
Remarks on Hausdor� Dimensions

for Transient Limit Sets of Kleinian Groups

Kurt Falk

y�

and Bernd O. Stratmann

z

z Mathemati
al Institute, University of St Andrews,

North Haugh, St Andrews KY16 9SS, S
otland

y Department of Mathemati
s, University of Helsinki,

P.O. Box 4, 00014 Helsinki, Finland

Abstra
t

In this paper we study dis
repan
y groups (d-groups), that are Kleinian

groups whose exponent of 
onvergen
e is stri
tly less than the Haus-

dor� dimension of their limit set. We show that the limit set of a

d-group always 
ontains 
ontinuous families of fra
tal sets, ea
h of

whi
h 
ontains the set of radial limit points and has Hausdor� di-

mension stri
tly less than the Hausdor� dimension of the whole limit

set. Subsequently, we 
onsider spe
ial d-groups whi
h are normal sub-

groups of some geometri
ally �nite Kleinian group. For these we ob-

tain the result that their Poin
ar�e exponent is always bounded from

below by half of the Poin
ar�e exponent of the asso
iated geometri
ally

�nite group in whi
h they are normal. Finally, we give a dis
ussion of

various examples of d-groups, whi
h in parti
ular also 
ontains expli
it


onstru
tions of these groups.

�
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1 Introdu
tion and statement of results

We investigate non-elementary Kleinian groupsG a
ting on (N+1)-hyperboli


spa
e D

N+1

without torsion, whi
h have the property that their asso
iated

limit set L(G) has Hausdor� dimension stri
tly greater than the exponent of


onvergen
e

Æ(G) := inffs � 0 :

X

g2G

e

�s �(0;g(0))

<1g:

(Here, L(G) refers to the set of a

umulation points of some G-orbit, and

� to the hyperboli
 distan
e in D

N+1

). Throughout, we shall refer to these

groups as dis
repan
y groups, abbreviated as d-groups.

In [6℄ it was shown that the limit set has positive 2-dimensional Lebesgue

measure for every �nitely generated, geometri
ally in�nite d-group whi
h

a
ts on D

3

and whi
h is not Fu
hsian. This result was obtained via showing

that for every arbitrary non-elementary Kleinian group G one has that Æ(G)


oin
ides with the hyperboli
 dimension ofG, that is the Hausdor� dimension

of the uniformly radial limit set ofG, or alternatively the Hausdor� dimension

of the radial limit set of G ([6℄, [24℄). In this paper we 
onsider arbitrary

d-groups G and dis
uss fra
tal properties of 
ertain subsets of L(G), ea
h of

whi
h 
ontains the radial limit set of G. These sets will be referred to as

�-weakly re
urrent limit sets. Our �rst main result is that for � in a 
ertain

range, the Hausdor� dimension of ea
h of these �-weakly re
urrent limit sets

is stri
tly less than the Hausdor� dimension of L(G). In parti
ular, this also

allows to spe
ify a range of subsets of the transient limit set, the 
omplement

of the radial limit set, whi
h have the property that their Hausdor� dimension


oin
ides with the Hausdor� dimension of L(G). Our se
ond main result

deals with spe
ial d-groups whi
h are normal subgroups of some geometri
ally

�nite Kleinian group. For these we obtain the result that their exponent

of 
onvergen
e is always bounded from below by half of the exponent of


onvergen
e of the asso
iated geometri
ally �nite group. Finally, in se
tion

3 we dis
uss various examples of d-groups. These in
lude the in�nitely-

pun
tured Riemann surfa
es of Patterson's ([17℄, Theorem 4.4). This type of

example is 
losely related to 
onstru
tions of Hopf ([10℄) and Pommerenke

([20℄), and seems to have been the �rst example of a d-group in the literature.

