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Abstrat. In this paper we study parabolially semihyperboli generalized polynomial-like

maps and give a �ner fratal analysis of their Julia sets. We disuss various generalizations

of the lassial notion of topologial pressure to situations in whih the underlying potentials

are not neessarily ontinuous or bounded. Subsequently, we investigate various types of

onformal measures and invariant Gibbs states, whih then enables us to dedue analyti

properties for the generalized pressure funtions. On the basis of these results, we �nally

derive our multifratal analysis, and then show that for the speial ase in whih the Julia

set does not ontain ritial points, this general multifratal analysis has a more transparent

geometri interpretation in terms of the loal saling behaviour of the anonially assoiated

equilibrium state.

1. Introdution and statement of main results

In this paper we give a �ner multifratal analysis of Julia sets J(f) for parabolially semihy-

perboli generalized polynomial-like maps f (see setion 2 for the de�nition of these maps).

First, we give a detailed disussion of various extensions of the lassial notion of topologial

pressure P(f; �). Di�erent from the lassial situation, whih requires the potential � to be

ontinuous, these extensions P(t; �) are assoiated to potentials of the form �t log jf

0

j + �,

whih are in general (that is, if the ritial points are of dynamial signi�ane) neither

ontinuous nor bounded (setion 2.3 and setion 4). This disussion is then followed by in-

vestigations of various types of onformal measures and invariant Gibbs states (setion 3).

Subsequently, on the basis of these onsiderations, we then derive our multifratal analysis for

parabolially semihyperboli generalized polynomial-like maps. We remark that the results

in this paper are signi�ant extensions of our results obtained in [15℄, and furthermore they

provide further generalizations of the results in [7℄ and [14℄ where totally di�erent methods

have been employed.

In order to state the main results, we need to introdue the following. For a H�older ontinuous

funtion � : J(f)! IR, the lower and upper rate of � at x 2 J(f) are de�ned by

�

�

(x) := lim

n!1

S

n

�

P(f; �)� �(x)

�

log j(f

n

)

0

(x)j

and �

�

(x) := lim

n!1

S

n

�

P(f; �)� �(x)

�

log j(f

n

)

0

(x)j

:
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If these two rates oinide, then we write �

�

(x) to denote their ommon value.

In order to study the �ne-sale geometry of J(f), we then follow the foot steps of the lassial

multifratal formalism and onsider the (�; �)-level sets K

�

(�), whih are de�ned by, for

� 2 IR,

K

�

(�) := fx 2 J(f) : �

�

(x) = �g:

Let p

max

refer to the maximal number of petals a paraboli �xed point of f an possibly have.

The following theorem gives the �rst main result of this paper.

Theorem 1. Let f be a parabolially semi-hyperboli generalized polynomial-like map, and

let � : J(f)! IR be a H�older ontinuous potential suh that P(f; �) > sup(�). In ase f has

paraboli elements we additionally assume that the H�older exponent of � exeeds p

max

=(p

max

+

1). Then the following holds, where �

�

refers to the equilibrium state of �.

(i) For �

�

-a.e. x 2 J(f), we have that �

�

(x) exists and

�

�

(x) =

P(f; �)�

R

�d�

�

R

log jf

0

jd�

�

:

(ii) There exists a funtion T : (0; 1℄! IR, uniquely determined by P(T (q); q�) = 0, suh

that

{ T is real-analyti and T

0

is stritly negative,

{ HD(K

�

(�T

0

(q))) = T (q)� qT

0

(q), for every q 2 (0; 1).

We then ontinue by investigating analyti properties of the multifratal �-spetrum k

�

, whih

is de�ned for � 2 IR by

k

�

(�) := HD(K

�

(�)):

The following theorem gives the seond main result of this paper. Note, throughout we let h

refer to the Hausdor� dimension HD(J(f)) of J(f).

Theorem 2. Let f be a parabolially semi-hyperboli generalized polynomial-like map, and

let � : J(f)! IR be a H�older ontinuous potential suh that P(f; �) > sup(�). In ase f has

paraboli elements we additionally assume that the H�older exponent of � exeeds p

max

=(p

max

+

1). If the equilibrium state �

�

is not equivalent to the h-onformal measures �

h

of f , hene

in partiular if f has a paraboli point or a non-exeptional ritial point, then the domain of

the funtion k

�

ontains a non-degenerate interval on whih k

�

is real-analyti.

Finally, we onsider the speial lass of parabolially semi-hyperboli generalized polynomial-

like maps f for whih J(f) does not ontain ritial points of f . Maps of this type will be

referred to as paraboli generalized polynomial-like maps, and we show that for these maps

the results of the multifratal analysis in Theorem 1 and Theorem 2 have a more transparent

geometri interpretation. More preisely, we obtain the following theorem whih states the

third main result of this paper.
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Theorem 3. Let f be a paraboli generalized polynomial-like map, and � : J(f) ! IR a

H�older ontinuous potential suh that P(f; �) > sup(�). In ase f has paraboli elements we

additionally assume that the H�older exponent of � exeeds p

max

=(p

max

+1). Then we have for

the equilibrium state �

�

assoiated with �, and for any q 2 (0; 1),

HD

 (

z 2 J(f) : lim

r!0

log �

�

(B(x; r))

log r

= �T

0

(q)

)!

= T (q)� qT

0

(q):

(Here, T refers to the funtion whih we already onsidered in Theorem 1).

The paper is organized as follows.

1. Introdution and statement of main results

2. Preliminaries

2.1. Parabolially semihyperboli generalized polynomial-like maps

2.2. Conformal graph direted Markov systems and GPL-maps

2.3. Topologial pressure funtions

3. Invariant Gibbs states

4. Real analytiity of the topologial pressure

5. Multifratal analysis

5.1. The general ase of a parabolially semi-hyperboli GPL-map

5.2. The paraboli ase without ritial points in the Julia set

Throughout, we use the following onventions to desribe the relationship between two positive

numbers a and b. We write a � b if the ratio of a and b is uniformly bounded away from

zero and in�nity. Similarly, we write a� b, or a� b respetively, if a=b is uniformy bounded

away from in�nity, or zero respetively.

Aknowledgement: We should like to thank the Mathematial Department at the Uni-

versity of North Texas for its warm hospitality and exellent working onditions while doing

part of the work to this paper. Also, we should like to thank the NSF for �nanial support.

2. Preliminaries

2.1. Parabolially semihyperboli generalized polynomial-like maps.

In this setion we give a brief introdution into parabolially semihyperboli generalized poly-

nomial-like maps. Let n = f1; 2; : : :g be the set of all positive integers. We begin with realling

the de�nition of a generalized polynomial-like mapping, whih will be abbreviated throughout

as a GPL-map. Note that we have adopted the notation of [15℄.

For U � CI an open Jordan domain with smooth boundary, let U :=

S

i2I

U

i

be a �nite union

of Jordan domains U

i

whih are fully ontained in U and whih have pairwise disjoint losures.

A GPL-map f is a map

f : U ! U
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whih has a holomorphi extension to an open neighbourhood of U suh that for eah i 2 I

the restrition of this extension to U

i

is a surjetive branhed overing map. We let J(f) refer

to the Julia set of f .

Let 
 denote the set of paraboli periodi points of f given by


 := f! 2 U : f

q

(!) = ! and (f

q

)

0

(!) = 1 for some q 2 INg:

Without loss of generality, we may assume that the paraboli periodi points of f are in fat

�xed points of f , and that f

0

(!) = 1 for eah ! 2 
 (this is ahieved as usual, by taking a

suitable iterate of f ; note that this does not a�et our analysis here sine P(f;�t log jf

0

j) =

1

n

P(f;�t log j(f

n

)

0

j), for eah n 2 N).

Also, we de�ne

Crit(f) := f : f

0

() = 0g and Crit(J(f)) := J(f) \ Crit(f):

It will be onvenient to split up the index set I in the following way.

I

o

:= fi 2 I : U

i

\

S

n�1

f

n

(Crit(f)) = ;g (`post-ritial free indies'),

I

p

:= fi 2 I : 
 \ U

i

6= ;g (`paraboli indies'),

I



:= fi 2 I : U

i

\ Crit(f) 6= ;g (`ritial indies'),

I

r

:= I n (I



[ I

p

) (`regular indies').

With this deomposition of the �nite index set I, we de�ne

U

o

:=

[

i2I

o

U

i

; U

p

:=

[

i2I

p

U

i

; U



:=

[

i2I



U

i

; U

r

:=

[

i2I

r

U

i

:

De�nition 2.1. A GPL-map f is alled parabolially semihyperboli if and only if the follow-

ing onditions are satis�ed.

(a) I



� I

o

; (b) U

o

[ U

r

� U; ()

[

n2IN

f

n

(Crit(f)) � U

r

; (d) I

p

6= I:

Throughout the paper we assume, if not stated otherwise, that f is a parabolially semihy-

perboli GPL-map. Note that in its de�nition we do not rule out the possibility that 
 = ;.

That is, we let the lass of semihyperboli GPL-maps be ontained in the lass of parabolially

semihyperboli GPL-maps. Also, reall that a GPL-map f is alled ritially non-reurrent

if for eah  2 Crit(J(f)) we have that U

i

\ ff

n

() : n 2 INg = ;; where i 2 I is uniquely

determined by the fat that  2 U

i

. Hene, by (a) in the de�nition above, a parabolially

semihyperboli GPL-map is always ritially non-reurrent, and onsequently, ritially tame

(see [18℄ for its de�nition). Also, note that for a parabolially semihyperboli GPL-map the

sets I

o

; I

p

and I

r

are always pairwise disjoint.

The following lemma is an immediate onsequene of the fat that a GPL-map is ritial

non-reurrent in ombination with the topologial exatness of its Julia set.

Lemma 2.2. For a ritially non-reurrent GPL-map f we have that the losure of the

forward orbit of Crit(f) is a nowhere dense in J(f).
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Throughout, we shall assume that for i 2 I

p

the map f : U

i

! U is a onformal homeo-

morphism. By Shwarz's lemma, we then have that 
 \ U

i

is a singleton, denoted by !

i

, so

that we have in partiular that !

i

= �U

i

\ �U . Also, with f

�1

i

: U ! U

i

referring to the

inverse branh of f for whih f

�1

i

(!

i

) = !

i

, the Denjoy-Wolf theorem implies that f

�n

i

(z)

onverges to !

i

uniformly, for eah z 2 U . Sine f

�1

i

has an analyti extension to an open

neighbourhood of !

i

and sine (f

�1

i

)

0

(!

i

) = 1, the Taylor expansion of this extension for z

lose to !

i

is of the form, for some �xed a

i

6= 0 and p(!

i

) 2 N,

f

�1

i

(z) = z + a

i

(z � !

i

)

p(!

i

)+1

+ : : : :

Using this, it follows (see e.g [1℄) that for eah ompat set F � U there exists a onstant

C

F

� 1 suh that, for every n 2 IN and for all z 2 F ,

C

�1

F

n

�

p(!

i

)+1

p(!

i

)

� j(f

�n

i

)

0

(z)j � C

F

n

�

p(!

i

)+1

p(!

i

)

: (2.1)

Clearly, the geometri meaning of p(!

i

) is that it is the number of petals at !

i

. Throughout

we let p

max

:= maxfp(!

i

) : i 2 I

p

g denote the maximal number of petals whih an possibly

our at paraboli points of f .

2.2. Conformal graph direted Markov systems and GPL-maps.

The analysis in setion 4 of analyti properties of the pressure funtion will make use of

the fat that a parabolially semihyperboli GPL-map is losely related to the onept of

a onformal graph direted Markov system (abbreviated as a CGDM-system). In order to

explain this relationship in greater detail, we now �rst reall from [10℄ the de�nition of a

CGDM-system.

The ombinatorial spine of a graph direted Markov system is represented by a direted

multigraph (V;E; i; t; A), onsisting of a �nite set V of verties, a ountable set E of direted

edges, two funtions i; t : E ! V , and a transition matrix A : E � E ! f0; 1g. Here, i(e)

refers to the initial vertex and t(e) to the terminal vertex of an edge e 2 E. In our speial

ontext here, the matrix A = (A

uv

) has the property that A

uv

= 1 if and only if t(u) = i(v).

The assoiated symboli spae is then de�ned as follows.

E := f(e

1

; e

2

; : : : ) 2 E

1

: A

e

i

e

i+1

= 1 for all i 2 INg:

Furthermore, there is a set fX

v

: v 2 V g of non-empty ompat onneted subsets X

v

of CI,

and a set � = f�

e

: X

t(e)

! X

i(e)

g

e2E

of univalent ontrations, all with some �xed Lipshitz

onstant 0 < s < 1. Eah of these maps �

e

is assumed to have a onformal extension from

some onneted open neighbourhood W

t(e)

of X

t(e)

to some onneted open neighbourhood

W

i(e)

of X

t(e)

. If additionally � satis�es the `open set ondition' as well as the `one ondition'

(see [10℄, Setion 4.2), then we say that � is a CGDM-system.

Note, in this situation the limit set J

�

of � is given as follows. For � = (�

1

; �

2

; : : : ) 2 E and
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n � 1, let

�

� j

n

:= �

�

1

Æ : : : Æ �

�

n

: X

t(�

n

)

! X

i(�

1

)

:

Sine � onsists of s-Lipshitz ontrations, it follows that �(�) :=

T

n2IN

�

� j

n

�

X

t(�

n

)

�

is a

singleton. This proedure gives a map � : E !

S

v2V

X

v

, and we let

J

�

:= �(E):

The following proposition states the main result of this setion. The proof introdues some

notation whih will be relevant also in setion 4. Furthermore, reall from [10℄ that `�nitely

primitive of order 2' means that for eah pair u; v 2 V there exists a; b 2 E suh that A

a;b

= 1

and i(a) = u; t(b) = v.

Proposition 2.3. Let f be a parabolially semihyperboli GPL-map. Then there exists a

�nitely primitive order 2 CGDM-system �

f

with J

�

f

� J(f) suh that

J

�

f

\ U

o

= J(f) \ U

o

n

[

n�0

f

�n

(
 [

\

k�0

f

�k

(U

r

)) :

Proof. For the proof it suÆes to show how to assoiate to f a CGDM-system. For this we

de�ne U

(i;j)

:= f

�1

j

(U

i

), for eah (i; j) 2 (I

p

� I

r

) [ (I

p

� I

p

n fdiag:g). Here fdiag:g denotes

the diagonal in I

p

� I

p

, and f

�1

j

: U ! U

j

refers the inverse of the map f j

U

j

. Using ondition

() in the de�nition of a parabolially semihyperboli GPL-map, it follows that

U

(i;j)

\

[

n2IN

f

n

(Crit(f)) = ;: (2.2)

Let V

f

:= I

o

[ (I

p

� I

r

) [ (I

p

� I

p

n fdiag:g) be the set of verties. The onformal univalent

ontrations of our system are given as follows. By (2.2) and the de�nition of the set I

o

,

we have that for eah v 2 V

f

the holomorphi inverse branhes of any iterate of f are

well-de�ned on U

v

. Hene, for v 2 V

f

and n 2 IN we onsider all holomorphi inverse

branhes f

�n

�

: U

v

! U of f

n

for whih f

�n

�

(U

v

) � U

w

for some w 2 V

f

, and for whih

f

k

(f

�n

�

(U

v

)) \ (

S

s2V

U

s

) = ; for all 1 � k < n. In this situation we write �

e

: U

t(e)

! U

i(e)

instead of f

�n

�

: U

v

! U

w

, where t(e) = v and i(e) = w. Also, we de�ne N(e) := n. Now, let

�

f

:= f�

e

: U

t(e)

! U

i(e)

g

e2E

f

;

where E

f

is some ountable auxiliary set parametrizing the family �

f

. Note that the set

V

f

of verties is �nite, whereas in general the set E

f

of edges is in�nite. Let E

f

refer to

the orresponding symboli spae. Sine U

v

\

S

n2IN

f

n

(Crit(f)) = ;, it follows that for eah

v 2 V

f

there exists an open onneted simply onneted set U

v

� W

v

� U suh that if e 2 E

f

and t(e) = v, then �

e

has a univalent holomorphi extension to W

v

and �

e

(W

v

) � U

i(e)

(for

later use, we also introdue aordingly W and W

o

:=

S

i2I

o

W

i

). Sine for eah i 2 I

p

we

have that

T

n�0

f

�n

(J(f) \ U

i

) = f!

i

g, we immediately obtain from the onstrution of �

f

that

J

�

f

\ U

o

= J(f) \ U

o

n

[

n�0

f

�n

(
 [

\

k�0

f

�k

(U

r

)) :
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We remark that the one ondition is satis�ed, sine for eah v 2 V the boundaries of the

dis U

v

is smooth. Also, the open set ondition follows immediately from the onstrution

of �

f

, noting that the elements of �

f

are inverse branhes of forward iterates of f . Finally,

sine for eah pair u; v 2 V there exist a; b 2 E

f

suh that i(b) 2 I

o

and suh that i(a) = u,

t(b) = v and A

a;b

= 1, it follows that the system �

f

is �nitely primitive of order 2.

