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1 Introdu
tion

The 
oding of the geodesi
s, i.e. the representation as in�nite words in some alphabet,

of a surfa
e M of 
onstant negative 
urvature was studied over a long time. Several

authors (Morse 1921, Artin 1965, Hedlund 1934) developed methods to 
ode the geodesi
s

for some spe
ial 
ases. Morse de�ned so 
alled 
utting sequen
es. This means that a

geodesi
 is 
oded by the sequen
e in whi
h it 
uts a �xed set of 
urves on the surfa
e

where these 
urves are 
hosen to be proje
tions of the sides of some fundamental polygon

in the universal 
over. This approa
h is 
losely related to the dynami
s of the geodesi



ow on M . It presupposes the representation of the nonwandering set of the geodesi
 
ow

as spe
ial (or suspension) 
ow. Exa
tly this was done by Adler & Flatto for M 
ompa
t

(
f. [AF℄) and by the author in a more general setup in this work (
f. (3.8)). This gives

an expli
it 
onstru
tion (whi
h will be 
alled 
anoni
al in the sequel) with the aim to �nd

dynami
al properties of the 
ow. Hen
e, this is in some sense the opposite of well known

results of Bowen for hyperboli
 
ows (
f. [Bo℄) or the result of Ambrose & Kakutani (
f.

[AK℄), that any 
onservative 
ow admits su
h a representation.

The other approa
h, whi
h was done by Artin, is the so 
alled boundary expansion. Here

the 
oding sequen
e of a geodesi
 is given by 
oding the endpoints at in�nity of some lift of

this geodesi
. For example, if M is the modular surfa
e, the boundary expansion redu
es

to the 
ontinued fra
tion expansion on IR [ f1g. An overview of those methods 
an be

found in [Se℄. In addition, Series proved that there is a 
orresponden
e between these two

methods: there is a bije
tion between the di�erent 
odings 
ommuting with the shift.

The main motivation for this work is the paper of Bowen & Series \Markov maps asso
iated

to Fu
hsian group" ([BS℄). In 
ontrast to the two methods des
ribed before, they asso
iated

a Markov map to the group G of the Fu
hsian model IB=

G

of M , where M is assumed to

be of �nite hyperboli
 area. This Markov map T is de�ned as a transformation of �IB = S

1

(here IB denotes the dis
 model of the hyperboli
 plane). They used the lo
al di�erentiable

stru
ture of T to show:

� If G is 
o
ompa
t, T is Markov with respe
t to a �nite partition � of �IB. In addition,

jDT

n

(x)j > Æ > 1 for all n � 2 and sup

x2�IB

jD

2

Txj=jDTxj

2

< 1 for Lebesgue a.e.

x. By using these two estimates they 
ould show that T is ergodi
. Nowadays, this

situation is 
alled eventually expanding and C

2

- Markov. By these properties, it is

standard to derive the Gibbs - Markov property and the existen
e of a �nite invariant

measure whi
h is equivalent to Lebesgue measure.

� If G is not 
o
ompa
t, Bowen & Series showed, that T is Markov with respe
t to a

in�nite partition �. In this 
ase, there is some K being the union of �nitely many

atoms of �, su
h that the indu
ed transformation T

K

has the properties des
ribed

above. By the ergodi
ity of T

K

, the ergodi
ity of T follows.

But this approa
h has a priori no 
onne
tion with the dynami
s of the 
ow resp. the ge-

ometry of IH=

G

. The 
onne
tion mentioned in this paper is the so 
alled orbit equivalen
e:

gx = y for some g 2 G () 9 n;m > 0 with T

n

x = T

m

y. From this property, Bowen

5



6 Introdu
tion

& Series derive the ergodi
ity of the geodesi
 
ow. It has to be pointed out that they did

not prove these assertions for arbitrary 
o�nite G. By quasi
onformal deformation they

a
hieved a group with a ford domain with the extra property, that G(�P ) is the union

of 
omplete geodesi
s. By the ford property the eventual expandingness follows and this

extra property gives the Markov property. Using the same method of quasi
onformal 
on-

jugation, Adler & Flatto gave a geometri
al interpretation of the Bowen - Series map T .

They showed for G 
o
ompa
t that T is a fa
tor of some S whi
h is measuretheoreti
al

isomorphi
 to the 
anoni
al se
tion for the 
ow (i.e. the geodesi
 
ow is representable as

a spe
ial 
ow over S). In addition, S is shown to be the natural extension of T . Another

kind of geometri
al interpretation of T is given by Series ([Se℄). She identi�ed T with the

one sided shift given by the 
anoni
al fa
tor of the two sided shift de�ned on the boundary

expansion.

It has to be mentioned that a quasi
onformal deformation gives a homeomorphism between

IH=

G

for given G and IH=

G

0

where G

0

is the spe
ial model used in [BS℄ and [AF℄. But there

is no measuretheoreti
al equivalen
e between the Liouiville measures on the 
orresponding

surfa
es in general (this is only the 
ase if the deformation is given by the 
onjugation with

an isometry). Here the papers of Rees ([Re1℄, [Re2℄) have to be mentioned. She developed


riteria for the ergodi
ity of the 
ow if G is a normal subgroup of a Fu
hsian group, whi
h

is either 
o
ompa
t ([Re1℄) or 
o�nite and not 
o
ompa
t ([Re2℄)).

This is the 
ontext in whi
h this work has to be put in. As in the papers of Rees, no

quasi
onformal deformation is used here. First of all, assume in the sequel that G is of

�rst kind but not ne
essarily �nitely generated. Then the Liouiville measure is the natural

measure on the sphere bundle

1

. By arguments similar to [AF℄, it is shown (
f. proposition

(3.8)) that the geodesi
 
ow is representable Liouiville a.e. as spe
ial 
ow over the 
anon-

i
al se
tion. Therefore, a 
ondition 
alled 
oding assumption resp. (CA) is ne
essary to

ensure that the set 
orresponding to the verti
es of P has measure zero. As it was shown

in proposition (3.14), this is in the geometri
al �nite 
ase equivalent to G being of �rst

kind resp. equivalent to G being 
o�nite. For the the geometri
al in�nite 
ase, it is shown

that this 
ondition is stronger than �rst kindness but weaker than ergodi
ity of the 
ow.

In order to de�ne the Bowen - Series map, an additional property is introdu
ed. This

property (GC) states that there is a fundamental polygon for G whose sides are 
omplete

geodesi
s. While writing this thesis, there was some dis
ussion about this 
ondition (GC)

in the 
o�nite 
ase. It was 
laimed e.g. in [Re2℄ that any hyperboli
 surfa
e of �nite type

with 
usps has this property. If this would be true, the geometri
al meaning of the Bowen

- Series map would be understood for all 
o�nite groups (whi
h was the motivation for this

de�nition). But as the author 
ould not �nd a referen
e, this is left open.

Under (CA) and (GC) the author was able to prove a result 
orresponding to [AF℄: Propo-

sition (4.2) states that under these assumptions the Bowen - Series map T is a fa
tor of the


anoni
al se
tion S. But in 
ontrast to the 
ompa
t 
ase both maps S and T are shown

to be in�nite measure preserving. By theorem (4.7), T is a topologi
ally mixing, in�nite

1

In the 
ase that G is not ne
essarily of �rst kind but �nitely generated, this would be the 
ow invariant

measure given by the unique G - invariant 
onformal density on the limit set introdu
ed by Patterson.
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measure preserving Markov map.

If G is 
o�nite with (GC), then theorem (5.14) states that the indu
ing on some set of �nite

measure A gives the Gibbs - Markov property whi
h is the analog for the result obtained

by [BS℄. In addition, ergodi
 properties of T itself are des
ribed. Theorem (5.19) states

that T is pointwise dual ergodi
 with return sequen
e proportional to n= log(n). Hen
e,

the 
anoni
al se
tion is shown to be rationally ergodi
 with the same return sequen
e as

T . Via T

A

it is possible to de�ne another se
tion whi
h is a �nite measure preserving,


onservative and ergodi
 se
tion and has T

A

as fa
tor. In 
omparison to the result in [Bo℄

for the 
ompa
t 
ase, where the se
tion is shown to be a �nite measure preserving Markov

map with respe
t to a �nite partition, these results 
an be interpreted as follows: either

the se
tion is an in�nite measure preserving Markov map with respe
t to a �nite partition

or a �nite measure preserving Markov map with respe
t to an in�nite partition. Hen
e,

in 
ontrast to the 
ompa
t 
ase, where it is possible to represent the geodesi
 
ow as the

suspension over a Markov shift in �nitely many states, here this is possible only for a shift

in 
ountably many states.

As an immediate appli
ation of these results, it should be possible to determine the

Poin
ar�e series of an abelian 
over of a 
o�nite subgroup using the methods developed

by Aaronson & Denker in [AD℄.



2 Hyperboli
 Geometry

In this se
tion, basi
 properties of hyperboli
 geometry and the geodesi
 
ow will be

des
ribed. For a referen
e of the des
ribed results, see e.g. [Ra℄ and [Kat℄. One of the

standard models of the hyperboli
 plane is the ball model IB := fz 2 C jzj < 1g with ar


length and area given by

ds(z) =

2jdzj

1� jzj

2

and dA(z) =

4dz

(1� jzj

2

)

2

;

where jzj denotes the eu
lidean norm of z 2 C . As a fa
t, any two points z

1

; z

2

2 IB


an be joined by a 
urve 
 : [a; b℄ ! IB su
h that 
 is an isometry, i.e. jx � yj =

d

IB

(
(x); 
(y)) 8x; y 2 [a; b℄. This 
urve 
an be uniquely extended to a 
urve 


0

: IR! IB,

whi
h is again an isometry. In the following, these 
urves joining two points as des
ribed

will be 
alled geodesi
 ar
s and their extensions geodesi
 lines or just geodesi
s. To make

notation easier one 
an generalize the notion of an endpoint of a geodesi
 ar
 resp. line,

if one does not distinguish if this point is in IB or �IB. This means: The set of endpoints

of 
 : [a; b℄ ! IB is the set f
(a); 
(b)g, the set of endpoints of 
 : IR ! IB is the set

flim

t!�1


(t); lim

t!1


(t)g. Conversely de�ne for two points a; b 2 Clos(IB) the dire
ted

geodesi
 from a to b by 


a;b

.

2.1 The Geodesi
 Flow on IB

The geodesi
 
ow is a 
ow a
ting on the sphere bundle T

1

IB. To de�ne the 
ow, it is useful

to use the following representation of T

1

IB: Let �; � 2 S

1

= �IB; � 6= �. Let 


�;�

be the

dire
ted geodesi
 from � to � (i.e. � = lim

t!�1


(t), � = lim

t!1


(t)) with the additional

property that 
(0) is the unique point in IB where the eu
lidean distan
es d

E

(�; 
(0)) and

d

E

(�; 
(0)) are equal.

De�ne X

IB

:= ((S

1

)

2

n�) � IR with � = f(�; �) 2 (S

1

)

2

j � 6= �; g. Then the mapping �

from X

IB

to IB� S

1

, whi
h is by de�nition T

1

IB, given by

� : X

IB

! IB� S

1

(�; �; t) 7! 


�;�

(t); arg


0

�;�

(t))

is a di�eomorphism. Now, the 
ow is de�ned as :

De�nition 2.1

'

t

: X

IB

! X

IB

(�; �; s) 7! (�; �; s+ t)

is the geodesi
 
ow on T

1

IB.

8



2.2 Geometry of Dis
rete Groups 9

Theorem 2.2 (Liouiville) The Liouiville - measure dm

L

= dAd� on T

1

IB is 
ow invari-

ant. With respe
t to the representation X

IB

the measure is given by

dm

L

(�; �; t) =

2jd�jjd�jdt

j� � �j

2

Proof: 
f. [Ho℄ for the invarian
e, 
f. [Aa℄, [AF℄ for the representation on X

IB

.

2.2 Geometry of Dis
rete Groups

As it is well known, the full group of orientation preserving isometries of IB is the Moebius

group Moeb

+

(IB) on IB (
f. [Ra℄). A dis
rete subgroup G of Iso

+

(IB) is 
alled Fu
hsian

group. If G is in addition torsionfree, then the quotient map

p : IB! IB=

G

is a lo
al di�eomorphism and IB=

G

is a hyperboli
 manifold with respe
t to the metri


indu
ed by p. Now, by relating properties of G (for G torsionfree) with properties of IB=

G

,

one gets the following de�nitions:

De�nition 2.3

� G is 
alled 
o
ompa
t if IB=

G

is 
ompa
t.

� G is 
alled 
o�nite if Area(IB=

G

) is �nite.

� G is 
alled of �rst kind if the limit set


(G) := fz 2 �B j z is an a

umulation point of G(0)g

is dense in S

1

, otherwise, G is 
alled of se
ond kind.

For the further understanding of the a
tion of a Fu
hsian Group on B and the geometry

of IB=

G

, the approa
h via an exa
t fundamental polygon is standard. As there are many

ways to de�ne polygons, the de�nitions used here are mentioned (
f. [Ra℄, se
tion 6.2 and

6.3):

De�nition 2.4

� C � IB is (hyperboli
ally) 
onvex if and only if for ea
h pair of distin
t points x; y

the geodesi
 ar
 from x to y is 
ontained in C.

� A side of a 
onvex set C � IB is a nonempty, maximal, 
onvex subset of �C

� A 
onvex polygon is a nonempty, 
losed, 
onvex subset of IB, su
h that the 
olle
tion

of sides is lo
ally �nite

2

.

2

Lo
ally �niteness of a 
olle
tion of sets S is de�ned as follows: every point in z 2 IB has a neighbour-

hood, whi
h has nonempty interse
tion only with �nitely many members of S



10 Hyperboli
 Geometry

Looking at the G - images of a 
onvex polygon P , it is sometimes useful to represent P as

interse
tion of half - planes, where a half - plane H




is de�ned as the 
losure of one of the


omponents of IBn
 for some geodesi
 line 
. This is given by:

Proposition 2.5 Let P be a two dimensional 
onvex polygon unequal to IB with set of

sides S. For ea
h side s of IB, let H

s

be the 
losed half - spa
e su
h that �H

s

� s and

P � H

s

. Then:

P =

\

s2S

H

s

Proof: see [Ra℄, theorem 6.3.2

De�nition 2.6 Assume G is a dis
rete, torsionfree subgroup of Iso

+

(IB). Then

� A fundamental region R for G is an open set with GR = IB and g(R)\h(R) = ; ()

g 6= h.

