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Abstra
t. In this paper we study paraboli
ally semihyperboli
 generalized polynomial-like

maps and give a �ner fra
tal analysis of their Julia sets. We dis
uss various generalizations

of the 
lassi
al notion of topologi
al pressure to situations in whi
h the underlying potentials

are not ne
essarily 
ontinuous or bounded. Subsequently, we investigate various types of


onformal measures and invariant Gibbs states, whi
h then enables us to dedu
e analyti


properties for the generalized pressure fun
tions. On the basis of these results, we �nally

derive our multifra
tal analysis, and then show that for the spe
ial 
ase in whi
h the Julia

set does not 
ontain 
riti
al points, this general multifra
tal analysis has a more transparent

geometri
 interpretation in terms of the lo
al s
aling behaviour of the 
anoni
ally asso
iated

equilibrium state.

1. Introdu
tion and statement of main results

In this paper we give a �ner multifra
tal analysis of Julia sets J(f) for paraboli
ally semihy-

perboli
 generalized polynomial-like maps f (see se
tion 2 for the de�nition of these maps).

First, we give a detailed dis
ussion of various extensions of the 
lassi
al notion of topologi
al

pressure P(f; �). Di�erent from the 
lassi
al situation, whi
h requires the potential � to be


ontinuous, these extensions P(t; �) are asso
iated to potentials of the form �t log jf

0

j + �,

whi
h are in general (that is, if the 
riti
al points are of dynami
al signi�
an
e) neither


ontinuous nor bounded (se
tion 2.3 and se
tion 4). This dis
ussion is then followed by in-

vestigations of various types of 
onformal measures and invariant Gibbs states (se
tion 3).

Subsequently, on the basis of these 
onsiderations, we then derive our multifra
tal analysis for

paraboli
ally semihyperboli
 generalized polynomial-like maps. We remark that the results

in this paper are signi�
ant extensions of our results obtained in [15℄, and furthermore they

provide further generalizations of the results in [7℄ and [14℄ where totally di�erent methods

have been employed.

In order to state the main results, we need to introdu
e the following. For a H�older 
ontinuous

fun
tion � : J(f)! IR, the lower and upper rate of � at x 2 J(f) are de�ned by

�

�

(x) := lim

n!1

S

n

�

P(f; �)� �(x)

�

log j(f

n

)

0

(x)j

and �

�

(x) := lim

n!1

S

n

�

P(f; �)� �(x)

�

log j(f

n

)

0

(x)j

:
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If these two rates 
oin
ide, then we write �

�

(x) to denote their 
ommon value.

In order to study the �ne-s
ale geometry of J(f), we then follow the foot steps of the 
lassi
al

multifra
tal formalism and 
onsider the (�; �)-level sets K

�

(�), whi
h are de�ned by, for

� 2 IR,

K

�

(�) := fx 2 J(f) : �

�

(x) = �g:

Let p

max

refer to the maximal number of petals a paraboli
 �xed point of f 
an possibly have.

The following theorem gives the �rst main result of this paper.

Theorem 1. Let f be a paraboli
ally semi-hyperboli
 generalized polynomial-like map, and

let � : J(f)! IR be a H�older 
ontinuous potential su
h that P(f; �) > sup(�). In 
ase f has

paraboli
 elements we additionally assume that the H�older exponent of � ex
eeds p

max

=(p

max

+

1). Then the following holds, where �

�

refers to the equilibrium state of �.

(i) For �

�

-a.e. x 2 J(f), we have that �

�

(x) exists and

�

�

(x) =

P(f; �)�

R

�d�

�

R

log jf

0

jd�

�

:

(ii) There exists a fun
tion T : (0; 1℄! IR, uniquely determined by P(T (q); q�) = 0, su
h

that

{ T is real-analyti
 and T

0

is stri
tly negative,

{ HD(K

�

(�T

0

(q))) = T (q)� qT

0

(q), for every q 2 (0; 1).

We then 
ontinue by investigating analyti
 properties of the multifra
tal �-spe
trum k

�

, whi
h

is de�ned for � 2 IR by

k

�

(�) := HD(K

�

(�)):

The following theorem gives the se
ond main result of this paper. Note, throughout we let h

refer to the Hausdor� dimension HD(J(f)) of J(f).

Theorem 2. Let f be a paraboli
ally semi-hyperboli
 generalized polynomial-like map, and

let � : J(f)! IR be a H�older 
ontinuous potential su
h that P(f; �) > sup(�). In 
ase f has

paraboli
 elements we additionally assume that the H�older exponent of � ex
eeds p

max

=(p

max

+

1). If the equilibrium state �

�

is not equivalent to the h-
onformal measures �

h

of f , hen
e

in parti
ular if f has a paraboli
 point or a non-ex
eptional 
riti
al point, then the domain of

the fun
tion k

�


ontains a non-degenerate interval on whi
h k

�

is real-analyti
.

Finally, we 
onsider the spe
ial 
lass of paraboli
ally semi-hyperboli
 generalized polynomial-

like maps f for whi
h J(f) does not 
ontain 
riti
al points of f . Maps of this type will be

referred to as paraboli
 generalized polynomial-like maps, and we show that for these maps

the results of the multifra
tal analysis in Theorem 1 and Theorem 2 have a more transparent

geometri
 interpretation. More pre
isely, we obtain the following theorem whi
h states the

third main result of this paper.
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Theorem 3. Let f be a paraboli
 generalized polynomial-like map, and � : J(f) ! IR a

H�older 
ontinuous potential su
h that P(f; �) > sup(�). In 
ase f has paraboli
 elements we

additionally assume that the H�older exponent of � ex
eeds p

max

=(p

max

+1). Then we have for

the equilibrium state �

�

asso
iated with �, and for any q 2 (0; 1),

HD

 (

z 2 J(f) : lim

r!0

log �

�

(B(x; r))

log r

= �T

0

(q)

)!

= T (q)� qT

0

(q):

(Here, T refers to the fun
tion whi
h we already 
onsidered in Theorem 1).

The paper is organized as follows.

1. Introdu
tion and statement of main results

2. Preliminaries

2.1. Paraboli
ally semihyperboli
 generalized polynomial-like maps

2.2. Conformal graph dire
ted Markov systems and GPL-maps

2.3. Topologi
al pressure fun
tions

3. Invariant Gibbs states

4. Real analyti
ity of the topologi
al pressure

5. Multifra
tal analysis

5.1. The general 
ase of a paraboli
ally semi-hyperboli
 GPL-map

5.2. The paraboli
 
ase without 
riti
al points in the Julia set

Throughout, we use the following 
onventions to des
ribe the relationship between two positive

numbers a and b. We write a � b if the ratio of a and b is uniformly bounded away from

zero and in�nity. Similarly, we write a� b, or a� b respe
tively, if a=b is uniformy bounded

away from in�nity, or zero respe
tively.

A
knowledgement: We should like to thank the Mathemati
al Department at the Uni-

versity of North Texas for its warm hospitality and ex
ellent working 
onditions while doing

part of the work to this paper. Also, we should like to thank the NSF for �nan
ial support.

2. Preliminaries

2.1. Paraboli
ally semihyperboli
 generalized polynomial-like maps.

In this se
tion we give a brief introdu
tion into paraboli
ally semihyperboli
 generalized poly-

nomial-like maps. Let n = f1; 2; : : :g be the set of all positive integers. We begin with re
alling

the de�nition of a generalized polynomial-like mapping, whi
h will be abbreviated throughout

as a GPL-map. Note that we have adopted the notation of [15℄.

For U � CI an open Jordan domain with smooth boundary, let U :=

S

i2I

U

i

be a �nite union

of Jordan domains U

i

whi
h are fully 
ontained in U and whi
h have pairwise disjoint 
losures.

A GPL-map f is a map

f : U ! U

3



whi
h has a holomorphi
 extension to an open neighbourhood of U su
h that for ea
h i 2 I

the restri
tion of this extension to U

i

is a surje
tive bran
hed 
overing map. We let J(f) refer

to the Julia set of f .

Let 
 denote the set of paraboli
 periodi
 points of f given by


 := f! 2 U : f

q

(!) = ! and (f

q

)

0

(!) = 1 for some q 2 INg:

Without loss of generality, we may assume that the paraboli
 periodi
 points of f are in fa
t

�xed points of f , and that f

0

(!) = 1 for ea
h ! 2 
 (this is a
hieved as usual, by taking a

suitable iterate of f ; note that this does not a�e
t our analysis here sin
e P(f;�t log jf

0

j) =

1

n

P(f;�t log j(f

n

)

0

j), for ea
h n 2 N).

Also, we de�ne

Crit(f) := f
 : f

0

(
) = 0g and Crit(J(f)) := J(f) \ Crit(f):

It will be 
onvenient to split up the index set I in the following way.

I

o

:= fi 2 I : U

i

\

S

n�1

f

n

(Crit(f)) = ;g (`post-
riti
al free indi
es'),

I

p

:= fi 2 I : 
 \ U

i

6= ;g (`paraboli
 indi
es'),

I




:= fi 2 I : U

i

\ Crit(f) 6= ;g (`
riti
al indi
es'),

I

r

:= I n (I




[ I

p

) (`regular indi
es').

With this de
omposition of the �nite index set I, we de�ne

U

o

:=

[

i2I

o

U

i

; U

p

:=

[

i2I

p

U

i

; U




:=

[

i2I




U

i

; U

r

:=

[

i2I

r

U

i

:

De�nition 2.1. A GPL-map f is 
alled paraboli
ally semihyperboli
 if and only if the follow-

ing 
onditions are satis�ed.

(a) I




� I

o

; (b) U

o

[ U

r

� U; (
)

[

n2IN

f

n

(Crit(f)) � U

r

; (d) I

p

6= I:

Throughout the paper we assume, if not stated otherwise, that f is a paraboli
ally semihy-

perboli
 GPL-map. Note that in its de�nition we do not rule out the possibility that 
 = ;.

That is, we let the 
lass of semihyperboli
 GPL-maps be 
ontained in the 
lass of paraboli
ally

semihyperboli
 GPL-maps. Also, re
all that a GPL-map f is 
alled 
riti
ally non-re
urrent

if for ea
h 
 2 Crit(J(f)) we have that U

i

\ ff

n

(
) : n 2 INg = ;; where i 2 I is uniquely

determined by the fa
t that 
 2 U

i

. Hen
e, by (a) in the de�nition above, a paraboli
ally

semihyperboli
 GPL-map is always 
riti
ally non-re
urrent, and 
onsequently, 
riti
ally tame

(see [18℄ for its de�nition). Also, note that for a paraboli
ally semihyperboli
 GPL-map the

sets I

o

; I

p

and I

r

are always pairwise disjoint.

The following lemma is an immediate 
onsequen
e of the fa
t that a GPL-map is 
riti
al

non-re
urrent in 
ombination with the topologi
al exa
tness of its Julia set.

Lemma 2.2. For a 
riti
ally non-re
urrent GPL-map f we have that the 
losure of the

forward orbit of Crit(f) is a nowhere dense in J(f).
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Throughout, we shall assume that for i 2 I

p

the map f : U

i

! U is a 
onformal homeo-

morphism. By S
hwarz's lemma, we then have that 
 \ U

i

is a singleton, denoted by !

i

, so

that we have in parti
ular that !

i

= �U

i

\ �U . Also, with f

�1

i

: U ! U

i

referring to the

inverse bran
h of f for whi
h f

�1

i

(!

i

) = !

i

, the Denjoy-Wolf theorem implies that f

�n

i

(z)


onverges to !

i

uniformly, for ea
h z 2 U . Sin
e f

�1

i

has an analyti
 extension to an open

neighbourhood of !

i

and sin
e (f

�1

i

)

0

(!

i

) = 1, the Taylor expansion of this extension for z


lose to !

i

is of the form, for some �xed a

i

6= 0 and p(!

i

) 2 N,

f

�1

i

(z) = z + a

i

(z � !

i

)

p(!

i

)+1

+ : : : :

Using this, it follows (see e.g [1℄) that for ea
h 
ompa
t set F � U there exists a 
onstant

C

F

� 1 su
h that, for every n 2 IN and for all z 2 F ,

C

�1

F

n

�

p(!

i

)+1

p(!

i

)

� j(f

�n

i

)

0

(z)j � C

F

n

�

p(!

i

)+1

p(!

i

)

: (2.1)

Clearly, the geometri
 meaning of p(!

i

) is that it is the number of petals at !

i

. Throughout

we let p

max

:= maxfp(!

i

) : i 2 I

p

g denote the maximal number of petals whi
h 
an possibly

o

ur at paraboli
 points of f .

2.2. Conformal graph dire
ted Markov systems and GPL-maps.

The analysis in se
tion 4 of analyti
 properties of the pressure fun
tion will make use of

the fa
t that a paraboli
ally semihyperboli
 GPL-map is 
losely related to the 
on
ept of

a 
onformal graph dire
ted Markov system (abbreviated as a CGDM-system). In order to

explain this relationship in greater detail, we now �rst re
all from [10℄ the de�nition of a

CGDM-system.

The 
ombinatori
al spine of a graph dire
ted Markov system is represented by a dire
ted

multigraph (V;E; i; t; A), 
onsisting of a �nite set V of verti
es, a 
ountable set E of dire
ted

edges, two fun
tions i; t : E ! V , and a transition matrix A : E � E ! f0; 1g. Here, i(e)

refers to the initial vertex and t(e) to the terminal vertex of an edge e 2 E. In our spe
ial


ontext here, the matrix A = (A

uv

) has the property that A

uv

= 1 if and only if t(u) = i(v).

The asso
iated symboli
 spa
e is then de�ned as follows.

E := f(e

1

; e

2

; : : : ) 2 E

1

: A

e

i

e

i+1

= 1 for all i 2 INg:

Furthermore, there is a set fX

v

: v 2 V g of non-empty 
ompa
t 
onne
ted subsets X

v

of CI,

and a set � = f�

e

: X

t(e)

! X

i(e)

g

e2E

of univalent 
ontra
tions, all with some �xed Lips
hitz


onstant 0 < s < 1. Ea
h of these maps �

e

is assumed to have a 
onformal extension from

some 
onne
ted open neighbourhood W

t(e)

of X

t(e)

to some 
onne
ted open neighbourhood

W

i(e)

of X

t(e)

. If additionally � satis�es the `open set 
ondition' as well as the `
one 
ondition'

(see [10℄, Se
tion 4.2), then we say that � is a CGDM-system.

Note, in this situation the limit set J

�

of � is given as follows. For � = (�

1

; �

2

; : : : ) 2 E and
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n � 1, let

�

� j

n

:= �

�

1

Æ : : : Æ �

�

n

: X

t(�

n

)

! X

i(�

1

)

:

Sin
e � 
onsists of s-Lips
hitz 
ontra
tions, it follows that �(�) :=

T

n2IN

�

� j

n

�

X

t(�

n

)

�

is a

singleton. This pro
edure gives a map � : E !

S

v2V

X

v

, and we let

J

�

:= �(E):

The following proposition states the main result of this se
tion. The proof introdu
es some

notation whi
h will be relevant also in se
tion 4. Furthermore, re
all from [10℄ that `�nitely

primitive of order 2' means that for ea
h pair u; v 2 V there exists a; b 2 E su
h that A

a;b

= 1

and i(a) = u; t(b) = v.

