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1 Introduction

The coding of the geodesics, i.e. the representation as infinite words in some alphabet,
of a surface M of constant negative curvature was studied over a long time. Several
authors (Morse 1921, Artin 1965, Hedlund 1934) developed methods to code the geodesics
for some special cases. Morse defined so called cutting sequences. This means that a
geodesic is coded by the sequence in which it cuts a fixed set of curves on the surface
where these curves are chosen to be projections of the sides of some fundamental polygon
in the universal cover. This approach is closely related to the dynamics of the geodesic
flow on M. Tt presupposes the representation of the nonwandering set of the geodesic flow
as special (or suspension) flow. Exactly this was done by Adler & Flatto for M compact
(cf. [AF]) and by the author in a more general setup in this work (cf. (3.8)). This gives
an explicit construction (which will be called canonical in the sequel) with the aim to find
dynamical properties of the flow. Hence, this is in some sense the opposite of well known
results of Bowen for hyperbolic flows (cf. [Bo]) or the result of Ambrose & Kakutani (cf.
[AK]), that any conservative flow admits such a representation.

The other approach, which was done by Artin, is the so called boundary expansion. Here
the coding sequence of a geodesic is given by coding the endpoints at infinity of some lift of
this geodesic. For example, if M is the modular surface, the boundary expansion reduces
to the continued fraction expansion on R U {co}. An overview of those methods can be
found in [Se]. In addition, Series proved that there is a correspondence between these two
methods: there is a bijection between the different codings commuting with the shift.
The main motivation for this work is the paper of Bowen & Series “Markov maps associated
to Fuchsian group” ([BS]). In contrast to the two methods described before, they associated
a Markov map to the group G of the Fuchsian model B/ of M, where M is assumed to
be of finite hyperbolic area. This Markov map T is defined as a transformation of 0B = S!
(here B denotes the disc model of the hyperbolic plane). They used the local differentiable
structure of 7" to show:

e If GG is cocompact, T is Markov with respect to a finite partition o of 9B. In addition,
|DT™(z:)] > 6 > 1 for all n > 2 and sup,yp |D*Tz|/|DTx|* < co for Lebesgue a.e.
x. By using these two estimates they could show that T is ergodic. Nowadays, this
situation is called eventually expanding and C? - Markov. By these properties, it is
standard to derive the Gibbs - Markov property and the existence of a finite invariant
measure which is equivalent to Lebesgue measure.

e If (G is not cocompact, Bowen & Series showed, that 7" is Markov with respect to a
infinite partition . In this case, there is some K being the union of finitely many
atoms of «a, such that the induced transformation Tk has the properties described
above. By the ergodicity of Tk, the ergodicity of T" follows.

But this approach has a priori no connection with the dynamics of the flow resp. the ge-
ometry of H/~. The connection mentioned in this paper is the so called orbit equivalence:
gr =y for some g € G <= dn,m > 0 with 7"z = T™y. From this property, Bowen
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& Series derive the ergodicity of the geodesic flow. It has to be pointed out that they did
not prove these assertions for arbitrary cofinite G. By quasiconformal deformation they
achieved a group with a ford domain with the extra property, that G(JP) is the union
of complete geodesics. By the ford property the eventual expandingness follows and this
extra property gives the Markov property. Using the same method of quasiconformal con-
jugation, Adler & Flatto gave a geometrical interpretation of the Bowen - Series map 7.
They showed for G cocompact that T' is a factor of some S which is measuretheoretical
isomorphic to the canonical section for the flow (i.e. the geodesic flow is representable as
a special flow over S). In addition, S is shown to be the natural extension of 7. Another
kind of geometrical interpretation of T is given by Series ([Se]). She identified T with the
one sided shift given by the canonical factor of the two sided shift defined on the boundary
expansion.

It has to be mentioned that a quasiconformal deformation gives a homeomorphism between
H/ ¢ for given G and H/ v where G is the special model used in [BS] and [AF]. But there
is no measuretheoretical equivalence between the Liouiville measures on the corresponding
surfaces in general (this is only the case if the deformation is given by the conjugation with
an isometry). Here the papers of Rees ([Rel], [Re2]) have to be mentioned. She developed
criteria for the ergodicity of the flow if G is a normal subgroup of a Fuchsian group, which
is either cocompact ([Rel]) or cofinite and not cocompact ([Re2])).

This is the context in which this work has to be put in. As in the papers of Rees, no
quasiconformal deformation is used here. First of all, assume in the sequel that G is of
first kind but not necessarily finitely generated. Then the Liouiville measure is the natural
measure on the sphere bundle!. By arguments similar to [AF], it is shown (cf. proposition
(3.8)) that the geodesic flow is representable Liouiville a.e. as special flow over the canon-
ical section. Therefore, a condition called coding assumption resp. (CA) is necessary to
ensure that the set corresponding to the vertices of P has measure zero. As it was shown
in proposition (3.14), this is in the geometrical finite case equivalent to G being of first
kind resp. equivalent to GG being cofinite. For the the geometrical infinite case, it is shown
that this condition is stronger than first kindness but weaker than ergodicity of the flow.
In order to define the Bowen - Series map, an additional property is introduced. This
property (GC) states that there is a fundamental polygon for G whose sides are complete
geodesics. While writing this thesis, there was some discussion about this condition (GC)
in the cofinite case. It was claimed e.g. in [Re2] that any hyperbolic surface of finite type
with cusps has this property. If this would be true, the geometrical meaning of the Bowen
- Series map would be understood for all cofinite groups (which was the motivation for this
definition). But as the author could not find a reference, this is left open.

Under (CA) and (GC) the author was able to prove a result corresponding to [AF]: Propo-
sition (4.2) states that under these assumptions the Bowen - Series map T is a factor of the
canonical section S. But in contrast to the compact case both maps S and 7" are shown
to be infinite measure preserving. By theorem (4.7), T is a topologically mixing, infinite

'In the case that G is not necessarily of first kind but finitely generated, this would be the flow invariant
measure given by the unique G - invariant conformal density on the limit set introduced by Patterson.



measure preserving Markov map.

If G is cofinite with (GC), then theorem (5.14) states that the inducing on some set of finite
measure A gives the Gibbs - Markov property which is the analog for the result obtained
by [BS]. In addition, ergodic properties of T itself are described. Theorem (5.19) states
that T is pointwise dual ergodic with return sequence proportional to n/log(n). Hence,
the canonical section is shown to be rationally ergodic with the same return sequence as
T. Via T, it is possible to define another section which is a finite measure preserving,
conservative and ergodic section and has T4 as factor. In comparison to the result in [Bo]
for the compact case, where the section is shown to be a finite measure preserving Markov
map with respect to a finite partition, these results can be interpreted as follows: either
the section is an infinite measure preserving Markov map with respect to a finite partition
or a finite measure preserving Markov map with respect to an infinite partition. Hence,
in contrast to the compact case, where it is possible to represent the geodesic flow as the
suspension over a Markov shift in finitely many states, here this is possible only for a shift
in countably many states.

As an immediate application of these results, it should be possible to determine the
Poincaré series of an abelian cover of a cofinite subgroup using the methods developed
by Aaronson & Denker in [AD].



2 Hyperbolic Geometry

In this section, basic properties of hyperbolic geometry and the geodesic flow will be
described. For a reference of the described results, see e.g. [Ra] and [Kat]. One of the
standard models of the hyperbolic plane is the ball model B := {z € C |z| < 1} with arc
length and area given by

2|d 4d
| Z| and dA(Z) = (1_7@2)2,

ds(z) = P

where |z| denotes the euclidean norm of z € C. As a fact, any two points z;,2, € B
can be joined by a curve v : [a,b] — IB such that v is an isometry, i.e. |z — y| =
de(v(x),v(y)) Vx,y € [a,b]. This curve can be uniquely extended to a curve 7' : R — 1B,
which is again an isometry. In the following, these curves joining two points as described
will be called geodesic arcs and their extensions geodesic lines or just geodesics. To make
notation easier one can generalize the notion of an endpoint of a geodesic arc resp. line,
if one does not distinguish if this point is in B or JIB. This means: The set of endpoints
of v : [a,b] — B is the set {y(a),y(b)}, the set of endpoints of v : R — B is the set
{limy, _oo (%), limy o y(£) }. Conversely define for two points a,b € Clos(IB) the directed
geodesic from a to b by .

2.1 The Geodesic Flow on IB

The geodesic flow is a flow acting on the sphere bundle 7'IB. To define the flow, it is useful
to use the following representation of T'B: Let n,& € S' = 0B, n # . Let v,¢ be the
directed geodesic from & to n (i.e. £ =1limy, o Y(t), n = limy_, y(t)) with the additional
property that v(0) is the unique point in B where the euclidean distances dg(n,v(0)) and

di(&,7(0)) are equal.
Define X = ((S')?\A) x R with A = {(n,¢) € (S1)? | n # &, }. Then the mapping ®
from Xp to IB x S!, which is by definition T"IB, given by

d: Xy — BxS!
(M, &,1) = Yme(t), argy, (1))

is a diffeomorphism. Now, the flow is defined as :
Definition 2.1

Spt:XIB — XIB
(777678) = (n7€78+t)

is the geodesic flow on T'IB.
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Theorem 2.2 (Liouiville) The Liouiville - measure dmy, = dAdf on T'B is flow invari-
ant. With respect to the representation Xy the measure is given by

2|dn||d€]|dt
I — &2

Proof: cf. [Ho] for the invariance, cf. [Aa], [AF] for the representation on Ap.

dmL (777 57 t) =

2.2 Geometry of Discrete Groups

As it is well known, the full group of orientation preserving isometries of IB is the Moebius
group Moeb™ (IB) on B (cf. [Ra]). A discrete subgroup G of Iso™(IB) is called Fuchsian
group. If G is in addition torsionfree, then the quotient map

p:]B—)]B/G

is a local diffeomorphism and B/ ¢; is a hyperbolic manifold with respect to the metric
induced by p. Now, by relating properties of G (for G torsionfree) with properties of B/,
one gets the following definitions:

Definition 2.3
e G is called cocompact if B/ is compact.
e G is called cofinite if Area(IB/) is finite.
e (G is called of first kind if the limit set
Q(G) :=={z € OB | z is an accumulation point of G(0)}
is dense in S, otherwise, G is called of second kind.

For the further understanding of the action of a Fuchsian Group on B and the geometry
of B/ > the approach via an exact fundamental polygon is standard. As there are many
ways to define polygons, the definitions used here are mentioned (cf. [Ra], section 6.2 and
6.3):

Definition 2.4

e C C B is (hyperbolically) conver if and only if for each pair of distinct points x, y
the geodesic arc from x to y is contained in C.

e A side of a convex sett C' C B is a nonempty, maximal, convex subset of 0C'

e A conver polygon is a nonempty, closed, convex subset of B, such that the collection
of sides is locally finite?.