� A (
onvex) fundamental polygon P for G is a 
onvex polygon P , whose interior is

fundamental domain and the 
olle
tion fg(Int(P )) j g 2 Gg is lo
ally �nite.

� A fundamental polygon P is exa
t if for ea
h side s, there is an element g

s

2 G with

s = P \ g

s

(P ).

As the Diri
hlet region is an exa
t fundamental polygon [Ra℄, there exists for any G

Fu
hsian and torsionfree a fundamental polygon, whi
h is exa
t. By exa
tness, ea
h side

s of the set of sides S is mapped via g

s

to another side s

0

and g

�1

s

= g

s

0

. This gives an

involution on the set of sides

0

: S ! S; s 7! s

0

, 
alled side pairing. Now, by Poin
ar�e's

theorem, the set fg

s

j s 2 Sg is generating G and all relations between the generators are

given by the so 
alled edge 
y
les and the side pairing relation g

�1

s

= g

s

0

.

2.3 The Geodesi
 Flow on IB=

G

To de�ne the geodesi
 
ow on IB=

G

, one has to de�ne the a
tion

3

of an element g of

Iso

+

(IB) on T

1

IB:

g(x; �) = (gx; � + arg(g

0

(x))

Cal
ulation shows that this a
tion and the 
ow are 
ommuting, i.e. g Æ '

t

= '

t

Æ g

8g 2 Iso

+

(IB); t 2 IR. Thus, the 
ow on IB=

G

for G torsionfree is given by the 
ommuting

diagram

IB� S

1

-

IB� S

1

? ?

IB� S

1

=

G

'

t

~p ~p

IB� S

1

=

G

-

~'

t

3

To be more sophisti
ated: one 
an de�ne a group stru
ture on T

1

IB, su
h that the mapping Iso

+

(IB)!

T

1

IB; g 7! (g(0); arg(g

0

(0)) is a group isomorphism. Now, the 
ow 
an be de�ned as left multipli
ation by

a one parameter subgroup.
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e U 11

Now, if P is a fundamental polygon for G, it is well known that the set

P

'

:= f(x; �) 2 P � S

1

j pr

1

Æ '

t

(x; �) 2 P for t suÆ
iently small g

is a fundamental domain for the a
tion of G on T

1

IB and that

(T

1

IB=

G

;B; m

L

; '

t

)

�

=

(P

'

=

�

;B; m

L

j

P

'

; '

�

t

)

is an isomorphism, where � is indu
ed by the a
tion of the group, m

L

j

P

'

is the to P

'

restri
ted Liouiville measure and '

�

t

is given by '

�

t

(z; �) = g

t;z;�

('

t

(z; �)) with g

t;z;�

2 G is

unique (mod m

L

) by g

t;z;�

2 P

'

.

2.4 The Upper Half Spa
e U

There is another standard model in hyperboli
 2 { geometry, the so 
alled Upper Half

Spa
e model

U := fz 2 C j Im(z) > 0g

equipped with ar
 length and area given by

ds(z) =

jdzj

Im(z)

and dA(z) =

dz

( Im(z))

2

:

As the map # : IB ! U; z 7!

(1+i)z+1+i

�(1�i)z+1�i

is with regard to these de�nitions distan
e

and area preserving, one does not have to distinguish between those models. If there is

no 
onfusion, IH will be used as notation for the hyperboli
 2 { plane. Translating the

statements of this se
tion to the new model, one gets:

dm

L

= dAd� as Liouiville - measure on T

1

U

X

U

= (IR [ f1g)

2

n�� IR as alternative representation of T

1

U

dm

L

=

2d�d�ds

(� � �)

2

as Liouiville measure on X

U



3 The Spe
ial Flow Representation of the Flow

The aim of this se
tion is to use the produ
t stru
ture of Liouiville measure to represent the

geodesi
 
ow on IH=

G

as spe
ial (or suspension) 
ow over some invertible transformation

S : Y ! Y . This approa
h is 
losely related to 
ode the 
ow via \
utting sequen
es" (
f.

[Se℄) and uses ideas of [AF℄. It will be dis
ussed whether this is possible by this spe
ial

method: if IH=

G

is geometri
ally �nite, this is equivalent to G being of �rst kind. But in

the in�nite 
ase, this is not true at all. Hen
e, the possibility of su
h a representation gives

another 
hara
teristi
 for these groups.

3.1 Spe
ial Flows

De�nition 3.1 Suppose T is a nonsingular, invertible, measure { preserving transfor-

mation of the standard, � { �nite measure spa
e (X;B; m) and that h : X ! IR

+

is

measurable. Then the spe
ial 
ow over T with height fun
tion h is de�ned by:

X

h

:= f(x; y) j x 2 X; 0 � y < h(x)g

by

'

X

h

t

(x; y) := (T

n

x; y + t� h

n

(x)) with n 2 Z given by

h

n

(x) � y + z < h

n+1

(x) where

h

n

(x) :=

8

<

:

0 : n = 0

P

n�1

k=0

h(T

k

(x)) : n � 1

�h

n

(T

n

(x)) : n < 0

with the produ
t measure � := m � � and 
orresponding � - algebra B

h

, where � is the

Lebesgue measure. In this 
ontext, T resp. (X;B; m; T ) is 
alled a se
tion for '

X

h

t

.

There is a 
lose 
onne
tion between the se
tion map and the 
ow (
f. [HIK℄):

Proposition 3.2

1. '

X

h

t

is ergodi
 () T is ergodi
.

2. '

X

h

t

is measure preserving () T is measure preserving.

In the 
ase that the 
ow is measure preserving and there is a set A 2 B in the se
tion so

that the indu
ed transformation is well de�ned, it is sometimes possible to get a further

se
tion for the 
ow:

De�nition 3.3 Let T be a nonsingular transformation of the � { �nite measure spa
e

(X;B; m). The return time of T on A 2 B is

�

A

: X ! f1; 2 : : :g [ f1g ; x 7!

�

minfn : T

n

(x) 2 Ag : if it exists

1 : else

12
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If �

A

(x) <1 a.e. on A (e.g. if T is 
onservative), then

T

A

: (A;B \ A;mj

A

)! (A;B \ A;mj

A

) ; x 7! T

�

A

(x)

(x)

is the indu
ed transformation of T on A.

The next theorem is folklore:

Proposition 3.4 Let (X;B; m; T ) be a measure preserving se
tion of the spe
ial 
ow on

X

h

. Let A 2 B be a set with �

A

(x) < 1 a.e. and

S

n2N

T

n

(A) = X mod m. Then the

indu
ed transformation (A;B\A;mj

A

:T

A

) is also a se
tion for the 
ow with height fun
tion

h

A

(x) :=

�

A

(x)�1

X

k=0

h Æ T

k

(x)

3.2 The Spe
ial Flow Representation

As it was mentioned before, the next step is to de
ide whether it is possible to �nd a spe
ial


ow representation for the geodesi
 
ow on IH=

G

with G Fu
hsian and torsionfree. The

outline for that is to 
onstru
t a se
tion Y via the boundary of some fundamental polygon

and the 
orresponding identi�
ations by G. In 
ontrast to the result of Ambrose and

Kakutani, that any measure preserving 
onservative 
ow admits a se
tion, su
h a se
tion

will be de�ned expli
itly and will be used to de
ide whether the 
ow is 
onservative and

ergodi
 or not.

As some elements of T

1

IH=

G

may not be 
overed by this method one has to look if the


orresponding set is of zero measure whi
h leads to the following de�nition:

De�nition 3.5 (CA) Let G be a torsionfree Fu
hsian group. If there exists an exa
t

fundamental polygon P , su
h that

A

P

:=

�

(z; �) 2 P � S

1

j 9 t 2 IR [ f�1g su
h that 


z;�

(t) 2 GV

	

is a set of Liouiville - measure zero, where

V

P

:= f set of verti
es of P in IH g [ (Clos

IH

(P ) \ �IH)) ;

then G resp. the pair (G;P ) is said to ful�ll the 
oding assumption, abbreviated by (CA).

Remark 3.6 By de�nition, the set A

P

is invariant with respe
t to the 
ow and to the

a
tion of G. In addition, A

P

6= IH mod m

L

. Hen
e, m

L

(A

P

) > 0 for
es the 
ow to be not

ergodi
. A further des
ription of this 
ondition will be done in the next subse
tion.
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If G is (CA), then as noted before:

P

�

:= f(x; �) 2 P � S

1

j pr

1

Æ �

t

(x; �) 2 P for t suÆ
iently small g

is a fundamental domain for the a
tion of G on T

1

IH and T

1

IH=

G

�

=

P

�

=

�

in the 
ategory

of measure preserving 
ows (
f. se
tion 2.3). Hen
e, by (CA) and the fa
t, that A

P

is invariant with respe
t to the G - a
tion, there is the following (measure theoreti
al)

equivalen
e:

T

1

IH=

G

�

=

(P

�

nA

P

)=

�

Let

~

P

�

resp.

~

A

P

be the sets P

�

resp. A

P

in the X

IH

- representation and de�ne:

De�nition 3.7 (�; �) is P - admissible i� 9 t 2 IR, su
h that 


�;�

(t) 2 (P ). If (�; �) is P

{ admissible, then

t

+

�;�

:= supft j 


�;�

(t) 2 Pg � 1

t

�

�;�

:= infft j 


�;�

(t) 2 Pg � �1

h(�; �) := t

+

�;�

� t

�

�;�

As P is 
onvex, [t

�

�;�

; t

+

�;�

℄ and ft j 


�;�

(t) 2 Pg 
oin
ide. Now the 
oding assumption allows

to �nd an expli
it spe
ial 
ow representation (
f. [AF℄):

Proposition 3.8 Assume G is (CA). Then

�

T

1

IH=

G

;B; m

L

; �

t

�

and the spe
ial 
ow over

(Y;B; m; S) with height fun
tion h are isomorphi
 in the 
ategory of measure preserving


ows, where (Y;B; m; S) is de�ned as follows:

� Y = f(�; �) 2 (�IH)

2

n� j (�; �) admissibleg

� dm = 2jd�jjd�j=j�� �j

2

with respe
t to the dis
 model IB and dm = 2d�d�=(� � �)

2

with respe
t to U, de�ned on the Borel � - �eld B

� S is de�ned pie
ewise: by (CA), for a.e. (�; �) 2 Y , 


�;�

(t

+

�;�

) is element of some side

s of P . Let g

s

be the 
orresponding side - pairing. Then S(�; �) = (g

s

(�); g

s

(�)).

Proof: First of all, the 
onditions on S have to be 
he
ked:

S is de�ned a.e., as by (CA) m - a.e. (�; �) 2 Y , 


�;�

(t

+

�;�

) is an element of a side s of P .

Assume 


�;�

(t

+

�;�

) 2 s. Then g

s

(


�;�

(t

+

�;�

)) is an element of the side g

s

(s) = s

0

and is equal

to 


g

s

�;g

s

�

(t

�

g

s

�;g

s

�

) (
f. �gure (1)). Hen
e, S(�; �) = (g

s

�; g

s

�) is m - a.e. admissible . In

addition, as 


g

s

�;g

s

�

(t

�

g

s

�;g

s

�

) = 


g

s

�;g

s

�

(t

+

g

s

�;g

s

�

) and g

s

0

= g

�1

s

, S is invertible.

Now �x the dis
 model IB and de�ne

~

A to be the 
orresponding subset of X

IB

for any set

A � IB� S

1

. Then

~

P

�

=

�

(�; �; t) j (�; �) is P - admissible; t

�

�;�

� t < t

+

�;�

	

m

L

=

�

(�; �; t) j (�; �) is P - admissible; t

�

�;�

� t < t

+

�;�

	

n

~

A

P

m

L

=

�

(�; �; t) j (�; �) is P - admissible;�1 < t

�

�;�

� t < t

+

�;�

<1

	

m

L

=

�

(�; �; t) j (�; �) is P - admissible; 0 � t� t

�

�;�

< h(�; �) <1
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s
gη

s
gξ

γ
ξ,η

+t  +εγ
ξ,η

−t

s
g

ξ,η
+t  +(γ         ε) 

ξ,η
+

s
g (γ     ) t  

η

P

ξ

γ
ξ,η

t+

Figure 1: The se
tion map S

Hen
e the mapping (�; �; t) 7! (�; �; t� t

�

�;�

) is a measure theoreti
al isomorphism

4

�

~

P

�

;B; 2

jd�jjd�jdt

j� � �j

2

�

!

�

Y

h

;B; 2

jd�jjd�j

j� � �j

2

dt

�

What is left to show is that the 
ows are isomorphi
. This boils down to show that for

(�; �; t

0

) 2 Y

h

, t 2 IR : t+ t

0

> h(�; �), there exists n 2 Nnf0g and g 2 G, su
h that

g(


�;�

(t

�

�;�

+ t+ t

0

)) = 


S

n

(�;�)

(t

�

S

n

(�;�)

+ t+ t

0

� h

n

(�; �)):

As the tesselation GP is lo
ally �nite, it suÆ
es to show this for t : h(�; �) < t + t

0

<

h

2

(�; �). But this is a 
onsequen
e of the side - pairing property: any side - pairing g

s

is a

hyperboli
 isometry and

g

s

(


�;�

(t

+

�;�

)) = 


g

s

(�);g

s

(�)

(t

�

g

s

(�);g

s

(�)

);

where s is given by 


�;�

(t

+

�;�

) 2 s. �

Now by proposition (3.2):

4

The measurability of this map is a 
onsequen
e of the impli
it fun
tion theorem: let H

s

be a hyperboli


half - spa
e with boundary s. Then, (�; �) 7! infft j 


�;�

(t) 2 H

s

g is a di�erentiable map in its domain

of de�nition. As P is representable as a 
ountable interse
tion of half - spa
es (
f. proposition (2.5)), the

measurability follows.
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Corollary 3.9 S : Y ! Y is a measure preserving transformation with respe
t to the

measure given in proposition (3.8). In addition, S is ergodi
 if and only if the 
ow is

ergodi
.

3.3 Condition (CA)

The aim of this se
tion is to 
hara
terize the groups with respe
t to (CA). As noted before,

new phenomena arise if one passes from the geometri
ally �nite to the in�nite 
ase. But

�rst of all, independent of the geometri
al �niteness, the limit set of a group G gives a


riteria for the 
oding assumption: a group of se
ond kind is not of type (CA) whi
h is a


onsequen
e of the following proposition ([Ra℄, Theorem 12.1.14):

Proposition 3.10 G is of se
ond kind if and only if any 
onvex fundamental polygon of

P 
ontains a 
losed hyperboli
 half - spa
e.