Proposition 2.3. Let f be a paraboli
ally semihyperboli
 GPL-map. Then there exists a

�nitely primitive order 2 CGDM-system �

f

with J

�

f

� J(f) su
h that

J

�

f

\ U

o

= J(f) \ U

o

n

[

n�0

f

�n

(
 [

\

k�0

f

�k

(U

r

)) :

Proof. For the proof it suÆ
es to show how to asso
iate to f a CGDM-system. For this we

de�ne U

(i;j)

:= f

�1

j

(U

i

), for ea
h (i; j) 2 (I

p

� I

r

) [ (I

p

� I

p

n fdiag:g). Here fdiag:g denotes

the diagonal in I

p

� I

p

, and f

�1

j

: U ! U

j

refers the inverse of the map f j

U

j

. Using 
ondition

(
) in the de�nition of a paraboli
ally semihyperboli
 GPL-map, it follows that

U

(i;j)

\

[

n2IN

f

n

(Crit(f)) = ;: (2.2)

Let V

f

:= I

o

[ (I

p

� I

r

) [ (I

p

� I

p

n fdiag:g) be the set of verti
es. The 
onformal univalent


ontra
tions of our system are given as follows. By (2.2) and the de�nition of the set I

o

,

we have that for ea
h v 2 V

f

the holomorphi
 inverse bran
hes of any iterate of f are

well-de�ned on U

v

. Hen
e, for v 2 V

f

and n 2 IN we 
onsider all holomorphi
 inverse

bran
hes f

�n

�

: U

v

! U of f

n

for whi
h f

�n

�

(U

v

) � U

w

for some w 2 V

f

, and for whi
h

f

k

(f

�n

�

(U

v

)) \ (

S

s2V

U

s

) = ; for all 1 � k < n. In this situation we write �

e

: U

t(e)

! U

i(e)

instead of f

�n

�

: U

v

! U

w

, where t(e) = v and i(e) = w. Also, we de�ne N(e) := n. Now, let

�

f

:= f�

e

: U

t(e)

! U

i(e)

g

e2E

f

;

where E

f

is some 
ountable auxiliary set parametrizing the family �

f

. Note that the set

V

f

of verti
es is �nite, whereas in general the set E

f

of edges is in�nite. Let E

f

refer to

the 
orresponding symboli
 spa
e. Sin
e U

v

\

S

n2IN

f

n

(Crit(f)) = ;, it follows that for ea
h

v 2 V

f

there exists an open 
onne
ted simply 
onne
ted set U

v

� W

v

� U su
h that if e 2 E

f

and t(e) = v, then �

e

has a univalent holomorphi
 extension to W

v

and �

e

(W

v

) � U

i(e)

(for

later use, we also introdu
e a

ordingly W and W

o

:=

S

i2I

o

W

i

). Sin
e for ea
h i 2 I

p

we

have that

T

n�0

f

�n

(J(f) \ U

i

) = f!

i

g, we immediately obtain from the 
onstru
tion of �

f

that

J

�

f

\ U

o

= J(f) \ U

o

n

[

n�0

f

�n

(
 [

\

k�0

f

�k

(U

r

)) :
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We remark that the 
one 
ondition is satis�ed, sin
e for ea
h v 2 V the boundaries of the

dis
 U

v

is smooth. Also, the open set 
ondition follows immediately from the 
onstru
tion

of �

f

, noting that the elements of �

f

are inverse bran
hes of forward iterates of f . Finally,

sin
e for ea
h pair u; v 2 V there exist a; b 2 E

f

su
h that i(b) 2 I

o

and su
h that i(a) = u,

t(b) = v and A

a;b

= 1, it follows that the system �

f

is �nitely primitive of order 2.

2.3. Topologi
al pressure fun
tions.

In this se
tion we give a dis
ussion of various de�nitions of the 
on
ept of a `pressure fun
tion'

asso
iated with a dynami
al system. We shall see that in the 
ontext of a paraboli
ally

semihyperboli
 GPL-map all these di�erent notions of pressure 
oin
ide.

Let us begin with re
alling the 
lassi
al de�nition in ergodi
 theory of the notion pressure. We

refer to [2℄ for further details. Let T : X ! X be a 
ontinuous automorphism of a 
ompa
t

metri
 spa
e (X; d). Also, let d

n

refer to the metri
 on X whi
h is given, for x; y 2 X and

n � 0, by

d

n

(x; y) := maxfd(T

i

(x); T

i

(y)) : 0 � i � ng:

Then a set F � X is 
alled (n; �)-separated, for n � 0 and � > 0, if it is separated with respe
t

to the metri
 d

n

(that is d

n

(x; y) � � for all distin
t x; y 2 X). With (F

n

(�))

n2N

denoting a

sequen
e of maximal (in the sense of in
lusion) (n; �)-separated sets, the topologi
al pressure

P of a 
ontinuous potential fun
tion � : X ! IR is then de�ned by

P(T; �) := lim

�!0

lim sup

n!1

1

n

log

0

�

X

x2F

n

(�)

exp

n�1

X

j=0

� Æ T

j

(x)

1

A

:

Note that the 
on
ept of topologi
al pressure has its origin in topologi
al dynami
s. Closely

related to it is the measure theoreti
al entropy h

�

(T ), whi
h is 
entral in ergodi
 theory. It

is well-known that the link between these two important notions is given by the following so


alled variational prin
iple

P(T; �) = supfh

�

(T ) +

Z

�d�g:

In here, the supremum is taken with respe
t to all T -invariant (ergodi
) Borel probability

measures � supported on X.

For more general situations in whi
h the potentials are no longer 
ontinuous or bounded, this


lassi
al de�nition of pressure fails. More pre
isely, for a GPL-map f su
h that J(f) has non-

trivial interse
tion with Crit(f), we are led to 
onsider potentials of the form �t log jf

0

j+�, for

t � 0 and � : X ! IR 
ontinuous. One easily veri�es that potentials of this type are in general

neither 
ontinuous nor bounded. A priori it is not 
lear how to adapt the above de�nition of

pressure to this more general situation. However, in [11℄ Przyty
ki suggested, in the 
ontext

of rational maps, several ways to generalize the 
on
ept of topologi
al pressure asso
iated

with the potential �t log jf

0

j. For a GPL-map f and for potentials of the type �t log jf

0

j+ �,

7



we now start our dis
ussion of how to amend the 
lassi
al de�nition of topologi
al pressure,

by giving the following generalization of one of Przyty
ki's suggestions.

(P1) Point pressure.

For ea
h z 2 J(f), t � 0 and � : J(f)! IR a 
ontinuous potential, we let

P

z

(t; �) := lim sup

n!1

1

n

log

X

x2f

�n

(z)

j(f

n

)

0

(x)j

�t

exp(S

n

�(x)):

The point pressure P

P

(t; �) is then de�ned by

P

P

(t; �) := inf

z2J(f)

P

z

(t; �):

For every 
onne
ted set G � U , every n 2 IN , and every z 2 U we denote by C

n

(z; G) the


onne
ted 
omponent of f

�n

(G) 
ontaining z.

Before stating further possible generalizations of the notion pressure, we �rst give a brief

dis
ussion of the point pressure just de�ned. For this the following te
hni
al observations will

turn out to be useful.

Lemma 2.4. Let � > 0 be given. Then there exist 
onstants B

�

� 1 and � > 0, depending

on �, su
h that for ea
h � > 0 suÆ
iently small, and for every n 2 IN , z 2 J(f) and

f

n

(z) =2 B(
; �), the following holds.

If 
 6= ; then diam

�

C

n

(z; B(f

n

(z); �))

�

� B

�

n

�

p

max

+1

p

max

:

If 
 = ; then diam

�

C

n

(z; B(f

n

(z); �))

�

� B

�

e

��n

:

Proof. The proof of the �rst part is an immediate adaptation of the proof of Lemma 4.3

in [18℄ if one observes that by property (
) in the de�nition of paraboli
ally semi-hyperboli


GPL maps in Se
tion 2.1, the fa
tor � in formula (4.7) of [18℄ 
an be negle
ted. The se
ond

part has been proven in [17℄.

The lemma has the following immediate 
onsequen
e.

Lemma 2.5. Let � > 0 and � : J(f) ! IR be a H�older 
ontinuous fun
tion with H�older

exponent ex
eeding p

max

=(p

max

+ 1). Then there exists a 
onstant C

�

� 0, depending on �,

su
h that for ea
h � > 0 suÆ
iently small, and for every n 2 IN , z 2 J(f), f

n

(z) =2 B(
; �)

and for all x; y 2 C

n

(z; B(f

n

(z); �)), we have

jS

n

�(x)� S

n

�(y)j � C

�

:

For a given 
ontinuous potential fun
tion � : J(f)! IR, let � and

^

� be de�ned by

� := inf

n2IN

�

1

n

supS

n

�

�

and

^

� := maxf

Z

�d� : � Æ f

�1

= �g:

8



Clearly, for every n 2 IN and every f -invariant Borel probability measure �, we have

Z

�d� =

1

n

Z

S

n

�d� �

1

n

supS

n

�:

This implies

R

�d� � �, from whi
h we dedu
e that

^

� � �: (2.3)

In order to pro
eed, we require the following simple observation.

Lemma 2.6. For every � > 0 there exists q 2 IN su
h that supfS

n

�g � (� + �)n, for all

n � q.

Proof. By de�nition of �, for every � > 0 there existsm 2 IN su
h that

1

m

supfS

m

�g < �+

�

2

.

Now, if n � m su
h that n = sm + r, for 0 � r � m� 1 and s 2 IN , then it follows

supfS

n

�g � supfS

r

�g+supfS

sm

�g � (m�1)jj�jj

1

+s supfS

m

�g � (m�1)jj�jj

1

+sm

�

�+

�

2

�

:

This implies, for n suÆ
iently large,

1

n

supfS

n

�g �

(m� 1)jj�jj

1

n

+

sm

n

�

�+

�

2

�

�

(m� 1)jj�jj

1

n

+ �+

�

2

� �+ �:

By the previous lemma, we 
an now de�ne the following 
riti
al exponents, for s 2 IR and

� : J(f)! IR a 
ontinuous potential,

Æ(�; s; z) := infft � 0 : P

z

(t; �) � sg; Æ(�; z) := Æ(�; �; z) and Æ(�) := inf

z2J(f)

Æ(�; z):

For the rest of this paper we shall assume from now on, if not stated otherwise, that in 
ase


 6= ; the potential � : J(f) ! IR is a H�older 
ontinuous fun
tion with H�older exponent �

whi
h ex
eeds p

max

=(p

max

+ 1). The following lemma is given for reasons of 
ompleteness. It

gives a generalization of a result of Przyty
ki (
f. Lemma 3.3 in [11℄), but nevertheless it is

not essential for the purposes of this paper.

Lemma 2.7. There exists a set E � J(f) of Hausdor� dimension equal to zero su
h that,

for all z 2 J(f) n E and t � 0,

P

z

(t; �) = P

P

(t; �) and Æ(�; z) = Æ(�):

Proof. For n 2 IN , we de�ne

P(z; t; �; n) :=

X

x2f

�n

(z)

j(f

n

)

0

(x)j

�t

exp(S

n

�(x)):

The proof is an immediate adaptation of the �rst part of the proof of Theorem 3.3 in [11℄.

The reader is referred to this proof in [11℄, where one should insert the following 
hanges.
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Everywhere in this proof repla
e Crit(f) by Crit(f)[
. Also, in the notation of [11℄, 
hoose

the parameter � of Lemma 2.4 su
h that � =

1

2

minfdiam(B

j

) : j = 1; 2; : : : ; kg: It then

follows that dist(
; B

1

[ B

2

[ : : : [ B

k

) > 0, and hen
e, by Koebe's Distortion Theorem and

Lemma 2.5, we have

P(z

2

; t; �; n)

P(z

1

; t; �; n)

�

^

�

�k

for some suitable 
onstant

^

� � 1. With these modi�
ations one 
an now follow word by word

the proof of Theorem 3.3 in [11℄.

For the following lemma, re
all that for t � 0 and s 2 IR, a Borel probability measure

m

t;�

supported on J(f) is by de�nition a (e

s

; t; �)-
onformal Gibbs state if and only if f is

non-singular with respe
t to m

t;�

and

d(m

t;�

Æ f)

dm

t;�

= e

s

jf

0

j

t

exp(��):

Note that in Se
tion 3 we will dis
uss this type of measure in greater detail.

Lemma 2.8. Let m be a (e

s

; t; �)-
onformal Gibbs state m. Then there exists a non-empty

Borel set S � J(f) of positive m-measure su
h that P

z

(t; �) � s and Æ(�; s; z) � t, for all

z 2 S.

Proof. If t > 0 then we have (f

k

)

0

(
) = 0, for all 
 2 Crit(f) and k � 1. This implies that

m

�

S

k2IN

f

k

(Crit(f))

�

= 0. Now, allowing also the 
ase when t = 0, we shall prove �rst by

way of 
onradi
tion that, for every 
 2 Crit(f) \ J(f),

1

[

n=1

f

�n

(
) 6�

[

j�1

f

j

(Crit(f)): (2.4)

Hen
e, suppose that for some 
 2 Crit(f) \ J(f),

1

[

n=1

f

�n

�

[

j�1

f

j

(Crit(f)):

Fix a sequen
e f


n

g

1

n=0

su
h that f(


n+1

) = 


n

for all n � 0. Then for every n � 0 there

exists w

n

2 Crit(f) and j

n

� 1 su
h that 


n

= f

j

n

(w

n

). Hen
e, 
 = f

n

(


n

) = f

n+j

n

(w

n

).

Sin
e lim

n!1

(n + j

n

) = +1 and sin
e the set Crit(f) is �nite, there exists a point a 2

Crit(f) and two integers 0 < k < l su
h that f

k

(a) = 
 and f

l

(a) = 
. It follows that

f

l�k

(
) = f

l�k

(f

k

(a)) = f

l

(a) = 
, whi
h is a 
ontradi
tion sin
e no 
riti
al point in the

Julia set 
an be periodi
. Now suppose that m

�

S

k2IN

f

k

(Crit(f))

�

> 0. Then m(f

k

(
)) > 0

for some 
 2 Crit(f) \ J(f) and some k � 1, and 
onformality of the measure m implies

that m(y) > 0 for all y 2

S

1

n=1

f

�n

(
). Thus, applying (2.4), we 
on
lude that in any 
ase

m(G) > 0, for G := J(f) n

S

j�1

f

j

(Crit(f)). Now, by a straighforward geometri
 measure
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theory argument, we 
an 
onstru
t for every integer n � 1, �nitely many mutually dis-

joint open topologi
al disks V

(n)

1

; V

(n)

2

; : : : ; V

(n)

q

n

su
h that V

(n)

1

[ V

(n)

2

: : : [ V

(n)

q

n

� J(f) and

m

�

�V

(n)

1

[ �V

(n)

2

: : : [ �V

(n)

q

n

n

S

k2IN

f

k

(Crit(f))

�

= 0. Let f

�n

i;j

: V

(n)

i

! CI refer to the holo-

morphi
 inverse bran
hes of f

n

de�ned on V

(n)

i

, for i = 1; 2; : : : ; q

n

and j = 1; 2; : : : ; deg

n

(f).

We then have

1 �

q

n

X

i=1

deg

n

(f)

X

j=1

m

�

f

�n

i;j

(V

(n)

i

)

�

=

q

n

X

i=1

deg

n

(f)

X

j=1

Z

V

(n)

i

j(f

�n

i;j

)

0

j

t

exp

�

S

n

� Æ f

�n

i;j

� s

�

dm

= e

�sn

q

X

i=1

Z

V

(n)

i

P(z; t; �; n)dm = e

�sn

Z

G

P(z; t; �; n)dm:

Therefore

R

G

P(z; t; �; n)dm � e

sn

, and for arbitrary � > 0, we have that

m

�

fz 2 G : P(z; t; �; n) � e

s+�n

g

�

� e

��n

:

Applying the Borel-Cantelli Lemma, it now follows that for m-a.e. z 2 G we have P

z

(t; �) �

s + �. Sin
e � was arbitrary, this implies that for m-a.e. z 2 G we have P

z

(t; �) � s as well

as Æ(�; s; z) � t.

The following gives a list of other possible generalizations of suggestions of Przyty
ki in [11℄

of how to ammend the notion of topologi
al pressure in situations in whi
h Crit(f) plays a


ru
ial role.

(P2) Variational pressure.

P

V

(t; �) := supfh

�

(f) +

Z

(�t log jf

0

j+ �)d�g;

where the supremum is taken with respe
t to all ergodi
 f -invariant measures sup-

ported on J(f).

(P3) Hyperboli
 variational pressure.

P

HV

(t; �) := supfh

�

(f) +

Z

(�t log jf

0

j+ �)d�g;

where the supremum is taken with respe
t to all ergodi
 f -invariant measures sup-

ported on J(f) su
h that the Lyapunov exponent is positive, i.e. su
h that

R

log jf

0

jd� >

0.

(P4) Hyperboli
 pressure.

P

H

(t; �) := supfP(f j

X

;�t

Z

log jf

0

j+ �)g;

where the supremum is taken with respe
t to all f -invariant hyperboli
 subsets X of

J(f) su
h that some iterate of f j

X

is topologi
ally 
onjugate to a subshift of �nite

type. (Re
all that a forward invariant 
ompa
t set X � J(f) is 
alled hyperboli
 if

there exists n 2 IN su
h that j(f

n

)

0

(x)j > 1, for ea
h x 2 X).
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(P5) DU-pressure.

P

DU

(t; �) := supfP(f j

K(V )

;�t

Z

log jf

0

j+ �)g;

where the supremum is taken with respe
t to all open subsets V of J(f) for whi
h

J(f) \ Crit(f) � V , and where we have set K(V ) := J(f) n

S

n�0

f

�n

(V ). (Note that

K(V ) is 
ompa
t, f -invariant and disjoint from Crit(f)).

(P6) Conformal pressure.

P

C

(t; �) := log �(t; �);

where �(t; �) is de�ned as the in�mum of the set of all positive � for whi
h there exists

a Borel probability measure m su
h that d(m Æ f)=dm = �jf

0

j

t

e

��

.

The following theorem gives the main result of this se
tion. We show that for a paraboli
ally

semihyperboli
 GPL-map f all notions of pressure introdu
ed in (P1) up to (P6) 
oin
ide.