Also, we dis
uss the 
ase of a normal subgroup G of some 
onvex 
o
ompa
t

Kleinian groupH. IfH=G is non-amenable, then it follows by work of Brooks

([8℄) that G is a d-group. Eventually, based on further work of Patterson

2



([18℄), we outline a 
onstru
tion of in�nitely generated free d-groups of the

�rst kind. Again, as in the normal subgroup example this 
onstru
tion works

in any dimension, and we also show that it 
an be employed to 
onstru
t

spe
ial d-groups whi
h have the property that the set of J�rgensen points has

positive N -dimensional spheri
al Lebesgue measure. These spe
ial d-groups

are groups of the �rst kind su
h that the 
omplement of their horospheri
al

limit set 
ontains a wandering set of positive N -dimensional measure. Hen
e,

these groups do not a
t 
onservatively, and therefore they are not ergodi
 on

S

N

in the sense that for ea
h of them there exists a bounded group-invariant

fun
tion whi
h is hyperboli
ally harmoni
.

In order to state the results in more detail, we now �rst introdu
e the limit

sets whi
h are relevant throughout. For this let G be some arbitrary non-

elementary Kleinian group without torsion. Then it is well-known that L(G)


an be de
omposed into the set L

r

(G) of radial limit points and the set L

t

(G)

of transient limit points, where

� L

r

(G) := f� 2 L(G) : lim inf

T!1

�

0

(�

T

) <1g

� L

t

(G) := f� 2 L(G) : lim

T!1

�

0

(�

T

) =1g.

In here, we have used the notation �

T

to refer to the point on the ray from

0 to � for whi
h �(0; �

T

) = T , and the notation �

n

(�

T

) whi
h refers to the

hyperboli
 distan
e of �

T

to the redu
ed orbit fg(0) : g 2 G; �(0; g(0)) � ng,

for some n � 0.

Also, the set L

ur

(G) of uniformly radial limit points and the set L

J

(G) of

J�rgensen limit points (
f. [26℄, [15℄) are given as follows.

� L

ur

(G) := f� 2 L(G) : lim sup

T!1

�

0

(�

T

) <1g

� L

J

(G) 
onsists of all � 2 L(G) su
h that there exists a geodesi
 ray

towards � whi
h is 
ompletely 
ontained in some Diri
hlet fundamental

domain of G.

One easily veri�es that L

ur

(G) � L

r

(G) and that L

J

(G) � L

t

(G). We

remark that for ease of exposition, we have de�ned the set L

J

(G) su
h that

the set of bounded paraboli
 �xed points of G is 
ontained in L

J

(G) (for the

de�nition of a bounded paraboli
 �xed point we refer to [14℄ p.43). In this

respe
t our de�nition of L

J

(G) here di�ers from the de�nition given in [15℄.

Also, note that L

J

(G) 
orresponds to the dissipative part of the a
tion of G
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on the sphere at in�nity (
.f. [27℄, [12℄).

Finally, we introdu
e the set L

(�)

t

(G) of �-transient limit points and the set

L

(�)

r

(G) of �-weakly re
urrent limit points, for � > 0.

� L

(�)

t

(G) := f� 2 L(G) : 9n su
h that lim inf

T!1

�

n

(�

T

)=T > �g

� L

(�)

r

(G) := L(G) n L

(�)

t

(G).

Clearly, we have that L

(�

1

)

t

(G) � L

(�

2

)

t

(G) whenever �

1

� �

2

, and that

L

(�)

t

(G) � L

t

(G) and L

r

(G) � L

(�)

r

(G), for all �. Also, note that L

r

(G) is

dense in L(G), and hen
e so is L

(�)

r

(G). Therefore, by a standard result in

fra
tal geometry (see e.g. [9℄), it follows that the lower pa
king dimensions of

L

(�)

r

(G) 
oin
ide with the lower pa
king dimension of L(G), where the latter

is always greater than or equal to the Hausdor� dimension of L(G).

The following theorem shows that the Hausdor� dimension of L

(�)

r

(G) relates

in a more subtle way to the Hausdor� dimension dim

H

(L(G)) of L(G). The

theorem gives the �rst main result of the paper.