2Locally finiteness of a collection of sets S is defined as follows: every point in z € IB has a neighbour-
hood, which has nonempty intersection only with finitely many members of S
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Looking at the GG - images of a convex polygon P, it is sometimes useful to represent P as
intersection of half - planes, where a half - plane H, is defined as the closure of one of the
components of B\ for some geodesic line . This is given by:

Proposition 2.5 Let P be a two dimensional convex polygon unequal to B with set of
sides §. For each side s of B, let Hy be the closed half - space such that 0Hy D s and

P C H,. Then:
P:ﬂm

s€S
Proof: see [Ra], theorem 6.3.2

Definition 2.6 Assume G is a discrete, torsionfree subgroup of Iso™ (IB). Then

e A fundamental region R for G is an open set with GR = B and g(R)Nh(R) = () <=
g # h.

e A (convex) fundamental polygon P for G is a convex polygon P, whose interior is
fundamental domain and the collection {g(Int(P)) | g € G} is locally finite.

e A fundamental polygon P is exact if for each side s, there is an element g, € G with
s = PnNgs(P).

As the Dirichlet region is an exact fundamental polygon [Ra], there exists for any G
Fuchsian and torsionfree a fundamental polygon, which is exact. By exactness, each side
s of the set of sides S is mapped via g, to another side s’ and g;' = gy. This gives an
involution on the set of sides ' : S — S, s — §', called side pairing. Now, by Poincaré’s
theorem, the set {g; | s € S8} is generating G and all relations between the generators are
given by the so called edge cycles and the side pairing relation g;' = gg.

2.3 The Geodesic Flow on B/~

To define the geodesic flow on 1B/, one has to define the action
Iso™(IB) on T'B:

3 of an element ¢ of

9(x,0) = (92,0 + arg(g'(z))
Calculation shows that this action and the flow are commuting, i.e. go ¢, = ¢ 0g
Vg € Iso™(B),t € R. Thus, the flow on B/ for G torsionfree is given by the commuting
diagram
Pt

B x S! B x S'
P P
]BXSI/G o ]BXSI/G

3To be more sophisticated: one can define a group structure on 7'1B, such that the mapping Iso™ (IB) —
T'B, g — (g(0),arg(g'(0)) is a group isomorphism. Now, the flow can be defined as left multiplication by
a one parameter subgroup.
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Now, if P is a fundamental polygon for G, it is well known that the set
P, :={(z,0) € P x S" | pr, o ¢;(z,0) € P for t sufficiently small }
is a fundamental domain for the action of G on T'IB and that
(TllB/G,B, mr, o) = (Pp/~, B, mL|P¢a80:)

is an isomorphism, where ~ is induced by the action of the group, my|p, is the to P,
restricted Liouiville measure and ¢; is given by ¢;(2,0) = g1..0(¢i(2,0)) with g, 9 € G is
unique (mod myz,) by ¢i.9 € P,.

2.4 The Upper Half Space U

There is another standard model in hyperbolic 2 — geometry, the so called Upper Half
Space model
U:={z€e C|Im(z) >0}

equipped with arc length and area given by

_ 144 an z :7dz
Tt M M= e

As the map 9 : B —- U, 2z — % is with regard to these definitions distance
and area preserving, one does not have to distinguish between those models. If there is
no confusion, H will be used as notation for the hyperbolic 2 — plane. Translating the

statements of this section to the new model, one gets:

ds(z)

dm; = dAdf as Liouiville - measure on T'U
Xy = (RU{c})*\A x R as alternative representation of 7'U
2d&dnd
dmp = M as Liouiville measure on Ay

(& —n)?



3 The Special Flow Representation of the Flow

The aim of this section is to use the product structure of Liouiville measure to represent the
geodesic flow on H/ 7 as special (or suspension) flow over some invertible transformation
S :Y — Y. This approach is closely related to code the flow via “cutting sequences” (cf.
[Se]) and uses ideas of [AF]. It will be discussed whether this is possible by this special
method: if H/ is geometrically finite, this is equivalent to G being of first kind. But in
the infinite case, this is not true at all. Hence, the possibility of such a representation gives
another characteristic for these groups.

3.1 Special Flows

Definition 3.1 Suppose T is a nonsingular, invertible, measure — preserving transfor-
mation of the standard, o — finite measure space (X,B,m) and that h : X — R, is
measurable. Then the special flow over T" with height function A is defined by:

X, = {(z,y)|reX,0<y<h(x)}
by
o (x,y) = (T"z,y+t— hy(z)) withn € Z given by
hn(z) < y+ 2z < hyii(z) where
0 . n=0
h(@) = SIATH@) w21
—hy (T () : n<0

with the product measure p := m x A and corresponding ¢ - algebra Bj, , where A is the
Lebesgue measure. In this context, T resp. (X, B,m,T) is called a section for cth’L.

There is a close connection between the section map and the flow (cf. [HIK]):

Proposition 3.2

X, . . . .
1. ¢; " is ergodic <= T'is ergodic.
X, . . . .
2. ;" is measure preserving <= T is measure preserving.

In the case that the flow is measure preserving and there is a set A € B in the section so
that the induced transformation is well defined, it is sometimes possible to get a further
section for the flow:

Definition 3.3 Let T be a nonsingular transformation of the o — finite measure space
(X, B, m). The return time of T on A € B is

_ min{n : T"(z) € A} : if it exists
da: X —{1,2...} U{oco}, :L'»—>{ o

else

12
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If pa(x) < 0o a.e. on A (e.g. if T is conservative), then
Ta: (A, BNAm|a) = (A, BNA M), z— T (1)

is the induced transformation of T on A.

The next theorem is folklore:

Proposition 3.4 Let (X,B,m,T) be a measure preserving section of the special flow on
Xj. Let A € B be a set with ¢p4(z) < oo a.e. and |J,.y7"(4) = X mod m. Then the
induced transformation (A, BNA, m|4.T4) is also a section for the flow with height function

(t)A(CL‘)—l
ha(z) = Z hoTk(x)
k=0

3.2 The Special Flow Representation

As it was mentioned before, the next step is to decide whether it is possible to find a special
flow representation for the geodesic flow on I/~ with G' Fuchsian and torsionfree. The
outline for that is to construct a section Y via the boundary of some fundamental polygon
and the corresponding identifications by G. In contrast to the result of Ambrose and
Kakutani, that any measure preserving conservative flow admits a section, such a section
will be defined explicitly and will be used to decide whether the flow is conservative and
ergodic or not.

As some elements of TllH/G may not be covered by this method one has to look if the
corresponding set is of zero measure which leads to the following definition:

Definition 3.5 (CA) Let G be a torsionfree Fuchsian group. If there exists an exact
fundamental polygon P, such that

Ap:={(z,0) € P x S' |3t € RU {00} such that v,,(t) € GV}
is a set of Liouiville - measure zero, where
Vp := { set of vertices of P in H } U (Closg(P) N 0H)),

then G resp. the pair (G, P) is said to fulfill the coding assumption, abbreviated by (CA).

Remark 3.6 By definition, the set Ap is invariant with respect to the flow and to the
action of G. In addition, Ap # H mod my. Hence, my(Ap) > 0 forces the flow to be not
ergodic. A further description of this condition will be done in the next subsection.
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If G is (CA), then as noted before:
Py :={(z,0) € P x S" | pr; o ¢(z,0) € P for ¢ sufficiently small }

is a fundamental domain for the action of G on T'H and T'H/ = P,/~ in the category
of measure preserving flows (cf. section 2.3). Hence, by (CA) and the fact, that Ap
is invariant with respect to the G - action, there is the following (measure theoretical)
equivalence:

T'H/q = (Py\Ap)/~
Let ]5¢ resp. Ap be the sets P, resp. Ap in the Xy - representation and define:

Definition 3.7 (£,n) is P - admissible iff 3 ¢ € R, such that ¢ ,(¢) € (P). If (§,n) is P
— admissible, then

te, = sup{t|ve,(t) € P} < oo
ten = Inf{t|ye,(t) € P} > —o0
MEm) = t,—tg,

As P is convex, [tg,,t{, ] and {t | 7¢,(t) € P} coincide. Now the coding assumption allows
to find an explicit special flow representation (cf. [AF]):

Proposition 3.8 Assume G is (CA). Then (TI]H/G, B, my, d)t) and the special flow over
(Y, B,m, S) with height function h are isomorphic in the category of measure preserving
flows, where (Y, B, m, S) is defined as follows:

o YV ={(&n) € (OH)*\A | (¢,7) admissible}

o dm = 2|d¢||dn|/|€ — n|?* with respect to the disc model B and dm = 2d¢dn/(€ — n)?
with respect to U, defined on the Borel o - field B

e S is defined piecewise: by (CA), for a.e. (§,n7) € Y, %,n(th) is element of some side
s of P. Let g, be the corresponding side - pairing. Then S(&,n) = (g5(£), gs(n))-

Proof: First of all, the conditions on S have to be checked:

S is defined a.e., as by (CA) m - a.e. (§,1) €Y, ve,(tf,) is an element of a side s of P.
Assume g, (tf,) € 5. Then gy(ve,(t{,)) is an element of the side g,(s) = s' and is equal
t0 Vgut.g0n(ty.e.g0) (cf. figure (1)). Hence, S(£,n) = (gs€, gsn) is m - a.e. admissible . In
addition, as Yg,¢ g.n(t, ¢ 9n) = Vaamget (g gie) a0 g = g5', S is invertible.

Now fix the disc model B and define A to be the corresponding subset of X for any set
A C B x S'. Then

p(b = ganat
§,n,t
§,n,t

§n,t

is P - admissible, t;, <1 < th}

is P - admissible, t; <1 < th} \fip

is P - admissible, —oo < t,, <t <t} < 00}
is P - admissible,0 <t —t; < h(£,n) < 0o}

{{
{{
= {
{(
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& (VE,nZJr) &n

"
‘%(y{,nt + €

Figure 1: The section map S

Hence the mapping (&, 7,t) — (§,m,t —t,,) is a measure theoretical isomorphism*
~ d&||dn|dt dél|d
(B (ol
€ =l €=l

What is left to show is that the flows are isomorphic. This boils down to show that for
(&,n,to) €Y, t € R = t+1ty > h(&,n), there exists n € N\{0} and ¢ € G, such that

g(V&,n(t;n +1+1)) = Ysn(&m) (ts_*n(gm) +t 4ty — hn(§,m)).

As the tesselation G P is locally finite, it suffices to show this for ¢ : h(§,n) < t+ty <
ha(&,m). But this is a consequence of the side - pairing property: any side - pairing g; is a
hyperbolic isometry and

gs(%m(tzr,n)) = Vgs(€).9s(n) (tg_s(g),gs(n))’

where s is given by 7, (t{,) € s. O

Now by proposition (3.2):

4The measurability of this map is a consequence of the implicit function theorem: let H, be a hyperbolic
half - space with boundary s. Then, (§,n) — inf{t | v¢,(t) € Hs} is a differentiable map in its domain
of definition. As P is representable as a countable intersection of half - spaces (cf. proposition (2.5)), the
measurability follows.
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Corollary 3.9 S : Y — Y is a measure preserving transformation with respect to the
measure given in proposition (3.8). In addition, S is ergodic if and only if the flow is
ergodic.