2.3. Topologial pressure funtions.

In this setion we give a disussion of various de�nitions of the onept of a `pressure funtion'

assoiated with a dynamial system. We shall see that in the ontext of a parabolially

semihyperboli GPL-map all these di�erent notions of pressure oinide.

Let us begin with realling the lassial de�nition in ergodi theory of the notion pressure. We

refer to [2℄ for further details. Let T : X ! X be a ontinuous automorphism of a ompat

metri spae (X; d). Also, let d

n

refer to the metri on X whih is given, for x; y 2 X and

n � 0, by

d

n

(x; y) := maxfd(T

i

(x); T

i

(y)) : 0 � i � ng:

Then a set F � X is alled (n; �)-separated, for n � 0 and � > 0, if it is separated with respet

to the metri d

n

(that is d

n

(x; y) � � for all distint x; y 2 X). With (F

n

(�))

n2N

denoting a

sequene of maximal (in the sense of inlusion) (n; �)-separated sets, the topologial pressure

P of a ontinuous potential funtion � : X ! IR is then de�ned by

P(T; �) := lim

�!0

lim sup

n!1

1

n

log

0

�

X

x2F

n

(�)

exp

n�1

X

j=0

� Æ T

j

(x)

1

A

:

Note that the onept of topologial pressure has its origin in topologial dynamis. Closely

related to it is the measure theoretial entropy h

�

(T ), whih is entral in ergodi theory. It

is well-known that the link between these two important notions is given by the following so

alled variational priniple

P(T; �) = supfh

�

(T ) +

Z

�d�g:

In here, the supremum is taken with respet to all T -invariant (ergodi) Borel probability

measures � supported on X.

For more general situations in whih the potentials are no longer ontinuous or bounded, this

lassial de�nition of pressure fails. More preisely, for a GPL-map f suh that J(f) has non-

trivial intersetion with Crit(f), we are led to onsider potentials of the form �t log jf

0

j+�, for

t � 0 and � : X ! IR ontinuous. One easily veri�es that potentials of this type are in general

neither ontinuous nor bounded. A priori it is not lear how to adapt the above de�nition of

pressure to this more general situation. However, in [11℄ Przytyki suggested, in the ontext

of rational maps, several ways to generalize the onept of topologial pressure assoiated

with the potential �t log jf

0

j. For a GPL-map f and for potentials of the type �t log jf

0

j+ �,
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we now start our disussion of how to amend the lassial de�nition of topologial pressure,

by giving the following generalization of one of Przytyki's suggestions.

(P1) Point pressure.

For eah z 2 J(f), t � 0 and � : J(f)! IR a ontinuous potential, we let

P

z

(t; �) := lim sup

n!1

1

n

log

X

x2f

�n

(z)

j(f

n

)

0

(x)j

�t

exp(S

n

�(x)):

The point pressure P

P

(t; �) is then de�ned by

P

P

(t; �) := inf

z2J(f)

P

z

(t; �):

For every onneted set G � U , every n 2 IN , and every z 2 U we denote by C

n

(z; G) the

onneted omponent of f

�n

(G) ontaining z.

Before stating further possible generalizations of the notion pressure, we �rst give a brief

disussion of the point pressure just de�ned. For this the following tehnial observations will

turn out to be useful.

Lemma 2.4. Let � > 0 be given. Then there exist onstants B

�

� 1 and � > 0, depending

on �, suh that for eah � > 0 suÆiently small, and for every n 2 IN , z 2 J(f) and

f

n

(z) =2 B(
; �), the following holds.

If 
 6= ; then diam

�

C

n

(z; B(f

n

(z); �))

�

� B

�

n

�

p

max

+1

p

max

:

If 
 = ; then diam

�

C

n

(z; B(f

n

(z); �))

�

� B

�

e

��n

:

Proof. The proof of the �rst part is an immediate adaptation of the proof of Lemma 4.3

in [18℄ if one observes that by property () in the de�nition of parabolially semi-hyperboli

GPL maps in Setion 2.1, the fator � in formula (4.7) of [18℄ an be negleted. The seond

part has been proven in [17℄.

The lemma has the following immediate onsequene.

Lemma 2.5. Let � > 0 and � : J(f) ! IR be a H�older ontinuous funtion with H�older

exponent exeeding p

max

=(p

max

+ 1). Then there exists a onstant C

�

� 0, depending on �,

suh that for eah � > 0 suÆiently small, and for every n 2 IN , z 2 J(f), f

n

(z) =2 B(
; �)

and for all x; y 2 C

n

(z; B(f

n

(z); �)), we have

jS

n

�(x)� S

n

�(y)j � C

�

:

For a given ontinuous potential funtion � : J(f)! IR, let � and

^

� be de�ned by

� := inf

n2IN

�

1

n

supS

n

�

�

and

^

� := maxf

Z

�d� : � Æ f

�1

= �g:

8



Clearly, for every n 2 IN and every f -invariant Borel probability measure �, we have

Z

�d� =

1

n

Z

S

n

�d� �

1

n

supS

n

�:

This implies

R

�d� � �, from whih we dedue that

^

� � �: (2.3)

In order to proeed, we require the following simple observation.

Lemma 2.6. For every � > 0 there exists q 2 IN suh that supfS

n

�g � (� + �)n, for all

n � q.

Proof. By de�nition of �, for every � > 0 there existsm 2 IN suh that

1

m

supfS

m

�g < �+

�

2

.

Now, if n � m suh that n = sm + r, for 0 � r � m� 1 and s 2 IN , then it follows

supfS

n

�g � supfS

r

�g+supfS

sm

�g � (m�1)jj�jj

1

+s supfS

m

�g � (m�1)jj�jj

1

+sm

�

�+

�

2

�

:

This implies, for n suÆiently large,

1

n

supfS

n

�g �

(m� 1)jj�jj

1

n

+

sm

n

�

�+

�

2

�

�

(m� 1)jj�jj

1

n

+ �+

�

2

� �+ �:

By the previous lemma, we an now de�ne the following ritial exponents, for s 2 IR and

� : J(f)! IR a ontinuous potential,

Æ(�; s; z) := infft � 0 : P

z

(t; �) � sg; Æ(�; z) := Æ(�; �; z) and Æ(�) := inf

z2J(f)

Æ(�; z):

For the rest of this paper we shall assume from now on, if not stated otherwise, that in ase


 6= ; the potential � : J(f) ! IR is a H�older ontinuous funtion with H�older exponent �

whih exeeds p

max

=(p

max

+ 1). The following lemma is given for reasons of ompleteness. It

gives a generalization of a result of Przytyki (f. Lemma 3.3 in [11℄), but nevertheless it is

not essential for the purposes of this paper.

Lemma 2.7. There exists a set E � J(f) of Hausdor� dimension equal to zero suh that,

for all z 2 J(f) n E and t � 0,

P

z

(t; �) = P

P

(t; �) and Æ(�; z) = Æ(�):

Proof. For n 2 IN , we de�ne

P(z; t; �; n) :=

X

x2f

�n

(z)

j(f

n

)

0

(x)j

�t

exp(S

n

�(x)):

The proof is an immediate adaptation of the �rst part of the proof of Theorem 3.3 in [11℄.

The reader is referred to this proof in [11℄, where one should insert the following hanges.

9



Everywhere in this proof replae Crit(f) by Crit(f)[
. Also, in the notation of [11℄, hoose

the parameter � of Lemma 2.4 suh that � =

1

2

minfdiam(B

j

) : j = 1; 2; : : : ; kg: It then

follows that dist(
; B

1

[ B

2

[ : : : [ B

k

) > 0, and hene, by Koebe's Distortion Theorem and

Lemma 2.5, we have

P(z

2

; t; �; n)

P(z

1

; t; �; n)

�

^

�

�k

for some suitable onstant

^

� � 1. With these modi�ations one an now follow word by word

the proof of Theorem 3.3 in [11℄.

For the following lemma, reall that for t � 0 and s 2 IR, a Borel probability measure

m

t;�

supported on J(f) is by de�nition a (e

s

; t; �)-onformal Gibbs state if and only if f is

non-singular with respet to m

t;�

and

d(m

t;�

Æ f)

dm

t;�

= e

s

jf

0

j

t

exp(��):

Note that in Setion 3 we will disuss this type of measure in greater detail.

Lemma 2.8. Let m be a (e

s

; t; �)-onformal Gibbs state m. Then there exists a non-empty

Borel set S � J(f) of positive m-measure suh that P

z

(t; �) � s and Æ(�; s; z) � t, for all

z 2 S.

Proof. If t > 0 then we have (f

k

)

0

() = 0, for all  2 Crit(f) and k � 1. This implies that

m

�

S

k2IN

f

k

(Crit(f))

�

= 0. Now, allowing also the ase when t = 0, we shall prove �rst by

way of onradition that, for every  2 Crit(f) \ J(f),

1

[

n=1

f

�n

() 6�

[

j�1

f

j

(Crit(f)): (2.4)

Hene, suppose that for some  2 Crit(f) \ J(f),

1

[

n=1

f

�n

�

[

j�1

f

j

(Crit(f)):

Fix a sequene f

n

g

1

n=0

suh that f(

n+1

) = 

n

for all n � 0. Then for every n � 0 there

exists w

n

2 Crit(f) and j

n

� 1 suh that 

n

= f

j

n

(w

n

). Hene,  = f

n

(

n

) = f

n+j

n

(w

n

).

Sine lim

n!1

(n + j

n

) = +1 and sine the set Crit(f) is �nite, there exists a point a 2

Crit(f) and two integers 0 < k < l suh that f

k

(a) =  and f

l

(a) = . It follows that

f

l�k

() = f

l�k

(f

k

(a)) = f

l

(a) = , whih is a ontradition sine no ritial point in the

Julia set an be periodi. Now suppose that m

�

S

k2IN

f

k

(Crit(f))

�

> 0. Then m(f

k

()) > 0

for some  2 Crit(f) \ J(f) and some k � 1, and onformality of the measure m implies

that m(y) > 0 for all y 2

S

1

n=1

f

�n

(). Thus, applying (2.4), we onlude that in any ase

m(G) > 0, for G := J(f) n

S

j�1

f

j

(Crit(f)). Now, by a straighforward geometri measure

10



theory argument, we an onstrut for every integer n � 1, �nitely many mutually dis-

joint open topologial disks V

(n)

1

; V

(n)

2

; : : : ; V

(n)

q

n

suh that V

(n)

1

[ V

(n)

2

: : : [ V

(n)

q

n

� J(f) and

m

�

�V

(n)

1

[ �V

(n)

2

: : : [ �V

(n)

q

n

n

S

k2IN

f

k

(Crit(f))

�

= 0. Let f

�n

i;j

: V

(n)

i

! CI refer to the holo-

morphi inverse branhes of f

n

de�ned on V

(n)

i

, for i = 1; 2; : : : ; q

n

and j = 1; 2; : : : ; deg

n

(f).

We then have

1 �

q

n

X

i=1

deg

n

(f)

X

j=1

m

�

f

�n

i;j

(V

(n)

i

)

�

=

q

n

X

i=1

deg

n

(f)

X

j=1

Z

V

(n)

i

j(f

�n

i;j

)

0

j

t

exp

�

S

n

� Æ f

�n

i;j

� s

�

dm

= e

�sn

q

X

i=1

Z

V

(n)

i

P(z; t; �; n)dm = e

�sn

Z

G

P(z; t; �; n)dm:

Therefore

R

G

P(z; t; �; n)dm � e

sn

, and for arbitrary � > 0, we have that

m

�

fz 2 G : P(z; t; �; n) � e

s+�n

g

�

� e

��n

:

Applying the Borel-Cantelli Lemma, it now follows that for m-a.e. z 2 G we have P

z

(t; �) �

s + �. Sine � was arbitrary, this implies that for m-a.e. z 2 G we have P

z

(t; �) � s as well

as Æ(�; s; z) � t.

The following gives a list of other possible generalizations of suggestions of Przytyki in [11℄

of how to ammend the notion of topologial pressure in situations in whih Crit(f) plays a

ruial role.

(P2) Variational pressure.

P

V

(t; �) := supfh

�

(f) +

Z

(�t log jf

0

j+ �)d�g;

where the supremum is taken with respet to all ergodi f -invariant measures sup-

ported on J(f).

(P3) Hyperboli variational pressure.

P

HV

(t; �) := supfh

�

(f) +

Z

(�t log jf

0

j+ �)d�g;

where the supremum is taken with respet to all ergodi f -invariant measures sup-

ported on J(f) suh that the Lyapunov exponent is positive, i.e. suh that

R

log jf

0

jd� >

0.

(P4) Hyperboli pressure.

P

H

(t; �) := supfP(f j

X

;�t

Z

log jf

0

j+ �)g;

where the supremum is taken with respet to all f -invariant hyperboli subsets X of

J(f) suh that some iterate of f j

X

is topologially onjugate to a subshift of �nite

type. (Reall that a forward invariant ompat set X � J(f) is alled hyperboli if

there exists n 2 IN suh that j(f

n

)

0

(x)j > 1, for eah x 2 X).

11



(P5) DU-pressure.

P

DU

(t; �) := supfP(f j

K(V )

;�t

Z

log jf

0

j+ �)g;

where the supremum is taken with respet to all open subsets V of J(f) for whih

J(f) \ Crit(f) � V , and where we have set K(V ) := J(f) n

S

n�0

f

�n

(V ). (Note that

K(V ) is ompat, f -invariant and disjoint from Crit(f)).

(P6) Conformal pressure.

P

C

(t; �) := log �(t; �);

where �(t; �) is de�ned as the in�mum of the set of all positive � for whih there exists

a Borel probability measure m suh that d(m Æ f)=dm = �jf

0

j

t

e

��

.

The following theorem gives the main result of this setion. We show that for a parabolially

semihyperboli GPL-map f all notions of pressure introdued in (P1) up to (P6) oinide.

For the remainder of this paper we shall then refer to the ommon value established in this

theorem as to the topologial pressure P(t; �) of the potential �t log jf

0

j+ �.

Theorem 2.9. Let f be a parabolially semihyperboli GPL-map, and � : X ! IR a H�older

ontinuous potential with H�older exponent � exeeding p

max

=(p

max

+ 1). We then have, for

every t 2 [0; Æ(�)),

P

P

(t; �) = P

V

(t; �) = P

HV

(t; �) = P

H

(t; �) = P

DU

(t; �) = P

C

(t; �):

Proof. Without loss of generality, we an assume that Æ(�) > 0. Clearly, we have that

P

P

(t; �) � P

H

(t; �). Also, we have P

H

(t; �) � P

HV

(t; �) (.f. [13℄), as well as P

HV

(t; �) �

P

H

(t; �). The latter inequality is an immediate onsequene of the variational priniple.