For the remainder of this paper we shall then refer to the 
ommon value established in this

theorem as to the topologi
al pressure P(t; �) of the potential �t log jf

0

j+ �.

Theorem 2.9. Let f be a paraboli
ally semihyperboli
 GPL-map, and � : X ! IR a H�older


ontinuous potential with H�older exponent � ex
eeding p

max

=(p

max

+ 1). We then have, for

every t 2 [0; Æ(�)),

P

P

(t; �) = P

V

(t; �) = P

HV

(t; �) = P

H

(t; �) = P

DU

(t; �) = P

C

(t; �):

Proof. Without loss of generality, we 
an assume that Æ(�) > 0. Clearly, we have that

P

P

(t; �) � P

H

(t; �). Also, we have P

H

(t; �) � P

HV

(t; �) (
.f. [13℄), as well as P

HV

(t; �) �

P

H

(t; �). The latter inequality is an immediate 
onsequen
e of the variational prin
iple.

Summarizing, we now have

P

P

(t; �) � P

H

(t; �) = P

HV

(t; �): (2.5)

Next we show that P

DU

(t; �) > � implies

P

HV

(t; �) � P

DU

(t; �): (2.6)

For this let � > 0 be 
hosen suÆ
iently small su
h that P

DU

(t; �) � � > �. The variational

prin
iple gives the existen
e of a f -invariant Borel probability measure � supported on some

set K(V ) su
h that h

�

(f)� t�

�

+

R

�d� � P

DU

(t; �)� � > � (where �

�

refers to the Lyapunov

exponent). Hen
e, we are left to show that �

�

> 0. In order to see this, we use (2.3) whi
h

gives

h

�

(f)� t�

�

> ��

Z

�d� �

^

��

Z

�d� � 0:

Hen
e, we have h

�

(f) > t�

�

� 0, and therefore we 
an apply Ruelle's inequality (that is

h

�

(f) � 2maxf0; �

�

g) to dedu
e �

�

> 0.
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Next we show that P

V

(t; �) > � implies

P

HV

(t; �) = P

V

(t; �): (2.7)

Clearly, we have P

HV

(t; �) � P

V

(t; �). Similar as above, let � > 0 be 
hosen suÆ
iently small

su
h that P

V

(t �)� � > �. It follows that there exists a f -invariant Borel probability measure

� su
h that h

�

(f)� t�

�

+

R

�d� � P

V

(t; �)� � > �. Hen
e, we are left to show that �

�

> 0,

whi
h follows in exa
tly the same way as in the previous step.

Next we show that for 0 � t < Æ(�) we have

P

DU

(t; �) > � and P

DU

(t; �) � log �(t; �): (2.8)

For this we remark that, by a result in [12℄, for ea
h 
 2 Crit(f) there exists x




2 !(
) su
h

that

lim sup

n!1

j(f

n

)

0

(x




)j > 0: (2.9)

For every n 2 IN , we de�ne

V

n

:=

[


2J(f)\Crit(f)

B(x




; 1=n):

We shall now prove formula (2.8) in two step. First, we show that P

DU

(t; �) > � implies

P

DU

(t; �) � log �(t; �), and se
ondly, using the 
onstru
tion of the �rst step, we show how to

dedu
e P

DU

(t; �) > �. This will then 
omplete the proof of the theorem.

Step 1. Assume that P

DU

(t; �) > �, and let k 2 IN be �xed. Let E be de�ned as in the proof

of Lemma 5.1 in [3℄, and 
onsider the sets E

n

:= f j

�n

K(V

k

)

. We then let




k

(t) := lim sup

n!1

1

n

log

X

x2E

n

j(f

n

)

0

(x)j

�t

exp

�

S

n

�(x)

�

:

Sin
e the map f j

K(V

k

)

: K(V

k

) ! K(V

k

) has no 
riti
al points, it follows that K(V

k

) is an

(n; �)-separated set, for

� := inf

y2K(V

k

)

�

minfjz � xj : x; z 2

�

f j

K(V

k

)

�

�1

(y) and x 6= zg

�

> 0:

Hen
e, we have that




k

(t) � P

�

f j

K(V

k

)

;�t log jf

0

j+ �

�

: (2.10)

We remark the set E 
an be 
hosen su
h that (
.f. the proof of Lemma 5.1 in [3℄)




k

(t) � P

�

f j

K(V

k

)

;�t log jf

0

j+ �

�

�

1

k

: (2.11)

Next, re
all from [3℄ that a Borel set A � CI is 
alled spe
ial if f j

A

is inje
tive. The following

lemma has been obtained in [3℄ (
.f. Lemma 3.1, Lemma 3.2 and the proof of Lemma 5.3; 
.f.

also [4℄).
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Lemma 2.10. For every t � 0, there exists a Borel probability measure m

k

suported on K(V

k

)

su
h that

(a) m

k

(f(A)) �

R

A

e




k

(t)

jf

0

j

t

e

��

dm

k

for every spe
ial set A � J(f) and

(b) m

k

(f(A)) =

R

A

e




k

(t)

jf

0

j

t

e

��

dm

k

for every spe
ial set A � J(f) n V

k

.

Now �rst observe that by 
ombining (2.10) and (2.11), we have that

lim

k!1




k

(t) = P

DU

(t; �): (2.12)

Hen
e, with m referring to some weak limit of the sequen
e of measures m

k

of the previous

lemma, we have

m(f(A)) �

Z

A

e

P

DU

(t;�)

jf

0

j

t

e

��

dm

for ea
h spe
ial set A � J(f), and also

m(f(A)) =

Z

A

e

P

DU

(t;�)

jf

0

j

t

e

��

dm (2.13)

for every spe
ial set A � J(f) n fx




: 
 2 J(f) \ Crit(f)g.

Now note that our assumption P

DU

(t; �) > � implies that there exists � > 0 and q 2 IN

su
h that P

DU

(t; �) > � +

1

q

supS

q

(�). Fix 
 2 J(f) \ Crit(f). By (2.9) we have that

lim sup

n!1

j(f

n

)

0

(x




)j > 0. Now, if we would have that m(x




) > 0, then it would follow that

lim sup

n!1

m(f

n

(x




)) � lim sup

n!1

m(f

qn

(x




))

� m(x




lim sup

n!1

exp

�

qnP

DU

(t; �)

�

j(f

qn

)

0

(x




)j exp

�

� sup(S

qn

�)

�

� m(x




) lim sup

n!1

exp

�

qnP

DU

(t; �)� n sup(S

q

�)

��

j(f

qn

)

0

(x




)j

� m(x




) lim sup

n!1

e

�qn

j(f

qn

)

0

(x




) =1;

whi
h is 
ontradi
tion. Hen
e, we have m(f

j

(x




)) = 0, for every j � 0, and therefore (2.13)

holds for every spe
ial set A � J(f). This 
learly gives that P

DU

(t; �) � log �(t; �).

Step 2. We now assume that P

DU

(t; �) � �. By [13℄ we have that P

DU

(0; �) � P

H

(0; �) =

P(�), and 
onsequently P

DU

(0; �) = P(�). Sin
e P(�) > �, it follows that there exists u 2 IN

su
h that P

�

f j

K(V

u

)

; �

�

> �. Let � > 0 be �xed su
h that P

�

f j

K(V

u

)

; �

�

> �+ �. Then there

exist two sequen
es ft

n

g

1

n=1

and fk

n

g

1

n=1

su
h that t

n

� t for all n and lim

n!1

t

n

= s � t,

and

�+ � < P

�

f j

K(V

k

n

)

;�t

n

log jf

0

j+ �

�

� �+ � +

1

n

:

By repla
ing 


k

(t) by 


k

n

(t

n

), and noting that similarly as in Step 1 we have that lim

n!1




k

n

(t

n

) =

� + �. Hen
e we 
an repeat the 
onstru
tion in Step 1, and in this way we obtain a Borel

probability measure m on J(f) for whi
h

m(f(A)) �

Z

A

e

�+���

jf

0

j

s

dm

14



for every spe
ial set A � J(f) and

m(f(A)) =

Z

A

e

�+���

jf

0

j

s

dm (2.14)

for every spe
ial set A � J(f) n fx




: 
 2 J(f)\Crit(f)g. Sin
e n(�+ �)� S

n

� > 0, for some

n 2 IN , we obtain as in the previous step that (2.14) holds for every spe
ial set A � J(f).

This means that a (e

�+�

; t; �)-
onformal measure exists. Therefore, if t � 0 and �

n

is su
h

that lim�

n

= �, then every a

umulation point of a sequen
e of (�

n

; t; �)-
onformal measures

is ne
essarily a (�; t; �)-
onformal measure. This implies that there must exist a (e

�

; t; �)-


onformal measure on J(f). By lemma 2.8, it therefore follows that Æ(�) � t, and as t < Æ(�),

we get a 
ontradi
tion, whi
h �nishes the proof of (2.8).

For the remainder, observe that if t < Æ(f) then by lemma 2.8

P

P

(t; �) � log�(t; �): (2.15)

Combining (2.5), (2.6), (2.8) and (2.15), we obtain that if t < Æ(f) then

P

P

(t; �) � P

H

(t; �) = P

HV

(t; �) � P

DU

(t; �) � log �(t; �) � P

P

(t; �): (2.16)

In here, the se
ond inequality uses the fa
t that P

DU

(t; �) > � (whi
h follows, sin
e by the �rst

part of (2.8), we have that t < Æ(�) implies that P

DU

(t; �) > �). Clearly, all the inequality

signs in (2.16) are now in fa
t equality signs. Hen
e the proof follows from (2.16) and (2.8),

noting that if t < Æ(f) then P

V

(t; �) � P

DU

(t; �) and P

DU

(t; �) > �.

3. Invariant Gibbs states

In this se
tion we give a detailed dis
ussion of 
onformal measures m

t;�

, whi
h we introdu
ed

in the previous se
tion, and apply the results obtained to 
onstru
t f -ivariant measures equiv-

alent to these 
onformal measures. Note that the analysis in this se
tion extends the results

obtained in [15℄ (se
tion 4).

Lemma 3.1. For a paraboli
ally semihyperboli
 GPL-map f we have, for ea
h t 2 [0; Æ(�)),

m

t;�

0

�

[

n�1

f

n

(Crit(f)) [ 


1

A

= 0:

Proof. Put PC(f) :=

S

n2IN

f

n

(Crit(f)): Combining (b) and (
) in De�nition 2.1 and the

fa
t that the sets U

i

have pairwise disjoint 
losures, we obtain that there exists Æ > 0 su
h

that if z 2 PC(f), then for every n � 0 there exists a well-de�ned holomorphi
 inverse bran
h

f

�n

z

(B(f

n

(z); 16KÆ) ! U

r

of f

n

sending f

n

(z) to z. Choose a sequen
e fn

j

g

1

j=1

su
h that

lim

j!1

f

n

j

(z) = y for some y 2 PC(f). By passing to a subsequen
e, if ne
essary, we may

15



assume that jf

n

j

(z)�yj < Æ, for all j 2 IN . By Lemma 2.2, we have that PC(f) is a 
ompa
t

nowhere dense subset of J(f), whi
h gives

m

t;�

�

B(f

n

j

(z); 2Æ) n PC(f)

�

� m

t;�

(B(y; Æ) n PC(f)) > 0:

Using Koebe's Distortion Theorem and the forward invarian
e of the set PC(f), it now follows

that

B(z;K2Æj(f

n

j

)

0

(z)j

�1

) n PC(f) � f

�n

j

z

�

B(f

n

j

(z); 2Æ) n PC(f)

�

:

Applying Koebe's Distortion Theorem on
e more, along with Lemma 2.5, we obtain

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 2Æ) n PC(f)

��

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 8KÆ

��

�

C

�1

�

exp

�

S

n

j

�(z)

�

K

�t

j(f

n

j

)

0

(z)j

�t

e

�P(t;�)n

j

m

t;�

�

B(f

n

j

(z); 2Æ) n PC(f))

�

C

�

exp

�

S

n

j

�(z)

�

K

t

j(f

n

j

)

0

(z)j

�t

e

�P(t;�)n

j

m

t;�

�

B(f

n

j

(z); 8KÆ)

�

= C

�2

�

K

�2t

m

t;�

�

B(f

n

j

(z); 2Æ) n PC(f))

�

m

t;�

�

B(f

n

j

(z); 8KÆ)

�

� C

�2

�

K

�2t

m

t;�

(B(y; Æ) n PC(f))

m

t;�

(B(y; (8K + 1)Æ))

> 0:

By the

1

4

-Koebe's Distortion Theorem, we have f

�n

j

z

�

B(f

n

j

(z); 8KÆ

�

� B(z;K2Æj(f

n

j

)

0

(z)j

�1

).

Hen
e, we have

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

) n PC(f)

�

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

)

�

�

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 2Æ) n PC(f)

��

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 8KÆ

��

�

m

t;�

�

f

�n

j

z

�

B(f

n

j

(z); 8KÆ

��

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

)

�

� C

�2

�

K

�2t

m

t;�

(B(y; Æ) n PC(f))

m

t;�

(B(y; (8K + 1)Æ))

�

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

)

�

m

t;�

�

B(z;K2Æj(f

n

j

)

0

(z)j

�1

)

�

=

m

t;�

(B(y; Æ) n PC(f))

m

t;�

(B(y; (8K + 1)Æ))

> 0:

Therefore the Lebesgue's Density Theorem gives that m

t;�

(PC(f)) = 0. Finally, let ! 2 


be arbitrary. We then have that m

t;�

(!) = m

t;�

(f

n

(!)) = exp(nP(t; �) � S

n

�(!)), for ea
h

n 2 IN , and sin
e lim sup

n!1

(nP(t; �)� S

n

�(!)) =1, it follows that m

t;�

(!) = 0.

For the next lemma we remark that by a standard normal family argument we have that

there exist u 2 IN and �

�

> 1 su
h that j(f

u

)

0

(z)j > �

�

for all z 2 !(Crit(J(f))). Therefore,
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there exist � > 1 su
h that, for all j � 0, n 2 IN and every 
 2 Crit(f),

j(f

j

)

0

(f

n

(
))j � �

j

: (3.1)

Lemma 3.2. For ea
h Æ > 0 suÆ
iently small, and for all s 2 IN and 
 2 Crit(f)), we have,

where q(
) � 2 refers to the order of the 
riti
al point 
,

m

t;�

�

B

�


; (Æj(f

s

)

0

(f(
))j

�1

)

1=q(
)

))� j(f

s

)

0

(f(
))j

�t=q(
)

e

�P(t;�)s

exp

�

S

s

�(
)

�

:

Therefore, we in parti
ular have that m

t;�

(
) = 0.

Proof. Let fm

k

g

1

k=1

and f


k

(t)g

1

k=1

respe
tively be the sequen
e of measures and numbers

obtained in Lemma 2.10. Fix Æ 2 (0; dist(U

r

; �U)=2) and 
 2 Crit(f)). Also, de�ne �

n

(
) :=

j(f

n

)

0

(f(
))j; for ea
h n 2 IN , as well as the annulus A(w; r; R) := fz 2 CI : r � jz � wj < Rg

with 
entre at w 2 CI, inner radius r and outer radius R. By Koebe's distortion theorem and

by Lemma 2.5, it follows that, for all l; n 2 IN ,

m

l

(B(f(
); Æ�

n

(
)

�1

)) � �

n

(
)

�t

e

�


k

(t)n

exp

�

S

n

�(f(
))

�

:

Using this observation and the fa
t that j(f

�1




)

0

(z)j � jz � f(
)j

�(1�1=q(
))

, for z 6= f(
) su
h

that z is 
lose to f(
) (here, f

�1




refers to an inverse bran
h of f whi
h maps z 
lose to 
 and

whi
h is de�ned in some neighbourhood of z), it follows, for ea
h s 2 IN ,

m

l

(B(
; (Æ�

s

(
)

�1

)

1=q(
)

)) =

1

X

j=1

m

l

(A(
; (Æ�

s(j+1)

(
)

�1

)

1=q(
)

; (Æ�

sj

(
)

�1

)

1=q(
)

))

�

1

X

j=1

m

l

�

f

�1




(A(f(
); Æ�

s(j+1)

(
)

�1

; Æ�

sj

(
)

�1

))

�

�

1

X

j=1

�

sj

(
)

(

1�

1

q(
)

)

t

e

�


l

(t)

e

�(
)

m

l

�

A(f(
); Æ�

s(j+1)

(
)

�1

; Æ�

sj

(
)

�1

)

�

� e

�


l

(t)

1

X

j=1

�

sj

(
)

(

1�

1

q(
)

)

t

e

�(
)

m

l

�

B(f(
); Æ�

sj

(
)

�1

)

�

�

1

X

j=1

�

sj

(
)

(

1�

1

q(
)

)

t

�

sj

(
)

�t

e

�(
)

exp

�

S

sj

�(f(
))

�

e

�


l

(t)sj

=

1

X

j=1

�

sj

(
)

�t=q(
)

e

�


l

(t)sj

exp

�

S

sj

�(
)

�

= �

s

(
)

�t=q(
)

e

�


l

(t)s

exp

�

S

s

�(
)

�

�

0

�

1 +

1

X

j=2

 

�

sj

(
)

�

s

(
)

!

