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Abstrat

In this paper we study disrepany groups (d-groups), that are Kleinian

groups whose exponent of onvergene is stritly less than the Haus-

dor� dimension of their limit set. We show that the limit set of a

d-group always ontains ontinuous families of fratal sets, eah of

whih ontains the set of radial limit points and has Hausdor� di-

mension stritly less than the Hausdor� dimension of the whole limit

set. Subsequently, we onsider speial d-groups whih are normal sub-

groups of some geometrially �nite Kleinian group. For these we ob-

tain the result that their Poinar�e exponent is always bounded from

below by half of the Poinar�e exponent of the assoiated geometrially

�nite group in whih they are normal. Finally, we give a disussion of

various examples of d-groups, whih in partiular also ontains expliit

onstrutions of these groups.
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1 Introdution and statement of results

We investigate non-elementary Kleinian groupsG ating on (N+1)-hyperboli

spae D

N+1

without torsion, whih have the property that their assoiated

limit set L(G) has Hausdor� dimension stritly greater than the exponent of

onvergene

Æ(G) := inffs � 0 :

X

g2G

e

�s �(0;g(0))

<1g:

(Here, L(G) refers to the set of aumulation points of some G-orbit, and

� to the hyperboli distane in D

N+1

). Throughout, we shall refer to these

groups as disrepany groups, abbreviated as d-groups.

In [6℄ it was shown that the limit set has positive 2-dimensional Lebesgue

measure for every �nitely generated, geometrially in�nite d-group whih

ats on D

3

and whih is not Fuhsian. This result was obtained via showing

that for every arbitrary non-elementary Kleinian group G one has that Æ(G)

oinides with the hyperboli dimension ofG, that is the Hausdor� dimension

of the uniformly radial limit set ofG, or alternatively the Hausdor� dimension

of the radial limit set of G ([6℄, [24℄). In this paper we onsider arbitrary

d-groups G and disuss fratal properties of ertain subsets of L(G), eah of

whih ontains the radial limit set of G. These sets will be referred to as

�-weakly reurrent limit sets. Our �rst main result is that for � in a ertain

range, the Hausdor� dimension of eah of these �-weakly reurrent limit sets

is stritly less than the Hausdor� dimension of L(G). In partiular, this also

allows to speify a range of subsets of the transient limit set, the omplement

of the radial limit set, whih have the property that their Hausdor� dimension

oinides with the Hausdor� dimension of L(G). Our seond main result

deals with speial d-groups whih are normal subgroups of some geometrially

�nite Kleinian group. For these we obtain the result that their exponent

of onvergene is always bounded from below by half of the exponent of

onvergene of the assoiated geometrially �nite group. Finally, in setion

3 we disuss various examples of d-groups. These inlude the in�nitely-

puntured Riemann surfaes of Patterson's ([17℄, Theorem 4.4). This type of

example is losely related to onstrutions of Hopf ([10℄) and Pommerenke

([20℄), and seems to have been the �rst example of a d-group in the literature.

Also, we disuss the ase of a normal subgroup G of some onvex oompat

Kleinian groupH. IfH=G is non-amenable, then it follows by work of Brooks

([8℄) that G is a d-group. Eventually, based on further work of Patterson
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([18℄), we outline a onstrution of in�nitely generated free d-groups of the

�rst kind. Again, as in the normal subgroup example this onstrution works

in any dimension, and we also show that it an be employed to onstrut

speial d-groups whih have the property that the set of J�rgensen points has

positive N -dimensional spherial Lebesgue measure. These speial d-groups

are groups of the �rst kind suh that the omplement of their horospherial

limit set ontains a wandering set of positive N -dimensional measure. Hene,

these groups do not at onservatively, and therefore they are not ergodi on

S

N

in the sense that for eah of them there exists a bounded group-invariant

funtion whih is hyperbolially harmoni.

In order to state the results in more detail, we now �rst introdue the limit

sets whih are relevant throughout. For this let G be some arbitrary non-

elementary Kleinian group without torsion. Then it is well-known that L(G)

an be deomposed into the set L

r

(G) of radial limit points and the set L

t

(G)

of transient limit points, where

� L

r

(G) := f� 2 L(G) : lim inf

T!1

�

0

(�

T

) <1g

� L

t

(G) := f� 2 L(G) : lim

T!1

�

0

(�

T

) =1g.