Summarizing, we now have

P

P

(t; �) � P

H

(t; �) = P

HV

(t; �): (2.5)

Next we show that P

DU

(t; �) > � implies

P

HV

(t; �) � P

DU

(t; �): (2.6)

For this let � > 0 be hosen suÆiently small suh that P

DU

(t; �) � � > �. The variational

priniple gives the existene of a f -invariant Borel probability measure � supported on some

set K(V ) suh that h

�

(f)� t�

�

+

R

�d� � P

DU

(t; �)� � > � (where �

�

refers to the Lyapunov

exponent). Hene, we are left to show that �

�

> 0. In order to see this, we use (2.3) whih

gives

h

�

(f)� t�

�

> ��

Z

�d� �

^

��

Z

�d� � 0:

Hene, we have h

�

(f) > t�

�

� 0, and therefore we an apply Ruelle's inequality (that is

h

�

(f) � 2maxf0; �

�

g) to dedue �

�

> 0.
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Next we show that P

V

(t; �) > � implies

P

HV

(t; �) = P

V

(t; �): (2.7)

Clearly, we have P

HV

(t; �) � P

V

(t; �). Similar as above, let � > 0 be hosen suÆiently small

suh that P

V

(t �)� � > �. It follows that there exists a f -invariant Borel probability measure

� suh that h

�

(f)� t�

�

+

R

�d� � P

V

(t; �)� � > �. Hene, we are left to show that �

�

> 0,

whih follows in exatly the same way as in the previous step.

Next we show that for 0 � t < Æ(�) we have

P

DU

(t; �) > � and P

DU

(t; �) � log �(t; �): (2.8)

For this we remark that, by a result in [12℄, for eah  2 Crit(f) there exists x



2 !() suh

that

lim sup

n!1

j(f

n

)

0

(x



)j > 0: (2.9)

For every n 2 IN , we de�ne

V

n

:=

[

2J(f)\Crit(f)

B(x



; 1=n):

We shall now prove formula (2.8) in two step. First, we show that P

DU

(t; �) > � implies

P

DU

(t; �) � log �(t; �), and seondly, using the onstrution of the �rst step, we show how to

dedue P

DU

(t; �) > �. This will then omplete the proof of the theorem.

Step 1. Assume that P

DU

(t; �) > �, and let k 2 IN be �xed. Let E be de�ned as in the proof

of Lemma 5.1 in [3℄, and onsider the sets E

n

:= f j

�n

K(V

k

)

. We then let



k

(t) := lim sup

n!1

1

n

log

X

x2E

n

j(f

n

)

0

(x)j

�t

exp

�

S

n

�(x)

�

:

Sine the map f j

K(V

k

)

: K(V

k

) ! K(V

k

) has no ritial points, it follows that K(V

k

) is an

(n; �)-separated set, for

� := inf

y2K(V

k

)

�

minfjz � xj : x; z 2

�

f j

K(V

k

)

�

�1

(y) and x 6= zg

�

> 0:

Hene, we have that



k

(t) � P

�

f j

K(V

k

)

;�t log jf

0

j+ �

�

: (2.10)

We remark the set E an be hosen suh that (.f. the proof of Lemma 5.1 in [3℄)



k

(t) � P

�

f j

K(V

k

)

;�t log jf

0

j+ �

�

�

1

k

: (2.11)

Next, reall from [3℄ that a Borel set A � CI is alled speial if f j

A

is injetive. The following

lemma has been obtained in [3℄ (.f. Lemma 3.1, Lemma 3.2 and the proof of Lemma 5.3; .f.

also [4℄).
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Lemma 2.10. For every t � 0, there exists a Borel probability measure m

k

suported on K(V

k

)

suh that

(a) m

k

(f(A)) �

R

A

e



k

(t)

jf

0

j

t

e

��

dm

k

for every speial set A � J(f) and

(b) m

k

(f(A)) =

R

A

e



k

(t)

jf

0

j

t

e

��

dm

k

for every speial set A � J(f) n V

k

.

Now �rst observe that by ombining (2.10) and (2.11), we have that

lim

k!1



k

(t) = P

DU

(t; �): (2.12)

Hene, with m referring to some weak limit of the sequene of measures m

k

of the previous

lemma, we have

m(f(A)) �

Z

A

e

P

DU

(t;�)

jf

0

j

t

e

��

dm

for eah speial set A � J(f), and also

m(f(A)) =

Z

A

e

P

DU

(t;�)

jf

0

j

t

e

��

dm (2.13)

for every speial set A � J(f) n fx



:  2 J(f) \ Crit(f)g.

Now note that our assumption P

DU

(t; �) > � implies that there exists � > 0 and q 2 IN

suh that P

DU

(t; �) > � +

1

q

supS

q

(�). Fix  2 J(f) \ Crit(f). By (2.9) we have that

lim sup

n!1

j(f

n

)

0

(x



)j > 0. Now, if we would have that m(x



) > 0, then it would follow that

lim sup

n!1

m(f

n

(x



)) � lim sup

n!1

m(f

qn

(x



))

� m(x



lim sup

n!1

exp

�

qnP

DU

(t; �)

�

j(f

qn

)

0

(x



)j exp

�

� sup(S

qn

�)

�

� m(x



) lim sup

n!1

exp

�

qnP

DU

(t; �)� n sup(S

q

�)

��

j(f

qn

)

0

(x



)j

� m(x



) lim sup

n!1

e

�qn

j(f

qn

)

0

(x



) =1;

whih is ontradition. Hene, we have m(f

j

(x



)) = 0, for every j � 0, and therefore (2.13)

holds for every speial set A � J(f). This learly gives that P

DU

(t; �) � log �(t; �).

Step 2. We now assume that P

DU

(t; �) � �. By [13℄ we have that P

DU

(0; �) � P

H

(0; �) =

P(�), and onsequently P

DU

(0; �) = P(�). Sine P(�) > �, it follows that there exists u 2 IN

suh that P

�

f j

K(V

u

)

; �

�

> �. Let � > 0 be �xed suh that P

�

f j

K(V

u

)

; �

�

> �+ �. Then there

exist two sequenes ft

n

g

1

n=1

and fk

n

g

1

n=1

suh that t

n

� t for all n and lim

n!1

t

n

= s � t,

and

�+ � < P

�

f j

K(V

k

n

)

;�t

n

log jf

0

j+ �

�

� �+ � +

1

n

:

By replaing 

k

(t) by 

k

n

(t

n

), and noting that similarly as in Step 1 we have that lim

n!1



k

n

(t

n

) =

� + �. Hene we an repeat the onstrution in Step 1, and in this way we obtain a Borel

probability measure m on J(f) for whih

m(f(A)) �

Z

A

e

�+���

jf

0

j

s

dm
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for every speial set A � J(f) and

m(f(A)) =

Z

A

e

�+���

jf

0

j

s

dm (2.14)

for every speial set A � J(f) n fx



:  2 J(f)\Crit(f)g. Sine n(�+ �)� S

n

� > 0, for some

n 2 IN , we obtain as in the previous step that (2.14) holds for every speial set A � J(f).

This means that a (e

�+�

; t; �)-onformal measure exists. Therefore, if t � 0 and �

n

is suh

that lim�

n

= �, then every aumulation point of a sequene of (�

n

; t; �)-onformal measures

is neessarily a (�; t; �)-onformal measure. This implies that there must exist a (e

�

; t; �)-

onformal measure on J(f). By lemma 2.8, it therefore follows that Æ(�) � t, and as t < Æ(�),

we get a ontradition, whih �nishes the proof of (2.8).

For the remainder, observe that if t < Æ(f) then by lemma 2.8

P

P

(t; �) � log�(t; �): (2.15)

Combining (2.5), (2.6), (2.8) and (2.15), we obtain that if t < Æ(f) then

P

P

(t; �) � P

H

(t; �) = P

HV

(t; �) � P

DU

(t; �) � log �(t; �) � P

P

(t; �): (2.16)

In here, the seond inequality uses the fat that P

DU

(t; �) > � (whih follows, sine by the �rst

part of (2.8), we have that t < Æ(�) implies that P

DU

(t; �) > �). Clearly, all the inequality

signs in (2.16) are now in fat equality signs. Hene the proof follows from (2.16) and (2.8),

noting that if t < Æ(f) then P

V

(t; �) � P

DU

(t; �) and P

DU

(t; �) > �.

3. Invariant Gibbs states

In this setion we give a detailed disussion of onformal measures m

t;�

, whih we introdued

in the previous setion, and apply the results obtained to onstrut f -ivariant measures equiv-

alent to these onformal measures. Note that the analysis in this setion extends the results

obtained in [15℄ (setion 4).

Lemma 3.1. For a parabolially semihyperboli GPL-map f we have, for eah t 2 [0; Æ(�)),

m

t;�

0

�

[

n�1

f

n

(Crit(f)) [ 


1

A

= 0:

Proof. Put PC(f) :=

S

n2IN

f

n

(Crit(f)): Combining (b) and () in De�nition 2.1 and the

fat that the sets U

i

have pairwise disjoint losures, we obtain that there exists Æ > 0 suh

that if z 2 PC(f), then for every n � 0 there exists a well-de�ned holomorphi inverse branh

f

�n

z

(B(f

n

(z); 16KÆ) ! U

r

of f

n

sending f

n

(z) to z. Choose a sequene fn

j

g

1

j=1

suh that

lim

j!1

f

n

j

(z) = y for some y 2 PC(f). By passing to a subsequene, if neessary, we may

15



assume that jf

n

j

(z)�yj < Æ, for all j 2 IN . By Lemma 2.2, we have that PC(f) is a ompat

nowhere dense subset of J(f), whih gives

m

t;�

�

B(f

n

j

(z); 2Æ) n PC(f)

�

� m

t;�

(B(y; Æ) n PC(f)) > 0:

Using Koebe's Distortion Theorem and the forward invariane of the set PC(f), it now follows

that

B(z;K2Æj(f

n

j

)

0

(z)j

�1

) n PC(f) � f

�n

j

z

�

B(f

n

j

(z); 2Æ) n PC(f)

�

:

Applying Koebe's Distortion Theorem one more, along with Lemma 2.5, we obtain

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 2Æ) n PC(f)

��

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 8KÆ

��

�

C

�1

�

exp

�

S

n

j

�(z)

�

K

�t

j(f

n

j

)

0

(z)j

�t

e

�P(t;�)n

j

m

t;�

�

B(f

n

j

(z); 2Æ) n PC(f))

�

C

�

exp

�

S

n

j

�(z)

�

K

t

j(f

n

j

)

0

(z)j

�t

e

�P(t;�)n

j

m

t;�

�

B(f

n

j

(z); 8KÆ)

�

= C

�2

�

K

�2t

m

t;�

�

B(f

n

j

(z); 2Æ) n PC(f))

�

m

t;�

�

B(f

n

j

(z); 8KÆ)

�

� C

�2

�

K

�2t

m

t;�

(B(y; Æ) n PC(f))

m

t;�

(B(y; (8K + 1)Æ))

> 0:

By the

1

4

-Koebe's Distortion Theorem, we have f

�n

j

z

�

B(f

n

j

(z); 8KÆ

�

� B(z;K2Æj(f

n

j

)

0

(z)j

�1

).

Hene, we have

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

) n PC(f)

�

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

)

�

�

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 2Æ) n PC(f)

��

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 8KÆ

��

�

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 8KÆ

��

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

)

�

� C

�2

�

K

�2t

m

t;�

(B(y; Æ) n PC(f))

m

t;�

(B(y; (8K + 1)Æ))

�

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

)

�

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

)

�

=

m

t;�

(B(y; Æ) n PC(f))

m

t;�

(B(y; (8K + 1)Æ))

> 0:

Therefore the Lebesgue's Density Theorem gives that m

t;�

(PC(f)) = 0. Finally, let ! 2 


be arbitrary. We then have that m

t;�

(!) = m

t;�

(f

n

(!)) = exp(nP(t; �) � S

n

�(!)), for eah

n 2 IN , and sine lim sup

n!1

(nP(t; �)� S

n

�(!)) =1, it follows that m

t;�

(!) = 0.

For the next lemma we remark that by a standard normal family argument we have that

there exist u 2 IN and �

�

> 1 suh that j(f

u

)

0

(z)j > �

�

for all z 2 !(Crit(J(f))). Therefore,
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there exist � > 1 suh that, for all j � 0, n 2 IN and every  2 Crit(f),

j(f

j

)

0

(f

n

())j � �

j

: (3.1)

Lemma 3.2. For eah Æ > 0 suÆiently small, and for all s 2 IN and  2 Crit(f)), we have,

where q() � 2 refers to the order of the ritial point ,

m

t;�

�

B

�

; (Æj(f

s

)

0

(f())j

�1

)

1=q()

))� j(f

s

)

0

(f())j

�t=q()

e

�P(t;�)s

exp

�

S

s

�()

�

:

Therefore, we in partiular have that m

t;�

() = 0.

Proof. Let fm

k

g

1

k=1

and f

k

(t)g

1

k=1

respetively be the sequene of measures and numbers

obtained in Lemma 2.10. Fix Æ 2 (0; dist(U

r

; �U)=2) and  2 Crit(f)). Also, de�ne �

n

() :=

j(f

n

)

0

(f())j; for eah n 2 IN , as well as the annulus A(w; r; R) := fz 2 CI : r � jz � wj < Rg

with entre at w 2 CI, inner radius r and outer radius R. By Koebe's distortion theorem and

by Lemma 2.5, it follows that, for all l; n 2 IN ,

m

l

(B(f(); Æ�

n

()

�1

)) � �

n

()

�t

e

�

k

(t)n

exp

�

S

n

�(f())

�

:

Using this observation and the fat that j(f

�1



)

0

(z)j � jz � f()j

�(1�1=q())

, for z 6= f() suh

that z is lose to f() (here, f

�1



refers to an inverse branh of f whih maps z lose to  and

whih is de�ned in some neighbourhood of z), it follows, for eah s 2 IN ,

m

l

(B(; (Æ�

s

()

�1

)

1=q()

)) =

1

X

j=1

m

l

(A(; (Æ�

s(j+1)

()

�1

)

1=q()

; (Æ�

sj

()

�1

)

1=q()

))

�

1

X

j=1

m

l

�

f

�1



(A(f(); Æ�

s(j+1)

()

�1

; Æ�

sj

()

�1

))

�

�

1

X

j=1

�

sj

()

(

1�

1

q()

)

t

e

�

l

(t)

e

�()

m

l

�

A(f(); Æ�

s(j+1)

()

�1

; Æ�

sj

()

�1

)

�

� e

�

l

(t)

1

X

j=1

�

sj

()

(

1�

1

q()

)

t

e

�()

m

l

�

B(f(); Æ�

sj

()

�1

)

�

�

1

X

j=1

�

sj

()

(

1�

1

q()

)

t

�

sj

()

�t

e

�()

exp

�

S

sj

�(f())

�

e

�

l

(t)sj

=

1

X

j=1

�

sj

()

�t=q()

e

�

l

(t)sj

exp

�

S

sj

�()

�

= �

s

()

�t=q()

e

�

l

(t)s

exp

�

S

s

�()

�

�

0

�

1 +

1

X

j=2

 

�

sj

()

�

s

()

!

�t=q()

exp

�

S

(j�1)s

�(f

s

())� 

l

(t)s(j � 1)

�

1

A

:

Now, we have that

 

�

sj

()

�

s

()

!

