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Abstra
t:

We give an alternative proof that every two-person non-zero-sum absorb-

ing positive re
ursive sto
hasti
 game with �nitely many states has approx-

imate equilibria, a result proven by Ni
olas Vieille. Our proof uses a state

spe
i�
 dis
ount fa
tor whi
h is similar to the 
onventional dis
ount fa
tor

only when there is only one non-absorbing state. Additionally we show that

if the players engage in time homogeneous Markovian behavior relative to

some �nite state spa
e of size n then for the existen
e of an �-equilibrium

it suÆ
es that one-stage deviation brings no more than an �

3

=(nM) gain to

a player, where M is a bound on the maximal di�eren
e between any two

payo�s.
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1 Introdu
tion

A two-player sto
hasti
 game is played in stages. At every stage the game

is in some state of the world. Both players are informed of the whole his-

tory, in
luding the 
urrent state, and based on this information they 
hoose

simultaneously a pair of a
tions. The 
urrent state and the pair of a
tions


hosen determine both a stage payo� for ea
h of the players and a probability

distribution a

ording to whi
h a new state is 
hosen.

For any � � 0, an �-equilibrium in a game is a set of strategies, one

for ea
h player, su
h that no player 
an gain in payo� by more than � by


hoosing a di�erent strategy, given that all the other players do not 
hange

their strategies. A game has approximate equilibria if for every positive

� > 0 it has an �-equilibrium. The value of a zero-sum game, should one

exist, is the unique 
luster point of the �-equilibrium expe
ted payo�s (for

the �rst player) as � goes to zero. The un-dis
ounted payo� of a player in a

sto
hati
 game with in�nitely many stages, when de�ned, is a limit as the

number of stages goes to in�nity of the average summed over the stages of

the player's expe
ted payo�s. Unless spe
i�ed, the payo�s of a sto
hasti


game are undis
ounted.

Shapley (1953) presented the model of sto
hasti
 games, and proved that

a dis
ounted zero-sum games always have a value obtainable with stationary

optimal strategies. This result was generalized for equilibria in n-player non-

zero-sum dis
ounted games by Fink (1964).

An absorbing state is su
h that the play never leaves this state on
e it is

rea
hed. Kohlberg (1974) proved that every two-player zero-sum sto
hasti


game with only one non-absorbing state has a value. Based on the work of

Bewley and Kohlberg (1976), Mertens and Neyman (1981) generalized this

result, and proved that every zero-sum sto
hasti
 game has a value.

A sto
hasti
 game is re
ursive if the stage payo� at all non-absorbing

states is zero, no matter what the players do. A re
ursive sto
hasti
 game is

positive re
ursive if there is a player who re
eives at all absorbing states only

positive payo�s. A positive re
ursive sto
hasti
 game is absorbing if the player

who re
eives these positive payo�s 
an for
e the play toward absorption.

Existen
e of approximate equilibria in two-player non-zero-sum sto
has-

ti
 games with only one non-absorbing state was proven by Thuijsman and

Vrieze (1989). In their proof Thuijsman and Vrieze 
onsidered a sequen
e of

stationary equilibria of the dis
ounted game as the dis
ount fa
tor tends to
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1, and they 
onstru
ted di�erent types of �-equilibrium strategies a

ording

to various properties of the sequen
e.

Vieille (2000a) showed that for approximate equilibria to exist in every

two-player non-zero-sum sto
hasti
 game with �nitely many states it is suf-

�
ient to prove this for the sub-
lass of absorbing positive re
ursive games.

Furthermore Vieille (2000b, 2000
) proved that indeed all games in this sub-


lass have approximate equilibria.

In the present paper, we provide an alternative proof of the Vieille result

for absorbing positive re
ursive games. The primarily di�eren
e between our

proof and Vieille's lies in the use of a kind of dis
ount fa
tor rather than

Vieille's undis
ounted evaluation. This dis
ount fa
tor is state spe
i�
 and

is similar to the 
onventional dis
ount fa
tor only when there is only one

non-absorbing state. We were inspired by the Thuijsman and Vrieze arti
le

and their 
on�den
e that their ideas 
ould deliver the same result for �nitely

many states. Our goal was to 
on�rm their optimism by demonstrating the

great versatility of the dis
ounting 
on
ept.

In positive re
ursive games, dis
ount fa
tors for the player re
eiving pos-

itive absorbing payo�s persuade him to make moves that push the game

toward absorption. Let us 
all this player the se
ond player. The serious

problem with generalizing the Thuijsman and Vrieze approa
h dire
tly is

that the usual dis
ounted evaluation does not dis
riminate between the time

spent at the state at whi
h a de
ision is made and the other states that might

follow this de
ision. As long as the se
ond player at a given state 
hooses

between two moves that do not involve returning to that state, his evaluation

of those moves in an appropriate dis
ounted game should be based upon his

undis
ounted evaluation. Play that never returns to this state before ab-

sorption but visits other states arbitrarily many times re
eives no dis
ount

whereas play that re-visits the initial state n times re
eives a (1�Æ)

n

dis
ount,

regardless of its visits to other states.

We see no way to generalize our proof to three player games (and it

appears highly unlikely). On the other hand, we 
an not dismiss the pos-

sibility; (see also Solan, 1999, where dis
ounted evaluations were used to

understand some three player undis
ounted sto
hasti
 games). If the 
om-

pa
ti�
ation of a strategy spa
e 
reates dis
ontinuities in the undis
ounted

payo�s a dis
ounted evaluation may handle the points of dis
ontinuity su
-


essfully. A false impression that dis
ounting is useless to understanding the

undis
ounted game may result from a la
k of knowledge of how to turn o�
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the dis
ount where one is suÆ
iently far from the points of dis
ontinuity. As

we will see below, knowing when to turn o� the dis
ount is 
entral to our

approa
h.

The se
ondary di�eren
e between our proof and Vieille's is that the math-

emati
s we use is entirely elementary. No deep theorems of mathemati
s are

required; for example, there is no use of the theory of semi-algebrai
 fun
-

tions. What we need from the theory of Markov 
hains is very elementary and

proved entirely in this paper. Due to our dis
ounting approa
h we work with

taboo probabilities rather than the dire
ted graphs perspe
tive of Freidlin

and Wentzell, (1984).

The only theorem we quote instead of proving is Doob's submartingale

inequality, a generalization of Kolmogorov's inequality and also an easy the-

orem to prove. Applying the inequality, we show that if the players engage

in time homogeneous Markovian behavior relative to some �nite state spa
e

of size n then for the existen
e of an �-equilibrium it suÆ
es that one-stage

deviation brings no more than an �

3

=nM gain to a player, where M is a

bound on the maximal di�eren
e between any two payo�s.

Countably many states

We developed our unorthodox approa
h to sto
hasti
 games with the

hope that it would deliver approximate equilibrium existen
e for all two-

person non-zero-sum sto
hasti
 games with 
ountably many states. We have

failed in this attempt.

The main problem is that our approa
h (and that of Vieille) rests ulti-

mately on the pideon-hole prin
iple. If the expe
ted number of visits to every

non-absorbing state is �nite then with probability one an absorbing state is

rea
hed. This does not hold if there are in�nitely many non-absorbing states.

In general, what is the diÆ
ulty in proving approximate equilibrium ex-

isten
e for non-zero-sum two-person sto
hasti
 games with 
ountably many

states? Several important positive results need to be mentioned. Maitra

and Sudderth (1991) proved that all zero-sum sto
hasti
 games with 
ount-

ably many states have values. In a game of perfe
t information, the players

take turns making their moves and ea
h player knows the previous moves

of the other players; the 
lassi
 example is that of 
hess. A Bla
kwell game

is identi
al in transition stru
ture to a sto
hasti
 game, but the payo�s are

determined by a fun
tion Borel measurable with respe
t to the histories of

play. Martin (1975) proved that all zero-sum Bla
kwell games of perfe
t
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information have values, and Mertens and Neyman (in Mertens 1987) ex-

tended Martin's result to non-zero-sum games with �nitely many players.

Using his result for games of perfe
t information, Martin (1998) proved that

all zero-sum Bla
kwell games have values.

The di�eren
es between non-zero-sum sto
hasti
 games (with simultane-

ous moves) and either non-zero-sum Bla
kwell games of perfe
t information

or zero-sum Bla
kwell games with simultaneous moves are formidable. The

probability of absorption at a stage in a sto
hasti
 game 
an be also a min-

imal bound on that stage's deviation from pure equilibria; (for example see

the \Big Mat
h" in Bla
kwell and Ferguson, 1968). With the �-equilibria

of many games, in
luding the absorbing positive re
ursive variety, while ab-

sorption must be
ome a near 
ertainty the 
ulmulative opportunity to exploit

deviations must not ex
eed �. Therefore one needs that stage for stage ap-

proximate equilibria 
an translate to 
umulative approximate equilibria. In

zero-sum games this is not so problemati
 be
ause the gains to one player

from deviation equal the losses to the other player. But with two-person

non-zero-sum games, one must 
onsider fun
tions with values in R

2

; the po-

tential independen
e of the two values and need for a 
ooperative solution

frustrate attempts to generalize the approa
hs that were su

essful with zero-

sum games. On the other hand if the moves are made simultaneously how

does one know the other player is adhering to a 
ooperative agreement? So

far the main answer has been to request from ea
h player Markovian behav-

ior, a

ompanied by statisti
al testing and punishment by the other player

in the event of signi�
ant statisti
al deviation. With this approa
h, it is ne
-

essary that the probability that an honest player will be punished unjustly


an be made arbitrarily small. As we will demonstrate with the following

proposition and 
ounter-example to a variation on this proposition, su
h a


ontrol pro
ess is unlikely in general for Markovian behavior that is 
arried

out essentially on a 
ountable state spa
e.

If S is a �nite or 
ountable set let �(S) stand for the spa
e of probability

distributions on S. A Markov 
hain is de�ned by a �nite or 
ountable state

spa
e S and for every s 2 S and stage i � 0 a probability distribution

p

s

i

2 �(S) governing the distribution on the states at the i + 1st stage,

given that s is the state on the ith stage. It is time homogeneous if p

s

i

is

indendendent of the i.

Proposition 4.2: Let X be a �nite spa
e. For every x 2 X let Y

x

be a
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�nite spa
e, with Y := [

x2X

Y

x

. (In the 
ontext of sto
hasti
 games, X will

be the state spa
e and Y

x

will be the set of moves that a player has at the

state x 2 X.) There are probability transitions (p

x

2 �(Y

x

) j x 2 X) from

X to Y and there are probability transitions (p

y

2 �(X) j y 2 Y ) from Y

to X, so that for every starting point x

0

2 X a time homogeneous Markov


hain on X [ Y is de�ned. On the even stages i = 0; 2; 4; : : : the pro
ess is

in X and on the odd stages the pro
ess is in Y . Let there be an evaluation

fun
tion v : X [ Y ! R that is harmoni
 with respe
t to the transitions

(meaning that a martingale is formed). Let M > 0 be a uniform bound for

the maximal di�eren
e between all values of v. For every pair x 2 X and

y 2 Y

x

su
h that y is rea
hed from x with positive probability (a

ording to

p

x

) the di�eren
e between v(y) and v(x) is no more than Æ > 0.

Con
lusion: If jXj = n, � < 1=2, and Æ � �

3

=Mn then the probability that

there exists an l with

P

l

i=0;2;:::

(v(y

i+1

)� v(x

i

)) � � does not ex
eed �.

The 
omplexity of the Y

x

play no role in the proof of Proposition 4.2, and

therefore it 
ould have many generalizations 
orresponding to variations in

the stru
ture of the Y

x

.

To emphasize the importan
e of the �nite number jXj, the following is

a 
ounter-example to Proposition 4.2 if we assume that the bound for Æ is

independent of the 
ardinality of X. Furthermore, if we 
onsider pro
esses

that are not time-homogeneous, it does not help if for every stage the sum

over the states of the maximal di�eren
es add up to no more than Æ.

Consider a random walk on n + 1 positions su
h that at the left end (at

position 0) the player re
eives an absorbing payo� of 0 and on the right end

(at position n) an absorbing payo� of 1. The spa
e X is the n+ 1 positions

and for every x 2 X the two-set Y

x


onsists of the two dire
tions \left" and

\right". Given any small Æ > 0, one 
an make n large enough so that at every

stage the 
hange in expe
ted payo� does not ex
eed Æ. Now reformulate the

randon walk so that at the kth stage of play there is no motion at any i

position with i 6= k (mod n�1), but at the k

0

= k (mod n�1) position there

is an equal 1=2 probability of moving either to the position k

0

�1 or to k

0

+1.

At ea
h stage the sum over the states of the di�eren
es in expe
ted payo�s

remains no more than Æ, and yet we are no 
loser to satisfying the 
on
lusion

of the proposition. (With n even and starting in the middle position with

an expe
ted payo� of 1=2, for every small positive � with probability 
lose

to 1=2 there will be motion to a position with an expe
ted payo� of at least
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1=2 + 2�.)

We expe
t no proof of approximate equilibrium existen
e for all non-

zero-sum sto
hasti
 games with 
ountable state spa
es without a radi
ally

di�erent approa
h. If a proof for 
ountably many states 
an be found, its

appli
ation to �nite state trun
ations of the 
ountable state game would pro-

vide approximate equilibria of the �nite state games su
h that the average

number of stages before absorption would not explode with the in
rease in

the �nite number of these states. In the proof below for a �xed � there is

no lower bound determined by the number of states on the rate for whi
h

an absorbing state is rea
hed. Indeed, be
ause su
h a proof would imply the

existen
e of yet another alternative proof for �nitely many states with dra-

mati
 absorption rate properties, we suspe
t that there is a 
ounter-example.

Furthermore, it is possible that the 
omplexities from 
ountably many states

involved in a two-player 
ounter-example 
ould be mimi
ked by the introdu
-

tion of more players in a sto
hasti
 game with �nitely many states, yielding

a 
ounter-example to approximate equilibria in this 
ontext as well.

We suspe
t that approximate equilibrium existen
e for a broad 
lass of

two-person sto
hasti
 games played on 
ountable state spa
es must rest on

a fundamental assumption: that there is a uniform bound on the number

of states possible on any given stage of play. With a �nite number of su
h

positions, it is still not 
lear how appropriate Markovian should be found.

Even with only one non-absorbing position, the possible in�nite variations,

in
luding the number of moves for ea
h player and the order in whi
h similar

\types" may appear, make the problem formidable. At least the generaliza-

tion of Lemma 4.1 to Markov 
hains that are not time homogeneous will be

ne
essary. Another reason to present our alternative proof of the Vieille re-

sult is the hope that it will be relevant to this 
ase, whi
h we 
all the 
ase of

�nitely many positions. If for ea
h non-absorbing position one 
ould �nd an

appropriate 
ommon identity to an in�nite sub-sequen
e of states o

uring

in that position, then the pideon hole prin
iple 
ould be applied su

essfully.

Throughout this paper, we 
omment on the 
ase of �nitely many positions.

Organization

To exe
ute our proof eÆ
iently, we will assume that Player One has the

ability to send signals to Player Two that are independent of the transitions in

the games. The easiest way to formalize this property is to assume that every

move of Player One at a non-absorbing state is paired with another move
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at the same state that is its identi
al 
opy with respe
t to the transitions.

Without this assumption, the proof is formality more involved, less elegant,

however essentially equivalent. In the se
tion following the 
on
lusion of the

main proof, we prove the result without this signaling assumption.

The argument and the paper are organized as follows.

Se
tion 2 introdu
es the model of absorbing positive re
ursive sto
hasti


games and the basi
 
on
epts of Markov 
hains. Additionally we introdu
e

an important 
on
ept with regard to the movement between states, 
alled

taboo probabilities. A taboo probability is the probability that one moves

from an initial state to some set of target states without travelling through

some se
ond set of \forbidden" states.

Se
tion 3 gives proofs of all the needed lemmas on Markov 
hains. The

most 
entral lemma is Lemma 3.2; it states that when motions at a multitude

of states are removed whose frequen
ies are only a small fra
tion of the total

motion toward a �xed state then the 
ow 
ontinues toward this �xed state

with about the same or greater tenden
y.

Se
tion 4 
ontains a proof of Proposition 4.2, whi
h also establishes gen-

eral suÆ
ient 
onditions for the existen
e of approximate equilibria. We


reate new states from our old states, whi
h we 
all situations; at most three

situations are 
reated from ea
h original state. The method of 
reating the

situations we 
all polarization, introdu
ed in Se
tion 3. Ex
ept for the rare

possibility of punishment, our behavior strategies will be stationary on the

situations. Se
tion 4 
on
ludes with Theorem 1, a demonstration of suÆ
ient


onditions for approximate equilibrium existen
e in our games.

In Se
tion 5 we introdu
e the state spe
i�
 dis
ounted evaluation for the

se
ond player. We de�ne the dis
ounted evaluation su
h that the dis
ounting

rates are adjusted for states suÆ
iently 
lose together, a

ording to a metri


determined by the strategies. We sele
t a quantity � mu
h smaller than

�, and de�ne the dis
ounted evaluation so that moves with more than an

� probability of non-return to the state are evaluated in an undis
ounted

way and moves with a 
 probability of no return with 
 < � are evaluated

as if their probability of no return was 
=�. Our 
hoi
e for � is guided by

Proposition 4.2.