�t=q(
)

exp

�

S

(j�1)s

�(f

s

(
))� 


l

(t)s(j � 1)

�

1

A

:

Now, we have that

 

�

sj

(
)

�

s

(
)

!

= j(f

s(j�1)

)

0

(f

s

(
))j

17



and by (3.1), these numbers are uniformly bounded away from zero. Therefore, we have

(�

sj

(
)=�

s

(
))

�t=q(
)

� 1, for all s; j 2 IN . Sin
e lim

l!0




l

(t) = P(t; �), it follows that 


l

(t) �

� + �, for some � > 0 and for all l 2 IN large enough. Consequently, using lemma 2.6, we

dedu
e, for all l 2 IN suÆ
iently large,

m

l

�

B(
; (Æ�

sk

(
)

�1

)

1=q(
)

)

�

� �

s

(
)

�t=q(
)

e

�P(t;�)s

exp

�

S

s

�(
)

�

;

and hen
e,

m

t;�

�

B(
; (Æ�

sk

(
)

�1

)

1=q(
)

)

�

� �

s

(
)

�t=q(
)

e

�P(t;�)s

exp

�

S

s

�(
)

�

:

Lemma 3.3. For t 2 [0; Æ(�)), the measure m

t;�

has no atoms.

Proof. Suppose that m

t;�

(z) > 0, for some z 2 J(f). Using Lemma 3.1 and Lemma 3.2,

it then follows that z =2

S

n�0

f

�n

(
 [ Crit(f)). We shall prove that there exists Æ > 0

and a sequen
e fn

j

g

1

j=1

depending on z su
h that there are well-de�ned holomorphi
 inverse

bran
hes f

�n

j

z

: B(f

n

j

(z); 4Æ) ! U of f

n

j

whi
h map f

n

j

(z) to z. Clearly, su
h bran
hes

exist if f

n

(z) 2 U

o

[ U

p

, for in�nitely many n. For the remaining 
ases note that there

then exists q � 0 su
h that f

n

(z) 2 U

r

, for all n � q. Therefore, there exists Æ > 0 su
h

that the holomorphi
 inverse bran
hes f

�(n�q)

q

: B(f

n

(z); 2Æ) ! U of f

n�q

, whi
h map f

n

(z)

to f

q

(z), are well de�ned, for all n � q. Sin
e z =2

S

j�0

Crit(f

j

), there exists 
 > 0 su
h

that the holomorphi
 inverse bran
h f

�q

z

: B(f

q

(z); 
) ! U of f

q

, whi
h maps f

q

(z) to z, is

well de�ned. Sin
e lim

n!1

diam

�

f

�(n�q)

q

(B(f

n

(z); 2Æ)

�

= 0 (as z 2 J(f)), the 
ompositions

f

�q

z

Æ f

�(n�q)

q

: B(f

n

(z); 2Æ)! U are well de�ned, for all n � q. This shows that in any 
ase

we have the 
laimed existen
e of inverse bran
hes. Let us emphasize that we just saw that

lim

j!1

diam

�

f

�n

j

z

(B(f

n

j

(z); 2Æ)

�

= 0. This immediately implies that lim

j!1

j(f

n

j

)

0

(z)j =

1. Sin
e P(t; �) > �, it follows that lim

j!1

m(f

n

j

(z)) = 1, whi
h is a 
ontradi
tion and

hen
e �nishes the proof.

For f -invariant Gibbs states we now observe the following.

Theorem 3.4. Let m

t;�

be an (exp(P(t; �); t; �)-
onformal Gibbs state for a non-re
urrent

GPL-map f su
h that m

t;�

�

S

n�1

f

n

(Crit(f)) [ 


�

= 0. Then up to a multipli
ative 
onstant

there exists a unique f -invariant, �-�nite measure �

t;�

whi
h is 
onservative and ergodi
, and

whi
h is equivalent to m

t;�

. The measure �

t;�

will be referred to as the invariant Gibbs state

of the potential �t log jf

0

j+ �.

The idea of the proof of Theorem 3.4 is to apply a general method of [8℄, whi
h gives a suÆ
ient


ondition from whi
h the existen
e of �-�nite absolutely 
ontinuous invariant measure 
an be

dedu
ed. We now re
all this result, and we shall also give a brief outline of how this result is
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obtained.

Let X be a �-
ompa
t metri
 spa
e, m a Borel probability measure on X whi
h is positive

on open sets, and let T : X ! X be a measurable map su
h that m is quasi-invariant with

respe
t to T (that is, the measure m Æ T

�1

is absolutely 
ontinuous with respe
t to m).

Moreover, let A = fA

n

: n � 0g be a 
ountable partition 
onsisting of �-
ompa
t subsets of

X of positive m-measure, su
h that m(X n

S

n�0

A

n

) = 0. Re
all that in this situation A is


alled irredu
ible, if we have that for all m;n 2 IN there exists k � 0 su
h that

m(T

�k

(A

m

) \ A

n

) > 0: (3.2)

The following gives the result of Martens (
.f. Proposition 2.6 and Theorem 2.9 of [8℄).

Theorem 3.5. Let X; T;m be as above. Suppose that T is 
onservative and ergodi
 with

respe
t to m, and let A = fA

n

: n � 0g be an irredu
ible partition. If we have that for every

n 2 IN there exists K

n

� 1 su
h that, for all k � 0 and all Borel sets A � A

n

,

K

�1

n

m(A)

m(A

n

)

�

m(T

�k

(A))

m(T

�k

(A

n

))

� K

n

m(A)

m(A

n

)

; (3.3)

then there exists a �-�nite T -ivariant measure � whi
h is equivalent to m. Moreover, � is


onservative and ergodi
, as well as unique up to a multipli
ative 
onstant.

Sin
e in our appli
ation of this result we will not only require the statement of Theorem 3.5

but also the method with whi
h the invariant measure in there is derived, we now give the

sket
h of the proof of this result of Martens.

Proof of Theorem 3.5 (sket
h). Following Martens, one 
onsiders the following sequen
es

of measures

S

k

m :=

k�1

X

i=0

m Æ T

�i

and Q

k

m :=

S

k

m

S

k

m(A

0

)

:

It is shown in [8℄ that ea
h weak limit � of the sequen
e Q

k

(m) ful�lls the preliminaries of

Theorem 3.5 (where a sequen
e f�

k

: k 2 INg of measures on X is said to 
onverge weakly if

the measures �

k


onverge weakly on A

n

, for all n 2 IN). Moreover, it is shown in [8℄ that the

sequen
e Q

k

m 
onverges and that we have, for every Borel set F � X,

�(F ) = lim

n!1

Q

k

m(F ):

Clearly, we have that �(A) � 1 < 1. Using (3.2) and (3.3), one then obtains the following

two lemmata (
.f. Lemma 2.4 in [8℄).

Lemma 3.6. For ea
h n � 0 we have that 0 < �(A

n

) < 1 and that the Radon-Nikodym

derivative

d�

dm

is bounded on A

n

.
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Lemma 3.7. For all i; j � 0 there exists a 
onstant � > 0 su
h that, for all n 2 IN and for

all Borel sets D � A

i

and E � A

j

,

S

n

m(D)

S

n

m(E)

� �

m(D)

m(E)

:

We now return to the situation of a generalized polynomial-like map f . For the proof of the

ergodi
ity and 
onservativity of the measure m

t;�

we refer to [17℄ (Theorem 4.1). Therefore,

in order to be able to apply Theorem 3.5, we only need to 
onstru
t an irredu
ible partition

A whi
h has the property (3.3). For this, let Y := J(f) n (

S

n2IN

f

n

(Crit(f)) [ 
), and


onsider, for ea
h y 2 Y , a ball B(y; r(y)) su
h that m(�B(y; r(y))) = 0 and 0 < r(y) <

(1=2)dist(y;

S

n2IN

f

n

(Crit(f)) [ 
). Clearly, by asso
iating to ea
h y 2 Y a �xed ball of this

type, this gives a 
over of Y . Sin
e Y is a separable metri
 spa
e, one 
an redu
e this 
over

to a 
ountable, lo
ally �nite 
over of Y , denoted by f

~

A

n

: n � 0g (here, lo
ally �nite means

that ea
h point x 2 Y has an open neighborhood interse
ting at most �nitely many elements

of the 
over). The partition A = fA

n

: n � 0g is then de�ned by indu
tion as follows.

A

0

:=

~

A

0

and for n 2 IN , let A

n

:=

~

A

n

n

n�1

[

k=0

~

A

k

:

Clearly, by 
onstru
tion we have that the elements of A are pairwise disjoint, and

[

n2IN

A

n

� J(f) n (

[

n2IN

f

n

(Crit(f)) [ 
) n

[

n�0

�

~

A

n

:

Using the assumption of Theorem 3.4, it follows that m

t;�

�

S

n�0

A

n

�

= 1. Now, the fa
t that

(3.3) holds in the situation here is an immediate 
onsequen
e of 
ombining Koebe's Distortion

Theorem and the observation that by Lemma 2.5 we have exp(S

n

 (y))= exp(S

n

 (x))� 1, for

all n 2 IN and all x; y 2 f

�n

�

(A

k

) (here A

k

refers to some arbitrary element of the partition

A, and f

�n

�

to some arbitrary holomorphi
 inverse bran
h of f

n

de�ned on A

k

). Finally, the

fa
t that A is irredu
ible follows, sin
e the A

n

are open sets and the map f : J(f) ! J(f)

is topologi
ally exa
t.

The aim now is to provide a suÆ
ient 
ondition whi
h guarantees that the �-�nite measure

�

t;�

is in fa
t a �nite measure.

For the following re
all that the T -invariant measure �

t;�

(see Theorem 3.4) is 
alled of �nite


ondensation at x 2 J(f) if and only if there exists an open neighborhood V of x su
h that

�

t;�

(V ) <1. Otherwise �

t;�

is said to be of in�nite 
ondensation at x.

We shall now see that the points of in�nite 
ondensation of �

t;�

are ne
essarily paraboli
 �xed

points.

Theorem 3.8. Let f be a paraboli
ally semi-hyperboli
 GPL- map. For t 2 [0; Æ(�)), we have

that 
(f) 
ontains the set of points of in�nite 
ondensation of �

t;�

.
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Proof. Put m := m

t;�

. Sin
e the 
onformal measure m is positive on non-empty open sets,

it follows that inffm(B(x; r)) : x 2 J(f)g > 0, for every r > 0. Even more, there exists

�

0

(r) 2 (0; r) su
h that

M(r) = inffm(B(x; r) nB(x; �

0

(r)) : x 2 J(f)g > 0: (3.4)

Re
all from the beginning of the proof of Lemma 3.1 that there exists

Æ 2

�

0; dist

�


(f);

[

n�0

f

n

(Crit(f)

��

su
h that for every 
 2 Crit(J(f)), k 2 IN and n � 0 we have that the holomorphi
 inverse

bran
h f

�k

f

n

(
)

: B(f

n+k

(
); 4Æ) ! CI whi
h maps f

n+k

(
) to f

n

(
) is well-de�ned. It follows

from (3.1) that we have, for all u suÆ
iently large, 
 2 Crit(J(f)), k � 0 and 0 � i � u� 1,

f

�u

f

i+ku

�

B(f

i+(k+1)u

(
); 2Æ)

�

� B(f

i+ku

(
); �

0

(Æ)): (3.5)

We de�ne, for 
 2 Crit(J(f)), 0 � j � u� 1 and i � 0,

R

i;j

(
) := f

�ju

f

i

(
)

�

B(f

i+ju

(
); Æ)

�

n f

�(j+1)u

f

i

(
)

�

B(f

i+(j+1)u

(
); Æ)

�

= f

�ju

f

i

(
)

�

B(f

i+ju

(
); Æ) n f

�u

f

i+ju

(
)

(B(f

(i+(j+1)u

(
); Æ)

�

:

(3.6)

By (3.1) and Koebe's distortion theorem, we have that jS

ju

�(x) � S

ju

�(y)j � 1, for all

x; y 2 R

i;j

(
). Thus, applying (3.4), (3.5) and on
e more Koebe's distortion theorem, we


on
lude

m(R

i;j

(
)) �

� e

�P(t;�)ju

j(f

ju

)

0

(f

i

(
))j

�t

exp

�

S

ju

�(f

i

(
))

�

�m

�

B(f

iju

(
); 2Æ) n f

�u

f

i+ju

(
)

�

B(f

(i+(j+1)u

(
); 2Æ

��

� e

�P(t;�)ju

j(f

ju

)

0

(f

i

(
))j

�t

exp

�

S

ju

�(f

i

(
))

�

:

(3.7)

Now let x 2

S

n�0

f

n

(Crit(J(f))) be �xed. Clearly, sin
e f is paraboli
ally semi-hyperboli
,

the latter set is disjoint from 
 [ Crit(f). Sin
e Crit(J(f)) \ !(Crit(J(f))) = ;, we dedu
e

from [16℄ (Lemma 2.13) that there exists 0 < 
 < Æ=2 su
h that if n 2 IN and y 2 f

�n

(x),

then there exists at most one 0 � k � n � 1 su
h that f

k

(C

n

(y; B(x; 4
))) \ Crit(f) 6= ;


onsists of at exa
tly one point, whi
h will be denoted by 
. Without loss of generality we

may assume that the element A

0

of the partition A is 
ontained in B(x; 
). If we now assume

that C

n

(y; B(x; 2
)) \ Crit(f

n

) = ;, then Koebe's distortion theorem and Lemma 2.5 gives

that

m

�

C

n

(y; B(x; 
))

�

m

t

�

C

n

(y; B(x; 
)) \ f

�n

(A

0

)

�

�

m

t

(B(x; 
))

m(A

0

)

� 1: (3.8)
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On the other hand, if C

n

(y; B(x; 2
)) \ Crit(f

n

) 6= ;, then there exists 0 � k � n � 1 su
h

that 
 2 f

k

(C

n

(y; B(x; 2
))) and

�

f

k

(C

n

(y; B(x; 4
))) n f

k

(C

n

(y; B(x; 2
)))

�

\ Crit(f

n�k

) = ;: (3.9)

We have that

j(f

i

)

0

(z)j � jz � 
j

q(
)�1

; (3.10)

for all 0 � i � u� 1 and all z 2 C

i

(
; B(f

i

(
); 2Æ)) (note that q(
) is the order of 
 also for

the fun
tion f

i

). Let us write n�k = su+ r, for s � 0 and 0 � r � u� 1. Using (3.7), (3.10)

and the fa
t

f

k

(C

n

(y; B(x; 
))) � C

r+su

(
; B(f

r+su

(
); Æ));

it follows that

m

�

f

k

(C

n

(y; B(x; 
)))

�

�

X

j�s

j(f

ju

)

0

(f

r

(
))j

�t

e

�P(t;�)(r+ju)

exp

�

S

r+ju

�(
)

� �

j(f

ju

)

0

(f

r

(
))j

�1

�

(

1

q(
)

�1

)

t

�

X

j�s

e

�P(t;�)(r+ju)

j(f

ju

)

0

(f

r

(
))j

�

t

q(
)

exp

�

S

r+ju

�(
)

�

:

(3.11)

Sin
e A

0

� B(x; 
) � B(f

r+su

(
); Æ), using Koebe's distortion theorem and Lemma 2.5, we

obtain

m

�

f

k

(C

n

(y; B(x; 
))) \ f

�(n�k)

(A

0

)

�

�

� m(A

0

)j(f

su

)

0

(f

r

(
))j

�t

e

�P(t;�)(r+su)

exp

�

S

r+su

�(
)

��

j(f

su

)

0

(f

r

(
))j

�1

�

(

1

q(
)

�1

)

t

� e

�P(t;�)(r+su)

j(f

su

)

0

(f

r

(
))j

�

t

q(
)

exp

�

S

r+su

�(
)

�

:

(3.12)

Therefore, using (3.11), (3.12), (3.1) and Lemma 2.6, we 
on
lude, with S(
) referring to some

�nite number whi
h only depends on 
,

m

�

f

k

(C

n

(y; B(x; 
)))

�

m

�

f

k

(C

n

(y; B(x; 
))) \ f

�(n�k)

(A

0

)

�

(3.13)

�

X

j�0

e

�P(t;�)(r+ju)

j(f

ju

)

0

(f

r+su

(
))j

�

t

q(
)

exp

�

S

ju

�(f

r+su

(
))

�

� S(
)
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By (3.9) we have that Mod

�

f

k

(C

n

(y; B(x; 4
))) n f

k

(C

n

(y; B(x; 2
)))

�

� (log 2)=q(
). Hen
e,

applying Koebe's distortion theorem and (3.13), we obtain

m(C

n

(y; B(x; 
)))

m

�

C

n

(y; B(x; 
))) \ f

�n

(A

0

)

�

�

j(f

k

)

0

(y)j

�t

e

�P(t;�)k

exp

�

S

k

�(y)

�

j(f

k

)

0

(y)j

�t

e

�P(t;�)k

exp

�

S

k

�(y)

�

�

m

�

f

k

(C

n

(y; B(x; 
)))

�

m

�

f

k

(C

n

(y; B(x; 
))) \ f

�(n�k)

(A

0

)

�

� S(
):

Therefore, we have

m(f

�n

(B(x; 
))

m(f

�n

(A

0

)

)� maxfS(
) : 
 2 Crit(J(f))g;

whi
h implies Q

n

(B(x; 
))� maxfS(
) : 
 2 Crit(J(f))g, for all n 2 IN . It now follows that

�

t;�

(B(x; 
)) <1.