= j(f

s(j�1)

)

0

(f

s

())j
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and by (3.1), these numbers are uniformly bounded away from zero. Therefore, we have

(�

sj

()=�

s

())

�t=q()

� 1, for all s; j 2 IN . Sine lim

l!0



l

(t) = P(t; �), it follows that 

l

(t) �

� + �, for some � > 0 and for all l 2 IN large enough. Consequently, using lemma 2.6, we

dedue, for all l 2 IN suÆiently large,

m

l

�

B(; (Æ�

sk

()

�1

)

1=q()

)

�

� �

s

()

�t=q()

e

�P(t;�)s

exp

�

S

s

�()

�

;

and hene,

m

t;�

�

B(; (Æ�

sk

()

�1

)

1=q()

)

�

� �

s

()

�t=q()

e

�P(t;�)s

exp

�

S

s

�()

�

:

Lemma 3.3. For t 2 [0; Æ(�)), the measure m

t;�

has no atoms.

Proof. Suppose that m

t;�

(z) > 0, for some z 2 J(f). Using Lemma 3.1 and Lemma 3.2,

it then follows that z =2

S

n�0

f

�n

(
 [ Crit(f)). We shall prove that there exists Æ > 0

and a sequene fn

j

g

1

j=1

depending on z suh that there are well-de�ned holomorphi inverse

branhes f

�n

j

z

: B(f

n

j

(z); 4Æ) ! U of f

n

j

whih map f

n

j

(z) to z. Clearly, suh branhes

exist if f

n

(z) 2 U

o

[ U

p

, for in�nitely many n. For the remaining ases note that there

then exists q � 0 suh that f

n

(z) 2 U

r

, for all n � q. Therefore, there exists Æ > 0 suh

that the holomorphi inverse branhes f

�(n�q)

q

: B(f

n

(z); 2Æ) ! U of f

n�q

, whih map f

n

(z)

to f

q

(z), are well de�ned, for all n � q. Sine z =2

S

j�0

Crit(f

j

), there exists  > 0 suh

that the holomorphi inverse branh f

�q

z

: B(f

q

(z); ) ! U of f

q

, whih maps f

q

(z) to z, is

well de�ned. Sine lim

n!1

diam

�

f

�(n�q)

q

(B(f

n

(z); 2Æ)

�

= 0 (as z 2 J(f)), the ompositions

f

�q

z

Æ f

�(n�q)

q

: B(f

n

(z); 2Æ)! U are well de�ned, for all n � q. This shows that in any ase

we have the laimed existene of inverse branhes. Let us emphasize that we just saw that

lim

j!1

diam

�

f

�n

j

z

(B(f

n

j

(z); 2Æ)

�

= 0. This immediately implies that lim

j!1

j(f

n

j

)

0

(z)j =

1. Sine P(t; �) > �, it follows that lim

j!1

m(f

n

j

(z)) = 1, whih is a ontradition and

hene �nishes the proof.

For f -invariant Gibbs states we now observe the following.

Theorem 3.4. Let m

t;�

be an (exp(P(t; �); t; �)-onformal Gibbs state for a non-reurrent

GPL-map f suh that m

t;�

�

S

n�1

f

n

(Crit(f)) [ 


�

= 0. Then up to a multipliative onstant

there exists a unique f -invariant, �-�nite measure �

t;�

whih is onservative and ergodi, and

whih is equivalent to m

t;�

. The measure �

t;�

will be referred to as the invariant Gibbs state

of the potential �t log jf

0

j+ �.

The idea of the proof of Theorem 3.4 is to apply a general method of [8℄, whih gives a suÆient

ondition from whih the existene of �-�nite absolutely ontinuous invariant measure an be

dedued. We now reall this result, and we shall also give a brief outline of how this result is
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obtained.

Let X be a �-ompat metri spae, m a Borel probability measure on X whih is positive

on open sets, and let T : X ! X be a measurable map suh that m is quasi-invariant with

respet to T (that is, the measure m Æ T

�1

is absolutely ontinuous with respet to m).

Moreover, let A = fA

n

: n � 0g be a ountable partition onsisting of �-ompat subsets of

X of positive m-measure, suh that m(X n

S

n�0

A

n

) = 0. Reall that in this situation A is

alled irreduible, if we have that for all m;n 2 IN there exists k � 0 suh that

m(T

�k

(A

m

) \ A

n

) > 0: (3.2)

The following gives the result of Martens (.f. Proposition 2.6 and Theorem 2.9 of [8℄).

Theorem 3.5. Let X; T;m be as above. Suppose that T is onservative and ergodi with

respet to m, and let A = fA

n

: n � 0g be an irreduible partition. If we have that for every

n 2 IN there exists K

n

� 1 suh that, for all k � 0 and all Borel sets A � A

n

,

K

�1

n

m(A)

m(A

n

)

�

m(T

�k

(A))

m(T

�k

(A

n

))

� K

n

m(A)

m(A

n

)

; (3.3)

then there exists a �-�nite T -ivariant measure � whih is equivalent to m. Moreover, � is

onservative and ergodi, as well as unique up to a multipliative onstant.

Sine in our appliation of this result we will not only require the statement of Theorem 3.5

but also the method with whih the invariant measure in there is derived, we now give the

sketh of the proof of this result of Martens.

Proof of Theorem 3.5 (sketh). Following Martens, one onsiders the following sequenes

of measures

S

k

m :=

k�1

X

i=0

m Æ T

�i

and Q

k

m :=

S

k

m

S

k

m(A

0

)

:

It is shown in [8℄ that eah weak limit � of the sequene Q

k

(m) ful�lls the preliminaries of

Theorem 3.5 (where a sequene f�

k

: k 2 INg of measures on X is said to onverge weakly if

the measures �

k

onverge weakly on A

n

, for all n 2 IN). Moreover, it is shown in [8℄ that the

sequene Q

k

m onverges and that we have, for every Borel set F � X,

�(F ) = lim

n!1

Q

k

m(F ):

Clearly, we have that �(A) � 1 < 1. Using (3.2) and (3.3), one then obtains the following

two lemmata (.f. Lemma 2.4 in [8℄).

Lemma 3.6. For eah n � 0 we have that 0 < �(A

n

) < 1 and that the Radon-Nikodym

derivative

d�

dm

is bounded on A

n

.
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Lemma 3.7. For all i; j � 0 there exists a onstant � > 0 suh that, for all n 2 IN and for

all Borel sets D � A

i

and E � A

j

,

S

n

m(D)

S

n

m(E)

� �

m(D)

m(E)

:

We now return to the situation of a generalized polynomial-like map f . For the proof of the

ergodiity and onservativity of the measure m

t;�

we refer to [17℄ (Theorem 4.1). Therefore,

in order to be able to apply Theorem 3.5, we only need to onstrut an irreduible partition

A whih has the property (3.3). For this, let Y := J(f) n (

S

n2IN

f

n

(Crit(f)) [ 
), and

onsider, for eah y 2 Y , a ball B(y; r(y)) suh that m(�B(y; r(y))) = 0 and 0 < r(y) <

(1=2)dist(y;

S

n2IN

f

n

(Crit(f)) [ 
). Clearly, by assoiating to eah y 2 Y a �xed ball of this

type, this gives a over of Y . Sine Y is a separable metri spae, one an redue this over

to a ountable, loally �nite over of Y , denoted by f

~

A

n

: n � 0g (here, loally �nite means

that eah point x 2 Y has an open neighborhood interseting at most �nitely many elements

of the over). The partition A = fA

n

: n � 0g is then de�ned by indution as follows.

A

0

:=

~

A

0

and for n 2 IN , let A

n

:=

~

A

n

n

n�1

[

k=0

~

A

k

:

Clearly, by onstrution we have that the elements of A are pairwise disjoint, and

[

n2IN

A

n

� J(f) n (

[

n2IN

f

n

(Crit(f)) [ 
) n

[

n�0

�

~

A

n

:

Using the assumption of Theorem 3.4, it follows that m

t;�

�

S

n�0

A

n

�

= 1. Now, the fat that

(3.3) holds in the situation here is an immediate onsequene of ombining Koebe's Distortion

Theorem and the observation that by Lemma 2.5 we have exp(S

n

 (y))= exp(S

n

 (x))� 1, for

all n 2 IN and all x; y 2 f

�n

�

(A

k

) (here A

k

refers to some arbitrary element of the partition

A, and f

�n

�

to some arbitrary holomorphi inverse branh of f

n

de�ned on A

k

). Finally, the

fat that A is irreduible follows, sine the A

n

are open sets and the map f : J(f) ! J(f)

is topologially exat.

The aim now is to provide a suÆient ondition whih guarantees that the �-�nite measure

�

t;�

is in fat a �nite measure.

For the following reall that the T -invariant measure �

t;�

(see Theorem 3.4) is alled of �nite

ondensation at x 2 J(f) if and only if there exists an open neighborhood V of x suh that

�

t;�

(V ) <1. Otherwise �

t;�

is said to be of in�nite ondensation at x.

We shall now see that the points of in�nite ondensation of �

t;�

are neessarily paraboli �xed

points.

Theorem 3.8. Let f be a parabolially semi-hyperboli GPL- map. For t 2 [0; Æ(�)), we have

that 
(f) ontains the set of points of in�nite ondensation of �

t;�

.
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Proof. Put m := m

t;�

. Sine the onformal measure m is positive on non-empty open sets,

it follows that inffm(B(x; r)) : x 2 J(f)g > 0, for every r > 0. Even more, there exists

�

0

(r) 2 (0; r) suh that

M(r) = inffm(B(x; r) nB(x; �

0

(r)) : x 2 J(f)g > 0: (3.4)

Reall from the beginning of the proof of Lemma 3.1 that there exists

Æ 2

�

0; dist

�


(f);

[

n�0

f

n

(Crit(f)

��

suh that for every  2 Crit(J(f)), k 2 IN and n � 0 we have that the holomorphi inverse

branh f

�k

f

n

()

: B(f

n+k

(); 4Æ) ! CI whih maps f

n+k

() to f

n

() is well-de�ned. It follows

from (3.1) that we have, for all u suÆiently large,  2 Crit(J(f)), k � 0 and 0 � i � u� 1,

f

�u

f

i+ku

�

B(f

i+(k+1)u

(); 2Æ)

�

� B(f

i+ku

(); �

0

(Æ)): (3.5)

We de�ne, for  2 Crit(J(f)), 0 � j � u� 1 and i � 0,

R

i;j

() := f

�ju

f

i

()

�

B(f

i+ju

(); Æ)

�

n f

�(j+1)u

f

i

()

�

B(f

i+(j+1)u

(); Æ)

�

= f

�ju

f

i

()

�

B(f

i+ju

(); Æ) n f

�u

f

i+ju

()

(B(f

(i+(j+1)u

(); Æ)

�

:

(3.6)

By (3.1) and Koebe's distortion theorem, we have that jS

ju

�(x) � S

ju

�(y)j � 1, for all

x; y 2 R

i;j

(). Thus, applying (3.4), (3.5) and one more Koebe's distortion theorem, we

onlude

m(R

i;j

()) �

� e

�P(t;�)ju

j(f

ju

)

0

(f

i

())j

�t

exp

�

S

ju

�(f

i

())

�

�m

�

B(f

iju

(); 2Æ) n f

�u

f

i+ju

()

�

B(f

(i+(j+1)u

(); 2Æ

��

� e

�P(t;�)ju

j(f

ju

)

0

(f

i

())j

�t

exp

�

S

ju

�(f

i

())

�

:

(3.7)

Now let x 2

S

n�0

f

n

(Crit(J(f))) be �xed. Clearly, sine f is parabolially semi-hyperboli,

the latter set is disjoint from 
 [ Crit(f). Sine Crit(J(f)) \ !(Crit(J(f))) = ;, we dedue

from [16℄ (Lemma 2.13) that there exists 0 <  < Æ=2 suh that if n 2 IN and y 2 f

�n

(x),

then there exists at most one 0 � k � n � 1 suh that f

k

(C

n

(y; B(x; 4))) \ Crit(f) 6= ;

onsists of at exatly one point, whih will be denoted by . Without loss of generality we

may assume that the element A

0

of the partition A is ontained in B(x; ). If we now assume

that C

n

(y; B(x; 2)) \ Crit(f

n

) = ;, then Koebe's distortion theorem and Lemma 2.5 gives

that

m

�

C

n

(y; B(x; ))

�

m

t

�

C

n

(y; B(x; )) \ f

�n

(A

0

)

�

�

m

t

(B(x; ))

m(A

0

)

� 1: (3.8)
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On the other hand, if C

n

(y; B(x; 2)) \ Crit(f

n

) 6= ;, then there exists 0 � k � n � 1 suh

that  2 f

k

(C

n

(y; B(x; 2))) and

�

f

k

(C

n

(y; B(x; 4))) n f

k

(C

n

(y; B(x; 2)))

�

\ Crit(f

n�k

) = ;: (3.9)

We have that

j(f

i

)

0

(z)j � jz � j

q()�1

; (3.10)

for all 0 � i � u� 1 and all z 2 C

i

(; B(f

i

(); 2Æ)) (note that q() is the order of  also for

the funtion f

i

). Let us write n�k = su+ r, for s � 0 and 0 � r � u� 1. Using (3.7), (3.10)

and the fat

f

k

(C

n

(y; B(x; ))) � C

r+su

(; B(f

r+su

(); Æ));

it follows that

m

�

f

k

(C

n

(y; B(x; )))

�

�

X

j�s

j(f

ju

)

0

(f

r

())j

�t

e

�P(t;�)(r+ju)

exp

�

S

r+ju

�()

� �

j(f

ju

)

0

(f

r

())j

�1

�

(

1

q()

�1

)

t

�

X

j�s

e

�P(t;�)(r+ju)

j(f

ju

)

0

(f

r

())j

�

t

q()

exp

�

S

r+ju

�()

�

:

(3.11)

Sine A

0

� B(x; ) � B(f

r+su

(); Æ), using Koebe's distortion theorem and Lemma 2.5, we

obtain

m

�

f

k

(C

n

(y; B(x; ))) \ f

�(n�k)

(A

0

)

�

�

� m(A

0

)j(f

su

)

0

(f

r

())j

�t

e

�P(t;�)(r+su)

exp

�

S

r+su

�()

��

j(f

su

)

0

(f

r

())j

�1

�

(

1

q()

�1

)

t

� e

�P(t;�)(r+su)

j(f

su

)

0

(f

r

())j

�

t

q()

exp

�

S

r+su

�()

�

:

(3.12)

Therefore, using (3.11), (3.12), (3.1) and Lemma 2.6, we onlude, with S() referring to some

�nite number whih only depends on ,

m

�

f

k

(C

n

(y; B(x; )))

�

m

�

f

k

(C

n

(y; B(x; ))) \ f

�(n�k)

(A

0

)

�

(3.13)

�

X

j�0

e

�P(t;�)(r+ju)

j(f

ju

)

0

(f

r+su

())j

�

t

q()

exp

�

S

ju

�(f

r+su

())

�

� S()
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By (3.9) we have that Mod

�

f

k

(C

n

(y; B(x; 4))) n f

k

(C

n

(y; B(x; 2)))

�

� (log 2)=q(). Hene,

applying Koebe's distortion theorem and (3.13), we obtain

m(C

n

(y; B(x; )))

m

�

C

n

(y; B(x; ))) \ f

�n

(A

0

)

�

�

j(f

k

)

0

(y)j

�t

e

�P(t;�)k

exp

�

S

k

�(y)

�

j(f

k

)

0

(y)j

�t

e

�P(t;�)k

exp

�

S

k

�(y)

�

�

m

�

f

k

(C

n

(y; B(x; )))

�

m

�

f

k

(C

n

(y; B(x; ))) \ f

�(n�k)

(A

0

)

�

� S():

Therefore, we have

m(f

�n

(B(x; ))

m(f

�n

(A

0

)

)� maxfS() :  2 Crit(J(f))g;

whih implies Q

n

(B(x; ))� maxfS() :  2 Crit(J(f))g, for all n 2 IN . It now follows that

�

t;�

(B(x; )) <1.