A serious problem with the state spe
i�
 dis
ounted evaluation is that

the motivations of the se
ond player at one state 
an be very di�erent from

that at another state. Essentially the se
ond player be
omes a multitude of

players, one for ea
h state. This allows for the se
ond player at some states to
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prefer moves that result in too slow a motion toward absorption and there-

fore also dis
ounted evaluations below the zero-sum value. To avoid this

problem, in Se
tion 2 we de�ne a new 
orresponden
e, 
alled the \jump"


orresponden
e, based upon stationary strategies optimal in the 
onvention-

ally dis
ounted game. The use of the jump 
orresponden
e by the se
ond

player results in fast absorption. The \best-reply" 
orresponden
e of the se
-

ond player is a 
ombination of the jump 
orresponden
e with a maximization

of the state spe
i�
 dis
ounted evaluation { when the dis
ounted evaluation

is too low, the jump 
orresponden
e is a
tivated. For the �rst player, the

undis
ounted evaluation is used to de�ne her \best-reply" 
orresponden
e.

With the \best-reply" 
orresponden
es for both player de�ned, we demon-

strate two important properties. Lemma 5.4 shows that at a �xed point the

jump 
orresponden
e of the se
ond player has only very limited in
uen
e on

the play. Lemma 5.5 
ontains the key argument to our entire approa
h; it is

used repeatedly to solve the most diÆ
ult problems. It shows that if there

is a meaningful dis
repan
y between the dis
ounted and undis
ounted eval-

uations for the se
ond player then the se
ond player seeks primarily motion

with the fastest absorption rate.

The synthesis of the previous se
tions lies in Se
tion 6. Theorem 2 proves

that the 
onditions of Theorem 1 are always satis�ed { implying the exis-

ten
e of approximate equilibria. Here we 
onsider sets su
h that a signi�
ant

proportion of all the motion leaving these sets are from Player Two moves

with payo�s for Player Two signi�
antly below the set-average payo�. Fix-

ing any su
h state in a set where su
h moves take pla
e, we look at what

happens when Player One stops playing all moves performed with frequen-


ies small 
ompared to the motion toward this spe
ial state. The result, for

whi
h Player One is indi�erent, involves almost ex
lusively the use of similar

su
h moves by Player Two su
h that the players 
an travel between these

moves without the danger that along the way Player Two prefers to provoke

punishment over performing one of these moves. Ultimately we show that

there is a 
onvex 
ombination of su
h moves that all yield the same payo�

for Player Two and for whi
h Player One is approximately indi�erent.

In Se
tion 7 we 
onsider the problem of signaling, as des
ribed above;

and in Se
tion 8 we 
on
lude in more detail with the problem of 
ountably

many states.
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2 Preliminaries

2.1 The Model

Let S be the set of states; A is the subset of absorbing states and N = SnA

is the subset of non-absorbing states.

For every s 2 S, A

s

1

and A

s

2

are the moves (pure a
tions) of the �rst

and se
ond players, respe
tively, at the state s. Without loss of generality,

we assume that jA

s

i

j = 1 for every s 2 A and i = 1; 2. Let r

1

: A !

[�1=2; 1=2℄ and r

2

: A ! [!; 1℄ be the �rst and se
ond players' evaluations

on absorbing states, respe
tively, with 0 < ! < 1. Let m be the maximal

number of moves for either player at any non-absorbing state, meaning m =

max

s2N

(jA

s

1

j; jA

s

2

j).

Let p(tjs; a; b) be the probability of moving from s to t when a 2 A

s

1

and b 2 A

s

2

are played. Let � be de�ned by � := min(p(tjs; a; b) j s; t 2

S p(tjs; a; b) > 0), the minimal non-zero transition probability. Noti
e that

in the 
ase of �nitely many positions one has su
h a positive quantity for ea
h

stage. More relevant, however, would be a sequen
e �

i

of positive quantities

su
h that the series �

i

is divergent but sums toward in�nity mu
h slower

than any divergent series of positive transition probabilities. Su
h a series is

possible if there is a uniform bound on the number of moves. Additionally the

dis
ount fa
tor must be adjusted to this series, (possibly with the dis
ount

fa
tor equaling 1� Æ�

i

if there is only one non-absorbing state).

Let X :=

Q

s2N

�(A

s

1

) and Y :=

Q

s2N

�(A

s

2

) be the spa
es of stationary

strategies of the players, with X

s

:= �(A

s

1

) and Y

s

:= �(A

s

2

). For a 2

A

s

1

, b 2 A

s

2

, x

s

2 X

s

and y

s

2 Y

s

we de�ne p(tjs; a; y

s

), p(tjs; x

s

; b) and

p(tjs; x

s

; y

s

) in the appropriate linear or bi-linear way. For any s 2 N ,

x

s

2 X

s

and a 2 A

s

1

, the quantity x

s

a

will stand for the probability, as

determined by x

s

, that the move a is used. The same applies for b 2 A

s

2

,

y

s

2 Y

s

and y

s

b

. De�ne a pair (x; y) 2 X � Y to be absorbing if from every

start with probability one an absorbing state is rea
hed.

We will say that two positive quantities a and b are di�erent by no more

than a fa
tor of positive 
 < 1 if a � b(1� 
) and b � a(1� 
).
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2.2 Histories, Strategies, Equilibria

For every stage i � 0 and s 2 S de�ne H

s

i

:= f(s

0

; a

0

; b

0

); (s

1

; a

1

; b

1

); : : : ;

(s

i�1

; a

i�1

; b

i�1

); s

i

= s j 8 0 � k < i a

k

2 A

s

k

1

; b

k

2 A

s

k

2

; p(s

k+1

js

k

; a

k

; b

k

) >

0g, with H

s

0

= fsg for all s 2 S. De�ne H

s

:= [

1

i=1

H

s

i

, H

i

:= [

s2S

H

s

i

,

H := [

i=0

H

i

, and

~

H := f(s

0

; a

0

; b

0

); (s

1

; a

1

; b

1

); : : : j 8i � 0 the trun
ation

up to s

i

belongs to H

s

i

i

g, the set of in�nite sequen
es.

A strategy of Player j = 1; 2 is a set of maps �

j

= (�

s

j

j s 2 N ) with �

s

j

a map from H

s

to �(A

s

j

) for all s 2 N .

With Bla
kwell games, a more general 
lass than sto
hasti
 games, we

assume that a player's evaluation on

~

H is a fun
tion that is measurable

with respe
t to the Borel subsets of

~

H, the sigma algebra indu
ed by the

subsets of H

i

for all i � 0. In 
ase that a sto
hasti
 game is re
ursive, for

every member of

~

H it easy to de�ne an evaluation for both players. Either

the in�nite sequen
e rea
hes an absorbing state and the players re
eive the


orresponding absorbing payo�s, or it never rea
hes an absorbing state and

both players re
eive a payo� of zero.

For every initial state s and every pair of strategies �

1

; �

2

for both players

a distribution is indu
ed on

~

H in a natural way, resulting in two evaluations

V

s

j

(�

1

; �

2

) for Player j = 1; 2 of the expe
ted values of the r

j

on

~

H. An �-

equilibrium is a pair �

1

; �

2

su
h that for all s 2 S and alternative strategies ~�

1

and ~�

2

it holds that V

s

1

(~�

1

; �

2

) � V

s

1

(�

1

; �

2

)+� and V

s

2

(�

1

; ~�

2

) � V

s

2

(�

1

; �

2

)+�.

With absorbing positive re
ursive games and positive ! the lowest Player Two

absorbing payo� we get the additional property that there exists an N > 0

su
h that with probability at least 1�

2�

!

the game has rea
hed an absorbing

state before the stage N .

2.3 Jump Fun
tion

For any positive real number 0 < � < 1 let G

�

be the 
onventionally de�ned

dis
ounted zero-sum game played against Player Two su
h that a visit to

any state is dis
ounted a

ording to 1� �, and let G

0

be the 
orresponding

undis
ounted zero-sum game. For all positive � we de�ne 


�

: S ! R

to be the min-max value for Player Two in the zero-sum game G

�

, with




�

(s) = r

2

(s) for all s 2 A. Be
ause the game is positive re
ursive the 


�

are

monotoni
ally non-de
reasing and due to Mertens and Neyman (1981) the

point-wise limit is the undis
ounted value of the game G

0

, though for this
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lass of games there is an elementary proof. Player Two 
hooses a stationary

optimal strategy of G

�

for an � > 0 suÆ
iently small so that 


�

is within �

of its point-wise limit and at stage i Player One 
hooses one of her optimal

strategies in the game G

�

i

where for every i � 0 


�

i

is within �=2

i+2

of the

point-wise limit and �

i

< �=2

i+2

.

For every x 2 X and positive 0 < � < 1 de�ne the jump fun
tion

j

�

x

: N ! R by

j

�

x

(s) = (1� �)max

b2A

s

2

X

t2S

p(tjs; x; b) 


�

(t)

{ the maximal payo� that Player Two 
an guarantee himself in the 1 � �

dis
ounted game by being punished after the next stage if Player One uses x

at the present stage. If s is an absorbing state, de�ne j

�

(s) to be r

2

(s) for all

�. For all states it is 
lear that j

�

x

� 


�

, with equality when x is an optimal

strategy for Player One in the zero-sum game G

�

played against Player Two.

For every state s 2 N and x 2 X de�ne

J

�

x

(s) = argmax

b2A

s

2

X

t2S

p(tjs; x; b) 


�

(t):

Let n(s) denote the state following s, in our 
ontext a random variable. If

s is not an absorbing state and b 2 J

�

x

(s) then j

�

x

(s) � (1 � �)E

x

b

j

�

x

(n(s));

where E

x

b

is the expe
tation determined by the move b and the strategy x

s

.

This makes j

�

x

a sub-martingale.

For i = 1; 2 and a state s 2 S de�ne 


i

(s) to be the value for Player i of

the zero-sum undis
ounted game played against Player i starting at the state

s. For every Player i and every stationary strategy z of Player k 6= i de�ne

the jump fun
tion j

i

z

: S ! R by

j

2

z

(s) = max

b2A

s

2

X

t2S

p(tjs; z; b)


2

(t) or j

1

z

(s) = max

a2A

s

1

X

t2S

p(tjs; a; z)


1

(t)

{ the maximal payo� that Player i 
an guarantee himself against z if he is

punished on the next stage.

2.4 Taboo probabilities

For any time homogeneous Markov 
hain, a state s, and two disjoint sets

A and B of states we introdu
e the \taboo" probability P

A

(s; B) to be the
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probability, with a start at the state s, of rea
hing the set B before the set A

at any stage following the initial stage at s. With t

C

:= inffn � 1 j s

n

2 Cg

P

A

(s; B) measures the event that t

B

<1 and t

B

< t

A


onditioned on s

0

= s.

If either set is a singleton, we 
an write its single member instead of the

set. If there is ambiguity 
on
erning whi
h state spa
e or whi
h transitions,

we identify them with a subs
ript. In our 
ontext of sto
hasti
 games and

stationary strategies, P

A

x;y

(s; B) will be the taboo probability 
orresponding

to the time homogeneous Markov 
hain generated by (x; y) 2 X � Y .

De�ne a state of a time homogeneous Markov 
hain to be absorbing if

on
e this state is rea
hed then the motion remains in this state forever. The

Markov 
hain is absorbing if for any start with probability one an absorbing

state is rea
hed.

Before moving toward the proof, we must present some basi
 notions

using the taboo probabilities. These quantities will be de�ned �rst for time

homogeneous Markov 
hains and then applied to the games.

For any part p of a transition at a state s or an alternative transition p

for that state de�ne g(p) to be the probability that there is no return to s if

p is used at s and the transitions remain 
onstant at all other states. If p was

a part of the transition at s then de�ne f

p

to be the frequen
y with whi
h

p is used at the state s. For every 
hoi
e (x; y) 2 X � Y and pair a 2 A

s

1

and b 2 A

s

2

of moves at the state s 2 N g

x;y

(a; b) is the probability that

there is no return to s given that Player One and Player Two at s play the

a
tions a and b, and elsewhere in the future the stationary strategies (x; y).

For a move b 2 A

s

2

of the se
ond player, de�ne g

b

x;y

to be

P

a2A

s

1

x

s

a

g(a; b), and

de�ne g

a

x;y

for all a 2 A

s

1


orrespondingly.

De�ne the absorption rate a(s) of a state s to be the probability that

after any visit to this state there is no return to this state, meaning that the

absorption rate is the expe
ted value of the fun
tion g. For the game the

absorption rate a

x;y

(s) of a state s is

P

a2A

s

1

; b2A

s

2

x

s

a

y

s

b

g

s

x;y

(a; b): Given that

(x; y) is absorbing a

x;y

(s) would be the taboo probability P

s

x;y

(s;A).

For any part p of the transition at a state s de�ne �(p) to be the proba-

bility that at the last visit to s the part p was used, or equivalently �(p) =

f

p

g(p)=a(s). We 
all this the importan
e of p. For a pair of moves a 2 A

s

1

and

b 2 A

s

2

at s 2 N and stationary strategies (x; y) the importan
e �

s

x;y

(a; b) is

x

s

a

y

s

b

g

x;y

(a; b)=a

x;y

(s). For any move a 2 A

s

1

de�ne �

a

x;y

to be

P

b2A

2

�

x;y

(a; b) =

x

a

g

a

x;y

=a

x;y

(s) and for any move b 2 A

s

2

de�ne �

b

x;y

in the same way.

For any distin
t pair s; t of states de�ne es
(t; s) to be the probability of
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never rea
hing s with a start at t. (es
 stands for \es
ape".) For the game we

have g

b

x;y

=

P

t2S

p(tjs; x; b)es


x;y

(t; s). (If (x; y) is absorbing, es


x;y

(t; s) is

P

s

x;y

(t;A) and is di�erent from P

s;t

x;y

(t;A), the probability of absorbing before

returning to either s or t).

For distin
t states s and t let �(s; t) be es
(s; t)+ es
(t; s), and otherwise

let �(s; s) = 0. � is a metri
 on the state spa
e. Re
ognize 1 � es
(t; s) as

the probability of moving from t to s, and for mutually distin
t u; v; w we

have 1� es
(u; w) � (1� es
(u; v))(1� es
(v; w)) � 1� es
(u; v)� es
(v; w).

Given that the Markov 
hain is absorbing with A the set of absorbing

states, the following relations for states s 6= t are easy to verify:

es
(s; t) =

P

fs;tg

(s; A)

P

s

(s; t) + P

fs;tg

(s; A)

=

P

fs;tg

(s; A)

1� P

A[ftg

(s; s)

(1)

a(s) = P

s

(s; t)es
(t; s) + P

fs;tg

(s; A) (2)

whi
h imply P

s

(s; t)�(s; t) � a(s) � �(s; t) and a(t)P

s

(s; t) � a(s) (3).

For all these quantities and following ones, we 
an drop the subs
ripts

and supers
ripts if there is no ambiguity.

2.5 Evaluations

We had extended the values r

i

: A! R on the absorbing states to fun
tions

r

i

on all paths in

~

H. For any stationary strategies (x; y) and players i = 1; 2

extend the de�nition of r

i

again to a harmoni
 fun
tion r

i

x;y

: S ! R with

r

i

x;y

(s) equal to the expe
ted value of r

i

on

~

H as determined by (x; y).

For any harmoni
 fun
tion r on S, and p a part of or an alternative

to the transition from a state s, de�ne v

r

(p) to be the expe
ted value of r


onditioned on the use of p and no return to the state s, with v

r

(p) de�ned to

be r(s) if there is return to s with 
ertainty. If the Markov 
hain is absorbing

and g(p) > 0 then v

r

(p) would be the new harmoni
 fun
tion value for s if

the transition from s were repla
ed by p. For every pair of moves a 2 A

s

1

and

b 2 A

s

2

v

i

x;y

(a; b) is de�ned to be v

r

i

x;y

of the part of the transition de�ned by

the pair (a; b) of moves. Likewise de�ne v

i

x;y

(a) and v

i

x;y

(b) with respe
t to

the pairs (a; y 2 Y

s

) and (x 2 X

s

; b), respe
tively. If (x; y) is absorbing we

have the relation

r

i

x;y

(s) =

P

a;b

x

s

a

y

s

b

v

i

x;y

(a; b)g

s

x;y

(a; b)

a

x;y

(s)

=

X

a;b

�

x;y

(a; b)v

i

x;y

(a; b):
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For a 2 A

s

1

we have

v

i

x;y

(a) :=

P

b2A

s

2

y

s

b

v

i

x;y

(a; b)g

x;y

(a; b)=g

a

x;y

=

P

b

�

x;y

(a; b)v

i

x;y

(a; b)=�

a

x;y

and for b 2 A

s

2

we have

v

i

x;y

(b) :=

P

a2A

s

1

x

s

a

v

i

x;y

(a; b)g

x;y

(a; b)=g

b

x;y

=

P

a

�

x;y

(a; b)v

i

x;y

(a; b)=�

b

x;y

,

with both quantities r

i

(s) when the quotient is not well de�ned.

For any harmoni
 fun
tion r on S, and p, a part of or an alternative to

the transition from a state s, de�ne w

r

(p) to be the expe
ted value of r on

the following stage a

ording to the one-time use of p on that stage. We

have w

r

(p) = g(p)v

r

(p) + (1� g(p))r(s). For any pair of moves a 2 A

s

1

and

b 2 A

s

2

at s 2 N and i = 1; 2 w

i

x;y

(a; b) is the expe
ted value of r

i

x;y

on

the next stage if the players use the pair a and b on the present stage at s.

For all b 2 A

s

2

de�ne w

i

x;y

(b) :=

P

a2A

s

1

x

s

a

w

i

x;y

(a; b) and for all a 2 A

s

1

de�ne

w

i

x;y

(a) :=

P

b2A

s

2

y

s

a

w

i

x;y

(a; b).

The following is a 
entral lemma 
on
erning the 
hanges in a harmoni


fun
tion.

