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Abstract

In this paper we study discrepancy groups (d-groups), that are Kleinian
groups whose exponent of convergence is strictly less than the Haus-
dorff dimension of their limit set. We show that the limit set of a
d-group always contains continuous families of fractal sets, each of
which contains the set of radial limit points and has Hausdorff di-
mension strictly less than the Hausdorff dimension of the whole limit
set. Subsequently, we consider special d-groups which are normal sub-
groups of some geometrically finite Kleinian group. For these we ob-
tain the result that their Poincaré exponent is always bounded from
below by half of the Poincaré exponent of the associated geometrically
finite group in which they are normal. Finally, we give a discussion of
various examples of d-groups, which in particular also contains explicit
constructions of these groups.
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1 Introduction and statement of results

We investigate non-elementary Kleinian groups G acting on (N+1)-hyperbolic
space DV*! without torsion, which have the property that their associated
limit set L(G) has Hausdorff dimension strictly greater than the exponent of
convergence

§(G) :=inf{s >0: ZB_SP(O’Q(O)) < oo}

geG

(Here, L(G) refers to the set of accumulation points of some G-orbit, and
p to the hyperbolic distance in DV*!). Throughout, we shall refer to these
groups as discrepancy groups, abbreviated as d-groups.

In [6] it was shown that the limit set has positive 2-dimensional Lebesgue
measure for every finitely generated, geometrically infinite d-group which
acts on D? and which is not Fuchsian. This result was obtained via showing
that for every arbitrary non-elementary Kleinian group G one has that 6(G)
coincides with the hyperbolic dimension of G, that is the Hausdorff dimension
of the uniformly radial limit set of G, or alternatively the Hausdorff dimension
of the radial limit set of G ([6], [24]). In this paper we consider arbitrary
d-groups G and discuss fractal properties of certain subsets of L(G), each of
which contains the radial limit set of G. These sets will be referred to as
r-weakly recurrent limit sets. Our first main result is that for s in a certain
range, the Hausdorff dimension of each of these k-weakly recurrent limit sets
is strictly less than the Hausdorff dimension of L(G). In particular, this also
allows to specify a range of subsets of the transient limit set, the complement
of the radial limit set, which have the property that their Hausdorff dimension
coincides with the Hausdorff dimension of L(G). Our second main result
deals with special d-groups which are normal subgroups of some geometrically
finite Kleinian group. For these we obtain the result that their exponent
of convergence is always bounded from below by half of the exponent of
convergence of the associated geometrically finite group. Finally, in section
3 we discuss various examples of d-groups. These include the infinitely-
punctured Riemann surfaces of Patterson’s ([17], Theorem 4.4). This type of
example is closely related to constructions of Hopf ([10]) and Pommerenke
([20]), and seems to have been the first example of a d-group in the literature.
Also, we discuss the case of a normal subgroup G of some convex cocompact
Kleinian group H. If H/G is non-amenable, then it follows by work of Brooks
([8]) that G is a d-group. Eventually, based on further work of Patterson



([18]), we outline a construction of infinitely generated free d-groups of the
first kind. Again, as in the normal subgroup example this construction works
in any dimension, and we also show that it can be employed to construct
special d-groups which have the property that the set of Jorgensen points has
positive N-dimensional spherical Lebesgue measure. These special d-groups
are groups of the first kind such that the complement of their horospherical
limit set contains a wandering set of positive N-dimensional measure. Hence,
these groups do not act conservatively, and therefore they are not ergodic on
SY in the sense that for each of them there exists a bounded group-invariant
function which is hyperbolically harmonic.

In order to state the results in more detail, we now first introduce the limit
sets which are relevant throughout. For this let G be some arbitrary non-
elementary Kleinian group without torsion. Then it is well-known that L(G)
can be decomposed into the set L,.(G) of radial limit points and the set L;(G)
of transient limit points, where

e L.(G):={¢ € L(G) : liminfr_ Ay(&r) < 0o}
o L,(G) :={¢ € L(G) : imp_o Ag(&7) = 00}.