Theorem 1. Let G be a d-group. With

1

Æ

�

(G) := (dim

H

(L(G))�Æ(G))=Æ(G),

we have for all 0 < � < Æ

�

(G),

Æ(G) � dim

H

(L

(�)

r

(G)) < dim

H

(L(G));

and in parti
ular

dim

H

(L

(�)

t

(G)) = dim

H

(L(G)):

Our se
ond main result in this paper 
onsiders spe
ial d-groups whi
h are

normal subgroups of some geometri
ally �nite Kleinian group. We refer to

se
tion 3 (Example 2) for a brief dis
ussion of this 
lass of d-groups, whi
h

also in
ludes the 
onstru
tion of expli
it examples.

Theorem 2. Let H be a geometri
ally �nite Kleinian group, and let G be a

normal subgroup of H su
h that G is a d-group. We then have

Æ(G) �

Æ(H)

2

:

1

Note, sin
e G is assumed to be non-elementary, a result of Beardon ([2℄, [3℄) gives that

Æ(G) > 0, and hen
e Æ

�

is well-de�ned.
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Before moving on to the proofs of the theorems, we now �rst give a few

immediate 
orollaries. For the �rst 
orollary re
all that a Kleinian group G

is 
alled of Æ(G)-
onvergen
e type if

P

g2G

e

�Æ(G) �(0;g(0))


onverges. Also, we

let H

s

refer to the s-dimensional Hausdor� measure.

Corollary 1. For a d-group G the following holds.

(i) If H

dim

H

(L(G))

(L(G)) > 0, then we have for all 0 < � < Æ

�

(G) that

H

dim

H

(L(G))

(L

(�)

t

(G)) = H

dim

H

(L(G))

(L(G)) > 0.

(ii) If G is of Æ(G)-
onvergen
e type, then we have H

(1+�)Æ(G)

(L

(�)

r

(G)) = 0

for all 0 < � � Æ

�

(G).

In here the statement (i) gives a generalization of a result in [5℄ (Corollary 5),

where the 
ase dim

H

(L(G)) = N has been 
onsidered. Also, we remark that

for the spe
ial 
ase in whi
h G is a d-group of the �rst kind whi
h a
ts on

D

3

, the statement in (ii) for � = Æ

�

(G) gives Sullivan's result in the 
ontext

of d-groups on the vanishing of the 2-dimensional Lebesgue measure on the

set of Garnett points (
.f. [27℄).

The following 
orollary gives the main theorem of [5℄. We should like to

remark that the work to this paper was originally inspired by this result of

Bishop in [5℄.

Corollary 2. For every non-elementary Kleinian group G we have

dim

H

(L(G)) = max(Æ(G); dim

H

(

S

�>0

L

(�)

t

(G))):

Our �nal 
orollary shows in whi
h way Theorem 1 
an be interpreted in terms

of the horosperi
al limit set. (Re
all that � 2 L(G) is 
alled horospheri
al

limit point if every horoball at � 
ontains in�nitely many elements of G(0)).

We de�ne for 0 < �; � < 1,

L

(�;�)

h

(G) := L

(�)

r

(G) \ L

(��)

t

(G):

By employing an elementary geometri
 argument similar to the argument in

the lemma of Se
tion 2, one easily veri�es that every element of L

(�;�)

h

(G) is

a horospheri
al limit point whi
h is not a radial limit point.

Corollary 3. Let G be a d-group. Then we have for ea
h 0 < � < 1 and

0 < � < Æ

�

(G),

dim

H

(L

(�;�)

h

(G)) < dim

H

(L(G)):
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2 Proofs

2.1 Upper bounds for the Hausdor� dimension of weakly

re
urrent limit sets

For the proof of Theorem 1 we require the following elementary geometri


estimate. Here B(z; r) refers to the open hyperboli
 ball 
entred at z 2 D

N+1

of hyperboli
 radius r, and j�(E)j := jf� 2 S

N

: �

T

2 E for some T > 0gj

denotes the spheri
al diameter of the shadow proje
tion �(E) of E � D

N+1

from zero to the boundary S

N

of hyperboli
 spa
e. Also, we use the 
ommon


onvention a � b to des
ribe that the ratio of two positive real numbers a

and b is uniformly bounded away from zero and in�nity.