In here, we have used the notation �

T

to refer to the point on the ray from

0 to � for whih �(0; �

T

) = T , and the notation �

n

(�

T

) whih refers to the

hyperboli distane of �

T

to the redued orbit fg(0) : g 2 G; �(0; g(0)) � ng,

for some n � 0.

Also, the set L

ur

(G) of uniformly radial limit points and the set L

J

(G) of

J�rgensen limit points (f. [26℄, [15℄) are given as follows.

� L

ur

(G) := f� 2 L(G) : lim sup

T!1

�

0

(�

T

) <1g

� L

J

(G) onsists of all � 2 L(G) suh that there exists a geodesi ray

towards � whih is ompletely ontained in some Dirihlet fundamental

domain of G.

One easily veri�es that L

ur

(G) � L

r

(G) and that L

J

(G) � L

t

(G). We

remark that for ease of exposition, we have de�ned the set L

J

(G) suh that

the set of bounded paraboli �xed points of G is ontained in L

J

(G) (for the

de�nition of a bounded paraboli �xed point we refer to [14℄ p.43). In this

respet our de�nition of L

J

(G) here di�ers from the de�nition given in [15℄.

Also, note that L

J

(G) orresponds to the dissipative part of the ation of G
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on the sphere at in�nity (.f. [27℄, [12℄).

Finally, we introdue the set L

(�)

t

(G) of �-transient limit points and the set

L

(�)

r

(G) of �-weakly reurrent limit points, for � > 0.

� L

(�)

t

(G) := f� 2 L(G) : 9n suh that lim inf

T!1

�

n

(�

T

)=T > �g

� L

(�)

r

(G) := L(G) n L

(�)

t

(G).

Clearly, we have that L

(�

1

)

t

(G) � L

(�

2

)

t

(G) whenever �

1

� �

2

, and that

L

(�)

t

(G) � L

t

(G) and L

r

(G) � L

(�)

r

(G), for all �. Also, note that L

r

(G) is

dense in L(G), and hene so is L

(�)

r

(G). Therefore, by a standard result in

fratal geometry (see e.g. [9℄), it follows that the lower paking dimensions of

L

(�)

r

(G) oinide with the lower paking dimension of L(G), where the latter

is always greater than or equal to the Hausdor� dimension of L(G).

The following theorem shows that the Hausdor� dimension of L

(�)

r

(G) relates

in a more subtle way to the Hausdor� dimension dim

H

(L(G)) of L(G). The

theorem gives the �rst main result of the paper.

Theorem 1. Let G be a d-group. With

1

Æ

�

(G) := (dim

H

(L(G))�Æ(G))=Æ(G),

we have for all 0 < � < Æ

�

(G),

Æ(G) � dim

H

(L

(�)

r

(G)) < dim

H

(L(G));

and in partiular

dim

H

(L

(�)

t

(G)) = dim

H

(L(G)):

Our seond main result in this paper onsiders speial d-groups whih are

normal subgroups of some geometrially �nite Kleinian group. We refer to

setion 3 (Example 2) for a brief disussion of this lass of d-groups, whih

also inludes the onstrution of expliit examples.

Theorem 2. Let H be a geometrially �nite Kleinian group, and let G be a

normal subgroup of H suh that G is a d-group. We then have

Æ(G) �

Æ(H)

2

:

1

Note, sine G is assumed to be non-elementary, a result of Beardon ([2℄, [3℄) gives that

Æ(G) > 0, and hene Æ

�

is well-de�ned.
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Before moving on to the proofs of the theorems, we now �rst give a few

immediate orollaries. For the �rst orollary reall that a Kleinian group G

is alled of Æ(G)-onvergene type if

P

g2G

e

�Æ(G) �(0;g(0))

onverges. Also, we

let H

s

refer to the s-dimensional Hausdor� measure.

Corollary 1. For a d-group G the following holds.

(i) If H

dim

H

(L(G))

(L(G)) > 0, then we have for all 0 < � < Æ

�

(G) that

H

dim

H

(L(G))

(L

(�)

t

(G)) = H

dim

H

(L(G))

(L(G)) > 0.

(ii) If G is of Æ(G)-onvergene type, then we have H

(1+�)Æ(G)

(L

(�)

r

(G)) = 0

for all 0 < � � Æ

�

(G).