Corollary 3.11 Assume G is of se
ond kind. Then G is not of type (CA) and the 
ow

is not ergodi
.

Proof: Let H be the hyperboli
 half - spa
e given by the last proposition. De�ne

W := Clos

IH

(H) \ �IH. Then (W � Wn�) � IR is a 
ow - invariant subset of

~

A

P

of

positive measure. �

Now, if IH=

G

is of �nite volume, the next proposition (
f. [Ra℄, Theorem 9.8.1) gives the

stru
ture of some fundamental polygon:

Proposition 3.12 If G is 
o�nite, then there is an exa
t fundamental polygon P with

�nitely many sides S. The set of sides 
an be 
y
li
ally ordered su
h that any two 
onse
-

utive sides meet in a vertex in IH or an ideal vertex in �IH.

Remark: If the set of sides is �nite and any two 
onse
utive sides meet in some vertex,

the set V

P

from the de�nition of (CA) is �nite. This implies that A

P

is the 
ountable

union

S

z2GV

A

z

, where

A

z

:= f(x; �) 2 T

1

IH j 9t 2 IR [ f�1g su
h that 


x;�

(t) = zg:

As the A

z

are of Liouiville - measure zero, (CA) follows in the 
ase that G is 
o�nite. To

obtain a 
omplete 
hara
terization, geometri
ally �niteness is introdu
ed:

De�nition 3.13 G is geometri
ally �nite if and only if there is an exa
t fundamental

polygon for G with �nitely many sides.

Proposition 3.14 Assume G is geometri
ally �nite. Then the following are equivalent:

(1) G is 
o�nite.

(2) G is of �rst kind.
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(3) G has property (CA).

(4) The 
ow on IH=

G

is ergodi
.

Proof: '(1) ) (3)' is the last remark, '(1) ) (2)' is a 
onsequen
e of propositions (3.12)

and (3.10), '(3) ) (2)' is 
orollary (3.11) and '(2) ) (1)' uses the fa
t, that G is geomet-

ri
ally �nite (
f. [Ra℄, Theorem 12.3.8).

By [Ho℄, the 
ow on IH=

G

for G 
o�nite is ergodi
, whi
h gives '(1)) (4)'. And by (3.11),

ergodi
ity is implying (2). �

Now, if G is not geometri
ally �nite, things are di�erent. It will be shown via three exam-

ples that the set GV from de�nition of (CA) for G of �rst kind 
an be either 
ountable,

un
ountable of zero Lebesgue - measure or un
ountable of positive Lebesgue measure (with

respe
t to the dis
 model). They will give 
ounterexamples for a statement similar to the

last one for the geometri
ally in�nite 
ase.

Example 3.15 In the upper half - spa
e model, a 
onvex polygon P is 
onstru
ted su
h

that the 
orresponding group is a subgroup of PSL

2

Z. Let P be the polygon, whose sides

are geodesi
s joining n with n+1 for n 2 Z. Then the side - pairings are de�ned as follows:

� :=

�

z 7!

2� 3z

1� 2z

�

2 PSL

2

Z

is sending 


0;1

to 


1;2

with paraboli
 �xed point 1. Let � be given by z 7! z + 2. Hen
e,

�

k

��

�k

maps 


2k;2k+1

to 


2k+1;2k+2

, �xing the point 2k + 1. So the set

f(s; g

s

) j s = 


2k;2k+1

; g

s

= �

k

��

�k

or s = 


2k+1;2k+2

; g

s

= �

�k

�

�1

�

k

g

gives a 
omplete system of sides of P and 
orresponding side - pairings. To apply Poin
ar�e's

Theorem, one has to 
he
k the vertex 
y
les given by the side - pairings. It turns out that

there are only two possibilities: Either the 
y
le has in�nite length or length one. In the

se
ond 
ase, the 
y
le is the �xed point of some g

s

(and hen
e ful�lls the paraboli
 
y
le


ondition). By Poin
ar�e: P is the fundamental polygon of the group G

P

=< �

k

��

�k

j k 2

Z >. Obviously V

P

= Z[ f1g. In this 
ase, by proposition (3.10), G

P

is of �rst kind and

by the same argument as in the remark to (3.12), property (CA) follows.

The next two examples rely one some Cantor set like 
onstru
tion. Here, the turning point

is the possibility of de�ning a set, whi
h is totally dis
onne
ted, un
ountable and sometimes

of positive Lebesgue - measure. This will lead to examples, whi
h do not o

ur in the 
ase,

where the 
orresponding group is geometri
ally �nite: a group G

P

of �rst kind will be de-

�ned, where the 
orresponding sets V

P

are un
ountable resp. of positive Lebesgue measure.
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Assume I

0

is the unit interval with Lebesgue - measure �. Fix � : 0 < � � 1=3 and de�ne

indu
tively:

I

n

= fdisjoint union of 2

n


losed intervals I

1

n

; : : : I

2

n

n

of the same lengthg

B

n

= fdisjoint union of 2

n

open intervals B

1

n

; : : :B

2

n

n

; ea
h of length �

n+1

;

where ea
h of the B

i

n

is pla
ed in the middle of I

i

n

; i.e. if

I

i

n

= [a; b℄; B

i

n

= (

a+b

2

�

�

n+1

2

;

a+b

2

+

�

n+1

2

)g

I

n+1

:= I

n

nB

n

To show that this is well de�ned, one has to 
he
k that the following holds: 8 n 2 N ; 1 �

i � 2

n

, B

i

n

� I

i

n

. So assume that this is true for n� 1. Then:

�(I

n

) = 1�

n�1

X

i=0

2

n

�

i+1

= 1� �

n�1

X

i=0

2

n

�

i

= 1� �

1� (2�)

n

1� 2�

=

1� 3� + �(2�)

n

1� 2�

As I

n

resp.B

n

is the disjoint union of 2

n

intervals of the same length and �(B

n

) = 2

n

�

n+1

,

it remains to show that �(I

n

)=�(B

n

) > 1:

�(I

n

)

�(B

n

)

=

1� 3� + �(2�)

n

(1� 2�)2

n

�

n+1

=

1� 3�

(1� 2�)(2�)

n

�

+

1

1� 2�

Hen
e, as for 0 < � �

1

3

,

1�3�

1�2�

� 0 and

1

1�2�

> 1, the 
onstru
tion is well de�ned.

In addition, it follows that the set I

1

(�) � I

1

:=

T

n2N

I

n

has Lebesgue measure �(I

1

) =

1�3�

1�2�

� 0 as I

n

� I

n+1

. To be more pre
ise, for � =

1

3

, I

1

is the normal

1

3

- Cantor set

with Lebesgue measure zero. Otherwise, for 0 < � <

1

3

, �(I

1

(�)) > 0.

Example 3.16 Use the dis
 model and let � =

1

3

. If B

i

n

is the interval (a; b), de�ne for

n 2 N ; 0 < i � 2

n

:

s

i

n

is the geodesi
 with end points e

2�ia

and e

2�i

a+b

2

.

~s

i

n

is the geodesi
 with end points e

2�i

a+b

2

and e

2�ib

.

g

n;i

is the unique paraboli
 transformation with �xed point e

2�i

a+b

2

,

sending s

i

n

to ~s

i

n

(the uni
ity is a 
onsequen
e of the property,

that s

i

n

is the isometri
 
ir
le of g

n;i

).

In 
ontrast to the last example, there are no in�nite vertex 
y
les. Any 
y
le is of type

fe

2�i

a+b

2

g where n 2 N ; 0 < i � 2

n

. Again by Poin
ar�e, this gives a dis
rete group

G

P

:=< g

n;i

j n 2 N ; 0 < i � 2

n

> where P is given by the half - planes with sides s

i

n

resp.
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~s

i

n

. Then:

A

P

is of zero Liouiville - measure, V

P

is un
ountable and G

P

is of �rst kind.

Proof: As P has no verti
es in IB,

(V

P

)




=

[

n2N;0<i�2

n

;(a;b)=B

i

n

�

(e

2�ia

; e

2�i

a+b

2

) [ (e

2�i

a+b

2

; e

2�ib

)

�

=

�

e

2�iI

1

[ fe

2�ix

j x is a midpoint of some B

i

n

g

�




As the �rst set is un
ountable, the �rst statement is proved. As the se
ond set is 
ountable,

it suÆ
es to show for the se
ond statement that the set

f(e

2�ix

; e

2�iy

; t) j x; y 2 I

1

; x 6= y; t 2 IRg

is of zero Liouiville measure. By the produ
t stru
ture of this measure, this 
an be redu
ed

to show that V

�

:= f(e

2�ix

; e

2�iy

) j x; y 2 I

1

; x 6= yg is of zero measure with respe
t to

2jd�jjd�j=j�� �j

2

. De�ne for Æ > 0:

V

�

(Æ) := f(e

2�ix

; e

2�iy

) j x; y 2M(Æ)g with

M(Æ) := f(x; y) j x; y 2 I

1

; jx� yj > Æ and 1� jx� yj > Æg

Now the transformation rule gives that

2

Z

V

�

(Æ)

jd�jjd�j

j� � �j

2

= 4�

2

Z

M(Æ)

dxdy

1� 
os(2�jx� yj)

As

1

2

� (1� 
os(2�jx�yj))

�1

< (1� 
os(2�Æ))

�1

onM(Æ), the measure of V

�

is zero for all

Æ > 0. Now by 
hoosing a sequen
e Æ

n

# 0, the se
ond statement follows. By proposition

(3.10) the last assertion that G is of �rst kind follows. �

Remark 3.17 The V

�

(Æ) - 
onstru
tion 
an be generalized to any subset of �B. As

A

P

\ IB is 
ountable, the 
orresponding subset of V

P

is of zero Liouiville - measure. Hen
e

the following are equivalent:

� A

P

\ �IB is of zero Lebesgue - measure (w.r.t. to �IB).

� V

P

is of zero Liouiville - measure.

Example 3.18 Fix 0 < � <

1

3

and de�ne P resp. G

P

analogous as in the last example.

Then:

A

P

is of positive Liouiville - measure and G

P

is of �rst kind. As A

P

is by the remark to

de�nition (3.5) of (CA) 
ow - invariant, the 
ow on IB=

G

P


an not be ergodi
.



20 The Spe
ial Flow Representation of the Flow

Proof: By the same arguments and in the same notation as in the last example, it suÆ
es

to show that there is a measurable subset M

0

of I

1

� I

1

with

R

M

0

dxdy

1�
os(2�jx�yj)

> 0. But

as (1� 
os(2�jx� yj))

�1

�

1

2

8x; y 2 IR and M

0

:= ([0;

1��

2

℄� [

1+�

2

; 1℄)\ (I

1

� I

1

) is a set

of positive Lebesgue measure, the statement follows. �

Summarizing the results one gets:

Proposition 3.19 Assume G is not geometri
ally �nite, then the following statements

(1) The 
ow on IH=

G

is ergodi
.

(2) G satis�es 
ondition (CA).

(3) G is of �rst kind.

(4) There exists a fundamental polygon P for G with V

P


ountable.

have the following relations:

(1)

(i)

=) (2)

(ii)

=) (3)

*(iii)

(4)

(1)

(j)

�(= (2)

(jj)

�(= (3)

�+(jjj)

(1)

(j)

�(= (4)

Proof: (i) is the remark to de�nition (3.5), (ii) is 
orollary (3.11) and (iii) is analogous

to the remark to proposition (3.12) as GV

P

is 
ountable. (jj) is the last example (3.18)

and (jjj) is example (3.16). Hen
e, what is left to show is (j): it is shown in [AD℄ that

the 
ow on a Z

2

- 
over of the 
o�nite group �(2) is not ergodi
. But as for this 
over (4)

holds, the proposition is proved. �

As there are geometri
ally in�nite examples whi
h are ergodi
 (
f. [AD℄, [Re1℄, [Re2℄), it

should be possible to �nd some new additional 
riteria implying (2) ) (1) resp. (4) )

(1).



4 The Bowen - Series Map

The topi
 of this se
tion is to �nd one - dimensional Markov maps, whi
h are asso
iated to

the se
tion map of some spe
ial 
ow representation. This goes ba
k to Bowen & Series (
f.

[BS℄). They 
onstru
ted a Markov map T : �IB ! �IB asso
iated to a 
o�nite Fu
hsian

group G, whi
h is orbit equivalent to the a
tion of G on �IB (i.e. gx = y () 9 n;m >

0 : T

n

x = T

m

y) and is expansive (i.e. the modulus of the derivative is bigger or equal to

1). This approa
h is highly dependent on the shape of some fundamental polygon P of G.

Therefore, as any two Riemannian surfa
es of genus g with k 
usps (
f. [Ber℄ p. 275) are

quasi
onformal equivalent, they �x a model for su
h a surfa
e with some extra properties.

A polygon P is 
onstru
ted whi
h satis�es the assumptions of Poin
ar�e's theorem with

respe
t to some side - pairing in a way that the 
orresponding surfa
e is of genus g with k


usps. The 
onstru
tion gives the following properties:

(1) Ea
h side s of P is 
ontained in the isometri
 
ir
le of the side - pairing g

s

.

(2) G(�P ) 
onsists of 
omplete geodesi
s, where G is the group de�ned by Poin
ar�e's

theorem

Now with respe
t to this model, Bowen & Series de�ned a transformation T : �IB ! �IB,

whi
h is pie
ewise Moebius. To avoid 
onfusing notation T will be de�ned only for an

example. In the situation of �gure 2, T j

a

i

= g

i

, where g

i

is the side pairing whi
h maps s

i

to some s

i

0

; the generalization for arbitrary 
o�nite G is obvious:

a12 a1

a2

a3

a4

a5

a6
a7

a8

a9

a10

a11

s1

g1

s5

g5

s3
g3

s9
g9

s11

g11

s7

g7

Figure 2: The Bowen - Series 
onstru
tion

21
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By 
ondition (2), it is shown that T is Markov with respe
t to a 
ountable partition �. In

addition, � is �nite if and only if G is 
o
ompa
t (resp. P has no verti
es on �IB). The

main result of Bowen & Series is as follows:

If G is 
o
ompa
t, then T

2

is expanding, i.e. there is a Æ > 1 with jDT

2

(x)j > Æ

for all x in the interior of some element of �. In addition, sup

x2�IB

jD

2

T (x)j=jDT (x)j

2

<

1. If G is not 
o
ompa
t, then there is a set K whi
h is a �nite union of ele-

ments of � su
h that the indu
ed transformation T

K

has the same properties as

in the 
ompa
t 
ase. Now by a Renyi - type result, Bowen and Series dedu
ed

that T resp. T

K

admits a unique �nite invariant measure, whi
h is equivalent

to Lebesgue - measure. By a mixing property of T , the ergodi
ity of T follows.