The main result in this setion is the following.

Theorem 3.9. Let f be a parabolially semi-hyperboli GPL-map. If t 2 [0; Æ(�)), then the

invariant Gibbs state �

t;�

is �nite. Furthermore, by normalizing �

t;�

suh that it beomes a

probability measure, we obtain an equilibrium state for the potential �t log jf

0

j+�, in the sense

that it maximizes the supremum appearing in the de�nition (P2) of variational pressure.

Proof. Sine t 2 [0; Æ(�)), we have that Theorem 3.8 is appliable. Hene, the invariant

measure �

t;�

exists and it is �nite on ompat subsets of J(f)n
. Let ! 2 
 be �xed. Without

loss of generality we may assume that the element A

0

of the partition A is a fundamental

domain of some repelling setor with respet to the relation `�' (where we let x � y, for x

and y in this setor suh that x and y are suÆiently lose to !, if and only if f

�n

!

(y) = x or

f

�n

!

(x) = y). Fix x 2 A

0

and put x

k

:= f

�k

!

(x), for k � 0. Also let B

j

:= f

�j

!

(A

0

), for j � 0.

We then have

m

t;�

(B

j

) � e

�P(t;�)j

exp

�

S

j

�(x

j

)

�

(j + 1)

�

p(!)+1

p(!)

t

: (3.14)

Sine ! 2 
 n

S

n2IN

f

n

(Crit(f) \ J(f)), Lemma 3.8 implies that for every y 2 f

�1

(!) n f!g

there exists an open neighborhood U

y

of y suh that �

t;�

(U

y

) < 1 and U

y

�

~

A

j

, for some

j � 0. Take B to be a ball in J(f) (either losed or open) entered at ! and with radius so

small that f

�1

y

(B) � U

y

for all y 2 f

�1

(!) n f!g, where f

�1

y

: B ! CI is the loal holomorphi

inverse branh of f sending ! to y. Without loss of generality we may assume that A

0

� B.

Now, �x y 2 f

�1

(!)nf!g and z

j

2 f

�j

(y), for j � 0. Let 2U

y

be the ball entered at y of radius

twie the radius of U

y

. Using () in De�nition 2.1, it follows that 2U

y

\

S

n�1

f

n

(Crit(f)) = ;,

for U

y

suÆiently small. Letting m := m

t;�

, by Lemma 2.5 and Koebe's Distortion Theorem,
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we then have, for every Borel set A � U

y

,

m

�

f

�j

z

j

(A)

�

� e

�P(t;�)j

j(f

j

); (z

j

)j

�t

exp

�

S

j

�(z

j

)

�

m(A):

Hene it follows, for k � 0,

m

�

f

�j

z

j

(f

�1

y

(B

k

))

�

� e

�P(t;�)j

j(f

j

); (z

j

)j

�t

exp

�

S

j

�(z

j

)

�

m(f

�1

y

(B

k

))

� e

�P(t;�)j

j(f

j

); (z

j

)j

�t

exp

�

S

j

�(z

j

)

�

m(B

k

)

� m

�

f

�j

z

j

(B

y

)

�

m(B

k

)

m(B

y

)

� m

�

f

�j

z

j

(B

y

)

�

m(B

k

):

Summing over all z

j

2 f

�j

(y), we get

m

�

f

�j

(f

�1

y

(B

k

))

�

� m

�

f

�j

(B

y

)

�

m(B

k

):

Hene, for i 2 IN �xed, we an sum up over all 0 � j � i� 1, whih gives for the measure S

i

,

introdued in the proof of Theorem 3.5,

S

i

m(f

�1

y

(B

k

)) � S

i

m(B

y

)m(B

k

): (3.15)

Sine we have, for arbitrary j � 0 and n 2 IN ,

S

n

m(B

j

) = m

�

f

�(n�1)

!

(B

j

)

�

+

X

y2f

�1

(!)nf!g

n�2

X

k=0

S

n�(k+1

m

�

f

�1

y

(f

�k

!

(B

j

))

�

;

we an apply (3.15), Lemma 3.7 and (3.14), whih then gives, that for all j � 0 and n 2 IN ,

Q

n

m(B

j

) =

S

n

m(B

j

)

S

n

m(A

0

)

�

m

�

f

�(n�1)

!

(B

j

)

S

n

m(A

0

)

+

X

y2f

�1

(!)nf!g

n�2

X

k=0

S

n�(k+1

m(U

y

)m(B

j+k

)

�

1

S

n

m(A

0

)

+

X

y2f

�1

(!)nf!g

n�2

X

k=0

S

n�(k+1

m(U

y

)

S

n�(k+1

m(A

0

)

�

S

n�(k+1

m(A

0

)

S

n

m(A

0

)

m(B

j+k

)

�

1

S

n

m(A

0

)

+

X

y2f

�1

(!)nf!g

n�2

X

k=0

m(B

j+k

)

�

1

S

n

m(A

0

)

+ deg(f)

n�2

X

k=0

exp

�

S

j+k

�(x

j+k

)� P(t; �)(j + k)

�

(j + k + 1)

�

p(!)+1

p(!)

t

�

1

S

n

m(A

0

)

+ deg(f)

n�2

X

k=0

exp

�

S

j+k

�(x

j+k

)� P(t; �)(j + k)

�

:

(3.16)

Now let � > 0 be �xed suh that that P(t; �) > � + 2�. By Lemma 2.6, there exists q 2 IN

suh that supfS

q

�g � (�+ �)q < qP(t; �)� q�. For ease of exposition we assume that q = 1.
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We an then ontinue the estimate in (3.16) as follows.

Q

n

m(B

j

)�

1

S

n

m(A

0

)

+ deg(f)

n�2

X

k=0

e

��(j+k)

�

1

S

n

m(A

0

)

+ e

��j

:

By letting n tend to in�nity, we obtain that �

t;�

(B

j

)� e

��j

. If we sum this up over all j � 0,

then it follows that �

t;�

�

S

j�0

B

j

�

�

P

1

j=0

e

��j

< 1. Finally, summing up over all repelling

setors of ! (note, there are only �nitely many suh setors), we derive �

t;�

(V

!

) <1, for every

suÆiently small neighbourhood V

!

of !. Therefore, ! has to be a point of �nite ondensation

of �

t;�

, and using Theorem 3.8, it follows that the f -invariant measure �

t;�

is �nite.

It remains to show that �

t;�

is an equilibrium state for the potential �t log jf

0

j+ �. Without

loss of generality we may assume that �

t;�

is a probability measure. Let � := �

t;�

and

� := d�=dm, and let J be the Jaobian given by

J :=

d� Æ f

d�

=

� Æ f

�

exp

�

t log jf

0

j � �+ P(t; �)

�

:

Sine �(f(A)) � �(A) for any Borel set A � J(f), we always have that J � 1. Also, sine

R

�dm = 1 and � is non-negative, we see that

R

�d� > 0. Hene, in view of Birkho�'s Ergodi

Theorem and Theorem 3.4, there exists z 2 J(f) suh that (note that log J � 0, and that

log jf

0

j is bounded from above)

�(f

n

(z)) >

1

2

Z

�dm > 0 for in�nitely many n � 0; (3.17)

lim

n!1

1

n

n�1

X

j=0

log(J(f

j

(z))) =

Z

log Jd�; (3.18)

lim

n!1

1

n

n�1

X

j=0

�

t log jf

0

j � �

�

Æ f

j

(z) =

Z

(t log jf

0

j � �)d�: (3.19)

Sine

R

log jf

0

jd� � 0 (.f. [12℄) and sine

R

log Jd� = h

�

(f) � h

top

(f) < 1, we have

that log J and log jf

0

j are integrable. By (3.17) we have that lim sup

n!1

1

n

log �(f

n

(z)) � 0.
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Combining this with (3.18) and (3.19), we get

h

�

(f) +

Z

(�t log jf

0

j+ �)d� �

Z

log Jd�+

Z

(�t log jf

0

j+ �)d�

= lim

n!1

1

n

n�1

X

j=0

log(J(f

j

(z))) +

Z

(�t log jf

0

j+ �)d�

= lim

n!1

0

�

1

n

n�1

X

j=0

 

log

 

� Æ f

�

!

+ t log jf

0

j � �+ P(t; �)

!

(f

j

(z))

1

A

+

Z

(�t log jf

0

j+ �)d�

= P(t; �) + lim

n!1

0

�

1

n

(log � Æ f

n

(z)� log �(z)) +

1

n

n�1

X

j=0

�

t log jf

0

j � �+ P(t; �)

�

(f

j

(z))

1

A

+

Z

(�t log jf

0

j+ �)d�

� P(t; �) + lim sup

n!1

log � Æ f

n

(z)

n

+ lim

n!1

1

n

n�1

X

j=0

�

t log jf

0

j � �

�

(f

j

(z)) +

Z

(�t log jf

0

j+ �)d�

� P(t; �) + 0 +

Z

(t log jf

0

j � �)d�+

Z

(�t log jf

0

j+ �)d�

= P(t; �):

4. Real analytiity of the topologial pressure

In this setion we onsider analyti properties of the pressure P (t; �) seen as a funtion in t,

and of the pressure P (t; q�) seen as a funtion in q (for ertain �xed t). We remark that our

analysis here is based on and generalizes the work in [15℄.

As always, let f be a parabolially semi-hyperboli GPL-map. In order to introdue some

auxiliary `ritial parameters', reall that for  2 Crit(J(f)), the order q() of  is determined

by the loal behaviour of f around . That is, for z suÆiently lose to  we have for the

Taylor expansion of f that

f(z) = f() + b

0

(z � )

q()

+ : : : : (LBC)

Then the ritial parameters �

0

; �(); �

q

and � are de�ned as follows.

�

0

:= infflim sup

n!1

1

n

log j(f

n

)

0

(z)j : z 2 
 [ !(Crit(f))g;

�() := lim inf

k!1

1

k

log inf

n�1

fj(f

k

)

0

(f

n

())jg;

�

q

:= min

(

�()

q()

:  2 Crit(f)

)

and � := minf�

q

; �

0

g:
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We begin with showing that for t in a ertain range, the measure m

t;�

vanishes on the limsup-

set of the inverse images of the regular part. For this it is suÆient to have the following.

Lemma 4.1. If t 2 [0; Æ(�)), then there exists 0 < � < 1 suh that for all n 2 IN we have

m

t;�

0

�

n

\

j=0

f

�j

(U

r

)

1

A

� �

n

:

Proof. Put m = m

t;�

. Fix q 2 IN , and onsider the set

U

(q)

r

:= U

r

\ f

�1

(U

r

) \ : : : \ f

�q

(U

r

):

Sine the map f : U

j

! U is univalent for eah j 2 I

r

, it follows by indution that there exist

�nitely many, say k

q

, holomorphi inverse branhes of f

q

, denoted by f

�q

1

: U ! U

r

; : : : ; f

�q

k

q

:

U ! U

r

; suh that

U

(q)

r

=

k

q

[

j=1

f

�q

j

(U

r

): (4.1)

Hene, for any arbitrary set A � U

r

it follows that

U

(q)

r

\ f

�q

(A) =

k

q

[

j=1

f

�q

j

(A); (4.2)

and by onformality of m we have for eah j 2 f1; 2; : : : ; k

q

g that

m(f

�q

j

(A)) � m(A)e

�P(t;�)q

sup

z2A

fj(f

�q

j

)

0

(z)jg

t

supfexpS

q

�(z) : z 2 f

�q

j

(A)g

� m(A)e

�P(t;�)q

sup

z2U

r

fj(f

�q

j

)

0

(z)jg

t

supfexpS

q

�(z) : z 2 f

�q

j

(U

r

)g;

(4.3)

as well as

m(f

�q

j

(U

r

)) � m(U

r

)e

�P(t;�)q

inf

z2U

r

fj(f

�q

j

)

0

(z)jg

t

inffexpS

q

�(z) : z 2 f

�q

j

(U

r

)g:

(4.4)

Now, applying Koebe's distortion theorem on U

r

, we see that there exists a onstant K � 1

suh that

sup

z2U

r

fj(f

�q

j

)

0

(z)jg � K inf

z2U

r

fj(f

�q

j

)

0

(z)jg:

Also, Lemma 2.5 implies that

supfexpS

q

�(z) : z 2 f

�q

j

(U

r

)g � C

�

inffexpS

q

�(z) : z 2 f

�q

j

(U

r

)g:

Therefore, (4.3) and (4.4) imply that

m(f

�q

j

(A)) �

K

t

C

�

m(U

r

)

m

t

(A)m(f

�q

j

(U

r

)):
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Combining this estimate with (4.1) and (4.2), it follows that

m(U

(q)

r

\ f

�q

(A)) �

K

t

C

�

m

t

(U

r

)

m(U

(q)

r

)m

t

(A): (4.5)

Let U

(1)

r

:=

T

j�0

f

�j

(U

r

) =

T

q2IN

U

(q)

r

, and observe that f

�1

(U

(1)

r

) � U

(1)

r

. By ergodiity of

�

t

, we hene have that �

t

(U

(1)

r

) 2 f0; 1g. Now, sine �

t;�

(U

o

) > 0, and sine U

r

� U n U

o

,

we have �

t;�

(U

r

) < 1, whih then implies that �

t;�

(U

1

r

) = 0. Sine fU

(q)

r

g

1

q=1

is a desending

sequene of sets, we onlude that lim

q!1

�

t;�

(U

(q)

r

) = 0, and hene that lim

q!1

m(U

(q)

r

) = 0.

Therefore, we an hoose q 2 IN suÆiently large suh that K

t

C

�

m(U

(q)

r

)=m(U

r

) � 1=2.

Inserting this observation into (4.5), we obtain that for any arbitrary A � U

r

we have that

m(U

(q)

r

\ f

�q

(A)) �

1

2

m(A): (4.6)

In order to �nish the proof, we use (4.6) and observe that for every k 2 IN we have that

m

0

�

qk

\

j=0

f

�j

(U

r

)

1

A

= m

0

�

U

(q)

r

\ f

�q

0

�

q(k�1)

\

j=0

f

�j

(U

r

)

1

A

1

A

�

1

2

m

0

�

q(k�1)

\

j=0

f

�j

(U

r

)

1

A

:

By way of indution, this gives that

m

0

�

qk

\

j=0

f

�j

(U

r

)

1

A

�

�

1

2

�

k

;

whih also holds for k = 0. Now let n 2 IN be given, and write n = qk+ r, for 0 � r < q and

k � 0. It follows that

m

0

�

n

\

j=0

f

�j

(U

r

)

1

A

� m

0

�

qk

\

j=0

f

�j

(U

r

)

1

A

�

�

1

2

�

k

�

�

1

2

�

n

q

�1

= 2

0

�

�

1

2

�

1

q

1

A

n

:

As an immediate onsequene we derive the following orollary, whih shows that the sets

J(f) and J

�

f

oinide m

t;�

-almost everywhere on U

o

.

Corollary 4.2. If t 2 [0; Æ(�)), then m

t;�

(J

�

f

\ U

o

) = m

t;�

(U

o

) > 0.

Proof. Reall that by Proposition 2.3 we have J

�

f

\ U

o

= J(f) \ U

o

n

S

n�0

f

�n

(
 [

T

k�0

f

�k

(U

r

)). Also, Proposition 3.1 implies that m

t;�

has no atoms. Finally, by Lemma 4.1

we have that m

t;�

(

T

k�0

f

�k

(U

r

)) = 0. Combining these three observations, the statement of

the orollary follows.