In here, we have used the notation &7 to refer to the point on the ray from
0 to & for which p(0,&r) = T, and the notation A, (&r) which refers to the
hyperbolic distance of 7 to the reduced orbit {g(0) : g € G, p(0,g(0)) > n},
for some n > 0.

Also, the set L,,(G) of uniformly radial limit points and the set L;(G) of
Jorgensen limit points (cf. [26], [15]) are given as follows.

® Ly (G) == {¢ € L(G) : limsupp_,, Ao(é7) < o0}

e L;(G) consists of all £ € L(G) such that there exists a geodesic ray
towards & which is completely contained in some Dirichlet fundamental
domain of G.

One easily verifies that L,.(G) C L.(G) and that L;(G) C Li(G). We
remark that for ease of exposition, we have defined the set L;(G) such that
the set of bounded parabolic fixed points of G is contained in L;(G) (for the
definition of a bounded parabolic fixed point we refer to [14] p.43). In this
respect our definition of L;(G) here differs from the definition given in [15].
Also, note that L;(G) corresponds to the dissipative part of the action of G
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on the sphere at infinity (c.f. [27], [12]).
Finally, we introduce the set L,@(G) of k-transient limit points and the set

L") (@) of k-weakly recurrent limit points, for x > 0.
o LI"(G):={¢ € L(G) : In such that liminfr_. A, (&7)/T > K}
o L(G) := L(G)\ L"(@).

Clearly, we have that L,Em)(G) D L,Em)(G) whenever k; < ko, and that
LG ¢ Ly(G) and L(G) C L¥(G), for all k. Also, note that L,.(G) is
dense in L(G), and hence so is LT@)(G). Therefore, by a standard result in
fractal geometry (see e.g. [9]), it follows that the lower packing dimensions of
L(@) coincide with the lower packing dimension of L(G), where the latter
is always greater than or equal to the Hausdorff dimension of L(G).

The following theorem shows that the Hausdorff dimension of L\ (@) relates
in a more subtle way to the Hausdorff dimension dimgy(L(G)) of L(G). The
theorem gives the first main result of the paper.

Theorem 1. Let G be a d-group. With' §,(G) := (dimy(L(G))—6(G))/6(G),
we have for all 0 < k < 0,.(G),

§(G) < dimy (LYW(@)) < dimy(L(G)),

and in particular

dimp (L{(G)) = dimp (L(G)).

Our second main result in this paper considers special d-groups which are
normal subgroups of some geometrically finite Kleinian group. We refer to
section 3 (Example 2) for a brief discussion of this class of d-groups, which
also includes the construction of explicit examples.

Theorem 2. Let H be a geometrically finite Kleinian group, and let G be a
normal subgroup of H such that G is a d-group. We then have
6(H)

JOEE=

'Note, since (& is assumed to be non-elementary, a result of Beardon ([2], [3]) gives that
0(G) > 0, and hence §, is well-defined.



Before moving on to the proofs of the theorems, we now first give a few
immediate corollaries. For the first corollary recall that a Kleinian group G
is called of §(G)-convergence type if > e e9(@) r(0900) converges. Also, we
let H?® refer to the s-dimensional Hausdorff measure.

Corollary 1. For a d-group G the following holds.

(1) If ’]—[dimH(L(G))(L(G)) > 0, then we have for all 0 < rk < 6.(G) that
HHH (L)) = HTHT (@) > o.

(ii) If G is of §(G)-convergence type, then we have H' ™" (L¥(G)) = 0
for all 0 < k < 0.(G).

In here the statement (i) gives a generalization of a result in [5] (Corollary 5),
where the case dimy(L(G)) = N has been considered. Also, we remark that
for the special case in which G is a d-group of the first kind which acts on
D3, the statement in () for k = §,(G) gives Sullivan’s result in the context
of d-groups on the vanishing of the 2-dimensional Lebesgue measure on the
set of Garnett points (c.f. [27]).

The following corollary gives the main theorem of [5]. We should like to
remark that the work to this paper was originally inspired by this result of
Bishop in [5].