The main result in this se
tion is the following.

Theorem 3.9. Let f be a paraboli
ally semi-hyperboli
 GPL-map. If t 2 [0; Æ(�)), then the

invariant Gibbs state �

t;�

is �nite. Furthermore, by normalizing �

t;�

su
h that it be
omes a

probability measure, we obtain an equilibrium state for the potential �t log jf

0

j+�, in the sense

that it maximizes the supremum appearing in the de�nition (P2) of variational pressure.

Proof. Sin
e t 2 [0; Æ(�)), we have that Theorem 3.8 is appli
able. Hen
e, the invariant

measure �

t;�

exists and it is �nite on 
ompa
t subsets of J(f)n
. Let ! 2 
 be �xed. Without

loss of generality we may assume that the element A

0

of the partition A is a fundamental

domain of some repelling se
tor with respe
t to the relation `�' (where we let x � y, for x

and y in this se
tor su
h that x and y are suÆ
iently 
lose to !, if and only if f

�n

!

(y) = x or

f

�n

!

(x) = y). Fix x 2 A

0

and put x

k

:= f

�k

!

(x), for k � 0. Also let B

j

:= f

�j

!

(A

0

), for j � 0.

We then have

m

t;�

(B

j

) � e

�P(t;�)j

exp

�

S

j

�(x

j

)

�

(j + 1)

�

p(!)+1

p(!)

t

: (3.14)

Sin
e ! 2 
 n

S

n2IN

f

n

(Crit(f) \ J(f)), Lemma 3.8 implies that for every y 2 f

�1

(!) n f!g

there exists an open neighborhood U

y

of y su
h that �

t;�

(U

y

) < 1 and U

y

�

~

A

j

, for some

j � 0. Take B to be a ball in J(f) (either 
losed or open) 
entered at ! and with radius so

small that f

�1

y

(B) � U

y

for all y 2 f

�1

(!) n f!g, where f

�1

y

: B ! CI is the lo
al holomorphi


inverse bran
h of f sending ! to y. Without loss of generality we may assume that A

0

� B.

Now, �x y 2 f

�1

(!)nf!g and z

j

2 f

�j

(y), for j � 0. Let 2U

y

be the ball 
entered at y of radius

twi
e the radius of U

y

. Using (
) in De�nition 2.1, it follows that 2U

y

\

S

n�1

f

n

(Crit(f)) = ;,

for U

y

suÆ
iently small. Letting m := m

t;�

, by Lemma 2.5 and Koebe's Distortion Theorem,
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we then have, for every Borel set A � U

y

,

m

�

f

�j

z

j

(A)

�

� e

�P(t;�)j

j(f

j

); (z

j

)j

�t

exp

�

S

j

�(z

j

)

�

m(A):

Hen
e it follows, for k � 0,

m

�

f

�j

z

j

(f

�1

y

(B

k

))

�

� e

�P(t;�)j

j(f

j

); (z

j

)j

�t

exp

�

S

j

�(z

j

)

�

m(f

�1

y

(B

k

))

� e

�P(t;�)j

j(f

j

); (z

j

)j

�t

exp

�

S

j

�(z

j

)

�

m(B

k

)

� m

�

f

�j

z

j

(B

y

)

�

m(B

k

)

m(B

y

)

� m

�

f

�j

z

j

(B

y

)

�

m(B

k

):

Summing over all z

j

2 f

�j

(y), we get

m

�

f

�j

(f

�1

y

(B

k

))

�

� m

�

f

�j

(B

y

)

�

m(B

k

):

Hen
e, for i 2 IN �xed, we 
an sum up over all 0 � j � i� 1, whi
h gives for the measure S

i

,

introdu
ed in the proof of Theorem 3.5,

S

i

m(f

�1

y

(B

k

)) � S

i

m(B

y

)m(B

k

): (3.15)

Sin
e we have, for arbitrary j � 0 and n 2 IN ,

S

n

m(B

j

) = m

�

f

�(n�1)

!

(B

j

)

�

+

X

y2f

�1

(!)nf!g

n�2

X

k=0

S

n�(k+1

m

�

f

�1

y

(f

�k

!

(B

j

))

�

;

we 
an apply (3.15), Lemma 3.7 and (3.14), whi
h then gives, that for all j � 0 and n 2 IN ,

Q

n

m(B

j

) =

S

n

m(B

j

)

S

n

m(A

0

)

�

m

�

f

�(n�1)

!

(B

j

)

S

n

m(A

0

)

+

X

y2f

�1

(!)nf!g

n�2

X

k=0

S

n�(k+1

m(U

y

)m(B

j+k

)

�

1

S

n

m(A

0

)

+

X

y2f

�1

(!)nf!g

n�2

X

k=0

S

n�(k+1

m(U

y

)

S

n�(k+1

m(A

0

)

�

S

n�(k+1

m(A

0

)

S

n

m(A

0

)

m(B

j+k

)

�

1

S

n

m(A

0

)

+

X

y2f

�1

(!)nf!g

n�2

X

k=0

m(B

j+k

)

�

1

S

n

m(A

0

)

+ deg(f)

n�2

X

k=0

exp

�

S

j+k

�(x

j+k

)� P(t; �)(j + k)

�

(j + k + 1)

�

p(!)+1

p(!)

t

�

1

S

n

m(A

0

)

+ deg(f)

n�2

X

k=0

exp

�

S

j+k

�(x

j+k

)� P(t; �)(j + k)

�

:

(3.16)

Now let � > 0 be �xed su
h that that P(t; �) > � + 2�. By Lemma 2.6, there exists q 2 IN

su
h that supfS

q

�g � (�+ �)q < qP(t; �)� q�. For ease of exposition we assume that q = 1.
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We 
an then 
ontinue the estimate in (3.16) as follows.

Q

n

m(B

j

)�

1

S

n

m(A

0

)

+ deg(f)

n�2

X

k=0

e

��(j+k)

�

1

S

n

m(A

0

)

+ e

��j

:

By letting n tend to in�nity, we obtain that �

t;�

(B

j

)� e

��j

. If we sum this up over all j � 0,

then it follows that �

t;�

�

S

j�0

B

j

�

�

P

1

j=0

e

��j

< 1. Finally, summing up over all repelling

se
tors of ! (note, there are only �nitely many su
h se
tors), we derive �

t;�

(V

!

) <1, for every

suÆ
iently small neighbourhood V

!

of !. Therefore, ! has to be a point of �nite 
ondensation

of �

t;�

, and using Theorem 3.8, it follows that the f -invariant measure �

t;�

is �nite.

It remains to show that �

t;�

is an equilibrium state for the potential �t log jf

0

j+ �. Without

loss of generality we may assume that �

t;�

is a probability measure. Let � := �

t;�

and

� := d�=dm, and let J be the Ja
obian given by

J :=

d� Æ f

d�

=

� Æ f

�

exp

�

t log jf

0

j � �+ P(t; �)

�

:

Sin
e �(f(A)) � �(A) for any Borel set A � J(f), we always have that J � 1. Also, sin
e

R

�dm = 1 and � is non-negative, we see that

R

�d� > 0. Hen
e, in view of Birkho�'s Ergodi


Theorem and Theorem 3.4, there exists z 2 J(f) su
h that (note that log J � 0, and that

log jf

0

j is bounded from above)

�(f

n

(z)) >

1

2

Z

�dm > 0 for in�nitely many n � 0; (3.17)

lim

n!1

1

n

n�1

X

j=0

log(J(f

j

(z))) =

Z

log Jd�; (3.18)

lim

n!1

1

n

n�1

X

j=0

�

t log jf

0

j � �

�

Æ f

j

(z) =

Z

(t log jf

0

j � �)d�: (3.19)

Sin
e

R

log jf

0

jd� � 0 (
.f. [12℄) and sin
e

R

log Jd� = h

�

(f) � h

top

(f) < 1, we have

that log J and log jf

0

j are integrable. By (3.17) we have that lim sup

n!1

1

n

log �(f

n

(z)) � 0.
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Combining this with (3.18) and (3.19), we get

h

�

(f) +

Z

(�t log jf

0

j+ �)d� �

Z

log Jd�+

Z

(�t log jf

0

j+ �)d�

= lim

n!1

1

n

n�1

X

j=0

log(J(f

j

(z))) +

Z

(�t log jf

0

j+ �)d�

= lim

n!1

0

�

1

n

n�1

X

j=0

 

log

 

� Æ f

�

!

+ t log jf

0

j � �+ P(t; �)

!

(f

j

(z))

1

A

+

Z

(�t log jf

0

j+ �)d�

= P(t; �) + lim

n!1

0

�

1

n

(log � Æ f

n

(z)� log �(z)) +

1

n

n�1

X

j=0

�

t log jf

0

j � �+ P(t; �)

�

(f

j

(z))

1

A

+

Z

(�t log jf

0

j+ �)d�

� P(t; �) + lim sup

n!1

log � Æ f

n

(z)

n

+ lim

n!1

1

n

n�1

X

j=0

�

t log jf

0

j � �

�

(f

j

(z)) +

Z

(�t log jf

0

j+ �)d�

� P(t; �) + 0 +

Z

(t log jf

0

j � �)d�+

Z

(�t log jf

0

j+ �)d�

= P(t; �):

4. Real analyti
ity of the topologi
al pressure

In this se
tion we 
onsider analyti
 properties of the pressure P (t; �) seen as a fun
tion in t,

and of the pressure P (t; q�) seen as a fun
tion in q (for 
ertain �xed t). We remark that our

analysis here is based on and generalizes the work in [15℄.

As always, let f be a paraboli
ally semi-hyperboli
 GPL-map. In order to introdu
e some

auxiliary `
riti
al parameters', re
all that for 
 2 Crit(J(f)), the order q(
) of 
 is determined

by the lo
al behaviour of f around 
. That is, for z suÆ
iently 
lose to 
 we have for the

Taylor expansion of f that

f(z) = f(
) + b

0

(z � 
)

q(
)

+ : : : : (LBC)

Then the 
riti
al parameters �

0

; �(
); �

q

and � are de�ned as follows.

�

0

:= infflim sup

n!1

1

n

log j(f

n

)

0

(z)j : z 2 
 [ !(Crit(f))g;

�(
) := lim inf

k!1

1

k

log inf

n�1

fj(f

k

)

0

(f

n

(
))jg;

�

q

:= min

(

�(
)

q(
)

: 
 2 Crit(f)

)

and � := minf�

q

; �

0

g:
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We begin with showing that for t in a 
ertain range, the measure m

t;�

vanishes on the limsup-

set of the inverse images of the regular part. For this it is suÆ
ient to have the following.

Lemma 4.1. If t 2 [0; Æ(�)), then there exists 0 < � < 1 su
h that for all n 2 IN we have

m

t;�

0

�

n

\

j=0

f

�j

(U

r

)

1

A

� �

n

:

Proof. Put m = m

t;�

. Fix q 2 IN , and 
onsider the set

U

(q)

r

:= U

r

\ f

�1

(U

r

) \ : : : \ f

�q

(U

r

):

Sin
e the map f : U

j

! U is univalent for ea
h j 2 I

r

, it follows by indu
tion that there exist

�nitely many, say k

q

, holomorphi
 inverse bran
hes of f

q

, denoted by f

�q

1

: U ! U

r

; : : : ; f

�q

k

q

:

U ! U

r

; su
h that

U

(q)

r

=

k

q

[

j=1

f

�q

j

(U

r

): (4.1)

Hen
e, for any arbitrary set A � U

r

it follows that

U

(q)

r

\ f

�q

(A) =

k

q

[

j=1

f

�q

j

(A); (4.2)

and by 
onformality of m we have for ea
h j 2 f1; 2; : : : ; k

q

g that

m(f

�q

j

(A)) � m(A)e

�P(t;�)q

sup

z2A

fj(f

�q

j

)

0

(z)jg

t

supfexpS

q

�(z) : z 2 f

�q

j

(A)g

� m(A)e

�P(t;�)q

sup

z2U

r

fj(f

�q

j

)

0

(z)jg

t

supfexpS

q

�(z) : z 2 f

�q

j

(U

r

)g;

(4.3)

as well as

m(f

�q

j

(U

r

)) � m(U

r

)e

�P(t;�)q

inf

z2U

r

fj(f

�q

j

)

0

(z)jg

t

inffexpS

q

�(z) : z 2 f

�q

j

(U

r

)g:

(4.4)

Now, applying Koebe's distortion theorem on U

r

, we see that there exists a 
onstant K � 1

su
h that

sup

z2U

r

fj(f

�q

j

)

0

(z)jg � K inf

z2U

r

fj(f

�q

j

)

0

(z)jg:

Also, Lemma 2.5 implies that

supfexpS

q

�(z) : z 2 f

�q

j

(U

r

)g � C

�

inffexpS

q

�(z) : z 2 f

�q

j

(U

r

)g:

Therefore, (4.3) and (4.4) imply that

m(f

�q

j

(A)) �

K

t

C

�

m(U

r

)

m

t

(A)m(f

�q

j

(U

r

)):
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Combining this estimate with (4.1) and (4.2), it follows that

m(U

(q)

r

\ f

�q

(A)) �

K

t

C

�

m

t

(U

r

)

m(U

(q)

r

)m

t

(A): (4.5)

Let U

(1)

r

:=

T

j�0

f

�j

(U

r

) =

T

q2IN

U

(q)

r

, and observe that f

�1

(U

(1)

r

) � U

(1)

r

. By ergodi
ity of

�

t

, we hen
e have that �

t

(U

(1)

r

) 2 f0; 1g. Now, sin
e �

t;�

(U

o

) > 0, and sin
e U

r

� U n U

o

,

we have �

t;�

(U

r

) < 1, whi
h then implies that �

t;�

(U

1

r

) = 0. Sin
e fU

(q)

r

g

1

q=1

is a des
ending

sequen
e of sets, we 
on
lude that lim

q!1

�

t;�

(U

(q)

r

) = 0, and hen
e that lim

q!1

m(U

(q)

r

) = 0.

Therefore, we 
an 
hoose q 2 IN suÆ
iently large su
h that K

t

C

�

m(U

(q)

r

)=m(U

r

) � 1=2.

Inserting this observation into (4.5), we obtain that for any arbitrary A � U

r

we have that

m(U

(q)

r

\ f

�q

(A)) �

1

2

m(A): (4.6)

In order to �nish the proof, we use (4.6) and observe that for every k 2 IN we have that

m

0

�

qk

\

j=0

f

�j

(U

r

)

1

A

= m

0

�

U

(q)

r

\ f

�q

0

�

q(k�1)

\

j=0

f

�j

(U

r

)

1

A

1

A

�

1

2

m

0

�

q(k�1)

\

j=0

f

�j

(U

r

)

1

A

:

By way of indu
tion, this gives that

m

0

�

qk

\

j=0

f

�j

(U

r

)

1

A

�

�

1

2

�

k

;

whi
h also holds for k = 0. Now let n 2 IN be given, and write n = qk+ r, for 0 � r < q and

k � 0. It follows that

m

0

�

n

\

j=0

f

�j

(U

r

)

1

A

� m

0

�

qk

\

j=0

f

�j

(U

r

)

1

A

�

�

1

2

�

k

�

�

1

2

�

n

q

�1

= 2

0

�

�

1

2

�

1

q

1

A

n

:

As an immediate 
onsequen
e we derive the following 
orollary, whi
h shows that the sets

J(f) and J

�

f


oin
ide m

t;�

-almost everywhere on U

o

.

Corollary 4.2. If t 2 [0; Æ(�)), then m

t;�

(J

�

f

\ U

o

) = m

t;�

(U

o

) > 0.