Lemma 2.1: Let S be the �nite state spa
e of an absorbing time ho-

mogeneous Markov 
hain and r : S ! R a harmoni
 fun
tion. For ev-

ery non-absorbing s 2 S let p

s

be an alternative transition at s su
h that

g(p

s

) > 0. De�ne a new time homogeneous Markov 
hain a

ording to the

p

s

. Let a

�

: S ! [0; 1℄ be the absorbing rates 
orresponding to the new time

homogeneous Markov 
hain and let r

�

: S ! R be a harmoni
 fun
tion with

respe
t to the new transitions su
h that r

�

agrees with r on the absorbing

states. If jv

r

(p

s

) � r(s)j � Æ

s

and a

�

(s) � �

s

g(p

s

) for 0 < �

s

� 1 and all

non-absorbing s 2 S (with g(p

s

) = a(s) if p

s

was the original transition at s)

then the new Markov 
hain is absorbing and jr

�

(s)� r(s)j �

P

t

Æ

t

=�

t

for all

states s.

Proof: The new Markov 
hain is absorbing be
ause a

�

(s) > 0 for all

s 2 S. With a start at any state s

0

, we 
an bound the 
hange jr

�

(s

0

)� r(s

0

)j

by the sum over all states t 2 S of the one stage deviation at t multiplied by

the expe
ted number of visits to the state t. The deviation from one visit to a

state t is bounded by jw

r

(p

t

)�r(t)j, and sin
e 1=a

�

(t) is the expe
ted number

of visits to the state t we have the total deviation bounded by

P

t

jw

r

(p

t

)�r(t)j

a

�

(t)

.

jw

r

(p

t

)� r(t)j � g(p

t

)jv

r

(p

t

)� r(t)j implies jw

r

(p

t

)� r(t)j=a

�

(t) � jv

r

(p

t

)�

r(t)j=�

t

. 2
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3 Changes in Taboo Probabilities

In all the lematta of this se
tion, S is a �nite state spa
e of a time homoge-

neous Markov 
hain.

3.1 Rea
hing a State

For the �rst three lemmatta we look at what happens when a fra
tion of

P

t

(t; s) is removed from the transitions at all t in a set T .

Lemma 3.1 Let s and t be two distin
t states and A and B two subsets of

states su
h that A, B and fs; tg are mutually disjoint. Let p be a part of the

transition at t su
h that at least positive 
 < 1 of the transition P

B[ftg

(t; A)

goes through p (meaning that if the 
omplement of p were removed and

repla
ed by motion that went ba
k to t on the next stage with 
ertainty then

the new quantity for P

B[ftg

(t; A) would be at least 
 times the old quantity).

If the existing transition at t were repla
ed by p (followed by normalization)

and the new transitions were indexed by � then P

B[ftg

�

(t; A) � 
P

B[ftg

(t; A)

and P

B[fsg

�

(s; A) � 
P

B[fsg

(s; A).

Proof: P

B[ftg

�

(t; A) � 
P

B[ftg

(t; A) is given. If there was never motion

from s to t or from t to s then the inequality P

B[fsg

�

(s; A) � 
P

B[fsg

(s; A)

would also be straightforward. So let us assume that there is some motion

in both dire
tions between s and t, and let A

0

be the set A unioned with all

the other states from whi
h there is no motion to either s or t.

To estimate P

B[fsg

�

(s; A) let b := P

B[fs;tg

(s; A), 
 := P

B[A

0

[fsg

(s; t),

d := P

B[A

0

[ftg

(t; s) and e = P

B[fs;tg

(t; A). Let d

�

and e

�

stand for the


ontributions to d and e made by the transitions in p, so that d

�

� d and

e

�

� e. By assumption we have e

�

+ d

�

b

b+


� 
(e + d

b

b+


). We suppose for

the sake of 
ontradi
tion that 
P

s

(s; A) = 
(b+


e

d+e

) > b+


e

�

d

�

+e

�

= P

s

�

(s; A).

Re-write as (d

�

+e

�

)(be

�

+bd

�

+
e

�

) > (be

�

+bd

�

+
e

�

)(d+e) or d

�

+e

�

> d+e,

a 
ontradi
tion. 2

Lemma 3.2: Let T and A [ U be mutually disjoint subsets of S. If

no more than a frequen
y of 
P

T[fug

(u;A) is removed from the transitions

of all u 2 UnA for some fra
tion 0 < 
 < 1=(2jU j) and no more than

a frequen
y of 
 in the 
ase of u 2 U \ A, followed by normalization,

then for all x 2 SnA the new resulting probabilities P

T[fxg

�

(x;A) satisfy
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P

T[fxg

�

(x;A) � (1� 
jU j)P

T[fxg

(x;A) and for every a 2 A and x 62 A[ T

(1� 3jU j
)P

T[A

�

(a; x) � P

T[A

(a; x).

Proof: For U = ; there is nothing to prove. Now assume the result for

Unfug, and let P

+

stand for the probabilities where the 
hanges are made in

Unfug. Sin
e by indu
tion P

T[fug

+

(u;A) � (1 � 
jU j + 
)P

T[fug

(u;A), the

frequen
y removal at u is no more than




1�
jU j+


P

T[fug

+

(u;A). By Lemma 3.1

applied to the 
ase of only one 
hange at u, we have for all x P

T[fug

�

(x;A) �

(1 �




(1�
jU j+
)

)P

T[fxg

+

(x;A) � (1 �




1�
jU j+


)(1 � 
jU j + 
))P

T[fxg

(x;A) =

(1� 
jU j)P

T[fxg

(x;A).

For the se
ond half, if u 2 A then it follows by indu
tion be
ause the

only way to in
rease this probability is through the normalization. Oth-

erwise express P

T[A

�

(a; x) as P

T[A[fug

�

(a; x) +

P

T[A[fxg

�

(a;u)P

T[A[fug

�

(u;x)

1�P

T[A[fxg

�

(u;u)

. We

noti
e that 1 � P

T[A[fxg

�

(u; u) � P

u

�

(u; T [ A [ fxg) � P

T[fug

�

(u;A), so

that the 
hange 1 � P

T[A[fxg

+

(u; u) to 1 � P

T[A[fxg

�

(u; u) 
annot be a de-


rease by more than a fa
tor of 
=(1� 
jU j + 
) � 2
. The rest follows by

(1� 
)P

T[A[fug

�

(u; x) � P

T[A[fug

+

(u; x), (sin
e the only way to in
rease this

probability is through the normalization). 2

Lemma 3.3 Let T be a subset of S and let s be a �xed state su
h that s is

rea
hed with positive probability from every t 2 T . For every t 2 T let q

t

be

a part of the transition at the state t satisfying f

q

t

P

t

q

t

(t; s) � 
P

t

(t; s) where

P

t

q

t

(t; s) is the resulting taboo probability if q

t

is a repla
ement transition at

t. Consider new transitions resulting from the removal of the part q

t

at every

t 2 T , followed by normalization. If jT j
 < 1 then s is also rea
hed with

positive probability from all of T after the 
hanges.

Proof: We prove by indu
tion on the size of T ; by Lemma 3.1 the 
laim

holds for jT j = 1. With v 2 T also �xed, let us assume that there is some

state u 2 T su
h that after the 
hanges from a start at v the state u is not

rea
hed at all. Whether or not one rea
hes s from v with the 
hanges 
annot

not be in
uen
ed by any 
hange made at u. Therefore by the indu
tion

hypothesis, 
onsidering 
hanges made in the smaller set Tnfug, we have our

result.

Now assume that with the 
hanges all member of T are rea
hed from v.

For every pair t; u 2 T let w

t

(u) be the probability in the original Markov


hain with respe
t to a start at t that s is rea
hed and that the last visit to a
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state in T was at the state u. Be
ause starting at t rather than at u 
annot

be a better way to rea
h s through the state u, we have w

t

(u) � w

u

(u). But

then there must be a u 2 T su
h that w

u

(u) �

1

jT j

P

t

w

t

(t) �

1

jT j

P

t

w

u

(t).

This means that at least

1

jT j

of the original motion P

u

(u; s) went dire
tly to

s without passing through any other member of T (and therefore after the


hanges there is still motion from u to s). 2

The following lemma 
on
erns transitions in two person sto
hasti
 games,

but 
an be generalized to any time homogeneous Markov Chain whose tran-

sitions are determined by two independent variables.

Lemma 3.4 Let R be a subset of non-absorbing states, U a subset of

R, and (x; y) a pair of stationary strategies su
h that there is some motion

between all pairs of states in R. Let s; t 2 U be spe
ial states. Assume

for every u 2 Unfsg that no more than a frequen
y of 
P

u

(u; s) is removed

from x

u

2 X

u

and no more than a frequen
y of 
 from x

s

, followed by

normalization; let x stand for the result. Assume for the state t 2 U that

P

s

x;y

(s; t) � �P

s

x;y

(s; t). Let y

u

�

be a part of y

u

for any u 2 U with f

u

�

its

frequen
y. Assume for all u 2 U and both z 2 fs; tg that f

u

�

P

u

x;(yjy

u

�

)

(u; z) �

ÆP

u

x;y

(u; z) where (yjy

u

�

) is the strategy that is y

v

when v 6= u and is y

u

�

otherwise. Let y stand for the result when y

u

�

is removed from y

u

for every

u 2 U , followed by normalization. Given that (1�4
jU j)� > ÆjU j with (x; y)

there is some motion from all states in R to s and also some motion from s

to t.

Proof: Sin
e the part of P

u

x;y

(u; s) that was removed 
annot ex
eed Æ+


of the whole, we have from Lemma 3.3 that s is rea
hed from all states v in

R.

As with the proof of Lemma 3.3 we 
an assume by indu
tion that all

u 2 Unftg are rea
hed from s with x and y. We a

ount for P

s

x;y

(s; t) by


onsidering the last state visited on the way from s to t. For any 
hoi
e of

(~x; ~y) let p

~x;~y

(u; t) := P

U

~x;~y

(u; t) be the probability of moving from u to t with

no other member of U in between. Let U

0

:= Unfs; tg. We have

P

s

~x;~y

(s; t) = p

~x;~y

(s; t) +

X

u2U

0

p

~x;~y

(u; t)P

ft;sg

~x;~y

(s; u)

1� P

fs;t;ug

~x;~y

(u; u)

;

sin
e

P

ft;sg

~x;~y

(s;u)

1�P

fs;t;ug

~x;~y

(u;u)

is the expe
ted number of times that u is visited before
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rea
hing t or returning to s, with 1 � P

fs;t;ug

(u; u) = P

u

(u; fs; tg [ A) �

P

u

(u; s), where A is the set from whi
h there is no motion to the set R.

De�ne for all u 2 U

0

e(u) :=

P

ft;sg

x;y

(s;u)

1�P

s;t;u

x;y

(u;u)

, with e(s) = 1, and de�ne e

�

(u)


orrespondingly with respe
t to x and y, with e

�

(s) = 1. By Lemma 3.2 we

have (1� 4
(jU j � 2))e

�

(u) � e(u) for all u 2 U

0

. We 
an 
on
lude that

X

u2Unftg

e(u)p

x;y

(u; t) � (1� 4(jU j � 1)
)P

s

x;y

(s; t) �

�(1�4(jU j�1)
)P

s

x;y

(s; t) = �(1�4(jU j�1)
)

X

u2Unftg

e(u)p

x;y

(u; t): (4)

Next de�ne p

x;y

(u; t) := P

U

x;y

(u; t): By re
ognizing that p

x;y

(u; t)e(u)=P

s

(s; t),

the probability that the last visit to U was at u 2 U from a start at s, is less

than or equal to the probability that the last visit to U was u with a start at

u (both a

ording to (x; y)), we have from the de�ning 
ondition on y that

jp

x;y

(u; t)e(u)� p

x;y

(u; t)e(u)j � ÆP

s

(s; t). After summing over Unftg we get

X

u2Unftg

e(u)p

x;y

(u; t) � (1� ÆjU j + Æ)

X

u2Unftg

e(u)p

x;y

(u; t) (5):

To show that u rea
hes t for some u 2 Unftg, it suÆ
es to show that

p

x;y

(u; t) + p

x;y

(u; t) > p

x;y

(u; t) for some u 2 Unftg: But assuming that

p

x;y

(u; t)+p

x;y

(u; t) � p

x;y

(u; t) for all u 2 Unftg, from the above sums in (4)

and (5) we must 
on
lude that 1� ÆjU j + �(1� 4
jU j) < 1, a 
ontradi
tion

to the initial assumption. 2

3.2 Continuity and Exiting

Be
ause of the unlimited number of stages, taboo probabilities and harmoni


fun
tions of time homogeneous Markov 
hains are not 
ontinuous with re-

spe
t to absolute 
hanges in transition probabilities. However, there is a 
on-

tinuity for relative 
hanges in these transitions. A result of the same spirit

but in a di�erent formal 
ontext is 
ontained in Freidlin and and Wentzell

(1984).

Lemma 3.5 Assume that the transitions p

s

2 �(S) at a subset U are


hanged su
h that for all t 2 S, in
luding s = t, the resulting p

s

�

(t) di�ers

from p

s

(t) by no more than a fa
tor of positive 
 < 1=(2jU j) (ne
essarily
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with p

s

�

(t) = 0 if and only if p

s

(t) = 0). Let P

T

�

(s; A) stand for the resulting

taboo probability. For all 
hoi
es of s, T , and A with T \ A = ;, P

T

(s; A)

di�ers from P

T

�

(s; A) by a fa
tor of at most 4
jU j. If the original Markov is

absorbing then the resulting Markov 
hain is absorbing and if r : S ! R is

a harmoni
 fun
tion with respe
t to the original Markov 
hain and r

�

is the

resulting harmoni
 fun
tion that agrees with r on all the absorbing states

then jr(s) � r

�

(s)j � 4
jU jM for every s 2 S, where M is a bound on the

di�eren
e between the fun
tion values of r on these absorbing states.

Proof: Let U := fs

1

; : : : ; s

N

g. Let P

T

i

(s; A) stand for the taboo prob-

ability when the 
hanges are made only at the subset fs

1

; s

2

; : : : ; s

i

g, and

de�ne es


i

(t; s) in the same way.

First we 
laim that for every �xed 
hoi
e of s; T; A with s 2 T that

P

T

i

(s; A) and P

T

i�1

(s; A) di�er at most by a fa
tor of 2
. Sin
e both P

T

i

(s

i

; A)

and P

T

i�1

(s

i

; A) are expe
tations over the next stage of some probabilities, we

have our 
laim for P

T

i

(s

i

; A) and a fa
tor of 
 by the de�ning assumption.

If s 6= s

i

then we get our result from the same observation and the formula

P

T

i

(s; A) = P

T[fs

i

g

i

(s; A)+P

T

i

(s; s

i

)P

T[fs;s

i

g

i

(s

i

; A)=P

s

i

i

(s

i

; T [B [A[ fsg),

where B is the set of states su
h that in either the ith or i + 1st Markov


hain there is no motion to the state s

i

from the set B.

From formula (1) we have 1�es


N

(t; s) = P

s

N

(s; t)=(P

s

N

(s; t)+P

fs;tg

N

(s; B))

and from above that 1� es


N

(t; s) does not di�er from 1� es
(t; s) by more

than a fa
tor of 2
N . Noti
e that 1 � a(s) 
an be written as the expe
ted

value of 1� es
(t; s) on the next stage, and therefore 1� a(s) does not di�er

from 1 � a

N

(s) by more than a fa
tor of 2
N , where a

N

is the resulting

absorption rate. This implies that a(s) = 1 if and only if a

N

(s) = 1 and

in this 
ase we have P

T

N

(s; A) = P

T[fsg

N

(s; A), P

T

(s; A) = P

T[fsg

(s; A), and

our result. Given a(s) 6= 1 then by P

T

(s; A) = P

T[fsg

(s; A)=(1 � a(s)) and

P

T

N

(s; A) = P

T[fsg

N

(s; A)=(1 � a

N

(s)) we also have our result. The 
laim


on
erning harmoni
 fun
tions follows by 
onsidering A to be any subset of

absorbing states. 2

Next we de�ne the 
on
ept of exit. (Due to the la
k of the semi-algebrai


analysis, we will be more restri
tive in our de�nition of an exit than Vieille

2000a or Solan 2000.) For any subset P of non-absorbing states a system

of exits from P is a 
olle
tion of parts of the transitions at the states in P

su
h that all motion from P to SnP must o

ur through one of these parts.
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Ea
h part in the 
olle
tion is 
alled an exit. Given that the Markov 
hain is

absorbing any subset of non-absorbing states must have a system of exits.

Assume that there is a partition P of the states su
h that fsg is in P

for every absorbing s and for every non-absorbing s 2 P 2 P q

s

2 �(S)

is the transition de�ned 
onditionally by the union of all the exits from P

at the state s. Let A be the set of absorbing states. For every P 2 P let

s

P

2 P be a representatative for the set P . We will 
reate two new time

homogeneous Markov pro
esses, one by extending the state spa
e and the

other by 
ontra
ting it. These 
onstru
tions are also in Vieille (2000
).

First we extend the state spa
e. For every s 2 P 2 P, 
reate two new

states s

a

and s

b

. De�ne S

�

:= fs

a

j s 2 Ag [

s2SnA

fs

a

; s

b

g, and the 
or-

responding Markov 
hain will be indexed by �. The states fs

a

j s 2 Ag

remain absorbing. At s

a

with s 2 P 2 P, the motion goes deterministi
ally

to s

b

P

. At s

b

the transition is labeled p

s

b

�

2 �(S

�

). Let f

s

be frequen
y

with whi
h q

s

is used. Let p

s

be the transition de�ned by p

s


onditioned

on the non-use of q

s

, given of 
ourse that f

s

6= 1. De�ne p

s

b

�

(t

a

) = f

s

q

s

(t)

and p

s

b

�

(t

b

) = (1 � f

s

)p

s

(t) (and otherwise zero if p

s

is not de�ned), with

p

s

b

�

(a) = p

s

(a) if a 2 A.

