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1 Introdution

The oding of the geodesis, i.e. the representation as in�nite words in some alphabet,

of a surfae M of onstant negative urvature was studied over a long time. Several

authors (Morse 1921, Artin 1965, Hedlund 1934) developed methods to ode the geodesis

for some speial ases. Morse de�ned so alled utting sequenes. This means that a

geodesi is oded by the sequene in whih it uts a �xed set of urves on the surfae

where these urves are hosen to be projetions of the sides of some fundamental polygon

in the universal over. This approah is losely related to the dynamis of the geodesi

ow on M . It presupposes the representation of the nonwandering set of the geodesi ow

as speial (or suspension) ow. Exatly this was done by Adler & Flatto for M ompat

(f. [AF℄) and by the author in a more general setup in this work (f. (3.8)). This gives

an expliit onstrution (whih will be alled anonial in the sequel) with the aim to �nd

dynamial properties of the ow. Hene, this is in some sense the opposite of well known

results of Bowen for hyperboli ows (f. [Bo℄) or the result of Ambrose & Kakutani (f.

[AK℄), that any onservative ow admits suh a representation.

The other approah, whih was done by Artin, is the so alled boundary expansion. Here

the oding sequene of a geodesi is given by oding the endpoints at in�nity of some lift of

this geodesi. For example, if M is the modular surfae, the boundary expansion redues

to the ontinued fration expansion on IR [ f1g. An overview of those methods an be

found in [Se℄. In addition, Series proved that there is a orrespondene between these two

methods: there is a bijetion between the di�erent odings ommuting with the shift.

The main motivation for this work is the paper of Bowen & Series \Markov maps assoiated

to Fuhsian group" ([BS℄). In ontrast to the two methods desribed before, they assoiated

a Markov map to the group G of the Fuhsian model IB=

G

of M , where M is assumed to

be of �nite hyperboli area. This Markov map T is de�ned as a transformation of �IB = S

1

(here IB denotes the dis model of the hyperboli plane). They used the loal di�erentiable

struture of T to show:

� If G is oompat, T is Markov with respet to a �nite partition � of �IB. In addition,

jDT

n

(x)j > Æ > 1 for all n � 2 and sup

x2�IB

jD

2

Txj=jDTxj

2

< 1 for Lebesgue a.e.

x. By using these two estimates they ould show that T is ergodi. Nowadays, this

situation is alled eventually expanding and C

2

- Markov. By these properties, it is

standard to derive the Gibbs - Markov property and the existene of a �nite invariant

measure whih is equivalent to Lebesgue measure.

� If G is not oompat, Bowen & Series showed, that T is Markov with respet to a

in�nite partition �. In this ase, there is some K being the union of �nitely many

atoms of �, suh that the indued transformation T

K

has the properties desribed

above. By the ergodiity of T

K

, the ergodiity of T follows.

But this approah has a priori no onnetion with the dynamis of the ow resp. the ge-

ometry of IH=

G

. The onnetion mentioned in this paper is the so alled orbit equivalene:

gx = y for some g 2 G () 9 n;m > 0 with T

n

x = T

m

y. From this property, Bowen

5



6 Introdution

& Series derive the ergodiity of the geodesi ow. It has to be pointed out that they did

not prove these assertions for arbitrary o�nite G. By quasionformal deformation they

ahieved a group with a ford domain with the extra property, that G(�P ) is the union

of omplete geodesis. By the ford property the eventual expandingness follows and this

extra property gives the Markov property. Using the same method of quasionformal on-

jugation, Adler & Flatto gave a geometrial interpretation of the Bowen - Series map T .

They showed for G oompat that T is a fator of some S whih is measuretheoretial

isomorphi to the anonial setion for the ow (i.e. the geodesi ow is representable as

a speial ow over S). In addition, S is shown to be the natural extension of T . Another

kind of geometrial interpretation of T is given by Series ([Se℄). She identi�ed T with the

one sided shift given by the anonial fator of the two sided shift de�ned on the boundary

expansion.

It has to be mentioned that a quasionformal deformation gives a homeomorphism between

IH=

G

for given G and IH=

G

0

where G

0

is the speial model used in [BS℄ and [AF℄. But there

is no measuretheoretial equivalene between the Liouiville measures on the orresponding

surfaes in general (this is only the ase if the deformation is given by the onjugation with

an isometry). Here the papers of Rees ([Re1℄, [Re2℄) have to be mentioned. She developed

riteria for the ergodiity of the ow if G is a normal subgroup of a Fuhsian group, whih

is either oompat ([Re1℄) or o�nite and not oompat ([Re2℄)).

This is the ontext in whih this work has to be put in. As in the papers of Rees, no

quasionformal deformation is used here. First of all, assume in the sequel that G is of

�rst kind but not neessarily �nitely generated. Then the Liouiville measure is the natural

measure on the sphere bundle

1

. By arguments similar to [AF℄, it is shown (f. proposition

(3.8)) that the geodesi ow is representable Liouiville a.e. as speial ow over the anon-

ial setion. Therefore, a ondition alled oding assumption resp. (CA) is neessary to

ensure that the set orresponding to the verties of P has measure zero. As it was shown

in proposition (3.14), this is in the geometrial �nite ase equivalent to G being of �rst

kind resp. equivalent to G being o�nite. For the the geometrial in�nite ase, it is shown

that this ondition is stronger than �rst kindness but weaker than ergodiity of the ow.

In order to de�ne the Bowen - Series map, an additional property is introdued. This

property (GC) states that there is a fundamental polygon for G whose sides are omplete

geodesis. While writing this thesis, there was some disussion about this ondition (GC)

in the o�nite ase. It was laimed e.g. in [Re2℄ that any hyperboli surfae of �nite type

with usps has this property. If this would be true, the geometrial meaning of the Bowen

- Series map would be understood for all o�nite groups (whih was the motivation for this

de�nition). But as the author ould not �nd a referene, this is left open.

Under (CA) and (GC) the author was able to prove a result orresponding to [AF℄: Propo-

sition (4.2) states that under these assumptions the Bowen - Series map T is a fator of the

anonial setion S. But in ontrast to the ompat ase both maps S and T are shown

to be in�nite measure preserving. By theorem (4.7), T is a topologially mixing, in�nite

1

In the ase that G is not neessarily of �rst kind but �nitely generated, this would be the ow invariant

measure given by the unique G - invariant onformal density on the limit set introdued by Patterson.
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measure preserving Markov map.

If G is o�nite with (GC), then theorem (5.14) states that the induing on some set of �nite

measure A gives the Gibbs - Markov property whih is the analog for the result obtained

by [BS℄. In addition, ergodi properties of T itself are desribed. Theorem (5.19) states

that T is pointwise dual ergodi with return sequene proportional to n= log(n). Hene,

the anonial setion is shown to be rationally ergodi with the same return sequene as

T . Via T

A

it is possible to de�ne another setion whih is a �nite measure preserving,

onservative and ergodi setion and has T

A

as fator. In omparison to the result in [Bo℄

for the ompat ase, where the setion is shown to be a �nite measure preserving Markov

map with respet to a �nite partition, these results an be interpreted as follows: either

the setion is an in�nite measure preserving Markov map with respet to a �nite partition

or a �nite measure preserving Markov map with respet to an in�nite partition. Hene,

in ontrast to the ompat ase, where it is possible to represent the geodesi ow as the

suspension over a Markov shift in �nitely many states, here this is possible only for a shift

in ountably many states.

As an immediate appliation of these results, it should be possible to determine the

Poinar�e series of an abelian over of a o�nite subgroup using the methods developed

by Aaronson & Denker in [AD℄.



2 Hyperboli Geometry

In this setion, basi properties of hyperboli geometry and the geodesi ow will be

desribed. For a referene of the desribed results, see e.g. [Ra℄ and [Kat℄. One of the

standard models of the hyperboli plane is the ball model IB := fz 2 C jzj < 1g with ar

length and area given by

ds(z) =

2jdzj

1� jzj

2

and dA(z) =

4dz

(1� jzj

2

)

2

;

where jzj denotes the eulidean norm of z 2 C . As a fat, any two points z

1

; z

2

2 IB

an be joined by a urve  : [a; b℄ ! IB suh that  is an isometry, i.e. jx � yj =

d

IB

((x); (y)) 8x; y 2 [a; b℄. This urve an be uniquely extended to a urve 

0

: IR! IB,

whih is again an isometry. In the following, these urves joining two points as desribed

will be alled geodesi ars and their extensions geodesi lines or just geodesis. To make

notation easier one an generalize the notion of an endpoint of a geodesi ar resp. line,

if one does not distinguish if this point is in IB or �IB. This means: The set of endpoints

of  : [a; b℄ ! IB is the set f(a); (b)g, the set of endpoints of  : IR ! IB is the set

flim

t!�1

(t); lim

t!1

(t)g. Conversely de�ne for two points a; b 2 Clos(IB) the direted

geodesi from a to b by 

a;b

.

2.1 The Geodesi Flow on IB

The geodesi ow is a ow ating on the sphere bundle T

1

IB. To de�ne the ow, it is useful

to use the following representation of T

1

IB: Let �; � 2 S

1

= �IB; � 6= �. Let 

�;�

be the

direted geodesi from � to � (i.e. � = lim

t!�1

(t), � = lim

t!1

(t)) with the additional

property that (0) is the unique point in IB where the eulidean distanes d

E

(�; (0)) and

d

E

(�; (0)) are equal.

De�ne X

IB

:= ((S

1

)

2

n�) � IR with � = f(�; �) 2 (S

1

)

2

j � 6= �; g. Then the mapping �

from X

IB

to IB� S

1

, whih is by de�nition T

1

IB, given by

� : X

IB

! IB� S

1

(�; �; t) 7! 

�;�

(t); arg

0

�;�

(t))

is a di�eomorphism. Now, the ow is de�ned as :

De�nition 2.1

'

t

: X

IB

! X

IB

(�; �; s) 7! (�; �; s+ t)

is the geodesi ow on T

1

IB.

8



2.2 Geometry of Disrete Groups 9

Theorem 2.2 (Liouiville) The Liouiville - measure dm

L

= dAd� on T

1

IB is ow invari-

ant. With respet to the representation X

IB

the measure is given by

dm

L

(�; �; t) =

2jd�jjd�jdt

j� � �j

2

Proof: f. [Ho℄ for the invariane, f. [Aa℄, [AF℄ for the representation on X

IB

.

2.2 Geometry of Disrete Groups

As it is well known, the full group of orientation preserving isometries of IB is the Moebius

group Moeb

+

(IB) on IB (f. [Ra℄). A disrete subgroup G of Iso

+

(IB) is alled Fuhsian

group. If G is in addition torsionfree, then the quotient map

p : IB! IB=

G

is a loal di�eomorphism and IB=

G

is a hyperboli manifold with respet to the metri

indued by p. Now, by relating properties of G (for G torsionfree) with properties of IB=

G

,

one gets the following de�nitions:

De�nition 2.3

� G is alled oompat if IB=

G

is ompat.

� G is alled o�nite if Area(IB=

G

) is �nite.

� G is alled of �rst kind if the limit set


(G) := fz 2 �B j z is an aumulation point of G(0)g

is dense in S

1

, otherwise, G is alled of seond kind.

For the further understanding of the ation of a Fuhsian Group on B and the geometry

of IB=

G

, the approah via an exat fundamental polygon is standard. As there are many

ways to de�ne polygons, the de�nitions used here are mentioned (f. [Ra℄, setion 6.2 and

6.3):

De�nition 2.4

� C � IB is (hyperbolially) onvex if and only if for eah pair of distint points x; y

the geodesi ar from x to y is ontained in C.

� A side of a onvex set C � IB is a nonempty, maximal, onvex subset of �C

� A onvex polygon is a nonempty, losed, onvex subset of IB, suh that the olletion

of sides is loally �nite

2

.

2

Loally �niteness of a olletion of sets S is de�ned as follows: every point in z 2 IB has a neighbour-

hood, whih has nonempty intersetion only with �nitely many members of S



10 Hyperboli Geometry

Looking at the G - images of a onvex polygon P , it is sometimes useful to represent P as

intersetion of half - planes, where a half - plane H



is de�ned as the losure of one of the

omponents of IBn for some geodesi line . This is given by:

Proposition 2.5 Let P be a two dimensional onvex polygon unequal to IB with set of

sides S. For eah side s of IB, let H

s

be the losed half - spae suh that �H

s

� s and

P � H

s

. Then:

P =

\

s2S

H

s

Proof: see [Ra℄, theorem 6.3.2

De�nition 2.6 Assume G is a disrete, torsionfree subgroup of Iso

+

(IB). Then

� A fundamental region R for G is an open set with GR = IB and g(R)\h(R) = ; ()

g 6= h.

� A (onvex) fundamental polygon P for G is a onvex polygon P , whose interior is

fundamental domain and the olletion fg(Int(P )) j g 2 Gg is loally �nite.

� A fundamental polygon P is exat if for eah side s, there is an element g

s

2 G with

s = P \ g

s

(P ).

As the Dirihlet region is an exat fundamental polygon [Ra℄, there exists for any G

Fuhsian and torsionfree a fundamental polygon, whih is exat. By exatness, eah side

s of the set of sides S is mapped via g

s

to another side s

0

and g

�1

s

= g

s

0

. This gives an

involution on the set of sides

0

: S ! S; s 7! s

0

, alled side pairing. Now, by Poinar�e's

theorem, the set fg

s

j s 2 Sg is generating G and all relations between the generators are

given by the so alled edge yles and the side pairing relation g

�1

s

= g

s

0

.