Lemma 1. Let 0 6= z 2 D

N+1

and � > 0 be given. With z

�

referring to the

point of tangen
y of some geodesi
 ray whi
h starts at the origin and whi
h

is tangential to the boundary of B(z; �), there exists a unique � > 0 su
h that

� = � �(0; z

�

). In this situation we have that

j�(B(z; � �(0; z

�

)))j � e

�

�(0;z)

1+�

:

Proof. Consider the right-angled triangle with verti
es 0, z and z

�

, and let

� denote its angle at 0 (see Figure 1). Using the `hyperboli
 
osine rule' ([4℄

p. 148) we have

e

�(0;z)

� e

�(0;z

�

)

e

�

= e

(1+�)�(0;z

�

)

:

Also, by the `hyperboli
 tangent rule' for right-angled triangles ([4℄ p. 147)

we have

tanh � = sinh �(0; z

�

) tan�:
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Figure 1: The setting of Lemma 1.

z

0

z

α

 θ θκ ρ ,z  )(0

S

Π (B(z, κ ρ (0,z  )))

N

θ

Combining these two observations, we dedu
e

j�(B(z; � �(0; z

�

)))j � tan� =

tanh �

sinh �(0; z

�

)

� e

��(0;z

�

)

� e

��(0;z)=(1+�)

:

The following is an immediate 
onsequen
e of the previous lemma.

Corollary 4. With the notation of Lemma 1, we have that

e

�(0;z

�

)

� e

�

�(0;z)

1+�

and e

�

� e

�

�

1+�

�(0;z)

:

Proof of Theorem 1.

Let � > 0 be given. By de�nition of L

(�)

t

(G), we have for ea
h � 2 L

(�)

t

(G)

that there exists T

0

= T

0

(�) > 0 su
h that �

0

(�

T

) � � T , for all T � T

0

.

Hen
e, using Lemma 1, it follows that for ea
h g 2 G there exists r

�;g

with

the property r

�;g

� e

��(0;g(0))=(1+�)

, su
h that

� 2 b(�(g(0)); r

�;g

) for at most �nitely many g 2 G:

Here, b(�; r) � S

N

refers to the ball 
entred at � 2 S

N

of spheri
al radius

r. Therefore, L

(�)

r

(G) 
an be written as the limsup-set of the family of balls

b(�(g(0)); r

�;g

). Namely, we have that

L

(�)

r

(G) = f� 2 L(G) : � 2 b(�(g(0)); r

�;g

) for in�nitely many g 2 Gg :
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Clearly, this family of balls provides a natural 
over of L

(�)

r

(G), and by de�-

nition of Æ(G), we have for the radii of these 
overing balls

X

g2G

r

s

�;g

�

X

g2G

�

e

�

�(0;g(0))

1+�

�

s

<1 for all s > (1+�) Æ(G): (�)

This implies that the s-dimensional Hausdor� measure of L

(�)

r

(G) is �nite for

all s > (1 + �) Æ(G) (
f. [9℄), and therefore

dim

H

(L

(�)

r

(G)) � (1 + �) Æ(G):

Now, if we 
hoose � su
h that (1 + �) Æ(G) < dim

H

(L(G)), then it follows

that

dim

H

(L(G)) = dim

H

(L(G) n L

(�)

r

(G)) = dim

H

(L

(�)

t

(G)):

This proves the theorem.

�

Proofs of Corollaries.

Corollary 2 and Corollary 3 are immediate 
onsequen
es of Theorem 1.

For Corollary 1 (i), Theorem 1 gives dim

H

(L

(�)

r

(G)) < dim

H

(L(G)), for all

0 < � < Æ

�

(G). Hen
e, for � in this range we have that if H

dim

H

(L(G))

(L(G)) >

0, then H

dim

H

(L(G))

(L(G)) = H

dim

H

(L(G))

(L

(�)

t

(G)) > 0.