Corollary 2. For every non-elementary Kleinian group G we have
dimy (L(G)) = max(8(G), dimp (U, L (G)))-

Our final corollary shows in which way Theorem 1 can be interpreted in terms
of the horosperical limit set. (Recall that & € L(G) is called horospherical
limit point if every horoball at & contains infinitely many elements of G(0)).
We define for 0 < k,0 < 1,

LG = LW(G) N LE(G).

By employing an elementary geometric argument similar to the argument in
the lemma of Section 2, one easily verifies that every element of L,(,LJ’K)(G) is
a horospherical limit point which is not a radial limit point.

Corollary 3. Let G be a d-group. Then we have for each 0 < o < 1 and
0 < Kk < 0.(G)

)

dimy (L7(@)) < dimg (L(Q)).
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2 Proofs

2.1 Upper bounds for the Hausdorff dimension of weakly
recurrent limit sets

For the proof of Theorem 1 we require the following elementary geometric
estimate. Here B(z,r) refers to the open hyperbolic ball centred at z € DV +!
of hyperbolic radius r, and [[I(E)| := |{¢ € SV : & € E for some T > 0}
denotes the spherical diameter of the shadow projection II(E) of E C DN +!
from zero to the boundary SV of hyperbolic space. Also, we use the common
convention a =< b to describe that the ratio of two positive real numbers a
and b is uniformly bounded away from zero and infinity.

Lemma 1. Let 0 # 2 € DV*! and k > 0 be given. With zy referring to the
point of tangency of some geodesic ray which starts at the origin and which
is tangential to the boundary of B(z,0), there exists a unique 6 > 0 such that

0 =k p(0,zy). In this situation we have that

p(0,2)

ITH(B(z, £ p(0,29)))| < e 4= .

Proof. Consider the right-angled triangle with vertices 0, z and z, and let
a denote its angle at 0 (see Figure 1). Using the ‘hyperbolic cosine rule’ ([4]

p. 148) we have
(P02 p0.20) 0 _ L(14+8)p(0.20)

Also, by the ‘hyperbolic tangent rule’ for right-angled triangles ([4] p. 147)
we have
tanh @ = sinh p(0, zp) tana.
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Figure 1: The setting of Lemma 1.

N (B(z kp (0z))

SN

Combining these two observations, we deduce

tanh0 o) o pop(0.2)/(4m)

H(B(~. o0 =t T a0 o
ITI(B(z, k p(0, 29)))| < tan sinh p(0, zp)

The following is an immediate consequence of the previous lemma.

Corollary 4. With the notation of Lemma 1, we have that

p(0,2)
69(0720) ~ e 1tr and 69 — Gfﬁp(o,z)

Proof of Theorem 1.

Let 1 > 0 be given. By definition of L{™ (@), we have for each ¢ € L™ (@)
that there exists Tp = Tp(€) > 0 such that Ag(ér) > T, for all T > Ty.
Hence, using Lemma 1, it follows that for each g € G there exists r, , with
the property ., < e P(0.9(0)/(+5) “guch that

¢ € b(II(g(0)),r,4) for at most finitely many g € G.

Here, b(n,r) C SN refers to the ball centred at n € SV of spherical radius

r. Therefore, LW(G) can be written as the limsup-set of the family of balls
b(II(g(0)),7s4). Namely, we have that

LY(G) = {¢ € L(G) : € € b(T(g(0)),7,,) for infinitely many g € G} .
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Clearly, this family of balls provides a natural cover of Lsf")(G), and by defi-
nition of §(G), we have for the radii of these covering balls

Sty = () < bl o> G 60, 0

geG geG

This implies that the s-dimensional Hausdorff measure of L (G) is finite for
all s > (14 k) 0(G) (cf. [9]), and therefore

dimy (LM(G)) < (1+ k) §(G).

r

Now, if we choose & such that (1 + k) 0(G) < dimg(L(G)), then it follows
that
dimy (L(G)) = dimy (L(G) \ L(G)) = dimy (L™ (G)).

r

This proves the theorem.

Proofs of Corollaries.

Corollary 2 and Corollary 3 are immediate consequences of Theorem 1.

For Corollary 1 (i), Theorem 1 gives dimp (LY (G)) < dimy(L(G)), for all
0 < k < 6,(G). Hence, for  in this range we have that if H* " "““" (L(G)) >
0, then H™" " (L(@)) = H"™ " (LIW(@)) > 0.