In here the statement (i) gives a generalization of a result in [5℄ (Corollary 5),

where the ase dim

H

(L(G)) = N has been onsidered. Also, we remark that

for the speial ase in whih G is a d-group of the �rst kind whih ats on

D

3

, the statement in (ii) for � = Æ

�

(G) gives Sullivan's result in the ontext

of d-groups on the vanishing of the 2-dimensional Lebesgue measure on the

set of Garnett points (.f. [27℄).

The following orollary gives the main theorem of [5℄. We should like to

remark that the work to this paper was originally inspired by this result of

Bishop in [5℄.

Corollary 2. For every non-elementary Kleinian group G we have

dim

H

(L(G)) = max(Æ(G); dim

H

(

S

�>0

L

(�)

t

(G))):

Our �nal orollary shows in whih way Theorem 1 an be interpreted in terms

of the horosperial limit set. (Reall that � 2 L(G) is alled horospherial

limit point if every horoball at � ontains in�nitely many elements of G(0)).

We de�ne for 0 < �; � < 1,

L

(�;�)

h

(G) := L

(�)

r

(G) \ L

(��)

t

(G):

By employing an elementary geometri argument similar to the argument in

the lemma of Setion 2, one easily veri�es that every element of L

(�;�)

h

(G) is

a horospherial limit point whih is not a radial limit point.

Corollary 3. Let G be a d-group. Then we have for eah 0 < � < 1 and

0 < � < Æ

�

(G),

dim

H

(L

(�;�)

h

(G)) < dim

H

(L(G)):
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2 Proofs

2.1 Upper bounds for the Hausdor� dimension of weakly

reurrent limit sets

For the proof of Theorem 1 we require the following elementary geometri

estimate. Here B(z; r) refers to the open hyperboli ball entred at z 2 D

N+1

of hyperboli radius r, and j�(E)j := jf� 2 S

N

: �

T

2 E for some T > 0gj

denotes the spherial diameter of the shadow projetion �(E) of E � D

N+1

from zero to the boundary S

N

of hyperboli spae. Also, we use the ommon

onvention a � b to desribe that the ratio of two positive real numbers a

and b is uniformly bounded away from zero and in�nity.

Lemma 1. Let 0 6= z 2 D

N+1

and � > 0 be given. With z

�

referring to the

point of tangeny of some geodesi ray whih starts at the origin and whih

is tangential to the boundary of B(z; �), there exists a unique � > 0 suh that

� = � �(0; z

�

). In this situation we have that

j�(B(z; � �(0; z

�

)))j � e

�

�(0;z)

1+�

:

Proof. Consider the right-angled triangle with verties 0, z and z

�

, and let

� denote its angle at 0 (see Figure 1). Using the `hyperboli osine rule' ([4℄

p. 148) we have

e

�(0;z)

� e

�(0;z

�

)

e

�

= e

(1+�)�(0;z

�

)

:

Also, by the `hyperboli tangent rule' for right-angled triangles ([4℄ p. 147)

we have

tanh � = sinh �(0; z

�

) tan�:
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Figure 1: The setting of Lemma 1.

z

0

z

α

 θ θκ ρ ,z  )(0

S

Π (B(z, κ ρ (0,z  )))

N

θ

Combining these two observations, we dedue

j�(B(z; � �(0; z

�

)))j � tan� =

tanh �

sinh �(0; z

�

)

� e

��(0;z

�

)

� e

��(0;z)=(1+�)

:

The following is an immediate onsequene of the previous lemma.

Corollary 4. With the notation of Lemma 1, we have that

e

�(0;z

�

)

� e

�

�(0;z)

1+�

and e

�

� e

�

�

1+�

�(0;z)

:

Proof of Theorem 1.

Let � > 0 be given. By de�nition of L

(�)

t

(G), we have for eah � 2 L

(�)

t

(G)

that there exists T

0

= T

0

(�) > 0 suh that �

0

(�

T

) � � T , for all T � T

0

.