Corollary 1 (ii) is proved by way of 
ontradi
tion as follows. Assume that

H

(1+�)Æ(G)

(L

(�)

r

(G)) > 0 for � in the range spe
i�ed in the statement of Corol-

lary 1 (ii). Using Frostman's Lemma (
f. [13℄), it follows that there ex-

ists a �nite Radon measure �

�

with 
ompa
t support in L

(�)

r

(G), su
h that

�

�

(b(�; r)) � r

(1+�)Æ(G)

for all � 2 S

N

. By (�) in the proof of Theorem 1, we

hen
e have

X

g2G

�

�

(b(�(g(0)); r

�;g

)) �

X

g2G

r

(1+�)Æ(G)

�;g

<1:

Therefore, by the Borel-Cantelli Lemma, we have �

�

(L

(�)

r

(G)) = 0, whi
h is

a 
ontradi
tion.

�
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2.2 A lower bound for the exponent of 
onvergen
e of

normal d-subgroups

In order to prove Theorem 2 we require the following lemma, whi
h gives a

re�nement of a result in [11℄ (Theorem 7).

Lemma 2. Let H be a geometri
ally �nite Kleinian group, and let G be a

normal subgroup of H su
h that G is a d-group, that is su
h that Æ(G) <

dim

H

(L(H)). We then have

L

r

(H) � L

1

r

(G) � L(H):

Proof. We 
learly have that L

1

r

(G) is a subset of L(G). Therefore, sin
e

L(G) = L(H), it is suÆ
ient to show that L

r

(H) � L

1

r

(G). For this, let �

be some arbitrary element of L

r

(H). Then there exists a sequen
e (h

n

) of

elements h

n

2 H su
h that h

n

(0) approa
hes � 
oni
ally, that is h

n

(0) tends

to � and s

�

\B(h

n

(0); 


�

) 6= ; for all n 2 N (here, 


�

> 0 refers to the diameter

of the 
ompa
t part of the 
onvex 
ore of H, a 
onstant whi
h depends only

on H). Now, with g

0

2 G n fid:g referring to some �xed element, we have

that h

n

g

0

h

�1

n

2 G, for all n 2 N. Using the triangle inequality, we obtain

�(h

n

(0); h

n

g

0

h

�1

n

(0)) = �(0; g

0

h

�1

n

(0)) � �(0; g

0

(0)) + �(0; h

n

(0)):

Hen
e, with H

�

referring to the horoball at � su
h that 0 2 H

�

and su
h

that 0 has hyperboli
 distan
e 


0

:= �(0; g

0

(0)) + 2


�

to the horospheri
al

boundary of H

�

, the latter estimate implies that fh

n

g

0

h

�1

n

(0) : n 2 Ng � H

�

.

Now observe that, by Corollary 4 and by a well-known estimate 
on
erning

hyperboli
 geometry within horoballs (see e.g. [23℄ (Lemma 2)), we have

that a hyperboli
 ball whi
h is tangential to s

�

and 
entred at some arbitrary

z 2 H

�

must have hyperboli
 radius not ex
eeding 


0

+ �(0; z)=2. Therefore,

we have that

s

�

\B

�

h

n

g

0

h

�1

n

(0);

�(0; h

n

g

0

h

�1

n

(0))

2

+ 


0

�

6= ; for all n 2 N:

By Lemma 1 and Corollary 4, it follows that � 2 L

1

r

(G).
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Proof of Theorem 2.