3.3 Condition (CA)

The aim of this section is to characterize the groups with respect to (CA). As noted before,
new phenomena arise if one passes from the geometrically finite to the infinite case. But
first of all, independent of the geometrical finiteness, the limit set of a group G gives a
criteria for the coding assumption: a group of second kind is not of type (CA) which is a
consequence of the following proposition ([Ra], Theorem 12.1.14):

Proposition 3.10 G is of second kind if and only if any convex fundamental polygon of
P contains a closed hyperbolic half - space.

Corollary 3.11 Assume G is of second kind. Then G is not of type (CA) and the flow
is not ergodic.

Proof: Let H be the hyperbolic half - space given by the last proposition. Define
W := Closg(H) N 0H. Then (W x W\A) x R is a flow - invariant subset of Ap of
positive measure. O

Now, if H/ 7 is of finite volume, the next proposition (cf. [Ra], Theorem 9.8.1) gives the
structure of some fundamental polygon:

Proposition 3.12 If G is cofinite, then there is an exact fundamental polygon P with
finitely many sides S. The set of sides can be cyclically ordered such that any two consec-
utive sides meet in a vertex in IH or an ideal vertex in JH.

Remark: If the set of sides is finite and any two consecutive sides meet in some vertex,
the set Vp from the definition of (CA) is finite. This implies that Ap is the countable
union |J, .y Az, where

A, == {(z,0) € T'H | 3t € R U {400} such that v, 4(t) = 2}.

As the A, are of Liouiville - measure zero, (CA) follows in the case that G is cofinite. To
obtain a complete characterization, geometrically finiteness is introduced:

Definition 3.13 G is geometrically finite if and only if there is an exact fundamental
polygon for G with finitely many sides.

Proposition 3.14 Assume G is geometrically finite. Then the following are equivalent:
(1) G is cofinite.

(2) G is of first kind.
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(3) G has property (CA).
(4) The flow on H/; is ergodic.

Proof: ’(1) = (3)’ is the last remark, '(1) = (2)’ is a consequence of propositions (3.12)
and (3.10), '(3) = (2)’ is corollary (3.11) and ’(2) = (1)’ uses the fact, that G is geomet-
rically finite (cf. [Ra], Theorem 12.3.8).

By [Ho], the flow on IH/~ for G cofinite is ergodic, which gives ’(1) = (4)". And by (3.11),
ergodicity is implying (2). O

Now, if GG is not geometrically finite, things are different. It will be shown via three exam-
ples that the set GV from definition of (CA) for G of first kind can be either countable,
uncountable of zero Lebesgue - measure or uncountable of positive Lebesgue measure (with
respect to the disc model). They will give counterexamples for a statement similar to the
last one for the geometrically infinite case.

Example 3.15 In the upper half - space model, a convex polygon P is constructed such
that the corresponding group is a subgroup of PSI,Z. Let P be the polygon, whose sides
are geodesics joining n with n+1 for n € Z. Then the side - pairings are defined as follows:

2 —
o=z 32 € PSL,Z
1—22

is sending 79,1 to 71,2 with parabolic fixed point 1. Let 7 be given by z — 2z + 2. Hence,

8o 7% maps Yok 2k+1 tO Yor+1,2k+2, fixing the point 2k + 1. So the set

k -k _—1_k
or s = Yok+1,2k+2,9s =T O T }

{(5,95) | $ = Yon2n41,9s = TPOT”
gives a complete system of sides of P and corresponding side - pairings. To apply Poincaré’s
Theorem, one has to check the vertex cycles given by the side - pairings. It turns out that
there are only two possibilities: Either the cycle has infinite length or length one. In the
second case, the cycle is the fixed point of some g, (and hence fulfills the parabolic cycle
condition). By Poincaré: P is the fundamental polygon of the group Gp =< 7*o77% | k €
Z >. Obviously Vp = ZU {oo}. In this case, by proposition (3.10), Gp is of first kind and
by the same argument as in the remark to (3.12), property (CA) follows.

The next two examples rely one some Cantor set like construction. Here, the turning point
is the possibility of defining a set, which is totally disconnected, uncountable and sometimes
of positive Lebesgue - measure. This will lead to examples, which do not occur in the case,
where the corresponding group is geometrically finite: a group Gp of first kind will be de-
fined, where the corresponding sets Vp are uncountable resp. of positive Lebesgue measure.
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Assume I is the unit interval with Lebesgue - measure A. Fix a : 0 < a < 1/3 and define
inductively:

I, = {disjoint union of 2" closed intervals I',...T>" of the same length}

n+1

B, = {disjoint union of 2" open intervals B,ll, .. .Bin, each of length o™,

where each of the B! is placed in the middle of I, i.e. if
I =[a,b], B, = (25 — 25 24t 4 20}

2 2 7 2 2
Iﬁ+1 = Iﬁ\Bn

To show that this is well defined, one has to check that the following holds: Vn € N;1 <
i <27 B! C I'. So assume that this is true for n — 1. Then:

n—1 n—1
ML) = 1=) 2" =1-a) 2"
=0 =0

1—(20)"  1-3a+a(20)"

= 11—« —
1 -2« 1 2«

As I, resp.B, is the disjoint union of 2" intervals of the same length and \(B,) = 2"a" ™!,
it remains to show that A(Z,)/\(B,) > 1:

M)  1-3a+a(2a)”
MB,) (1 —2a)2rant!
1 -3« 1

(1 —2a)(20)cx * 1 -2«

1-3
1-2

2

Hence, as for 0 < a < %, > 0 and ﬁ > 1, the construction is well defined.

2

In addition, it follows that the set /() = I := [),cy In has Lebesgue measure A(I) =
tgz >0as I, D I,.1. To be more precise, for a = %, I is the normal % - Cantor set
with Lebesgue measure zero. Otherwise, for 0 < o < 3, A(I(c)) > 0.

Example 3.16 Use the disc model and let @ = . If Bi is the interval (a,b), define for
neNO0 < <2™

jat+b
and e*™ 2,

2mib

s' is the geodesic with end points e?™

5 is the geodesic with end points 25" and e
gn,i 1is the unique parabolic transformation with fixed point eQm&TH’,
sending s’ to 5§ (the unicity is a consequence of the property,

that s, is the isometric circle of g, ;).
In contrast to the last example, there are no infinite vertex cycles. Any cycle is of type
-a+b . . . , . . .
{627”%} where n € N;0 < ¢ < 2". Again by Poincaré, this gives a discrete group
Gp =< gn;|n €N0 <i<2" > where P is given by the half - planes with sides s, resp.
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5t . Then:
Ap is of zero Liouiville - measure, Vp is uncountable and Gp is of first kind.

Proof: As P has no vertices in 1B,
(Vp)c — U <(e27ria, 62771"7“’) U (627ri“T+b, eZm'b))
neN,0<i<2" (a,b)=B}
= (™= U {e’™ | x is a midpoint of some B.})°
As the first set is uncountable, the first statement is proved. As the second set is countable,
it suffices to show for the second statement that the set

{(627rix,6277’iy,t) | X,y € Ioo,x 7é y;t € ]R‘}

is of zero Liouiville measure. By the product structure of this measure, this can be reduced
to show that V* := {(e®™® e>™) | x,y € I,z # y} is of zero measure with respect to
2|d¢||dn|/|€ — n|?. Define for § > 0:

VH0) = {(e*™*,e*™) | z,y € M(5)} with

M@©) = {(x,y)|z,y € I, |t —y|>0and 1 — |z —y| > 0}

Now the transformation rule gives that

2/ |d€||dn] 4 2/ dxdy
5 = (s
vy 1€ =l M) 1 —cos(2m|x —yl)

As 3 < (1—cos(2m|z—y|)) ' < (1 —cos(2md)) " on M(H), the measure of V* is zero for all
0 > 0. Now by choosing a sequence 9, | 0, the second statement follows. By proposition
(3.10) the last assertion that G is of first kind follows. O

Remark 3.17 The V*() - construction can be generalized to any subset of 0B. As
Ap N B is countable, the corresponding subset of Vp is of zero Liouiville - measure. Hence
the following are equivalent:

e ApNOJB is of zero Lebesgue - measure (w.r.t. to JIB).

e Vp is of zero Liouiville - measure.

Example 3.18 Fix 0 < a < % and define P resp. Gp analogous as in the last example.
Then:

Ap is of positive Liouiville - measure and Gp is of first kind. As Ap is by the remark to
definition (3.5) of (CA) flow - invariant, the flow on B/, can not be ergodic.
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Proof: By the same arguments and in the same notation as in the last example, it suffices
to show that there is a measurable subset M’ of I, x I, with fM, % > (0. But
as (1 —cos(2r|z —y|))™" > L Vo,y € R and M" := ([0, 52] x [H2,1]) N (T X I) is a set

of positive Lebesgue measure, the statement follows. O

Summarizing the results one gets:

Proposition 3.19 Assume G is not geometrically finite, then the following statements
1) The flow on H/ is ergodic.

)
2) G satisfies condition (CA).
3)
)

(
(
(3) G is of first kind.
(

4) There exists a fundamental polygon P for G with Vp countable.

have the following relations:

()= (2) <<
5 H¥Giid)
(1) o= ()

Proof: (i) is the remark to definition (3.5), (ii) is corollary (3.11) and (iii) is analogous
to the remark to proposition (3.12) as GVp is countable. (jj) is the last example (3.18)
and (jjj) is example (3.16). Hence, what is left to show is (j): it is shown in [AD] that
the flow on a Z? - cover of the cofinite group I'(2) is not ergodic. But as for this cover (4)
holds, the proposition is proved. (]

As there are geometrically infinite examples which are ergodic (cf. [AD], [Rel], [Re2]), it
should be possible to find some new additional criteria implying (2) = (1) resp. (4) =

(1).



4 The Bowen - Series Map

The topic of this section is to find one - dimensional Markov maps, which are associated to
the section map of some special flow representation. This goes back to Bowen & Series (cf.
[BS]). They constructed a Markov map 7" : 0B — 0B associated to a cofinite Fuchsian
group G, which is orbit equivalent to the action of G on 0B (i.e. gr =y <= I n,m >
0 : T"x =T™y) and is expansive (i.e. the modulus of the derivative is bigger or equal to
1). This approach is highly dependent on the shape of some fundamental polygon P of G.
Therefore, as any two Riemannian surfaces of genus g with k cusps (cf. [Ber] p. 275) are
quasiconformal equivalent, they fix a model for such a surface with some extra properties.
A polygon P is constructed which satisfies the assumptions of Poincaré’s theorem with
respect to some side - pairing in a way that the corresponding surface is of genus g with k
cusps. The construction gives the following properties:

(1) Each side s of P is contained in the isometric circle of the side - pairing g;.