2.3 The Geodesi Flow on IB=

G

To de�ne the geodesi ow on IB=

G

, one has to de�ne the ation

3

of an element g of

Iso

+

(IB) on T

1

IB:

g(x; �) = (gx; � + arg(g

0

(x))

Calulation shows that this ation and the ow are ommuting, i.e. g Æ '

t

= '

t

Æ g

8g 2 Iso

+

(IB); t 2 IR. Thus, the ow on IB=

G

for G torsionfree is given by the ommuting

diagram

IB� S

1

-

IB� S

1

? ?

IB� S

1

=

G

'

t

~p ~p

IB� S

1

=

G

-

~'

t

3

To be more sophistiated: one an de�ne a group struture on T

1

IB, suh that the mapping Iso

+

(IB)!

T

1

IB; g 7! (g(0); arg(g

0

(0)) is a group isomorphism. Now, the ow an be de�ned as left multipliation by

a one parameter subgroup.



2.4 The Upper Half Spae U 11

Now, if P is a fundamental polygon for G, it is well known that the set

P

'

:= f(x; �) 2 P � S

1

j pr

1

Æ '

t

(x; �) 2 P for t suÆiently small g

is a fundamental domain for the ation of G on T

1

IB and that

(T

1

IB=

G

;B; m

L

; '

t

)

�

=

(P

'

=

�

;B; m

L

j

P

'

; '

�

t

)

is an isomorphism, where � is indued by the ation of the group, m

L

j

P

'

is the to P

'

restrited Liouiville measure and '

�

t

is given by '

�

t

(z; �) = g

t;z;�

('

t

(z; �)) with g

t;z;�

2 G is

unique (mod m

L

) by g

t;z;�

2 P

'

.

2.4 The Upper Half Spae U

There is another standard model in hyperboli 2 { geometry, the so alled Upper Half

Spae model

U := fz 2 C j Im(z) > 0g

equipped with ar length and area given by

ds(z) =

jdzj

Im(z)

and dA(z) =

dz

( Im(z))

2

:

As the map # : IB ! U; z 7!

(1+i)z+1+i

�(1�i)z+1�i

is with regard to these de�nitions distane

and area preserving, one does not have to distinguish between those models. If there is

no onfusion, IH will be used as notation for the hyperboli 2 { plane. Translating the

statements of this setion to the new model, one gets:

dm

L

= dAd� as Liouiville - measure on T

1

U

X

U

= (IR [ f1g)

2

n�� IR as alternative representation of T

1

U

dm

L

=

2d�d�ds

(� � �)

2

as Liouiville measure on X

U



3 The Speial Flow Representation of the Flow

The aim of this setion is to use the produt struture of Liouiville measure to represent the

geodesi ow on IH=

G

as speial (or suspension) ow over some invertible transformation

S : Y ! Y . This approah is losely related to ode the ow via \utting sequenes" (f.

[Se℄) and uses ideas of [AF℄. It will be disussed whether this is possible by this speial

method: if IH=

G

is geometrially �nite, this is equivalent to G being of �rst kind. But in

the in�nite ase, this is not true at all. Hene, the possibility of suh a representation gives

another harateristi for these groups.

3.1 Speial Flows

De�nition 3.1 Suppose T is a nonsingular, invertible, measure { preserving transfor-

mation of the standard, � { �nite measure spae (X;B; m) and that h : X ! IR

+

is

measurable. Then the speial ow over T with height funtion h is de�ned by:

X

h

:= f(x; y) j x 2 X; 0 � y < h(x)g

by

'

X

h

t

(x; y) := (T

n

x; y + t� h

n

(x)) with n 2 Z given by

h

n

(x) � y + z < h

n+1

(x) where

h

n

(x) :=

8

<

:

0 : n = 0

P

n�1

k=0

h(T

k

(x)) : n � 1

�h

n

(T

n

(x)) : n < 0

with the produt measure � := m � � and orresponding � - algebra B

h

, where � is the

Lebesgue measure. In this ontext, T resp. (X;B; m; T ) is alled a setion for '

X

h

t

.

There is a lose onnetion between the setion map and the ow (f. [HIK℄):

Proposition 3.2

1. '

X

h

t

is ergodi () T is ergodi.

2. '

X

h

t

is measure preserving () T is measure preserving.

In the ase that the ow is measure preserving and there is a set A 2 B in the setion so

that the indued transformation is well de�ned, it is sometimes possible to get a further

setion for the ow:

De�nition 3.3 Let T be a nonsingular transformation of the � { �nite measure spae

(X;B; m). The return time of T on A 2 B is

�

A

: X ! f1; 2 : : :g [ f1g ; x 7!

�

minfn : T

n

(x) 2 Ag : if it exists

1 : else

12



3.2 The Speial Flow Representation 13

If �

A

(x) <1 a.e. on A (e.g. if T is onservative), then

T

A

: (A;B \ A;mj

A

)! (A;B \ A;mj

A

) ; x 7! T

�

A

(x)

(x)

is the indued transformation of T on A.

The next theorem is folklore:

Proposition 3.4 Let (X;B; m; T ) be a measure preserving setion of the speial ow on

X

h

. Let A 2 B be a set with �

A

(x) < 1 a.e. and

S

n2N

T

n

(A) = X mod m. Then the

indued transformation (A;B\A;mj

A

:T

A

) is also a setion for the ow with height funtion

h

A

(x) :=

�

A

(x)�1

X

k=0

h Æ T

k

(x)

3.2 The Speial Flow Representation

As it was mentioned before, the next step is to deide whether it is possible to �nd a speial

ow representation for the geodesi ow on IH=

G

with G Fuhsian and torsionfree. The

outline for that is to onstrut a setion Y via the boundary of some fundamental polygon

and the orresponding identi�ations by G. In ontrast to the result of Ambrose and

Kakutani, that any measure preserving onservative ow admits a setion, suh a setion

will be de�ned expliitly and will be used to deide whether the ow is onservative and

ergodi or not.

As some elements of T

1

IH=

G

may not be overed by this method one has to look if the

orresponding set is of zero measure whih leads to the following de�nition:

De�nition 3.5 (CA) Let G be a torsionfree Fuhsian group. If there exists an exat

fundamental polygon P , suh that

A

P

:=

�

(z; �) 2 P � S

1

j 9 t 2 IR [ f�1g suh that 

z;�

(t) 2 GV

	

is a set of Liouiville - measure zero, where

V

P

:= f set of verties of P in IH g [ (Clos

IH

(P ) \ �IH)) ;

then G resp. the pair (G;P ) is said to ful�ll the oding assumption, abbreviated by (CA).

Remark 3.6 By de�nition, the set A

P

is invariant with respet to the ow and to the

ation of G. In addition, A

P

6= IH mod m

L

. Hene, m

L

(A

P

) > 0 fores the ow to be not

ergodi. A further desription of this ondition will be done in the next subsetion.
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If G is (CA), then as noted before:

P

�

:= f(x; �) 2 P � S

1

j pr

1

Æ �

t

(x; �) 2 P for t suÆiently small g

is a fundamental domain for the ation of G on T

1

IH and T

1

IH=

G

�

=

P

�

=

�

in the ategory

of measure preserving ows (f. setion 2.3). Hene, by (CA) and the fat, that A

P

is invariant with respet to the G - ation, there is the following (measure theoretial)

equivalene:

T

1

IH=

G

�

=

(P

�

nA

P

)=

�

Let

~

P

�

resp.

~

A

P

be the sets P

�

resp. A

P

in the X

IH

- representation and de�ne:

De�nition 3.7 (�; �) is P - admissible i� 9 t 2 IR, suh that 

�;�

(t) 2 (P ). If (�; �) is P

{ admissible, then

t

+

�;�

:= supft j 

�;�

(t) 2 Pg � 1

t

�

�;�

:= infft j 

�;�

(t) 2 Pg � �1

h(�; �) := t

+

�;�

� t

�

�;�

As P is onvex, [t

�

�;�

; t

+

�;�

℄ and ft j 

�;�

(t) 2 Pg oinide. Now the oding assumption allows

to �nd an expliit speial ow representation (f. [AF℄):

Proposition 3.8 Assume G is (CA). Then

�

T

1

IH=

G

;B; m

L

; �

t

�

and the speial ow over

(Y;B; m; S) with height funtion h are isomorphi in the ategory of measure preserving

ows, where (Y;B; m; S) is de�ned as follows:

� Y = f(�; �) 2 (�IH)

2

n� j (�; �) admissibleg

� dm = 2jd�jjd�j=j�� �j

2

with respet to the dis model IB and dm = 2d�d�=(� � �)

2

with respet to U, de�ned on the Borel � - �eld B

� S is de�ned pieewise: by (CA), for a.e. (�; �) 2 Y , 

�;�

(t

+

�;�

) is element of some side

s of P . Let g

s

be the orresponding side - pairing. Then S(�; �) = (g

s

(�); g

s

(�)).

Proof: First of all, the onditions on S have to be heked:

S is de�ned a.e., as by (CA) m - a.e. (�; �) 2 Y , 

�;�

(t

+

�;�

) is an element of a side s of P .

Assume 

�;�

(t

+

�;�

) 2 s. Then g

s

(

�;�

(t

+

�;�

)) is an element of the side g

s

(s) = s

0

and is equal

to 

g

s

�;g

s

�

(t

�

g

s

�;g

s

�

) (f. �gure (1)). Hene, S(�; �) = (g

s

�; g

s

�) is m - a.e. admissible . In

addition, as 

g

s

�;g

s

�

(t

�

g

s

�;g

s

�

) = 

g

s

�;g

s

�

(t

+

g

s

�;g

s

�

) and g

s

0

= g

�1

s

, S is invertible.

Now �x the dis model IB and de�ne

~

A to be the orresponding subset of X

IB

for any set

A � IB� S

1

. Then

~

P

�

=

�

(�; �; t) j (�; �) is P - admissible; t

�

�;�

� t < t

+

�;�

	

m

L

=

�

(�; �; t) j (�; �) is P - admissible; t

�

�;�

� t < t

+

�;�

	

n

~

A

P

m

L

=

�

(�; �; t) j (�; �) is P - admissible;�1 < t

�

�;�

� t < t

+

�;�

<1

	

m

L

=

�

(�; �; t) j (�; �) is P - admissible; 0 � t� t

�

�;�

< h(�; �) <1

	



3.2 The Speial Flow Representation 15

s
gη

s
gξ

γ
ξ,η

+t  +εγ
ξ,η

−t

s
g

ξ,η
+t  +(γ         ε) 

ξ,η
+

s
g (γ     ) t  

η

P

ξ

γ
ξ,η

t+

Figure 1: The setion map S

Hene the mapping (�; �; t) 7! (�; �; t� t

�

�;�

) is a measure theoretial isomorphism

4

�

~

P

�

;B; 2

jd�jjd�jdt

j� � �j

2

�

!

�

Y

h

;B; 2

jd�jjd�j

j� � �j

2

dt

�

What is left to show is that the ows are isomorphi. This boils down to show that for

(�; �; t

0

) 2 Y

h

, t 2 IR : t+ t

0

> h(�; �), there exists n 2 Nnf0g and g 2 G, suh that

g(

�;�

(t

�

�;�

+ t+ t

0

)) = 

S

n

(�;�)

(t

�

S

n

(�;�)

+ t+ t

0

� h

n

(�; �)):

As the tesselation GP is loally �nite, it suÆes to show this for t : h(�; �) < t + t

0

<

h

2

(�; �). But this is a onsequene of the side - pairing property: any side - pairing g

s

is a

hyperboli isometry and

g

s

(

�;�

(t

+

�;�

)) = 

g

s

(�);g

s

(�)

(t

�

g

s

(�);g

s

(�)

);

where s is given by 

�;�

(t

+

�;�

) 2 s. �

Now by proposition (3.2):

4

The measurability of this map is a onsequene of the impliit funtion theorem: let H

s

be a hyperboli

half - spae with boundary s. Then, (�; �) 7! infft j 

�;�

(t) 2 H

s

g is a di�erentiable map in its domain

of de�nition. As P is representable as a ountable intersetion of half - spaes (f. proposition (2.5)), the

measurability follows.
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Corollary 3.9 S : Y ! Y is a measure preserving transformation with respet to the

measure given in proposition (3.8). In addition, S is ergodi if and only if the ow is

ergodi.

3.3 Condition (CA)

The aim of this setion is to haraterize the groups with respet to (CA). As noted before,

new phenomena arise if one passes from the geometrially �nite to the in�nite ase. But

�rst of all, independent of the geometrial �niteness, the limit set of a group G gives a

riteria for the oding assumption: a group of seond kind is not of type (CA) whih is a

onsequene of the following proposition ([Ra℄, Theorem 12.1.14):

Proposition 3.10 G is of seond kind if and only if any onvex fundamental polygon of

P ontains a losed hyperboli half - spae.

Corollary 3.11 Assume G is of seond kind. Then G is not of type (CA) and the ow

is not ergodi.

Proof: Let H be the hyperboli half - spae given by the last proposition. De�ne

W := Clos

IH

(H) \ �IH. Then (W � Wn�) � IR is a ow - invariant subset of

~

A

P

of

positive measure. �

Now, if IH=

G

is of �nite volume, the next proposition (f. [Ra℄, Theorem 9.8.1) gives the

struture of some fundamental polygon:

Proposition 3.12 If G is o�nite, then there is an exat fundamental polygon P with

�nitely many sides S. The set of sides an be ylially ordered suh that any two onse-

utive sides meet in a vertex in IH or an ideal vertex in �IH.