Hene, using Lemma 1, it follows that for eah g 2 G there exists r

�;g

with

the property r

�;g

� e

��(0;g(0))=(1+�)

, suh that

� 2 b(�(g(0)); r

�;g

) for at most �nitely many g 2 G:

Here, b(�; r) � S

N

refers to the ball entred at � 2 S

N

of spherial radius

r. Therefore, L

(�)

r

(G) an be written as the limsup-set of the family of balls

b(�(g(0)); r

�;g

). Namely, we have that

L

(�)

r

(G) = f� 2 L(G) : � 2 b(�(g(0)); r

�;g

) for in�nitely many g 2 Gg :
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Clearly, this family of balls provides a natural over of L

(�)

r

(G), and by de�-

nition of Æ(G), we have for the radii of these overing balls

X

g2G

r

s

�;g

�

X

g2G

�

e

�

�(0;g(0))

1+�

�

s

<1 for all s > (1+�) Æ(G): (�)

This implies that the s-dimensional Hausdor� measure of L

(�)

r

(G) is �nite for

all s > (1 + �) Æ(G) (f. [9℄), and therefore

dim

H

(L

(�)

r

(G)) � (1 + �) Æ(G):

Now, if we hoose � suh that (1 + �) Æ(G) < dim

H

(L(G)), then it follows

that

dim

H

(L(G)) = dim

H

(L(G) n L

(�)

r

(G)) = dim

H

(L

(�)

t

(G)):

This proves the theorem.

�

Proofs of Corollaries.

Corollary 2 and Corollary 3 are immediate onsequenes of Theorem 1.

For Corollary 1 (i), Theorem 1 gives dim

H

(L

(�)

r

(G)) < dim

H

(L(G)), for all

0 < � < Æ

�

(G). Hene, for � in this range we have that if H

dim

H

(L(G))

(L(G)) >

0, then H

dim

H

(L(G))

(L(G)) = H

dim

H

(L(G))

(L

(�)

t

(G)) > 0.

Corollary 1 (ii) is proved by way of ontradition as follows. Assume that

H

(1+�)Æ(G)

(L

(�)

r

(G)) > 0 for � in the range spei�ed in the statement of Corol-

lary 1 (ii). Using Frostman's Lemma (f. [13℄), it follows that there ex-

ists a �nite Radon measure �

�

with ompat support in L

(�)

r

(G), suh that

�

�

(b(�; r)) � r

(1+�)Æ(G)

for all � 2 S

N

. By (�) in the proof of Theorem 1, we

hene have

X

g2G

�

�

(b(�(g(0)); r

�;g

)) �

X

g2G

r

(1+�)Æ(G)

�;g

<1:

Therefore, by the Borel-Cantelli Lemma, we have �

�

(L

(�)

r

(G)) = 0, whih is

a ontradition.

�

8



2.2 A lower bound for the exponent of onvergene of

normal d-subgroups

In order to prove Theorem 2 we require the following lemma, whih gives a

re�nement of a result in [11℄ (Theorem 7).

Lemma 2. Let H be a geometrially �nite Kleinian group, and let G be a

normal subgroup of H suh that G is a d-group, that is suh that Æ(G) <

dim

H

(L(H)). We then have

L

r

(H) � L

1

r

(G) � L(H):

Proof. We learly have that L

1

r

(G) is a subset of L(G). Therefore, sine

L(G) = L(H), it is suÆient to show that L

r

(H) � L

1

r

(G). For this, let �

be some arbitrary element of L

r

(H). Then there exists a sequene (h

n

) of

elements h

n

2 H suh that h

n

(0) approahes � onially, that is h

n

(0) tends

to � and s

�

\B(h

n

(0); 

�

) 6= ; for all n 2 N (here, 

�

> 0 refers to the diameter

of the ompat part of the onvex ore of H, a onstant whih depends only

on H). Now, with g

0

2 G n fid:g referring to some �xed element, we have

that h

n

g

0

h

�1

n

2 G, for all n 2 N. Using the triangle inequality, we obtain

�(h

n

(0); h

n

g

0

h

�1

n

(0)) = �(0; g

0

h

�1

n

(0)) � �(0; g

0

(0)) + �(0; h

n

(0)):

Hene, with H

�

referring to the horoball at � suh that 0 2 H

�

and suh

that 0 has hyperboli distane 

0

:= �(0; g

0

(0)) + 2

�

to the horospherial

boundary of H

�

, the latter estimate implies that fh

n

g

0

h

�1

n

(0) : n 2 Ng � H

�

.

Now observe that, by Corollary 4 and by a well-known estimate onerning

hyperboli geometry within horoballs (see e.g. [23℄ (Lemma 2)), we have

that a hyperboli ball whih is tangential to s

�

and entred at some arbitrary

z 2 H

�

must have hyperboli radius not exeeding 

0

+ �(0; z)=2. Therefore,

we have that

s

�

\B

�

h

n

g

0

h

�1

n

(0);

�(0; h

n

g

0

h

�1

n

(0))

2

+ 

0

�

6= ; for all n 2 N:

By Lemma 1 and Corollary 4, it follows that � 2 L

1

r

(G).

