=Q

1

(L�1) �

g

b

x;y

L=(L � 1)Q

1

� g

b

x;y

y

b

�

� �̂ �

12mjN j

2

� �̂ �

4:5jN j

a(w). This is a ontradition to the

de�nition of Q

1

.

Seond, we show that, starting at s, motion aording to (x; y) never

leaves the set T . Let us assume that u is a state not in T reahed by a move

b of Player Two from any t 2 T played against x and given positive frequeny

by y. We need to show that b is not used in y. If t 6= s then by formula (3)

�(t; u) �

a(t)

p

t

y

b

=

�(s;t)Q

2

y

b

: In partiular, by the de�nition of T and sine � is a

metri,

y

b

�

�(s; t)Q

2

�(t; u)

�

�(s; t)Q

2

�(s; u)

�(s; u)

�(t; u)

�

Q

2

L� 1

=

L

(L� 1)Q

1

:

And if b is a move at the state s then also by the de�nition of T and (3)

y

b

�

a(s)Q

2

�(s; u)

�

Q

2

a(s)

L~a(s)

�

1

Q

1

:

Therefore we onlude that (x; y) de�nes one ergodi set D � T that inludes

s and all states u 2 R satisfying z

�

x;y

(u) �

� �̂

4jN j

.

Step 3; Show that there is a proper hoie of s from Steps 1

and 2 with a subset V

R

of Player Two moves satisfying the ondi-

tions of Theorem 1, namely that these moves belong to a subset F

ontaining s and inside of the ergodi set D suh that ~w(t)~a(t) is a

onstant for all t 2 F and there is a distribution on V

R

suh that

used against x gives an expeted payo� to Player One within �̂ of

r

1

(s):

De�ne U := ft 2 R j �(t) � r

2

(t)� 2:4�g and de�ne

~

U := ft 2 R j �(t) �

r

2

(t) � 2:5�g \ ft 2 R j z

�

x;y

(t) � �g. We reate a partition fU

1

; : : : ; U

k

g of
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the members of U in inreasing values of ~w~a, meaning that s and t belong to

the same member of U

i

if and only if ~w(s)~a(s) = ~w(t)~a(t). For any state s in

~

U we onsider the sets T (s) and D(s) and the strategies x(s); y(s) 2 X � Y

as reated above in Step 1 and Step 2.

For the sake of ontradition we suppose that there is no s 2

~

U \ U

i

and

b 2 B

�

x;y

(t) with t 2 D(s) \ U

i

suh that jv

1

x(s);y

(b) � r

1

(s)j � �̂ and there is

no pair of Player Two moves b; b

0

2 B

�

x;y

(R) with both b and b

0

belonging to

the set D(s) \ U

i

with v

1

x(s);y

(b) and v

1

x(s);y

(b

0

) on di�erent sides of r

1

(s).

For every s 2

~

U and t 2 U \ D(s) with some move in B

�

x;y

(t) used in

y

t

let v

1

s

(t) =

P

b2B

�

x;y

(t)

v

1

x(s);y

(b)�

b

x(s);y

=

P

b2B

�

x;y

(t)

�

b

x(s);y

, the average Player

One payo� resulting from these moves at t. For every 1 � i � k let p(i) :=

P

j<i

jU

j

j.

We laim that our above assumption implies that z

�

x;y

(s) � 3

p(i)

�=(�̂)

p(i)

for every s 2 U

i

\

~

U .

We prove the above laim by indution on i. Let s be any member of

U

i

\

~

U , and we assume that jv

1

s

(s)� r

1

x(s);y

(s)j = jv

1

s

(s)� r

1

x;y

(s)j � �̂. From

Part 1 and Part 2 we know that the importane with respet to (x(s); y) from

exits outside of B

�

x;y

(D(s)) does not exeed � �̂=3 times the importane of the

B

�

x;y

(s) moves. Sine all the v

1

s

(t) with t 2 D(s) \ U

i

are on the same side of

r

1

(s) as v

1

s

(s), we are left only with the B

�

x;y

moves from [

k<i

U

k

\ D(s) to

ounter-ballane the v

1

s

(s) to make r

1

x(s);y

= r

1

x;y

. We an assume now that

i > 1, sine otherwise we would have to onlude that jv

1

s

(s) � r

1

x;y

(s)j � �̂

is impossible. By the indution hypothesis the sum of all the z

�

x;y

(u) over

the set [

k<i

U

k

does not exeed

P

k<i

jU

k

j3

p(k)