Given that the Markov 
hain is absorbing, next we 
ontra
t the state

spa
e. De�ne S

℄

= fs

P

j P 2 Pg. A previously absorbing state remains

absorbing. For every non-absorbing state s

P

let the transition at s

P

be

indu
ed by the distribution on the next state t

a

following s

b

P

in the above

Markov 
hain de�ned on S

�

. If t

a

is absorbing, then t is that next state.

If t

a

is not absorbing, the u = u

P

0

is the next state with t 2 P

0

2 P.

Sin
e the Markov 
hain on S

�

is absorbing, modulo events of zero probability

the transitions of S

℄

are well de�ned. In a di�erent 
ontext (without taboo

probabilities) a similar statement to the next lemma was proven by Vieille

(2000
).

Lemma 3.6: Assume that the Markov 
hain is absorbing. Let r be a

harmoni
 fun
tion on S and M > 0 a uniform bound on all di�eren
es in the

values of r. Let N be the number of the P that are not singletons, and let

0 < Æ <

1

2N

be given. Assume for every P 2 P and every distin
t pair s; t 2 P

that the probability of moving from t to s without passing through any exit

of P is at least 1� Æ. The new pro
esses on S

�

and S

℄

are absorbing and for

any pair of subsets A and T that are unions of members of P with A\T = ;

we have that P

A

�

�

(s; T

�

) di�ers from P

A

(s; T ) by no more than a fa
tor of
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4NÆ, where B

�

:= fs

a

; s

b

j s 2 Bg for all subsets B. With r

�

representing

the new harmoni
 fun
tion on S

�

determined by the expe
ted value of r on

the absorbing states and r

℄

the same for S

℄

we have r

�

(s

a

R

) = r

℄

(s

R

) for all

representative states s

R

and jr

�

(s

a

)� r(s)j � 4MNÆ for all s 2 S.

Proof: De�ne two new transitions (p̂

s

j s 2 S) and (p

s

j s 2 Sg) on

S. p̂

s

is determined by the distribution on the next state t

a

in S

�

from a

start at s

a

2 S

�

. p

s

is de�ned likewise, however from a start at s

b

2 S

�

.

The distribution on the states outside of P with the p

s

is the same as with

the original transitions p

s

on S. Be
ause of our assumption 
on
erning the

avoiding of exits, Lemma 3.5 applies to the di�eren
e between p̂ and p. The


laim for the taboo probabilities follows dire
tly from Lemma 3.5, as does

also the 
laim for the harmoni
 fun
tions. 2

Lemma 3.6 works be
ause it is based upon the rare use of an exit. Mu
h

more problemati
 is analysing the 
onsequen
es of the 
ertain use of an exit.

This is the 
ontent of Lemma 3.7.

Lemma 3.7 Assume the 
ontext of Lemma 3.6 and that p is an exit from

P at t 2 P with g(p) > 0. We have

1) jg(p)� g

℄

(p)j � 4NÆ + Æ,

2) g(p) and g

℄

(p) di�er by a fa
tor of no more than 4NÆ +

2Æ

�(p)

,

3) �(p) and �

℄

(p) di�er by a fa
tor of no more than 4NÆ + 2Æ +

4NÆ+Æ

g(p)

,

4) j�(p)� �

℄

(p)j � 8NÆ + 4Æ,

5) jv

r

(p)� v

r

℄

(p)j �M minf8NÆ +

Æ

g(p)

; 8NÆ +

2Æ

�(p)

)g.

Proof: 1) We de�ne ĝ to be the probability that there is no return to the

set P after using the exit p in the original Markov 
hain. From Lemma 3.6

we see that ĝ is within a fa
tor of 4NÆ of g

℄

(p). From the avoiding of exits

we get that jĝ � g(p)j � Æ, whi
h suÆ
es.

2) By de�nition g(p) � ĝ. First we show that es
(u; t) � Æĝ=((1� Æ)�(p))

for all u 2 P . De�ne w

u

be the probability that p will be used before returning

to u from a a start at t (with w

u

� Æ for all u 2 P ). De�ne �

u

to be the

probability that the last visit to P is through the exit p from a start at u;

we have �

u

� w

u

ĝ=(w

u

ĝ + es
(u; t)), whi
h translates to es
(u; t) � w

u

ĝ=�

u

.

Finally noti
e that �

u

doesn't di�er from �(p) by a fa
tor of more than Æ.

Next we 
ompare g(p) with ĝ. For every u 2 P let �

u

be the probability

that there is a return to P from the use of p in the original Markov 
hain
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and that u is the �rst member of P rea
hed. Noti
e that

P

u

�

u

= 1� ĝ. We

have g(p) = ĝ +

P

u

�

u

es
(u; t). This suÆ
es for (1� 2Æ=�(p))g(p) � ĝ. Now

use Lemma 3.6 for the 
on
lusion.

3) By de�nition �

�

(p) = f

p

g

�

(p)=a

�

(t

b

) and �(p) = f

p

g(p)=a(t). One way

to per
eive a(t) is as the re
ipro
al of the expe
ted number of visits to t from

a start at t. With this perspe
tive by Lemma 3.6 and the avoiding of exits

we get that a

�

(t

b

) and a(t) don't di�er by a fa
tor of more than 4NÆ + Æ.

This means that if g

�

(p) and g(p) don't di�er by a fa
tor of more than 


then �

�

(p) and �(p) don't di�er by more than a fa
tor of 
 + 4NÆ+ Æ. Sin
e

�

℄

(p) is also equal to the probability that the last visit to P starting at s

b

P

in the Markov 
hain S

�

went through the exit p we have that �

�

(p) is within

a fa
tor of Æ of �

℄

(p) and therefore �

℄

(p) and �(p) don't di�er by a fa
tor

of more than 
 + 4NÆ + 2Æ. By the same argument as in Part 1 
omparing

g

℄

(p) with g(p) we get jg

�

(p)� g(p)j � 4ÆN + Æ and therefore g

�

(p) and g(p)


annot di�er by a fa
tor of more than

4ÆN+Æ

g(p)

and our 
on
lusion.

4) The argument of Part 2 
an be repeated with the Markov 
hain de�ned

on S

�

instead of the original on S. The quantity g(p) would be repla
ed

by g

�

(p) and ĝ would be repla
ed by g

℄

(p). We have g

�

(p) � g

℄

(p) and

g

�

(p) = g

℄

(p) + (1� g

℄

(p))es


�

(s

b

; t

b

).

If g(p) � g

�

(p) we need only g

�

(p) � g

℄

(p) and the 
on
lusion of Part 2

to get g(p) � (1� 2Æ=�(p)� 4ÆN)g

�

(p). Combined with the arguments from

Part 3 we have our goal. On the other hand, if g

�

(p) � g(p) we get our result

from repeating Part 2 for g

�

(p) and g

℄

(p), the same arguments of Part 3, plus

the 
laim that (1� 4ÆN � Æ)es


�

(s

b

P

; t

b

) � es
(s

P

; t).

es


�

(s

b

; t

b

) is no more than (w+w

2

+ : : :)h

�

where w is the probability of

rea
hing an exit of P from s

b

P

before returning to t

b

and the quantity h

�

is

the expe
ted value of g

℄


onditioned on the use of one of these exits. On the

other hand we have that es
(s

P

; t) is at least w

^

h where

^

h is the probability

of no return to the set P in the original Markov 
hain 
onditioned on the use

of one of these exits. From Lemma 3.6 we have that

^

h and h

�

di�er by no

more than a fa
tor of 4ÆN . That w � Æ 
ompletes the proof of the 
laim.

5) From the proof of Part 1 we had that ĝ � (1 � Æ=g(p))g(p) and from

Part 2 that ĝ � (1� 2Æ=�(p))g(p). The rest follows from Lemma 3.6. 2

Part 4 of Lemma 3.7 is remarkable be
ause the sum of � over all transi-

tions in a set P will be jP j rather than something 
lose to one.
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3.3 Polarization

The pro
ess des
ribed below, of 
hanging the transitions through a 
onvex


ombination of two transitions, one giving a higher value and the other giving

a lower value of a harmoni
 fun
tion, with the 
onvex 
ombination yielding

the same value, we 
all polarization.

Lemma 3.8 Let s and t be two non-absorbing states of an absorbing

Markov 
hain.

(i) Let p be a part of the transition at t su
h that �(p) � � > 0.

(ii) Let p be a repla
ement transition at t su
h that g(p) � �.

(iii) Let p be a transition at t that is a 
onvex 
ombination of transitions

as des
ribed in (i) and (ii).

In all three above 
ases, if we repla
e the transitions at t by p, in the 
ase

of (i) or (iii) using normalization, the resulting pro
ess is absorbing and the

absorption rate of s is at least � times what is was before the 
hanges were

made.

Proof: Let b, 
, d and e stand for the same quantities as in the proof of

Lemma 3.1, with A the set of absorbing sets and B the empty set.

(i) It follows from Lemma 3.1.

(ii) Let a

�

(s), d

�

and e

�

be the 
orresponding quantities when p is the

transition at t. We assume that e

�

+ d

�

b

b+


� �. Suppose for the sake of


ontradi
tion that �(b +


e

d+e

) = �a(s) > a

�

(s) = b +


e

�

d

�

+e

�

. Then we have

be

�

+ 
e

�

+ bd

�

� (b+ 
)� � �(b+


e

d+e

) >

bd

�

+be

�

+
e

�

d

�

+e

�

. This implies d

�

+ e

�

> 1,

also a 
ontradi
tion.

(iii) First we must assume that b < �a(s), sin
e otherwise there would

be nothing to prove. Let a

i

, d

i

and e

i

for i = 1; 2 stand for the resulting

probabilities from (i) and (ii), respe
tively, and after normalization in the


ase of (i). With the 
onvex 
ombinations

~

d := �d

1

+ (1 � �)d

2

and ~e :=

�e

1

+(1��)e

2

being the new transition quantities, we have that our desired

result is equivalent to

~e

~e+

~

d

� �

e

e+d

+

�b�b




. But this follows from (i), (ii), and

the fa
t that

x

1

y

1

� z and

x

2

y

2

� z implies

�x

1

+(1��)x

2

�y

1

+(1��)y

2

� z for all non-negative

quantities x

i

; y

i

; z and 0 � � � 1. 2

Proposition 3.9 Let r

1

and r

2

be two harmoni
 fun
tions, and we assume

that the Markov 
hain is absorbing. Let N be the number of non-absorbing

states. Let 1 be a uniform bound on all di�eren
es in the values of r

1

and
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r

2

. Let w

1

, w

2

, v

1

, and v

2

stand for w

r

1

, w

r

2

, v

r

1

, and v

r

2

, respe
tively.

Let 1=2 > � > Æ > 
 > 0, with Æ <

��

3N

2N(3N)

N

. Let p

�

s

be a part of the

transition at s su
h that w

2

(p

�

s

) � r

2

(s)� � (in
luding the possibility that p

�

s

is empty). Assume that if �(p

�

s

) � 
 then there is an alternative transition

p

s

at s su
h that w

2

(p

s

) � r

2

(s) � �, jv

1

(p

s

) � r

1

(s)j � Æ, and there exists

another part q

s

of the transition at s su
h that q

d

s

, the 
omplement of the

union of q

s

with p

�

s

, satis�es (v

2

(q

d

s

)� r

2

(s))�(q

d

s

) � NÆ=�. For every subset

T � fs j �(p

�

s

) � 
; w

2

(q

s

) > r

2

(s)g de�ne a new time homogeneous Markov


hain by the transitions at t 2 T de�ned by �p

t

+ (1� �)q

t

with � satisfying

�w

2

(p

t

) + (1� �)w

2

(q

t

) = r

2

(t) and furthermore for every v 2 SnT the part

p

�

v

is dis
arded, followed by normalization. Let the subs
ript T stand for the

quantities determined by the new transitions with the 
hanges in T .

Con
lusion: There is a subset T � fs j �(p

�

s

) � 
; w

2

(q

s

) > r

2

(s)g su
h

that the new pro
ess is absorbing and for both i = 1; 2 and all s 2 S jr

i

T

(s)�

r

i

(s)j � �

Proof: First we 
onsider what happens when the 
hanges are made only

at a set T (meaning that the part p

�

s

is kept in for v 62 T ), whi
h we will

label with T; �. Be
ause r

2

remains a harmoni
 fun
tion after the 
hanges

are made and there is always a positive probability at all states in T that

the harmoni
 fun
tion drops by �, the resulting time homogeneous Markov


hain is absorbing with r

2

T;�

(s) = r

2

(s) for every s 2 S.

Next we must determine whi
h subset T will be 
hosen. Choose any t

1

su
h that �(p

�

t

1

) � �

2

=2N , and put t

1

in T . If there exists no su
h t 2 S then

let T be the empty set. At any set T with jT j = k � 1 formed so far, put

into T any t

k

su
h that �

T;�

(p

�

t

k

) � �

2

=2N , and stop if there is no su
h new

state t

k

.

Claim: For any set T that has been already 
hosen and any t 62 T that


ould be added to T we have a

T[ftg;�

(u) �

�

3

3N

a

T;�

(u) �

�

3

3N

�

3jT j

(3N)

jT j

a(u) for all

u 2 S, g

T;�

(q

t

) �

�

3

3N

�

3jT j

(3N)

jT j

g(q

t

) and w

2

(q

t

) > r

2

(t).

Proof of Claim: Assume that t will be added to T . Look at the tran-

sition q

d

t

and the indentities w

2

T;�

(q

d

t

)� r

2

T;�

(t) = w

2

(q

d

t

)� r

2

(t) = (v

2

T;�

(q

d

t

)�

r

2

T;�

(t))g

T;�

(q

d

t

) = (v

2

(q

d

t

)� r

2

(t))g(q

d

t

) from the fa
t that r

2

remains the har-

moni
 fun
tion. Consider the de�nitions �

T;�

(q

d

t

) = f

q

d

t

g

T;�

(q

d

t

)=a

T;�

(t) and

�(q

d

t

) = f

q

d

t

g(q

d

t

)=a(t); they show that the new absorption rate determines

alone the new value (v

2

T;�

(q

d

t

)� r

2

T;�

(t))�

T;�

(q

d

t

). From the indu
tion assump-
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tion we must 
on
lude that �

T;�

(q

d

t

)(v

2

T;�

(q

d

t

)� r

2

(t)) �

(3N)

jT j

�

3jT j

�(q

d

t

)(v

2

(q

d

t

)�

r

2

(t)) �

(3N)

jT j

�

3jT j

NÆ

�

< �

3

=6N . If q




t

is the union of q

d

t

with p

�

t

from �

T;�

(p

�

t

) �

�

2

=2N and w

2

T;�

(p

�

t

) � r

2

(t)� � we get that �

T;�

(q




t

)(v

2

T;�

(q




t

)� r

2

(t)) � �

�

3

3N

,

whi
h implies that w

2

(q

t

) > r

2

(t) and �

T;�

(q

t

) � �

3

=(3N).

Next suppose for the sake of 
ontradi
tion that g

T;�

(q

t

) <

�

3

3N

�

3jT j

(3N)

jT j

g(q

t

).

Sin
e �(q

t

) = f

q

t

g(q

t

)=a(t), �

T;�

(q

t

) = f

q

t

g

T;�

(q

t

)=a

T;�

(t) and �

T;�

(q

t

) � �

3

=(3N),

by the indu
tion assumption we would be for
ed to a

ept �(q

t

) > 1, an im-

possibility.

By Lemma 3.8 we have our 
laim on the absorbing rates for all states

other than t. For the state t we have g

T;�

(q

t

) � f

q

t

g

T;�

(q

t

) = �

T;�

(q

t

)a

T;�

(t) �

�

3

a

T;�

(t)=(3N). With g

T;�

(p

t

) � � our 
laim is proven.

With the 
laim we 
on
lude from Lemma 2.1 that jr

1

T;�

(s) � r

1

(s)j �

(3N)

jT j

�

3jT j

ÆN � �=2 for all s 2 S.

Next, we must show that it is impossible for any state s to satisfy �

T;�

(p

�

s

) �

�

2

=N . This holds for all states with �(p

�

s

) � 
, by 
onstru
tion. Let's assume

that �(p

�

s

) < 
; this means that the probability of ever using p

�

s

in the original

Markov 
hain 
annot ex
eed 
=�. But by the above 
laim we know addition-

ally that the probability of using p

�

s

in the altered Markov 
hain indexed by

T; � 
annot ex
eed




�

�

3(N�1)

(3N)

N�1

< �

2

=2N .

Next we must 
onsider the in
uen
e of the removed p

�

t

in the above

Markov 
hain indexed by T; �. For any s with �

T;�

(p

�

s

) � �

2

=2N the 
han
e

of ever using the transition p

�

t


annot ex
eed �=2N , and so they 
annot 
on-

tribute an average of more than �=2 to either the fun
tion r

1

or r

2

. 2

4 From Markov Chains to Equilibria

4.1 Appli
ation of the Doob-Kolmogorov Inequality

We must prove Proposition 4.2, a 
ornerstone of our analysis.

Lemma 4.1: Let X be the �nite state spa
e of a time homogeneous

Markov 
hain with probability transitions (p

x

2 �(X) j x 2 X). Let v :

X ! R be a harmoni
 fun
tion and let M > 0 be a bound for the maximal

di�eren
e between all values of v.