Remark: If the set of sides is �nite and any two onseutive sides meet in some vertex,

the set V

P

from the de�nition of (CA) is �nite. This implies that A

P

is the ountable

union

S

z2GV

A

z

, where

A

z

:= f(x; �) 2 T

1

IH j 9t 2 IR [ f�1g suh that 

x;�

(t) = zg:

As the A

z

are of Liouiville - measure zero, (CA) follows in the ase that G is o�nite. To

obtain a omplete haraterization, geometrially �niteness is introdued:

De�nition 3.13 G is geometrially �nite if and only if there is an exat fundamental

polygon for G with �nitely many sides.

Proposition 3.14 Assume G is geometrially �nite. Then the following are equivalent:

(1) G is o�nite.

(2) G is of �rst kind.
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(3) G has property (CA).

(4) The ow on IH=

G

is ergodi.

Proof: '(1) ) (3)' is the last remark, '(1) ) (2)' is a onsequene of propositions (3.12)

and (3.10), '(3) ) (2)' is orollary (3.11) and '(2) ) (1)' uses the fat, that G is geomet-

rially �nite (f. [Ra℄, Theorem 12.3.8).

By [Ho℄, the ow on IH=

G

for G o�nite is ergodi, whih gives '(1)) (4)'. And by (3.11),

ergodiity is implying (2). �

Now, if G is not geometrially �nite, things are di�erent. It will be shown via three exam-

ples that the set GV from de�nition of (CA) for G of �rst kind an be either ountable,

unountable of zero Lebesgue - measure or unountable of positive Lebesgue measure (with

respet to the dis model). They will give ounterexamples for a statement similar to the

last one for the geometrially in�nite ase.

Example 3.15 In the upper half - spae model, a onvex polygon P is onstruted suh

that the orresponding group is a subgroup of PSL

2

Z. Let P be the polygon, whose sides

are geodesis joining n with n+1 for n 2 Z. Then the side - pairings are de�ned as follows:

� :=

�

z 7!

2� 3z

1� 2z

�

2 PSL

2

Z

is sending 

0;1

to 

1;2

with paraboli �xed point 1. Let � be given by z 7! z + 2. Hene,

�

k

��

�k

maps 

2k;2k+1

to 

2k+1;2k+2

, �xing the point 2k + 1. So the set

f(s; g

s

) j s = 

2k;2k+1

; g

s

= �

k

��

�k

or s = 

2k+1;2k+2

; g

s

= �

�k

�

�1

�

k

g

gives a omplete system of sides of P and orresponding side - pairings. To apply Poinar�e's

Theorem, one has to hek the vertex yles given by the side - pairings. It turns out that

there are only two possibilities: Either the yle has in�nite length or length one. In the

seond ase, the yle is the �xed point of some g

s

(and hene ful�lls the paraboli yle

ondition). By Poinar�e: P is the fundamental polygon of the group G

P

=< �

k

��

�k

j k 2

Z >. Obviously V

P

= Z[ f1g. In this ase, by proposition (3.10), G

P

is of �rst kind and

by the same argument as in the remark to (3.12), property (CA) follows.

The next two examples rely one some Cantor set like onstrution. Here, the turning point

is the possibility of de�ning a set, whih is totally disonneted, unountable and sometimes

of positive Lebesgue - measure. This will lead to examples, whih do not our in the ase,

where the orresponding group is geometrially �nite: a group G

P

of �rst kind will be de-

�ned, where the orresponding sets V

P

are unountable resp. of positive Lebesgue measure.
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Assume I

0

is the unit interval with Lebesgue - measure �. Fix � : 0 < � � 1=3 and de�ne

indutively:

I

n

= fdisjoint union of 2

n

losed intervals I

1

n

; : : : I

2

n

n

of the same lengthg

B

n

= fdisjoint union of 2

n

open intervals B

1

n

; : : :B

2

n

n

; eah of length �

n+1

;

where eah of the B

i

n

is plaed in the middle of I

i

n

; i.e. if

I

i

n

= [a; b℄; B

i

n

= (

a+b

2

�

�

n+1

2

;

a+b

2

+

�

n+1

2

)g

I

n+1

:= I

n

nB

n

To show that this is well de�ned, one has to hek that the following holds: 8 n 2 N ; 1 �

i � 2

n

, B

i

n

� I

i

n

. So assume that this is true for n� 1. Then:

�(I

n

) = 1�

n�1

X

i=0

2

n

�

i+1

= 1� �

n�1

X

i=0

2

n

�

i

= 1� �

1� (2�)

n

1� 2�

=

1� 3� + �(2�)

n

1� 2�

As I

n

resp.B

n

is the disjoint union of 2

n

intervals of the same length and �(B

n

) = 2

n

�

n+1

,

it remains to show that �(I

n

)=�(B

n

) > 1:

�(I

n

)

�(B

n

)

=

1� 3� + �(2�)

n

(1� 2�)2

n

�

n+1

=

1� 3�

(1� 2�)(2�)

n

�

+

1

1� 2�

Hene, as for 0 < � �

1

3

,

1�3�

1�2�

� 0 and

1

1�2�

> 1, the onstrution is well de�ned.

In addition, it follows that the set I

1

(�) � I

1

:=

T

n2N

I

n

has Lebesgue measure �(I

1

) =

1�3�

1�2�

� 0 as I

n

� I

n+1

. To be more preise, for � =

1

3

, I

1

is the normal

1

3

- Cantor set

with Lebesgue measure zero. Otherwise, for 0 < � <

1

3

, �(I

1

(�)) > 0.

Example 3.16 Use the dis model and let � =

1

3

. If B

i

n

is the interval (a; b), de�ne for

n 2 N ; 0 < i � 2

n

:

s

i

n

is the geodesi with end points e

2�ia

and e

2�i

a+b

2

.

~s

i

n

is the geodesi with end points e

2�i

a+b

2

and e

2�ib

.

g

n;i

is the unique paraboli transformation with �xed point e

2�i

a+b

2

,

sending s

i

n

to ~s

i

n

(the uniity is a onsequene of the property,

that s

i

n

is the isometri irle of g

n;i

).

In ontrast to the last example, there are no in�nite vertex yles. Any yle is of type

fe

2�i

a+b

2

g where n 2 N ; 0 < i � 2

n

. Again by Poinar�e, this gives a disrete group

G

P

:=< g

n;i

j n 2 N ; 0 < i � 2

n

> where P is given by the half - planes with sides s

i

n

resp.
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~s

i

n

. Then:

A

P

is of zero Liouiville - measure, V

P

is unountable and G

P

is of �rst kind.

Proof: As P has no verties in IB,

(V

P

)



=

[

n2N;0<i�2

n

;(a;b)=B

i

n

�

(e

2�ia

; e

2�i

a+b

2

) [ (e

2�i

a+b

2

; e

2�ib

)

�

=

�

e

2�iI

1

[ fe

2�ix

j x is a midpoint of some B

i

n

g

�



As the �rst set is unountable, the �rst statement is proved. As the seond set is ountable,

it suÆes to show for the seond statement that the set

f(e

2�ix

; e

2�iy

; t) j x; y 2 I

1

; x 6= y; t 2 IRg

is of zero Liouiville measure. By the produt struture of this measure, this an be redued

to show that V

�

:= f(e

2�ix

; e

2�iy

) j x; y 2 I

1

; x 6= yg is of zero measure with respet to

2jd�jjd�j=j�� �j

2

. De�ne for Æ > 0:

V

�

(Æ) := f(e

2�ix

; e

2�iy

) j x; y 2M(Æ)g with

M(Æ) := f(x; y) j x; y 2 I

1

; jx� yj > Æ and 1� jx� yj > Æg

Now the transformation rule gives that

2

Z

V

�

(Æ)

jd�jjd�j

j� � �j

2

= 4�

2

Z

M(Æ)

dxdy

1� os(2�jx� yj)

As

1

2

� (1� os(2�jx�yj))

�1

< (1� os(2�Æ))

�1

onM(Æ), the measure of V

�

is zero for all

Æ > 0. Now by hoosing a sequene Æ

n

# 0, the seond statement follows. By proposition

(3.10) the last assertion that G is of �rst kind follows. �

Remark 3.17 The V

�

(Æ) - onstrution an be generalized to any subset of �B. As

A

P

\ IB is ountable, the orresponding subset of V

P

is of zero Liouiville - measure. Hene

the following are equivalent:

� A

P

\ �IB is of zero Lebesgue - measure (w.r.t. to �IB).

� V

P

is of zero Liouiville - measure.

Example 3.18 Fix 0 < � <

1

3

and de�ne P resp. G

P

analogous as in the last example.

Then:

A

P

is of positive Liouiville - measure and G

P

is of �rst kind. As A

P

is by the remark to

de�nition (3.5) of (CA) ow - invariant, the ow on IB=

G

P

an not be ergodi.
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Proof: By the same arguments and in the same notation as in the last example, it suÆes

to show that there is a measurable subset M

0

of I

1

� I

1

with

R

M

0

dxdy

1�os(2�jx�yj)

> 0. But

as (1� os(2�jx� yj))

�1

�

1

2

8x; y 2 IR and M

0

:= ([0;

1��

2

℄� [

1+�

2

; 1℄)\ (I

1

� I

1

) is a set

of positive Lebesgue measure, the statement follows. �

Summarizing the results one gets:

Proposition 3.19 Assume G is not geometrially �nite, then the following statements

(1) The ow on IH=

G

is ergodi.

(2) G satis�es ondition (CA).

(3) G is of �rst kind.

(4) There exists a fundamental polygon P for G with V

P

ountable.

have the following relations:

(1)

(i)

=) (2)

(ii)

=) (3)

*(iii)

(4)

(1)

(j)

�(= (2)

(jj)

�(= (3)

�+(jjj)

(1)

(j)

�(= (4)

Proof: (i) is the remark to de�nition (3.5), (ii) is orollary (3.11) and (iii) is analogous

to the remark to proposition (3.12) as GV

P

is ountable. (jj) is the last example (3.18)

and (jjj) is example (3.16). Hene, what is left to show is (j): it is shown in [AD℄ that

the ow on a Z

2

- over of the o�nite group �(2) is not ergodi. But as for this over (4)

holds, the proposition is proved. �

As there are geometrially in�nite examples whih are ergodi (f. [AD℄, [Re1℄, [Re2℄), it

should be possible to �nd some new additional riteria implying (2) ) (1) resp. (4) )

(1).



4 The Bowen - Series Map

The topi of this setion is to �nd one - dimensional Markov maps, whih are assoiated to

the setion map of some speial ow representation. This goes bak to Bowen & Series (f.

[BS℄). They onstruted a Markov map T : �IB ! �IB assoiated to a o�nite Fuhsian

group G, whih is orbit equivalent to the ation of G on �IB (i.e. gx = y () 9 n;m >

0 : T

n

x = T

m

y) and is expansive (i.e. the modulus of the derivative is bigger or equal to

1). This approah is highly dependent on the shape of some fundamental polygon P of G.

Therefore, as any two Riemannian surfaes of genus g with k usps (f. [Ber℄ p. 275) are

quasionformal equivalent, they �x a model for suh a surfae with some extra properties.

A polygon P is onstruted whih satis�es the assumptions of Poinar�e's theorem with

respet to some side - pairing in a way that the orresponding surfae is of genus g with k

usps. The onstrution gives the following properties:

(1) Eah side s of P is ontained in the isometri irle of the side - pairing g

s

.

(2) G(�P ) onsists of omplete geodesis, where G is the group de�ned by Poinar�e's

theorem

Now with respet to this model, Bowen & Series de�ned a transformation T : �IB ! �IB,

whih is pieewise Moebius. To avoid onfusing notation T will be de�ned only for an

example. In the situation of �gure 2, T j

a

i

= g

i

, where g

i

is the side pairing whih maps s

i

to some s

i

0

; the generalization for arbitrary o�nite G is obvious:

a12 a1

a2

a3

a4

a5

a6
a7

a8

a9

a10

a11

s1

g1

s5

g5

s3
g3

s9
g9

s11

g11

s7

g7

Figure 2: The Bowen - Series onstrution

21
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By ondition (2), it is shown that T is Markov with respet to a ountable partition �. In

addition, � is �nite if and only if G is oompat (resp. P has no verties on �IB). The

main result of Bowen & Series is as follows:

If G is oompat, then T

2

is expanding, i.e. there is a Æ > 1 with jDT

2

(x)j > Æ

for all x in the interior of some element of �. In addition, sup

x2�IB

jD

2

T (x)j=jDT (x)j

2

<

1. If G is not oompat, then there is a set K whih is a �nite union of ele-

ments of � suh that the indued transformation T

K

has the same properties as

in the ompat ase. Now by a Renyi - type result, Bowen and Series dedued

that T resp. T

K

admits a unique �nite invariant measure, whih is equivalent

to Lebesgue - measure. By a mixing property of T , the ergodiity of T follows.

The property, that T and G are only linked via orbit equivalene, was improved by Adler

& Flatto (f. [AF℄): they showed for G oompat that T is a fator of an invertible map,

whih is onjugated to the setion map de�ned in the last setion. As in [BS℄, quasion-

formal deformation was impliitly used to obtain a suitable fundamental polygon.

In the following, it will be shown that this fator property of T an be attained diretly if

G is (CA) and admits an exat fundamental polygon P suh that the sides of P onsists

of omplete geodesis:

De�nition 4.1 G has the omplete geodesi property, abbreviated by (GC), if G admits

an exat fundamental polygon P suh that the sides of P onsists of omplete geodesis.