Lemma 4.3. If t 2 [0; Æ(�)), then there exists l 2 IN suh that, for eah Borel set A � U ,

m

t;�

(f

�1

(A))� (m

t;�

(A))

1=l

:
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Proof. Put m = m

t;�

. Using the onformality ofm, it follows that the assertion holds for all

Borel sets A � U suh that A \

S

2Crit(J(f))

B(f(); Æ) = ;, for some �xed positive Æ. Hene,

from now on let a Borel set A � B(f(); Æ) be �xed, for some  2 Crit(J(f)), with m(A) > 0

and where Æ < dist(U

r

; �U)=2 is hosen suÆiently small (whih will be spei�ed during the

proof). Let f

�1



(A) be the intersetion of f

�1

(A) with the omponent of f

�1

(B(f(); Æ)) whih

ontains . Also, for n 2 IN we de�ne

�

n

() := j(f

n

)

0

(f())j;

and let A(w; r; R) := fz 2 CI : r � jz�wj < Rg denote the annulus entred at w 2 CI of inner

radius r and outer radius R.

The struture of the proof is as follows. We shall show that u is a �nite number, and by

ombining this with Lemma 3.2, we obtain

(i) m(f

�1



(A))� �

su

()

�t=q()

e

�P(t;�)su

exp

�

S

su

�()

�

:

Finally, we prove the following two fats, whih then �nishes the proof of the proposition.

(ii) �

su

()

�t=q()

e

�P(t;�)su

exp

�

S

su

�()

�

�

�

�

su

()

�t

e

�P(t;�)su

exp

�

S

su

�()

�

))

1=l

for some

l 2 IN and for all s suÆiently large.

(iii) �

su

()

�t

e

�P(t;�)su

exp

�

S

su

�()

�

� m

�

A \ A(f(); Æ�

s(u+1)

()

�1

; Æ)

�

(� m(A) ):

For (i), we ombine Lemma 3.2 and the �niteness of u to obtain

m(f

�1



(A)) = m

�

f

�1



(A \ B(f(); Æ�

su

()

�1

))

�

+m

�

f

�1



(A \ A(f(); Æ�

su

()

�1

); Æ))

�

� m

�

f

�1



(B(f(); Æ�

su

()

�1

))

�

+m

�

f

�1



(A \ A(f(); Æ�

su

()

�1

); Æ))

�

� m

�

B (; (Æ�

su

()

�1

)

1=q()

)

�

+

+ (Æ�

su

()

�1

)

(

1

q()

�1

)

t

e

�P(t;�)

e

�()

m(A \ A(f(); Æ�

su

()

�1

; Æ))

� �

su

()

�t=q()

exp

�

S

su

�()� P(t; �)su

�

+

+ (Æ�

su

()

�1

)

(

1

q()

�1

)

t

�

su

()

�t

exp

�

S

su

�()� P(t; �)su

�

� �

su

()

�t=q()

exp

�

S

su

�()� P(t; �)su

�

:

For (ii), reall that

1

v

log j(f

v

)

0

(f())j � �q()(P(t; �)� �)=t + � for all for all v � s. Hene,

by hoosing l() suÆiently large so that

� >

(P(t; �)� �)q()(1� q())

t(l()� q())

+

�

2

l()� 1

l()� q()
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it follows that

(l()� q())

log�

su

()

su

�

 

�q()(P(t; �)� �)

t

+ �

!

(l()� q())

�

 

q()(P(t; �)� �)

t

�

�

2

!

(1� l())

=

q()

t

 

P(t; �)� ��

�t

2q()

!

(1� l())

�

q()

t

 

P(t; �)�

S

su

�()

su

!

(1� l()):

An elementary rearrangement then gives

�

su

()

�t=q()

exp

�

S

su

�()� P(t; �)su

�

�

�

�

su

()

�t

exp

�

S

su

�()� P(t; �)su

��

1=l()

:

By de�ning l := maxfl() :  2 Crit(J(f))g, the statement in (iii) follows.

Finally for (iii), the �niteness of u gives

m(A \ A(f(); Æ�

s(u+1)

()

�1

; Æ) > �

s(u+1)

()

�t

exp

�

S

s(u+1)

�()� P(t; �)s(u+ 1)

�

� exp

�

�(P(t; �)s+ jj�jj

1

�

jjf

0

jj

�st

�

su

()

�t

exp

�

S

su

�()� P(t; �)su

�

;

whih ompletes the proof of the lemma.

We now pass to the CGDM-system �

f

assoiated with the GPL-map f . For this the reader

is asked to reall the onstrution and notation given in Setion 2. For eah t � 0; s 2 IR and

e 2 E

f

we de�ne the potential g

(e)

t;s

: W

t(e)

! IR by, for x 2 W

t(e)

,

g

(e)

t;s

(x) := t log j�

0

e

(x)j � sN(e) + S

n(e)

�(�

e

(x)):

We shall see that for suitably hosen s and t the family G

t;s

:= fg

(e)

t;s

: e 2 E

f

g is a summable

H�older family of funtions, where H�older refers to the fat that for some  > 0 we have (f.

[5℄, [10℄)

sup

n�1

sup

(�

1

;�

2

;::: )2E

f

sup

z;w2U

t(�

n

)

jg

(�

1

)

t;s

(�

�

2

;::: ;�

n

(z))� g

(�

1

)

t;s

(�

�

2

;::: ;�

n

(w))je

(n�1)

<1:

Lemma 4.4. For eah u > 0 suh that P(u; �) > ��u + �, there exists Æ > 0 suh that G

t;s

is a summable H�older family of funtions, for eah t 2 (u� Æ; u+ Æ) and s > P(u; �)� Æ.

Proof. In [18℄ (Lemma 5.4) we obtained that the family fS

n(e)

�Æ�

e

g

e2E

f

is H�older ontinu-

ous (in fat, in [18℄ we only onsidered iterated funtion systems rather than CGDM-systems;

nevertheless after minor modi�ations the proof in [18℄ goes through also for CGDM-systems).

Furthermore, in [15℄ (Lemma 4.5) we have shown that the family ft log j�

0

e

(x)j � sN(e)g

e2E

f

is H�older ontinuous. Therefore, by ombining these two results, it follows that fg

(e)

t;s

g

e2E

f

is
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a H�older family. In order to prove that G

t;s

is summable, we let Z

(n)

:= fe 2 E

f

: N(e) = ng

and de�ne, for n 2 IN ,

R

n

:=

[

e2Z

(n)

�

e

(U

t(e)

):

If there are no paraboli elements, then we have for eah n > 1 that R

n

� f

�1

�

T

n�2

j=0

f

�j

(U

r

)

�

(for n = 1, we have R

1

� U

o

), and hene Lemma 4.1 and Lemma 4.3 imply that

m

u

(R

n

) � m

u

0

�

f

�1

0

�

n�2

\

j=0

f

�j

(U

r

)

1

A

1

A

�

0

�

m

u

0

�

n�2

\

j=0

f

�j

(U

r

)

1

A

1

A

1=l

� �

n=l

: (4.7)

If there are paraboli points then �

0

= 0, and onsequently the ondition P(u; �) > ��u+ �

implies that P(u; �) > �. Then note that for every e 2 Z

(n)

there exists 1 � k � n suh

that f

j

(U

i(e)

) � U

r

, for all k � j < n, and suh that f

j

(U

i(e)

) � U

i

, for all 1 � j < k and

for some i 2 I

p

. Let � > 0 be hosen suÆiently small suh that � � P(u; �) < �2�. By

Lemma 2.6, there exists k

�

2 IN suh that supfS

k

�g � (� + �)k, for all k � k

�

. Combining

these observations, it follows that supfS

k

�g�P(u; �)k < �k�. Using Lemma 4.1, Lemma 4.3

and (2.1), we then obtain, for some �xed � 2 (maxfe

��

; �g; 1) and for every x 2 f(U

i(e)

),

m

u;�

(R

n

)� (m

u;�

(f(R

n

)))

1=l

�

0

�

n

X

k=1

exp

�

S

k

�(x)� kP(u; �)

�

X

i2I

p

k

�

p(!

i

)+1

p(!

i

)

u

m

u;�

0

�

n�k

\

j=1

f

�j

(U

r

)

1

A

1

A

1=l

�

0

�

n

X

k=1

exp

�

supfS

k

�g � kP(u; �)

�

X

i2I

p

k

�

p

i

+1

p

i

u

m

u;�

0

�

n�k

\

j=1

f

�j

(U

r

)

1

A

1

A

1=l

�

�

e

��k

�

n�k

ard(I

p

)

�

1=l

� �

n=l

:

Combining this estimate and (4.7), we onlude, no matter if there are paraboli points or

not, that there exists � > 0 suh that, for all n 2 IN ,

m

u

(R

n

)� e

��n

: (4.8)

Using the de�nition of the measurem

u;�

along with Koebe's distortion theorem and Lemma 2.5,

we now have, for all n 2 IN ,

X

e2Z

(n)

sup

z2U

i(e)

fj(f

n

)

0

(z)j

�u

) exp

�

S

n

�(z)� P(u; �)n

�

g � e

��n

:

Observe that f�

e

: W

t(e)

! U

i(e)

g

e2E

f

is a normal family of funtions, and hene all its limit

funtions are onstant funtions. This implies that

�

1

:= sup

e2E

f

sup

z2U

t(e)

j�

0

e

(z)j <1:
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Therefore, for �xed u > 0 there exists 0 < Æ < minfu;

�

2

;

�

4

j log�

1

j

�1

;

�

4

j log�

2

j

�1

g, where

we have put �

2

:= sup

e2E

f

sup

z2U

i(e)

jf

0

(z)j. With this hoie of Æ we obtain for eah t 2

(u� Æ; u+ Æ) and s > P(u)� Æ that

X

e2Z

(n)

sup

z2U

i(e)

(j(f

n

)

0

(z)j

�t

) exp

�

S

n

�(z)

�

e

�sn

�

X

e2Z

(n)

sup

z2U

i(e)

(j(f

n

)

0

(z)j

�u

) exp

�

S

n

�(z)� P(u; �)n

�

e

Æn

maxf�

Æ

1

;�

nÆ

2

g

� e

��n

e

�

2

n

e

�

4

n

= e

�

�

4

n

:

For the following lemma reall that the topologial pressure P assoiated with the family G

t;s

is given by (f. [5℄, [10℄, [15℄)

P(t; s) := lim

n!1

1

n

log

X

(�

1

;::: ;�

n

)2E

(n)

f

sup

z2U

t(�

n

)

exp

 

g

(�

n

)

t;s

(z) +

n�1

X

i=1

g

(�

i

)

t;s

(�

�

i+1

;::: ;�

n

(z))

!

;

where we have set E

(n)

f

:= f(�

1

; : : : ; �

n

) 2 E

n

f

: A

�

j

�

j+1

= 1 for all j = 1; 2; : : : ; n� 1g:

Also, assoiated with G

t;s

there exists a unique G

t;s

-onformal probability measure m

t;s

sup-

ported on J

�

f

. That is, for eah n � 1 and � = (�

1

; : : : ; �

n

) 2 E

(n)

f

we have for every Borel

set A � U

t(�

n

)

that

m

t;s

(�

�

(A)) =

Z

A

exp

 

g

(�

n

)

t;s

(z) +

n�1

X

i=1

g

(�

i

)

t;s

(�

�

i+1

;::: ;�

n

(z))� nP(t; s)

!

dm

t;s

(z):

Lemma 4.5. For t > 0 suh that P(t; �) > ��t+�, we have P(t;P(t; �)) = 0. Furthermore,

we have that, for eah n 2 IN and � = (�

1

; : : : ; �

n

) 2 E

(n)

f

,

m

t;P(t;�)

(�

�

(U

t(�

n

)

)) � m

t;�

(�

�

(U

t(�

n

)

));

with omparability onstants not depending on n and � . Furthermore, we in partiular have

that m

t;P(t;�)

and m

t;�

oinide on J

�

f

, up to a positive multipliative onstant.

Proof. Put N(�) :=

P

n

j=1

N(�

j

). By onformality of m

t�

and m

t;s

, we have for eah n 2 IN ,

m

t�

(�

�

(U

t(�

n

)

)) =

Z

U

t(�)

j�

0

�

(z)j

t

exp

�

S

N(�)

� Æ �

�

� P(t; �)N(�)

�

dm

t

(z)

� jj�

0

�

jj

t

exp

�

supfS

N(�)

� Æ �

�

g � P(t; �)N(�)

�

m

t

(U

t(�)

)

� e

P(t;P(t;�))n

jj�

0

�

jj

t

exp

�

supfS

N(�)

� Æ �

�

g � P(t; �)N(�)

�

� P(t;P(t; �))n

�

� e

P(t;P(t;�))n

m

t;P(t;�)

(�

�

(U

t(�)

)):

Therefore, if P(t;P(t; �)) > 0 then m

t;P(t;�)

(J

�

f

) = 0, whih ontradits m

t;P(t;�)

(J

�

f

) =

1. On the other hand, if P(t;P(t; �)) < 0 then we obtain m

t

(J

�

f

) = 0, whih is also a
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ontradition. Thus, it follows that P(t;P(t; �)) = 0. The remainder of the lemma is an

immediate onsequene of Theorem 3.2.3 in [10℄.

We now obtain the following two theorems whih are the main results of this setion.

Theorem 4.6. Let f be a parabolially semihyperboli GPL-map. For values t > 0 for whih

P(t; �) > ��t + �, we have that P(t; �) is real-analyti as a funtion in t.

Proof. Using Lemma 4.4 and applying Theorem 2.6.12 of [10℄ (or alternatively [5℄ Theo-

rem 6.4), we have for eah positive u with P(u; �) > ��u + � that there exists Æ > 0 suh

that P is real-analyti on (u � Æ; u + Æ) � (P(u; �) � Æ;P(u; �) + Æ) in both variables t and

s. In order to prove that P is real-analyti on (u� Æ; u+ Æ), we employ the impliit funtion

theorem, showing that P is the unique real-analyti funtion whih satis�es P(t;P(t)) = 0 for

all t 2 (u � Æ; u + Æ). For this it is now suÆient to verify that for all t 2 (u � Æ; u + Æ) we

have

�P(t; s)

�s

�

�

�

�

(t;P(t;�))

exists and is stritly negative: (4.9)

Denote the measure m

t;P(t;�)

by �

t

. Proposition 2.3, Lemma 4.4 and Lemma 4.5 guarantee

that Theorem 3.7 of [10℄ is appliable. This gives that the measure �

t

has a lift ~�

t

to the

symboli spae E

f

, and that there exists a measure ~�

t

in the measure lass of ~�

t

whih is

invariant under the shift map on the spae E

f

, and whose Radon-Nikodym derivative with

respet to ~�

t

is bounded away from zero and in�nity. We an now apply Proposition 2.6.13

of [10℄ (or alternatively [5℄, Proposition 6.5), whih gives

�P(t; s)

�s

�

�

�

�

(t;P(t;�))

= �

Z

Nd~�

t

: (4.10)

Using the estimate in (4.8) and the seond part of Lemma 4.5 we then ompute

Z

Nd~�

t

�

Z

Nd~�

t

=

Z

Nd�

t

=

X

n2IN

n�

t

(R

n

) �

X

n2IN

nm

t

(R

n

)�

X

n2IN

ne

��n

<1;

(4.11)

where after the �rst equality sign we treated the funtionN slightly informally as being de�ned

on the limit set J

�

f

. Combining (4.10) and (4.11), and using the fat that the funtion N is

stritly positive, we derive (4.9), whih then ompletes the proof.