(2) G(OP) consists of complete geodesics, where G is the group defined by Poincaré’s
theorem

Now with respect to this model, Bowen & Series defined a transformation 7' : 0B — 0B,
which is piecewise Moebius. To avoid confusing notation 7' will be defined only for an
example. In the situation of figure 2, T'|,. = g;, where g; is the side pairing which maps s;
to some s;; the generalization for arbitrary cofinite G is obvious:

Figure 2: The Bowen - Series construction

21
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By condition (2), it is shown that 7" is Markov with respect to a countable partition «. In
addition, « is finite if and only if G is cocompact (resp. P has no vertices on dB). The
main result of Bowen & Series is as follows:

If G is cocompact, then T? is expanding, i.e. thereisa § > 1 with |DT?(z)| >
for all z in the interior of some element of . In addition, sup,.sp |D*T(x)|/|DT(z)|* <
oo. If G is not cocompact, then there is a set K which is a finite union of ele-
ments of a such that the induced transformation Tk has the same properties as
in the compact case. Now by a Renyi - type result, Bowen and Series deduced
that T resp. Tk admits a unique finite invariant measure, which is equivalent
to Lebesgue - measure. By a mixing property of T', the ergodicity of T follows.

The property, that T and G are only linked via orbit equivalence, was improved by Adler
& Flatto (cf. [AF]): they showed for G cocompact that T is a factor of an invertible map,
which is conjugated to the section map defined in the last section. As in [BS], quasicon-
formal deformation was implicitly used to obtain a suitable fundamental polygon.

In the following, it will be shown that this factor property of T" can be attained directly if
G is (CA) and admits an exact fundamental polygon P such that the sides of P consists
of complete geodesics:

Definition 4.1 G has the complete geodesic property, abbreviated by (GC), if G admits
an exact fundamental polygon P such that the sides of P consists of complete geodesics.

If G has property (GC), the corresponding P is exact. Hence, P fulfills the assumptions
of Poincaré’s theorem. Now as P has no vertices in H, G has to be a free group. Now with
regard to the set Vp defined in (3.5) this gives:

e (G is cofinite if and only if Vp is finite (cf. proposition (3.12)).

e (G is (CA) if and only if the Lebesgue measure of Vp with respect to the disc model
is zero (cf. remark (3.17)).

e G is of first kind if and only if Vp contains no interval (cf. proposition (3.10)).
For example, any subgroup of the modular group PSIL,Z is a group with property (GC)
(cf. [Kul,[St]).

4.1 The Bowen - Series Map

Assume for the rest of the section that G has (GC) and (CA). Then the definition of such
a group gives immediately a more explicit version of (3.8):

Proposition 4.2 The section map (Y, B, m, S) defined via an exact fundamental polygon
P given by definition (4.1) with sides S is given by (cf. figure (3):
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1) Y= Uses(as)C X (g

(1)
(2) dm = 2|d€||dn]/|€ —n*> w. r. t. B and dm = 2d&dn/(é —n)? w. r. t. U
(3) Sltas)xas (§:m) = (95(£), 9s(n)) m a. e..

(4) S((as)® x as) = ay X (ay)® mod m.

where ay := Intyy (Closg(Hs) NOH) and Hy is the open hyperbolic half - space with

H,NP=40.
(\
g
as Hs
n

Figure 3: The section map S for a group with the factor assumption

Proof: By proposition (2.5), P = ({J,.s H,)‘. By the definition of G, S consists of com-
plete geodesics implying that H, N Hy, = () for ¢ # s. Hence, the geodesic 7¢, with £ € a;
and 7 € a, has to meet P, in particular ve ,(t7,) € t and ye,(t;,) € 5. So S(€,1) = gs(&, )
which is statement (3). In addition, “2” for (1) is shown. As by convexity of Hy, as X as
contains no admissible elements, Y* O | J . as X a,. So, (1) follows by (CA).

To prove (4), as gs for s € S is a homeomorphism 0H — 9H it is sufficient to show that
Closmgs(Hs) = (Hs)¢ As this is an immediate consequence of the side - pairing property
of g4, the proposition is shown. O

As a consequence of this proposition, the following diagram commutes where X = | J
T|., = gs. In addition, for 4 =mopry', T is a factor of S:

S
Y Y

SES (s,

pry pry

X X
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Remark 4.3

(1) X = OH mod p: as G is free, Vp = ([J,cq@s)¢ (c.f. definition (3.5) and definition
(4.1)). Now, by (CA), (Vp x Vp) C Y is a set of zero m - measure which gives the
statement. In particular, {as | s € S} is a partition.

(2) T(as) = U,y ax = a mod p by the last proposition.

(3) By integrating over the pr, - preimages, the density of p with respect to Lebesgue
measure can be calculated. Fix the upper half space model and a,. Assume A C a, is
measurable. Then:

o= e LU @)

Whether oo is contained in ag or das (assume for notation, that —oco < a < b < o0), this
gives:

if ag = (a,b) : o du= 2(— + —)dn for n € a
if ay = (a,00) d,u—2 ~dn for n € a,
if ag = (—00,b) : dp =24 —-dn for n € a,
if ag = [a, b]° : du= 2(— + —)dn for n € a

In addition, as u(as) f dp = oo, it follows that g is infinite and by definition 7T -
invariant. Now fix the disc model and assume that a; = €™ where I is an open interval
in R so that a, # 0B = S'. Then for A = >/ C a, with .J C I, there is a closed interval

I' such that (a,)¢ = €*™"". Then the transformation rule gives:

2|d&||d
sy = [ - 2

8m2dsdt
= , |62ms _ 627rzt|2
2 2d
_ / / A g
posin?(m(s — t))

As sm{ﬁ > 272, it follows that the invariant density Z—Z is bounded away from zero on

I. To find an exphmt representation it is sufficient to handle the case where I = (0, a) and
I' = [a,1] where 0 < a < 1. Then, as [sin™ >z = —cotz :

dp = 27 (cot(m(a —t)) — cot(w(1 —t)))dt for t € T

(4) Let g be the densitiy function given by du. As g(n) > 0Vn € |Jas, p and the Lebesgue
measure A are equivalent on | Jas. But as the set Vp has by (CA) Lebesgue measure zero
(cf. remark (3.17)), the equivalence of 4 and A follows. Hence, the following is well defined:
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Definition 4.4 The Bowen - Series map® associated to the group G via the exact fun-
damental polygon P is the transformation (0H, B, v, T) where v is either A or p.

In the following, it will be shown that the Bowen - Series map has the Markov property
with respect to the partition a = {ay | s € S}, i.e.

(M1) T|,, is one to one.
(M2) T(as) is the union of elements of o (mod p resp. A.
(M3) o({T " |i € N}) = Bmod p resp. .

Therefore, the structure of the preimages of « has to be checked: assume {f | i € I} is a
countable collection of partitions of the same space. Then \/,_; 3 is defined as the coarsest
partition, which is finer than each of the 3;. Then:

Lemma 4.5

n

= VT

{gSn Jlag, |sieSfori=0,...n,s #s,_ fori=1,...n}

Proof: Let b C a,, for a,, € S. From the definition of T, it follows that

'oy= U a0

SES : s#s

But as T'(as) = gs(as) = 0H\ay D as, mod u for s # sfy, g7'(b) is a subset of a,. Besides,
as « is a partition, the sets ¢g;'(b) with s # s are p.w. disjoint. Now induction gives the
statement of the lemma. Assume that the following is already proved:

e B:={g ' gta,| si€Sfori=0,...n—1,
Si # Sh 4 forizl,...n—l}
is a partition, which is finer than a.
e gl rgitay, Cag,_, VsieSfori=0,...n—1ands; #s_,
But then, this implies:

e T71(p) is a partition

o Let b:=g, ' - g, as. As b C a,,_y , it follows that T-'(b) is the disjoint union of
the sets g, !(b) with s # s, _,

°This is a generalization: in [BS] and [AF], the Bowen - Series map is defined with respect to Lebesgue
- measure and the disc model.
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The next equality gives the result:

Tﬁn(as()) = U g;nl e 9;1 (a/so)
S1,...5, €S
Si # Sy

Corollary 4.6 Tn+1|gs_n1"'gs_11(aso) = Gs00s, """ Js,

Proof: This is an immediate consequence of the last proof and the fact, that g, - -+ g5, ©
95;1 i '9;11(@50) = Qs - [

Recall the notion of a cylinder set [a, ... as) == g, '+ g, (as,) for s; € S. Now the last
two results can be rewritten as follows:

a = {[as]|s e S}

o" = {las,...a5]|s1...5,€S,8 £}, fori=1,...n—1}

Define a word (s1...s,) in S to be admissible if s, # s;.q for i = 1,...n — 1. Then the
following holds for all admissible words (s; ... s,):

Tn—|—1

las,..as,,] — 95,95, 1" " Gsy
Theorem 4.7 Assume G has conditions (CA) and (GC). Then:

e The Bowen - Series Map (0H, B, T, i) resp. (0H,B,T,\) is a Markov map with
respect to the partition a = {a, | s € S}.

e T preserves u (and hence is nonsingular with respect to p and ).

e T is topologically mixing, i.e. V U,V C 0H open, U,V # (), there exists ng, such
that UNT "V # 0V n > ny.

Proof: Without loss of generality, assume that the Bowen - Series map is (0B, T, BB, ).
For the Markov property it remains to show that o(\/;o, T ‘) = B mod u. Hence, it
suffices to show that the euclidean diameters of the partition o™ tend to zero as n — oc.
By lemma (4.5), a side of g5, o ---gs, P corresponds to some element of a™. So this boils
down to show that the euclidean distance of the endpoints of the sides of g, P tend to zero
as n — oo where {g, }nen is a sequence of elements in G with the property that the unique
representation of g, as word in the side - pairings has length n.

Assume this is not true. Then there is a 6 > 0 such that infinitely many ¢, P have a
side where the distance between the endpoints is bigger than §. Hence, the midpoints of
these sides have an euclidean distance to the origin smaller than some 0 < p < 1. This
contradicts the local finiteness of the tesselation given by G P. This now finishes the proof
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of the Markov property.