If G has property (GC), the orresponding P is exat. Hene, P ful�lls the assumptions

of Poinar�e's theorem. Now as P has no verties in IH, G has to be a free group. Now with

regard to the set V

P

de�ned in (3.5) this gives:

� G is o�nite if and only if V

P

is �nite (f. proposition (3.12)).

� G is (CA) if and only if the Lebesgue measure of V

P

with respet to the dis model

is zero (f. remark (3.17)).

� G is of �rst kind if and only if V

P

ontains no interval (f. proposition (3.10)).

For example, any subgroup of the modular group PSL

2

Z is a group with property (GC)

(f. [Ku℄,[St℄).

4.1 The Bowen - Series Map

Assume for the rest of the setion that G has (GC) and (CA). Then the de�nition of suh

a group gives immediately a more expliit version of (3.8):

Proposition 4.2 The setion map (Y;B; m; S) de�ned via an exat fundamental polygon

P given by de�nition (4.1) with sides S is given by (f. �gure (3):
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(1) Y =

S

s2S

(a

s

)



� a

s

(2) dm = 2jd�jjd�j=j�� �j

2

w. r. t. IB and dm = 2d�d�=(� � �)

2

w. r. t. U

(3) Sj

(a

s

)



�a

s

(�; �) = (g

s

(�); g

s

(�)) m a. e..

(4) S((a

s

)



� a

s

) = a

s

0

� (a

s

0

)



mod m.

where a

s

:= Int

�IH

(Clos

IH

(H

s

) \ �IH) and H

s

is the open hyperboli half - spae with

H

s

\ P = ;.

as
Hs

gs

s

s’

ξ

η

as’

Figure 3: The setion map S for a group with the fator assumption

Proof: By proposition (2.5), P = (

S

s2S

H

s

)



. By the de�nition of G, S onsists of om-

plete geodesis implying that H

t

\H

s

= ; for t 6= s. Hene, the geodesi 

�;�

with � 2 a

t

and � 2 a

s

has to meet P , in partiular 

�;�

(t

+

�;�

) 2 t and 

�;�

(t

�

�;�

) 2 s. So S(�; �) = g

s

(�; �)

whih is statement (3). In addition, \�" for (1) is shown. As by onvexity of H

s

, a

s

� a

s

ontains no admissible elements, Y



�

S

s2S

a

s

� a

s

. So, (1) follows by (CA).

To prove (4), as g

s

for s 2 S is a homeomorphism �IH ! �IH it is suÆient to show that

Clos

IH

g

s

(H

s

) = (H

s

)



. As this is an immediate onsequene of the side - pairing property

of g

s

, the proposition is shown. �

As a onsequene of this proposition, the following diagram ommutes where X =

S

s2S

a

s

,

T j

a

s

= g

s

. In addition, for � = m Æ pr

�1

2

, T is a fator of S:

Y

-

Y

? ?

X

S

pr

2

pr

2

X

-

T
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Remark 4.3

(1) X = �IH mod �: as G is free, V

P

= (

S

s2S

a

s

)



(.f. de�nition (3.5) and de�nition

(4.1)). Now, by (CA), (V

P

� V

P

) � Y is a set of zero m - measure whih gives the

statement. In partiular, fa

s

j s 2 Sg is a partition.

(2) T (a

s

) =

S

t6=s

0

a

t

= a



s

0

mod � by the last proposition.

(3) By integrating over the pr

2

- preimages, the density of � with respet to Lebesgue

measure an be alulated. Fix the upper half spae model and a

s

. Assume A � a

s

is

measurable. Then:

�(A� (a

s

)



) =

Z

A�(a

s

)



2d�d�

(� � �)

2

=

Z

A

�

Z

(a

s

)



2d�

(� � �)

2

�

d�

Whether 1 is ontained in a

s

or �a

s

(assume for notation, that �1 < a < b < 1), this

gives:

if a

s

= (a; b) : d� = 2(

1

��a

+

1

b��

)d� for � 2 a

s

if a

s

= (a;1) : d� = 2

1

��a

d� for � 2 a

s

if a

s

= (�1; b) : d� = 2

1

b��

d� for � 2 a

s

if a

s

= [a; b℄



: d� = 2(

1

��b

+

1

a��

)d� for � 2 a

s

In addition, as �(a

s

) =

R

a

s

d� = 1, it follows that � is in�nite and by de�nition T -

invariant. Now �x the dis model and assume that a

s

= e

2�iI

where I is an open interval

in IR so that a

s

6= �IB = S

1

. Then for A = e

2�iJ

� a

s

with J � I, there is a losed interval

I

0

suh that (a

s

)



= e

2�iI

0

. Then the transformation rule gives:

�(A� (a

s

)



) =

Z

A�(a

s

)



2jd�jjd�j

j� � �j

2

=

Z

J

Z

I

0

8�

2

dsdt

je

2�is

� e

2�it

j

2

=

Z

J

Z

I

0

2�

2

ds

sin

2

(�(s� t))

dt

As

2�

2

sin

2

(�(s�t))

> 2�

2

, it follows that the invariant density

d�

d�

is bounded away from zero on

I. To �nd an expliit representation it is suÆient to handle the ase where I = (0; a) and

I

0

= [a; 1℄ where 0 < a < 1. Then, as

R

sin

�2

x = � ot x :

d� = 2�(ot(�(a� t))� ot(�(1� t)))dt for t 2 I

(4) Let g be the densitiy funtion given by d�. As g(�) > 0 8� 2

S

a

s

, � and the Lebesgue

measure � are equivalent on

S

a

s

. But as the set V

P

has by (CA) Lebesgue measure zero

(f. remark (3.17)), the equivalene of � and � follows. Hene, the following is well de�ned:
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De�nition 4.4 The Bowen - Series map

5

assoiated to the group G via the exat fun-

damental polygon P is the transformation (�IH;B; �; T ) where � is either � or �.

In the following, it will be shown that the Bowen - Series map has the Markov property

with respet to the partition � = fa

s

j s 2 Sg, i.e.

(M1) T j

a

s

is one to one.

(M2) T (a

s

) is the union of elements of � (mod � resp. �.

(M3) �(fT

�i

� j i 2 Ng) = B mod � resp. �.

Therefore, the struture of the preimages of � has to be heked: assume f� j i 2 Ig is a

ountable olletion of partitions of the same spae. Then

W

i2I

�

i

is de�ned as the oarsest

partition, whih is �ner than eah of the �

i

. Then:

Lemma 4.5

�

n+1

:=

n

_

i=0

T

�i

�

=

�

g

�1

s

n

� � �g

�1

s

1

a

s

0

j s

i

2 S for i = 0; : : : n; s

i

6= s

0

i�1

for i = 1; : : : n

	

Proof: Let b � a

s

0

for a

s

0

2 S. From the de�nition of T , it follows that

T

�1

(b) =

[

s2S : s 6=s

0

0

g

�1

s

(b):

But as T (a

s

) = g

s

(a

s

) = �IHna

s

0

� a

s

0

mod � for s 6= s

0

0

, g

�1

s

(b) is a subset of a

s

. Besides,

as � is a partition, the sets g

�1

s

(b) with s 6= s

0

0

are p.w. disjoint. Now indution gives the

statement of the lemma. Assume that the following is already proved:

� � :=

�

g

�1

s

n�1

� � � g

�1

s

1

a

s

0

j s

i

2 S for i = 0; : : : n� 1;

s

i

6= s

0

i�1

for i = 1; : : : n� 1

	

is a partition, whih is �ner than �.

� g

�1

s

n�1

� � � g

�1

s

1

a

s

0

� a

s

n�1

8 s

i

2 S for i = 0; : : : n� 1 and s

i

6= s

0

i�1

But then, this implies:

� T

�1

(�) is a partition

� Let b := g

�1

s

n�1

� � �g

�1

s

1

a

s

0

. As b � a

s

n

�1

, it follows that T

�1

(b) is the disjoint union of

the sets g

�1

s

(b) with s 6= s

0

n�1

.

5

This is a generalization: in [BS℄ and [AF℄, the Bowen - Series map is de�ned with respet to Lebesgue

- measure and the dis model.
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The next equality gives the result:

T

�n

(a

s

0

) =

[

s

1

; : : : s

n

2 S

s

i

6= s

0

i�1

g

�1

s

n

� � � g

�1

s

1

(a

s

0

)

�

Corollary 4.6 T

n+1

j

g

�1

s

n

���g

�1

s

1

(a

s

0

)

= g

s

0

g

s

1

� � � g

s

n

Proof: This is an immediate onsequene of the last proof and the fat, that g

s

1

� � � g

s

n

Æ

g

�1

s

n

� � � g

�1

s

1

(a

s

0

) = a

s

0

. �

Reall the notion of a ylinder set [a

s

n

: : : a

s

0

℄ := g

�1

s

n

� � � g

�1

s

1

(a

s

0

) for s

i

2 S. Now the last

two results an be rewritten as follows:

� = f[a

s

℄ j s 2 Sg

�

n

= f[a

s

n

: : : a

s

1

℄ j s

1

: : : s

n

2 S; s

i

6= s

0

i+1

for i = 1; : : : n� 1g

De�ne a word (s

1

: : : s

n

) in S to be admissible if s

0

i

6= s

i+1

for i = 1; : : : n � 1. Then the

following holds for all admissible words (s

1

: : : s

n

):

T

n+1

j

[a

s

1

:::a

s

n

℄

= g

s

n

g

s

n�1

� � � g

s

1

Theorem 4.7 Assume G has onditions (CA) and (GC). Then:

� The Bowen - Series Map (�IH;B; T; �) resp. (�IH;B; T; �) is a Markov map with

respet to the partition � = fa

s

j s 2 Sg.

� T preserves � (and hene is nonsingular with respet to � and �).

� T is topologially mixing, i.e. 8 U; V � �IH open, U; V 6= ;, there exists n

0

, suh

that U \ T

�n

V 6= ; 8n > n

0

.

Proof: Without loss of generality, assume that the Bowen - Series map is (�IB; T;B; �).

For the Markov property it remains to show that �(

W

1

i=0

T

�i

�) = B mod �. Hene, it

suÆes to show that the eulidean diameters of the partition �

n

tend to zero as n ! 1.

By lemma (4.5), a side of g

s

1

Æ � � � g

s

n

P orresponds to some element of �

n

. So this boils

down to show that the eulidean distane of the endpoints of the sides of g

n

P tend to zero

as n!1 where fg

n

g

n2N

is a sequene of elements in G with the property that the unique

representation of g

n

as word in the side - pairings has length n.

Assume this is not true. Then there is a Æ > 0 suh that in�nitely many g

n

P have a

side where the distane between the endpoints is bigger than Æ. Hene, the midpoints of

these sides have an eulidean distane to the origin smaller than some 0 < � < 1. This

ontradits the loal �niteness of the tesselation given by GP . This now �nishes the proof
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of the Markov property.

To show the mixing property, it is standard to show the aperiodiity of the so alled ini-

dene graph (f. [Aa℄, setion 4.2): The set of verties are the elements in � and the set

of (direted) edges are the pairs (a; b) with the property that T (a) � b mod �. By (2)

in remark (4.3) this is equivalent to b 6= a

0

. Now it is easy to see that there are yles

((a

0

; a

1

); (a

1

; a

2

); : : : (a

k�1

; a

k

); (a

k

; a

0

)) of eah length for all a = a

0

. As this gives the

aperiodiity, T is topologially mixing. �

4.2 The Relation to the Flow

As the Bowen - Series Map is a fator of the setion map S, ergodiity of S implies the

ergodiity of T : Assume A � �IH is T - invariant, i.e. T

�1

A

�

= A. Then by (GC), pr

�1

2

A

is S - invariant. So if S is ergodi, pr

�1

2

A has to be trivial mod m whih fores A to be

trivial. A transformation T is alled onservative if there is no measurable set A of positive

measure suh that fT

�n

Ag

n2N

is a olletion of pairwise disjoint sets. Suh sets are alled

wandering sets. Now by the same arguments as before, if A is wandering with respet to T ,

pr

�1

2

A has to be wandering for S. Hene T is onservative if S is onservative. To prove the

other diretion, one has to show some minimality onditions of (Y;B

Y

; m; S) with respet

to (X;B

X

; �; T ):

De�nition 4.8 Let (X;B

X

; �; T ) be a measure preserving dynamial system of the � -

�nite standard measure spae X. A natural extension of T is a system (Y;B

Y

; m

S

; S) with

S invertible and a measurable map � : Y ! X suh that:

� � Æ S = T Æ �

� m Æ �

�1

= �

�

W

1

n=1

S

n

�

�1

B

X

m

= B

Y

Now, it has to be shown that the setion is the natural extension of the Bowen - Series

map. The main argument here is the symmetry of the geodesi ow with respet of

going bakwards and forward: Analogous to the de�nition of T as a fator of S one

an de�ne

~

T as a fator of S

�1

. As by proposition (4.2), (3) and (4) are implying that

S

�1

j

a

s

�(a

s

)



(�; �) = (g

s

�; g

s

�), the following diagram ommutes:

Y

-

Y

? ?

X

S

�1

pr

1

pr

1

X

-

~

T

Besides, T and

~

T oinide. As in [AF℄ for the ompat ase, one an dedue:
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Proposition 4.9 (Y;B

Y

; m; S) is the natural extension of (X;B

X

; �; T ) with � = pr

2

.

Proof: It remains to validate the last ondition of (4.8). As T is Markov,

W

i2N

T

�i

�

= B

X

.