Proof. Re
all that by Proposition 2.3 we have J

�

f

\ U

o

= J(f) \ U

o

n

S

n�0

f

�n

(
 [

T

k�0

f

�k

(U

r

)). Also, Proposition 3.1 implies that m

t;�

has no atoms. Finally, by Lemma 4.1

we have that m

t;�

(

T

k�0

f

�k

(U

r

)) = 0. Combining these three observations, the statement of

the 
orollary follows.

Lemma 4.3. If t 2 [0; Æ(�)), then there exists l 2 IN su
h that, for ea
h Borel set A � U ,

m

t;�

(f

�1

(A))� (m

t;�

(A))

1=l

:
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Proof. Put m = m

t;�

. Using the 
onformality ofm, it follows that the assertion holds for all

Borel sets A � U su
h that A \

S


2Crit(J(f))

B(f(
); Æ) = ;, for some �xed positive Æ. Hen
e,

from now on let a Borel set A � B(f(
); Æ) be �xed, for some 
 2 Crit(J(f)), with m(A) > 0

and where Æ < dist(U

r

; �U)=2 is 
hosen suÆ
iently small (whi
h will be spe
i�ed during the

proof). Let f

�1




(A) be the interse
tion of f

�1

(A) with the 
omponent of f

�1

(B(f(
); Æ)) whi
h


ontains 
. Also, for n 2 IN we de�ne

�

n

(
) := j(f

n

)

0

(f(
))j;

and let A(w; r; R) := fz 2 CI : r � jz�wj < Rg denote the annulus 
entred at w 2 CI of inner

radius r and outer radius R.

The stru
ture of the proof is as follows. We shall show that u is a �nite number, and by


ombining this with Lemma 3.2, we obtain

(i) m(f

�1




(A))� �

su

(
)

�t=q(
)

e

�P(t;�)su

exp

�

S

su

�(
)

�

:

Finally, we prove the following two fa
ts, whi
h then �nishes the proof of the proposition.

(ii) �

su

(
)

�t=q(
)

e

�P(t;�)su

exp

�

S

su

�(
)

�

�

�

�

su

(
)

�t

e

�P(t;�)su

exp

�

S

su

�(
)

�

))

1=l

for some

l 2 IN and for all s suÆ
iently large.

(iii) �

su

(
)

�t

e

�P(t;�)su

exp

�

S

su

�(
)

�

� m

�

A \ A(f(
); Æ�

s(u+1)

(
)

�1

; Æ)

�

(� m(A) ):

For (i), we 
ombine Lemma 3.2 and the �niteness of u to obtain

m(f

�1




(A)) = m

�

f

�1




(A \ B(f(
); Æ�

su

(
)

�1

))

�

+m

�

f

�1




(A \ A(f(
); Æ�

su

(
)

�1

); Æ))

�

� m

�

f

�1




(B(f(
); Æ�

su

(
)

�1

))

�

+m

�

f

�1




(A \ A(f(
); Æ�

su

(
)

�1

); Æ))

�

� m

�

B (
; (Æ�

su

(
)

�1

)

1=q(
)

)

�

+

+ (Æ�

su

(
)

�1

)

(

1

q(
)

�1

)

t

e

�P(t;�)

e

�(
)

m(A \ A(f(
); Æ�

su

(
)

�1

; Æ))

� �

su

(
)

�t=q(
)

exp

�

S

su

�(
)� P(t; �)su

�

+

+ (Æ�

su

(
)

�1

)

(

1

q(
)

�1

)

t

�

su

(
)

�t

exp

�

S

su

�(
)� P(t; �)su

�

� �

su

(
)

�t=q(
)

exp

�

S

su

�(
)� P(t; �)su

�

:

For (ii), re
all that

1

v

log j(f

v

)

0

(f(
))j � �q(
)(P(t; �)� �)=t + � for all for all v � s. Hen
e,

by 
hoosing l(
) suÆ
iently large so that

� >

(P(t; �)� �)q(
)(1� q(
))

t(l(
)� q(
))

+

�

2

l(
)� 1

l(
)� q(
)
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it follows that

(l(
)� q(
))

log�

su

(
)

su

�

 

�q(
)(P(t; �)� �)

t

+ �

!

(l(
)� q(
))

�

 

q(
)(P(t; �)� �)

t

�

�

2

!

(1� l(
))

=

q(
)

t

 

P(t; �)� ��

�t

2q(
)

!

(1� l(
))

�

q(
)

t

 

P(t; �)�

S

su

�(
)

su

!

(1� l(
)):

An elementary rearrangement then gives

�

su

(
)

�t=q(
)

exp

�

S

su

�(
)� P(t; �)su

�

�

�

�

su

(
)

�t

exp

�

S

su

�(
)� P(t; �)su

��

1=l(
)

:

By de�ning l := maxfl(
) : 
 2 Crit(J(f))g, the statement in (iii) follows.

Finally for (iii), the �niteness of u gives

m(A \ A(f(
); Æ�

s(u+1)

(
)

�1

; Æ) > �

s(u+1)

(
)

�t

exp

�

S

s(u+1)

�(
)� P(t; �)s(u+ 1)

�

� exp

�

�(P(t; �)s+ jj�jj

1

�

jjf

0

jj

�st

�

su

(
)

�t

exp

�

S

su

�(
)� P(t; �)su

�

;

whi
h 
ompletes the proof of the lemma.

We now pass to the CGDM-system �

f

asso
iated with the GPL-map f . For this the reader

is asked to re
all the 
onstru
tion and notation given in Se
tion 2. For ea
h t � 0; s 2 IR and

e 2 E

f

we de�ne the potential g

(e)

t;s

: W

t(e)

! IR by, for x 2 W

t(e)

,

g

(e)

t;s

(x) := t log j�

0

e

(x)j � sN(e) + S

n(e)

�(�

e

(x)):

We shall see that for suitably 
hosen s and t the family G

t;s

:= fg

(e)

t;s

: e 2 E

f

g is a summable

H�older family of fun
tions, where H�older refers to the fa
t that for some 
 > 0 we have (
f.

[5℄, [10℄)

sup

n�1

sup

(�

1

;�

2

;::: )2E

f

sup

z;w2U

t(�

n

)

jg

(�

1

)

t;s

(�

�

2

;::: ;�

n

(z))� g

(�

1

)

t;s

(�

�

2

;::: ;�

n

(w))je


(n�1)

<1:

Lemma 4.4. For ea
h u > 0 su
h that P(u; �) > ��u + �, there exists Æ > 0 su
h that G

t;s

is a summable H�older family of fun
tions, for ea
h t 2 (u� Æ; u+ Æ) and s > P(u; �)� Æ.

Proof. In [18℄ (Lemma 5.4) we obtained that the family fS

n(e)

�Æ�

e

g

e2E

f

is H�older 
ontinu-

ous (in fa
t, in [18℄ we only 
onsidered iterated fun
tion systems rather than CGDM-systems;

nevertheless after minor modi�
ations the proof in [18℄ goes through also for CGDM-systems).

Furthermore, in [15℄ (Lemma 4.5) we have shown that the family ft log j�

0

e

(x)j � sN(e)g

e2E

f

is H�older 
ontinuous. Therefore, by 
ombining these two results, it follows that fg

(e)

t;s

g

e2E

f

is
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a H�older family. In order to prove that G

t;s

is summable, we let Z

(n)

:= fe 2 E

f

: N(e) = ng

and de�ne, for n 2 IN ,

R

n

:=

[

e2Z

(n)

�

e

(U

t(e)

):

If there are no paraboli
 elements, then we have for ea
h n > 1 that R

n

� f

�1

�

T

n�2

j=0

f

�j

(U

r

)

�

(for n = 1, we have R

1

� U

o

), and hen
e Lemma 4.1 and Lemma 4.3 imply that

m

u

(R

n

) � m

u

0

�

f

�1

0

�

n�2

\

j=0

f

�j

(U

r

)

1

A

1

A

�

0

�

m

u

0

�

n�2

\

j=0

f

�j

(U

r

)

1

A

1

A

1=l

� �

n=l

: (4.7)

If there are paraboli
 points then �

0

= 0, and 
onsequently the 
ondition P(u; �) > ��u+ �

implies that P(u; �) > �. Then note that for every e 2 Z

(n)

there exists 1 � k � n su
h

that f

j

(U

i(e)

) � U

r

, for all k � j < n, and su
h that f

j

(U

i(e)

) � U

i

, for all 1 � j < k and

for some i 2 I

p

. Let � > 0 be 
hosen suÆ
iently small su
h that � � P(u; �) < �2�. By

Lemma 2.6, there exists k

�

2 IN su
h that supfS

k

�g � (� + �)k, for all k � k

�

. Combining

these observations, it follows that supfS

k

�g�P(u; �)k < �k�. Using Lemma 4.1, Lemma 4.3

and (2.1), we then obtain, for some �xed � 2 (maxfe

��

; �g; 1) and for every x 2 f(U

i(e)

),

m

u;�

(R

n

)� (m

u;�

(f(R

n

)))

1=l

�

0

�

n

X

k=1

exp

�

S

k

�(x)� kP(u; �)

�

X

i2I

p

k

�

p(!

i

)+1

p(!

i

)

u

m

u;�

0

�

n�k

\

j=1

f

�j

(U

r

)

1

A

1

A

1=l

�

0

�

n

X

k=1

exp

�

supfS

k

�g � kP(u; �)

�

X

i2I

p

k

�

p

i

+1

p

i

u

m

u;�

0

�

n�k

\

j=1

f

�j

(U

r

)

1

A

1

A

1=l

�

�

e

��k

�

n�k


ard(I

p

)

�

1=l

� �

n=l

:

Combining this estimate and (4.7), we 
on
lude, no matter if there are paraboli
 points or

not, that there exists � > 0 su
h that, for all n 2 IN ,

m

u

(R

n

)� e

��n

: (4.8)

Using the de�nition of the measurem

u;�

along with Koebe's distortion theorem and Lemma 2.5,

we now have, for all n 2 IN ,

X

e2Z

(n)

sup

z2U

i(e)

fj(f

n

)

0

(z)j

�u

) exp

�

S

n

�(z)� P(u; �)n

�

g � e

��n

:

Observe that f�

e

: W

t(e)

! U

i(e)

g

e2E

f

is a normal family of fun
tions, and hen
e all its limit

fun
tions are 
onstant fun
tions. This implies that

�

1

:= sup

e2E

f

sup

z2U

t(e)

j�

0

e

(z)j <1:
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Therefore, for �xed u > 0 there exists 0 < Æ < minfu;

�

2

;

�

4

j log�

1

j

�1

;

�

4

j log�

2

j

�1

g, where

we have put �

2

:= sup

e2E

f

sup

z2U

i(e)

jf

0

(z)j. With this 
hoi
e of Æ we obtain for ea
h t 2

(u� Æ; u+ Æ) and s > P(u)� Æ that

X

e2Z

(n)

sup

z2U

i(e)

(j(f

n

)

0

(z)j

�t

) exp

�

S

n

�(z)

�

e

�sn

�

X

e2Z

(n)

sup

z2U

i(e)

(j(f

n

)

0

(z)j

�u

) exp

�

S

n

�(z)� P(u; �)n

�

e

Æn

maxf�

Æ

1

;�

nÆ

2

g

� e

��n

e

�

2

n

e

�

4

n

= e

�

�

4

n

:

For the following lemma re
all that the topologi
al pressure P asso
iated with the family G

t;s

is given by (
f. [5℄, [10℄, [15℄)

P(t; s) := lim

n!1

1

n

log

X

(�

1

;::: ;�

n

)2E

(n)

f

sup

z2U

t(�

n

)

exp

 

g

(�

n

)

t;s

(z) +

n�1

X

i=1

g

(�

i

)

t;s

(�

�

i+1

;::: ;�

n

(z))

!

;

where we have set E

(n)

f

:= f(�

1

; : : : ; �

n

) 2 E

n

f

: A

�

j

�

j+1

= 1 for all j = 1; 2; : : : ; n� 1g:

Also, asso
iated with G

t;s

there exists a unique G

t;s

-
onformal probability measure m

t;s

sup-

ported on J

�

f

. That is, for ea
h n � 1 and � = (�

1

; : : : ; �

n

) 2 E

(n)

f

we have for every Borel

set A � U

t(�

n

)

that

m

t;s

(�

�

(A)) =

Z

A

exp

 

g

(�

n

)

t;s

(z) +

n�1

X

i=1

g

(�

i

)

t;s

(�

�

i+1

;::: ;�

n

(z))� nP(t; s)

!

dm

t;s

(z):

Lemma 4.5. For t > 0 su
h that P(t; �) > ��t+�, we have P(t;P(t; �)) = 0. Furthermore,

we have that, for ea
h n 2 IN and � = (�

1

; : : : ; �

n

) 2 E

(n)

f

,

m

t;P(t;�)

(�

�

(U

t(�

n

)

)) � m

t;�

(�

�

(U

t(�

n

)

));

with 
omparability 
onstants not depending on n and � . Furthermore, we in parti
ular have

that m

t;P(t;�)

and m

t;�


oin
ide on J

�

f

, up to a positive multipli
ative 
onstant.

Proof. Put N(�) :=

P

n

j=1

N(�

j

). By 
onformality of m

t�

and m

t;s

, we have for ea
h n 2 IN ,

m

t�

(�

�

(U

t(�

n

)

)) =

Z

U

t(�)

j�

0

�

(z)j

t

exp

�

S

N(�)

� Æ �

�

� P(t; �)N(�)

�

dm

t

(z)

� jj�

0

�

jj

t

exp

�

supfS

N(�)

� Æ �

�

g � P(t; �)N(�)

�

m

t

(U

t(�)

)

� e

P(t;P(t;�))n

jj�

0

�

jj

t

exp

�

supfS

N(�)

� Æ �

�

g � P(t; �)N(�)

�

� P(t;P(t; �))n

�

� e

P(t;P(t;�))n

m

t;P(t;�)

(�

�

(U

t(�)

)):

Therefore, if P(t;P(t; �)) > 0 then m

t;P(t;�)

(J

�

f

) = 0, whi
h 
ontradi
ts m

t;P(t;�)

(J

�

f

) =

1. On the other hand, if P(t;P(t; �)) < 0 then we obtain m

t

(J

�

f

) = 0, whi
h is also a
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ontradi
tion. Thus, it follows that P(t;P(t; �)) = 0. The remainder of the lemma is an

immediate 
onsequen
e of Theorem 3.2.3 in [10℄.

We now obtain the following two theorems whi
h are the main results of this se
tion.

Theorem 4.6. Let f be a paraboli
ally semihyperboli
 GPL-map. For values t > 0 for whi
h

P(t; �) > ��t + �, we have that P(t; �) is real-analyti
 as a fun
tion in t.

Proof. Using Lemma 4.4 and applying Theorem 2.6.12 of [10℄ (or alternatively [5℄ Theo-

rem 6.4), we have for ea
h positive u with P(u; �) > ��u + � that there exists Æ > 0 su
h

that P is real-analyti
 on (u � Æ; u + Æ) � (P(u; �) � Æ;P(u; �) + Æ) in both variables t and

s. In order to prove that P is real-analyti
 on (u� Æ; u+ Æ), we employ the impli
it fun
tion

theorem, showing that P is the unique real-analyti
 fun
tion whi
h satis�es P(t;P(t)) = 0 for

all t 2 (u � Æ; u + Æ). For this it is now suÆ
ient to verify that for all t 2 (u � Æ; u + Æ) we

have

�P(t; s)

�s

�

�

�

�

(t;P(t;�))

exists and is stri
tly negative: (4.9)

Denote the measure m

t;P(t;�)

by �

t

. Proposition 2.3, Lemma 4.4 and Lemma 4.5 guarantee

that Theorem 3.7 of [10℄ is appli
able. This gives that the measure �

t

has a lift ~�

t

to the

symboli
 spa
e E

f

, and that there exists a measure ~�

t

in the measure 
lass of ~�

t

whi
h is

invariant under the shift map on the spa
e E

f

, and whose Radon-Nikodym derivative with

respe
t to ~�

t

is bounded away from zero and in�nity. We 
an now apply Proposition 2.6.13

of [10℄ (or alternatively [5℄, Proposition 6.5), whi
h gives

�P(t; s)

�s

�

�

�

�

(t;P(t;�))

= �

Z

Nd~�

t

: (4.10)

Using the estimate in (4.8) and the se
ond part of Lemma 4.5 we then 
ompute

Z

Nd~�

t

�

Z

Nd~�

t

=

Z

Nd�

t

=

X

n2IN

n�

t

(R

n

) �

X

n2IN

nm

t

(R

n

)�

X

n2IN

ne

��n

<1;

(4.11)

where after the �rst equality sign we treated the fun
tionN slightly informally as being de�ned

on the limit set J

�

f

. Combining (4.10) and (4.11), and using the fa
t that the fun
tion N is

stri
tly positive, we derive (4.9), whi
h then 
ompletes the proof.