For every x 2 X de�ne the non-negative quantities w(x) by w(x) =

25



P

y2X

p

x

(y)jv(y)�v(x)j. Let n be the number of states x su
h that w(x) > 0.

For any path p = (x

0

; x

1

; x

2

; :::) in X de�ne w(p) =

P

1

i=0

w(x

i

).

Con
lusion: The expe
ted value of the fun
tion w does not ex
eed Mn.

Proof: We isolate the problem, handling ea
h state x separately. Sin
e

jv(y)� v(x)j is always less than or equal to M times es
(y; x), we have that

w(x) � a(x)M . Therefore the part of the sum that 
omes from visits to x

does not ex
eed a(x)M

P

1

i=0

(1� a(x))

i

=M . 2

Proof of Proposition 4.2 (as stated in the introdu
tion):

De�ne the random variable r

i

on the odd steps i to be v(y

i

) � v(x

i�1

),

and R

i

to be the sum of the r

k

for odd k � i. For y 2 Y

x

de�ne r(y) to be

v(y)� v(x).

De�ne a new quantity, ~w(x) :=

P

y2Y

x

p

x

(y)jv(y)�v(x)j. Let w(x) be the

old quantity on the Markov 
hain from Lemma 4.1 de�ned only on the X, {

we ignore the visits to the Y

x

sets, and 
onsider only the motions from X to

X.

The Doob submartingale inequality states that if (S

i

j i = 0; 1; : : : ; n)

is a martingale with zero expe
tation then for every n � 0, positive value


 > 0 and exponent p � 1 the probability that max

i�n

jS

i

j > 
 is less than

E(jS

n

j

p

)=


p

(Williams 1991, Se
tion 14.6). Sin
e the martingale property

implies that E(S

2

n

) is equal to the sum over all the stages 1 � i � n of E(s

2

i

)

where s

i

is the 
hange in value between the i� 1st stage and the ith stage,

we have for every �nite even and positive Q

Probability

�

max

i<Q

jR

i

j > �

�

<

1

�

2

E

�

X

i<Q; y2Y

x

i�1

p

x

i�1

(y)r(y)

2

�

:

By taking the limit as Q goes to in�nity and Æ � jr(y)j we get

Probability

�

max

i<1

jR

i

j > �

�

<

1

�

2

E

�

X

i<1; y2Y

x

i�1

p

x

i�1

(y)r(y)

2

�

�

Æ

1

�

2

E

�

X

i<1; y2Y

x

i�1

p

x

i�1

(y)jr(y)j

�

= Æ

1

�

2

E

�

X

i<1; y2Y

x

i�1

~w(x

i�1

)

�

:

Sin
e by the triangle inequality ~w(x) � w(x) for all x, we have

Probability

�

max

i<1

jR

i

j > �

�

< Æ

1

�

2

E

�

X

i<1; y2Y

x

i�1

w(x

i�1

)

�

;
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and by Lemma 4.1 this is no more than ÆMn=�

2

. So with � � 1=2, we have

our result from the size of Æ. 2

The problem of extending Proposition 4.2 to Markov 
hains that are not

time homogeneous (or have 
ountably many states) lies with Lemma 4.1 and

not in the proof of Proposition 4.2.

The following 
orollary relates the above work on Markov 
hains to our

two-person sto
hasti
 games. Be
ause the appli
ation of this 
orollary in-

volves an altered state spa
e, this result should be understood in an abstra
t

way.

Corollary 4.3: Let (x; y) 2 X � Y be stationary absorbing strategies.

Assume that

1) for both players k = 1; 2 and s 2 S r

k

x;y

(s) is greater than j

k

z

(s) � � with

z = x if k = 2 and z = y if k = 1, and that

2) for both player k = 1; 2 and all moves 
 used with positive probability

with (x; y) by Player k the value w

k

x;y

(
) is within Æ of r

k

x;y

(s).

Con
lusion: For any positive � < 1=2 if Æ is no more than

�

3

n

then the

strategies (x; y) generate a 4�-equilibrium of the sto
hasti
 game.

Proof: We de�ne the following strategy for Player k. For every starting

point s

0

2 S let n

s

0

be large enough su
h that with a start at s

0

and the

play a

ording to (x; y) the probability that there is no absorption before the

n

s

0

th stage is less than �=10. Let s

0

; s

1

; : : : be any sequen
e of states rea
hed

in the game and for both k let 


k

0

, 


k

1

; : : : be the sequen
e of moves made by

Player k. For k

0

6= k as long as

P

l

i=0

(w

k

0

x;y

(


k

0

i

) � r

k

0

x;y

(s

i

)) � � and the stage

l does not ex
eed n

s

0

and Player k

0

never 
hooses 


k

0

i

outside of the support

set of his stationary strategy, then Player k 
ontinues to a
t a

ording to

his stationary strategy. As soon as one of the above 
onditions is violated

at some stage l then on the next stage l + 1 both players punish ea
hother

a

ording to the fun
tions 


1

+ � and 


2

+ �. (The mutual punishment is

ne
essary be
ause otherwise a player 
ould intentionally prolong the game

with an interest in punishing the other player. The result 
an be extended

to multi-player sto
hasti
 games if it 
an be determined who should punish

whom in all situations!) That no player k 
an obtain an expe
ted payo�

more than 2� above the fun
tion r

k

by 
hoosing a di�erent strategy is self

explanatory. That punishment o

urs before absorption with probability no

more than 2� if both players adhere to the suggested strategies follows from

27



Proposition 4.2. 2

4.2 Situations

Next we 
reate an expanded state spa
e from the original state spa
e through

partitions of the histories. For every s 2 S let P

s

be a partition ofH

s

. De�ne

^

S to be the disjoint union [

s2S

P

s

. For every t 2

^

S let b(t) 2 S be the member

of S su
h that t 2 P

b(t)

. A member of

^

S we 
all a situation. We de�ne the

situations

^

S to be normal if and only if the next u 2

^

S following a t 2

^

S

is determined by the situation t, the 
hoi
e of moves by the players at t,

and the next s 2 S with b(u) = s. Normal
y implies that one 
an de�ne a

sto
hasti
 game on the situations as a new state spa
e.

Corollary 4.4: Let the situations

^

S be normal, let absorbing stationary

strategies (x; y) 2

Q

s2

^

S

�(A

b(s)

1

)�

Q

s2

^

S

�(A

b(s)

2

) be de�ned on the situations

^

S, with r̂

k

x;y

:

^

S ! R the expe
ted payo� for Player k as determined by the

above stationary strategies and the fun
tions r

k

on the absorbing states and

ŵ

k

x;y

the 
orresponding expe
ted value of r̂

k

x;y

on the next stage. Assume that

1) for every s 2

^

S r̂

k

(s) � j

k

z

(b(s)) � � where z = x if k = 2 and z = y if

k = 1 and

2) for every move 
 used with positive probability at a situation s by Player

k jŵ

k

x;y

(
)� r̂

k

x;y

(s)j � Æ.

If Æ is no more than

�

3

j

^

Sj

then these stationary strategies generate a 4�-

equilibrium of the original sto
hasti
 game.

Proof: Be
ause a sto
hasti
 game is de�ned by the normality of

^

S and

the 
onditions of Corollary 4.3 are preserved, the result follows by Corollary

4.3. 2

4.3 First Main Theorem

For any subset R � N and a state s 2 R, a pair a 2 A

s

1

and b 2 A

s

2

of moves

is 
alled a primitive exit from the set R if with positive probability there is

motion from s to SnR using the pair a and b. By the de�nition of �, any use

of a primitive exit at s results in a probability of at least � of rea
hing the


omplement of R.

For every subset B of Player Two moves in a set R we de�ne a B exit (or
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simply exit if there is no ambiguity) from R to be any pair (a; b) of moves at

an s 2 R su
h that (a; b) is already a primitive exit from R or b 2 B. Let

E

B

(R) stand for the set of all B exits from R.

De�ne B




x;y

(s) to be those moves of Player Two at the state s with

w

2

x;y

(b) � r

x;y

(s) � 
, and let B




x;y

(R) be the union of all the B




x;y

(s) for

all s 2 R. For every s 2 N de�ne z




x;y

(s) to be

P

b2B




x;y

(s)

�

b

. For any subset

R � N de�ne z




x;y

(R) :=

P

s2R

z




x;y

(s).

For any stationary strategy x 2 X (or y 2 Y ) de�ne a simpli
ation of x to

be another stationary strategy x 2 X obtained from x by dropping the use of


ertain moves, followed by normalizing what remains. Call the simpli�
ation

a 
-simpli
ation if the frequen
y of the moves removed did not ex
eed 
. The

simpli
ation is within a set T of states if 
hanges were made only within the

set T .

Theorem 1: Assume for every 
hoi
e of positive 1=2 > � > � > �̂ > ~� > 0

with � < �

3

=(50jN j), �̂ <

� �

3jNj

5(3jN j)

jNj

jN j

and ~� < � �̂=40jN j that

1) there are absorbing stationary strategies (x; y) 2 X � Y with

a) r

2

x;y

(s) � j

2

x

(s)� �=2 for all s 2 N ,

b) r

1

x;y

(s) � j

1

y

(s)� �=2 for all s 2 N , and


) for every move a of Player One used in x with positive probability at s we

have jw

1

x;y

(a)� r

1

x;y

(s)j � ~�,

2) a partition R of a subset P � N and for every R 2 R a set B

R

of Player

Two moves in R 
ontaining B

�

x;y

(R) su
h that

a) 8s 62 P z

2:5�

x;y

(s) < ~� and

b) for every distin
t s; t 2 R 2 R the probability of rea
hing s from t before

using a member of E

B

R

(R) is at least 1� 


�

with 


�

:= ~� �=(40njN j),

and for any R 2 R if z

2:5�

x;y

(R) � ~� then there is a spe
ial subset D

R

� R, a

representative s

R

2 D

R

and

3) an ~� simpli
ation y

R

of y within R 
reated by removing the set B

R

of

moves su
h that

a)v

2

x;y

(b) � r

2

(s) for every b 2 B

R

\ A

2

s

and

b) jr

1

x;y

R

(s

R

)� r

1

x;y

(s

R

)j � �̂,

4) ~�-simpli
ations (x

C

; y

C

) of (x; y) within D

R

su
h that with (x

C

; y

C

) the

play never leaves the set D

R

and from any state in D

R

all other states in D

R

are rea
hed with probability one, and

5) a strategy y

D


reated from y

C

by adding to y

C

in the setD

R

small probabil-
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ities of using a subset of Player Two moves V

R

used inD

R

with V

R

� B

2:4�

x;y

(R)

and a real positive value �

R

� r

2

x;y

(s

R

)� 2:4� su
h that

a) with (x

C

; y

D

) for every pair s; t 2 D

R

the probability of rea
hing s from t

before using a member of V

R

is at least 1� 


�

b) �

R

� j

2

x

(t)� � for all t 2 D

R

,


) for all moves b 2 V

R

jw

2

x;y

(b)� �

R

j � ~�, and

d) jr

1

x

C

;y

D

(s)� r

1

x;y

(s)j � �̂.

Con
lusion: With the assumption that Player One 
an send transition in-

dependent signals, the sto
hasti
 game has approximate equilibria.

Proof: We de�ne the set B of Player Two moves to be [

R2R

B

R

[

s 62P

B

s

2

,

and de�ne the exits to be the B exits. Let the 
orresponding state spa
es S

�

and S

℄

from Lemma 3.6 be indu
ed by (x; y) and the partition R[ffsg j s 62

Pg. For every s

R

2 S

℄

let p

�

R

be the transition at s

R

in S

℄

indu
ed by

the Player Two moves in B

2:5�

x;y

(R). For every R 2 R de�ne p

R

to be the

alternative transition from s

R

in S

℄

indu
ed by the Player Two moves V

R

a

ording to (x

C

; y

D

). De�ne q




R

to be the transition indu
ed by the moves

in B

R

, and de�ne q

d

R

so that q




R

is the disjoint union of q

d

R

with p

�

R

.

We will 
on�rm the 
onditions of Proposition 3.9 on the state spa
e S

℄

,

with 2:4�, 2�̂, and 2~� the quantities �, Æ, and 
 of that lemma, respe
tively.

First, by Lemma 3.6 the Markov 
hain on S

℄

is absorbing. For i = 1; 2

let r

i

℄

: S

℄

! R be the harmoni
 fun
tion that agrees with the fun
tion r

i

on

the absorbing states. If �

℄

(p

�

s

R

) � 2~� then by Lemma 3.7 z

2:5�

x;y

(R) � 3~�=2 and

if s 62 P then �

℄

(p

�

s

) � 1:1z

2:5�

x;y

(s) � 1:1~�. By Lemma 3.6 we have for every

representative s

R

that r

i

℄

(s

R

) is within 4


�

jN j of r

i

x;y

(s

R

). Equally important,

Lemma 3.7 implies that w

r

2

℄

(p

�

R

) � r

2

℄

(s

R

) � 2:4�, and jv

r

1

℄

(p

R

) � r

1

℄

(s

R

)j �

11�̂=10. Sin
e q

d

R

is indu
ed by some B

R

moves by Lemma 3.7 and Condition

3a we have (v

r

2

℄

(q

d

R

)� r

2

℄

(s

R

))�

℄

(q

d

R

) < 2~�.

Left to 
on�rm is that jv

r

1

℄

(q

R

)�r

1

℄

(s

R

)j � 2�̂. We apply Lemma 3.6 to the

pair (x; y

R

) and the transitions it indu
es on S

℄

. Sin
e the avoiding of exits by

(x; y) implies the same for the pair (x; y

R

), we have that jr

1

(s

R

)�r

1

x;y

R

(s

R

)j �

4


�

jN j, where r

1

is the harmoni
 fun
tion indu
ed by (x; y

R

) on S

℄

. r

1

(s

R

)

is equal to v

r

1

℄

(q

R

). With the given jr

1

x;y

R

(s

R

) � r

1

x;y

(s

R

)j � �̂ and the above

relation of r

1

x;y

to r

1

℄

we are done establishing the 
onditions of Proposition

3.9.

We apply Proposition 3.9 to S

℄

with T the subset of R that has been
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polarized. We 
on
lude that the new harmoni
 fun
tions ~r

i

T

:= (r

i

℄

)

T

on S

℄

satisfy j~r

i

T

(s)� r

i

x;y

(s)j � 3� for all s 62 P and j~r

i

T

(s

R

)� r

i

x;y

(s

R

)j � 3� for all

R 2 R.

Next we de�ne the situations

^

S, with one, two, or three situations de�ned

for ea
h original state in S. For any s 62 P or for s 2 R 2 R with R 62 T

not polarized there is only the situation s

e

(in
luding the 
ase of absorbing

states). We always start the game at an s

e

. At any situation s

e

for s 62 P

or s in a non-polarized R 62 T the players perform (x

s

; ŷ

s

) where ŷ

s

is the




�

simpli
ation of y

s

resulting from the removal of all Player Two moves in

B

2:5�

x;y

(s). If s is in a polarized R 2 T and is not the representative s

R

the

players perform (x; y

R

). Following any s

e

other than s = s

R

the next situation

is a t

e

, where t is the next state in S. Also following the performan
e of an

exit, no matter what the situation was on the previous stage, if t 2 S o

urs

on the following stage then the next situation is also t

e

. This means that

only motion inside of an R 2 T involves situations other than those with the

subs
ript e.

At any s 2 R 2 T there is either two situations s

e

and s

f

if s 62 D

R

or

three situations s

e

, s

f

, and s

g

if s 2 D

R

. For su
h an R 2 T let �

R

be the

quantity determined by the appli
ation of Proposition 3.9 to the transitions

on S

℄

. Sin
e Player One 
an send signals, for every s

R

2 D

R

for a polarized

R 2 T we asso
iate one of every pair of her moves with the symbol f and the

other with the symbol g. If s

e

R

is the present situation then with probability

�

R

Player One 
hooses a move asso
iated with the symbol g and with 1��

R

a move asso
iated with the symbol f ; in both 
ases the players perform

(x

C

; y

C

). (Be
ause all moves are paired, we 
an modify x

C

to use only those

moves 
orresonding to f or only moves 
orresponding to g without 
hanging

the transition probabilities in the spa
e S.) If t is the next state and a move


orresponding to f was used, then t

f

is the next situation; otherwise the next

situation is t

g

. At any s

f

with s 2 R 2 T the play 
ontinues a

ording to

(x; y

R

), always to a next situation t

f

if there was no use of an exit. On the

other hand, from any s

g

with s 2 D

R

the motion follows (x

C

; y

D

), and unless

a move from V

R

is used the next situation is a t

g

, ne
essarily with t 2 D

R

.