�=�̂

p(k)

�

2

3

3

p(i)

�=�̂

p(i�1)

. By

the fat that our simpliations x(s) hardly inuene the expeted payo�s

from moves with an absorption rate of at least 2� and by the statement

of Step 1, in order to maintain jv

1

s

(s) � r

1

x;y

(s)j � �̂ we must assume that

�̂z

�

x;y

(s) �

3

2

2

3

3

p(i)

�=�̂

p(i�1)

, and this onludes the proof of our laim.

With the de�nition of � we onlude that z

2:5�

x;y

(s) < ~�=jRj for every s 2

R, and this means that R ould not have been hosen for polarization, a

ontradition.

With the appropriate s 2 R hosen, we have D

R

:= D(s), x

C

de�ned

from x(s) and y

C

de�ned from y(s) so that hanges are made only inside of

D

R

, and the exits V

R

and their distribution as determined by y

D

ome from

the above argument.
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Step 4; show that the moves B

R

satisfy the requirements of

Theorem 1:

The easiest way to prove that jr

x;y

R

(s

R

)� r

x;y

(s

R

)j � �̂ is to return part

of the way bak to the spae S

℄

! We let

~

S

℄

be the spae generated by the

almost trivial partition

~

P := fRg [ ffsg j s 62 Rg. With ~r

1

the harmoni

funtion on

~

S

℄

indued by r

1

on the absorbing states, by Lemma 3.5 ~r

1

(s

R

)

and r

1

(s

R

) di�er by at most 4�

�

. Let ~�

℄

be the orresponding measure of the

importane of the exits.

De�ne a move a 2 A

s

1

of Player One in the set R to be a priniple move if

a is not a limit move and if there is a b 2 B

s

2

suh that (a; b) is an exit with

�

x;y

(a; b) � �̂ � �

�

.

We laim that the ombination (a; b) of a move of B

R

with a priniple

move of Player One must yield �(a; b) � �

�

. One this is established from the

de�nition of B

R

we need only to break down the sum of the v

~r

1

(a; b)~�

℄

(a; b)

over all exits (a; b) with �(a; b) � �̂ � �

�

and apply Lemma 3.7 to onlude

that r

1

x;y

R

(s

R

) is within 20jN jm�

�

=�̂ of r

1

x;y

(s

R

), that is muh loser than we

need it. Suppose for the sake of ontradition that for some priniple a and

some b 2 B

R

that �(a; b) � �̂ � �

�

. Assuming that the moves take plae at t,

we have from the de�nition of B

R

that a(t) � y

b

(q̂��

�

)(�̂��

�

)�. Furthermore

by de�nition we have �(a; b) � x

a

y

b

=a(t) and by assumption x

a

� �

�

. These

four inequalities are ontraditory.

We show that b 2 B

R

\ A

t

2

with t 2 P implies v

2

(b) < r

2

(t). If �(t) �

r

2

(t)�2� then it follows from Lemma 5.5. If �(t) > r

2

(t)�2� then by Lemma

5.4 all moves have the same auxillary value �(t) = �(t); it follows from the

smallness of Æ � (�

�

)

2

and formulas (10) and (11) that if v

2

(b) � r

2

(t) then

the repeated use of b would result in a higher evalution for �(t) beause an

undisounted value of at least r

2

(t) would be obtained but at muh higher

auxillery absorbing rate.

Step 5; show z

2:5�

(s) < ~� for any state s that is not in P or is a

satelite of some R 2 R:

If s is not a satelite and not in P then due to the very small size of Æ we

have from (11) that �(s) is within ~� of r

2

(s), implying that no move b used

at s ould satisfy w

2

(b) < r

2

(s)� 2�. For a satelite s of R we suppose that

b 2 A

s

2

is a Player Two move at s with g

b

� 2:5�. Suh moves have at least

a 2:4� probability of never returning to the set R. The probability of using
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suh a move before reahing R must be no more than �

�

=(2:4�), and thus the

total probability that it is used annot exeed �

�

=(2:4�(�̂� �

�

)). q.e.d.