Hene,

W

n2N

S

n

pr

�1

2

B

X

m

=

W

n;m2N

S

n

pr

�1

2

�

m

. This redues the problem to the investigation

of the S- images of the sets pr

�1

2

a where a 2 �

m

for some m. By using the fator properties

of T and

~

T one gets for 0 < m < n:

S

m

(pr

�1

1

a

s

) = pr

�1

1

(

~

T

�m

a

s

)

and S

m

(pr

�1

2

[a

s

1

: : : a

s

n

℄) � pr

�1

2

(T

m

[a

s

1

: : : a

s

n

℄) = pr

�1

2

[a

s

n�m

: : : a

s

n

℄

) S

m

(a

s

� [a

s

1

: : : a

s

n

℄) �

~

T

�m

a

s

� [a

s

1

: : : a

s

n

℄

By proposition (4.2), S(pr

�1

2

[a

s

1

: : : a

s

n

℄) = a

s

0

1

� [a

s

2

: : : a

s

n

℄. Now the Markov property of

T and

~

T with respet to � �nishes the proof. �

As S is the natural extension of T , a theorem of Parry (f. [Aa℄ theorem 3.1.7) gives

that S is onservative if T is onservative and that S is onservative and ergodi if T is

onservative and ergodi. So by summarizing the results, one gets:

Proposition 4.10 Assume G is a Fuhsian group with ondition (CA) and admits an

exat fundamental polygon P whih sides onsist of omplete geodesis. Then the following

relations between the geodesi ow ' on IH=

G

, the setion map Y de�ned via P and the

Bowen - Series map T hold:

� ' is ergodi () S is ergodi ) T is ergodi

� T is ergodi and onservative () S is ergodi and onservative ) ' is ergodi



5 Ergodi Properties of the Bowen { Series map

The aim of this setion is to determine ergodi properties of the Bowen - Series map like

onservativity, ergodiity or rational ergodiity. In ontrast to [BS℄ and [AF℄, an invariant

measure for T is expliitly given by remark (4.3) but is � - �nite. The �rst appliation

of this property is to determine the wandering rate of T for some set A whih gives the

onservativity of T as a orollary. In addition, this rate is used later to determine the

return sequene of T .

5.1 The Wandering Rate

Assume in the sequel, that G is a o�nite Fuhsian group with the property (GC). If P

is the orresponding fundamental polygon P , proposition (3.12) implies that the set V

P

is

�nite and hene G has property (CA). In addition, let (�IH;B; �; T ) be the Bowen { Series

map de�ned in (4.4) with Markov partition � := fa

s

j s 2 Sg where S is the set of sides

of P . The turning point here is the lose relation between the so alled paraboli yle

ondition and the preimages of the elements of �:

Assume v = v

1

is an ideal vertex of P in �IH (i.e. an element of V

P

). Then by Poinar�e's

theorem and as V

P

is �nite, this gives a �nite yle of verties v

1

; : : : v

n

, of sides s

1

; : : : s

n

and of side - pairings g

1

; : : : g

n

suh that:

� g

i

(v

i

) = v

i+1

for 0 < i < n and g

n

(v

n

) = v

1

.

� s

i

is adjaent to v

i

and g

i

(s

i

) and s

i+1

have v

i+1

in ommon for 0 < i < n resp. g

n

(s

n

)

and s

1

have v

1

in ommon.

� g

n

Æ g

n�1

� � � g

1

�xes v

1

and is paraboli by Poinar�e.

Now reall that a

s

� [a

s

℄ for s 2 S is an open interval and de�ne T j

[a

s

℄

as the ontinuous

extension of T to the losure of [a

s

℄, i.e T j

[a

s

℄

= g

s

on Clos

�IH

[a

s

℄. With regard to T , the

yle statement is hene the same as:

� T j

[a

s

i

℄

(v

i

) = v

i+1

for 0 < i < n and T j

[a

s

n

℄

(v

n

) = v

1

.

� a

s

i

is adjaent to v

i

and the losures a

g

i

(s

i

)

= a

s

0

i

and a

s

i+1

have v

i+1

in ommon for

0 < i < n resp. the boundaries of a

s

n

and a

s

1

have v

1

in ommon.

By (2) of remark (4.3), T j

[a

s

i

℄

(a

s

i

) = (a

s

0

i

)



. As s

0

i

6= s

i+1

resp. s

0

n

6= s

1

, T j

[a

s

i

℄

(a

s

i

) � a

s

i+1

.

Hene, T

n

([a

s

1

: : : a

s

n

℄) is well de�ned and maps [a

s

1

: : : a

s

n

℄ to T (a

s

n

)

�

= (a

s

0

n

)



. With

respet to the ontinuation of T

n

on Clos

�IH

([a

s

1

: : : a

s

n

℄) the last property gives:

� v

1

is a paraboli �xed point T

n

j

[a

s

1

:::a

s

n

℄

= T j

[a

s

n

℄

ÆT j

[a

s

n�1

℄

� � �T j

[a

s

1

℄

, i.e. v

1

is a �xed

point and the modulus of the derivative at v

1

equals one.

29
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If N is the greatest ommon divisor of the lengths of all vertex yles, it follows that any

element

6

of V

P

is a paraboli �xed point of T

N

with respet to the orresponding element

of �

N

(for notation, f. (4.6)). Now, for any v 2 V

P

, de�ne

U(v) := [a

s

1

: : : a

s

n

a

s

1

: : : a

s

n

: : : a

s

1

: : : a

s

n

℄

| {z }

N=n times

[

[a

t

1

: : : a

t

n

0

a

t

1

: : : a

t

n

0

: : : a

t

1

: : : a

t

n

0

℄

| {z }

N=n

0

times

;

where s

1

; : : : s

n

and t

1

: : : t

n

0

are the edge yles suh that a

s

1

and a

t

1

are adjaent to v.

Besides, by the yle property, it follows that n = n

0

and t

i

= g

s

i�1

(s

i�1

) for i = 2; : : : n

resp. t

1

= g

s

n

(s

n

). Now de�ne the words w(v) and w

0

(v) of length N by

w(v) := [a

s

1

: : : a

s

n

a

s

1

: : : a

s

n

: : : a

s

1

: : : a

s

n

℄

w

0

(v) := [a

t

1

: : : a

t

n

0

a

t

1

: : : a

t

n

0

: : : a

t

1

: : : a

t

n

0

℄:

There is the following general fat about Markov maps: assume a 2 � and that the word

aa is admissible. Then:

�

T

�1

([a : : : a

| {z }

k times

℄)

�



[ ([a : : : a

| {z }

k times

℄)



= T

�1

�

[

b

1

:::b

k

6=a:::a

[b

1

: : : b

k

℄

�

[

[

b

1

:::b

k

6=a:::a

[b

1

: : : b

k

℄

=

[

b

1

:::b

k

6=a:::a; b

1

adm.

[b℄ [

[

b6=a

[b℄

= [ a : : : a

| {z }

k+1 times

℄



As T

N

is Markov with respet to �

N

and w(v)w(v) is admissible for v 2 V

P

:

T

�N

([w(v) : : : w(v)

| {z }

k times

℄)

�



[ [w(v) : : : w(v)

| {z }

k times

℄



= [w(v) : : :w(v)

| {z }

k+1 times

℄



resp.

T

�N

[w(v)℄ [ [w(v)℄ = [w(v)w(v)℄

and as k is arbitrary, by indution for n > 0 :

n

[

i=0

T

�iN

[w(v)℄



= [w(v) : : :w(v)

| {z }

n+1 times

℄



6

This works only if V

P

is �nite. Hene there is no generalization to the geometrial in�nite ase.
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By de�ning A :=

�

S

v2V

P

([w(v)℄ [ [w

0

(v)℄)

�



=

�

S

v2V

P

U(v)

�



, this gives:

n

[

i=0

T

�iN

A =

n

[

i=0

T

�iN

�

[

v2V

P

([w(v)℄ [ [w

0

(v)℄)

�



=

n

[

i=0

\

v2V

P

�

�

T

�iN

[w(v)℄



�

\

�

T

�iN

[w

0

(v)℄



�

�

=

\

v2V

P

�

�

n

[

i=0

T

�iN

[w(v)℄



�

\

�

n

[

i=0

T

�iN

[w

0

(v)℄



�

�

=

�

[

v2V

P

[w(v) : : : w(v)

| {z }

n+1 times

℄ [ [w

0

(v) : : : w

0

(v)

| {z }

n+1 times

℄

�



This result now makes it possible to alulate the wandering rate of the set A. By the

relation to the paraboli yle ondition, T

N

j

w(v)

has to be paraboli with �xed point v.

Assume by onjugation without loss of generality that v = 1 and T

N

j

w(v)

(z) = z � 1.

Then there is a 2 IR suh that

7

[w(v)℄ = (a;1). By (3) of remark (4.3) there is b < a suh

that d� = 2=(x� b). Now alulus gives:

�((a; a+ n℄) =

Z

a+n

a

2

x� b

dx = 2

�

log(a + n� b)� log(a� b)

��

; whene:

�((a; a+ n℄

logn

= 2

�

log(a + n� b)

logn

�

log(a� b)

logn

�

n!1

�! 2

Again by T

N

j

w(v)

z = z � 1, this gives in terms of the partition �

N

that :

(a; a+ n℄ = [w(v)℄n[w(v) : : :w(v)

| {z }

n times

℄ =)

�([w(v)℄n[

n times

z }| {

w(v) : : :w(v)℄)

logn

n!1

�! 2

For eah v 2 V

P

, U(v) is a neighborhood of v. Hene, for all a 2 �, A\ a is bounded away

from �a. By the struture of �, �(A \ a) is �nite. As � is �nite (as the orresponding

group is o�nite), �(A) is �nite. As the rate of onvergene for [w

0

(v)℄ is the same as for

[w(v)℄, the equality

n

[

i=0

T

�iN

A = A [

[

v2V

P

([w(v)℄n[w(v) : : :w(v)

| {z }

n+1 times

℄ [ [w

0

(v)℄n[w

0

(v) : : : w

0

(v)

| {z }

n+1 times

℄)

implies by the �niteness of �(A), that

�

�

S

n

i=0

T

�iN

A

�

logn

n!1

�! 4 #V

P

;

7

The ase, that [w(v)℄ = (1; a) has to be exluded, as T

�N

j

w(v)

[w(v)℄ = [w(v)w(v)℄ has to be a subset

of [w(v)℄ (f. (7.7) in the appendix).
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where #V

P

is the ardinality of V

P

. As the sequene f

S

n

i=0

T

�i

Ag

i2N

is monotonially

inreasing, the following proposition is proved:

Proposition 5.1

�

�

S

n

i=0

T

�i

A

�

logn

n!1

�! 4 #V

P

In addition, as (a; a + n℄

n!1

�! (a;1),

S

n

i=0

T

�iN

A

n!1

�! �IH. As in ontrast to [BS℄ and

[AF℄, the invariant measure is expliitly given, this gives for the indued transformation

on A:

Proposition 5.2 T

A

: A ! A is well de�ned and preserves �. As �(A) is �nite, T

A

is

onservative. In addition, T is onservative.

Proof: As �(A) < 1, there is no wandering set of positive measure. Assume W is wan-

dering for T . As

S

1

n=0

T

�n

= �IH, there is W

�

� A of positive measure and n

W

suh that

T

�n

W

W \W

�

is of positive measure. Hene, W

�

would be wandering for T

A

whih �nishes

the proof. �

5.2 Distortion Properties

Let (X;B; �; T; �) be a nonsingular Markov map. As T is loally invertible, there are

inverse branhes of T

n

for eah n � 1: for a = [a

1

: : : a

n

℄ 2 �

n

, T

n

j

a

is one to one and

T

n

a = Ta

n

. Now de�ne (f. [Aa℄):

D(v

a

) := T

n

a

v

a

: D(v

a

)! a by T

n

Æ v

a

(x) = x for x 2 T

n

a

v

0

a

:=

d� Æ v

a

d�

;

where v

0

a

is the Radon - Nikodym derivative. A distortion property is a feature of the

multipliative variation of v

0

a

on T

n

a. Let

~�

+

:= fa 2 ~� j �(a) > 0g where ~� :=

1

[

n=1

�

n

De�nition 5.3 (X;B; �; T; �) has the strong distortion property if there is C > 1 suh

that g(C; T ) = ~�

+

where

g(C; T ) = fa 2 ~�

+

j

v

0

a

(x)

v

0

a

(y)

� C for �� � - a.e. (x; y) 2 (D(�

a

))

2

g

The stronger Gibbs property is onneted to estimates of �(a) for a 2 �

n

and n large:
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De�nition 5.4 (X;B; �; T; �) has the Gibbs property if there is C > 1 and 0 < r < 1 suh

that g

r

(C; T ) = ~�

+

where

g

r

(C; T ) := fa 2 ~�

+

j

�

�

�

�

log

v

0

a

(x)

v

0

a

(y)

�

�

�

�

� Cr

t(x;y)

for �� � - a.e. (x; y) 2 (D(v

a

))

2

g

with t(x; y) := minfn � 1 j T

n

x 2 a 2 �; T

n

y 2 b 2 � : a 6= bg

In many ases (e.g. if there are some paraboli �xed points) it is not possible to ahieve

the strong distortion property. But sometimes there is a weaker property:

De�nition 5.5 Let (X;B; �; T; �) a Markov map. A olletion r � ~�

+

is alled a Shweiger

olletion if there is C > 1, suh that

� r � g(C; T )

� [b℄ 2 r; [a℄ 2 ~�

+

; [a; b℄ 2 ~�

+

implies that [a; b℄ 2 r

�

S

b2r

b = X mod �

(X;B; �; T; �) has the weak distortion property if there exists a Shweiger olletion for

(X;B; �; T; �).