De�ne r̂

i

to be the harmoni
 fun
tion on

^

S determined by the above

de�ned stationary behavior and r̂

i

= r

i

on the absorbing states. Given the

above 
onditions, to apply Corollary 4.4 it suÆ
es that neither player i 
an


hange the expe
ted value of r̂

i

by more than 10� at any one stage. With
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the role of the �

R

we need only show that r̂

i

is within � of r

i

℄

on all the s

R

and the s 62 P . To do this, we introdu
e two new transitions de�ned on

S, indexed by Æ and o. p

o

and p

Æ

are identi
al on states s that are not in

a polarized R, and then it is that indu
ed by the behavior at the situation

s

e

. At s in a polarized R 2 T p

s

o

is the distribution determined by the

next situation t

e

following the situation s

e

. p

s

Æ

is determined by the next

situation t

e


onditioned on having rea
hed either s

f

R

or s

g

R

before any exit

was performed. The p

s

Æ

transitions generate harmoni
 fun
tions r

i

Æ

that are

identi
al to r

i

℄

on the S

℄

, and the p

o

transitions generate harmoni
 fun
tions

r

i

o

that are identi
al to r̂

i

on the subset fs

e

j s 2 Sg. Be
ause �

R


annot be

greater than 1� 2� and the probability from a situation s

e

that an exit from

the stationary strategies (x; y

R

) is used before getting to s

e

R

is no more than

than 


�

, for every s; t 2 S the transition probability p

s

o

(t) does not di�er by

more than a fa
tor of 


�

=� from p

s

Æ

(t). Finally Lemma 3.5 implies that the

fun
tions r

i

Æ

and r

i

o

do not di�er by more than 4


�

jN j=� < ~�. 2

5 The auxiliary game

The main issue is to de�ne the \
orre
t" dis
ounted evaluation of Player

Two, sin
e, as shown in Solan (2000), a naive de�nition of his dis
ounted

evaluation does not prove equilibrium existen
e when there are a multitude

of non-absorbing states.

We assume that positive � and � have been �xed.

5.1 The fun
tion �

Let b be any move of Player Two at a state s 2 N .

For any (x; y) 2 X � Y de�ne

~g

b

x;y

=

(

1 g

b

x;y

� �

g

b

x;y

=� g

b

x;y

< �:

De�ne the auxiliary absorption rate by ~a

x;y

(s) =

P

b2B

y

s

b

~g

b

x;y

: Note that

a(s) � ~a(s) � a(s)=�.

De�ne ~v

2

(b) = (1�

g

b

~g

b

)r

2

(s) +

g

b

~g

b

v

2

(b) (6)
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with ~v

2

(b) := r

2

(s) if g

b

= ~g

b

= 0.

Next we need to use large quantities Q

1

> 1 and Q

2

> 1 that will be

determined pre
isely later (in the next se
tion) by the 
hoi
e of �, �, �, �̂ and

~�. De�ne L := Q

1

Q

2

and de�ne K := L

jN j

.

De�ne the fun
tion h : [1;1) ! [1; K℄ by h(r) = minfr;Kg. Order the

members fs

1

; : : : ; s

m

g of N with ~a

x;y

(s

1

) � ~a

x;y

(s

2

) � : : : ~a

x;y

(s

m

). De�ne

~w

x;y

(s

k

) =

m�1

Y

j=k

h(

~a

x;y

(s

j+1

)

~a

x;y

(s

j

)

):

For any move b at a state s 2 N de�ne g

b

x;y

to satisfy

(1� ~g

b

x;y

) = (1� g

b

x;y

)(1� g

b

x;y

): (7)

If ~g

b

x;y

= 1, then g

b

x;y

= 1 as well. Note that

g

b

v

2

(b) + (1� g

b

)g

b

r

2

(s) = g

b

v

2

(b) + (~g

b

� g

b

)r

2

(s) = ~g

b

~v

2

(b): (8)

For every s 2 N and h 2

~

H denote N

s

(h) = #fn 2 N j s

n

= sg 2 N[1:

For 1 � i � N

s

(h) let n

s

i

(h) be the stage with the ith o

urren
e of the state

s in h. If the initial state of h is s, then n

s

1

= 0 and N

s

(h) � 1.

De�ne the dis
ounted evaluation of a move b at a state s 2 N a

ording

to

�

b

x;y

= E

b

x;y

r

2

(h) [

N

s

(h)�1

X

i=1

g

b

n

s

i

(h)

(1�

Æ

~w

x;y

(s)

)

i�1

i�1

Y

k=1

(1� g

b

n

s

k

(h)

)+

(1�

Æ

~w

x;y

(s)

)

N

s

(h)�1

N

s

(h)�1

Y

k=1

(1� g

b

n

s

k

(h)

) ℄ ; (9)

where E

b

x;y

stands for the expe
tation over all in�nite histories h 2

~

H with

initial state s

0

= s, assuming that Player Two plays the a
tion b at stage

0, the �rst stage, and afterwards follows y, whereas Player One follows x

always.

Lemma 5.1 The fun
tion �

b

x;y

obeys the properties

�

b

x;y

= ~g

b

x;y

~v

2

x;y

(b) + (1�

Æ

~w

x;y

(s)

)(1� ~g

b

x;y

)�

x;y

(s) (10)
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and

r

2

x;y

(s) = �

x;y

(s)

 

1 +

Æ(1� ~a

x;y

(s))

~w

x;y

(s)~a

x;y

(s)

!

(11)

where �

x;y

(s) =

P

b2A

s

2

y

s

b

�

b

x;y

.

Proof:

We now verify that � satis�es (10) and (11). Separate the summation in

(9) into three parts.

� All histories su
h that N

s

(h) = 1. The probability of this event is g

b

,

and the 
onditional expe
tation is v

2

(b).

� All histories su
h that N

s

(h) > 1 and i = 1. The probability of this

event is 1� g

b

, and the 
onditional expe
tation is g

b

r

2

(s).

� All histories su
h that N

s

(h) > 1 and i > 1. The probability of this

event is 1�g

b

. Fa
tor out one power of (1�g

b

)(1�

Æ

~w

); the 
onditional

expe
tation is (1 � g

b

)(1 �

Æ

~w

)�(s). By (7) this part 
ontributes (1 �

~g

b

)(1�

Æ

~w

)�(s) to the sum.

Putting together the three parts, with (8) 
onne
ting the �rst two parts, we

get (10). For equation (11) we use (10) and take the expe
tation with respe
t

to the moves. 2

Noti
e that formula (11) is a slight variation of the standard relation-

ship between dis
ounted and undis
ounted evaluations. � will serve as the

auxiliary dis
ounted payo� evaluation of Player Two. Note that r

2

x;y

(s) �

�

x;y

(s) 8s 2 N : De�ne �

x;y

(s) to be maximal value max

b2A

s

2

�

b

x;y

.

Lemma 5.2: For every s; t 2 N , 
 > 0, and (Æ; x; y) 2 (0; 1℄�X � Y

� ~a

x;y

(t) � K~a

x;y

(s) implies that ~w

x;y

(t)~a

x;y

(t) � ~w

x;y

(s)~a

x;y

(s),

� ~w

x;y

(s)~a

x;y

(s) � ~w

x;y

(t)~a

x;y

(t) and r

2

x;y

(s) � r

2

x;y

(t) + 
 imply that

�

x;y

(s) � �

x;y

(t) + 
 + Æ.

Proof: The �rst part follows dire
tly from the de�nition of ~w. For the se
ond

part, note that for every r; ~w; a > 0 and 0 < Æ < 1

r ~wa

~wa + Æ(1� a)

�

r ~wa

~wa + Æ

=

r ~wa

2

Æ

( ~wa + Æ)( ~wa+ Æ � Æa)

�

r ~wa

2

Æ

2

~w

2

a

2

=

rÆ

~w

:
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Moreover,

r ~wa

~wa+Æ

is an in
reasing fun
tion in ~wa. Given ~w � 1, from the above

we have that r

2

(s) and ~w(s)~a(s) determine �(s) ex
ept for a quantity of no

more than Æ. 2

5.2 The Best Reply Corresponden
e

For every state s 2 N de�ne

B

s

Æ;1

(x; y) = argmax

a2A

s

1

w

1

x;y

(a)

B

s

Æ;2

(x; y) = argmax

b2A

s

2

�

b

x;y

if �

x;y

(s) > j

�

x

(s)

B

s

Æ;2

(x; y) = J

�

x

(s) [ argmax

b2A

s

2

�

b

x;y

if �

x;y

(s) = j

�

x

(s):

B

s

Æ;2

(x; y) = J

�

x

(s) if �

x;y

(s) < j

�

x

(s):

Player One maximizes her un-dis
ounted payo�, while Player Two maximizes

his auxiliary payo�, given that it is not too small.

Let the 
orresonden
es B

s

Æ;1

and B

s

Æ;2

be those de�ned by the 
losure of the

graphs of the 
orresponden
es B

s

Æ;1

and B

s

Æ;2

in (X�Y )�A

s

1

and (X�Y )�A

s

2

,

respe
tively. De�ne 
onv (B

s

Æ;1

) and 
onv (B

s

Æ;2

) to be the 
orresponden
es

with graphs in (X � Y )�X

s

and (X � Y )� Y

s

, respe
tively, su
h that z 2


onv (B

s

Æ;1

(x; y)) if and only if fa 2 A

s

1

j z

a

> 0g is a subset of B

s

Æ;1

(x; y)

and z 2 
onv (B

s

Æ;2

(x; y)) if and only if fb 2 A

s

2

j z

b

> 0g is a subset of

B

s

Æ;2

(x; y). De�ne the 
orresponden
es B

Æ;1

from X�Y to X so that (x; y) in

the domain 
orresponds to the sets B

s

Æ;1

(x; y) in the range, and likewise de�ne

the 
orresponden
e B

Æ;2

from X � Y to Y . We de�ne the 
orresponden
e

F

Æ

: X � Y !! X � Y by F

Æ

(x; y) = (B

Æ;1

(x; y); B

Æ;2

(x; y)). By Kakutani's

�xed point theorem for every Æ > 0 the 
orresponden
e F

Æ

has a �xed point.

5.3 Two Lemmas on Fixed Points

We assume in the rest of the se
tion that (x; y) is a �xed point for F

Æ

. We

prove Lemmatta 5.4 and 5.5, des
ribed in the introdu
tion.

Remark 5.3: Sin
e the jump 
orresponden
e is used before � gets 
lose

to 0, any �xed point (x; y) of F

Æ

is absorbing. This implies that r

2

x;y

(s) �

j

�

x

(s) 8s 2 N : Indeed, suppose for the sake of 
ontradi
tion that r

2

x;y

(s) <

j

�

x

(s). Denote by e the stopping time that is de�ned by the �rst stage in whi
h

the game leaves the set fu j �

x;y

(u) < j

�

x

(u)g. Re
all from Se
tion 2 that j

�

x

is
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a sub-martingale. Sin
e for every absorbing state s 2 A �(s) = j

�

(s) = r

2

(s)

we have j

�

x

(s) � Ej

�

x

(s

e

) � E�

x;y

(s

e

) � Er

2

x;y

(s

e

) = r

2

x;y

(s); as desired.

Lemma 5.4 If � � !�=4 then there is a 
hoi
e for L

�

> 1 and Æ

�

> 0

su
h that if L � L

�

and 0 < Æ � Æ

�

and (x; y) is a �xed point of F

Æ

then

1) �

x;y

(s) � j

�

x

(s) for all s 2 N ,

2) if the jump 
orresponden
e is used at s then �

x;y

(s) � r

2

x;y

(s)� 3�

3) for any a
tion b from J

�

x

(s) used in y

s

g

b

x;y

< � , and

4) the overall probability that Player Two plays an a
tion from J

�

x

(s) at any

s 2 N is at most !�=20.

Proof: Let L

�

=

100jN j

!

2

�

2

�

and Æ

�

= ��

3

!

3

=(300jN j). Choose t to be a

member of N with the largest di�eren
e j

�

x

(t)� �(t), and we must presume

that this di�eren
e is non-negative. We will show that this di�eren
e 
an be

no more than 0 and that the frequen
y devoted to the jump 
orresponden
e

at any su
h state 
an be no more than �!=20.

We presume for the sake of 
ontradi
tion that the frequen
y devoted to

the jump 
orresponden
e at t is at least �!=20. Sin
e r

2

� j

�

x

the expe
ted

value of the jump fun
tion j

�

x

at the states rea
hed on the next stage after

t using the jump 
orresponden
e J

�

x

is at least �! more than j

�

x

(t), we

must assume for any move from J

�

x

(t) that there is at least one state u

rea
hed by this move with a probability of at least

�

2

!

2

40jN j

su
h that j

�

x

(u) �

j

�

x

(t) + �!=2, ne
essarily with es
(u; t) � �!=4. (If es
(u; t) > �!=4 then

a(t) � �

3

!

3

=(160jN j) and by (11) and the size of Æ

�

we have made �(t) too


lose to r

2

(t) 
ontradi
ting j

x

(t) � r

2

(t) � �!=2, { whi
h must follow by

Remark 5.3 sin
e otherwise any move from the jump 
orresponden
e would

be evaluated in an undis
ounted way stri
tly above the level j

�

x

(t).) By the

de�nition of ~w, the size of L

�

and (3) we have ~w(t)~a(t) � ~w(u)~a(u). By

es
(u; t) � !�=4 it follows that jr

2

(t) � r

2

(u)j � !�=4. But by Lemma

5.2 we have �(t) � �(u) � Æ � �!=4. With the size of Æ

�

this 
ontradi
ts

j

�

x

(u) � j

�

x

(t) + �!=2 and the 
hoi
e of t.

Next, suppose for the sake of 
ontradi
tion that J

�

x

is used at s and g

b

� �

for some move b 2 J

�

x

(s). Indeed, g

b

� � implies that ~g

b

= 1. In parti
ular,

using Remark 5.3, �

b

x;y

= w

x;y

(b) �

P

t

p(tjs; x; b)j

�

x

(t) � j

�

x

(s) + !�: Thus,

for every b

0

2 B

2

Æ

(x; y) that maximizes �, �

b

0

x;y

� �

b

x;y

� r

2

x;y

(s) � j

x

(s)+!�=2.

Sin
e the overall probability to play a
tions from the jump 
orresponden
e

is smaller than !�=20, this 
ontradi
ts the assumption �(s) � j

�

x

(s).
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Now we presume for the sake of 
ontradi
tion that �(s) � r

2

(s)� 3� and

the J

�

x


orresponden
e is used at s. Sin
e we must assume that �(s) = j

�

x

(s),

we have an in
rease in the value of r

2

of at least !��3� from a move in J

s

x

. By

the dominan
e of !� over 4�, we must 
on
lude that g

b

> �, a 
ontradi
tion.

2

Lemma 5.4 is the most problemati
 aspe
t of extending this proof to the


ase of �nitely many positions. Any identi�
ation of in�nitely many states

as a single state may be meaningless if the states rea
hed from it are not

also identi�ed. A more 
exible de�nition of the dis
ounted evaluation may

be ne
essary. For example, at a state s one 
ould dis
ount future visits to

other states t a

ording to the di�eren
e between Player Two's undis
ounted

expe
ted payo�s from these two states.

The following lemma 
laims that if the auxiliary payo� is too far from

the real payo� and the a
tion 
auses absorption with small probability, then

this probability is very small. This radi
al dis
ontinuity is the key argument

to our whole approa
h.

Lemma 5.5 For L, �, � and Æ satisfying the 
onditions of Lemma 5.4

and (x; y) a �xed point of F

Æ

if �(s) � r

2

(s) � 2� and g

b

� � then g

b

�

1:1 Æ�(s)= ~w(s) and g

b

� 2:3 �~a(s) � 2:3 a(s).

Proof: First we 
laim that �(s)� �(s) <

Æ�!

19 ~w(s)

�(s).

If the jump 
orresponden
e at s is used and b is su
h a move, sin
e g

b

� �

(from Lemma 5.4) it follows that ~g

b

= g

b

=�. Hen
e from (6) we have

~v

2

(b) = (1� �)r

2

(s) + �v

2

(b) � r

2

(s)� � � �(s) + �: (12)

Moreover, from (10) and (12) we have

�

b

� �(s) + ~g

b

(~v

b

� �(s))� Æ�(s)= ~w(s) � �(s)(1� Æ= ~w(s));

and by Lemma 5.4, sin
e �(s) is the average of �(s) and su
h �

b

, we have

(1� �!=20)(�(s)� �(s)) �

Æ�!�(s)

20 ~w(s)

, so the 
laim follows.

Considering now any move b 2 A

s

2

that is used with g

b

� � and looking

again at formula (10) we have �(s) � �

b

� ~g

b

(~v

b

� �(s)) + (1 � Æ= ~w(s))�(s)

and hen
e ~g

b

(~v

b

� �(s)) � 1:1 Æ�(s)= ~w(s), sin
e by the above 
laim �(s) �

�(s) is small 
ompared to

Æ

~w(s)

�(s). First 
onsider the 
onsequen
e of ~v

b

�

�(s) � �, namely g

b

= �~g

b

� 1:1 Æ�(s)= ~w(s). Se
ond, 
onsider ~g

b

�
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1:1 Æ�(s)

(~v

b

��(s)) ~w(s)

�

1:1 Æ�(s)

(r

2

(s)��(s)��) ~w(s)

, proven above. Sin
e

r

2

(s)��(s)��

r

2

(s)��(s)

� 1=2, we

get ~g

b

�

2:2Æ�(s)

(r

2

(s)��(s)) ~w(s)

: Now apply formula (11) for 2� � r

2

(s) � �(s) =

�(s)

Æ(1�~a(s))

~a(s) ~w(s)

. Sin
e ~w(s) � 1 and �(s) � 1 we have Æ(1 � ~a(s)) � 2�~a(s),

and from Æ < �=25 we have ~a(s) � 1=50. This allows us to 
on
lude with

g

b

�

= ~g

b

�

25

24

2:2 ~a(s) � 2:3 ~a(s) �

2:3 a(s)

�

. 2

6 Se
ond Main Theorem

The goal of this se
tion is to prove Theorem 2, whi
h states that the 
ondi-

tions of Theorem 1 are always satis�ed. First we need a simple but useful

lemma.

Lemma 6.1 For every two distin
t non-absorbing states s; t with es
(t; s) �


 < 1 in an absorbing time homogeneous Markov 
hain P

t

(t; s)�(s; t) does

not di�er from a(t) by more than a fa
tor of 2
, es
(t; s)=�(t; s) is within a

fa
tor of 3
 to the ratio that, starting at t or s, the last visit before absorp-

tion was at t rather than at s. Furthermore, with or without the assumption

that the Markov 
hain is absorbing and with a start at either s or t, the ratio

of the expe
ted number of visits to s to those at t is at least 1 � 4
 times

the ratio of P

t

(t; s) to P

s

(s; t).