The property, that T and G are only linked via orbit equivalen
e, was improved by Adler

& Flatto (
f. [AF℄): they showed for G 
o
ompa
t that T is a fa
tor of an invertible map,

whi
h is 
onjugated to the se
tion map de�ned in the last se
tion. As in [BS℄, quasi
on-

formal deformation was impli
itly used to obtain a suitable fundamental polygon.

In the following, it will be shown that this fa
tor property of T 
an be attained dire
tly if

G is (CA) and admits an exa
t fundamental polygon P su
h that the sides of P 
onsists

of 
omplete geodesi
s:

De�nition 4.1 G has the 
omplete geodesi
 property, abbreviated by (GC), if G admits

an exa
t fundamental polygon P su
h that the sides of P 
onsists of 
omplete geodesi
s.

If G has property (GC), the 
orresponding P is exa
t. Hen
e, P ful�lls the assumptions

of Poin
ar�e's theorem. Now as P has no verti
es in IH, G has to be a free group. Now with

regard to the set V

P

de�ned in (3.5) this gives:

� G is 
o�nite if and only if V

P

is �nite (
f. proposition (3.12)).

� G is (CA) if and only if the Lebesgue measure of V

P

with respe
t to the dis
 model

is zero (
f. remark (3.17)).

� G is of �rst kind if and only if V

P


ontains no interval (
f. proposition (3.10)).

For example, any subgroup of the modular group PSL

2

Z is a group with property (GC)

(
f. [Ku℄,[St℄).

4.1 The Bowen - Series Map

Assume for the rest of the se
tion that G has (GC) and (CA). Then the de�nition of su
h

a group gives immediately a more expli
it version of (3.8):

Proposition 4.2 The se
tion map (Y;B; m; S) de�ned via an exa
t fundamental polygon

P given by de�nition (4.1) with sides S is given by (
f. �gure (3):
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(1) Y =

S

s2S

(a

s

)




� a

s

(2) dm = 2jd�jjd�j=j�� �j

2

w. r. t. IB and dm = 2d�d�=(� � �)

2

w. r. t. U

(3) Sj

(a

s

)




�a

s

(�; �) = (g

s

(�); g

s

(�)) m a. e..

(4) S((a

s

)




� a

s

) = a

s

0

� (a

s

0

)




mod m.

where a

s

:= Int

�IH

(Clos

IH

(H

s

) \ �IH) and H

s

is the open hyperboli
 half - spa
e with

H

s

\ P = ;.

as
Hs

gs

s

s’

ξ

η

as’

Figure 3: The se
tion map S for a group with the fa
tor assumption

Proof: By proposition (2.5), P = (

S

s2S

H

s

)




. By the de�nition of G, S 
onsists of 
om-

plete geodesi
s implying that H

t

\H

s

= ; for t 6= s. Hen
e, the geodesi
 


�;�

with � 2 a

t

and � 2 a

s

has to meet P , in parti
ular 


�;�

(t

+

�;�

) 2 t and 


�;�

(t

�

�;�

) 2 s. So S(�; �) = g

s

(�; �)

whi
h is statement (3). In addition, \�" for (1) is shown. As by 
onvexity of H

s

, a

s

� a

s


ontains no admissible elements, Y




�

S

s2S

a

s

� a

s

. So, (1) follows by (CA).

To prove (4), as g

s

for s 2 S is a homeomorphism �IH ! �IH it is suÆ
ient to show that

Clos

IH

g

s

(H

s

) = (H

s

)




. As this is an immediate 
onsequen
e of the side - pairing property

of g

s

, the proposition is shown. �

As a 
onsequen
e of this proposition, the following diagram 
ommutes where X =

S

s2S

a

s

,

T j

a

s

= g

s

. In addition, for � = m Æ pr

�1

2

, T is a fa
tor of S:

Y

-

Y

? ?

X

S

pr

2

pr

2

X

-

T
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Remark 4.3

(1) X = �IH mod �: as G is free, V

P

= (

S

s2S

a

s

)




(
.f. de�nition (3.5) and de�nition

(4.1)). Now, by (CA), (V

P

� V

P

) � Y is a set of zero m - measure whi
h gives the

statement. In parti
ular, fa

s

j s 2 Sg is a partition.

(2) T (a

s

) =

S

t6=s

0

a

t

= a




s

0

mod � by the last proposition.

(3) By integrating over the pr

2

- preimages, the density of � with respe
t to Lebesgue

measure 
an be 
al
ulated. Fix the upper half spa
e model and a

s

. Assume A � a

s

is

measurable. Then:

�(A� (a

s

)




) =

Z

A�(a

s

)




2d�d�

(� � �)

2

=

Z

A

�

Z

(a

s

)




2d�

(� � �)

2

�

d�

Whether 1 is 
ontained in a

s

or �a

s

(assume for notation, that �1 < a < b < 1), this

gives:

if a

s

= (a; b) : d� = 2(

1

��a

+

1

b��

)d� for � 2 a

s

if a

s

= (a;1) : d� = 2

1

��a

d� for � 2 a

s

if a

s

= (�1; b) : d� = 2

1

b��

d� for � 2 a

s

if a

s

= [a; b℄




: d� = 2(

1

��b

+

1

a��

)d� for � 2 a

s

In addition, as �(a

s

) =

R

a

s

d� = 1, it follows that � is in�nite and by de�nition T -

invariant. Now �x the dis
 model and assume that a

s

= e

2�iI

where I is an open interval

in IR so that a

s

6= �IB = S

1

. Then for A = e

2�iJ

� a

s

with J � I, there is a 
losed interval

I

0

su
h that (a

s

)




= e

2�iI

0

. Then the transformation rule gives:

�(A� (a

s

)




) =

Z

A�(a

s

)




2jd�jjd�j

j� � �j

2

=

Z

J

Z

I

0

8�

2

dsdt

je

2�is

� e

2�it

j

2

=

Z

J

Z

I

0

2�

2

ds

sin

2

(�(s� t))

dt

As

2�

2

sin

2

(�(s�t))

> 2�

2

, it follows that the invariant density

d�

d�

is bounded away from zero on

I. To �nd an expli
it representation it is suÆ
ient to handle the 
ase where I = (0; a) and

I

0

= [a; 1℄ where 0 < a < 1. Then, as

R

sin

�2

x = � 
ot x :

d� = 2�(
ot(�(a� t))� 
ot(�(1� t)))dt for t 2 I

(4) Let g be the densitiy fun
tion given by d�. As g(�) > 0 8� 2

S

a

s

, � and the Lebesgue

measure � are equivalent on

S

a

s

. But as the set V

P

has by (CA) Lebesgue measure zero

(
f. remark (3.17)), the equivalen
e of � and � follows. Hen
e, the following is well de�ned:
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De�nition 4.4 The Bowen - Series map

5

asso
iated to the group G via the exa
t fun-

damental polygon P is the transformation (�IH;B; �; T ) where � is either � or �.

In the following, it will be shown that the Bowen - Series map has the Markov property

with respe
t to the partition � = fa

s

j s 2 Sg, i.e.

(M1) T j

a

s

is one to one.

(M2) T (a

s

) is the union of elements of � (mod � resp. �.

(M3) �(fT

�i

� j i 2 Ng) = B mod � resp. �.

Therefore, the stru
ture of the preimages of � has to be 
he
ked: assume f� j i 2 Ig is a


ountable 
olle
tion of partitions of the same spa
e. Then

W

i2I

�

i

is de�ned as the 
oarsest

partition, whi
h is �ner than ea
h of the �

i

. Then:

Lemma 4.5

�

n+1

:=

n

_

i=0

T

�i

�

=

�

g

�1

s

n

� � �g

�1

s

1

a

s

0

j s

i

2 S for i = 0; : : : n; s

i

6= s

0

i�1

for i = 1; : : : n

	

Proof: Let b � a

s

0

for a

s

0

2 S. From the de�nition of T , it follows that

T

�1

(b) =

[

s2S : s 6=s

0

0

g

�1

s

(b):

But as T (a

s

) = g

s

(a

s

) = �IHna

s

0

� a

s

0

mod � for s 6= s

0

0

, g

�1

s

(b) is a subset of a

s

. Besides,

as � is a partition, the sets g

�1

s

(b) with s 6= s

0

0

are p.w. disjoint. Now indu
tion gives the

statement of the lemma. Assume that the following is already proved:

� � :=

�

g

�1

s

n�1

� � � g

�1

s

1

a

s

0

j s

i

2 S for i = 0; : : : n� 1;

s

i

6= s

0

i�1

for i = 1; : : : n� 1

	

is a partition, whi
h is �ner than �.

� g

�1

s

n�1

� � � g

�1

s

1

a

s

0

� a

s

n�1

8 s

i

2 S for i = 0; : : : n� 1 and s

i

6= s

0

i�1

But then, this implies:

� T

�1

(�) is a partition

� Let b := g

�1

s

n�1

� � �g

�1

s

1

a

s

0

. As b � a

s

n

�1

, it follows that T

�1

(b) is the disjoint union of

the sets g

�1

s

(b) with s 6= s

0

n�1

.

5

This is a generalization: in [BS℄ and [AF℄, the Bowen - Series map is de�ned with respe
t to Lebesgue

- measure and the dis
 model.
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The next equality gives the result:

T

�n

(a

s

0

) =

[

s

1

; : : : s

n

2 S

s

i

6= s

0

i�1

g

�1

s

n

� � � g

�1

s

1

(a

s

0

)

�

Corollary 4.6 T

n+1

j

g

�1

s

n

���g

�1

s

1

(a

s

0

)

= g

s

0

g

s

1

� � � g

s

n

Proof: This is an immediate 
onsequen
e of the last proof and the fa
t, that g

s

1

� � � g

s

n

Æ

g

�1

s

n

� � � g

�1

s

1

(a

s

0

) = a

s

0

. �

Re
all the notion of a 
ylinder set [a

s

n

: : : a

s

0

℄ := g

�1

s

n

� � � g

�1

s

1

(a

s

0

) for s

i

2 S. Now the last

two results 
an be rewritten as follows:

� = f[a

s

℄ j s 2 Sg

�

n

= f[a

s

n

: : : a

s

1

℄ j s

1

: : : s

n

2 S; s

i

6= s

0

i+1

for i = 1; : : : n� 1g

De�ne a word (s

1

: : : s

n

) in S to be admissible if s

0

i

6= s

i+1

for i = 1; : : : n � 1. Then the

following holds for all admissible words (s

1

: : : s

n

):

T

n+1

j

[a

s

1

:::a

s

n

℄

= g

s

n

g

s

n�1

� � � g

s

1

Theorem 4.7 Assume G has 
onditions (CA) and (GC). Then:

� The Bowen - Series Map (�IH;B; T; �) resp. (�IH;B; T; �) is a Markov map with

respe
t to the partition � = fa

s

j s 2 Sg.

� T preserves � (and hen
e is nonsingular with respe
t to � and �).

� T is topologi
ally mixing, i.e. 8 U; V � �IH open, U; V 6= ;, there exists n

0

, su
h

that U \ T

�n

V 6= ; 8n > n

0

.

Proof: Without loss of generality, assume that the Bowen - Series map is (�IB; T;B; �).

For the Markov property it remains to show that �(

W

1

i=0

T

�i

�) = B mod �. Hen
e, it

suÆ
es to show that the eu
lidean diameters of the partition �

n

tend to zero as n ! 1.

By lemma (4.5), a side of g

s

1

Æ � � � g

s

n

P 
orresponds to some element of �

n

. So this boils

down to show that the eu
lidean distan
e of the endpoints of the sides of g

n

P tend to zero

as n!1 where fg

n

g

n2N

is a sequen
e of elements in G with the property that the unique

representation of g

n

as word in the side - pairings has length n.

Assume this is not true. Then there is a Æ > 0 su
h that in�nitely many g

n

P have a

side where the distan
e between the endpoints is bigger than Æ. Hen
e, the midpoints of

these sides have an eu
lidean distan
e to the origin smaller than some 0 < � < 1. This


ontradi
ts the lo
al �niteness of the tesselation given by GP . This now �nishes the proof
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of the Markov property.

To show the mixing property, it is standard to show the aperiodi
ity of the so 
alled in
i-

den
e graph (
f. [Aa℄, se
tion 4.2): The set of verti
es are the elements in � and the set

of (dire
ted) edges are the pairs (a; b) with the property that T (a) � b mod �. By (2)

in remark (4.3) this is equivalent to b 6= a

0

. Now it is easy to see that there are 
y
les

((a

0

; a

1

); (a

1

; a

2

); : : : (a

k�1

; a

k

); (a

k

; a

0

)) of ea
h length for all a = a

0

. As this gives the

aperiodi
ity, T is topologi
ally mixing. �

4.2 The Relation to the Flow

As the Bowen - Series Map is a fa
tor of the se
tion map S, ergodi
ity of S implies the

ergodi
ity of T : Assume A � �IH is T - invariant, i.e. T

�1

A

�

= A. Then by (GC), pr

�1

2

A

is S - invariant. So if S is ergodi
, pr

�1

2

A has to be trivial mod m whi
h for
es A to be

trivial. A transformation T is 
alled 
onservative if there is no measurable set A of positive

measure su
h that fT

�n

Ag

n2N

is a 
olle
tion of pairwise disjoint sets. Su
h sets are 
alled

wandering sets. Now by the same arguments as before, if A is wandering with respe
t to T ,

pr

�1

2

A has to be wandering for S. Hen
e T is 
onservative if S is 
onservative. To prove the

other dire
tion, one has to show some minimality 
onditions of (Y;B

Y

; m; S) with respe
t

to (X;B

X

; �; T ):

De�nition 4.8 Let (X;B

X

; �; T ) be a measure preserving dynami
al system of the � -

�nite standard measure spa
e X. A natural extension of T is a system (Y;B

Y

; m

S

; S) with

S invertible and a measurable map � : Y ! X su
h that:

� � Æ S = T Æ �

� m Æ �

�1

= �

�

W

1

n=1

S

n

�

�1

B

X

m

= B

Y

Now, it has to be shown that the se
tion is the natural extension of the Bowen - Series

map. The main argument here is the symmetry of the geodesi
 
ow with respe
t of

going ba
kwards and forward: Analogous to the de�nition of T as a fa
tor of S one


an de�ne

~

T as a fa
tor of S

�1

. As by proposition (4.2), (3) and (4) are implying that

S

�1

j

a

s

�(a

s

)




(�; �) = (g

s

�; g

s

�), the following diagram 
ommutes:

Y

-

Y

? ?