Finally, let us onsider the family

^

G

q;s

:= fĝ

(e)

q;s

: e 2 E

f

g, whih is given by, for �xed t > 0,

ĝ

(e)

q;s

(x) := t log j�

0

e

(x)j � sN(e) + qS

n(e)

�(�

e

(x)):

If in the onstrution above we use this family instead of the family G

t;s

, then the proof of

Theorem 4.6 is in fat easier. Using this modi�ed family of funtions ĝ

(e)

q;s

, we then obtain the

following result (.f. [18℄, Set. 5).
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Theorem 4.7. Let f be a parabolially semi-hyperboli GPL-map. If t 2 [0; Æ(�)), then the

funtion q 7! P(t; q�) is real-analyti in a small neighbourhood of q = 1.

5. Multifratal analysis

5.1. The general ase of a parabolially semi-hyperboli GPL-map.

In this setion we derive the main results of this paper, namely we give a multifratal analysis

for parabolially semi-hyperboli GPL-maps f . Throughout let � : J(f) ! IR be a H�older

ontinuous funtion suh that P(f; �) > sup(�). Reall from the introdution that we de�ne,

for every x 2 J(f),

�

�

(x) := lim

n!1

S

n

�

P(f; �)� �(x)

�

log j(f

n

)

0

(x)

and �

�

(x) := lim

n!1

S

n

�

P(f; �)� �(x)

�

log j(f

n

)

0

(x)

:

If �

�

(x) = �

�

(x), then we let �

�

(x) refer to their ommon value. We are interested in studying

the (�; �)-level sets K

�

(�), given by

K

�

(�) := fx 2 J(f) : �

�

(x) = �g;

and in partiular in the assoiated �-spetrum k

�

, whih is given by

k

�

(�) := HD(K

�

(�)):

Also, reall that by using �� P(f; �) instead of �, we an assume without loss of generality

that

P(f; �) = 0 and sup(�) < 0: (5.1)

Lemma 5.1. For every q 2 (0; 1℄ there exists a unique T (q) � 0 suh that P(T (q); q�) = 0.

Proof. We have that P(f; �) = 0, and that the graph of the funtion t 7! P(t; q�) lies

below the graph of the funtion t 7! P(t; 0) (this follows, sine by assumption q > 0 and

sup(�) < 0). Also, by de�nition (P2) of variational pressure, the funtion t 7! P(t; q�)

is ontinuous. Combining these observations, it follows that if P(0; q�) � 0, then there

exists t � 0 suh that P(t; q�) = 0. On the other hand, sine sup(�) < 0, we have that

P(0; q�) � P(0; �) = 0, for eah q 2 (0; 1℄. Therefore, it follows that P(t; q�) = 0, for every

q 2 [0; 1℄ and for some t � 0 (whih depends on q). Hene, in order to �nish the proof it is

now suÆient to show that if for some t � 0 and q > 0 we have that P(t; q�) = 0, then this

implies that, for all u > 0,

P(t+ u; q�) < 0 and P(t� u; q�) > 0: (5.2)
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In order to derive this impliation, we remark that if � is an f -invariant Borel probability

measure suh that, for � 2

�

0;�

q

2

sup(�)

�

,

� � � h

�

(f)� t�

�

+ q

Z

�d�; (5.3)

then it follows that

�

�

� �

q

4

sup(�): (5.4)

This an be seen by using (5.3) and the fat that �

�

� 0, whih gives

h

�

(f) � t�

�

� q

Z

�d�� � � �q sup(�)� � � �

q

2

sup(�):

Hene, by Ruelle's inequality we have �

�

�

1

2

h

�

(f) � �

q

4

sup(�), whih gives the inequality

in (5.4). We now prove the �rst inequality in (5.2) by ontradition as follows. Suppose

that P(t + u; q�) � 0, and let 0 < � < min

n

�

q

2

sup(�);�

qu

4

sup(�)

o

be given. By de�nition

of the pressure funtion, there exists an f -invariant Borel probability measure � suh that

P(t + u; q�)� � � h

�

(f)� (t + u)�

�

+ q

R

�d�. Sine P(t + u; q�) � 0 and P(t; q�) = 0, this

implies that

0 � h

�

(f)� t�� + q

Z

�d� � u�

n

u� � � ��: (5.5)

Hene, (5.3) is satis�ed, and onsequently (5.4) holds. Now, ombining (5.4) and (5.5), we

obtain 0 � �

qu

4

sup(�)� � > 0, whih is a ontradition and hene gives the �rst inequality

in (5.2).

In order to prove the seond inequality in (5.2), note that again by de�nition of pressure and

sine P(t; q�) = 0, there exists an f -invariant Borel probability measure � satisfying (5.3) for

every 0 < � < min

n

�

q

2

sup(�);�

qu

4

sup(�)

o

. Hene, applying (5.4), we get

P(t� u; q�) � h

�

(f)� (t� u)�

�

+ q

Z

�d� = (h

�

(f)� t�

�

+ q

Z

�d�) + u�

�

� �� + u�

�

� �� + u�

�

� ���

qu

4

sup(�) > 0:

This latter estimate gives the seond inequality in (5.2), and hene ompletes the proof of the

lemma.

Lemma 5.2. For q 2 (0; 1℄ we have that

�P

�q

(q; T (q)) =

Z

�d�

q

and

�P

�t

(q; T (q)) = �

Z

log jf

0

jd�

q

:
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Proof. Let u 2 IR be �xed, and onsider the equilibrium state �

q

for the potential

�T (q) log jf

0

j+ q�. By de�nition of the variational pressure P(T (q); (q + u)�), we have

P(T (q); (q + u)�)� P(T (q); q) �

� �T (q)�

�

q

+ (q + u)

Z

�d�

q

+ h

�

q

(f)�

�

�T (q)�

�

q

+ q

Z

�d�

q

+ h

�

q

(f)

�

= u

Z

�d�

q

:

(5.6)

Also, by Lemma 5.1 we have that 0 = P(T (q); q�) > sup(q�) and that T (q) � 0, whih

together with the de�nition of Æ(�) implies that T (q) 2 [0; Æ(q�)). Hene, we are now in the

position to apply Theorem 4.7, whih gives that the funtion s 7! P(T (q); s�) is real-analyti

on a neighbourhood of s = q. Sine this latter funtion is onvex (by de�nition (P2) of

variational pressure), (5.6) gives that that

�P

�q

(q; T (q)) =

R

�d�

q

, and hene the �rst assertion

of the lemma follows. The proof of the seond formula of the lemma is analogous and will be

omitted.

We now ome to the �rst main result of this paper.

Theorem 5.3. Let f be a parabolially semi-hyperboli GPL-map and let � : J(f)! IR be a

H�older ontinuous potential suh that sup(�) < P(f; �) = 0. In ase f has paraboli elements

we additionally assume that the H�older exponent of � exeeds p

max

=(p

max

+ 1). Then the

following holds.

(a) For �

�

-a.e. x 2 J(f), we have that �

�

(x) exists and

�

�

(x) =

�

R

�d�

�

R

log jf

0

jd�

�

:

(b) For q 2 (0; 1℄, the funtion q 7! T (q) is real-analyti and T

0

(q) < 0.

() For eah q 2 (0; 1℄, we have that k

�

(�T

0

(q)) = T (q)� qT

0

(q).

Proof. The statement in (a) is an immediate onsequene of Birkho�'s Ergodi Theorem.

For (b), note that by Lemma 5.2,

�P

�t

(q; T (q)) = �

R

log jf

0

jd�

q

< 0, and therefore, applying

Theorem 4.6 and Theorem 4.7, it follows from the Impliite Funtion Theorem that the

funtion q 7! T (q), q 2 (0; 1℄, is real-analyti. By di�erentiating the equation P(T (q); q�) = 0

and using Lemma 5.2 again, we obtain

0 =

�P

�t

T

0

(q) +

�P

�q

= �T

0

(q)

�

�

Z

log jf

0

jd�

q

�

+

Z

�d�

q

;

and therefore

T

0

(q) =

R

�d�

q

R

log jf

0

jd�

q

< 0: (5.7)

In order to prove (), we �rst give the estimate of the funtion k

�

(�T

0

(q)) from below. By

Birkho�'s Ergodi Theorem there exists a Borel set X � J(f) suh that �

q

(X) = 1 and suh
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that, for every x 2 X,

lim

n!1

1

n

log j(f

n

)

0

(x)j =

Z

log jf

0

jd�

q

and lim

n!1

1

n

S

n

�(x) =

Z

�d�

q

:

Hene, using (5.7) we obtain

lim

n!1

�S

n

�(x)

log j(f

n

)

0

(x)j

= �

R

�d�

q

R

log jf

0

jd�

q

= �T

0

(q);

whih implies that X � K

�

(�T

0

(q)). Thus, using (5.7) and the fat that P(T (q); q�) = 0, we

get

k

�

(�T

0

(q)) = HD(K

�

(�T

0

(q))) � HD(X) � HD(�

q

) =

h

�

q

(f)

�

�

q

=

T (q)�

�

q

� q

R

�d�

q

�

�

q

= T (q)� q

R

�d�

q

�

�

q

= T (q)� qT

0

(q):

This gives the required lower bound for k

�

. For the upper bound, let us �x an element

x 2 K

�

(�T

0

(q)) n

1

[

n=0

f

�n

(
(f) [ Crit(f)):

Using [16℄ (Proposition 6.1), there exists �(x) > 0 and an unbounded inreasing sequene

fk

n

g

1

n=1

suh that, for eah n 2 IN ,

Comp

�

x; f

k

n

(x); f

k

n

; 2�(x)

�

\ Crit(f

k

n

) = ; and f

k

n

(x) =2 B(
; �(x)):

In here, Comp(x; f

j

(x); f

j

; r) refers to the onneted omponent of f

�j

(B(f

j

(x); r)) whih

ontains x. By Koebe's Distortion Theorem, we have that

B

�

x;Kj(f

k

n

)

0

(x)j

�1

�(x)

�

� f

�k

n

x

�

B(f

k

n

(x); �(x))

�

; (5.8)

where K � 1 denotes the `Koebe onstant' for the sale 1=2, and f

�k

n

x

: B(f

k

n

(x); �(x))! CI

refers to the holomorphi inverse branh of f

k

n

whih maps f

k

n

(x) to x. For ease of notation,

we put m

q

:= m

T (q);q�

. Using Lemma 2.5, (5.8) and one more Koebe's Distortion Theorem,

it follows that

m

q

�

B

�

x;Kj(f

k

n

)

0

(x)j

�1

�(x)

��

�

Z

B(f

k

n

(x);�(x))

j(f

k

n

)

0

(z)j

T (q)

exp

�

qS

k

n

�(f

�k

n

x

(z))

�

dm

q

(z)

� e

�qC

�(x)

m

�

B(f

k

n

(x); �(x))

�

j(f

k

n

)

0

(x)j

�T (q)

exp

�

qS

k

n

�(x)

�

:

Hene, if we let r

n

:= Kj(f

k

n

)

0

(x)j

�1

�(x), it follows that, for every x 2 K

�

(�T

0

(q)),

lim inf

n!1

logm

q

(B(x; r

n

))

log r

n

� lim

n!1

�T (q) log j(f

k

n

)

0

(x)j+ qS

k

n

�(x)

� log j(f

k

n

)

0

(x)j

= T (q)� qT

0

(q):

Note that (b) and () in Theorem 5.3 show that if the funtion T

0

(q) is loally invertible at

at least one point in (0; 1), then we have that the multifratal �-spetrum k

�

is real-analyti
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on a proper interval. Hene, our target now is to show that T

0

(q) is in fat loally invertible

at at least one point in (0; 1). For this we require the following lemma.

Lemma 5.4. If the set fq 2 (0; 1℄ : T

00

(q) = 0g has an aumulation point in (0; 1℄, then

we have that for all q 2 (0; 1℄ the measures �

q

oinide, and that they are equivalent to the

h-onformal measure �

h

.

Proof. By Theorem 5.3 (b) we have that the funtion T : (0; 1) ! [0;1) is real-analyti.

Hene, sine the set (T

00

)

�1

(0) has an aumulation point in (0; 1), we onlude that T is

aÆne, that is there exist �; � 2 IR suh that

T (q) = �q + �:

Sine for eah q 2 (0; 1℄ we have P(T (q); q�) = 0, and sine �

q

is an equilibrium state for the

potential �T (q) log jf

0

j+ q�, (5.7) implies that

h � HD(�

q

) =

h

�

q

�

�

q

=

T (q)�

�

q

� q

R

�d�

q

�

�

q

= T (q)� qT

0

(q) = �q + � � �q = �:

(5.9)

Sine �

�

q

� log jjf

0

jj <1 and sine �

�

q

� 0 (the latter follows by a result of Przytyki result

in [12℄, where it was shown that �

�

> 0 for every ergodi f -invariant measure �), it follows

that the funtion (t; q) 7! P

V

(t; q�) is ontinuous in both variables, for t � 0 and q 2 IR.

Therefore, we onlude

P

V

(�; 0) = lim

q!0

+

P(T (q); q�) = 0:

Combining this with a result in [15℄ (Theorem 2.1), it follows that � � h, whih then gives,

by using (5.9), that HD(�

q

) = h for all q 2 (0; 1℄. Now note that we have h

�

q

� T (q)�

�

q

+

q

R

�d�

q

= P(T (q); q�) = 0, for every q 2 (0; 1℄. Hene, we obtain h

�

q

= T (q)�

�

q

� q

R

�d�

q

�

�q

R

�d�

q

> 0, whih implies, using Ruelle's inequality, that �

�

q

> 0. It therefore follows by

a result in [6℄ (Theorem B; the theorem is stated in the ontext of rational maps, nevertheless

the proof an be adapted to GPL-maps) that for eah q 2 (0; 1℄ the measure �

q

is equivalent

to the h-onformal measure �

h

. In partiular, all the measures �

q

are mutually equivalent,

and sine they are ergodi, they must oinide.

For the following, we reall a notation of [10℄. We let g

1

: E

f

! IR denote the amalgamated

funtion of the family G

0;0

, whih is given by

g

1

(!) = S

n(!

1

)

�(�(!)):

Similarly, we let g

2

: E

f

! IR denote the amalgamated funtion, whih is given by

g

2

(!) = �h log j(f

n(!

1

)

)

0

(�(!)j:

Also, reall that one says that g

1

and g

2

are ohomologous up to onstant in the lass of

bounded H�older ontinuous funtions on E

f

, if and only if there are a 2 IR and a bounded
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H�older ontinuous funtion u : E

f

! IR suh that

g

2

� g

1

= a + u� u Æ �: (5.10)

We require the following lemma.

Lemma 5.5. If the measure �

0;�

is equivalent to the h-onformal measure �

h

, then the fun-

tions g

1

and g

2

are ohomologous up to a onstant in the lass of bounded H�older ontinuous

funtions on E

f

.

Proof. Reall that P(f; �) = 0. Let �

G

0:0

be the �

f

-invariant version of the measure m

0;0

(.f. formula (3.10) in [10℄). Note that these two measures are both supported on J

�

f

. We

now show that �

G

0:0

is equivalent to m

0;0

. For this observe that Lemma 4.5 implies that m

0;0

oinides with m

0;�

j

J

�

f

. Also, by Theorem 3.4, we have that m

0;�

j

J

�

f

is equivalent to the

h-onformal measure m̂

h

on J

�

f

for the system �

f

. Finally, m̂

h

is equivalent to �̂

h

, whih

is the �

f

-invariant version of the measure m̂

h

. Therefore, �

G

0:0

and �̂

h

are equivalent. By

the result in [10℄ (formula (3.10)), we have that the Gibbs states ~�

g

1

and ~�

g

2

, whih are both

supported on E

f

, are equivalent. Again by a result in [10℄ (Theorem 2.2.4), these measures are

ergodi with respet to the shift map � : E

f

! E

f

, and hene they must oinide. Therefore,

by applying Theorem 2.2.7 in [10℄, the lemma follows.

For the following lemma, reall that a ritial point  of a GPL-map f is alled exeptional

if f

�n

() � Crit(f

n

), for every n 2 IN . Clearly, sine there are only �nitely many ritial

points and sine these annot form periodi yles, eah exeptional ritial point must be

eventually periodi.