7 Signaling

In this setion we show that there are approximate equilibria without an

assumption that Player One an send signals independent of the transitions.

The problem onerns the onsequenes to the players of any moves that

would be used by Player One as a transition dependent signal. For example,

a move of Player One that brings the play outside of the set D

R

may fail to

be useful to signal her desire for Player Two to use a move in V

R

, beause

outside of D

R

the jump funtion for Player Two may exeed greatly his

expeted payo� from the moves in V

R

.

The natural solution is for Player One to have a move inside of D

R

that

is not used in x

C

whose use means that the moves V

R

of Player Two will not

be used, and after a ertain quantity of visits to some state in D

R

it will be

understood mutually that Player Two must use a move in V

R

. A problem

arises, however, if every suh move results in a positive probability of leaving

the set R.

With regard to the next two theorems, we assume the statement and

proof of Theorem 2, whih means also that we assume that all the onditions

of Theorem 1 are satis�ed. We will add new onditions to those of Theorem

1 and make some minor hanges to the proof of Theorem 1. The de�nition of

S

℄

remains, along with its Markov hain transitions, inluding the p

�

R

and p

R

.

The hanges begin with the de�nition of the parts q

d

R

and q

R

and therefore

everything that follows in the proof of Theorem 1 will be altered as well,

inluding the introdution of new situations.

Theorem 1': Assume the following property for every R 2 R: if every

move a 2 A

t

1

in D

R

removed to make x

C

from x formed an exit against

some Player Two move used in y

C

, then there exists a set A

R

of Player One

priniple moves in D

R

suh that

1) the sum of �

x;y

(a; b) for all R exits (a; b) performed outside of D

R

does

not exeed ~� � �̂ �=3,

2) for every priniple move a 2 A

R

of Player One used at t 2 D

R

with

�

a

x;y

� � �̂ ~� �=(3jN jm) we have

P

b used in y

t

C

�

x;y

(a; b) � (1 � � �̂ ~� �)�

a

x;y
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and therefore also jv

1

x

C

;y

C

(a)� v

1

x;y

(t)j � �̂.

Conlusion: Without any assumption on Player One's ability to signal

indendependently of the transitions, the game has approximate equilibria.

Proof: De�ne a member of R to be problemati if the assumption of

Theorem 1' holds. We proeed exatly as the proof of Theorem 1, exept

that for all problemati R we inorporate into the S

℄

transition q



R

all the

R exits not inside of D

R

or not reated from a ombination of an a 2 A

R

with a move used in y

C

. Realling that q

d

R

is the di�erene between q



R

and

p

�

R

by Lemma 3.7 we still have that �

℄

(q

d

R

)(v

2

℄

(q

d

R

)� r

2

℄

(s

R

)) is below �̂. Due

to Condition 2 and Lemma 3.7 we have the other requirement for applying

Lemma 3.9. We assume that T is the subset of R that has been polarized.

De�ne a situation s

w

at a state s to be timed if there is a natural numberm

suh that s

w

is determined by the present state s and the previous situations

and moves in the lastm stages. A normal situation is timed, but the onverse

doesn't hold.

We keep the same situations s

e

, s

f

and s

g

from the proof of Theorem

1. The stationary strategies for all the s

g

and all the s

e

other than a rep-

resentative s

e

R

are de�ned in the same way, and in a non-problemati R the

stationary strategies for s

f

are also the same.

For every polarized R 2 T and t 2 D

R

we reate a timed situation t

h

.

When a situation s

e

R

is reahed the strategies (x

C

; y

C

) are performed, but

instead of moving to a t

f

or t

g

there is motion to the timed situation t

h

.

For non-problemati polarized R 2 T we hoose any t 2 D

R

suh that

there is a Player One move a at t not used in x

C

and when paired with y

C

results in zero probability of leaving the set R. Create a frequeny

~

f

a

> 0 and

a number n

t

suh that f

a

P

n

t

�1

i=0

(1� f

a

)

i

= 1� �

R

, where �

R

is that quantity

determined by the polarization, and suh that for any distint u; v 2 D

R

the

probability of using the move a before moving from u to v is at least 1� �

�

.