Proof: The �rst two 
laims follow dire
tly from the formulas (1) and (2).

The third 
laim follows from the �rst 
laim if the Markov 
hain is absorbing.

Otherwise we re
ognize in 1=P

t

(t; s) the expe
ted number of visits to t before

rea
hing s. 2

Remark 6.2 At a �xed point of F

Æ

satisfying the properties of Lemmatta

5.4 and 5.5, if �(s) � r

2

(s) � 2� and b is a move at s with g

b

� � then

w

2

(b) = �(s), whi
h is by Lemma 5.5 also within Æ=20 of �(s).

Theorem 2: For any 
hoi
e of positive �, �, �̂, and ~� satisfying the

inequalities stated in Theorem 1 all 
onditions of Theorem 1 are satis�ed.

Proof: Be
ause it is suÆ
ient to demonstrate the 
on
lusion of Theorem

1 with smaller 
hoi
es for �, �̂ and ~�, we will assume without loss of generality

that � is small enough so that for every s 2 S 


�

(s) is within �=2 of the

undis
ounted zero-sum value 


2

(s), as des
ribed in Se
tion 2, and � < �!=4.

De�ne � :=

1

2

~��̂

jN j

=(3

jN j

jN j). We require that L := Q

1

Q

2

is large enough
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to satisfy the 
onditions of Lemma 5.4 and also that

Q

1

> 80jN j

3

m

2

=(� �

2

�̂

2

~�

2

�

2

) and Q

2

> 80mjN j=(� � �̂ ~�).

We begin with Æ suÆ
iently small, so that the 
ondition of Lemma 5.4

holds. Next, we 
onsider �xed points of F

Æ


orresponding to de
reasing Æ > 0

that have 
onvergent subsequen
es for 
ertain variables living in 
ompa
t

spa
es { the stationary strategies in the spa
e X � Y , the values �(a; b) for

all pairs of moves at all states, the expe
ted payo�s r

1

(s), r

2

(s), and the

absorption rate a(s) for every s 2 N , and the probabilities es
(t; s) for all

pairs of states.

We de�ne a move a 2 A

s

1

or b 2 A

s

2

to be a limit move if and only if the

frequen
y of its use does not 
onverge to zero as Æ goes to zero, and de�ne q̂

to be the minimal positive limit value for a frequen
y of a limit move 
hosen

by either player. We de�ne the quantity �̂ to be the minimal positive limit

value for es
(s; t), �̂ to be the minimal positive limit value for �(a; b), and â

the minimal positive limit value for a(s).

Next we must de�ne the partition R of a subset P . De�ne a dire
ted

graph on the spa
e N by t! s if and only if in the limit es
(t; s) approa
hes

zero. The relation is transitive, but not ne
essarily symmetri
. It has an

additional property, that if t ! s

1

and t ! s

2

then either s

1

! s

2

or

s

2

! s

1

. This is easy to 
on�rm, be
ause if s

1

was not rea
hed with proba-

bility approa
hing one on the way from t to s

2

then it must be rea
hed with

probability approa
hing one after the state s

2

. Next de�ne a relation � that

is symmetri
, transitive, and re
exive on a appropriate subset; s � t if and

only if �(s; t) approa
hes zero, and s � s if and only if a(s) approa
hes zero.

� de�nes a partition P of a subset P

0

of N . Now we relate! to �. De�ne R

to be the subset of P de�ned by A 2 R � P if and only if u 2 A and u! s

implies that s 2 A. Any state s 62 A 2 R su
h that es
(s; u) approa
hes zero

for any (equivalently some) state u 2 A 2 R is 
alled a satelite of A. Due to

the above, a satelite of A 2 R 
annot be a satelite of any other member of

R and every member of Q 2 P su
h that Q is not in R must be a satelite of

the same A 2 R. We 
all an primitive exit (a; b) from R 2 R to be a satelite

exit if with 
ertainty the exit results in motion that doesn't leave R or its


olle
tion of satelites.

For every R 2 R we de�ne the set B

R

of Player Two moves in R to be

B

R

:= fb 2 A

s

2

j for some limit move a 2 A

s

1

(a; b) is an primitive exit from

R that is not a satelite exitg.

If s is a satelite of R 2 R then in the limit the probability that the last
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visit to the pair s or any u 2 R was the state s must go to zero. Therefore

�(a; b) approa
hes zero for any satelite exit (a; b) at u 2 R 2 R. These

fa
ts follow dire
tly from Lemma 6.1 and es
(s; u)=�(u; s) going to zero in

the limit.

We show for every R 2 R and pair s; t 2 R that the probability of using

some exit in E

B

R

(R) before rea
hing t from s also approa
hes zero. First

this holds for any non-satelite primitive exit from R, be
ause the probability

of rea
hing a non-satelite outside of R would be at least � and therefore the

probability of absorbing before rea
hing t must be in the limit at least the

probability of using this exit times �̂�. The same arguments holds for the

use of any move in B

R

, but with the quantity �̂�q̂ instead of �̂�.

More diÆ
ult is to show that the above holds for any satelite exit (a; b) at

u 2 R. Let v be any satelite of R rea
hed with positive probability from this

exit. Let � be the probability of using (a; b) before rea
hing t from a start at

s and let � be a bound on the probability of not rea
hing any member of R

from any other member of R or from a satelite of R. Let 
̂ be the probability

of rea
hing v from s before rea
hing t, with 
̂ � ��. Going through the state

v, the probability of rea
hing t is at least 1� � and the 
ombined probability

of rea
hing t from s is also at least 1� �. This means that the probability of

rea
hing t from s 
onditioned on not going through v is at least 1�

�

(1�
̂)

. So


onditioned on not arriving at v before t there is at most a

2�

1�
̂

probability

of absorbing before getting ba
k to s. In the limit

2�

1�
̂


annot stay above

1, be
ause � goes to zero and in the limit 
̂ 
annot go above 1 � �̂. This

means that eventually the probability of rea
hing v from s must be at least


̂

P

1

i=0

(1� 
̂)

i

(1�

2�

1�
̂

)

i

= 
̂

P

1

i=0

(1� 2� � 
̂)

i

=


̂

2�+
̂

. But this probability

to rea
h v from s 
annot go above 1� �̂ in the limit, whi
h is possible only

if � goes to zero as � goes to zero also.

De�ne �

�

to be (�̂�̂q̂â=K)

3jN j

. We require of a �xed point of F

Æ

that the

values for whi
h we have 
onvergent subsequen
es are within �

�

of their limit

values. We require that the probability of using any exit before moving from

any s to t for any pair s; t 2 R 2 R is no more than �

�

and for every R 2 R

that the sum of �(a; b) over all the satelite exits (a; b) 2 E

B

R

(R) is no more

than �

�

(as demonstrated above). Furthermore we require that Æ < (�

�

)

2

. We

let (x; y) be a �xed point of F

Æ

satisfying these properties. If the stationary

strategy is not spe
i�ed, then (x; y) is intended.

Step 1; For every s 2 R 2 R show that if z

2:5�

x;y

(s) � � then there
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exists an ~� simpli
ation x of x su
h that z

2:4�

x;y

(R) � 1� 3jRj=Q

1

� and

for all t 2 R that z

2:4�

x;y

(t)=z

2:4�

x;y

(s) � (1�

m

2�Q

2

�

�

4mjRj

�Q

2

)(z

2:4�

x;y

(t)=z

2:4�

x;y

(s)):

For every d � 1 de�ne

T

d

= ft 2 R j �(s; t) � d~a(s)g [ fsg:

Denote T = T

d

, where d 2 (1; L

jN j�1

) satis�es T

Ld

n T

d

= ;. Sin
e K = L

jN j

,

for every t 2 T we have ~a(t) � a(t)=� � �(s; t)=� � d~a(s)=� � K~a(s), and it

follows that ~w(t)~a(t) � ~w(s)~a(s):With �(s) � r(s)�2:5� we have by (11) that

~a(s) � Æ=�, a(s) � Æ=�, and �(s; t) � ÆK=� < �

�

, meaning that T is a subset

of R. Sin
e t 2 T satis�es jr

2

(s)� r

2

(t)j � �

�

we have �(t) � �(s) + (�

�

+ Æ).

De�ne a quantity

p

t

=

(

a(t)=Q

2

�(s; t) t 2 T n fsg

1=Q

2

t = s

De�ne the stationary strategy x by removing from x all Player One moves at

states t 2 T that are played with probability smaller than p

t

=�, and normalize

the remaining ve
tor. This means that if u is rea
hed in one stage from t 2 T

by x and a Player Two move b, then p(ujt; x; b) � p

t

.

We use 
riti
ally from Lemma 6.1 that a(u)=�(u; s) is approximately

P

u

(u; s) (within a fa
tor of 2�

�

) for any u 2 R, so that from Lemma 3.2

and Lemma 6.1 with the 
hange from (x; y) to (x; y) the ratio of visits at

t 2 R to those at s 
annot in
rease by more than a fa
tor of

8jT jm

�Q

2

. Fur-

thermore, by the de�nition of x, �̂, Æ � (�

�

)

2

and Lemma 5.5 there are no

non-satelite exits performed inside of T other than those generated by Player

Two moves b 2 A

t

2

with w

x;y

(b) = �

x;y

(t). Combined with the fa
t that the

absorption rate of any move b with g

b

� 2:4� is altered by a fa
tor or no more

than m=(2��Q

2

) by the swit
h to x and that 2�

�

is greater than the probabil-

ity that the last visit to R was at a satelite exit, we have everything but the


laim that there is only insigni�
ant motion with (x; y) toward absorption

from states in R outside of the set T .

We 
an break up the absorption from R generated by the strategies (x; y)

in terms of where was the last visit in R. Let t 2 T , u 2 R n T and b 2 B

be a move su
h that p(ujt; x; b) > 0, ne
essarily with p(ujt; x; b) � p

t

. To


omplete the 
laim of Step 1 it suÆ
es to show that

es


x;y

(u;t)

�

x;y

(u;t)

�

2:5

Q

1

for every

su
h u 2 RnT .
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Case 1; u 2 RnT is rea
hable from T only by Player Two moves

b with g

b

� �:

It follows immediately from the fa
t that Player Two has no more than

mjRj moves in R that

es
(u;t)

�(u;t)

is smaller than 2:5=Q

1

, sin
e any su
h move

doesn't return to R with a probability of at least 2:5� and with at least 1�2�

�

probability there is motion from u ba
k to t 2 T .

Case 2; t 6= s, and u 2 RnT is rea
hable by (x; y) from a t 2 T by

a move b of Player Two with g

b

< �:

By Lemma 5.5 we have

p

t

es
(u; t) � g

b

� 2:3 a(t):

Sin
e p

t

=

a(t)

Q

2

�(s;t)

we have es
(u; t) � 2:3 Q

2

�(s; t). Sin
e � is a metri
 we

have from �(s; u) � L�(s; t)

es
(u; t)

�(u; t)

�

2:3 Q

2

�(s; t)

�(u; t)

�

2:3 Q

2

L� 1

�

2:4

Q

1

:

Case 3; u 2 RnT is rea
hable by (x; y) from s by a move b of

Player Two with g

b

< �:

We have p

s

= 1=Q

2

, p

s

es
(u; s) � g

b

� 2:3a(s) and

es
(u; s)

�(u; s)

�

2:3 a(s)Q

2

�(u; s)

�

2:3 a(s)Q

2

L~a(s)

�

2:3

Q

1

:

In all arguments that follow 
on
erning members of a set T as 
reated

above, for 
onvenien
e we will write z

�

or B

�

instead of z




or B




for 
 > �.

By Lemma 5.5 there will be no di�eren
e in these expressions.

Step 2; For any 
hoi
e of s 2 R from Step 1 there is an ~� simpli-


ation y of Player Two's strategy y su
h that together with x the

state s and all states t 2 T with z

�

x;y

(t) � �̂ � z

�

x;y

(s)=(4jN j) are rea
hed

by (x; y) from all of R, and furthermore from inside of T no state

outside of T is rea
hed:

We de�ne y

t

for all t 2 T by removing from y

t

all moves made by Player

Two with a frequen
y of L=(L� 1)Q

1

or less, followed by normalization.

Any t 2 T that satis�es z

�

x;y

(t) �

�̂ � z

�

x;y

(s)

4jN j

by Step 1 also satis�es

P

s

x;y

(s; t) �

� �̂ �

4:5jN j

P

s

x;y

(s; t) and z

�

x;y

(t) �

� �̂ �

4:5jN j

. Noti
e that this last 
ondition
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is satis�ed by the state t = s. For any t 2 T with P

s

x;y

(s; t) �

� �̂ �

4:5jN j

P

s

x;y

(s; t)

and z

�

x;y

(t) �

� �̂ �

4:5jN j

to show that t is rea
hed from all of T with (x; y) by

Lemma 3.4 it suÆ
es to show that for any w 2 T and any t 2 T satisfying

z

�

x;y

(t) �

� �̂ �

4:5jN j

, in
luding s = t, we have that the 
hange from y

w

to y

w

doesnot redu
e P

w

x;y

(w; t) by more than a fa
tor of ��̂�=(12jN j

2

).

If b 2 A

w

2

is a Player Two move with g

b

� �, removing b to form y

w

from y

w


annot redu
e P

w

x;y

(w; t) by anything more than a fa
tor of �

�

=�. Assuming

that g

b

< � and removing b to make y

w

removes at least

� �̂ �

12mjN j

2

of the

motion P

w

x;y

(w; t) we would have from Lemma 5.5 that 2:3 a(w)L=Q

1

(L�1) �

g

b

x;y

L=(L � 1)Q

1

� g

b

x;y

y

b

�

� �̂ �

12mjN j

2

� �̂ �

4:5jN j

a(w). This is a 
ontradi
tion to the

de�nition of Q

1

.

Se
ond, we show that, starting at s, motion a

ording to (x; y) never

leaves the set T . Let us assume that u is a state not in T rea
hed by a move

b of Player Two from any t 2 T played against x and given positive frequen
y

by y. We need to show that b is not used in y. If t 6= s then by formula (3)

�(t; u) �

a(t)

p

t

y

b

=

�(s;t)Q

2

y

b

: In parti
ular, by the de�nition of T and sin
e � is a

metri
,

y

b

�

�(s; t)Q

2

�(t; u)

�

�(s; t)Q

2

�(s; u)

�(s; u)

�(t; u)

�

Q

2

L� 1

=

L

(L� 1)Q

1

:

And if b is a move at the state s then also by the de�nition of T and (3)

y

b

�

a(s)Q

2

�(s; u)

�

Q

2

a(s)

L~a(s)

�

1

Q

1

:

Therefore we 
on
lude that (x; y) de�nes one ergodi
 set D � T that in
ludes

s and all states u 2 R satisfying z

�

x;y

(u) �

� �̂

4jN j

.

Step 3; Show that there is a proper 
hoi
e of s from Steps 1

and 2 with a subset V

R

of Player Two moves satisfying the 
ondi-

tions of Theorem 1, namely that these moves belong to a subset F


ontaining s and inside of the ergodi
 set D su
h that ~w(t)~a(t) is a


onstant for all t 2 F and there is a distribution on V

R

su
h that

used against x gives an expe
ted payo� to Player One within �̂ of

r

1

(s):

De�ne U := ft 2 R j �(t) � r

2

(t)� 2:4�g and de�ne

~

U := ft 2 R j �(t) �

r

2

(t) � 2:5�g \ ft 2 R j z

�

x;y

(t) � �g. We 
reate a partition fU

1

; : : : ; U

k

g of
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the members of U in in
reasing values of ~w~a, meaning that s and t belong to

the same member of U

i

if and only if ~w(s)~a(s) = ~w(t)~a(t). For any state s in

~

U we 
onsider the sets T (s) and D(s) and the strategies x(s); y(s) 2 X � Y

as 
reated above in Step 1 and Step 2.

For the sake of 
ontradi
tion we suppose that there is no s 2

~

U \ U

i

and

b 2 B

�

x;y

(t) with t 2 D(s) \ U

i

su
h that jv

1

x(s);y

(b) � r

1

(s)j � �̂ and there is

no pair of Player Two moves b; b

0

2 B

�

x;y

(R) with both b and b

0

belonging to

the set D(s) \ U

i

with v

1

x(s);y

(b) and v

1

x(s);y

(b

0

) on di�erent sides of r

1

(s).

For every s 2

~

U and t 2 U \ D(s) with some move in B

�

x;y

(t) used in

y

t

let v

1

s

(t) =

P

b2B

�

x;y

(t)

v

1

x(s);y

(b)�

b

x(s);y

=

P

b2B

�

x;y

(t)

�

b

x(s);y

, the average Player

One payo� resulting from these moves at t. For every 1 � i � k let p(i) :=

P

j<i

jU

j

j.

We 
laim that our above assumption implies that z

�

x;y

(s) � 3

p(i)

�=(�̂)

p(i)

for every s 2 U

i

\

~

U .