Corollary 1 (ii) is proved by way of contradiction as follows. Assume that

HM (LS (@) > 0 for & in the range specified in the statement of Corol-
lary 1 (4). Using Frostman’s Lemma (cf. [13]), it follows that there ex-

ists a finite Radon measure v,, with compact support in LS,”)(G), such that
ve(b(n, 7)) < r0+R%C) for all n € SV, By (x) in the proof of Theorem 1, we

hence have
Z Ve(b(I1(g(0)), s q)) < ZTS,;H)J(G) < o0,

geG geG

Therefore, by the Borel-Cantelli Lemma, we have VK(LW(G)) = 0, which is
a contradiction.
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2.2 A lower bound for the exponent of convergence of
normal d-subgroups

In order to prove Theorem 2 we require the following lemma, which gives a
refinement of a result in [11] (Theorem 7).

Lemma 2. Let H be a geometrically finite Kleinian group, and let G be a
normal subgroup of H such that G is a d-group, that is such that 6(G) <
dimy (L(H)). We then have

L.(H) ¢ L{G)C L(H).

Proof. We clearly have that L!(G) is a subset of L(G). Therefore, since
L(G) = L(H), it is sufficient to show that L.(H) C LL(G). For this, let &
be some arbitrary element of L.(H). Then there exists a sequence (h,) of
elements h,, € H such that h,(0) approaches & conically, that is h,(0) tends
to & and seNB(h,(0),c*) # 0 for all n € N (here, ¢* > 0 refers to the diameter
of the compact part of the convex core of H, a constant which depends only
on H). Now, with gy € G\ {id.} referring to some fixed element, we have
that h,goh,' € G, for all n € N. Using the triangle inequality, we obtain

p(hn(0), hngohy, ' (0)) = p(0, gohy, (0)) < p(0, g0(0)) + p(0, hy (0)).

Hence, with H referring to the horoball at & such that 0 € H, and such
that 0 has hyperbolic distance ¢q := p(0, go(0)) + 2¢* to the horospherical
boundary of Hy, the latter estimate implies that {h,goh,*(0) : n € N} C H.
Now observe that, by Corollary 4 and by a well-known estimate concerning
hyperbolic geometry within horoballs (see e.g. [23] (Lemma 2)), we have
that a hyperbolic ball which is tangential to s¢ and centred at some arbitrary
z € He must have hyperbolic radius not exceeding ¢y + p(0, z)/2. Therefore,
we have that

p(0, hmgohs;* (0))
2

seNB <hng0h;1(0), + co> # () for all n € N.

By Lemma 1 and Corollary 4, it follows that £ € LL(G).



Proof of Theorem 2.

Assume by way of contradiction that there exists 7 > 0 such that 26(G)+7 <
d(H). Let € > 0 be chosen sufficiently small such that 7—2¢ > 0, and consider
some 0 < 0 < 7—2¢. With these choices we have that §(G)+e < (6(H)—0)/2
and thus,

6(H)—0o

Z (e_ d(O,g(O))> < Z (e—d(O,g(O)))5(G)+5 < o0,

geG geqG

Therefore, by adapting Lemma 1 to the present situation, we obtain for all
¢ > 0 that

dimy (lim sup {I1(B(g(0),d(0,¢(0))/2+¢)) : g € G}) < §(H) — 0.

Hence, by Lemma 2 and using the fact that G is normal in H, it now follows
that

0(H) = dimy (L(H)) = dimp (L(G)) < 6(H) — o,

which gives a contradiction.

3 Some examples

In this section we discuss some examples of d-groups.
Example 1. (‘Infinitely-punctured Riemann surfaces’)

The first example represents a simply connected Riemann surface with in-
finitely many punctures. The example is due to Patterson ([17], Theo-
rem 4.4), and to our knowledge it has been the first example of a d-group
in the literature. Here, we only give a brief description of the construction
of this type of Fuchsian groups, and we refer to [17] for the proof that these
groups are in fact d-groups (the proof in [17] uses uniformization theory in
combination with perturbation theory of the Laplacian).