Finally, let us 
onsider the family

^

G

q;s

:= fĝ

(e)

q;s

: e 2 E

f

g, whi
h is given by, for �xed t > 0,

ĝ

(e)

q;s

(x) := t log j�

0

e

(x)j � sN(e) + qS

n(e)

�(�

e

(x)):

If in the 
onstru
tion above we use this family instead of the family G

t;s

, then the proof of

Theorem 4.6 is in fa
t easier. Using this modi�ed family of fun
tions ĝ

(e)

q;s

, we then obtain the

following result (
.f. [18℄, Se
t. 5).
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Theorem 4.7. Let f be a paraboli
ally semi-hyperboli
 GPL-map. If t 2 [0; Æ(�)), then the

fun
tion q 7! P(t; q�) is real-analyti
 in a small neighbourhood of q = 1.

5. Multifra
tal analysis

5.1. The general 
ase of a paraboli
ally semi-hyperboli
 GPL-map.

In this se
tion we derive the main results of this paper, namely we give a multifra
tal analysis

for paraboli
ally semi-hyperboli
 GPL-maps f . Throughout let � : J(f) ! IR be a H�older


ontinuous fun
tion su
h that P(f; �) > sup(�). Re
all from the introdu
tion that we de�ne,

for every x 2 J(f),

�

�

(x) := lim

n!1

S

n

�

P(f; �)� �(x)

�

log j(f

n

)

0

(x)

and �

�

(x) := lim

n!1

S

n

�

P(f; �)� �(x)

�

log j(f

n

)

0

(x)

:

If �

�

(x) = �

�

(x), then we let �

�

(x) refer to their 
ommon value. We are interested in studying

the (�; �)-level sets K

�

(�), given by

K

�

(�) := fx 2 J(f) : �

�

(x) = �g;

and in parti
ular in the asso
iated �-spe
trum k

�

, whi
h is given by

k

�

(�) := HD(K

�

(�)):

Also, re
all that by using �� P(f; �) instead of �, we 
an assume without loss of generality

that

P(f; �) = 0 and sup(�) < 0: (5.1)

Lemma 5.1. For every q 2 (0; 1℄ there exists a unique T (q) � 0 su
h that P(T (q); q�) = 0.

Proof. We have that P(f; �) = 0, and that the graph of the fun
tion t 7! P(t; q�) lies

below the graph of the fun
tion t 7! P(t; 0) (this follows, sin
e by assumption q > 0 and

sup(�) < 0). Also, by de�nition (P2) of variational pressure, the fun
tion t 7! P(t; q�)

is 
ontinuous. Combining these observations, it follows that if P(0; q�) � 0, then there

exists t � 0 su
h that P(t; q�) = 0. On the other hand, sin
e sup(�) < 0, we have that

P(0; q�) � P(0; �) = 0, for ea
h q 2 (0; 1℄. Therefore, it follows that P(t; q�) = 0, for every

q 2 [0; 1℄ and for some t � 0 (whi
h depends on q). Hen
e, in order to �nish the proof it is

now suÆ
ient to show that if for some t � 0 and q > 0 we have that P(t; q�) = 0, then this

implies that, for all u > 0,

P(t+ u; q�) < 0 and P(t� u; q�) > 0: (5.2)
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In order to derive this impli
ation, we remark that if � is an f -invariant Borel probability

measure su
h that, for � 2

�

0;�

q

2

sup(�)

�

,

� � � h

�

(f)� t�

�

+ q

Z

�d�; (5.3)

then it follows that

�

�

� �

q

4

sup(�): (5.4)

This 
an be seen by using (5.3) and the fa
t that �

�

� 0, whi
h gives

h

�

(f) � t�

�

� q

Z

�d�� � � �q sup(�)� � � �

q

2

sup(�):

Hen
e, by Ruelle's inequality we have �

�

�

1

2

h

�

(f) � �

q

4

sup(�), whi
h gives the inequality

in (5.4). We now prove the �rst inequality in (5.2) by 
ontradi
tion as follows. Suppose

that P(t + u; q�) � 0, and let 0 < � < min

n

�

q

2

sup(�);�

qu

4

sup(�)

o

be given. By de�nition

of the pressure fun
tion, there exists an f -invariant Borel probability measure � su
h that

P(t + u; q�)� � � h

�

(f)� (t + u)�

�

+ q

R

�d�. Sin
e P(t + u; q�) � 0 and P(t; q�) = 0, this

implies that

0 � h

�

(f)� t�� + q

Z

�d� � u�

n

u� � � ��: (5.5)

Hen
e, (5.3) is satis�ed, and 
onsequently (5.4) holds. Now, 
ombining (5.4) and (5.5), we

obtain 0 � �

qu

4

sup(�)� � > 0, whi
h is a 
ontradi
tion and hen
e gives the �rst inequality

in (5.2).

In order to prove the se
ond inequality in (5.2), note that again by de�nition of pressure and

sin
e P(t; q�) = 0, there exists an f -invariant Borel probability measure � satisfying (5.3) for

every 0 < � < min

n

�

q

2

sup(�);�

qu

4

sup(�)

o

. Hen
e, applying (5.4), we get

P(t� u; q�) � h

�

(f)� (t� u)�

�

+ q

Z

�d� = (h

�

(f)� t�

�

+ q

Z

�d�) + u�

�

� �� + u�

�

� �� + u�

�

� ���

qu

4

sup(�) > 0:

This latter estimate gives the se
ond inequality in (5.2), and hen
e 
ompletes the proof of the

lemma.

Lemma 5.2. For q 2 (0; 1℄ we have that

�P

�q

(q; T (q)) =

Z

�d�

q

and

�P

�t

(q; T (q)) = �

Z

log jf

0

jd�

q

:
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Proof. Let u 2 IR be �xed, and 
onsider the equilibrium state �

q

for the potential

�T (q) log jf

0

j+ q�. By de�nition of the variational pressure P(T (q); (q + u)�), we have

P(T (q); (q + u)�)� P(T (q); q) �

� �T (q)�

�

q

+ (q + u)

Z

�d�

q

+ h

�

q

(f)�

�

�T (q)�

�

q

+ q

Z

�d�

q

+ h

�

q

(f)

�

= u

Z

�d�

q

:

(5.6)

Also, by Lemma 5.1 we have that 0 = P(T (q); q�) > sup(q�) and that T (q) � 0, whi
h

together with the de�nition of Æ(�) implies that T (q) 2 [0; Æ(q�)). Hen
e, we are now in the

position to apply Theorem 4.7, whi
h gives that the fun
tion s 7! P(T (q); s�) is real-analyti


on a neighbourhood of s = q. Sin
e this latter fun
tion is 
onvex (by de�nition (P2) of

variational pressure), (5.6) gives that that

�P

�q

(q; T (q)) =

R

�d�

q

, and hen
e the �rst assertion

of the lemma follows. The proof of the se
ond formula of the lemma is analogous and will be

omitted.

We now 
ome to the �rst main result of this paper.

Theorem 5.3. Let f be a paraboli
ally semi-hyperboli
 GPL-map and let � : J(f)! IR be a

H�older 
ontinuous potential su
h that sup(�) < P(f; �) = 0. In 
ase f has paraboli
 elements

we additionally assume that the H�older exponent of � ex
eeds p

max

=(p

max

+ 1). Then the

following holds.

(a) For �

�

-a.e. x 2 J(f), we have that �

�

(x) exists and

�

�

(x) =

�

R

�d�

�

R

log jf

0

jd�

�

:

(b) For q 2 (0; 1℄, the fun
tion q 7! T (q) is real-analyti
 and T

0

(q) < 0.

(
) For ea
h q 2 (0; 1℄, we have that k

�

(�T

0

(q)) = T (q)� qT

0

(q).

Proof. The statement in (a) is an immediate 
onsequen
e of Birkho�'s Ergodi
 Theorem.

For (b), note that by Lemma 5.2,

�P

�t

(q; T (q)) = �

R

log jf

0

jd�

q

< 0, and therefore, applying

Theorem 4.6 and Theorem 4.7, it follows from the Impli
ite Fun
tion Theorem that the

fun
tion q 7! T (q), q 2 (0; 1℄, is real-analyti
. By di�erentiating the equation P(T (q); q�) = 0

and using Lemma 5.2 again, we obtain

0 =

�P

�t

T

0

(q) +

�P

�q

= �T

0

(q)

�

�

Z

log jf

0

jd�

q

�

+

Z

�d�

q

;

and therefore

T

0

(q) =

R

�d�

q

R

log jf

0

jd�

q

< 0: (5.7)

In order to prove (
), we �rst give the estimate of the fun
tion k

�

(�T

0

(q)) from below. By

Birkho�'s Ergodi
 Theorem there exists a Borel set X � J(f) su
h that �

q

(X) = 1 and su
h
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that, for every x 2 X,

lim

n!1

1

n

log j(f

n

)

0

(x)j =

Z

log jf

0

jd�

q

and lim

n!1

1

n

S

n

�(x) =

Z

�d�

q

:

Hen
e, using (5.7) we obtain

lim

n!1

�S

n

�(x)

log j(f

n

)

0

(x)j

= �

R

�d�

q

R

log jf

0

jd�

q

= �T

0

(q);

whi
h implies that X � K

�

(�T

0

(q)). Thus, using (5.7) and the fa
t that P(T (q); q�) = 0, we

get

k

�

(�T

0

(q)) = HD(K

�

(�T

0

(q))) � HD(X) � HD(�

q

) =

h

�

q

(f)

�

�

q

=

T (q)�

�

q

� q

R

�d�

q

�

�

q

= T (q)� q

R

�d�

q

�

�

q

= T (q)� qT

0

(q):

This gives the required lower bound for k

�

. For the upper bound, let us �x an element

x 2 K

�

(�T

0

(q)) n

1

[

n=0

f

�n

(
(f) [ Crit(f)):

Using [16℄ (Proposition 6.1), there exists �(x) > 0 and an unbounded in
reasing sequen
e

fk

n

g

1

n=1

su
h that, for ea
h n 2 IN ,

Comp

�

x; f

k

n

(x); f

k

n

; 2�(x)

�

\ Crit(f

k

n

) = ; and f

k

n

(x) =2 B(
; �(x)):

In here, Comp(x; f

j

(x); f

j

; r) refers to the 
onne
ted 
omponent of f

�j

(B(f

j

(x); r)) whi
h


ontains x. By Koebe's Distortion Theorem, we have that

B

�

x;Kj(f

k

n

)

0

(x)j

�1

�(x)

�

� f

�k

n

x

�

B(f

k

n

(x); �(x))

�

; (5.8)

where K � 1 denotes the `Koebe 
onstant' for the s
ale 1=2, and f

�k

n

x

: B(f

k

n

(x); �(x))! CI

refers to the holomorphi
 inverse bran
h of f

k

n

whi
h maps f

k

n

(x) to x. For ease of notation,

we put m

q

:= m

T (q);q�

. Using Lemma 2.5, (5.8) and on
e more Koebe's Distortion Theorem,

it follows that

m

q

�

B

�

x;Kj(f

k

n

)

0

(x)j

�1

�(x)

��

�

Z

B(f

k

n

(x);�(x))

j(f

k

n

)

0

(z)j

T (q)

exp

�

qS

k

n

�(f

�k

n

x

(z))

�

dm

q

(z)

� e

�qC

�(x)

m

�

B(f

k

n

(x); �(x))

�

j(f

k

n

)

0

(x)j

�T (q)

exp

�

qS

k

n

�(x)

�

:

Hen
e, if we let r

n

:= Kj(f

k

n

)

0

(x)j

�1

�(x), it follows that, for every x 2 K

�

(�T

0

(q)),

lim inf

n!1

logm

q

(B(x; r

n

))

log r

n

� lim

n!1

�T (q) log j(f

k

n

)

0

(x)j+ qS

k

n

�(x)

� log j(f

k

n

)

0

(x)j

= T (q)� qT

0

(q):

Note that (b) and (
) in Theorem 5.3 show that if the fun
tion T

0

(q) is lo
ally invertible at

at least one point in (0; 1), then we have that the multifra
tal �-spe
trum k

�

is real-analyti
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on a proper interval. Hen
e, our target now is to show that T

0

(q) is in fa
t lo
ally invertible

at at least one point in (0; 1). For this we require the following lemma.

Lemma 5.4. If the set fq 2 (0; 1℄ : T

00

(q) = 0g has an a

umulation point in (0; 1℄, then

we have that for all q 2 (0; 1℄ the measures �

q


oin
ide, and that they are equivalent to the

h-
onformal measure �

h

.

Proof. By Theorem 5.3 (b) we have that the fun
tion T : (0; 1) ! [0;1) is real-analyti
.

Hen
e, sin
e the set (T

00

)

�1

(0) has an a

umulation point in (0; 1), we 
on
lude that T is

aÆne, that is there exist �; � 2 IR su
h that

T (q) = �q + �:

Sin
e for ea
h q 2 (0; 1℄ we have P(T (q); q�) = 0, and sin
e �

q

is an equilibrium state for the

potential �T (q) log jf

0

j+ q�, (5.7) implies that

h � HD(�

q

) =

h

�

q

�

�

q

=

T (q)�

�

q

� q

R

�d�

q

�

�

q

= T (q)� qT

0

(q) = �q + � � �q = �:

(5.9)

Sin
e �

�

q

� log jjf

0

jj <1 and sin
e �

�

q

� 0 (the latter follows by a result of Przyty
ki result

in [12℄, where it was shown that �

�

> 0 for every ergodi
 f -invariant measure �), it follows

that the fun
tion (t; q) 7! P

V

(t; q�) is 
ontinuous in both variables, for t � 0 and q 2 IR.

Therefore, we 
on
lude

P

V

(�; 0) = lim

q!0

+

P(T (q); q�) = 0:

Combining this with a result in [15℄ (Theorem 2.1), it follows that � � h, whi
h then gives,

by using (5.9), that HD(�

q

) = h for all q 2 (0; 1℄. Now note that we have h

�

q

� T (q)�

�

q

+

q

R

�d�

q

= P(T (q); q�) = 0, for every q 2 (0; 1℄. Hen
e, we obtain h

�

q

= T (q)�

�

q

� q

R

�d�

q

�

�q

R

�d�

q

> 0, whi
h implies, using Ruelle's inequality, that �

�

q

> 0. It therefore follows by

a result in [6℄ (Theorem B; the theorem is stated in the 
ontext of rational maps, nevertheless

the proof 
an be adapted to GPL-maps) that for ea
h q 2 (0; 1℄ the measure �

q

is equivalent

to the h-
onformal measure �

h

. In parti
ular, all the measures �

q

are mutually equivalent,

and sin
e they are ergodi
, they must 
oin
ide.

For the following, we re
all a notation of [10℄. We let g

1

: E

f

! IR denote the amalgamated

fun
tion of the family G

0;0

, whi
h is given by

g

1

(!) = S

n(!

1

)

�(�(!)):

Similarly, we let g

2

: E

f

! IR denote the amalgamated fun
tion, whi
h is given by

g

2

(!) = �h log j(f

n(!

1

)

)

0

(�(!)j:

Also, re
all that one says that g

1

and g

2

are 
ohomologous up to 
onstant in the 
lass of

bounded H�older 
ontinuous fun
tions on E

f

, if and only if there are a 2 IR and a bounded
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H�older 
ontinuous fun
tion u : E

f

! IR su
h that

g

2

� g

1

= a + u� u Æ �: (5.10)

We require the following lemma.

Lemma 5.5. If the measure �

0;�

is equivalent to the h-
onformal measure �

h

, then the fun
-

tions g

1

and g

2

are 
ohomologous up to a 
onstant in the 
lass of bounded H�older 
ontinuous

fun
tions on E

f

.

Proof. Re
all that P(f; �) = 0. Let �

G

0:0

be the �

f

-invariant version of the measure m

0;0

(
.f. formula (3.10) in [10℄). Note that these two measures are both supported on J

�

f

. We

now show that �

G

0:0

is equivalent to m

0;0

. For this observe that Lemma 4.5 implies that m

0;0


oin
ides with m

0;�

j

J

�

f

. Also, by Theorem 3.4, we have that m

0;�

j

J

�

f

is equivalent to the

h-
onformal measure m̂

h

on J

�

f

for the system �

f

. Finally, m̂

h

is equivalent to �̂

h

, whi
h

is the �

f

-invariant version of the measure m̂

h

. Therefore, �

G

0:0

and �̂

h

are equivalent. By

the result in [10℄ (formula (3.10)), we have that the Gibbs states ~�

g

1

and ~�

g

2

, whi
h are both

supported on E

f

, are equivalent. Again by a result in [10℄ (Theorem 2.2.4), these measures are

ergodi
 with respe
t to the shift map � : E

f

! E

f

, and hen
e they must 
oin
ide. Therefore,

by applying Theorem 2.2.7 in [10℄, the lemma follows.