Lemma 5.6. If f has a paraboli point or if J(f) ontains a non-exeptional ritial point,

then g

1

and g

2

are not ohomologous up to any onstant in the lass of bounded H�older

ontinuous funtions on E

f

.

Proof. Suppose that that g

1

and g

2

are ohomologous up to a onstant in the lass of

bounded H�older ontinuous funtions on E

f

. Then there exist a 2 IR and a bounded H�older

ontinuous funtion u : E

f

! IR suh that

g

2

� g

1

= a + u� u Æ �: (5.11)

Let us assume that 
 6= ;, and let i 2 I

p

be �xed. Note that both sets I

o

and I

r

are non-

empty, and hene we an �x some j 2 I

o

and k 2 I

r

. Then, for every n 2 IN , there exists

e

n

2 E

f

suh that f

�1

k

Æ f

�n

i

= �

e

n

. For !

(n)

2 E

f

suh that !

(n)

1

= e

n

, we have by (5.11) that

S

n+1

�(�(!

(n)

)) + h log j(f

n+1

)

0

(�(!

(n)

))j = a+ u(�(!

(n)

))� u(�(�(!

(n)

)));

or equivalently,

S

n+1

�(�(!

(n)

))� h

�

� log j(f

0

(�(!))j+ log j(f

�n

i

)

0

(f

n+1

(�(!)))j

�

:
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Applying (2.1), we hene have

a+ 2jjujj

1

� sup(S

n+1

�) + h log jjf

0

jj � h log(inf

�

j(f

�n

i

)

0

j

U

j

�

� (n+ 1) sup(f) + h log jjf

0

jj+ h

 

log(C

U

j

) +

p

i

+ 1

p

i

logn

!

:

Sine sup(�) < 0, we see that the right-hand side of the latter inequality gets arbitrarily

small, and hene we have a ontradition.

We now onsider the ase in whih J(f) ontains a non-exeptional point ritial point .

Assume that  is hosen suh that ff

n

() : n 2 INg \ Crit(f) = ;. Note that for eah n � 0

there exists a unique index i

n

2 I suh that f

n

() 2 U

i

n

, and by De�nition 2.1 (), we have

that i

n

2 I

r

, for all n 2 IN . Consider the inverse branhes, for n � 1,

f

�n

�

= f

�1

i

1

Æ f

�1

i

2

Æ : : : f

�i

n

i

1

: U 7! U

i

1

:

Sine U

r

� U (by De�nition 2.1 (b)) and sine f() 2 J(f), it follows by a standard normal

families argument that

lim

n!1

diam

�

f

�n

�

(U)

�

= 0: (5.12)

Now, let B(; r

1

) be a suÆiently small ball entered at the ritial point . Sine f() 2

f

�n

�

(U), it follows from (5.12) that f

�n

�

(U) � f(B(; r

1

)), for all n � k

1

, with k

1

2 IN

suÆiently large. For j 2 I

o

, let w 2 U

j

be �xed, and hoose w

n

2 B(; r

1

) suh that

f(w

n

) = f

�n

�

(w). Sine j 2 I

o

, there exists a holomorphi inverse branh f

�(n+1)

�

: U

j

! U

of f

n+1

whih maps w to w

n

, and for whih f Æ f

�(n+1)

�

= f

�n

�

. Sine B(; r

1

) � U

i

, for some

i 2 I



� I

o

and every n � k

1

, there exists a

n

2 E

f

suh that �

a

n

= f

�(n+1)

�

. Then (5.11)

gives, for �

(n)

2 E

f

suh that �

(n)

1

= a

n

,

S

n+1

�(�(�

(n)

)) + h log j(f

n+1

)

0

(�(�

(n)

))j = a+ u(�(�

(n)

))� u(�(�(�

(n)

))):

(5.13)

Sine  is not exeptional, there exist q � 0, s 2 IN , and y 2 f

�s

(f

q

()) \ U

j

n Crit(f

s

). Let

us now onsider the inverse branhes

f

�(n�q+1)

q

= f

�1

i

q

Æ f

�1

i

q+1

Æ : : : f

�1

i

n

: U ! U

i

n

:

As above, we have that

lim

n!1

diam

�

f

�(n�q+1)

q

(U)

�

= 0: (5.14)

Choose B(y; r

2

) � U

j

suÆiently small suh that f

s

j

B(y;2r

2

)

is 1{1, and let f

�s

y

n

refer to the

inverse of f

s

j

B(y;2r

2

)

. By (5.14) we have, for all n � k

2

, with k

2

� k

1

suÆiently large,

f

�(n�q+1)

q

(U) � f

s

(B(y; r

2

)): (5.15)
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Clearly, there now exists b

n

2 E

f

suh that the map f

�(n�q+1+s)

q;s

= f

�s

y

n

Æ f

�(n�q+1)

q

: U ! U

j

if restrited to U

j

is equal to �

b

n

. By (5.11) we then have, for �

(n)

2 E

f

suh that �

(n)

1

= b

n

,

S

n�q+1+s

�(�(�

(n)

)) + h log j(f

n�q+1+s

)

0

(�(�

(n)

))j = a + u(�(�

(n)

))� u(�(�(�

(n)

))):

(5.16)

Applying Koebe's distortion theorem along with De�nition 2.1(b), we see that there exists a

onstant K � 1 suh that for all n � maxfq; k

2

g and x; y 2 U ,

j(f

�(n�q+1)

q

)

0

(y)j

j(f

�(n�q+1)

q

)

0

(x)j

� K: (5.17)

Therefore, using (3.1) and De�nition 2.1 (), it follows, for all n � maxfq; k

2

g,

diam

�

f

�(n�q+1)

q

(U)

�

� �

�(n�u+1)

diam(U): (5.18)

Applying (5.17), we onlude that

�

�

�h log j(f

n�q+1

)

0

(f

q

(�(�

(n)

)))j � h log j(f

n�q+1

)

0

(f

f

(�(�

(n)

)))j � h logK:

(5.19)

Reall that � > 0 denotes the H�older exponent of �, and let L > 0 be the H�older onstant of

the funtion �. Using (5.18), it now follows that

�

�

�S

n�q+1

�

�

f

q

(�(�

(n)

))

�

� S

n�q+1

�

�

(f

s

(�(�

(n)

))

�

j

�

n�q

X

j=0

j�

�

f

j

(f

q

(�(�

(n)

)))

�

� �

�

f

j

(f

s

(�(�

(n)

)))

�

j

�

n�q

X

j=0

Ljf

j

(f

q

(�(�

(n)

)))� f

j

(f

s

(�(�

(n)

)))j

�

� L

n�q

X

j=0

�

diam

�

f

n�q�j+1

q+j

(U)

��

�

�

n�q

X

j=0

K

�

1

diam(U)

�

�

��(n�q�j+1)

� diam(U)

�

1

X

i=1

�

��i

= diam(U)

�

�

��

(1� �

��

)

�1

<1:

(5.20)

Furthermore, note that we have

jS

q

�(�(�

(n)

))j � qjj�jj

1

and jS

s

�(�(�

(n)

))j � sjj�jj

1

; (5.21)

and also that, using (5.15) and Koebe's distortion theorem, with K � 1 the Koebe onstant,

jh log j(f

s

)

0

(�(�

(n)

))j � h logK + h log j(f

s

)

0

(y)j: (5.22)

Finally, if we ombine (5.13), (5.16), (5.19), (5.20), (5.21), (5.22) and and the fat that the

funtion u is uniformly bounded, we onlude that h log j(f

0

(�(�

(n)

))j �

^

C, for all n suÆiently
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large and with some onstant

^

C > 0 whih does not depend on n. Sine lim

n!1

�(�

(n)

) = ,

this gives a ontradition and hene �nishes the proof.

Finally, we an now ombine Theorem 5.3, Lemma 5.4 and Lemma 5.5 whih then gives the

following seond main result of this paper.

Theorem 5.7. Let f be a parabolially semi-hyperboli GPL-map and let � : J(f)! IR be a

H�older ontinuous potential suh that sup(�) < P(f; �) = 0. In ase f has paraboli elements

we additionally assume that the H�older exponent of � exeeds p

max

=(p

max

+1). In this situation

we have that if �

0;�

is not equivalent to the h-onformal measures �

h

, and hene in partiular if

f has a paraboli point or a non-exeptional ritial point, then the domain of the multifratal

�-spetrum k

�

ontains a non-degenerated interval on whih k

�

is real-analyti.

5.2. The paraboli ase without ritial points in the Julia set.

In this setion we onsider the speial lass of parabolially semi-hyperboli GPL-maps for

whih J(f) does not ontain ritial points of f . Maps of this type are alled paraboli GPL-

maps, and we show that for them the results of the previous setion have a more transparent

geometri interpretation, namely in terms of the loal saling behavior of the equilibrium

state �

�

. Here � refers to a H�older ontinuous potential suh that 0 = P(f; �) > �, and suh

that if f has paraboli elements then the H�older exponent of � exeeds p

max

=(p

max

+ 1).

For a measure � supported on J(f) and for � 2 [0;1), the (�; �)-level sets L

�

(�) and the

multifratal �-spetrum `

�

are de�ned by

L

�

(�) :=

(

z 2 J(f) : lim

r!0

log�(B(x; r))

log r

= �

)

and `

�

(�) := HD(L

�

(�)):

For the equilibrium state �

�

and its f -invariant version m

�

, we have by a result in [17℄ (Lemma

2.4.4) that the symmetri di�erene of L

�

�

(�) and L

m

�

(�) is ontained in 
. This implies

that

`

�

�

(�) = `

m

�

(�): (5.23)

The main result of this setion, that is Theorem 5.10, will be an immediate onsequene of

Theorem 5.3 in ombination with the following two lemmata.

Lemma 5.8. For eah � 2 (0;1), we have that K

�

(�) � L

m

�

(�).

Proof. Let x 2 J(f) n

S

n�0

f

�n

(
) be �xed. Sine f is a paraboli GPL-map, there exists

an in�nite sequene (n

j

) of positive integers (depending on x) and Æ > 0 (independent of x)

suh that

B(f

n

j

(x); 4KÆ) � U nB(
; �) and B(f

n

j

(x); 4KÆ) \

1

[

k=1

f

k

(Crit(f)) = ;:
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In partiular, for eah j we hene have a well-de�ned holomorphi inverse branh f

�n

j

:

B(f

n

j

(x); 4KÆ) ! CI whih maps f

n

j

(x) to x. If r > 0 is given, then we let n := maxfn

i

:

r � Æj(f

n

i

)

0

(x)j

�1

g and de�ne r

n

:= Æj(f

n

)

0

(x)j

�1

. Now we have for some j that n = n

j

, and

also that n

j+1

= n+ k, for some k. Clearly, we have that r � r

n+k

Æj(f

n+k

)

0

(x)j

�1

, and hene

it follows that

log

�

m

�

(B(x; r

n

))

�

log r

n+k

�

log

�

m

�

(B(x; r))

�

log r

�

log

�

m

�

(B(x; r

n+k

))

�

log r

n

: (5.24)

Using Koebe's distortion theorem, we see that B(x; r

n+k

) � f

�(n+k)

x

(B(f

n+k

(x); KÆ), whih

if ombined with Lemma 2.5, gives m

�

(B(x; r

n+k

)) � e

�C

�

exp

�

S

n+k

�(x)

�

. Therefore,

log

�

m

�

(B(x; r

n+k

))

�

log r

n

=

log

�

m

�

(B(x; r

n+k

))

�

log r

n+k

log r

n+k

log r

n

�

S

n+k

�(x)� C

�

� log j(f

n+k

)

0

(x)j+ log Æ

�

log r

n+k

log r

n

:

(5.25)

Similarly, using Koebe's

1

4

-distortion theorem, it follows that B(x; r

n

) � f

�n

x

(B(f

n

(x); 4Æ)),

and by ombining this and Lemma 2.5, we obtain

m

�

(B(x; r

n

)) � e

C

�

exp

�

S

n+k

�(x)

�

: (5.26)

Hene, we have

log

�

m

�

(B(x; r

n

))

�

log r

n+k

=

log

�

m

�

(B(x; r

n

))

�

log r

n

log r

n

log r

n+k

�

S

n+k

�(x)� C

�

� log j(f

n

)

0

(x)j + log Æ

log r

n

log r

n+k

:

(5.27)

Now, the aim is to show that if x 2 K

�

(�) then it follows that

lim

n!1

log r

n

log r

n+k

n

= 1: (5.28)

In order to prove this, we proeed as follows

lim

n!1

log r

n

log r

n+k

= lim

n!1

log j(f

n

)

0

(x)j

log j(f

n+k

)

0

(x)j

= lim

n!1

 

1�

log j(f

k

)

0

(f

n

(x))j

log j(f

n+k

)

0

(x)j

!

= 1 + lim

n!1

S

n+k

(��)(x)j

log j(f

n+k

)

0

(x)j

log j(f

k

)

0

(f

n

(x))j

S

n+k

�(x)

= 1 + � lim

n!1

log j(f

k

)

0

(f

n

(x))j

S

n+k

�(x)

:

Now note that we have, for some universal onstant C � 1,

� logC � log j(f

k

)

0

(f

n

(x))j � logC +

p

max

+ 1

p

max

log(k + 1):

Sine sup(�) < 0 we have sup(S

n+k

�) < (n+ k) sup(�), and we onlude that

lim

n!1

log j(f

k

n

)

0

(f

n

(x))j

S

n+k

�(x)

= 0;
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whih proves (5.28). For x 2 K

�

(�), we an now ombine (5.28), (5.24), (5.25) and (5.27),

whih implies

lim

r!0

log

�

m

�

(B(x; r))

�

log r

= �;

and whih therefore gives that x 2 L

m

�

(�).

Lemma 5.9. For eah q 2 (0; 1℄, we have that `

m

�

(�T

0

(q)) � �qT

0

(q) + T (q).

Proof. Let x 2 L

m

�

(�T

0

(q)) n

S

n�0

f

�n

(
) be �xed. For r > 0, let n = n

j

be deter-

mined as in the proof of the previous lemma. Using Koebe's distortion theorem, we have

that B(x; r

n

) � f

�n

x

(B(f

n

(x); KÆ). Therefore, applying Lemma 2.5 and one more Koebe's

distortion theorem, we obtain for the equilibrium state m

q

of the potential �T (q) log jf

0

j+q�,

m

q

(B(x; r

n

))� exp

�

S

n

(q�)(x)

�

j(f

n

)

0

(x)j

�T (q)

m

q

(B(f

n

(x); KÆ))

� exp

q

(S

n

�(x))j(f

n

)

0

(x)j

�T (q)

� m

q

�

(B(x; r

n

))j(f

n

)

0

(x)j

�T (q)

:

In here the seond inequality sign follows sine inffm

q

(B(z;KÆ) : z 2 J(f)g > 0. Hene, we

now have that

lim

r!0

log

�

m

q

(B(x; r))

�

log r

� lim

n!1

log

�

m

q

(B(x; r

n

))

�

log r

n

� lim

n!1

q log

�

m

�

(B(x; r

n

))

�

� T (q) log j(f

n

)

0

(x)j

log r

n

= �qT

0

(q) + T (q):

Theorem 5.10. Let f be a paraboli GPL-map, and � : J(f) ! IR a H�older ontinuous

potential suh that P(f; �) > �. In ase f has paraboli elements we additionally assume that

the H�older exponent of � exeeds p

max

=(p

max

+ 1). Then the following holds.

(a) For q 2 (0; 1℄, the funtion q 7! T (q) is real analyti and T

0

(q) < 0.

(b) For every q 2 (0; 1℄, we have that `

�

�

(�T

0

(q)) = T (q)� qT

0

(q).
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