9



Proof of Theorem 2.

Assume by way of ontradition that there exists � > 0 suh that 2Æ(G)+� <

Æ(H). Let " > 0 be hosen suÆiently small suh that ��2" > 0, and onsider

some 0 < � < ��2". With these hoies we have that Æ(G)+" < (Æ(H)��)=2

and thus,

X

g2G

�

e

�

d(0;g(0))

2

�

Æ(H)��

�

X

g2G

�

e

�d(0;g(0))

�

Æ(G)+"

<1:

Therefore, by adapting Lemma 1 to the present situation, we obtain for all

 > 0 that

dim

H

(lim sup f�(B(g(0); d(0; g(0))=2+ )) : g 2 Gg) � Æ(H)� �:

Hene, by Lemma 2 and using the fat that G is normal in H, it now follows

that

Æ(H) = dim

H

(L(H)) = dim

H

(L(G)) � Æ(H)� �;

whih gives a ontradition.

�

3 Some examples

In this setion we disuss some examples of d-groups.

Example 1. (`In�nitely-puntured Riemann surfaes')

The �rst example represents a simply onneted Riemann surfae with in-

�nitely many puntures. The example is due to Patterson ([17℄, Theo-

rem 4.4), and to our knowledge it has been the �rst example of a d-group

in the literature. Here, we only give a brief desription of the onstrution

of this type of Fuhsian groups, and we refer to [17℄ for the proof that these

groups are in fat d-groups (the proof in [17℄ uses uniformization theory in

ombination with perturbation theory of the Laplaian).

LetG

0

be a oompat Fuhsian group ating on D

2

without ellipti elements.

Then (D

2

nG

0

(0))=G

0

is a ompat Riemann surfae with one punture, and

hene it is onformally isomorphi to D

2

=G

1

, for some o�nite Fuhsian G

1

with exatly one paraboli element. Consider the anonial group homomor-

phism � : G

1

! G

0

, and let G := ker(�). Clearly, G is a normal subgroup
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of G

1

and uniformizes D

2

nG

0

(0). In [17℄ it was shown that G is a group of

the �rst kind for whih Æ(G) < 1. Hene, it follows that G is a d-group.

Example 2. (`Normal subgroups')

The seond example is mainly based on an appliation of a beautiful result

of Brooks in [8℄, who gave a signi�ant extension of results of Rees [21℄, [22℄

(see also [28℄ and the disussion in [19℄).

Let G

0

and G

1

be two non-elementary onvex oompat Kleinian groups

ating on D

N+1

with (open) fundamental domain F

0

, F

1

respetively, suh

that F



0

\ F



1

= ;. For simpliity, we assume that G

0

is freely generated by

hyperboli automorphisms g

1

; : : : ; g

k

, and likewise that G

1

is freely generated

by hyperboli automorphisms g

k+1

; : : : ; g

k+n

(for k; n > 1). With H := G

0

�

G

1

referring to the free produt of G

0

and G

1

, we also assume that Æ(H) >

N=2. Let ' : H ! G

1

denote the anonial group homomorphism, and de�ne

G := ker('). It is easily veri�ed that G = hhg

i

h

�1

: i = 1; :::; k; h 2 G

1

i,

and that G is the normal subgroup of H generated by G

0

in H. Hene, it

follows that H=G is isomorphi to G

1

. In order to see that G is a d-group,

reall that Brooks ([8℄) has shown that if �

2

is a non-trivial normal subgroup

of a onvex oompat Kleinian group �

1

with Æ(�

1

) > N=2, then we have

that Æ(�

1

) = Æ(�

2

) if and only if �

1

=�

2

is amenable

2

. Observe that in our

example here we have that H=G ontains a free subgroup on two generators,

and therefore H=G is not amenable

3

. Hene, applying the result of Brooks,

it follows that G is a d-group.

Example 3. (`Cantor-tree endings made of ylinders')

The third example gives an in�nitely generated d-group of the 1. kind whih

ats on D

N+1

. In partiular, these groups give for instane rise to geometri-

ally in�nite hyperboli (N + 1)-manifolds without usps, whih onsist of a

`oompat root' and an attahed ending whih is basially an `in�nite ap-

stan of hyperboli ylinders' (see Figure 2). Our onstrution gives a slight

modi�ation of the onstrution of Patterson in [18℄ (see also [1℄). We have

simpli�ed the original onstrution in [18℄ (paragraph 5) in order to make

the ideas more transparent.