To show the mixing property, it is standard to show the aperiodicity of the so called inci-
dence graph (cf. [Aa], section 4.2): The set of vertices are the elements in o and the set
of (directed) edges are the pairs (a,b) with the property that T'(a) D b mod p. By (2)
in remark (4.3) this is equivalent to b # o’. Now it is easy to see that there are cycles
((ag, a1), (a1, az), ... (ag_1,a), (ag, ag)) of each length for all @ = ay. As this gives the
aperiodicity, T is topologically mixing. O

4.2 The Relation to the Flow

As the Bowen - Series Map is a factor of the section map S, ergodicity of S implies the
ergodicity of T: Assume A C H is T - invariant, i.e. T~'A £ A. Then by (GC), pr, A
is S - invariant. So if S is ergodic, pr;'A has to be trivial mod m which forces A to be
trivial. A transformation 7 is called conservative if there is no measurable set A of positive
measure such that {7 ™A}, ey is a collection of pairwise disjoint sets. Such sets are called
wandering sets. Now by the same arguments as before, if A is wandering with respect to 7',
pr, ' A has to be wandering for S. Hence T is conservative if S is conservative. To prove the
other direction, one has to show some minimality conditions of (Y, By, m, S) with respect
to (X, Bx,u,T):

Definition 4.8 Let (X, By, u,T) be a measure preserving dynamical system of the o -
finite standard measure space X. A natural extension of T is a system (Y, By, mg, S) with
S invertible and a measurable map 7 : Y — X such that:

eroS=Torm
-1 _
e mom =/
o \/;ozl Snﬂ'leX gBY

Now, it has to be shown that the section is the natural extension of the Bowen - Series
map. The main argument here is the symmetry of the geodesic flow with respect of
going backwards and forward: Analogous to the definition of 7" as a factor of S one
can define T as a factor of S~'. As by proposition (4.2), (3) and (4) are implying that

S ayx(as)e(§,m) = (95€, gsm), the following diagram commutes:
S—l
Y Y
pry pry
T
X X

Besides, T and T coincide. As in [AF] for the compact case, one can deduce:
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Proposition 4.9 (Y, By,m,S) is the natural extension of (X, Bx, u, T) with m = pr,.

Proof: It remains to validate the last condition of (4.8). As T is Markov, \/,.y 7~ £ Bx.

Hence, \/, oy
of the S- images of the sets pr; 'a where a € o™ for some m. By using the factor properties
of T and T one gets for 0 < m < n:

Snpry ' By = \/n’mEN S™pry 'a™. This reduces the problem to the investigation

S™(pry ' as) = pry (T "ay)
and  S™(pry'as, ...as,]) C pry (T™a, . ..as,]) = pry'las, . ...as,]

= S™(ay X [y, ...a,,]) CT ™a, X [ag, ... a,,]

By proposition (4.2), S(pry '[as, ... as,]) = ag X [as, - .. a,,]. Now the Markov property of
T and T with respect to « finishes the proof. O

As S is the natural extension of T, a theorem of Parry (cf. [Aa] theorem 3.1.7) gives
that S is conservative if T' is conservative and that S is conservative and ergodic if 7T is
conservative and ergodic. So by summarizing the results, one gets:

Proposition 4.10 Assume G is a Fuchsian group with condition (CA) and admits an
exact fundamental polygon P which sides consist of complete geodesics. Then the following
relations between the geodesic flow ¢ on H/, the section map Y defined via P and the
Bowen - Series map 7' hold:

e ¢ is ergodic <= S is ergodic = T is ergodic

e T is ergodic and conservative <= S is ergodic and conservative = ¢ is ergodic



5 Ergodic Properties of the Bowen — Series map

The aim of this section is to determine ergodic properties of the Bowen - Series map like
conservativity, ergodicity or rational ergodicity. In contrast to [BS] and [AF], an invariant
measure for T is explicitly given by remark (4.3) but is o - finite. The first application
of this property is to determine the wandering rate of 7" for some set A which gives the
conservativity of T" as a corollary. In addition, this rate is used later to determine the
return sequence of 7.

5.1 The Wandering Rate

Assume in the sequel, that G is a cofinite Fuchsian group with the property (GC). If P
is the corresponding fundamental polygon P, proposition (3.12) implies that the set Vp is
finite and hence G has property (CA). In addition, let (0H, B, i, T') be the Bowen — Series
map defined in (4.4) with Markov partition o := {as | s € S} where S is the set of sides
of P. The turning point here is the close relation between the so called parabolic cycle
condition and the preimages of the elements of a:

Assume v = v is an ideal vertex of P in OH (i.e. an element of Vp). Then by Poincaré’s
theorem and as Vp is finite, this gives a finite cycle of vertices vy, ...v,, of sides sq,...s,
and of side - pairings g1, ... g, such that:

o gi(v;) = vy for 0 < i < n and g,(v,) = v1.

e s; is adjacent to v; and g;(s;) and s; 1 have v;,1 in common for 0 < i < n resp. ¢, (sp)
and s; have v; in common.

® g,00, 1--¢; fixes v; and is parabolic by Poincaré.

Now recall that a; = [a,] for s € S is an open interval and define T'|},] as the continuous
extension of T to the closure of [a,], i.e T'|j,,] = g5 on Closgg|as]. With regard to T', the
cycle statement is hence the same as:

i T|[a5i](vi) = v;41 for 0 < i <n and T|[a5n}(vn) = .

e a,, is adjacent to v; and the closures ag,(,) = ay and ag,,, have v;;; in common for
k3
0 <7 < n resp. the boundaries of a;, and as, have v; in common.

By (2) of remark (4.3), T, 1(as,) = (ag)". As s} # sip1 resp. s, # s1, T, 1(as,) C ag,,,.
Hence, T"([as, . ..as,]) is well defined and maps [as, ...a,,] to T(as,) = (ay ). With
respect to the continuation of T on Closyg([as, . . . as,]) the last property gives:

e v, is a parabolic fixed point Tn|[a51_._a5n} =Tfa., ] oT|[a5n71] . .T|[a51], i.e. vy is a fixed
point and the modulus of the derivative at v; equals one.

29
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If N is the greatest common divisor of the lengths of all vertex cycles, it follows that any

element® of Vp is a parabolic fixed point of T" with respect to the corresponding element
of a™ (for notation, cf. (4.6)). Now, for any v € Vp, define

Uv) = Lasl R P P PO asnlU
N/n‘;imes

Iatl Ce atn, Aty . atn, Ce Aty . atn,l,
N/n??imes

where s1,...s, and t;...t, are the edge cycles such that a;, and a;, are adjacent to v.
Besides, by the cycle property, it follows that n = n' and t; = g¢5,_,(s; 1) fori = 2,...n
resp. t; = ¢s, (Sn). Now define the words w(v) and w'(v) of length N by

w(v) = |ag, ...as, 05 ... 05 A, .- g, |

n

w'(v) = oy .., 0, o Gy ay ]

n

There is the following general fact about Markov maps: assume a € « and that the word
aa is admissible. Then:

(T '(a..a)) Ulla...a)* = T |J [Bu-)u | [br-. 0]

k times k times by...bp#a...a by...bp#a...a
= U @ v Un
b1...bp#a...a, cby adm. b#a
= [a...a]°
——
k+1 times

As TV is Markov with respect to o and w(v)w(v) is admissible for v € Vp:

T N(w)...w®)]) Uww)...w@)]" = [w)...ww)" resp.

TN w@)]Uw@)] = [wE)w()]

and as k is arbitrary, by induction for n > 0 :

U T~ w()]* = [w() ...w(w))

n+1 times

6This works only if Vp is finite. Hence there is no generalization to the geometrical infinite case.
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By defining A := (Uvevp([w(v)] U [w'(v)])) = (Uvevp U(v))°, this gives:

Jr=*a = U™ (U () v @)
= U N (@ Mw@)r) n (- w©))
= N ((Ur Me@)) n (U~ @)))

veEVP =0

- ( U [31;(@) . .w(v)J] U [zu'(v) . .w'(vl])c

TV TV
veVp n+1 times n+1 times

This result now makes it possible to calculate the wandering rate of the set A. By the
relation to the parabolic cycle condition, TN|w(U) has to be parabolic with fixed point v.
Assume by conjugation without loss of generality that v = oo and TV, (2) = z — 1.
Then there is a € R such that” [w(v)] = (a,00). By (3) of remark (4.3) there is b < a such
that du = 2/(x — b). Now calculus gives:

a+n 2
p((a,a+n)) = / bdx = 2(log(a+n —b) —log(a — b))), whence:
a T —
p((a,a4+n] 5 log(a +n —b) log(a —b) o,
logn N logn logn
Again by TN|w(U)z = 7z — 1, this gives in terms of the partition oV that :
n times
(@ a+n] = wO\w)...ww)] — AN 0D ey,

—— logn

n times

For each v € Vp, U(v) is a neighborhood of v. Hence, for all a € o, AN a is bounded away
from da. By the structure of u, (A Na) is finite. As « is finite (as the corresponding
group is cofinite), u(A) is finite. As the rate of convergence for [w'(v)] is the same as for
[w(v)], the equality

U7V =40 U (w@Nww) . oe) U @N'@)..o'w)

vEVP n+1 times n+1 times

implies by the finiteness of p(A), that

" TN A
MUTZD sy g

"The case, that [w(v)] = (00, a) has to be excluded, as TN, (,)[w(v)] = [w(v)w(v)] has to be a subset
of [w(v)] (cf. (7.7) in the appendix).
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where #Vp is the cardinality of Vp. As the sequence {J_, T *A}ien is monotonically
increasing, the following proposition is proved:

Proposition 5.1 .
(Uie T7'4) n—oo
logn

4 #Vp

In addition, as (a,a +n] =% (a,00), U, T~V A "% 9H. As in contrast to [BS] and
[AF], the invariant measure is explicitly given, this gives for the induced transformation
on A:

Proposition 5.2 T4 : A — A is well defined and preserves pu. As p(A) is finite, Ty is
conservative. In addition, T is conservative.

Proof: As u(A) < oo, there is no wandering set of positive measure. Assume W is wan-
dering for T. As |J;_, 7™ = 0H, there is W* C A of positive measure and ny such that
T—"wW NW* is of positive measure. Hence, W* would be wandering for 7’4 which finishes
the proof. O

5.2 Distortion Properties

Let (X, B,u,T,«) be a nonsingular Markov map. As T is locally invertible, there are
inverse branches of T™ for each n > 1: for a = [ay...a,] € ", T"|, is one to one and
T"a = Ta,. Now define (cf. [Aa]):

D(v,) = Tla
ve : D(vy) = aby T ov,(x)=x for x € T"a
o= d,uova,
a d/,l,

where v/, is the Radon - Nikodym derivative. A distortion property is a feature of the
multiplicative variation of v, on T"a. Let

ay ={a € a|pla) >0} where & := U a”
n=1
Definition 5.3 (X, B, u, T, «) has the strong distortion property if there is C' > 1 such
that g(C,T) = &, where

§CT) = fac |

The stronger Gibbs property is connected to estimates of p(a) for a € o™ and n large:

< C for pux ju-ae. (v,y) € (D(v,))?*}
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Definition 5.4 (X, B, u, T, «) has the Gibbs property if there is C > 1 and 0 < r < 1 such
that g,(C,T) = &y where

vy ()
v, (y)

with t(z,y) :==min{n > 1 |T"zv €a€ca,T"y€bE a : a#b}

9:(C,T) :={a € &, | < Cr'Y) for pux - ace. (z,y) € (D(va))’}

log

In many cases (e.g. if there are some parabolic fixed points) it is not possible to achieve
the strong distortion property. But sometimes there is a weaker property:

Definition 5.5 Let (X, B, u, T, «) a Markov map. A collection v C & is called a Schweiger
collection if there is C' > 1, such that

et Cg(C,T)
e [b] € t,[a] € &y,[a,b] € & implies that [a,b] € ¢
o e 0 =X mod p

(X, B, i, T, «) has the weak distortion property if there exists a Schweiger collection for
(X, B, u, T, ).