In the sequel, these distortion properties will be disussed with respet to Lebesgue measure

and loal di�eomorphisms. Reall that in general, if J and J

0

are bounded intervals in IR,

� is Lebesgue measure and f : J ! J

0

is a di�eomorphism:

d� Æ f

�

= jDf j;

where Df is the usual derivative of f . Hene, if T is in addition a C

1

- endomorphism of

a bounded interval:

v

0

a

=

d� Æ v

a

�

= jDv

a

j:

De�nition 5.6 Assume that T is a C

2

- endomorphism of a bounded interval I. Then T

has the Renyi property if there is 0 < C <1 with:

�

�

�

�

D

2

T

n

(z)

(DT

n

(z))

2

�

�

�

�

< C for Lebesgue a.e. z 2 I

Remark 5.7 Distortion properties of T with respet to � are related to the Renyi property

(this is taken from [Aa℄, s.145). Let a 2 �

n

. Then T

n

Æ v

a

= id on D(v

a

). Hene,

DT

n

Æ v

a

�Dv

a

= 1. As DT

n

> 0 a.e. by the nonsingularity of T :

D

2

T

n

Æ v

a

(DT

n

Æ v

a

)

2

= �

D

2

v

a

Dv

a
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Let x; y 2 D(v

a

) and x < y. Then by (log f)

0

= f

0

=f for f = Dv

a

(x)=Dv

a

(y):

d

dx

log

Dv

a

(x)

Dv

a

(y)

=

D

2

v

a

(x)

Dv

a

(x)

) log

Dv

a

(x)

Dv

a

(y)

=

Z

y

x

D

2

v

a

(t)

Dv

a

(t)

dt

Now by the Renyi property:

�

�

�

�

log

Dv

a

(x)

Dv

a

(y)

�

�

�

�

=

�

�

�

�

Z

y

x

D

2

v

a

(t)

Dv

a

(t)

dt

�

�

�

�

�

Z

y

x

�

�

�

�

D

2

v

a

(t)

Dv

a

(t)

�

�

�

�

dt � Cjx� yj

As I is bounded, any a 2 ~�

+

is a bounded interval, say diam(a) < C

~�

+

for all a 2 ~�

+

.

Hene, ~�

+

= g(CC

~�

+

; T ) resp. T has the strong distortion property. In addition, if

x = e

�M

denotes that x 2 [e

�M

; e

M

℄ for M > 0, the last inequality gives for M := CC

~�

+

:

v

0

a

= e

�M

v

0

a

(y) 8x; y 2 D(v

a

)

)

Z

D(v

a

)

v

0

a

(x)dy = e

�M

Z

D(v

a

)

v

0

a

(y)dy

) v

0

a

(x)�(D(v

a

)) = e

�M

�(a)

) v

0

a

(x) = e

�M

�(a)

�(D(v

a

))

8x 2 D(v

a

)

These alulations now lead to the following proposition:

Proposition 5.8 Assume (I;B; �; T; �) is a nonsingular Markov map where I is a bounded

intervall and T is a C

2

- endomorphism of I having the Renyi property. Then (I;B; �; T; �)

has the strong distortion property. If there is in addition a onstant C

�

with �(Ta) > C

�

for all a 2 �, then there is N 2 N and � > 1 with jDT

n

(x)j > � for a.e. x 2 I and n > N .

Proof: As it was already shown that the Renyi property implies the strong distortion

property, it is left to show the seond assertion. For a = [a

1

: : : a

n

℄ 2 �

n

, D(v

a

) = T

n

a =

T (a

n

). Hene, �(D(v

a

)) > C

�

.

v

0

a

(x) = e

�M

�(a)

�(D(v

a

))

8x 2 D(v

a

)

implies now that

v

0

a

(x) < e

M

�(a)

C

�

8x 2 D(v

a

):

As T is Markov and � is Lebesgue measure, sup

a2�

n

�(a)

n!1

! 0. Hene, there is N 2 N

and � > 1 with v

0

a

(x) < �

�1

for all x 2 D(v

a

) and a 2 �

n

for n > N . �

Remark 5.9 Assume T is a transformation of the unit irle S

1

. If T is pieewise onfor-

mal, it is well known, that the same assertions about distortion properties hold.
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5.3 Distortion Properties for the Bowen - Series Map

The key estimate for the distortion of T relies on the so alled ross ratio:

De�nition 5.10 Assume u; v; x; y are four di�erent points in C . Then the ross ratio

[u; v; x; y℄ is given by

[u; v; x; y℄ :=

ju� xjju� vj

ju� vjjx� yj

By setting 1=1 = 1, this de�nition extends to arbitrary u; v; x; y in the Riemann sphere.

As it is well known, ross ratios are preserved by Moebius transformations (f. [Ra℄,

theorem 4.3.1). This property now allows to prove:

Lemma 5.11 Fix the dis model and let T be the Bowen - Series map given by a polygon

P with �nite set of ideal verties V

P

. Then for B measurable with the property that there

is � > 0 with d(B; V

P

) > � (e.g. B = A as in (5.2)):

There is 0 < C <1 suh that for all n:

�

�

�

�

D

2

T

n

(z)

(DT

n

(z))

2

�

�

�

�

< C for Lebesgue a.e. z with T

n

(z) 2 B

Proof: Fix a = [a

s

1

: : : a

s

n

℄ 2 �

n

. Then T

n

j

a

= g

s

n

: : : g

s

1

. De�ne g

a

= g = g

s

n

: : : g

s

1

. As

it was shown in the appendix for g 2 G:

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

= 2

jz �m

g

j

jm

g

j

2

� 1

where m

g

is the enter of the isometri irle I(g) of g. Assume now that �

g

is an element

of I(g). Then

[m

g

; �

g

; z;1℄ = [g(m

g

); g(�

g

); g(z); g(1)℄

As g(I(g)) = I(g

�1

), g(�

g

) 2 I(g

�1

). Let r

g

be the radius of I(g). Then

r

g

= jm

g

� �

g

j = jm

g

�1

� g(�

g

)j = r

g

�1

:

As g(m

g

) =1, g(1) = m

g

�1

:

[m

g

; �

g

; z;1℄ = [1; g(�

g

); g(z); m

g

�1

℄

)

jm

g

� zj

jm

g

� �

g

j

=

jm

g

�1

� g(�

g

)j

jm

g

�1

� g(z)j

)

jm

g

� zj

r

g

=

r

g

jm

g

�1

� g(z)j

Hene:

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

=

1

jm

g

�1

� g(z)j
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To apply this equality it has to be distinguished whether a and g(a) = T

n

(a) are disjoint

or not: Let H(a) be the half - spae given by

Clos

�

IB

(H(a)) \ �IB = Clos

�IB

(a):

As T

n

(a) = (a

s

0

n

)



, H(a)

g

7! H((a

s

0

n

)



). Hene �H(a)

g

7! s

0

n

. As the tesselation GP is

loally �nite, the olletion fg

k

s

0

n

g

k2Z

is loally �nite. Hene, if H(a) � g(H(a)), (g;H(a))

has the side - pairing property (f. de�nition (7.7). But this ondition is equivalent to

s

1

6= s

0

n

.

} }

}
}

ns’

ns’

} }

}
}

ns’

ns’

ε ε

ε
ε

a

a

H(a)

z

g(z)
ε ε

ε
ε

g(z)

a

z
H(a)

Figure 4: the ase s

1

6= s

0

n

resp. s

1

= s

0

n

(1) Assume s

1

6= s

0

n

and �x z 2 a \B with g(z) 2 B. As (g;H(a)) has the side - pairing

property, (g

�1

; (gH(a))



) has the side - pairing property where (gH(a))



= (H(a

s

0

n

)



)



=

H(a

s

0

n

). Now by propositions (7.8) and (7.9) the paraboli resp. the repelling hyperboli

�xed point  

g

�1

of g

�1

has to be ontained in a

s

0

n

and by proposition (7.6), j 

g

�1

�m

g

�1

j <

r

g

�1

. As g(z) 2 (a

s

0

n

)



\B and d(B; V

P

) > �, the triangle inequality gives: jm

g

�1

� g(z)j �

��r

g

�1

. Now by theorem 3.3.7 in [Ka℄: assume (g

1

; g

2

: : :) is a sequene of distint elements

of G, then r

g

k

! 0 as k!1. Hene r

g

> �=2 only for �nitely many g 2 G. Hene,

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

=

1

jm

g

�1

� g(z)j

�

2

�

for only �nitely many g 2 G.

(2) Assume now that s

1

= s

0

n

. Hene a and g(a) are disjoint. Hene neither a nor g(a)

ontain any �xed point of g. So the situation is similar as before: g(z) 2 g(a) = (a

s

0

n

)



and

both �xed points of g are elements of a

s

0

n

. Hene for z 2 B with g(z) 2 B, by the same

arguments:

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

=

1

jm

g

�1

� g(z)j

�

2

�
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for only �nitely many g 2 G. This �nishes the proof. �

Reall that the set from proposition (5.2) is given by:

A = �IBn

�

[

v2V

P

U(v)

�

= �IBn

�

[

v2V

P

([w(v)℄ [ [w

0

(v)℄)

�

where N is the smallest ommon multiple of the lengths of the edge yles. Hene,

� := fa 2 �

N

j a 6= [w(v)℄; a 6= [w

0

(v)℄ 8 v 2 V

P

g

is a partition for A. Now de�ne

~

� := fb = [b

1

: : : b

n

℄ 2 ~� j b

1

; : : : b

n

2 �; n � N;

[b

1

: : : b

N

℄ 2 �; [b

n�N+1

: : : b

n

℄ 2 �; [b

i

� � � b

i+N�1

℄ =2 � 8i = 2; : : : n�Ng

= fb 2 ~� j 9 a

1

; a

2

2 � : b � a

1

; T

A

: b! a

2

is one to oneg

Now T

A

an be shown to be Markov with the so alled big image property :

Lemma 5.12

~

� is a Markov partition for T

A

and the �rst return time �

A

is measurable

with respet to

~

�. In addition T

A

has the big image property, i.e. there is Æ > 0 with

�(T

A

(b)) > Æ for all b 2

~

�.

Proof: As T

A

is de�ned a.e. on A,

~

� is a partition of A mod � and is by de�nition �ner

than �. Hene for all b 2

~

�, T

A

(b) 2 � is the disjoint union of elements of

~

�. Now assume

that [a

1

: : : a

n

℄ 2 ~� with [a

1

: : : a

n

℄ � A and n > N . Hene [a

1

: : : a

N

℄ 2 �. In addition,

there is [b

1

: : : b

N

℄ 2 � suh that [a

1

: : : a

N

b

1

: : : b

N

℄ is admissible (with respet to T ). As �

is generating B and [a

1

: : : a

N

b

1

: : : b

N

℄ � [b

1

: : : b

N

℄,

~

� is generating A\B. So

~

� is a Markov

partition for T

A

. As the measurability of �

A

follows immediately from the de�nition of

~

�, only the last assertion has to be shown. But this is a onsequene of the fats, that

T

A

(b) 2 � for all b 2

~

� and that � is a �nite partition onsisting of elements of positive

measure. �

As

~

� is a Markov partition for T

A

, the following distortion properties an be derived:

Proposition 5.13 Let G be o�nite with property (GC). Then the following holds for T

resp. T

A

:

(1) T

A

has the Renyi property, where A is de�ned as above (resp. as in (5.2)).

(2) T

A

has the strong distortion property with respet to the partition

~

� and Lebesgue

measure.

(3) There is N

0

2 N and � > 1 suh that for all n � N

0

and a.e. z 2 �IB:

jDT

n

A

(z)j > � > 1



38 Ergodi Properties of the Bowen { Series map

(4) T has the weak distortion property with respet to Lebesgue measure.