X

S

�1

pr

1

pr

1

X

-

~

T

Besides, T and

~

T 
oin
ide. As in [AF℄ for the 
ompa
t 
ase, one 
an dedu
e:
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Proposition 4.9 (Y;B

Y

; m; S) is the natural extension of (X;B

X

; �; T ) with � = pr

2

.

Proof: It remains to validate the last 
ondition of (4.8). As T is Markov,

W

i2N

T

�i

�

= B

X

.

Hen
e,

W

n2N

S

n

pr

�1

2

B

X

m

=

W

n;m2N

S

n

pr

�1

2

�

m

. This redu
es the problem to the investigation

of the S- images of the sets pr

�1

2

a where a 2 �

m

for some m. By using the fa
tor properties

of T and

~

T one gets for 0 < m < n:

S

m

(pr

�1

1

a

s

) = pr

�1

1

(

~

T

�m

a

s

)

and S

m

(pr

�1

2

[a

s

1

: : : a

s

n

℄) � pr

�1

2

(T

m

[a

s

1

: : : a

s

n

℄) = pr

�1

2

[a

s

n�m

: : : a

s

n

℄

) S

m

(a

s

� [a

s

1

: : : a

s

n

℄) �

~

T

�m

a

s

� [a

s

1

: : : a

s

n

℄

By proposition (4.2), S(pr

�1

2

[a

s

1

: : : a

s

n

℄) = a

s

0

1

� [a

s

2

: : : a

s

n

℄. Now the Markov property of

T and

~

T with respe
t to � �nishes the proof. �

As S is the natural extension of T , a theorem of Parry (
f. [Aa℄ theorem 3.1.7) gives

that S is 
onservative if T is 
onservative and that S is 
onservative and ergodi
 if T is


onservative and ergodi
. So by summarizing the results, one gets:

Proposition 4.10 Assume G is a Fu
hsian group with 
ondition (CA) and admits an

exa
t fundamental polygon P whi
h sides 
onsist of 
omplete geodesi
s. Then the following

relations between the geodesi
 
ow ' on IH=

G

, the se
tion map Y de�ned via P and the

Bowen - Series map T hold:

� ' is ergodi
 () S is ergodi
 ) T is ergodi


� T is ergodi
 and 
onservative () S is ergodi
 and 
onservative ) ' is ergodi




5 Ergodi
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The aim of this se
tion is to determine ergodi
 properties of the Bowen - Series map like


onservativity, ergodi
ity or rational ergodi
ity. In 
ontrast to [BS℄ and [AF℄, an invariant

measure for T is expli
itly given by remark (4.3) but is � - �nite. The �rst appli
ation

of this property is to determine the wandering rate of T for some set A whi
h gives the


onservativity of T as a 
orollary. In addition, this rate is used later to determine the

return sequen
e of T .

5.1 The Wandering Rate

Assume in the sequel, that G is a 
o�nite Fu
hsian group with the property (GC). If P

is the 
orresponding fundamental polygon P , proposition (3.12) implies that the set V

P

is

�nite and hen
e G has property (CA). In addition, let (�IH;B; �; T ) be the Bowen { Series

map de�ned in (4.4) with Markov partition � := fa

s

j s 2 Sg where S is the set of sides

of P . The turning point here is the 
lose relation between the so 
alled paraboli
 
y
le


ondition and the preimages of the elements of �:

Assume v = v

1

is an ideal vertex of P in �IH (i.e. an element of V

P

). Then by Poin
ar�e's

theorem and as V

P

is �nite, this gives a �nite 
y
le of verti
es v

1

; : : : v

n

, of sides s

1

; : : : s

n

and of side - pairings g

1

; : : : g

n

su
h that:

� g

i

(v

i

) = v

i+1

for 0 < i < n and g

n

(v

n

) = v

1

.

� s

i

is adja
ent to v

i

and g

i

(s

i

) and s

i+1

have v

i+1

in 
ommon for 0 < i < n resp. g

n

(s

n

)

and s

1

have v

1

in 
ommon.

� g

n

Æ g

n�1

� � � g

1

�xes v

1

and is paraboli
 by Poin
ar�e.

Now re
all that a

s

� [a

s

℄ for s 2 S is an open interval and de�ne T j

[a

s

℄

as the 
ontinuous

extension of T to the 
losure of [a

s

℄, i.e T j

[a

s

℄

= g

s

on Clos

�IH

[a

s

℄. With regard to T , the


y
le statement is hen
e the same as:

� T j

[a

s

i

℄

(v

i

) = v

i+1

for 0 < i < n and T j

[a

s

n

℄

(v

n

) = v

1

.

� a

s

i

is adja
ent to v

i

and the 
losures a

g

i

(s

i

)

= a

s

0

i

and a

s

i+1

have v

i+1

in 
ommon for

0 < i < n resp. the boundaries of a

s

n

and a

s

1

have v

1

in 
ommon.

By (2) of remark (4.3), T j

[a

s

i

℄

(a

s

i

) = (a

s

0

i

)




. As s

0

i

6= s

i+1

resp. s

0

n

6= s

1

, T j

[a

s

i

℄

(a

s

i

) � a

s

i+1

.

Hen
e, T

n

([a

s

1

: : : a

s

n

℄) is well de�ned and maps [a

s

1

: : : a

s

n

℄ to T (a

s

n

)

�

= (a

s

0

n

)




. With

respe
t to the 
ontinuation of T

n

on Clos

�IH

([a

s

1

: : : a

s

n

℄) the last property gives:

� v

1

is a paraboli
 �xed point T

n

j

[a

s

1

:::a

s

n

℄

= T j

[a

s

n

℄

ÆT j

[a

s

n�1

℄

� � �T j

[a

s

1

℄

, i.e. v

1

is a �xed

point and the modulus of the derivative at v

1

equals one.

29
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If N is the greatest 
ommon divisor of the lengths of all vertex 
y
les, it follows that any

element

6

of V

P

is a paraboli
 �xed point of T

N

with respe
t to the 
orresponding element

of �

N

(for notation, 
f. (4.6)). Now, for any v 2 V

P

, de�ne

U(v) := [a

s

1

: : : a

s

n

a

s

1

: : : a

s

n

: : : a

s

1

: : : a

s

n

℄

| {z }

N=n times

[

[a

t

1

: : : a

t

n

0

a

t

1

: : : a

t

n

0

: : : a

t

1

: : : a

t

n

0

℄

| {z }

N=n

0

times

;

where s

1

; : : : s

n

and t

1

: : : t

n

0

are the edge 
y
les su
h that a

s

1

and a

t

1

are adja
ent to v.

Besides, by the 
y
le property, it follows that n = n

0

and t

i

= g

s

i�1

(s

i�1

) for i = 2; : : : n

resp. t

1

= g

s

n

(s

n

). Now de�ne the words w(v) and w

0

(v) of length N by

w(v) := [a

s

1

: : : a

s

n

a

s

1

: : : a

s

n

: : : a

s

1

: : : a

s

n

℄

w

0

(v) := [a

t

1

: : : a

t

n

0

a

t

1

: : : a

t

n

0

: : : a

t

1

: : : a

t

n

0

℄:

There is the following general fa
t about Markov maps: assume a 2 � and that the word

aa is admissible. Then:

�

T

�1

([a : : : a

| {z }

k times

℄)

�




[ ([a : : : a

| {z }

k times

℄)




= T

�1

�

[

b

1

:::b

k

6=a:::a

[b

1

: : : b

k

℄

�

[

[

b

1

:::b

k

6=a:::a

[b

1

: : : b

k

℄

=

[

b

1

:::b

k

6=a:::a; 
b

1

adm.

[
b℄ [

[

b6=a

[b℄

= [ a : : : a

| {z }

k+1 times

℄




As T

N

is Markov with respe
t to �

N

and w(v)w(v) is admissible for v 2 V

P

:

T

�N

([w(v) : : : w(v)

| {z }

k times

℄)

�




[ [w(v) : : : w(v)

| {z }

k times

℄




= [w(v) : : :w(v)

| {z }

k+1 times

℄




resp.

T

�N

[w(v)℄ [ [w(v)℄ = [w(v)w(v)℄

and as k is arbitrary, by indu
tion for n > 0 :

n

[

i=0

T

�iN

[w(v)℄




= [w(v) : : :w(v)

| {z }

n+1 times

℄




6

This works only if V

P

is �nite. Hen
e there is no generalization to the geometri
al in�nite 
ase.
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By de�ning A :=

�

S

v2V

P

([w(v)℄ [ [w

0

(v)℄)

�




=

�

S

v2V

P

U(v)

�




, this gives:

n

[

i=0

T

�iN

A =

n

[

i=0

T

�iN

�

[

v2V

P

([w(v)℄ [ [w

0

(v)℄)

�




=

n

[

i=0

\

v2V

P

�

�

T

�iN

[w(v)℄




�

\

�

T

�iN

[w

0

(v)℄




�

�

=

\

v2V

P

�

�

n

[

i=0

T

�iN

[w(v)℄




�

\

�

n

[

i=0

T

�iN

[w

0

(v)℄




�

�

=

�

[

v2V

P

[w(v) : : : w(v)

| {z }

n+1 times

℄ [ [w

0

(v) : : : w

0

(v)

| {z }

n+1 times

℄

�




This result now makes it possible to 
al
ulate the wandering rate of the set A. By the

relation to the paraboli
 
y
le 
ondition, T

N

j

w(v)

has to be paraboli
 with �xed point v.

Assume by 
onjugation without loss of generality that v = 1 and T

N

j

w(v)

(z) = z � 1.

Then there is a 2 IR su
h that

7

[w(v)℄ = (a;1). By (3) of remark (4.3) there is b < a su
h

that d� = 2=(x� b). Now 
al
ulus gives:

�((a; a+ n℄) =

Z

a+n

a

2

x� b

dx = 2

�

log(a + n� b)� log(a� b)

��

; when
e:

�((a; a+ n℄

logn

= 2

�

log(a + n� b)

logn

�

log(a� b)

logn

�

n!1

�! 2

Again by T

N

j

w(v)

z = z � 1, this gives in terms of the partition �

N

that :

(a; a+ n℄ = [w(v)℄n[w(v) : : :w(v)

| {z }

n times

℄ =)

�([w(v)℄n[

n times

z }| {

w(v) : : :w(v)℄)

logn

n!1

�! 2

For ea
h v 2 V

P

, U(v) is a neighborhood of v. Hen
e, for all a 2 �, A\ a is bounded away

from �a. By the stru
ture of �, �(A \ a) is �nite. As � is �nite (as the 
orresponding

group is 
o�nite), �(A) is �nite. As the rate of 
onvergen
e for [w

0

(v)℄ is the same as for

[w(v)℄, the equality

n

[

i=0

T

�iN

A = A [

[

v2V

P

([w(v)℄n[w(v) : : :w(v)

| {z }

n+1 times

℄ [ [w

0

(v)℄n[w

0

(v) : : : w

0

(v)

| {z }

n+1 times

℄)

implies by the �niteness of �(A), that

�

�

S

n

i=0

T

�iN

A

�

logn

n!1

�! 4 #V

P

;

7

The 
ase, that [w(v)℄ = (1; a) has to be ex
luded, as T

�N

j

w(v)

[w(v)℄ = [w(v)w(v)℄ has to be a subset

of [w(v)℄ (
f. (7.7) in the appendix).
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where #V

P

is the 
ardinality of V

P

. As the sequen
e f

S

n

i=0

T

�i

Ag

i2N

is monotoni
ally

in
reasing, the following proposition is proved:

Proposition 5.1

�

�

S

n

i=0

T

�i

A

�

logn

n!1

�! 4 #V

P

In addition, as (a; a + n℄

n!1

�! (a;1),

S

n

i=0

T

�iN

A

n!1

�! �IH. As in 
ontrast to [BS℄ and

[AF℄, the invariant measure is expli
itly given, this gives for the indu
ed transformation

on A:

Proposition 5.2 T

A

: A ! A is well de�ned and preserves �. As �(A) is �nite, T

A

is


onservative. In addition, T is 
onservative.

Proof: As �(A) < 1, there is no wandering set of positive measure. Assume W is wan-

dering for T . As

S

1

n=0

T

�n

= �IH, there is W

�

� A of positive measure and n

W

su
h that

T

�n

W

W \W

�

is of positive measure. Hen
e, W

�

would be wandering for T

A

whi
h �nishes

the proof. �

5.2 Distortion Properties

Let (X;B; �; T; �) be a nonsingular Markov map. As T is lo
ally invertible, there are

inverse bran
hes of T

n

for ea
h n � 1: for a = [a

1

: : : a

n

℄ 2 �

n

, T

n

j

a

is one to one and

T

n

a = Ta

n

. Now de�ne (
f. [Aa℄):

D(v

a

) := T

n

a

v

a

: D(v

a

)! a by T

n

Æ v

a

(x) = x for x 2 T

n

a

v

0

a

:=

d� Æ v

a

d�

;

where v

0

a

is the Radon - Nikodym derivative. A distortion property is a feature of the

multipli
ative variation of v

0

a

on T

n

a. Let

~�

+

:= fa 2 ~� j �(a) > 0g where ~� :=

1

[

n=1

�

n

De�nition 5.3 (X;B; �; T; �) has the strong distortion property if there is C > 1 su
h

that g(C; T ) = ~�

+

where

g(C; T ) = fa 2 ~�

+

j

v

0

a

(x)

v

0

a

(y)

� C for �� � - a.e. (x; y) 2 (D(�

a

))

2

g

The stronger Gibbs property is 
onne
ted to estimates of �(a) for a 2 �

n

and n large:
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De�nition 5.4 (X;B; �; T; �) has the Gibbs property if there is C > 1 and 0 < r < 1 su
h

that g

r

(C; T ) = ~�

+

where

g

r

(C; T ) := fa 2 ~�

+

j

�

�

�

�

log

v

0

a

(x)

v

0

a

(y)

�

�

�

�

� Cr

t(x;y)

for �� � - a.e. (x; y) 2 (D(v

a

))

2

g

with t(x; y) := minfn � 1 j T

n

x 2 a 2 �; T

n

y 2 b 2 � : a 6= bg

In many 
ases (e.g. if there are some paraboli
 �xed points) it is not possible to a
hieve

the strong distortion property. But sometimes there is a weaker property:

De�nition 5.5 Let (X;B; �; T; �) a Markov map. A 
olle
tion r � ~�

+

is 
alled a S
hweiger


olle
tion if there is C > 1, su
h that

� r � g(C; T )

� [b℄ 2 r; [a℄ 2 ~�

+

; [a; b℄ 2 ~�

+

implies that [a; b℄ 2 r

�

S

b2r

b = X mod �

(X;B; �; T; �) has the weak distortion property if there exists a S
hweiger 
olle
tion for

(X;B; �; T; �).