In the sequel, these distortion properties will be discussed with respect to Lebesgue measure
and local diffeomorphisms. Recall that in general, if .J and .J’ are bounded intervals in IR,
A is Lebesgue measure and f: J — J' is a diffeomorphism:

d\o f
A

= |Dfl,

where Df is the usual derivative of f. Hence, if T is in addition a C* - endomorphism of

a bounded interval:
, _dlow,

“ A

v = |Duv,|.

Definition 5.6 Assume that 7" is a C? - endomorphism of a bounded interval I. Then T
has the Renyi property if there is 0 < C' < oo with:

D*T"(z2)

‘m < C for Lebesgue a.e. z €
"z

Remark 5.7 Distortion properties of T' with respect to A are related to the Renyi property
(this is taken from [Aa], s.145). Let a € o™ Then T" o v, = id on D(v,). Hence,
DT"ow, - Dv, =1. As DT™ > 0 a.e. by the nonsingularity of 7"

D*T"ov, D%y,

(DT ov,)2  Du,
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Let 2,y € D(v,) and = < y. Then by (log f)' = f'/f for f = Dv,(x)/Dv,(y):

B o Dug(x) [ D?u,(2)
dx Dug(y)  Duvg(z) & Du,(y) _/:z: D, (t) o

Now by the Renyi property:

Y D%, (t) v

= dt| <
/x Du,(t) ‘ B /x
As I is bounded, any a € a4 is a bounded interval, say diam(a) < Cs, for all a € a;.
Hence, a, = g(CC’ T) resp. T has the strong distortion property. In addition, if

[Ny

z = e*M denotes that = € [e™, eM] for M > 0, the last inequality gives for M := CCj, :

Duv,(x)
Du, (y)

D?v,(t)
Do, (t)

‘log

‘dt§0|x—y|

vo = e M (y) Yo,y € D(v,)

a

r)dy = e*M vl (y)d
= / )dy /D(va) 2(y)dy
= v, x))\(D(va)):eiM)\(a)

= vl (r) = eiM% Vi € D(v,)

These calculations now lead to the following proposition:

Proposition 5.8 Assume (I, B, \, T, «) is a nonsingular Markov map where I is a bounded
intervall and T is a C? - endomorphism of I having the Renyi property. Then (I, B, \, T, a)
has the strong distortion property. If there is in addition a constant C with A\(T'a) > C)
for all @ € «, then there is N € N and p > 1 with |[DT"(z)| > p for a.e. x € I and n > N.

Proof: As it was already shown that the Renyi property implies the strong distortion
property, it is left to show the second assertion. For a = [a; ...a,] € o™, D(v,) = T"a =
T(a,). Hence, \(D(v,)) > C\.

Vi € D(v,)

implies now that

!

v, (x) < eMM V€ D(v,).

a C/\
As T is Markov and ) is Lebesgue measure, sup,.,» A(a) "= 0. Hence, there is N € N
and p > 1 with v/ (z) < p~! for all x € D(v,) and a € o™ for n > N. O

Remark 5.9 Assume T is a transformation of the unit circle S*. If T is piecewise confor-
mal, it is well known, that the same assertions about distortion properties hold.
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5.3 Distortion Properties for the Bowen - Series Map

The key estimate for the distortion of T relies on the so called cross ratio:

Definition 5.10 Assume u,v,z,y are four different points in C. Then the cross ratio
[u,v,x,y] is given by
lu — x||u — v|
[w,v,2,y] ' = ———————
u—v|lz —y|
By setting oo/oo = 1, this definition extends to arbitrary u, v, z,y in the Riemann sphere.

As it is well known, cross ratios are preserved by Moebius transformations (cf. [Ral,
theorem 4.3.1). This property now allows to prove:

Lemma 5.11 Fix the disc model and let T" be the Bowen - Series map given by a polygon
P with finite set of ideal vertices Vp. Then for B measurable with the property that there
is € > 0 with d(B,Vp) > € (e.g. B= A asin (5.2)):

There is 0 < C' < oo such that for all n:

DT (2)

‘m < C for Lebesgue a.e. z with T"(z) € B
"z

Proof: Fix a = [a,, ...as,] € a”. Then T"|, = g5, ... gs,- Define g, = g =g, ...gs,.- As
it was shown in the appendix for g € G-
‘ D%g(2) | _
(Dyg(z))>

where my is the center of the isometric circle I(g) of g. Assume now that 7, is an element
of I(g). Then

|2 — my|

-~ Tlmg -1

[myg, 119, 2,001 = [g(1my), 9(1), 9(2), g(0)]
As g(I(9))=1I(97"), g(n,) € I(g™"). Let r, be the radius of I(g). Then

rg = |mg — gl = |mg-1 — g(ng)| = rg-1.

As g(mgy) = 00, g(oo) = my-1 :

[mgangﬂza ] = [Ooag(ng)ag(z)amg_l]

N M _ [mg-1 — g(ny)]

[mg — 1] [mg-1 — g(2)]
- [mg — 2| _ "g

ry [mg-1 — g(2)]

Hence:

‘ D?g(z) | 1

(Dg(2))?|  |mg-1 = g(2)|
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To apply this equality it has to be distinguished whether a and g(a) = T"(a) are disjoint
or not: Let H(a) be the half - space given by

Closg(H (a)) N 0B = Closgg(a).

As T"(a) = (ag ), H(a) % H((ay )®). Hence dH(a) > s,. As the tesselation GP is
locally finite, the collection {g*s’ }1cz is locally finite. Hence, if H(a) C g(H(a)), (g, H(a))
has the side - pairing property (cf. definition (7.7). But this condition is equivalent to

s1 # S,

€€ €€ 7

A s

9(2) g(z) H(a)

H(a)
Figure 4: the case s; # s/, resp. sy = s/,

(1) Assume s; # s/, and fix 2 € aN B with g(z) € B. As (g, H(a)) has the side - pairing
property, (¢7', (¢H (a))°) has the side - pairing property where (gH(a))® = (H(ay, ))" =
H(ay ). Now by propositions (7.8) and (7.9) the parabolic resp. the repelling hyperbolic
fixed point ¢),-1 of g~ ! has to be contained in a, and by proposition (7.6), |1 —mg-1| <
re-1. As g(2) € (ag )°N B and d(B, Vp) > ¢, the triangle inequality gives: |mg-1 — g(2)| >
e—rg-1. Now by theorem 3.3.7 in [Ka]: assume (g1, g ...) is a sequence of distinct elements
of G, then ry, — 0 as kK — oco. Hence r, > ¢/2 only for finitely many g € G. Hence,

[mg—1 —g(2)| ~

‘ D?g(z)
(Dg(z))?

ol N

for only finitely many g € G.

(2) Assume now that s; = s],. Hence a and g(a) are disjoint. Hence neither a nor g(a)
contain any fixed point of g. So the situation is similar as before: g(2) € g(a) = (ay )¢ and
both fixed points of g are elements of ay . Hence for 2 € B with g(z) € B, by the same

arguments:
g1 —g(2)| —

ol N

‘ D?g(z)
(Dg(z))?




5.3 Distortion Properties for the Bowen - Series Map 37

for only finitely many g € G. This finishes the proof. O

Recall that the set from proposition (5.2) is given by:

A=0B\( | Uw) =oB\( | (w®)]uw'()

vEVP vEVP

where NV is the smallest common multiple of the lengths of the edge cycles. Hence,

Bi={a€a" |a#[w) a#[w@)]VveVp}
is a partition for A. Now define

B = {b=[b...by)€a|by,...by€,n>N,
[bl...bN]GB,[bn,NJrl...bn]EB,[bi"'biJrN,l]¢6Vi:2,...n—N}
= {bea|Ta,a€P : bCay,Ta:b— ayisone to one}

Now T4 can be shown to be Markov with the so called big image property:

Lemma 5.12 BNis a Markov partition for T4 and the first return time ¢4 is measurable
with respect to 3. In addition T4 has the big image property, i.e. there is 6 > 0 with
A(T4(b)) > 0 for all b € 3.

Proof: As T is defined a.e. on A, 3 is a partition of A mod X and is by definition finer
than (. Hence for all b € 3, T4 (b) € 8 is the disjoint union of elements of 3. Now assume
that [a;...a,] € & with [a;...a,] C A and n > N. Hence [a;...ay]| € 8. In addition,
there is [by ...by] € B such that [ay...anb; ... by] is admissible (with respect to T'). As «
is generating B and [a; ...anby ... by] C [by...by], f is generating ANB. So /3 is a Markov
partition for T4. As the measurability of ¢, follows immediately from the definition of
3, only the last assertion has to be shown. But this is a consequence of the facts, that
T4(b) € B for all b € 3 and that £ is a finite partition consisting of elements of positive

measure. |

As 8 is a Markov partition for Ty, the following distortion properties can be derived:

Proposition 5.13 Let G be cofinite with property (GC). Then the following holds for T
resp. T'y:

(1) T4 has the Renyi property, where A is defined as above (resp. as in (5.2)).

(2) T4 has the strong distortion property with respect to the partition B and Lebesgue
measure.

(3) There is N’ € N and p > 1 such that for all n > N’ and a.e. z € JB:

|IDT}(2)| > p>1
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(4) T has the weak distortion property with respect to Lebesgue measure.

Proof: The first assertion is an immediate consequence of lemma (5.11). As 3 is a Markov
partition for T4 and T4 has the big image property with respect to 3, (2) and (3) follow
by proposition (5.8). Define

v:={[ab] €& |a € &and b e F}.

It is left to show, that v is a Schweiger collection (cf. definition (5.5)). By conservativity
of T', Jye, = OB mod A. The second condition follows directly from the definition of v. To
show that there is 0 < C' < oo such that v C g(C, T) it suffices by remark (5.7) to find an
upper bound for

‘ DT ()

DT"(1)? for Lebesgue a.e. z and n with z € [a;...a,] € ¢
"

Recall that 3 is a partition of A consisting of words in « of length N. As T" Nz € A for
all z € [ay...a,] € v, by lemma (5.11) there is a C' > 0 such that:

_|_

‘ D*T™(x) _ D*(TYN o T V) (x)
(DT (x))? (D(TN o T=N)(z))?
_ DTN DTN (x)
(DTN(T"N(z)))*  DTN(T*N(z))(DT" N (x))?
D*TN (TN (1)) c’
)

IN

| DTN(T=N ()|

forall x € [a...a,] €t

It is shown in the appendix (corollary (7.5)), that for g € Iso™IB there are 0 < m;, my < 0o
with 1/m; < |Dg| < m; and |D?g/(Dg)?| < msy. Hence for any finite collection H of
elements of Iso™IB, there are 0 < my, my < 0o with 1/my < |Dg| < my and |D?g/(Dg)?| <
mo ¥V g € H. As [ is finite,

H:={gcIso™B |Tbe B with TV|, = g|s}
is also a finite collection. Hence there is 0 < my, my < oo such that

‘ D?*T"(x)
(DT (x))?