Assume by way of 
ontradi
tion that there exists � > 0 su
h that 2Æ(G)+� <

Æ(H). Let " > 0 be 
hosen suÆ
iently small su
h that ��2" > 0, and 
onsider

some 0 < � < ��2". With these 
hoi
es we have that Æ(G)+" < (Æ(H)��)=2

and thus,

X

g2G

�

e

�

d(0;g(0))

2

�

Æ(H)��

�

X

g2G

�

e

�d(0;g(0))

�

Æ(G)+"

<1:

Therefore, by adapting Lemma 1 to the present situation, we obtain for all


 > 0 that

dim

H

(lim sup f�(B(g(0); d(0; g(0))=2+ 
)) : g 2 Gg) � Æ(H)� �:

Hen
e, by Lemma 2 and using the fa
t that G is normal in H, it now follows

that

Æ(H) = dim

H

(L(H)) = dim

H

(L(G)) � Æ(H)� �;

whi
h gives a 
ontradi
tion.

�

3 Some examples

In this se
tion we dis
uss some examples of d-groups.

Example 1. (`In�nitely-pun
tured Riemann surfa
es')

The �rst example represents a simply 
onne
ted Riemann surfa
e with in-

�nitely many pun
tures. The example is due to Patterson ([17℄, Theo-

rem 4.4), and to our knowledge it has been the �rst example of a d-group

in the literature. Here, we only give a brief des
ription of the 
onstru
tion

of this type of Fu
hsian groups, and we refer to [17℄ for the proof that these

groups are in fa
t d-groups (the proof in [17℄ uses uniformization theory in


ombination with perturbation theory of the Lapla
ian).

LetG

0

be a 
o
ompa
t Fu
hsian group a
ting on D

2

without ellipti
 elements.

Then (D

2

nG

0

(0))=G

0

is a 
ompa
t Riemann surfa
e with one pun
ture, and

hen
e it is 
onformally isomorphi
 to D

2

=G

1

, for some 
o�nite Fu
hsian G

1

with exa
tly one paraboli
 element. Consider the 
anoni
al group homomor-

phism � : G

1

! G

0

, and let G := ker(�). Clearly, G is a normal subgroup
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of G

1

and uniformizes D

2

nG

0

(0). In [17℄ it was shown that G is a group of

the �rst kind for whi
h Æ(G) < 1. Hen
e, it follows that G is a d-group.

Example 2. (`Normal subgroups')

The se
ond example is mainly based on an appli
ation of a beautiful result

of Brooks in [8℄, who gave a signi�
ant extension of results of Rees [21℄, [22℄

(see also [28℄ and the dis
ussion in [19℄).

Let G

0

and G

1

be two non-elementary 
onvex 
o
ompa
t Kleinian groups

a
ting on D

N+1

with (open) fundamental domain F

0

, F

1

respe
tively, su
h

that F




0

\ F




1

= ;. For simpli
ity, we assume that G

0

is freely generated by

hyperboli
 automorphisms g

1

; : : : ; g

k

, and likewise that G

1

is freely generated

by hyperboli
 automorphisms g

k+1

; : : : ; g

k+n

(for k; n > 1). With H := G

0

�

G

1

referring to the free produ
t of G

0

and G

1

, we also assume that Æ(H) >

N=2. Let ' : H ! G

1

denote the 
anoni
al group homomorphism, and de�ne

G := ker('). It is easily veri�ed that G = hhg

i

h

�1

: i = 1; :::; k; h 2 G

1

i,

and that G is the normal subgroup of H generated by G

0

in H. Hen
e, it

follows that H=G is isomorphi
 to G

1

. In order to see that G is a d-group,

re
all that Brooks ([8℄) has shown that if �

2

is a non-trivial normal subgroup

of a 
onvex 
o
ompa
t Kleinian group �

1

with Æ(�

1

) > N=2, then we have

that Æ(�

1

) = Æ(�

2

) if and only if �

1

=�

2

is amenable

2

. Observe that in our

example here we have that H=G 
ontains a free subgroup on two generators,

and therefore H=G is not amenable

3

. Hen
e, applying the result of Brooks,

it follows that G is a d-group.