In the sequel, these distortion properties will be dis
ussed with respe
t to Lebesgue measure

and lo
al di�eomorphisms. Re
all that in general, if J and J

0

are bounded intervals in IR,

� is Lebesgue measure and f : J ! J

0

is a di�eomorphism:

d� Æ f

�

= jDf j;

where Df is the usual derivative of f . Hen
e, if T is in addition a C

1

- endomorphism of

a bounded interval:

v

0

a

=

d� Æ v

a

�

= jDv

a

j:

De�nition 5.6 Assume that T is a C

2

- endomorphism of a bounded interval I. Then T

has the Renyi property if there is 0 < C <1 with:

�

�

�

�

D

2

T

n

(z)

(DT

n

(z))

2

�

�

�

�

< C for Lebesgue a.e. z 2 I

Remark 5.7 Distortion properties of T with respe
t to � are related to the Renyi property

(this is taken from [Aa℄, s.145). Let a 2 �

n

. Then T

n

Æ v

a

= id on D(v

a

). Hen
e,

DT

n

Æ v

a

�Dv

a

= 1. As DT

n

> 0 a.e. by the nonsingularity of T :

D

2

T

n

Æ v

a

(DT

n

Æ v

a

)

2

= �

D

2

v

a

Dv

a
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Let x; y 2 D(v

a

) and x < y. Then by (log f)

0

= f

0

=f for f = Dv

a

(x)=Dv

a

(y):

d

dx

log

Dv

a

(x)

Dv

a

(y)

=

D

2

v

a

(x)

Dv

a

(x)

) log

Dv

a

(x)

Dv

a

(y)

=

Z

y

x

D

2

v

a

(t)

Dv

a

(t)

dt

Now by the Renyi property:

�

�

�

�

log

Dv

a

(x)

Dv

a

(y)

�

�

�

�

=

�

�

�

�

Z

y

x

D

2

v

a

(t)

Dv

a

(t)

dt

�

�

�

�

�

Z

y

x

�

�

�

�

D

2

v

a

(t)

Dv

a

(t)

�

�

�

�

dt � Cjx� yj

As I is bounded, any a 2 ~�

+

is a bounded interval, say diam(a) < C

~�

+

for all a 2 ~�

+

.

Hen
e, ~�

+

= g(CC

~�

+

; T ) resp. T has the strong distortion property. In addition, if

x = e

�M

denotes that x 2 [e

�M

; e

M

℄ for M > 0, the last inequality gives for M := CC

~�

+

:

v

0

a

= e

�M

v

0

a

(y) 8x; y 2 D(v

a

)

)

Z

D(v

a

)

v

0

a

(x)dy = e

�M

Z

D(v

a

)

v

0

a

(y)dy

) v

0

a

(x)�(D(v

a

)) = e

�M

�(a)

) v

0

a

(x) = e

�M

�(a)

�(D(v

a

))

8x 2 D(v

a

)

These 
al
ulations now lead to the following proposition:

Proposition 5.8 Assume (I;B; �; T; �) is a nonsingular Markov map where I is a bounded

intervall and T is a C

2

- endomorphism of I having the Renyi property. Then (I;B; �; T; �)

has the strong distortion property. If there is in addition a 
onstant C

�

with �(Ta) > C

�

for all a 2 �, then there is N 2 N and � > 1 with jDT

n

(x)j > � for a.e. x 2 I and n > N .

Proof: As it was already shown that the Renyi property implies the strong distortion

property, it is left to show the se
ond assertion. For a = [a

1

: : : a

n

℄ 2 �

n

, D(v

a

) = T

n

a =

T (a

n

). Hen
e, �(D(v

a

)) > C

�

.

v

0

a

(x) = e

�M

�(a)

�(D(v

a

))

8x 2 D(v

a

)

implies now that

v

0

a

(x) < e

M

�(a)

C

�

8x 2 D(v

a

):

As T is Markov and � is Lebesgue measure, sup

a2�

n

�(a)

n!1

! 0. Hen
e, there is N 2 N

and � > 1 with v

0

a

(x) < �

�1

for all x 2 D(v

a

) and a 2 �

n

for n > N . �

Remark 5.9 Assume T is a transformation of the unit 
ir
le S

1

. If T is pie
ewise 
onfor-

mal, it is well known, that the same assertions about distortion properties hold.
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5.3 Distortion Properties for the Bowen - Series Map

The key estimate for the distortion of T relies on the so 
alled 
ross ratio:

De�nition 5.10 Assume u; v; x; y are four di�erent points in C . Then the 
ross ratio

[u; v; x; y℄ is given by

[u; v; x; y℄ :=

ju� xjju� vj

ju� vjjx� yj

By setting 1=1 = 1, this de�nition extends to arbitrary u; v; x; y in the Riemann sphere.

As it is well known, 
ross ratios are preserved by Moebius transformations (
f. [Ra℄,

theorem 4.3.1). This property now allows to prove:

Lemma 5.11 Fix the dis
 model and let T be the Bowen - Series map given by a polygon

P with �nite set of ideal verti
es V

P

. Then for B measurable with the property that there

is � > 0 with d(B; V

P

) > � (e.g. B = A as in (5.2)):

There is 0 < C <1 su
h that for all n:

�

�

�

�

D

2

T

n

(z)

(DT

n

(z))

2

�

�

�

�

< C for Lebesgue a.e. z with T

n

(z) 2 B

Proof: Fix a = [a

s

1

: : : a

s

n

℄ 2 �

n

. Then T

n

j

a

= g

s

n

: : : g

s

1

. De�ne g

a

= g = g

s

n

: : : g

s

1

. As

it was shown in the appendix for g 2 G:

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

= 2

jz �m

g

j

jm

g

j

2

� 1

where m

g

is the 
enter of the isometri
 
ir
le I(g) of g. Assume now that �

g

is an element

of I(g). Then

[m

g

; �

g

; z;1℄ = [g(m

g

); g(�

g

); g(z); g(1)℄

As g(I(g)) = I(g

�1

), g(�

g

) 2 I(g

�1

). Let r

g

be the radius of I(g). Then

r

g

= jm

g

� �

g

j = jm

g

�1

� g(�

g

)j = r

g

�1

:

As g(m

g

) =1, g(1) = m

g

�1

:

[m

g

; �

g

; z;1℄ = [1; g(�

g

); g(z); m

g

�1

℄

)

jm

g

� zj

jm

g

� �

g

j

=

jm

g

�1

� g(�

g

)j

jm

g

�1

� g(z)j

)

jm

g

� zj

r

g

=

r

g

jm

g

�1

� g(z)j

Hen
e:

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

=

1

jm

g

�1

� g(z)j
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To apply this equality it has to be distinguished whether a and g(a) = T

n

(a) are disjoint

or not: Let H(a) be the half - spa
e given by

Clos

�

IB

(H(a)) \ �IB = Clos

�IB

(a):

As T

n

(a) = (a

s

0

n

)




, H(a)

g

7! H((a

s

0

n

)




). Hen
e �H(a)

g

7! s

0

n

. As the tesselation GP is

lo
ally �nite, the 
olle
tion fg

k

s

0

n

g

k2Z

is lo
ally �nite. Hen
e, if H(a) � g(H(a)), (g;H(a))

has the side - pairing property (
f. de�nition (7.7). But this 
ondition is equivalent to

s

1

6= s

0

n

.

} }

}
}

ns’

ns’

} }

}
}

ns’

ns’

ε ε

ε
ε

a

a

H(a)

z

g(z)
ε ε

ε
ε

g(z)

a

z
H(a)

Figure 4: the 
ase s

1

6= s

0

n

resp. s

1

= s

0

n

(1) Assume s

1

6= s

0

n

and �x z 2 a \B with g(z) 2 B. As (g;H(a)) has the side - pairing

property, (g

�1

; (gH(a))




) has the side - pairing property where (gH(a))




= (H(a

s

0

n

)




)




=

H(a

s

0

n

). Now by propositions (7.8) and (7.9) the paraboli
 resp. the repelling hyperboli


�xed point  

g

�1

of g

�1

has to be 
ontained in a

s

0

n

and by proposition (7.6), j 

g

�1

�m

g

�1

j <

r

g

�1

. As g(z) 2 (a

s

0

n

)




\B and d(B; V

P

) > �, the triangle inequality gives: jm

g

�1

� g(z)j �

��r

g

�1

. Now by theorem 3.3.7 in [Ka℄: assume (g

1

; g

2

: : :) is a sequen
e of distin
t elements

of G, then r

g

k

! 0 as k!1. Hen
e r

g

> �=2 only for �nitely many g 2 G. Hen
e,

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

=

1

jm

g

�1

� g(z)j

�

2

�

for only �nitely many g 2 G.

(2) Assume now that s

1

= s

0

n

. Hen
e a and g(a) are disjoint. Hen
e neither a nor g(a)


ontain any �xed point of g. So the situation is similar as before: g(z) 2 g(a) = (a

s

0

n

)




and

both �xed points of g are elements of a

s

0

n

. Hen
e for z 2 B with g(z) 2 B, by the same

arguments:

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

=

1

jm

g

�1

� g(z)j

�

2

�
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for only �nitely many g 2 G. This �nishes the proof. �

Re
all that the set from proposition (5.2) is given by:

A = �IBn

�

[

v2V

P

U(v)

�

= �IBn

�

[

v2V

P

([w(v)℄ [ [w

0

(v)℄)

�

where N is the smallest 
ommon multiple of the lengths of the edge 
y
les. Hen
e,

� := fa 2 �

N

j a 6= [w(v)℄; a 6= [w

0

(v)℄ 8 v 2 V

P

g

is a partition for A. Now de�ne

~

� := fb = [b

1

: : : b

n

℄ 2 ~� j b

1

; : : : b

n

2 �; n � N;

[b

1

: : : b

N

℄ 2 �; [b

n�N+1

: : : b

n

℄ 2 �; [b

i

� � � b

i+N�1

℄ =2 � 8i = 2; : : : n�Ng

= fb 2 ~� j 9 a

1

; a

2

2 � : b � a

1

; T

A

: b! a

2

is one to oneg

Now T

A


an be shown to be Markov with the so 
alled big image property :

Lemma 5.12

~

� is a Markov partition for T

A

and the �rst return time �

A

is measurable

with respe
t to

~

�. In addition T

A

has the big image property, i.e. there is Æ > 0 with

�(T

A

(b)) > Æ for all b 2

~

�.

Proof: As T

A

is de�ned a.e. on A,

~

� is a partition of A mod � and is by de�nition �ner

than �. Hen
e for all b 2

~

�, T

A

(b) 2 � is the disjoint union of elements of

~

�. Now assume

that [a

1

: : : a

n

℄ 2 ~� with [a

1

: : : a

n

℄ � A and n > N . Hen
e [a

1

: : : a

N

℄ 2 �. In addition,

there is [b

1

: : : b

N

℄ 2 � su
h that [a

1

: : : a

N

b

1

: : : b

N

℄ is admissible (with respe
t to T ). As �

is generating B and [a

1

: : : a

N

b

1

: : : b

N

℄ � [b

1

: : : b

N

℄,

~

� is generating A\B. So

~

� is a Markov

partition for T

A

. As the measurability of �

A

follows immediately from the de�nition of

~

�, only the last assertion has to be shown. But this is a 
onsequen
e of the fa
ts, that

T

A

(b) 2 � for all b 2

~

� and that � is a �nite partition 
onsisting of elements of positive

measure. �

As

~

� is a Markov partition for T

A

, the following distortion properties 
an be derived:

Proposition 5.13 Let G be 
o�nite with property (GC). Then the following holds for T

resp. T

A

:

(1) T

A

has the Renyi property, where A is de�ned as above (resp. as in (5.2)).

(2) T

A

has the strong distortion property with respe
t to the partition

~

� and Lebesgue

measure.

(3) There is N

0

2 N and � > 1 su
h that for all n � N

0

and a.e. z 2 �IB:

jDT

n

A

(z)j > � > 1
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(4) T has the weak distortion property with respe
t to Lebesgue measure.