This finishes the proof. O

<mog+mC" VYre€la...a,) €t

By property (3) of the last proposition it is now possible to give an estimate for the
Lebesgue measure of an element of a € ™. Assume n > kN'. Then:

Ma) < p" max({A(b)}) < 2mp
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Hence for a € f*¥'*! with I = {1,...N' = 1} and j =: p'/"V"

)\(CL) < 27Tﬁ_kNl — QWﬁlﬁ_(kN,—H)

< zﬂ_ﬁN’ﬁf(qu»l) — const ﬁf(kN"H)

Now the exponential decay of A(a) for a € B n — oo leads to

Theorem 5.14 Assume G is cofinite and of type (GC). Let A be defined as in proposition
(5.1). Then T4 has the Gibbs property with respect to Lebesgue measure and with respect
to p.

Proof: To show the Gibbs property with respect to Lebesgue measure A\, C' > 0 and
0 < r < 1 have to be found such that

!
‘log%‘ < Crt@Y) for X x X - ae. (x,y) € (D(v,))?

By remark (5.7) and the Renyi property of T4, there is C; with:

15|

So assume that t(x,y) = n. Hence there is an element b € A" with z,y € b. By the last
calculation, there is C'y > 0 and p > 1 with:

log < Chdgi(z,y) for a.e. z,y € D(v,)

dsi(z,y) < A(b) < Cop™

/
= ‘log Ua(x) ‘ < Clon—t(x,y)

v ()

It is left to show that T4 has the the Gibbs property with respect to p. By proposition 4.7.1
in [Aal, it is sufficient to show that log(‘;—’;) is Lipschitz continuous on A. But in remark

(4.3), Z—’; =: g was already explicitly given. As « is a finite partition, it is sufficient to
show the Lipschitz continuity for g|,n4 for arbitrary a € . Assume w.l.o.g. that a = >/

where I = (0,z) for 0 <z < 1. Then

g(t) = 2m(cot(m(x —1t)) —cot(n(1—1t))) fort el

g(t) _ (sin(m(z — 1))~ — (sin(w(1 — 1))~

gt) ~ " cot(n(x — 1)) — cot(n(1 — 1))

= L los((1)

As it was mentioned before, g|,n4 is bounded away from zero. As A is bounded away from
Vp, ANa can be written as ANa = e*™’ with Clos(J) C I. Hence 4 log(g(t)) is a bounded
continuous function on .J and hence log 3—’; is a Lipschitz continuous function on A. 0l
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5.4 Ergodic Properties

In the sequel, the Gibbs property of T4 will be used to derive further results with respect
to 1. The first direct consequence is:

Proposition 5.15 T and T4 are exact (and hence ergodic) with respect to u and Lebesgue
measure.

Proof: By a result of Aaronson, Denker and Urbanski (cf. [Aa], theorem 4.4.7), a topo-
logically mixing Markov map having the weak distortion property is exact if this map is
conservative. As T and T4 are conservative by proposition (5.2) and as exactness is im-
plying ergodicity, it has to be shown that both maps are topologically mixing and have
the weak distortion property. But as T is topologically mixing by theorem (4.7), T4 is also
topologically mixing. In addition, the weak distortion was already shown in proposition
(5.13). O

For conservative, ergodic, infinite measure preserving transformations like T" with respect
to u, there is a further classification (for reference see [Aal):

Definition 5.16 A conservative, ergodic, measure preserving transformation 7" of (X, B, i)
is called rationally ergodic if there is a set A € B with 0 < p1(A) < oo and a constant M > 0

with
n—1 n—1 2
/(ZleTi)Qdug M (/ ZleTidu> Vn > 1
A =0 Ai=o

If T is rationally ergodic, there is a sequence a,(T) = a, 0o unique up to asymptotic
equality (cf. theorem 3.3.1 in [Aa]) such that: assume A € B is a set corresponding to the
last definition, then:

n—1
1 > WBNTC) "= m(B)m(C) VB,C € BN A
a

" =0

This sequence is called the return sequence of T. The next definition is based on the
transfer operator T : L'(u) — L' (i), defined by:

/ff-gdusz-gonu Vfe LY n),g€ L™(u)
X X

Definition 5.17 A conservative, ergodic, measure preserving transformation 7" of (X, B, i)
is called pointwise dual ergodic if there is a sequence of constants a, such that

n—1
1 ~.
a—ZT‘f —>/ fdp ae. asn — oo Vf € L'(X).
™ i=0 X
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By proposition (3.7.5) in [Aa], a pointwise dual ergodic transformation 7" is rationally
ergodic. In addition, the sequence a, from the definition of pointwise dual ergodicity is
a return sequence for 7. Applying standard results to the Bowen - Series map T for G
cofinite, torsionfree and with property (GC) gives:

Proposition 5.18 The Bowen - Series Map T is pointwise dual ergodic and rationally
ergodic with respect to p.

Proof: Recall the properties of Ty: T4 is topologically mixing and has the Gibbs property
by (5.14). In addition, as p(A) is finite, T4 is finite measure preserving. By lemma (5.12),
w(Ta(b)) > 0 for all b € B and ¢4 is measurable with respect to 3. Hence, corollary (4.7.8)
in [Aa] gives that T4 is continued fraction mixing (cf. definition 3.7.4 in [Aa]). This now
implies via lemma (3.7.4) in [Aa], that A is a so called Darling - Kac set, i.e. there are
constants b, > 0 such that

-1

ZfilA — p(A) almost uniformly on A.
i=0

1
by,
Now by proposition (3.7.5) in [Aa], T is pointwise dual ergodic and hence by proposition

(3.7.1) in [Aa] rationally ergodic. O

As it was shown in the proof, A is a Darling - Kac set. Now by the Chacon - Ornstein
theorem:

Sy Ti(1a) ST 4) nosoo [ 1adp
SEIEG)

So the sequence b, from the last proof is a return sequence for T'. Assume without loss of
generality that a,, = b,. As A a is Darling - Kac set, A is uniform for the indicator 14:

Vfe L), f>0

1
— ZT‘IA — / 1 4dp almost uniformly on A.
Gn =0
Now the return sequence of T can be determined via the wandering rate La(p) = p(|J}=, T—*A).
Recall, that a measurable function f : R, — R, is called regularly varying at oo if for all
f(zy)

y > 0, the limit lim,_, Ta) exists and is bigger than 0. In this case, by the functional
equation given by this limit, there is a € IR, called the index of regularly variation with

- fley)
:clggo f(z) —Y

Yy > 0.

By proposition (5.1), the wandering rate of A is proportional to log(n) and hence L(n)
is regularly varying at oo with index 0. Now 3.8.7 in [Aa] states: Assume T is pointwise
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dual ergodic, A is uniform for some f € L*(u), f > 0 and L4(n) is regularly varying with
index a € [0, 1]. Then
1 n

['(2—a)l'(1+a)La(n)

Ay, ~
This gives:

Theorem 5.19 The Bowen - Series map T for G cofinite and of type (GC) is pointwise
dual ergodic and the return sequence a,, is given by

n 1

n ™ log(n) . 44#Vp

resp. as Area(P) = (#Vp — 2)m:

™

™ Llog(n)(Area(H/ ;) + 27)




6 Summary

If G is torsionfree and not necessarily finitely generated, the conditions (CA) and (GC)
are implying that the Bowen - Series map T is a factor of a section S : Y — Y. By theorem
(4.7), T is a topologically mixing, infinite measure preserving Markov map. In proposition
(4.9) S is shown to be the natural extension of T'. Hence S is conservative and ergodic if
and only if T is conservative and ergodic.

If G is cofinite, torsionfree and (GC), it was mentioned before that G is not cocompact
and that G is a free group with property (CA). In this case it is shown that there is a set
A C 0B with 0 < u(A) < oo (cf. proposition 5.1)) and:

e The wandering rate of A is 4#Vplog(n).
e T4 is a finite measure preserving Markov map and has the Gibbs property.

A first application of these two results is that the Bowen - Series map T is ergodic and
conservative (and hence the geodesic flow is ergodic by (4.9) and (3.2)). But in addition
more sophisticated results for the infinite measure preserving map 7" can be deduced:

e T is rationally ergodic and pointwise dual ergodic.
: 1

e The return sequence of T is ﬁ e

As S is the natural extension of 7', S is also rationally ergodic with the same return

sequence. Hence:

Proposition 6.1 Assume G is torsionfree and cofinite with (GC). Then the geodesm flow

on H/ admits a section, which is rationally ergodic with return sequence log’z 7T #Vp

It has to be pointed out that this section is infinite measure preserving as 71" has this
property. The reason for that is the existence of parabolic periodic points. Inducing on a
set not containing any of those points now leads to a finite measure preserving section for
the flow: By (4.2), the following diagram commutes:

S
Y Y

pry pry

T
OH oH

Recall, that Y = [J,.s(as)¢ x a; and S|(4,)exa, (7)) = (9s(+), g5(-)) where S is the set of
sides of a polygon P with property (GC). Then with A defined as in (5.1):

B :=pr,'(A) = LJ(aS)C X (as N A)

seS

As S™(n, &) € B <= T"(£) € A, the following diagram commutes:
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B B

Pry Pry

T's
A A

By proposition (3.4), S is a candidate for another section for the flow:

Proposition 6.2 Sg is a section for the flow on ]H/G where (G is torsionfree, cofinite but
not cocompact with (GC). Sg itself is a conservative, ergodic and finite measure preserving
transformation of (B, By N B, m|g).

Proof: As S is conservative, Sp is conservative. Hence, the first return map ¢p is finite
a.e. To apply proposition (3.4), it remains to show that | J,., S"(B) =Y mod m. But as
S is ergodic, Sp is ergodic. As |, ., S™(B) is S - invariant, this set has to be equal to Y’
mod m. To finish the proof, the finiteness of m(B) has to be shown. As y = mopr,* and
p(A) < oo, the assertion follows. O

This is in some sense an analog to a result of [AF] for the cocompact case: they constructed
for some Fuchsian model B/~ of a compact surface of genus g > 2 such a section. Besides,
they found a conjugate map having a factor coincident to the Bowen - Series map defined
in [BS]. By [BS], this factor is Markov and has the Gibbs property?®.

For the noncompact case treated here, this factor property follows without further conju-
gation. This is a consequence of the existence of a fundamental polygon P which has no
vertices in IH. This is connected to the correspondence of cutting sequences and boundary
expansions as follows (cf. [Se]): the bijection given by Series is in this case the identity
(mod Liouiville measure). In addition, the Gibbs - Markov property for the factor T4 fol-
lows without choosing some special model for a given surface. This is of some importance
as a quasiconformal deformation is in common nonsingular with respect to the Liouiville
measure.

8Bowen & Series in fact proved, that this factor f is a C? - Markov map with |D(f?)| > 6 > 1. From
these properties, it is standard to derive the Renyi and the Gibbs property (cf. [Th]).