Example 3. (`Cantor-tree endings made of 
ylinders')

The third example gives an in�nitely generated d-group of the 1. kind whi
h

a
ts on D

N+1

. In parti
ular, these groups give for instan
e rise to geometri-


ally in�nite hyperboli
 (N + 1)-manifolds without 
usps, whi
h 
onsist of a

`
o
ompa
t root' and an atta
hed ending whi
h is basi
ally an `in�nite 
ap-

stan of hyperboli
 
ylinders' (see Figure 2). Our 
onstru
tion gives a slight

modi�
ation of the 
onstru
tion of Patterson in [18℄ (see also [1℄). We have

simpli�ed the original 
onstru
tion in [18℄ (paragraph 5) in order to make

the ideas more transparent.

Let us �rst re
all from [18℄ the following observation relating the exponent

of 
onvergen
e of a 
onvex 
o
ompa
t Kleinian group � to the exponent of

2

For the notion `amenable' see e.g. [7℄, [29℄.

3

One easily veri�es that if a group 
ontains a free subgroup on two generators, then it

is not amenable.
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onvergen
e of the free produ
t � � h
i, for some suitably 
hosen hyperboli


transformation 
.

For � 2 S

N

, let H

�

denote the set of all hyperboli
 automorphisms of D

N+1

whi
h have � as a �xed point. For 
 2 H

�

, let F




refer to the Diri
hlet

fundamental domain for h
i (
onstru
ted with respe
t to 0 2 F




). We then

have that F




is bounded by two disjoint hyperplanes H

1

(
) and H

2

(
) of


o-dimension 1, and we let H

�

�

denote the set of those elements of H

�

for

whi
h these two hyperplanes are of equal Eu
lidean size.

Let F be the Diri
hlet fundamental domain for the 
onvex 
o
ompa
t group

� (
onstru
ted with respe
t to 0 2 F ). Then �x some arbitrary point !


ontained in some 
onne
ted 
omponent 
 of F \ S

N

, and let H

�

!

(
) refer

to the set of elements 
 2 H

�

!

for whi
h �(H

1

(
) [H

2

(
)) � 
. With these

preparations we then have (
f. [18℄)

Æ(� � h
i)! Æ(�) for 
 2 H

�

!

(
) su
h that j�(H

1

(
))j ! 0:

The idea of the proof of this statement is roughly as follows (we refer to [18℄

for the details). Re
all that the limit set L(�) is 
onstru
ted very mu
h like

a Cantor set generated by a 
ertain set of 
ontra
tions. Likewise, L(� � h
i)

is generated by the same set of 
ontra
tions together with some additional


ontra
tions, whi
h 
orrespond to 
 and 


�1

. It is intuitively 
lear that

for j�(H

1

(
))j ! 0, the amount of 
ontra
tion of these additional generators

be
omes arbitrarily large, and therefore, in the limit the Hausdor� dimension


annot in
rease.

With this preliminary observation we 
an now 
onstru
t the following 
lass

of d-groups.

Let G

0

be some �xed 
onvex 
o
ompa
t Kleinian group a
ting on D

N+1

su
h

that �

0

:= Æ(G

0

) < N . Fix some number �

0

< � < N , as well as some stri
tly

in
reasing sequen
e (�

k

)

k=0;1;2;:::

of numbers �

k

su
h that lim �

k

= � . With F

0

referring to a Diri
hlet fundamental domain of G

0

(
onstru
ted with respe
t

to 0 2 F

0

), we let O

0

denote the set of 
onne
ted 
omponents of F

0

\ S

N

.

Also, �x some 
ountable set X = f�

1

; �

2

; :::g whi
h is dense in

S


2O

0


. That

is, we let X �

S


2O

0


 and X =

S


2O

0


.

We 
an then 
onstru
t a sequen
e (G

k

)

k=0;1;:::

of 
onvex 
o
ompa
t groups G

k

by way of indu
tion as follows. In here, F

k

refers to the Diri
hlet fundamental

domain of G

k

(
onstru
ted with respe
t to 0 2 F

k

), and O

k

denotes the set

of 
onne
ted 
omponents of F

k

\ S

N

. Now, if G

k�1

is given for some k 2 N,

then G

k

is obtained as follows.