For all the situations s

h

for s 6= t the players at aording to (x

C

; y

C

) and at

t Player Two aording to y

C

and Player One aording to (1�f

a

)x

C

+f

a

1

a

.

If on the n

t

th visit to the situation t

h

the move a was not made, then the

situation following t

h

is some u

g

. Otherwise if the move a was used on any

visit to the situation t

h

then the next situation is either some u

f

if an exit

wasn't used or some u

e

if an exit was used.

For problematiR 2 R, let �

R

2 �(A

R

) be the probability distribution on

the A

R

that is generated onditionally by (x; y

C

). Choose a natural number
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n

R

and a stationary strategy x

�

C

for Player One so that with a start at s

R

the distribution on the moves A

R

is �

R

and for every pair u; v 2 D

R

the

probability of using a move in A

R

before moving from u to v is no more than

�

�

and the probability of using some member of A

R

at or before the n

R

th

visit to the state s

R

is 1� �

R

. For the situations t

h

with t 2 D

R

the players

at aording to (x

�

C

; y

C

). If on the n

R

th visit to the situation s

h

R

the move

a was not made, then the situation following t

h

is some u

g

. Otherwise if a

move in A

R

was used on any visit to a situation t

h

then the next situation is

either u

f

(if an exit was not used) or u

e

(if an exit was used). At a situation

u

f

the strategies (x

�

C

; y

C

) are also used.

As with the proof of Theorem 1 we must show that the expeted payo�s

to Player i from every situation s

e

is within 3:1� of r

i

x;y

(s). Given the proof

of Theorem 1 the only additional argument needed onerns the use of exits

in a problemati R before the timed situations have been reahed. This did

not present a problem in the proof of Theorem 1 beause they were the same

exits used in the situations t

f

and performed with the same distributions.

If we an show that the total probability of their ourane annot exeed

�=10, then we get our result by ignoring their inuene. Indeed in the Markov

hain de�ned on S

℄

the absorption rate of s

R

for a problemati R is at least

��̂=(2Q

1

). By Lemma 3.9 this absorption rate does not fall below

��̂

2Q

1

�

3jNj

(3jN j)

jNj

after polarization. Sine this quantity is still very large ompared to �

�

,

the maximal probability of using suh a exit before a timed situation is

reahed, we an indeed ignore these exits. (We leave the formal argument

using Setion 3 to the reader.)

The situations de�ned above are not normal and thus do not generate a

stohasti game, preventing a diret appliation of Corollaries 4.3 and 4.4.

Therefore we must pereive the situations fs

h

j s 2 Rg for R 2 T as sub-

games. Conerning the behavior of Player One, we view the entire proess up

until the n

R

th visit to the state s

R

or the n

t

th visit to t as a single deision

{ whether or not to use a move in A

R

and if so then whih one. This plaes

Player One's deisions bak into the ontext of Corollary 4.4.

Conerning the behavior of Player Two, the matter is more omplex.

Player Two ould have an inuene on the payo�s by altering the strategy

y

C

. Stritly speaking the ontext would be no longer that of a harmoni

funtion on a time homogeneous Markov hain { the expeted payo� to

Player Two at a state orresponding to a situation t

h

would be hanging
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over time. However Player Two's ability to gain or lose in expeted payo� is

onditioned on the use of a move of Player One in A

R

{ this is modeled by

a time homogeneous Markov hain and therefore Proposition 4.2 is suÆient

for the onlusion. 2

Theorem 2' The onditions of Theorem 1' are satis�ed always.

Proof: Let (x; y) 2 X � Y and (x

C

; y

C

) be a solution given by Parts 1,

2, and 3 of Theorem 2 for a polarized R 2 R and we assume that onditions

of Theorem 1' hold for R (meaning that R is problemati).