Proof: The �rst assertion is an immediate onsequene of lemma (5.11). As

~

� is a Markov

partition for T

A

and T

A

has the big image property with respet to

~

�, (2) and (3) follow

by proposition (5.8). De�ne

r := f[ab℄ 2 ~� j a 2 ~� and b 2 �g :

It is left to show, that r is a Shweiger olletion (f. de�nition (5.5)). By onservativity

of T ,

S

b2r

= �IB mod �. The seond ondition follows diretly from the de�nition of r. To

show that there is 0 < C <1 suh that r � g(C; T ) it suÆes by remark (5.7) to �nd an

upper bound for

�

�

�

�

D

2

T

n

(x)

(DT

n

(x))

2

�

�

�

�

for Lebesgue a.e. x and n with x 2 [a

1

: : : a

n

℄ 2 r

Reall that � is a partition of A onsisting of words in � of length N . As T

n�N

x 2 A for

all x 2 [a

1

: : : a

n

℄ 2 r, by lemma (5.11) there is a C

0

> 0 suh that:

�

�

�

�

D

2

T

n

(x)

(DT

n

(x))

2

�

�

�

�

=

�

�

�

�

D

2

(T

N

Æ T

n�N

)(x)

(D(T

N

Æ T

n�N

)(x))

2

�

�

�

�

=

�

�

�

�

D

2

T

N

(T

n�N

(x))

(DT

N

(T

n�N

(x)))

2

+

D

2

T

n�N

(x)

DT

N

(T

n�N

(x))(DT

n�N

(x))

2

�

�

�

�

�

�

�

�

�

D

2

T

N

(T

n�N

(x))

(DT

N

(T

n�N

(x)))

2

�

�

�

�

+

C

0

jDT

N

(T

n�N

(x))j

for all x 2 [a

1

: : : a

n

℄ 2 r

It is shown in the appendix (orollary (7.5)), that for g 2 Iso

+

IB there are 0 < m

1

; m

2

<1

with 1=m

1

< jDgj < m

1

and jD

2

g=(Dg)

2

j < m

2

. Hene for any �nite olletion H of

elements of Iso

+

IB, there are 0 < m

1

; m

2

<1 with 1=m

1

< jDgj < m

1

and jD

2

g=(Dg)

2

j <

m

2

8 g 2 H. As � is �nite,

H := fg 2 Iso

+

IB j 9 b 2 � with T

N

j

b

= gj

b

g

is also a �nite olletion. Hene there is 0 < m

1

; m

2

<1 suh that

�

�

�

�

D

2

T

n

(x)

(DT

n

(x))

2

�

�

�

�

� m

2

+m

1

C

0

8 x 2 [a

1

: : : a

n

℄ 2 r

This �nishes the proof. �

By property (3) of the last proposition it is now possible to give an estimate for the

Lebesgue measure of an element of a 2

~

�

n

. Assume n � kN

0

. Then:

�(a) < �

�k

max

b2�

(f�(b)g) < 2��

k
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Hene for a 2

~

�

kN

0

+l

with l = f1; : : :N

0

� 1g and ~� =: �

1=N

0

:

�(a) < 2�~�

�kN

0

= 2�~�

l

~�

�(kN

0

+l)

< 2�~�

N

0

~�

�(kN

0

+l)

= onst ~�

�(kN

0

+l)

Now the exponential deay of �(a) for a 2

~

�

n

; n!1 leads to

Theorem 5.14 Assume G is o�nite and of type (GC). Let A be de�ned as in proposition

(5.1). Then T

A

has the Gibbs property with respet to Lebesgue measure and with respet

to �.

Proof: To show the Gibbs property with respet to Lebesgue measure �, C > 0 and

0 < r < 1 have to be found suh that

�

�

�

�

log

v

0

a

(x)

v

0

a

(y)

�

�

�

�

� Cr

t(x;y)

for �� � - a.e. (x; y) 2 (D(v

a

))

2

:

By remark (5.7) and the Renyi property of T

A

, there is C

1

with:

�

�

�

�

log

v

0

a

(x)

v

0

a

(y)

�

�

�

�

=

�

�

�

�

log

Dv

a

(x)

Dv

a

(y)

�

�

�

�

� C

1

d

S

1

(x; y) for a.e. x; y 2 D(v

a

)

So assume that t(x; y) = n. Hene there is an element b 2

~

�

n

with x; y 2 b. By the last

alulation, there is C

2

> 0 and � > 1 with:

d

S

1

(x; y) � �(b) � C

2

�

�n

)

�

�

�

�

log

v

0

a

(x)

v

0

a

(y)

�

�

�

�

� C

1

C

2

�

�t(x;y)

It is left to show that T

A

has the the Gibbs property with respet to �. By proposition 4.7.1

in [Aa℄, it is suÆient to show that log(

d�

d�

) is Lipshitz ontinuous on A. But in remark

(4.3),

d�

d�

=: g was already expliitly given. As � is a �nite partition, it is suÆient to

show the Lipshitz ontinuity for gj

a\A

for arbitrary a 2 �. Assume w.l.o.g. that a = e

2�iI

where I = (0; x) for 0 < x < 1. Then

g(t) = 2�(ot(�(x� t))� ot(�(1� t))) for t 2 I

)

d

dt

log(g(t)) =

g

0

(t)

g(t)

= �

(sin(�(x� t)))

�2

� (sin(�(1� t)))

�2

ot(�(x� t))� ot(�(1� t))

As it was mentioned before, gj

a\A

is bounded away from zero. As A is bounded away from

V

P

, A\a an be written as A\a = e

2�iJ

with Clos(J) � I. Hene

d

dt

log(g(t)) is a bounded

ontinuous funtion on J and hene log

d�

d�

is a Lipshitz ontinuous funtion on A. �
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5.4 Ergodi Properties

In the sequel, the Gibbs property of T

A

will be used to derive further results with respet

to T . The �rst diret onsequene is:

Proposition 5.15 T and T

A

are exat (and hene ergodi) with respet to � and Lebesgue

measure.

Proof: By a result of Aaronson, Denker and Urbanski (f. [Aa℄, theorem 4.4.7), a topo-

logially mixing Markov map having the weak distortion property is exat if this map is

onservative. As T and T

A

are onservative by proposition (5.2) and as exatness is im-

plying ergodiity, it has to be shown that both maps are topologially mixing and have

the weak distortion property. But as T is topologially mixing by theorem (4.7), T

A

is also

topologially mixing. In addition, the weak distortion was already shown in proposition

(5.13). �

For onservative, ergodi, in�nite measure preserving transformations like T with respet

to �, there is a further lassi�ation (for referene see [Aa℄):

De�nition 5.16 A onservative, ergodi, measure preserving transformation T of (X;B; �)

is alled rationally ergodi if there is a set A 2 B with 0 < �(A) <1 and a onstantM > 0

with

Z

A

(

n�1

X

i=0

1

A

Æ T

i

)

2

d� �M

 

Z

A

n�1

X

i=0

1

A

Æ T

i

d�

!

2

8n � 1

If T is rationally ergodi, there is a sequene a

n

(T ) � a

n

% 1 unique up to asymptoti

equality (f. theorem 3.3.1 in [Aa℄) suh that: assume A 2 B is a set orresponding to the

last de�nition, then:

1

a

n

n�1

X

i=0

�(B \ T

�i

C)

n!1

! m(B)m(C) 8B;C 2 B \ A

This sequene is alled the return sequene of T . The next de�nition is based on the

transfer operator

b

T : L

1

(�)! L

1

(�), de�ned by:

Z

X

b

Tf � gd� =

Z

X

f � g Æ Td� 8f 2 L

1

(�); g 2 L

1

(�)

De�nition 5.17 A onservative, ergodi, measure preserving transformation T of (X;B; �)

is alled pointwise dual ergodi if there is a sequene of onstants a

n

suh that

1

a

n

n�1

X

i=0

b

T

i

f !

Z

X

fd� a.e. as n!1 8f 2 L

1

(X):
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By proposition (3.7.5) in [Aa℄, a pointwise dual ergodi transformation T is rationally

ergodi. In addition, the sequene a

n

from the de�nition of pointwise dual ergodiity is

a return sequene for T . Applying standard results to the Bowen - Series map T for G

o�nite, torsionfree and with property (GC) gives:

Proposition 5.18 The Bowen - Series Map T is pointwise dual ergodi and rationally

ergodi with respet to �.

Proof: Reall the properties of T

A

: T

A

is topologially mixing and has the Gibbs property

by (5.14). In addition, as �(A) is �nite, T

A

is �nite measure preserving. By lemma (5.12),

�(T

A

(b)) > 0 for all b 2

~

� and �

A

is measurable with respet to

~

�. Hene, orollary (4.7.8)

in [Aa℄ gives that T

A

is ontinued fration mixing (f. de�nition 3.7.4 in [Aa℄). This now

implies via lemma (3.7.4) in [Aa℄, that A is a so alled Darling - Ka set, i.e. there are

onstants b

n

> 0 suh that

1

b

n

n�1

X

i=0

b

T

i

1

A

! �(A) almost uniformly on A:

Now by proposition (3.7.5) in [Aa℄, T is pointwise dual ergodi and hene by proposition

(3.7.1) in [Aa℄ rationally ergodi. �

As it was shown in the proof, A is a Darling - Ka set. Now by the Chaon - Ornstein

theorem:

P

n�1

i=0

b

T

i

(1

A

)

P

n�1

i=0

b

T

i

(f)

n!1

!

R

1

A

d�

R

fd�

a.e. 8f 2 L

1

(�); f > 0

So the sequene b

n

from the last proof is a return sequene for T . Assume without loss of

generality that a

n

= b

n

. As A a is Darling - Ka set, A is uniform for the indiator 1

A

:

1

a

n

n�1

X

i=0

b

T

i

1

A

!

Z

IB

1

A

d� almost uniformly on A:

Now the return sequene of T an be determined via the wandering rate L

A

(�) = �(

S

n�1

i=0

T

�i

A).

Reall, that a measurable funtion f : IR

+

! IR

+

is alled regularly varying at 1 if for all

y > 0, the limit lim

x!1

f(xy)

f(x)

exists and is bigger than 0. In this ase, by the funtional

equation given by this limit, there is � 2 IR, alled the index of regularly variation with

lim

x!1

f(xy)

f(x)

= y

�

8y > 0:

By proposition (5.1), the wandering rate of A is proportional to log(n) and hene L

A

(n)

is regularly varying at 1 with index 0. Now 3.8.7 in [Aa℄ states: Assume T is pointwise
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dual ergodi, A is uniform for some f 2 L

1

(�); f > 0 and L

A

(n) is regularly varying with

index � 2 [0; 1℄. Then

a

n

�

1

�(2� �)�(1 + �)

n

L

A

(n)

This gives:

Theorem 5.19 The Bowen - Series map T for G o�nite and of type (GC) is pointwise

dual ergodi and the return sequene a

n

is given by

a

n

�

n

log(n)

�

1

4#V

P

resp. as Area(P ) = (#V

P

� 2)�:

a

n

�

�n

4 log(n)(Area(IH=

G

) + 2�)



6 Summary

If G is torsionfree and not neessarily �nitely generated, the onditions (CA) and (GC)

are implying that the Bowen - Series map T is a fator of a setion S : Y ! Y . By theorem

(4.7), T is a topologially mixing, in�nite measure preserving Markov map. In proposition

(4.9) S is shown to be the natural extension of T . Hene S is onservative and ergodi if

and only if T is onservative and ergodi.

If G is o�nite, torsionfree and (GC), it was mentioned before that G is not oompat

and that G is a free group with property (CA). In this ase it is shown that there is a set

A � �IB with 0 < �(A) <1 (f. proposition 5.1)) and:

� The wandering rate of A is 4#V

P

log(n).

� T

A

is a �nite measure preserving Markov map and has the Gibbs property.

A �rst appliation of these two results is that the Bowen - Series map T is ergodi and

onservative (and hene the geodesi ow is ergodi by (4.9) and (3.2)). But in addition

more sophistiated results for the in�nite measure preserving map T an be dedued:

� T is rationally ergodi and pointwise dual ergodi.

� The return sequene of T is

n

log(n)

�

1

4#V

P

.

As S is the natural extension of T , S is also rationally ergodi with the same return

sequene. Hene:

Proposition 6.1 Assume G is torsionfree and o�nite with (GC). Then the geodesi ow

on IH=

G

admits a setion, whih is rationally ergodi with return sequene

n

log(n)

�

1

4#V

P

.

It has to be pointed out that this setion is in�nite measure preserving as T has this

property. The reason for that is the existene of paraboli periodi points. Induing on a

set not ontaining any of those points now leads to a �nite measure preserving setion for

the ow: By (4.2), the following diagram ommutes:

Y

-

Y

? ?

�IH

S

pr

2

pr

2

�IH

-

T

Reall, that Y =

S

s2S

(a

s

)



� a

s

and Sj

(a

s

)



�a

s

(�; �) = (g

s

(�); g

s

(�)) where S is the set of

sides of a polygon P with property (GC). Then with A de�ned as in (5.1):

B := pr

�1

2

(A) =

[

s2S

(a

s

)



� (a

s

\ A)

As S

n

(�; �) 2 B () T

n

(�) 2 A, the following diagram ommutes:

43
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B

-

B

? ?

A

S

B

pr

2

pr

2

A

-

T

A

By proposition (3.4), S

B

is a andidate for another setion for the ow:

Proposition 6.2 S

B

is a setion for the ow on IH=

G

where G is torsionfree, o�nite but

not oompat with (GC). S

B

itself is a onservative, ergodi and �nite measure preserving

transformation of (B;B

Y

\B;mj

B

).

Proof: As S is onservative, S

B

is onservative. Hene, the �rst return map �

B

is �nite

a.e. To apply proposition (3.4), it remains to show that

S

n2Z

S

n

(B) = Y mod m. But as

S is ergodi, S

B

is ergodi. As

S

n2Z

S

n

(B) is S - invariant, this set has to be equal to Y

mod m. To �nish the proof, the �niteness of m(B) has to be shown. As � = m Æ pr

�1

2

and

�(A) <1, the assertion follows. �

This is in some sense an analog to a result of [AF℄ for the oompat ase: they onstruted

for some Fuhsian model IB=

G

of a ompat surfae of genus g � 2 suh a setion. Besides,

they found a onjugate map having a fator oinident to the Bowen - Series map de�ned

in [BS℄. By [BS℄, this fator is Markov and has the Gibbs property

8

.

For the nonompat ase treated here, this fator property follows without further onju-

gation. This is a onsequene of the existene of a fundamental polygon P whih has no

verties in IH. This is onneted to the orrespondene of utting sequenes and boundary

expansions as follows (f. [Se℄): the bijetion given by Series is in this ase the identity

(mod Liouiville measure). In addition, the Gibbs - Markov property for the fator T

A

fol-

lows without hoosing some speial model for a given surfae. This is of some importane

as a quasionformal deformation is in ommon nonsingular with respet to the Liouiville

measure.