Let G be a cocompact Fuchsian group acting on D? without elliptic elements.
Then (D?\ Go(0))/Gy is a compact Riemann surface with one puncture, and
hence it is conformally isomorphic to D?/Gy, for some cofinite Fuchsian G
with exactly one parabolic element. Consider the canonical group homomor-
phism ¢ : G; — Gy, and let G := ker(¢). Clearly, G is a normal subgroup
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of G; and uniformizes D? \ Go(0). In [17] it was shown that G is a group of
the first kind for which 6(G) < 1. Hence, it follows that G is a d-group.

Example 2. (‘Normal subgroups’)

The second example is mainly based on an application of a beautiful result
of Brooks in [8], who gave a significant extension of results of Rees [21], [22]
(see also [28] and the discussion in [19]).

Let Gy and G; be two non-elementary convex cocompact Kleinian groups
acting on DV*! with (open) fundamental domain F,, F; respectively, such
that F§ N Ff = (). For simplicity, we assume that Gy is freely generated by
hyperbolic automorphisms gy, . . ., g, and likewise that (G; is freely generated
by hyperbolic automorphisms gxi1, ..., grin (for k,n > 1). With H := Gy *
G referring to the free product of Gy and G4, we also assume that 6(H) >
N/2. Let ¢ : H — G denote the canonical group homomorphism, and define
G = ker(p). It is easily verified that G = (hgsh™' : i = 1,....k h € Gy),
and that G is the normal subgroup of H generated by Gy in H. Hence, it
follows that H/G is isomorphic to G. In order to see that G is a d-group,
recall that Brooks ([8]) has shown that if 'y is a non-trivial normal subgroup
of a convex cocompact Kleinian group I'y with §(I'y) > N/2, then we have
that 6(T'y) = 6(T) if and only if T’y /Ty is amenable?. Observe that in our
example here we have that H/G contains a free subgroup on two generators,
and therefore H/G is not amenable3. Hence, applying the result of Brooks,
it follows that G is a d-group.

Example 3. (‘Cantor-tree endings made of cylinders’)

The third example gives an infinitely generated d-group of the 1. kind which
acts on DV*1. In particular, these groups give for instance rise to geometri-
cally infinite hyperbolic (IV + 1)-manifolds without cusps, which consist of a
‘cocompact root” and an attached ending which is basically an ‘infinite cap-
stan of hyperbolic cylinders’ (see Figure 2). Our construction gives a slight
modification of the construction of Patterson in [18] (see also [1]). We have
simplified the original construction in [18] (paragraph 5) in order to make
the ideas more transparent.

Let us first recall from [18] the following observation relating the exponent
of convergence of a convex cocompact Kleinian group I' to the exponent of

2For the notion ‘amenable’ see e.g. [7], [29].
30ne easily verifies that if a group contains a free subgroup on two generators, then it
is not amenable.
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convergence of the free product I" x (v), for some suitably chosen hyperbolic
transformation ~.

For £ € SV, let ‘H denote the set of all hyperbolic automorphisms of DV !
which have { as a fixed point. For v € Hg, let F), refer to the Dirichlet
fundamental domain for () (constructed with respect to 0 € F,). We then
have that F, is bounded by two disjoint hyperplanes H;(y) and H(v) of
co-dimension 1, and we let H; denote the set of those elements of H; for
which these two hyperplanes are of equal Euclidean size.

Let F be the Dirichlet fundamental domain for the convex cocompact group
I' (constructed with respect to 0 € F). Then fix some arbitrary point w
contained in some connected component Q of F NSY, and let H* () refer
to the set of elements v € H for which TI(H;(y) U Ha(7)) C 2. With these
preparations we then have (cf. [18])

(T * (7)) — () for v € H:(2) such that |TI(Hy(v))| — 0.

The idea of the proof of this statement is roughly as follows (we refer to [18]
for the details). Recall that the limit set L(T") is constructed very much like
a Cantor set generated by a certain set of contractions. Likewise, L(T" x (7))
is generated by the same set of contractions together with some additional
contractions, which correspond to v and y~!. It is intuitively clear that
for |TI(H,(y))| — 0, the amount of contraction of these additional generators
becomes arbitrarily large, and therefore, in the limit the Hausdorff dimension
cannot increase.