Proof: The �rst assertion is an immediate 
onsequen
e of lemma (5.11). As

~

� is a Markov

partition for T

A

and T

A

has the big image property with respe
t to

~

�, (2) and (3) follow

by proposition (5.8). De�ne

r := f[ab℄ 2 ~� j a 2 ~� and b 2 �g :

It is left to show, that r is a S
hweiger 
olle
tion (
f. de�nition (5.5)). By 
onservativity

of T ,

S

b2r

= �IB mod �. The se
ond 
ondition follows dire
tly from the de�nition of r. To

show that there is 0 < C <1 su
h that r � g(C; T ) it suÆ
es by remark (5.7) to �nd an

upper bound for

�

�

�

�

D

2

T

n

(x)

(DT

n

(x))

2

�

�

�

�

for Lebesgue a.e. x and n with x 2 [a

1

: : : a

n

℄ 2 r

Re
all that � is a partition of A 
onsisting of words in � of length N . As T

n�N

x 2 A for

all x 2 [a

1

: : : a

n

℄ 2 r, by lemma (5.11) there is a C

0

> 0 su
h that:

�

�

�

�

D

2

T

n

(x)

(DT

n

(x))

2

�

�

�

�

=

�

�

�

�

D

2

(T

N

Æ T

n�N

)(x)

(D(T

N

Æ T

n�N

)(x))

2

�

�

�

�

=

�

�

�

�

D

2

T

N

(T

n�N

(x))

(DT

N

(T

n�N

(x)))

2

+

D

2

T

n�N

(x)

DT

N

(T

n�N

(x))(DT

n�N

(x))

2

�

�

�

�

�

�

�

�

�

D

2

T

N

(T

n�N

(x))

(DT

N

(T

n�N

(x)))

2

�

�

�

�

+

C

0

jDT

N

(T

n�N

(x))j

for all x 2 [a

1

: : : a

n

℄ 2 r

It is shown in the appendix (
orollary (7.5)), that for g 2 Iso

+

IB there are 0 < m

1

; m

2

<1

with 1=m

1

< jDgj < m

1

and jD

2

g=(Dg)

2

j < m

2

. Hen
e for any �nite 
olle
tion H of

elements of Iso

+

IB, there are 0 < m

1

; m

2

<1 with 1=m

1

< jDgj < m

1

and jD

2

g=(Dg)

2

j <

m

2

8 g 2 H. As � is �nite,

H := fg 2 Iso

+

IB j 9 b 2 � with T

N

j

b

= gj

b

g

is also a �nite 
olle
tion. Hen
e there is 0 < m

1

; m

2

<1 su
h that

�

�

�

�

D

2

T

n

(x)

(DT

n

(x))

2

�

�

�

�

� m

2

+m

1

C

0

8 x 2 [a

1

: : : a

n

℄ 2 r

This �nishes the proof. �

By property (3) of the last proposition it is now possible to give an estimate for the

Lebesgue measure of an element of a 2

~

�

n

. Assume n � kN

0

. Then:

�(a) < �

�k

max

b2�

(f�(b)g) < 2��

k
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Hen
e for a 2

~

�

kN

0

+l

with l = f1; : : :N

0

� 1g and ~� =: �

1=N

0

:

�(a) < 2�~�

�kN

0

= 2�~�

l

~�

�(kN

0

+l)

< 2�~�

N

0

~�

�(kN

0

+l)

= 
onst ~�

�(kN

0

+l)

Now the exponential de
ay of �(a) for a 2

~

�

n

; n!1 leads to

Theorem 5.14 Assume G is 
o�nite and of type (GC). Let A be de�ned as in proposition

(5.1). Then T

A

has the Gibbs property with respe
t to Lebesgue measure and with respe
t

to �.

Proof: To show the Gibbs property with respe
t to Lebesgue measure �, C > 0 and

0 < r < 1 have to be found su
h that

�

�

�

�

log

v

0

a

(x)

v

0

a

(y)

�

�

�

�

� Cr

t(x;y)

for �� � - a.e. (x; y) 2 (D(v

a

))

2

:

By remark (5.7) and the Renyi property of T

A

, there is C

1

with:

�

�

�

�

log

v

0

a

(x)

v

0

a

(y)

�

�

�

�

=

�

�

�

�

log

Dv

a

(x)

Dv

a

(y)

�

�

�

�

� C

1

d

S

1

(x; y) for a.e. x; y 2 D(v

a

)

So assume that t(x; y) = n. Hen
e there is an element b 2

~

�

n

with x; y 2 b. By the last


al
ulation, there is C

2

> 0 and � > 1 with:

d

S

1

(x; y) � �(b) � C

2

�

�n

)

�

�

�

�

log

v

0

a

(x)

v

0

a

(y)

�

�

�

�

� C

1

C

2

�

�t(x;y)

It is left to show that T

A

has the the Gibbs property with respe
t to �. By proposition 4.7.1

in [Aa℄, it is suÆ
ient to show that log(

d�

d�

) is Lips
hitz 
ontinuous on A. But in remark

(4.3),

d�

d�

=: g was already expli
itly given. As � is a �nite partition, it is suÆ
ient to

show the Lips
hitz 
ontinuity for gj

a\A

for arbitrary a 2 �. Assume w.l.o.g. that a = e

2�iI

where I = (0; x) for 0 < x < 1. Then

g(t) = 2�(
ot(�(x� t))� 
ot(�(1� t))) for t 2 I

)

d

dt

log(g(t)) =

g

0

(t)

g(t)

= �

(sin(�(x� t)))

�2

� (sin(�(1� t)))

�2


ot(�(x� t))� 
ot(�(1� t))

As it was mentioned before, gj

a\A

is bounded away from zero. As A is bounded away from

V

P

, A\a 
an be written as A\a = e

2�iJ

with Clos(J) � I. Hen
e

d

dt

log(g(t)) is a bounded


ontinuous fun
tion on J and hen
e log

d�

d�

is a Lips
hitz 
ontinuous fun
tion on A. �
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5.4 Ergodi
 Properties

In the sequel, the Gibbs property of T

A

will be used to derive further results with respe
t

to T . The �rst dire
t 
onsequen
e is:

Proposition 5.15 T and T

A

are exa
t (and hen
e ergodi
) with respe
t to � and Lebesgue

measure.

Proof: By a result of Aaronson, Denker and Urbanski (
f. [Aa℄, theorem 4.4.7), a topo-

logi
ally mixing Markov map having the weak distortion property is exa
t if this map is


onservative. As T and T

A

are 
onservative by proposition (5.2) and as exa
tness is im-

plying ergodi
ity, it has to be shown that both maps are topologi
ally mixing and have

the weak distortion property. But as T is topologi
ally mixing by theorem (4.7), T

A

is also

topologi
ally mixing. In addition, the weak distortion was already shown in proposition

(5.13). �

For 
onservative, ergodi
, in�nite measure preserving transformations like T with respe
t

to �, there is a further 
lassi�
ation (for referen
e see [Aa℄):

De�nition 5.16 A 
onservative, ergodi
, measure preserving transformation T of (X;B; �)

is 
alled rationally ergodi
 if there is a set A 2 B with 0 < �(A) <1 and a 
onstantM > 0

with

Z

A

(

n�1

X

i=0

1

A

Æ T

i

)

2

d� �M

 

Z

A

n�1

X

i=0

1

A

Æ T

i

d�

!

2

8n � 1

If T is rationally ergodi
, there is a sequen
e a

n

(T ) � a

n

% 1 unique up to asymptoti


equality (
f. theorem 3.3.1 in [Aa℄) su
h that: assume A 2 B is a set 
orresponding to the

last de�nition, then:

1

a

n

n�1

X

i=0

�(B \ T

�i

C)

n!1

! m(B)m(C) 8B;C 2 B \ A

This sequen
e is 
alled the return sequen
e of T . The next de�nition is based on the

transfer operator

b

T : L

1

(�)! L

1

(�), de�ned by:

Z

X

b

Tf � gd� =

Z

X

f � g Æ Td� 8f 2 L

1

(�); g 2 L

1

(�)

De�nition 5.17 A 
onservative, ergodi
, measure preserving transformation T of (X;B; �)

is 
alled pointwise dual ergodi
 if there is a sequen
e of 
onstants a

n

su
h that

1

a

n

n�1

X

i=0

b

T

i

f !

Z

X

fd� a.e. as n!1 8f 2 L

1

(X):
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By proposition (3.7.5) in [Aa℄, a pointwise dual ergodi
 transformation T is rationally

ergodi
. In addition, the sequen
e a

n

from the de�nition of pointwise dual ergodi
ity is

a return sequen
e for T . Applying standard results to the Bowen - Series map T for G


o�nite, torsionfree and with property (GC) gives:

Proposition 5.18 The Bowen - Series Map T is pointwise dual ergodi
 and rationally

ergodi
 with respe
t to �.

Proof: Re
all the properties of T

A

: T

A

is topologi
ally mixing and has the Gibbs property

by (5.14). In addition, as �(A) is �nite, T

A

is �nite measure preserving. By lemma (5.12),

�(T

A

(b)) > 0 for all b 2

~

� and �

A

is measurable with respe
t to

~

�. Hen
e, 
orollary (4.7.8)

in [Aa℄ gives that T

A

is 
ontinued fra
tion mixing (
f. de�nition 3.7.4 in [Aa℄). This now

implies via lemma (3.7.4) in [Aa℄, that A is a so 
alled Darling - Ka
 set, i.e. there are


onstants b

n

> 0 su
h that

1

b

n

n�1

X

i=0

b

T

i

1

A

! �(A) almost uniformly on A:

Now by proposition (3.7.5) in [Aa℄, T is pointwise dual ergodi
 and hen
e by proposition

(3.7.1) in [Aa℄ rationally ergodi
. �

As it was shown in the proof, A is a Darling - Ka
 set. Now by the Cha
on - Ornstein

theorem:

P

n�1

i=0

b

T

i

(1

A

)

P

n�1

i=0

b

T

i

(f)

n!1

!

R

1

A

d�

R

fd�

a.e. 8f 2 L

1

(�); f > 0

So the sequen
e b

n

from the last proof is a return sequen
e for T . Assume without loss of

generality that a

n

= b

n

. As A a is Darling - Ka
 set, A is uniform for the indi
ator 1

A

:

1

a

n

n�1

X

i=0

b

T

i

1

A

!

Z

IB

1

A

d� almost uniformly on A:

Now the return sequen
e of T 
an be determined via the wandering rate L

A

(�) = �(

S

n�1

i=0

T

�i

A).

Re
all, that a measurable fun
tion f : IR

+

! IR

+

is 
alled regularly varying at 1 if for all

y > 0, the limit lim

x!1

f(xy)

f(x)

exists and is bigger than 0. In this 
ase, by the fun
tional

equation given by this limit, there is � 2 IR, 
alled the index of regularly variation with

lim

x!1

f(xy)

f(x)

= y

�

8y > 0:

By proposition (5.1), the wandering rate of A is proportional to log(n) and hen
e L

A

(n)

is regularly varying at 1 with index 0. Now 3.8.7 in [Aa℄ states: Assume T is pointwise
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dual ergodi
, A is uniform for some f 2 L

1

(�); f > 0 and L

A

(n) is regularly varying with

index � 2 [0; 1℄. Then

a

n

�

1

�(2� �)�(1 + �)

n

L

A

(n)

This gives:

Theorem 5.19 The Bowen - Series map T for G 
o�nite and of type (GC) is pointwise

dual ergodi
 and the return sequen
e a

n

is given by

a

n

�

n

log(n)

�

1

4#V

P

resp. as Area(P ) = (#V

P

� 2)�:

a

n

�

�n

4 log(n)(Area(IH=

G

) + 2�)



6 Summary

If G is torsionfree and not ne
essarily �nitely generated, the 
onditions (CA) and (GC)

are implying that the Bowen - Series map T is a fa
tor of a se
tion S : Y ! Y . By theorem

(4.7), T is a topologi
ally mixing, in�nite measure preserving Markov map. In proposition

(4.9) S is shown to be the natural extension of T . Hen
e S is 
onservative and ergodi
 if

and only if T is 
onservative and ergodi
.

If G is 
o�nite, torsionfree and (GC), it was mentioned before that G is not 
o
ompa
t

and that G is a free group with property (CA). In this 
ase it is shown that there is a set

A � �IB with 0 < �(A) <1 (
f. proposition 5.1)) and:

� The wandering rate of A is 4#V

P

log(n).

� T

A

is a �nite measure preserving Markov map and has the Gibbs property.

A �rst appli
ation of these two results is that the Bowen - Series map T is ergodi
 and


onservative (and hen
e the geodesi
 
ow is ergodi
 by (4.9) and (3.2)). But in addition

more sophisti
ated results for the in�nite measure preserving map T 
an be dedu
ed:

� T is rationally ergodi
 and pointwise dual ergodi
.

� The return sequen
e of T is

n

log(n)

�

1

4#V

P

.

As S is the natural extension of T , S is also rationally ergodi
 with the same return

sequen
e. Hen
e:

Proposition 6.1 Assume G is torsionfree and 
o�nite with (GC). Then the geodesi
 
ow

on IH=

G

admits a se
tion, whi
h is rationally ergodi
 with return sequen
e

n

log(n)

�

1

4#V

P

.

It has to be pointed out that this se
tion is in�nite measure preserving as T has this

property. The reason for that is the existen
e of paraboli
 periodi
 points. Indu
ing on a

set not 
ontaining any of those points now leads to a �nite measure preserving se
tion for

the 
ow: By (4.2), the following diagram 
ommutes:

Y

-

Y

? ?

�IH

S

pr

2

pr

2

�IH

-

T

Re
all, that Y =

S

s2S

(a

s

)




� a

s

and Sj

(a

s

)




�a

s

(�; �) = (g

s

(�); g

s

(�)) where S is the set of

sides of a polygon P with property (GC). Then with A de�ned as in (5.1):

B := pr

�1

2

(A) =

[

s2S

(a

s

)




� (a

s

\ A)

As S

n

(�; �) 2 B () T

n

(�) 2 A, the following diagram 
ommutes:
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B

-

B

? ?

A

S

B

pr

2

pr

2

A

-

T

A

By proposition (3.4), S

B

is a 
andidate for another se
tion for the 
ow:

Proposition 6.2 S

B

is a se
tion for the 
ow on IH=

G

where G is torsionfree, 
o�nite but

not 
o
ompa
t with (GC). S

B

itself is a 
onservative, ergodi
 and �nite measure preserving

transformation of (B;B

Y

\B;mj

B

).

Proof: As S is 
onservative, S

B

is 
onservative. Hen
e, the �rst return map �

B

is �nite

a.e. To apply proposition (3.4), it remains to show that

S

n2Z

S

n

(B) = Y mod m. But as

S is ergodi
, S

B

is ergodi
. As

S

n2Z

S

n

(B) is S - invariant, this set has to be equal to Y

mod m. To �nish the proof, the �niteness of m(B) has to be shown. As � = m Æ pr

�1

2

and

�(A) <1, the assertion follows. �

This is in some sense an analog to a result of [AF℄ for the 
o
ompa
t 
ase: they 
onstru
ted

for some Fu
hsian model IB=

G

of a 
ompa
t surfa
e of genus g � 2 su
h a se
tion. Besides,

they found a 
onjugate map having a fa
tor 
oin
ident to the Bowen - Series map de�ned

in [BS℄. By [BS℄, this fa
tor is Markov and has the Gibbs property

8

.

For the non
ompa
t 
ase treated here, this fa
tor property follows without further 
onju-

gation. This is a 
onsequen
e of the existen
e of a fundamental polygon P whi
h has no

verti
es in IH. This is 
onne
ted to the 
orresponden
e of 
utting sequen
es and boundary

expansions as follows (
f. [Se℄): the bije
tion given by Series is in this 
ase the identity

(mod Liouiville measure). In addition, the Gibbs - Markov property for the fa
tor T

A

fol-

lows without 
hoosing some spe
ial model for a given surfa
e. This is of some importan
e

as a quasi
onformal deformation is in 
ommon nonsingular with respe
t to the Liouiville

measure.

8

Bowen & Series in fa
t proved, that this fa
tor f is a C

2

- Markov map with jD(f

2

)j > Æ > 1. From

these properties, it is standard to derive the Renyi and the Gibbs property (
f. [Th℄).