1) Consider the strategies played at any t 2 D

R

. Suppose for the sake of

ontradition that there is a state u 2 RnD

R

where an importane of at least

� ~� � �̂=3jRj ours from exits at u. Consider the moves that were removed

from y

t

to make y

t

. By Lemma 5.5 at any t 2 D

R

no more than

7jRj

~�� �̂ �

mL

(L�1)Q

1

of the transition P

t

(t; u) was removed to make y

t

C

from y

t

. On the other

hand, given that every move of Player One removed from x

t

to make x

t

C

would have reated an exit against some move in y

t

C

, we must also onlude

from the rare use of an exit that no more than 2�

�

Q

1

of the transition in

P

t

x;y

(t; u) ame from suh a Player One move. From Lemma 3.3 we have that

u is in D

R

, a ontradition.

2) Assume that �

a

x;y

� � �̂ � ~�=(3jN jm) for some priniple move a of Player

One at t 2 D

R

. Suppose for the sake of ontradition that the probability of

reahing any absorbing state from this priniple move is altered by a fator

of more than ��~��̂=2 by the hange from y to y

C

. This means that �

x;y

(a; b)

is at least

�

2

~�

2

�̂

2

�

2

6jN j

2

m

2

for at least one move b that was removed to make y

t

C

from y

t

. We must onlude from Lemma 5.5 that

�

2

�̂

2

�

2

~�

2

a(t)

6jN j

2

m

2

�

2:3a(t)L

Q

1

(L�1)

, a

ontradition to the de�nition of Q

1

.

The �nal laim follows now from the argument in part 4 of the proof of

Theorem 2, showing that v

1

x;y

(a) is very lose to the value of r

1

for all primary

moves. 2

In the proof of Theorem 1' we ould eliminate the argument that exits per-

formed before reahing a timed situation in a problemati set are irrelevant

if we had a more powerful Markov hain result (that ombines the ondition

of Lemma 3.3 with the onlusion of Lemma 3.2) or we use Vieille's approah

to \ommuniation sets" (Vieille 2000), showing how one an move through

a set R with no danger of leaving it.
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8 Countably many states

On the tehnial side, the problem with applying either our or Vieille's proof

to ountably many states lies in the �nite state spae assumption that given

any stationary strategies for the players and any positive Æ there will exist a

Æ perturbation of this strategy that is absorbing.

A strategy for �nding a ounter-example ould be following. Construt

an in�nite sequene of games �

0

;�

1

; : : : that are positive reursive for both

players orresponding to inreasing �nite sets S

0

� S

1

� : : : of non-absorbing

states suh that for every i � 0 and j � i the moves and their indued

motions inside of S

i

are the same for all games �

j

. Construt a ountable

state spae by having the game start at s

0

, de�ne the state spae on the

ith stage to be the spae S

i

, and delare that absorption ours on stage

i if an absorbing state of the game �

i

is reahed. Furthermore, give both

players the ability to fore the game to absorption in the new ountable

state spae game. Desirable may be games �

i

suh that with large i the

approximate equilibrium behavior of �

i

keeps the non-absorbing play most

of the time lose to the set S

0

and the minimal number of stages neessary

to reah an absorbing state in the game �

i

starting from any s

0

2 S

0

goes

to in�nity as i goes to in�nity. Otherwise if we allow that absorbing states

are reahable quikly from all non-absorbing states, to avoid onvergene

toward large sub-games of essentially equilivalent states it may be desirable

if reahing an absorbing state of �

i

on the ith stage of play does not mean

ertain absorption but rather a positive probability of absorption mixed with

a positive probability of starting the game over at s

0

2 �

0

.

There are many ways for a game to have a ountable state spae but be

played essentially on �nitely many situations, for example games that break

down into sequenes of sub-games played essentially on �nite state spaes.

Also to be avoided are strutures that are formally ountable in size but

do not exploit the full potential of what it means to have in�nitely many

positional possibilities. We believe that the best andidates for a ounter-

example will inorporate the onept of a random walk on arbitrarily many

positions, as presented in our introdution. However, to avoid operator ap-

proahes similar to that of the Maitra and Sudderth proof we believe that

there must be a onit by both players between exploiting their positions

and ontrolling the behavior of the other player. For this and other reasons,

we believe that the non-absorbing states must have a struture more omplex
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than Z, for example involving joint random walks on the two dimensional

lattie Z

2

.
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