7 Appendix: Isometric Circles & Side - Pairings

The aim of this last section is to describe relations between the side - pairings of some
polygon P with respect to the locus of its isometric circles. This will lead to estimates of
|D?T|/|DT|?, where T is the Bowen - Series map. Therefore, the notion of an inversion
has to be introduced (cf. [Kat],[Ra]):

Definition 7.1 Let S(a,r) be the euclidean circle in C around a € C with radius r > 0.
Then the inversion og( in S(a,r) is the self - mapping of the Riemann sphere, given by:

_az—|af +r?
JS(a,r) (Z) - 5 _aq
As it is well known, og(,) is an antiholomorphic diffeomorphism, fixing S(a,r) pointwise
and mapping a to co. In addition, these elements together with the usual reflections in lines
generate the Moebius group Moeb(C). Besides, Moeb™(C) = PSL,(C) is the subgroup of
orientation preserving transformations. The next two results are standard (cf. [Kal, §3.3
and [Ra], §4.3 ):

Proposition 7.2 Assume g € PSLy(C), g(00) # co. Then there is an euclidean circle I(g)
such that g acts as an euclidean isometry on I(g). This circle is called the isometric circle
of g.

Proposition 7.3 Assume g € Iso" (B) and g is not an euclidean isometry (i.e. g(0) # 0).
Then I(g) is unique g and has a representation g = 7o, where 7 is a reflection at a straight
line through the origin and o is the inversion in (g). In addition, I(g) is perpendicular to
S1 and hence corresponds to a geodesic.

As an immediate consequence of this statement, the modulus of the derivative (cf. the
next remark) can be calculated with respect to I(g). Assume that I(g) = S(m,,r). Now
the property, that I(g) is perpendicular to S', is equivalent to |m,|*> = r? + 1. Hence for
fixed m, € C:
myz — 1

0q4(2) := oy (2) = ———

4(2) 1(9)(%) 7 —m,
As the modulus of the derivative is invariant under multiplication from the left with ele-
ments of O(2), i.e. with euclidean isometries fixing the origin, it follows:

my|* — 1
Do()] = IDy(a)] = Doy = |
Dg(2)|=1 <= |z—my|*=
= |Dg(2)| >1 <= |z—my*<1
|1Dg(2)] <1 <= |z—my,[*>1
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46 Appendix: Isometric Circles & Side - Pairings

Remark 7.4 Here, the derivative Dg of ¢ is defined as the usual derivative of a holomor-
phic resp. antiholomorphic self - mapping of the Riemann sphere (e.g. if g € Moeb(C)).
Then Dyg itself is holomorphic resp. antiholomorphic. Hence, the second derivative is well
defined. Here |Dg(z)]| resp. |D?g(z)| denotes the 2 - norm of Dg(z) resp. D?g(z).

Furthermore, to get estimates of |D?g|/|Dg|*:

As m, ¢ BB U OB, it follows that:

Corollary 7.5 For g there is 0 < my, my < 0o such that

‘ D%g(z)
(Dg(2))?

Now by the structure of |Dg|, the following can be shown:

1 1
— < |Dg(z)] < my and — < <my VzeBUOJIB
my

ma

Proposition 7.6 If g is a parabolic element of Iso"IB, the unique fixed point z, of g is
contained in I(g)NS'. In addition, if ¢ = 7,0, 7, is the reflection on the line joining 0 and
zg. In addition, I(g) and I(g~") intersect in z,. If ¢ is hyperbolic with fixed points z, and
2, then the geodesic joining the two fixed points intersects I(g). In addition, I(g), I(g~")
and the reflection axis of 7, do not intersect. Each of them is intersecting the geodesic
joining z, and z; perpendicular. See figure (5) for illustration.

@™

Figure 5: I(g) for g parabolic resp. hyperbolic

Proof: It is well known that |Dg(z,)| = 1, if ¢ is parabolic. Hence, z, € I(g)NS", implying
that o,(z,) = z,. Therefore, 7, has to fix z, which gives the required property of 7,. The
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statement about I(g~') now follows from the fact that o,(I(g)) = I(g!).

In the hyperbolic case, it is well known that |Dg(z,)| <1 < [Dg(z)| (w.l.o.g. [Dg(z,)| <
|Dg(z,)|). Hence, the geodesic joining z, and z; intersects I(g). If the reflection axis of
7, would intersect I(g), then g would have either a fixed point in B or a parabolic fixed
point in 0B. Hence, this axis and I(g) has to be disjoint and 7, maps I(g) to the con-
nected component of B without the reflection axis of 7;,. To prove the perpendicularity,
switch to the upper half plane and let g,7, and o, be the elements corresponding to g, 7,
and o,. Then g, and 7, are fixing the corresponding geodesics. Assume w.l.o.g. that
G(z) = Az with A > 0. Then neither the reflection axis of 7, nor of o, contains a fixed
point of g. But this has to be also true for o, and 7,. Hence, g, and 7, are inversions
at geodesics not containing oco. Let m,, resp. m,, those points in IR such that 7, resp.
g, are the inversions in a circle with center m,, resp. mg,, . As g fixes 0 and oo, 74 0 7,
has to fix these points. As G (c0) = m,, and , Ty(m,,) = 00, m,, = my,. In addition,
Tg0g(Mg,) = T4(00) = m,, = m,,. Hence, m,, = m,, = 0. Now the conformal equivalence
of U and B finishes the proof. OJ

In the following relations between a side s, its side -pairing g, and its isometric circle
I,, will be described: assume P is a polygon with set of sides § such that each side is
a complete geodesic and P satisfies the conditions of Poincaré’s theorem with respect to
some side - pairings {gs}ses. Hence, G :=< g5 | s € § > has to be free, implying that G
has no torsion and therefore only contains parabolic and hyperbolic elements. In addition,
as P is an exact fundamental polygon for G:

(1) Hy C gs(Hs), where Hj is a half space with 0H; = s (c.f. (4.2)).
(2) The collection {g?(s)}nez is locally finite.

The aim is now not only to show properties of side - pairings, but also for transformations
in some sense similar to side - pairings. So define the following:

Definition 7.7 (gs, H,) has the side - pairing property if:

(0) gs is a hyperbolic or parabolic transformation and and s is a geodesic.
(1) There is a halfspace Hy with H; C gs(H,) and 0H, = s.

(2) The collection {¢”(s)}nez is locally finite.

The parabolic case: Assume g, is parabolic and has the side - pairing property. Without
loss of generality, g, € Iso"U and g,(2) = 2 + 1. Then H, C g,(H,). But as this fails if
both endpoints of s are in IR, it follows that one of them has to be oo. Hence, s is a line
perpendicular to R, say s = 7, . In addition, again by H, C g,(H;), H, has to be the
half - space to the left of s (see figure (6) for illustration). Hence, after switching back to
the disc model, s and s" have the fixed point z,, of g, in common. By proposition (7.6), z,
is also contained in the isometric circle I(gs) and in the reflection axis of 7,,. Now again
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gsi

Hg S§|——F =8|

X x+1
XU XT

Figure 6: H,, s and s’ for g,

in the upper half space model, this gives that (z — z + 1) = 75, where 7 resp. & are
reflections in the geodesics corresponding to the reflection axis of 7, resp. I(g,) in B. As
oo has to be an endpoint of those geodesics, they have to be lines perpendicular to IR.
Assume that 7 resp. & is the reflection in {z | Imz = x,} resp. in {z | Imz = z,}, where
z,;,r, € R. Hence:

7(z2) = =z + 2z, and 6(2) = —Z + 2z,
9s(2) =76(2) = 2+ 2(x; — z,)
z2+1=2z2+4+2(x; — z,)

IL'T—IL'O—:§

¢4y

Hence, z, > z,. With respect to the disc model, the following can be concluded: Define
the interval ag similar to the definition of a; as follows: let Uy,,) be the bounded connected
component of C\7(g,). Then

al = UI(gs) N oB.

As switching between the two models U and B preserves orientation, the property that
Ty > T, gives:

o If x > z,, then a! C a,
o If v < z,, then a! D a,

In addition, the fixed point of g, is a common endpoint of a, and a!. This gives as
Urgy) = {2 | |1Dg(2)| > 1}:

Proposition 7.8 Assume g, is parabolic and has the side - pairing property. Then the
unique fixed point of g, is a boundary point of a, as well as of a!. In addition, a, Na! is a
nonempty interval which has the property that |Dg,(z)| > 1 for z € a; N al.
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The hyperbolic case: If g, is hyperbolic, an analog of the last proposition can be shown.
Analogously to the parabolic case, it is assumed without loss of generality, that g,(z) = Az
for A > 0. As I(g ') = gI(g), s' = gs(s) and gy = g, ', assume without loss of generality
that A > 1 (otherwise changing to the inverse of g, gives the wanted property). So assume
that s = ;.. Then

{9¢(s) [ n € Z} = {nan 00 | n € Z}

meets any neighbourhood of i infinetly often. This is a contradiction to (2) in the last
definition. Hence, s = 7,, with 2,y # oco. By the same argument, z,y # 0. Now as
H; C gs(Hy), it follows that 0 has to be contained in the open interval (z,y) (w.l.o.g.
r < y) and that H, is the bounded component of U\~,, (see figure (7) for illustration).
By proposition (7.6) and with the same notation as above, the geodesics corresponding

re It

Figure 7: Hy, s and s’ for g,

to the reflection axis of 7, resp. to the isometric circle I(g,) have to be perpendicular to
Yo,00- Hence, 7 and & are inversions at circles around the origin. Now by definition (7.1)
for appropriate 7, > 0 and r, > 0,

2 2
e - _T d ol =
7(2) ~ an 7(2) 2
= g,(2) =76(2) =i,z
= rZrf=A>1

By the same reasons as above, it was proved:

Proposition 7.9 Assume g, is hyperbolic and has the side - pairing property. Then the
unique fixed point 2, of g, with |Dg(z,| > 1 is a point in the interior of a, as well as of
al. In addition, a; N al is a nonempty interval, which has the property that |Dg,(z)| > 1
for 2 € asNal.
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8 Notational Conventions

N the natural numbers {1,2...}

7 the integers

R the real numbers

C the complex numbers

B the disk model of the hyperbolic plane

U the upper half space model of the hyperbolic plane

H the hyperbolic plane (with no model spec.)

St the unit circle

Iso(H) the group of isometries of H

Iso™ (H) the group of orientating preserving isometries of IH

Moeh(D) the group of Moebius transformations of the domain D

Moeb™ (D) the group of orientating preserving Moebius transformations
of the domain D

0O(2) the orthogonal group of IR?

an, ~ by, lim,, oo Z—Z =1

diam(-) the euclidean diameter of a set

dsi(-,-) the metric given by the arc length of S’

|- the 2 - norm on C

An the hyperbolic area.

A Lebesgue measure

z equality modulo the measure m

T|a the restriction of 7" on A

Ta the induced transformation on A

oy the return time to A

S the set of sides of a polygon

[ay ... ay] the cylinder set given by aq,...a,

s the interval on 0HH corresponding to the side s € &

Js the sidepairing which maps s + ¢’
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