7 Appendix: Isometri
 Cir
les & Side - Pairings

The aim of this last se
tion is to des
ribe relations between the side - pairings of some

polygon P with respe
t to the lo
us of its isometri
 
ir
les. This will lead to estimates of

jD

2

T j=jDT j

2

, where T is the Bowen - Series map. Therefore, the notion of an inversion

has to be introdu
ed (
f. [Kat℄,[Ra℄):

De�nition 7.1 Let S(a; r) be the eu
lidean 
ir
le in C around a 2 C with radius r > 0.

Then the inversion �

S(a;r)

in S(a; r) is the self - mapping of the Riemann sphere, given by:

�

S(a;r)

(z) =

a�z � jaj

2

+ r

2

�z � �a

As it is well known, �

S(a;r)

is an antiholomorphi
 di�eomorphism, �xing S(a; r) pointwise

and mapping a to1. In addition, these elements together with the usual re
e
tions in lines

generate the Moebius group Moeb(

^

C ). Besides, Moeb

+

(

^

C ) = PSL

2

(C ) is the subgroup of

orientation preserving transformations. The next two results are standard (
f. [Ka℄, x3.3

and [Ra℄, x4.3 ):

Proposition 7.2 Assume g 2 PSL

2

(C ); g(1) 6=1. Then there is an eu
lidean 
ir
le I(g)

su
h that g a
ts as an eu
lidean isometry on I(g). This 
ir
le is 
alled the isometri
 
ir
le

of g.

Proposition 7.3 Assume g 2 Iso

+

(IB) and g is not an eu
lidean isometry (i.e. g(0) 6= 0).

Then I(g) is unique g and has a representation g = ��, where � is a re
e
tion at a straight

line through the origin and � is the inversion in I(g). In addition, I(g) is perpendi
ular to

S

1

and hen
e 
orresponds to a geodesi
.

As an immediate 
onsequen
e of this statement, the modulus of the derivative (
f. the

next remark) 
an be 
al
ulated with respe
t to I(g). Assume that I(g) = S(m

g

; r). Now

the property, that I(g) is perpendi
ular to S

1

, is equivalent to jm

g

j

2

= r

2

+ 1. Hen
e for

�xed m

g

2 C :

�

g

(z) := �

I(g)

(z) =

m

g

�z � 1

�z � �m

g

As the modulus of the derivative is invariant under multipli
ation from the left with ele-

ments of O(2), i.e. with eu
lidean isometries �xing the origin, it follows:

jDg(z)j = jD�

g

(z)j = jD�

g

(z)j =

�

�

�

�

jm

g

j

2

� 1

jz �m

g

j

2

�

�

�

�

=)

8

<

:

jDg(z)j = 1 () jz �m

g

j

2

= 1

jDg(z)j > 1 () jz �m

g

j

2

< 1

jDg(z)j < 1 () jz �m

g

j

2

> 1
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Remark 7.4 Here, the derivative Dg of g is de�ned as the usual derivative of a holomor-

phi
 resp. antiholomorphi
 self - mapping of the Riemann sphere (e.g. if g 2 Moeb(C )).

Then Dg itself is holomorphi
 resp. antiholomorphi
. Hen
e, the se
ond derivative is well

de�ned. Here jDg(z)j resp. jD

2

g(z)j denotes the 2 - norm of Dg(z) resp. D

2

g(z).

Furthermore, to get estimates of jD

2

gj=jDgj

2

:

jD

2

g(z)j =

�

�

�

�

D

�

jm

g

j

2

� 1

(z �m

g

)

2

�

�

�

�

�

=

�

�

�

�

2(jm

g

j

2

� 1)

(z �m

g

)

3

�

�

�

�

)

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

= 2

jz �m

g

j

jm

g

j

2

� 1

As m

g

=2 IB [ �IB, it follows that:

Corollary 7.5 For g there is 0 < m

1

; m

2

<1 su
h that

1

m

1

< jDg(z)j < m

1

and

1

m

2

<

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

< m

2

8 z 2 IB [ �IB

Now by the stru
ture of jDgj, the following 
an be shown:

Proposition 7.6 If g is a paraboli
 element of Iso

+

IB, the unique �xed point z

g

of g is


ontained in I(g)\S

1

. In addition, if g = �

g

�

g

, �

g

is the re
e
tion on the line joining 0 and

z

g

. In addition, I(g) and I(g

�1

) interse
t in z

g

. If g is hyperboli
 with �xed points z

g

and

z

0

g

, then the geodesi
 joining the two �xed points interse
ts I(g). In addition, I(g), I(g

�1

)

and the re
e
tion axis of �

g

do not interse
t. Ea
h of them is interse
ting the geodesi


joining z

g

and z

0

g

perpendi
ular. See �gure (5) for illustration.

zg

I(g   )−1

axis of 

axis of 

1

−1

gz
I(g)

i

z’g’

i

I(g)

1

I(g   )

τ

τ

Figure 5: I(g) for g paraboli
 resp. hyperboli


Proof: It is well known that jDg(z

g

)j = 1, if g is paraboli
. Hen
e, z

g

2 I(g)\S

1

, implying

that �

g

(z

g

) = z

g

. Therefore, �

g

has to �x z

g

whi
h gives the required property of �

g

. The
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statement about I(g

�1

) now follows from the fa
t that �

g

(I(g)) = I(g

�1

).

In the hyperboli
 
ase, it is well known that jDg(z

g

)j < 1 < jDg(z

0

g

)j (w.l.o.g. jDg(z

g

)j <

jDg(z

0

g

)j). Hen
e, the geodesi
 joining z

g

and z

0

g

interse
ts I(g). If the re
e
tion axis of

�

g

would interse
t I(g), then g would have either a �xed point in IB or a paraboli
 �xed

point in �IB. Hen
e, this axis and I(g) has to be disjoint and �

g

maps I(g) to the 
on-

ne
ted 
omponent of IB without the re
e
tion axis of �

g

. To prove the perpendi
ularity,

swit
h to the upper half plane and let ~g; ~�

g

and ~�

g

be the elements 
orresponding to g; �

g

and �

g

. Then ~�

g

and ~�

g

are �xing the 
orresponding geodesi
s. Assume w.l.o.g. that

~g(z) = �z with � > 0. Then neither the re
e
tion axis of �

g

nor of �

g


ontains a �xed

point of g. But this has to be also true for ~�

g

and ~�

g

. Hen
e, ~�

g

and ~�

g

are inversions

at geodesi
s not 
ontaining 1. Let m

�

g

resp. m

�

g

those points in IR su
h that ~�

g

resp.

~�

g

are the inversions in a 
ir
le with 
enter m

�

g

resp. m

�

g

. As ~g �xes 0 and 1, ~�

g

Æ ~�

g

has to �x these points. As ~�

g

(1) = m

�

g

and , ~�

g

(m

�

g

) = 1, m

�

g

= m

�

g

. In addition,

~�

g

~�

g

(m

�

g

) = ~�

g

(1) = m

�

g

= m

�

g

. Hen
e, m

�

g

= m

�

g

= 0. Now the 
onformal equivalen
e

of U and IB �nishes the proof. �

In the following relations between a side s, its side -pairing g

s

and its isometri
 
ir
le

I

g

s

will be des
ribed: assume P is a polygon with set of sides S su
h that ea
h side is

a 
omplete geodesi
 and P satis�es the 
onditions of Poin
ar�e's theorem with respe
t to

some side - pairings fg

s

g

s2S

. Hen
e, G :=< g

s

j s 2 S > has to be free, implying that G

has no torsion and therefore only 
ontains paraboli
 and hyperboli
 elements. In addition,

as P is an exa
t fundamental polygon for G:

(1) H

s

� g

s

(H

s

), where H

s

is a half spa
e with �H

s

= s (
.f. (4.2)).

(2) The 
olle
tion fg

n

s

(s)g

n2Z

is lo
ally �nite.

The aim is now not only to show properties of side - pairings, but also for transformations

in some sense similar to side - pairings. So de�ne the following:

De�nition 7.7 (g

s

; H

s

) has the side - pairing property if:

(0) g

s

is a hyperboli
 or paraboli
 transformation and and s is a geodesi
.

(1) There is a halfspa
e H

s

with H

s

� g

s

(H

s

) and �H

s

= s.

(2) The 
olle
tion fg

n

s

(s)g

n2Z

is lo
ally �nite.

The paraboli
 
ase: Assume g

s

is paraboli
 and has the side - pairing property. Without

loss of generality, g

s

2 Iso

+

U and g

s

(z) = z + 1. Then H

s

� g

s

(H

s

). But as this fails if

both endpoints of s are in IR, it follows that one of them has to be 1. Hen
e, s is a line

perpendi
ular to IR, say s = 


x;1

. In addition, again by H

s

� g

s

(H

s

), H

s

has to be the

half - spa
e to the left of s (see �gure (6) for illustration). Hen
e, after swit
hing ba
k to

the dis
 model, s and s

0

have the �xed point z

g

s

of g

s

in 
ommon. By proposition (7.6), z

g

is also 
ontained in the isometri
 
ir
le I(g

s

) and in the re
e
tion axis of �

g

s

. Now again
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xσ xτ

’s

x x+1

gsH ss

Figure 6: H

s

, s and s

0

for g

s

in the upper half spa
e model, this gives that (z 7! z + 1) = ~� ~�, where ~� resp. ~� are

re
e
tions in the geodesi
s 
orresponding to the re
e
tion axis of �

g

s

resp. I(g

s

) in IB. As

1 has to be an endpoint of those geodesi
s, they have to be lines perpendi
ular to IR.

Assume that ~� resp. ~� is the re
e
tion in fz j Imz = x

�

g resp. in fz j Imz = x

�

g, where

x

�

; x

�

2 IR. Hen
e:

~�(z) = ��z + 2x

�

and ~�(z) = ��z + 2x

�

) g

s

(z) = ~� ~�(z) = z + 2(x

�

� x

�

)

) z + 1 = z + 2(x

�

� x

�

)

) x

�

� x

�

=

1

2

Hen
e, x

�

> x

�

. With respe
t to the dis
 model, the following 
an be 
on
luded: De�ne

the interval a

I

s

similar to the de�nition of a

s

as follows: let U

I(g

s

)

be the bounded 
onne
ted


omponent of C nI(g

s

). Then

a

I

s

:= U

I(g

s

)

\ �IB:

As swit
hing between the two models U and IB preserves orientation, the property that

x

�

> x

�

gives:

� If x � x

�

, then a

I

s

� a

s

� If x < x

�

, then a

I

s

� a

s

In addition, the �xed point of g

s

is a 
ommon endpoint of a

s

and a

I

s

. This gives as

U

I(g

s

)

= fz j jDg(z)j > 1g:

Proposition 7.8 Assume g

s

is paraboli
 and has the side - pairing property. Then the

unique �xed point of g

s

is a boundary point of a

s

as well as of a

I

s

. In addition, a

s

\ a

I

s

is a

nonempty interval whi
h has the property that jDg

s

(z)j � 1 for z 2 a

s

\ a

I

s

.
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The hyperboli
 
ase: If g

s

is hyperboli
, an analog of the last proposition 
an be shown.

Analogously to the paraboli
 
ase, it is assumed without loss of generality, that g

s

(z) = �z

for � > 0. As I(g

�1

) = gI(g), s

0

= g

s

(s) and g

s

0

= g

�1

s

, assume without loss of generality

that � > 1 (otherwise 
hanging to the inverse of g

s

gives the wanted property). So assume

that s = 


x;1

. Then

fg

n

s

(s) j n 2 Zg = f


�

n

;1

j n 2 Zg

meets any neighbourhood of i in�netly often. This is a 
ontradi
tion to (2) in the last

de�nition. Hen
e, s = 


x;y

with x; y 6= 1. By the same argument, x; y 6= 0. Now as

H

s

� g

s

(H

s

), it follows that 0 has to be 
ontained in the open interval (x; y) (w.l.o.g.

x < y) and that H

s

is the bounded 
omponent of Un


x;y

(see �gure (7) for illustration).

By proposition (7.6) and with the same notation as above, the geodesi
s 
orresponding

rσ

yλxλ
rτ−rσ−rτ

gs

x y

H s

s

s’

Figure 7: H

s

, s and s

0

for g

s

to the re
e
tion axis of �

g

s

resp. to the isometri
 
ir
le I(g

s

) have to be perpendi
ular to




0;1

. Hen
e, ~� and ~� are inversions at 
ir
les around the origin. Now by de�nition (7.1)

for appropriate r

�

> 0 and r

�

> 0,

~� (z) =

r

2

�

�z

and ~�(z) =

r

2

�

�z

) g

s

(z) = ~� ~�(z) = r

2

�

r

�2

�

z

) r

2

�

r

�2

�

= � > 1

By the same reasons as above, it was proved:

Proposition 7.9 Assume g

s

is hyperboli
 and has the side - pairing property. Then the

unique �xed point z

0

g

s

of g

s

with jDg(z

g

s

j � 1 is a point in the interior of a

s

as well as of

a

I

s

. In addition, a

s

\ a

I

s

is a nonempty interval, whi
h has the property that jDg

s

(z)j � 1

for z 2 a

s

\ a

I

s

.



50 Notational Conventions

8 Notational Conventions

N the natural numbers f1; 2 : : :g

Z the integers

IR the real numbers

C the 
omplex numbers

IB the disk model of the hyperboli
 plane

U the upper half spa
e model of the hyperboli
 plane

IH the hyperboli
 plane (with no model spe
.)

S

1

the unit 
ir
le

Iso(IH) the group of isometries of IH

Iso

+

(IH) the group of orientating preserving isometries of IH

Moeb(D) the group of Moebius transformations of the domain D

Moeb

+

(D) the group of orientating preserving Moebius transformations

of the domain D

O(2) the orthogonal group of IR

2

a

n

� b

n

lim

n!1

a

n

b

n

= 1

diam(�) the eu
lidean diameter of a set

d

S

1

(�; �) the metri
 given by the ar
 length of S

1

j � j the 2 - norm on C

A

IH

the hyperboli
 area.

� Lebesgue measure

m

= equality modulo the measure m

T j

A

the restri
tion of T on A

T

A

the indu
ed transformation on A

�

A

the return time to A

S the set of sides of a polygon

[a

1

: : : a

n

℄ the 
ylinder set given by a

1

; : : : a

n

a

s

the interval on �IH 
orresponding to the side s 2 S

g

s

the sidepairing whi
h maps s 7! s

0
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