12



Figure 2: Cantor-tree ending made of hyperboli
 
ylinders.

If �

k

2 L(G

k�1

), then we let G

k

= G

k�1

. Otherwise, i.e. for �

k

=2 L(G

k�1

),

there exist g

k

2 G

k�1

and 
 2 O

k�1

su
h that g

k

(�

k

) 2 
. Hen
e, by the

observation above, there exists 


k

2 H

�

g

k

(�

k

)

(
) su
h that Æ(G

k�1

�h


k

i) � �

k

.

In this situation, we then let

G

k

= G

k�1

� h


k

i:

In this way we obtain the sequen
e (G

k

) of 
onvex 
o
ompa
t groups, and

we de�ne

G :=

1

[

k=0

G

k

:

In order to see that G is a d-group, re
all that Sullivan

4

(
f. [25℄) has shown

that if �

1

� �

2

� ::: � �

k

� ::: is an in
reasing sequen
e of subgroups of the

4

Note, the proof in [25℄ mainly uses the 
onformality of the Patterson measure. It seems

worth mentioning that this result 
an be derived alternatively by purely elementary means
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Kleinian group � =

S

k

�

k

, then it follows that Æ(�) = sup

k

Æ(�

k

): Applying

this result to our sequen
e (G

k

) here, we obtain

Æ(G) = Æ

�

[

G

k

�

= sup Æ(G

k

) � sup �

k

= �:

Also note that by 
onstru
tion we have that f�

1

; :::; �

k

g � L(G

k

) \

S


2O

0


,

for ea
h k 2 N. This implies that X � L(G) \

S


2O

0


, and hen
e, sin
e

X is dense in

S


2O

0


 (and thus G

0

(X) is dense in S

N

), it follows that

L(G) is dense in S

N

. Using the fa
t that L(G) is 
losed, it then follows

that L(G) = S

N

, and hen
e that G is a Kleinian group of the �rst kind.

Summarizing the above, we now have that

Æ(G) � � < N = dim

H

(L(G));

whi
h gives that G is a d-group.

Remark.

It is straightforward to re�ne the latter 
onstru
tion to obtain a d-group

G whi
h has the property that the N -dimensional spheri
al Lebesgue mea-

sure �

N

(L

J

(G)) of the set of J�rgensen points is stri
tly positive. In order

to obtain su
h a group, one pro
eeds as follows. Let (�

k

)

k2N

denote some

sequen
e of positive numbers su
h that

P

k2N

�

k

< 1=2. With the nota-

tion introdu
ed in Example 3 above, let 


k

be spe
ially 
hosen su
h that

�

N

(�(H

1

(


k

))) � �

k

�

N

�

S


2O

0




�

, for ea
h k 2 N. By 
onstru
tion we have

�

N

(�(H

1

(


k

))) = �

N

(�(H

2

(


k

))) for all k, and that f�(H

i

(


k

)) : k 2 N; i =

1; 2g is a family of mutually disjoint N -dimensional spheri
al dis
s 
ontained

in

S


2O

0


. Hen
e, it follows that

�

N

 

[


2O

0


 n L

J

(G)

!

�

X

k2N

X

i=1;2

�

N

(�(H

i

(


k

)))

� 2

X

k2N

�

k

�

N

 

[


2O

0




!

< �

N

 

[


2O

0




!

;

whi
h 
learly gives that L

J

(G) is of positive Lebesgue measure.

as follows. One easily veri�es that L

ur

(�) =

S

k

L

ur

(�

k

). Hen
e, using the monotoni
ity

of Hausdor� dimension (see e.g. [9℄) and the fa
t that Æ(H) = dim

H

(L

ur

(H)) for every

non-elementary Kleinian group H ([6℄, [24℄), it follows that

Æ(�) = dim

H

(L

ur

(�)) = dim

H

(

S

k

L

ur

(�

k

)) = sup

k

dim

H

(L

ur

(�

k

)) = sup

k

Æ(�

k

):
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