We prove the above 
laim by indu
tion on i. Let s be any member of

U

i

\

~

U , and we assume that jv

1

s

(s)� r

1

x(s);y

(s)j = jv

1

s

(s)� r

1

x;y

(s)j � �̂. From

Part 1 and Part 2 we know that the importan
e with respe
t to (x(s); y) from

exits outside of B

�

x;y

(D(s)) does not ex
eed � �̂=3 times the importan
e of the

B

�

x;y

(s) moves. Sin
e all the v

1

s

(t) with t 2 D(s) \ U

i

are on the same side of

r

1

(s) as v

1

s

(s), we are left only with the B

�

x;y

moves from [

k<i

U

k

\ D(s) to


ounter-ballan
e the v

1

s

(s) to make r

1

x(s);y

= r

1

x;y

. We 
an assume now that

i > 1, sin
e otherwise we would have to 
on
lude that jv

1

s

(s) � r

1

x;y

(s)j � �̂

is impossible. By the indu
tion hypothesis the sum of all the z

�

x;y

(u) over

the set [

k<i

U

k

does not ex
eed

P

k<i

jU

k

j3

p(k)

�=�̂

p(k)

�

2

3

3

p(i)

�=�̂

p(i�1)

. By

the fa
t that our simpli
ations x(s) hardly in
uen
e the expe
ted payo�s

from moves with an absorption rate of at least 2� and by the statement

of Step 1, in order to maintain jv

1

s

(s) � r

1

x;y

(s)j � �̂ we must assume that

�̂z

�

x;y

(s) �

3

2

2

3

3

p(i)

�=�̂

p(i�1)

, and this 
on
ludes the proof of our 
laim.

With the de�nition of � we 
on
lude that z

2:5�

x;y

(s) < ~�=jRj for every s 2

R, and this means that R 
ould not have been 
hosen for polarization, a


ontradi
tion.

With the appropriate s 2 R 
hosen, we have D

R

:= D(s), x

C

de�ned

from x(s) and y

C

de�ned from y(s) so that 
hanges are made only inside of

D

R

, and the exits V

R

and their distribution as determined by y

D


ome from

the above argument.
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Step 4; show that the moves B

R

satisfy the requirements of

Theorem 1:

The easiest way to prove that jr

x;y

R

(s

R

)� r

x;y

(s

R

)j � �̂ is to return part

of the way ba
k to the spa
e S

℄

! We let

~

S

℄

be the spa
e generated by the

almost trivial partition

~

P := fRg [ ffsg j s 62 Rg. With ~r

1

the harmoni


fun
tion on

~

S

℄

indu
ed by r

1

on the absorbing states, by Lemma 3.5 ~r

1

(s

R

)

and r

1

(s

R

) di�er by at most 4�

�

. Let ~�

℄

be the 
orresponding measure of the

importan
e of the exits.

De�ne a move a 2 A

s

1

of Player One in the set R to be a prin
iple move if

a is not a limit move and if there is a b 2 B

s

2

su
h that (a; b) is an exit with

�

x;y

(a; b) � �̂ � �

�

.

We 
laim that the 
ombination (a; b) of a move of B

R

with a prin
iple

move of Player One must yield �(a; b) � �

�

. On
e this is established from the

de�nition of B

R

we need only to break down the sum of the v

~r

1

(a; b)~�

℄

(a; b)

over all exits (a; b) with �(a; b) � �̂ � �

�

and apply Lemma 3.7 to 
on
lude

that r

1

x;y

R

(s

R

) is within 20jN jm�

�

=�̂ of r

1

x;y

(s

R

), that is mu
h 
loser than we

need it. Suppose for the sake of 
ontradi
tion that for some prin
iple a and

some b 2 B

R

that �(a; b) � �̂ � �

�

. Assuming that the moves take pla
e at t,

we have from the de�nition of B

R

that a(t) � y

b

(q̂��

�

)(�̂��

�

)�. Furthermore

by de�nition we have �(a; b) � x

a

y

b

=a(t) and by assumption x

a

� �

�

. These

four inequalities are 
ontradi
tory.

We show that b 2 B

R

\ A

t

2

with t 2 P implies v

2

(b) < r

2

(t). If �(t) �

r

2

(t)�2� then it follows from Lemma 5.5. If �(t) > r

2

(t)�2� then by Lemma

5.4 all moves have the same auxillary value �(t) = �(t); it follows from the

smallness of Æ � (�

�

)

2

and formulas (10) and (11) that if v

2

(b) � r

2

(t) then

the repeated use of b would result in a higher evalution for �(t) be
ause an

undis
ounted value of at least r

2

(t) would be obtained but at mu
h higher

auxillery absorbing rate.

Step 5; show z

2:5�

(s) < ~� for any state s that is not in P or is a

satelite of some R 2 R:

If s is not a satelite and not in P then due to the very small size of Æ we

have from (11) that �(s) is within ~� of r

2

(s), implying that no move b used

at s 
ould satisfy w

2

(b) < r

2

(s)� 2�. For a satelite s of R we suppose that

b 2 A

s

2

is a Player Two move at s with g

b

� 2:5�. Su
h moves have at least

a 2:4� probability of never returning to the set R. The probability of using
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su
h a move before rea
hing R must be no more than �

�

=(2:4�), and thus the

total probability that it is used 
annot ex
eed �

�

=(2:4�(�̂� �

�

)). q.e.d.

7 Signaling

In this se
tion we show that there are approximate equilibria without an

assumption that Player One 
an send signals independent of the transitions.

The problem 
on
erns the 
onsequen
es to the players of any moves that

would be used by Player One as a transition dependent signal. For example,

a move of Player One that brings the play outside of the set D

R

may fail to

be useful to signal her desire for Player Two to use a move in V

R

, be
ause

outside of D

R

the jump fun
tion for Player Two may ex
eed greatly his

expe
ted payo� from the moves in V

R

.

The natural solution is for Player One to have a move inside of D

R

that

is not used in x

C

whose use means that the moves V

R

of Player Two will not

be used, and after a 
ertain quantity of visits to some state in D

R

it will be

understood mutually that Player Two must use a move in V

R

. A problem

arises, however, if every su
h move results in a positive probability of leaving

the set R.

With regard to the next two theorems, we assume the statement and

proof of Theorem 2, whi
h means also that we assume that all the 
onditions

of Theorem 1 are satis�ed. We will add new 
onditions to those of Theorem

1 and make some minor 
hanges to the proof of Theorem 1. The de�nition of

S

℄

remains, along with its Markov 
hain transitions, in
luding the p

�

R

and p

R

.

The 
hanges begin with the de�nition of the parts q

d

R

and q

R

and therefore

everything that follows in the proof of Theorem 1 will be altered as well,

in
luding the introdu
tion of new situations.

Theorem 1': Assume the following property for every R 2 R: if every

move a 2 A

t

1

in D

R

removed to make x

C

from x formed an exit against

some Player Two move used in y

C

, then there exists a set A

R

of Player One

prin
iple moves in D

R

su
h that

1) the sum of �

x;y

(a; b) for all R exits (a; b) performed outside of D

R

does

not ex
eed ~� � �̂ �=3,

2) for every prin
iple move a 2 A

R

of Player One used at t 2 D

R

with

�

a

x;y

� � �̂ ~� �=(3jN jm) we have

P

b used in y

t

C

�

x;y

(a; b) � (1 � � �̂ ~� �)�

a

x;y
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and therefore also jv

1

x

C

;y

C

(a)� v

1

x;y

(t)j � �̂.

Con
lusion: Without any assumption on Player One's ability to signal

indendependently of the transitions, the game has approximate equilibria.

Proof: De�ne a member of R to be problemati
 if the assumption of

Theorem 1' holds. We pro
eed exa
tly as the proof of Theorem 1, ex
ept

that for all problemati
 R we in
orporate into the S

℄

transition q




R

all the

R exits not inside of D

R

or not 
reated from a 
ombination of an a 2 A

R

with a move used in y

C

. Re
alling that q

d

R

is the di�eren
e between q




R

and

p

�

R

by Lemma 3.7 we still have that �

℄

(q

d

R

)(v

2

℄

(q

d

R

)� r

2

℄

(s

R

)) is below �̂. Due

to Condition 2 and Lemma 3.7 we have the other requirement for applying

Lemma 3.9. We assume that T is the subset of R that has been polarized.

De�ne a situation s

w

at a state s to be timed if there is a natural numberm

su
h that s

w

is determined by the present state s and the previous situations

and moves in the lastm stages. A normal situation is timed, but the 
onverse

doesn't hold.

We keep the same situations s

e

, s

f

and s

g

from the proof of Theorem

1. The stationary strategies for all the s

g

and all the s

e

other than a rep-

resentative s

e

R

are de�ned in the same way, and in a non-problemati
 R the

stationary strategies for s

f

are also the same.

For every polarized R 2 T and t 2 D

R

we 
reate a timed situation t

h

.

When a situation s

e

R

is rea
hed the strategies (x

C

; y

C

) are performed, but

instead of moving to a t

f

or t

g

there is motion to the timed situation t

h

.

For non-problemati
 polarized R 2 T we 
hoose any t 2 D

R

su
h that

there is a Player One move a at t not used in x

C

and when paired with y

C

results in zero probability of leaving the set R. Create a frequen
y

~

f

a

> 0 and

a number n

t

su
h that f

a

P

n

t

�1

i=0

(1� f

a

)

i

= 1� �

R

, where �

R

is that quantity

determined by the polarization, and su
h that for any distin
t u; v 2 D

R

the

probability of using the move a before moving from u to v is at least 1� �

�

.

For all the situations s

h

for s 6= t the players a
t a

ording to (x

C

; y

C

) and at

t Player Two a

ording to y

C

and Player One a

ording to (1�f

a

)x

C

+f

a

1

a

.

If on the n

t

th visit to the situation t

h

the move a was not made, then the

situation following t

h

is some u

g

. Otherwise if the move a was used on any

visit to the situation t

h

then the next situation is either some u

f

if an exit

wasn't used or some u

e

if an exit was used.

For problemati
R 2 R, let �

R

2 �(A

R

) be the probability distribution on

the A

R

that is generated 
onditionally by (x; y

C

). Choose a natural number
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n

R

and a stationary strategy x

�

C

for Player One so that with a start at s

R

the distribution on the moves A

R

is �

R

and for every pair u; v 2 D

R

the

probability of using a move in A

R

before moving from u to v is no more than

�

�

and the probability of using some member of A

R

at or before the n

R

th

visit to the state s

R

is 1� �

R

. For the situations t

h

with t 2 D

R

the players

a
t a

ording to (x

�

C

; y

C

). If on the n

R

th visit to the situation s

h

R

the move

a was not made, then the situation following t

h

is some u

g

. Otherwise if a

move in A

R

was used on any visit to a situation t

h

then the next situation is

either u

f

(if an exit was not used) or u

e

(if an exit was used). At a situation

u

f

the strategies (x

�

C

; y

C

) are also used.

As with the proof of Theorem 1 we must show that the expe
ted payo�s

to Player i from every situation s

e

is within 3:1� of r

i

x;y

(s). Given the proof

of Theorem 1 the only additional argument needed 
on
erns the use of exits

in a problemati
 R before the timed situations have been rea
hed. This did

not present a problem in the proof of Theorem 1 be
ause they were the same

exits used in the situations t

f

and performed with the same distributions.

If we 
an show that the total probability of their o

uran
e 
annot ex
eed

�=10, then we get our result by ignoring their in
uen
e. Indeed in the Markov


hain de�ned on S

℄

the absorption rate of s

R

for a problemati
 R is at least

��̂=(2Q

1

). By Lemma 3.9 this absorption rate does not fall below

��̂

2Q

1

�

3jNj

(3jN j)

jNj

after polarization. Sin
e this quantity is still very large 
ompared to �

�

,

the maximal probability of using su
h a exit before a timed situation is

rea
hed, we 
an indeed ignore these exits. (We leave the formal argument

using Se
tion 3 to the reader.)

The situations de�ned above are not normal and thus do not generate a

sto
hasti
 game, preventing a dire
t appli
ation of Corollaries 4.3 and 4.4.

Therefore we must per
eive the situations fs

h

j s 2 Rg for R 2 T as sub-

games. Con
erning the behavior of Player One, we view the entire pro
ess up

until the n

R

th visit to the state s

R

or the n

t

th visit to t as a single de
ision

{ whether or not to use a move in A

R

and if so then whi
h one. This pla
es

Player One's de
isions ba
k into the 
ontext of Corollary 4.4.

Con
erning the behavior of Player Two, the matter is more 
omplex.

Player Two 
ould have an in
uen
e on the payo�s by altering the strategy

y

C

. Stri
tly speaking the 
ontext would be no longer that of a harmoni


fun
tion on a time homogeneous Markov 
hain { the expe
ted payo� to

Player Two at a state 
orresponding to a situation t

h

would be 
hanging
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over time. However Player Two's ability to gain or lose in expe
ted payo� is


onditioned on the use of a move of Player One in A

R

{ this is modeled by

a time homogeneous Markov 
hain and therefore Proposition 4.2 is suÆ
ient

for the 
on
lusion. 2

Theorem 2' The 
onditions of Theorem 1' are satis�ed always.

Proof: Let (x; y) 2 X � Y and (x

C

; y

C

) be a solution given by Parts 1,

2, and 3 of Theorem 2 for a polarized R 2 R and we assume that 
onditions

of Theorem 1' hold for R (meaning that R is problemati
).

1) Consider the strategies played at any t 2 D

R

. Suppose for the sake of


ontradi
tion that there is a state u 2 RnD

R

where an importan
e of at least

� ~� � �̂=3jRj o

urs from exits at u. Consider the moves that were removed

from y

t

to make y

t

. By Lemma 5.5 at any t 2 D

R

no more than

7jRj

~�� �̂ �

mL

(L�1)Q

1

of the transition P

t

(t; u) was removed to make y

t

C

from y

t

. On the other

hand, given that every move of Player One removed from x

t

to make x

t

C

would have 
reated an exit against some move in y

t

C

, we must also 
on
lude

from the rare use of an exit that no more than 2�

�

Q

1

of the transition in

P

t

x;y

(t; u) 
ame from su
h a Player One move. From Lemma 3.3 we have that

u is in D

R

, a 
ontradi
tion.

2) Assume that �

a

x;y

� � �̂ � ~�=(3jN jm) for some prin
iple move a of Player

One at t 2 D

R

. Suppose for the sake of 
ontradi
tion that the probability of

rea
hing any absorbing state from this prin
iple move is altered by a fa
tor

of more than ��~��̂=2 by the 
hange from y to y

C

. This means that �

x;y

(a; b)

is at least

�

2

~�

2

�̂

2

�

2

6jN j

2

m

2

for at least one move b that was removed to make y

t

C

from y

t

. We must 
on
lude from Lemma 5.5 that

�

2

�̂

2

�

2

~�

2

a(t)

6jN j

2

m

2

�

2:3a(t)L

Q

1

(L�1)

, a


ontradi
tion to the de�nition of Q

1

.

The �nal 
laim follows now from the argument in part 4 of the proof of

Theorem 2, showing that v

1

x;y

(a) is very 
lose to the value of r

1

for all primary

moves. 2

In the proof of Theorem 1' we 
ould eliminate the argument that exits per-

formed before rea
hing a timed situation in a problemati
 set are irrelevant

if we had a more powerful Markov 
hain result (that 
ombines the 
ondition

of Lemma 3.3 with the 
on
lusion of Lemma 3.2) or we use Vieille's approa
h

to \
ommuni
ation sets" (Vieille 2000
), showing how one 
an move through

a set R with no danger of leaving it.
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8 Countably many states

On the te
hni
al side, the problem with applying either our or Vieille's proof

to 
ountably many states lies in the �nite state spa
e assumption that given

any stationary strategies for the players and any positive Æ there will exist a

Æ perturbation of this strategy that is absorbing.

A strategy for �nding a 
ounter-example 
ould be following. Constru
t

an in�nite sequen
e of games �

0

;�

1

; : : : that are positive re
ursive for both

players 
orresponding to in
reasing �nite sets S

0

� S

1

� : : : of non-absorbing

states su
h that for every i � 0 and j � i the moves and their indu
ed

motions inside of S

i

are the same for all games �

j

. Constru
t a 
ountable

state spa
e by having the game start at s

0

, de�ne the state spa
e on the

ith stage to be the spa
e S

i

, and de
lare that absorption o

urs on stage

i if an absorbing state of the game �

i

is rea
hed. Furthermore, give both

players the ability to for
e the game to absorption in the new 
ountable

state spa
e game. Desirable may be games �

i

su
h that with large i the

approximate equilibrium behavior of �

i

keeps the non-absorbing play most

of the time 
lose to the set S

0

and the minimal number of stages ne
essary

to rea
h an absorbing state in the game �

i

starting from any s

0

2 S

0

goes

to in�nity as i goes to in�nity. Otherwise if we allow that absorbing states

are rea
hable qui
kly from all non-absorbing states, to avoid 
onvergen
e

toward large sub-games of essentially equilivalent states it may be desirable

if rea
hing an absorbing state of �

i

on the ith stage of play does not mean


ertain absorption but rather a positive probability of absorption mixed with

a positive probability of starting the game over at s

0

2 �

0

.

There are many ways for a game to have a 
ountable state spa
e but be

played essentially on �nitely many situations, for example games that break

down into sequen
es of sub-games played essentially on �nite state spa
es.

Also to be avoided are stru
tures that are formally 
ountable in size but

do not exploit the full potential of what it means to have in�nitely many

positional possibilities. We believe that the best 
andidates for a 
ounter-

example will in
orporate the 
on
ept of a random walk on arbitrarily many

positions, as presented in our introdu
tion. However, to avoid operator ap-

proa
hes similar to that of the Maitra and Sudderth proof we believe that

there must be a 
on
i
t by both players between exploiting their positions

and 
ontrolling the behavior of the other player. For this and other reasons,

we believe that the non-absorbing states must have a stru
ture more 
omplex
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than Z, for example involving joint random walks on the two dimensional

latti
e Z

2

.
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