For the following lemma, re
all that a 
riti
al point 
 of a GPL-map f is 
alled ex
eptional

if f

�n

(
) � Crit(f

n

), for every n 2 IN . Clearly, sin
e there are only �nitely many 
riti
al

points and sin
e these 
annot form periodi
 
y
les, ea
h ex
eptional 
riti
al point must be

eventually periodi
.

Lemma 5.6. If f has a paraboli
 point or if J(f) 
ontains a non-ex
eptional 
riti
al point,

then g

1

and g

2

are not 
ohomologous up to any 
onstant in the 
lass of bounded H�older


ontinuous fun
tions on E

f

.

Proof. Suppose that that g

1

and g

2

are 
ohomologous up to a 
onstant in the 
lass of

bounded H�older 
ontinuous fun
tions on E

f

. Then there exist a 2 IR and a bounded H�older


ontinuous fun
tion u : E

f

! IR su
h that

g

2

� g

1

= a + u� u Æ �: (5.11)

Let us assume that 
 6= ;, and let i 2 I

p

be �xed. Note that both sets I

o

and I

r

are non-

empty, and hen
e we 
an �x some j 2 I

o

and k 2 I

r

. Then, for every n 2 IN , there exists

e

n

2 E

f

su
h that f

�1

k

Æ f

�n

i

= �

e

n

. For !

(n)

2 E

f

su
h that !

(n)

1

= e

n

, we have by (5.11) that

S

n+1

�(�(!

(n)

)) + h log j(f

n+1

)

0

(�(!

(n)

))j = a+ u(�(!

(n)

))� u(�(�(!

(n)

)));

or equivalently,

S

n+1

�(�(!

(n)

))� h

�

� log j(f

0

(�(!))j+ log j(f

�n

i

)

0

(f

n+1

(�(!)))j

�

:
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Applying (2.1), we hen
e have

a+ 2jjujj

1

� sup(S

n+1

�) + h log jjf

0

jj � h log(inf

�

j(f

�n

i

)

0

j

U

j

�

� (n+ 1) sup(f) + h log jjf

0

jj+ h

 

log(C

U

j

) +

p

i

+ 1

p

i

logn

!

:

Sin
e sup(�) < 0, we see that the right-hand side of the latter inequality gets arbitrarily

small, and hen
e we have a 
ontradi
tion.

We now 
onsider the 
ase in whi
h J(f) 
ontains a non-ex
eptional point 
riti
al point 
.

Assume that 
 is 
hosen su
h that ff

n

(
) : n 2 INg \ Crit(f) = ;. Note that for ea
h n � 0

there exists a unique index i

n

2 I su
h that f

n

(
) 2 U

i

n

, and by De�nition 2.1 (
), we have

that i

n

2 I

r

, for all n 2 IN . Consider the inverse bran
hes, for n � 1,

f

�n

�

= f

�1

i

1

Æ f

�1

i

2

Æ : : : f

�i

n

i

1

: U 7! U

i

1

:

Sin
e U

r

� U (by De�nition 2.1 (b)) and sin
e f(
) 2 J(f), it follows by a standard normal

families argument that

lim

n!1

diam

�

f

�n

�

(U)

�

= 0: (5.12)

Now, let B(
; r

1

) be a suÆ
iently small ball 
entered at the 
riti
al point 
. Sin
e f(
) 2

f

�n

�

(U), it follows from (5.12) that f

�n

�

(U) � f(B(
; r

1

)), for all n � k

1

, with k

1

2 IN

suÆ
iently large. For j 2 I

o

, let w 2 U

j

be �xed, and 
hoose w

n

2 B(
; r

1

) su
h that

f(w

n

) = f

�n

�

(w). Sin
e j 2 I

o

, there exists a holomorphi
 inverse bran
h f

�(n+1)

�

: U

j

! U

of f

n+1

whi
h maps w to w

n

, and for whi
h f Æ f

�(n+1)

�

= f

�n

�

. Sin
e B(
; r

1

) � U

i

, for some

i 2 I




� I

o

and every n � k

1

, there exists a

n

2 E

f

su
h that �

a

n

= f

�(n+1)

�

. Then (5.11)

gives, for �

(n)

2 E

f

su
h that �

(n)

1

= a

n

,

S

n+1

�(�(�

(n)

)) + h log j(f

n+1

)

0

(�(�

(n)

))j = a+ u(�(�

(n)

))� u(�(�(�

(n)

))):

(5.13)

Sin
e 
 is not ex
eptional, there exist q � 0, s 2 IN , and y 2 f

�s

(f

q

(
)) \ U

j

n Crit(f

s

). Let

us now 
onsider the inverse bran
hes

f

�(n�q+1)

q

= f

�1

i

q

Æ f

�1

i

q+1

Æ : : : f

�1

i

n

: U ! U

i

n

:

As above, we have that

lim

n!1

diam

�

f

�(n�q+1)

q

(U)

�

= 0: (5.14)

Choose B(y; r

2

) � U

j

suÆ
iently small su
h that f

s

j

B(y;2r

2

)

is 1{1, and let f

�s

y

n

refer to the

inverse of f

s

j

B(y;2r

2

)

. By (5.14) we have, for all n � k

2

, with k

2

� k

1

suÆ
iently large,

f

�(n�q+1)

q

(U) � f

s

(B(y; r

2

)): (5.15)
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Clearly, there now exists b

n

2 E

f

su
h that the map f

�(n�q+1+s)

q;s

= f

�s

y

n

Æ f

�(n�q+1)

q

: U ! U

j

if restri
ted to U

j

is equal to �

b

n

. By (5.11) we then have, for �

(n)

2 E

f

su
h that �

(n)

1

= b

n

,

S

n�q+1+s

�(�(�

(n)

)) + h log j(f

n�q+1+s

)

0

(�(�

(n)

))j = a + u(�(�

(n)

))� u(�(�(�

(n)

))):

(5.16)

Applying Koebe's distortion theorem along with De�nition 2.1(b), we see that there exists a


onstant K � 1 su
h that for all n � maxfq; k

2

g and x; y 2 U ,

j(f

�(n�q+1)

q

)

0

(y)j

j(f

�(n�q+1)

q

)

0

(x)j

� K: (5.17)

Therefore, using (3.1) and De�nition 2.1 (
), it follows, for all n � maxfq; k

2

g,

diam

�

f

�(n�q+1)

q

(U)

�

� �

�(n�u+1)

diam(U): (5.18)

Applying (5.17), we 
on
lude that

�

�

�h log j(f

n�q+1

)

0

(f

q

(�(�

(n)

)))j � h log j(f

n�q+1

)

0

(f

f

(�(�

(n)

)))j � h logK:

(5.19)

Re
all that � > 0 denotes the H�older exponent of �, and let L > 0 be the H�older 
onstant of

the fun
tion �. Using (5.18), it now follows that

�

�

�S

n�q+1

�

�

f

q

(�(�

(n)

))

�

� S

n�q+1

�

�

(f

s

(�(�

(n)

))

�

j

�

n�q

X

j=0

j�

�

f

j

(f

q

(�(�

(n)

)))

�

� �

�

f

j

(f

s

(�(�

(n)

)))

�

j

�

n�q

X

j=0

Ljf

j

(f

q

(�(�

(n)

)))� f

j

(f

s

(�(�

(n)

)))j

�

� L

n�q

X

j=0

�

diam

�

f

n�q�j+1

q+j

(U)

��

�

�

n�q

X

j=0

K

�

1

diam(U)

�

�

��(n�q�j+1)

� diam(U)

�

1

X

i=1

�

��i

= diam(U)

�

�

��

(1� �

��

)

�1

<1:

(5.20)

Furthermore, note that we have

jS

q

�(�(�

(n)

))j � qjj�jj

1

and jS

s

�(�(�

(n)

))j � sjj�jj

1

; (5.21)

and also that, using (5.15) and Koebe's distortion theorem, with K � 1 the Koebe 
onstant,

jh log j(f

s

)

0

(�(�

(n)

))j � h logK + h log j(f

s

)

0

(y)j: (5.22)

Finally, if we 
ombine (5.13), (5.16), (5.19), (5.20), (5.21), (5.22) and and the fa
t that the

fun
tion u is uniformly bounded, we 
on
lude that h log j(f

0

(�(�

(n)

))j �

^

C, for all n suÆ
iently
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large and with some 
onstant

^

C > 0 whi
h does not depend on n. Sin
e lim

n!1

�(�

(n)

) = 
,

this gives a 
ontradi
tion and hen
e �nishes the proof.

Finally, we 
an now 
ombine Theorem 5.3, Lemma 5.4 and Lemma 5.5 whi
h then gives the

following se
ond main result of this paper.

Theorem 5.7. Let f be a paraboli
ally semi-hyperboli
 GPL-map and let � : J(f)! IR be a

H�older 
ontinuous potential su
h that sup(�) < P(f; �) = 0. In 
ase f has paraboli
 elements

we additionally assume that the H�older exponent of � ex
eeds p

max

=(p

max

+1). In this situation

we have that if �

0;�

is not equivalent to the h-
onformal measures �

h

, and hen
e in parti
ular if

f has a paraboli
 point or a non-ex
eptional 
riti
al point, then the domain of the multifra
tal

�-spe
trum k

�


ontains a non-degenerated interval on whi
h k

�

is real-analyti
.

5.2. The paraboli
 
ase without 
riti
al points in the Julia set.

In this se
tion we 
onsider the spe
ial 
lass of paraboli
ally semi-hyperboli
 GPL-maps for

whi
h J(f) does not 
ontain 
riti
al points of f . Maps of this type are 
alled paraboli
 GPL-

maps, and we show that for them the results of the previous se
tion have a more transparent

geometri
 interpretation, namely in terms of the lo
al s
aling behavior of the equilibrium

state �

�

. Here � refers to a H�older 
ontinuous potential su
h that 0 = P(f; �) > �, and su
h

that if f has paraboli
 elements then the H�older exponent of � ex
eeds p

max

=(p

max

+ 1).

For a measure � supported on J(f) and for � 2 [0;1), the (�; �)-level sets L

�

(�) and the

multifra
tal �-spe
trum `

�

are de�ned by

L

�

(�) :=

(

z 2 J(f) : lim

r!0

log�(B(x; r))

log r

= �

)

and `

�

(�) := HD(L

�

(�)):

For the equilibrium state �

�

and its f -invariant version m

�

, we have by a result in [17℄ (Lemma

2.4.4) that the symmetri
 di�eren
e of L

�

�

(�) and L

m

�

(�) is 
ontained in 
. This implies

that

`

�

�

(�) = `

m

�

(�): (5.23)

The main result of this se
tion, that is Theorem 5.10, will be an immediate 
onsequen
e of

Theorem 5.3 in 
ombination with the following two lemmata.

Lemma 5.8. For ea
h � 2 (0;1), we have that K

�

(�) � L

m

�

(�).

Proof. Let x 2 J(f) n

S

n�0

f

�n

(
) be �xed. Sin
e f is a paraboli
 GPL-map, there exists

an in�nite sequen
e (n

j

) of positive integers (depending on x) and Æ > 0 (independent of x)

su
h that

B(f

n

j

(x); 4KÆ) � U nB(
; �) and B(f

n

j

(x); 4KÆ) \

1

[

k=1

f

k

(Crit(f)) = ;:
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In parti
ular, for ea
h j we hen
e have a well-de�ned holomorphi
 inverse bran
h f

�n

j

:

B(f

n

j

(x); 4KÆ) ! CI whi
h maps f

n

j

(x) to x. If r > 0 is given, then we let n := maxfn

i

:

r � Æj(f

n

i

)

0

(x)j

�1

g and de�ne r

n

:= Æj(f

n

)

0

(x)j

�1

. Now we have for some j that n = n

j

, and

also that n

j+1

= n+ k, for some k. Clearly, we have that r � r

n+k

Æj(f

n+k

)

0

(x)j

�1

, and hen
e

it follows that

log

�

m

�

(B(x; r

n

))

�

log r

n+k

�

log

�

m

�

(B(x; r))

�

log r

�

log

�

m

�

(B(x; r

n+k

))

�

log r

n

: (5.24)

Using Koebe's distortion theorem, we see that B(x; r

n+k

) � f

�(n+k)

x

(B(f

n+k

(x); KÆ), whi
h

if 
ombined with Lemma 2.5, gives m

�

(B(x; r

n+k

)) � e

�C

�

exp

�

S

n+k

�(x)

�

. Therefore,

log

�

m

�

(B(x; r

n+k

))

�

log r

n

=

log

�

m

�

(B(x; r

n+k

))

�

log r

n+k

log r

n+k

log r

n

�

S

n+k

�(x)� C

�

� log j(f

n+k

)

0

(x)j+ log Æ

�

log r

n+k

log r

n

:

(5.25)

Similarly, using Koebe's

1

4

-distortion theorem, it follows that B(x; r

n

) � f

�n

x

(B(f

n

(x); 4Æ)),

and by 
ombining this and Lemma 2.5, we obtain

m

�

(B(x; r

n

)) � e

C

�

exp

�

S

n+k

�(x)

�

: (5.26)

Hen
e, we have

log

�

m

�

(B(x; r

n

))

�

log r

n+k

=

log

�

m

�

(B(x; r

n

))

�

log r

n

log r

n

log r

n+k

�

S

n+k

�(x)� C

�

� log j(f

n

)

0

(x)j + log Æ

log r

n

log r

n+k

:

(5.27)

Now, the aim is to show that if x 2 K

�

(�) then it follows that

lim

n!1

log r

n

log r

n+k

n

= 1: (5.28)

In order to prove this, we pro
eed as follows

lim

n!1

log r

n

log r

n+k

= lim

n!1

log j(f

n

)

0

(x)j

log j(f

n+k

)

0

(x)j

= lim

n!1

 

1�

log j(f

k

)

0

(f

n

(x))j

log j(f

n+k

)

0

(x)j

!

= 1 + lim

n!1

S

n+k

(��)(x)j

log j(f

n+k

)

0

(x)j

log j(f

k

)

0

(f

n

(x))j

S

n+k

�(x)

= 1 + � lim

n!1

log j(f

k

)

0

(f

n

(x))j

S

n+k

�(x)

:

Now note that we have, for some universal 
onstant C � 1,

� logC � log j(f

k

)

0

(f

n

(x))j � logC +

p

max

+ 1

p

max

log(k + 1):

Sin
e sup(�) < 0 we have sup(S

n+k

�) < (n+ k) sup(�), and we 
on
lude that

lim

n!1

log j(f

k

n

)

0

(f

n

(x))j

S

n+k

�(x)

= 0;
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whi
h proves (5.28). For x 2 K

�

(�), we 
an now 
ombine (5.28), (5.24), (5.25) and (5.27),

whi
h implies

lim

r!0

log

�

m

�

(B(x; r))

�

log r

= �;

and whi
h therefore gives that x 2 L

m

�

(�).

Lemma 5.9. For ea
h q 2 (0; 1℄, we have that `

m

�

(�T

0

(q)) � �qT

0

(q) + T (q).

Proof. Let x 2 L

m

�

(�T

0

(q)) n

S

n�0

f

�n

(
) be �xed. For r > 0, let n = n

j

be deter-

mined as in the proof of the previous lemma. Using Koebe's distortion theorem, we have

that B(x; r

n

) � f

�n

x

(B(f

n

(x); KÆ). Therefore, applying Lemma 2.5 and on
e more Koebe's

distortion theorem, we obtain for the equilibrium state m

q

of the potential �T (q) log jf

0

j+q�,

m

q

(B(x; r

n

))� exp

�

S

n

(q�)(x)

�

j(f

n

)

0

(x)j

�T (q)

m

q

(B(f

n

(x); KÆ))

� exp

q

(S

n

�(x))j(f

n

)

0

(x)j

�T (q)

� m

q

�

(B(x; r

n

))j(f

n

)

0

(x)j

�T (q)

:

In here the se
ond inequality sign follows sin
e inffm

q

(B(z;KÆ) : z 2 J(f)g > 0. Hen
e, we

now have that

lim

r!0

log

�

m

q

(B(x; r))

�

log r

� lim

n!1

log

�

m

q

(B(x; r

n

))

�

log r

n

� lim

n!1

q log

�

m

�

(B(x; r

n

))

�

� T (q) log j(f

n

)

0

(x)j

log r

n

= �qT

0

(q) + T (q):

Theorem 5.10. Let f be a paraboli
 GPL-map, and � : J(f) ! IR a H�older 
ontinuous

potential su
h that P(f; �) > �. In 
ase f has paraboli
 elements we additionally assume that

the H�older exponent of � ex
eeds p

max

=(p

max

+ 1). Then the following holds.

(a) For q 2 (0; 1℄, the fun
tion q 7! T (q) is real analyti
 and T

0

(q) < 0.

(b) For every q 2 (0; 1℄, we have that `

�

�

(�T

0

(q)) = T (q)� qT

0

(q).
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