With this preliminary observation we can now construct the following class
of d-groups.

Let Gy be some fixed convex cocompact Kleinian group acting on DV*! such
that 79 := 0(Gp) < N. Fix some number 75 < 7 < N, as well as some strictly
increasing sequence (7x)g—o,1,2,.. of numbers 7 such that lim 7, = 7. With Fj
referring to a Dirichlet fundamental domain of G (constructed with respect
to 0 € Fp), we let Oy denote the set of connected components of FynSY.
Also, fix some countable set X = {&1, §y, ...} which is dense in (Jqcp, 2. That
is, we let X C Jgep, ? and X = Jqgep, 2

We can then construct a sequence (Gj),_o ; of convex cocompact groups Gy,
by way of induction as follows. In here, F; k’r’efers to the Dirichlet fundamental
domain of G}, (constructed with respect to 0 € F}), and Oy denotes the set
of connected components of F, N SV. Now, if G_; is given for some k € N,
then (G}, is obtained as follows.
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Figure 2: Cantor-tree ending made of hyperbolic cylinders.

If & € L(Gg_1), then we let G = Gj_1. Otherwise, i.e. for & ¢ L(Gy_1),
there exist gr € Gr_1 and Q € Oy_; such that gx(&) € Q. Hence, by the
observation above, there exists y, € H; ., 1(€2) such that 6(Gr—1* (k) < 7.
In this situation, we then let

Gr = Gr—1 * (7).

In this way we obtain the sequence (Gy) of convex cocompact groups, and
we define

k=0

In order to see that G is a d-group, recall that Sullivan* (cf. [25]) has shown
that if I'y C I'y C ... C 'y C ... is an increasing sequence of subgroups of the

“Note, the proof in [25] mainly uses the conformality of the Patterson measure. It seems
worth mentioning that this result can be derived alternatively by purely elementary means
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Kleinian group I' = |J, Tk, then it follows that §(I") = sup;, 6(I'x). Applying
this result to our sequence (Gy) here, we obtain

= 5<UGk> sup 0(Gy) <sup7p = 7.

Also note that by construction we have that {£1,...,§x} C L(Gr) N Ugep, 2
for each & € N. This implies that X C L(G) N Ugep, €2, and hence, since
X is dense in Jgep, © (and thus Go(X) is dense in SV), it follows that
L(G) is dense in SV. Using the fact that L(G) is closed, it then follows
that L(G) = SV, and hence that G is a Kleinian group of the first kind.
Summarizing the above, we now have that

)(G) <7 < N =dimg(L(G)),
which gives that G is a d-group.

Remark.

It is straightforward to refine the latter construction to obtain a d-group
G which has the property that the N-dimensional spherical Lebesgue mea-
sure Ay (L;(G)) of the set of Jgrgensen points is strictly positive. In order
to obtain such a group, one proceeds as follows. Let (y)ken denote some
sequence of positive numbers such that ), 0r < 1/2. With the nota-
tion introduced in Example 3 above, let 7, be specially chosen such that
AnII(Hy (7)) < 0k An (Ugeo, ), for each k € N. By construction we have
AN(IT(Hq () = An(ITI(H2(7))) for all k, and that {II(H;(v)) : k € N,i =
1,2} is a family of mutually disjoint N-dimensional spherical discs contained
in Ugeo, 2 Hence, it follows that

N<U Q\LJ(G)> < D) AI(Hi(w))

QeOy keN i=1,2
keN QeOy QeOy

which clearly gives that L;(G) is of positive Lebesgue measure.

as follows. One easily verifies that L., (I') = [J; Lur(I'x). Hence, using the monotonicity
of Hausdorff dimension (see e.g. [9]) and the fact that §(H) = dimg (L., (H)) for every
non-elementary Kleinian group H ([6], [24]), it follows that

O(T) = dimpg (Lyr(T)) = dimg (U Lur(Tk)) = supy, dimg (Ly, (Ty)) = supy, 6(T'y).
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