8

Bowen & Series in fat proved, that this fator f is a C

2

- Markov map with jD(f

2

)j > Æ > 1. From

these properties, it is standard to derive the Renyi and the Gibbs property (f. [Th℄).
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The aim of this last setion is to desribe relations between the side - pairings of some

polygon P with respet to the lous of its isometri irles. This will lead to estimates of

jD

2

T j=jDT j

2

, where T is the Bowen - Series map. Therefore, the notion of an inversion

has to be introdued (f. [Kat℄,[Ra℄):

De�nition 7.1 Let S(a; r) be the eulidean irle in C around a 2 C with radius r > 0.

Then the inversion �

S(a;r)

in S(a; r) is the self - mapping of the Riemann sphere, given by:

�

S(a;r)

(z) =

a�z � jaj

2

+ r

2

�z � �a

As it is well known, �

S(a;r)

is an antiholomorphi di�eomorphism, �xing S(a; r) pointwise

and mapping a to1. In addition, these elements together with the usual reetions in lines

generate the Moebius group Moeb(

^

C ). Besides, Moeb

+

(

^

C ) = PSL

2

(C ) is the subgroup of

orientation preserving transformations. The next two results are standard (f. [Ka℄, x3.3

and [Ra℄, x4.3 ):

Proposition 7.2 Assume g 2 PSL

2

(C ); g(1) 6=1. Then there is an eulidean irle I(g)

suh that g ats as an eulidean isometry on I(g). This irle is alled the isometri irle

of g.

Proposition 7.3 Assume g 2 Iso

+

(IB) and g is not an eulidean isometry (i.e. g(0) 6= 0).

Then I(g) is unique g and has a representation g = ��, where � is a reetion at a straight

line through the origin and � is the inversion in I(g). In addition, I(g) is perpendiular to

S

1

and hene orresponds to a geodesi.

As an immediate onsequene of this statement, the modulus of the derivative (f. the

next remark) an be alulated with respet to I(g). Assume that I(g) = S(m

g

; r). Now

the property, that I(g) is perpendiular to S

1

, is equivalent to jm

g

j

2

= r

2

+ 1. Hene for

�xed m

g

2 C :

�

g

(z) := �

I(g)

(z) =

m

g

�z � 1

�z � �m

g

As the modulus of the derivative is invariant under multipliation from the left with ele-

ments of O(2), i.e. with eulidean isometries �xing the origin, it follows:

jDg(z)j = jD�

g

(z)j = jD�

g

(z)j =

�

�

�

�

jm

g

j

2

� 1

jz �m

g

j

2

�

�

�

�

=)

8

<

:

jDg(z)j = 1 () jz �m

g

j

2

= 1

jDg(z)j > 1 () jz �m

g

j

2

< 1

jDg(z)j < 1 () jz �m

g

j

2

> 1

45
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Remark 7.4 Here, the derivative Dg of g is de�ned as the usual derivative of a holomor-

phi resp. antiholomorphi self - mapping of the Riemann sphere (e.g. if g 2 Moeb(C )).

Then Dg itself is holomorphi resp. antiholomorphi. Hene, the seond derivative is well

de�ned. Here jDg(z)j resp. jD

2

g(z)j denotes the 2 - norm of Dg(z) resp. D

2

g(z).

Furthermore, to get estimates of jD

2

gj=jDgj

2

:

jD

2

g(z)j =

�

�

�

�

D

�

jm

g

j

2

� 1

(z �m

g

)

2

�

�

�

�

�

=

�

�

�

�

2(jm

g

j

2

� 1)

(z �m

g

)

3

�

�

�

�

)

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

= 2

jz �m

g

j

jm

g

j

2

� 1

As m

g

=2 IB [ �IB, it follows that:

Corollary 7.5 For g there is 0 < m

1

; m

2

<1 suh that

1

m

1

< jDg(z)j < m

1

and

1

m

2

<

�

�

�

�

D

2

g(z)

(Dg(z))

2

�

�

�

�

< m

2

8 z 2 IB [ �IB

Now by the struture of jDgj, the following an be shown:

Proposition 7.6 If g is a paraboli element of Iso

+

IB, the unique �xed point z

g

of g is

ontained in I(g)\S

1

. In addition, if g = �

g

�

g

, �

g

is the reetion on the line joining 0 and

z

g

. In addition, I(g) and I(g

�1

) interset in z

g

. If g is hyperboli with �xed points z

g

and

z

0

g

, then the geodesi joining the two �xed points intersets I(g). In addition, I(g), I(g

�1

)

and the reetion axis of �

g

do not interset. Eah of them is interseting the geodesi

joining z

g

and z

0

g

perpendiular. See �gure (5) for illustration.

zg

I(g   )−1

axis of 

axis of 

1

−1

gz
I(g)

i

z’g’

i

I(g)

1

I(g   )

τ

τ

Figure 5: I(g) for g paraboli resp. hyperboli

Proof: It is well known that jDg(z

g

)j = 1, if g is paraboli. Hene, z

g

2 I(g)\S

1

, implying

that �

g

(z

g

) = z

g

. Therefore, �

g

has to �x z

g

whih gives the required property of �

g

. The
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statement about I(g

�1

) now follows from the fat that �

g

(I(g)) = I(g

�1

).

In the hyperboli ase, it is well known that jDg(z

g

)j < 1 < jDg(z

0

g

)j (w.l.o.g. jDg(z

g

)j <

jDg(z

0

g

)j). Hene, the geodesi joining z

g

and z

0

g

intersets I(g). If the reetion axis of

�

g

would interset I(g), then g would have either a �xed point in IB or a paraboli �xed

point in �IB. Hene, this axis and I(g) has to be disjoint and �

g

maps I(g) to the on-

neted omponent of IB without the reetion axis of �

g

. To prove the perpendiularity,

swith to the upper half plane and let ~g; ~�

g

and ~�

g

be the elements orresponding to g; �

g

and �

g

. Then ~�

g

and ~�

g

are �xing the orresponding geodesis. Assume w.l.o.g. that

~g(z) = �z with � > 0. Then neither the reetion axis of �

g

nor of �

g

ontains a �xed

point of g. But this has to be also true for ~�

g

and ~�

g

. Hene, ~�

g

and ~�

g

are inversions

at geodesis not ontaining 1. Let m

�

g

resp. m

�

g

those points in IR suh that ~�

g

resp.

~�

g

are the inversions in a irle with enter m

�

g

resp. m

�

g

. As ~g �xes 0 and 1, ~�

g

Æ ~�

g

has to �x these points. As ~�

g

(1) = m

�

g

and , ~�

g

(m

�

g

) = 1, m

�

g

= m

�

g

. In addition,

~�

g

~�

g

(m

�

g

) = ~�

g

(1) = m

�

g

= m

�

g

. Hene, m

�

g

= m

�

g

= 0. Now the onformal equivalene

of U and IB �nishes the proof. �

In the following relations between a side s, its side -pairing g

s

and its isometri irle

I

g

s

will be desribed: assume P is a polygon with set of sides S suh that eah side is

a omplete geodesi and P satis�es the onditions of Poinar�e's theorem with respet to

some side - pairings fg

s

g

s2S

. Hene, G :=< g

s

j s 2 S > has to be free, implying that G

has no torsion and therefore only ontains paraboli and hyperboli elements. In addition,

as P is an exat fundamental polygon for G:

(1) H

s

� g

s

(H

s

), where H

s

is a half spae with �H

s

= s (.f. (4.2)).

(2) The olletion fg

n

s

(s)g

n2Z

is loally �nite.

The aim is now not only to show properties of side - pairings, but also for transformations

in some sense similar to side - pairings. So de�ne the following:

De�nition 7.7 (g

s

; H

s

) has the side - pairing property if:

(0) g

s

is a hyperboli or paraboli transformation and and s is a geodesi.

(1) There is a halfspae H

s

with H

s

� g

s

(H

s

) and �H

s

= s.

(2) The olletion fg

n

s

(s)g

n2Z

is loally �nite.

The paraboli ase: Assume g

s

is paraboli and has the side - pairing property. Without

loss of generality, g

s

2 Iso

+

U and g

s

(z) = z + 1. Then H

s

� g

s

(H

s

). But as this fails if

both endpoints of s are in IR, it follows that one of them has to be 1. Hene, s is a line

perpendiular to IR, say s = 

x;1

. In addition, again by H

s

� g

s

(H

s

), H

s

has to be the

half - spae to the left of s (see �gure (6) for illustration). Hene, after swithing bak to

the dis model, s and s

0

have the �xed point z

g

s

of g

s

in ommon. By proposition (7.6), z

g

is also ontained in the isometri irle I(g

s

) and in the reetion axis of �

g

s

. Now again
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xσ xτ

’s

x x+1

gsH ss

Figure 6: H

s

, s and s

0

for g

s

in the upper half spae model, this gives that (z 7! z + 1) = ~� ~�, where ~� resp. ~� are

reetions in the geodesis orresponding to the reetion axis of �

g

s

resp. I(g

s

) in IB. As

1 has to be an endpoint of those geodesis, they have to be lines perpendiular to IR.

Assume that ~� resp. ~� is the reetion in fz j Imz = x

�

g resp. in fz j Imz = x

�

g, where

x

�

; x

�

2 IR. Hene:

~�(z) = ��z + 2x

�

and ~�(z) = ��z + 2x

�

) g

s

(z) = ~� ~�(z) = z + 2(x

�

� x

�

)

) z + 1 = z + 2(x

�

� x

�

)

) x

�

� x

�

=

1

2

Hene, x

�

> x

�

. With respet to the dis model, the following an be onluded: De�ne

the interval a

I

s

similar to the de�nition of a

s

as follows: let U

I(g

s

)

be the bounded onneted

omponent of C nI(g

s

). Then

a

I

s

:= U

I(g

s

)

\ �IB:

As swithing between the two models U and IB preserves orientation, the property that

x

�

> x

�

gives:

� If x � x

�

, then a

I

s

� a

s

� If x < x

�

, then a

I

s

� a

s

In addition, the �xed point of g

s

is a ommon endpoint of a

s

and a

I

s

. This gives as

U

I(g

s

)

= fz j jDg(z)j > 1g:

Proposition 7.8 Assume g

s

is paraboli and has the side - pairing property. Then the

unique �xed point of g

s

is a boundary point of a

s

as well as of a

I

s

. In addition, a

s

\ a

I

s

is a

nonempty interval whih has the property that jDg

s

(z)j � 1 for z 2 a

s

\ a

I

s

.
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The hyperboli ase: If g

s

is hyperboli, an analog of the last proposition an be shown.

Analogously to the paraboli ase, it is assumed without loss of generality, that g

s

(z) = �z

for � > 0. As I(g

�1

) = gI(g), s

0

= g

s

(s) and g

s

0

= g

�1

s

, assume without loss of generality

that � > 1 (otherwise hanging to the inverse of g

s

gives the wanted property). So assume

that s = 

x;1

. Then

fg

n

s

(s) j n 2 Zg = f

�

n

;1

j n 2 Zg

meets any neighbourhood of i in�netly often. This is a ontradition to (2) in the last

de�nition. Hene, s = 

x;y

with x; y 6= 1. By the same argument, x; y 6= 0. Now as

H

s

� g

s

(H

s

), it follows that 0 has to be ontained in the open interval (x; y) (w.l.o.g.

x < y) and that H

s

is the bounded omponent of Un

x;y

(see �gure (7) for illustration).

By proposition (7.6) and with the same notation as above, the geodesis orresponding

rσ

yλxλ
rτ−rσ−rτ

gs

x y

H s

s

s’

Figure 7: H

s

, s and s

0

for g

s

to the reetion axis of �

g

s

resp. to the isometri irle I(g

s

) have to be perpendiular to



0;1

. Hene, ~� and ~� are inversions at irles around the origin. Now by de�nition (7.1)

for appropriate r

�

> 0 and r

�

> 0,

~� (z) =

r

2

�

�z

and ~�(z) =

r

2

�

�z

) g

s

(z) = ~� ~�(z) = r

2

�

r

�2

�

z

) r

2

�

r

�2

�

= � > 1

By the same reasons as above, it was proved:

Proposition 7.9 Assume g

s

is hyperboli and has the side - pairing property. Then the

unique �xed point z

0

g

s

of g

s

with jDg(z

g

s

j � 1 is a point in the interior of a

s

as well as of

a

I

s

. In addition, a

s

\ a

I

s

is a nonempty interval, whih has the property that jDg

s

(z)j � 1

for z 2 a

s

\ a

I

s

.
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8 Notational Conventions

N the natural numbers f1; 2 : : :g

Z the integers

IR the real numbers

C the omplex numbers

IB the disk model of the hyperboli plane

U the upper half spae model of the hyperboli plane

IH the hyperboli plane (with no model spe.)

S

1

the unit irle

Iso(IH) the group of isometries of IH

Iso

+

(IH) the group of orientating preserving isometries of IH

Moeb(D) the group of Moebius transformations of the domain D

Moeb

+

(D) the group of orientating preserving Moebius transformations

of the domain D

O(2) the orthogonal group of IR

2

a

n

� b

n

lim

n!1

a

n

b

n

= 1

diam(�) the eulidean diameter of a set

d

S

1

(�; �) the metri given by the ar length of S

1

j � j the 2 - norm on C

A

IH

the hyperboli area.

� Lebesgue measure

m

= equality modulo the measure m

T j

A

the restrition of T on A

T

A

the indued transformation on A

�

A

the return time to A

S the set of sides of a polygon

[a

1

: : : a

n

℄ the ylinder set given by a

1

; : : : a

n

a

s

the interval on �IH orresponding to the side s 2 S

g

s

the sidepairing whih maps s 7! s

0
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