Let us �rst reall from [18℄ the following observation relating the exponent

of onvergene of a onvex oompat Kleinian group � to the exponent of

2

For the notion `amenable' see e.g. [7℄, [29℄.

3

One easily veri�es that if a group ontains a free subgroup on two generators, then it

is not amenable.
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onvergene of the free produt � � hi, for some suitably hosen hyperboli

transformation .

For � 2 S

N

, let H

�

denote the set of all hyperboli automorphisms of D

N+1

whih have � as a �xed point. For  2 H

�

, let F



refer to the Dirihlet

fundamental domain for hi (onstruted with respet to 0 2 F



). We then

have that F



is bounded by two disjoint hyperplanes H

1

() and H

2

() of

o-dimension 1, and we let H

�

�

denote the set of those elements of H

�

for

whih these two hyperplanes are of equal Eulidean size.

Let F be the Dirihlet fundamental domain for the onvex oompat group

� (onstruted with respet to 0 2 F ). Then �x some arbitrary point !

ontained in some onneted omponent 
 of F \ S

N

, and let H

�

!

(
) refer

to the set of elements  2 H

�

!

for whih �(H

1

() [H

2

()) � 
. With these

preparations we then have (f. [18℄)

Æ(� � hi)! Æ(�) for  2 H

�

!

(
) suh that j�(H

1

())j ! 0:

The idea of the proof of this statement is roughly as follows (we refer to [18℄

for the details). Reall that the limit set L(�) is onstruted very muh like

a Cantor set generated by a ertain set of ontrations. Likewise, L(� � hi)

is generated by the same set of ontrations together with some additional

ontrations, whih orrespond to  and 

�1

. It is intuitively lear that

for j�(H

1

())j ! 0, the amount of ontration of these additional generators

beomes arbitrarily large, and therefore, in the limit the Hausdor� dimension

annot inrease.

With this preliminary observation we an now onstrut the following lass

of d-groups.

Let G

0

be some �xed onvex oompat Kleinian group ating on D

N+1

suh

that �

0

:= Æ(G

0

) < N . Fix some number �

0

< � < N , as well as some stritly

inreasing sequene (�

k

)

k=0;1;2;:::

of numbers �

k

suh that lim �

k

= � . With F

0

referring to a Dirihlet fundamental domain of G

0

(onstruted with respet

to 0 2 F

0

), we let O

0

denote the set of onneted omponents of F

0

\ S

N

.

Also, �x some ountable set X = f�

1

; �

2

; :::g whih is dense in

S


2O

0


. That

is, we let X �

S


2O

0


 and X =

S


2O

0


.

We an then onstrut a sequene (G

k

)

k=0;1;:::

of onvex oompat groups G

k

by way of indution as follows. In here, F

k

refers to the Dirihlet fundamental

domain of G

k

(onstruted with respet to 0 2 F

k

), and O

k

denotes the set

of onneted omponents of F

k

\ S

N

. Now, if G

k�1

is given for some k 2 N,

then G

k

is obtained as follows.

12



Figure 2: Cantor-tree ending made of hyperboli ylinders.

If �

k

2 L(G

k�1

), then we let G

k

= G

k�1

. Otherwise, i.e. for �

k

=2 L(G

k�1

),

there exist g

k

2 G

k�1

and 
 2 O

k�1

suh that g

k

(�

k

) 2 
. Hene, by the

observation above, there exists 

k

2 H

�

g

k

(�

k

)

(
) suh that Æ(G

k�1

�h

k

i) � �

k

.

In this situation, we then let

G

k

= G

k�1

� h

k

i:

In this way we obtain the sequene (G

k

) of onvex oompat groups, and

we de�ne

G :=

1

[

k=0

G

k

:

In order to see that G is a d-group, reall that Sullivan

4

(f. [25℄) has shown

that if �

1

� �

2

� ::: � �

k

� ::: is an inreasing sequene of subgroups of the

4

Note, the proof in [25℄ mainly uses the onformality of the Patterson measure. It seems

worth mentioning that this result an be derived alternatively by purely elementary means
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Kleinian group � =

S

k

�

k

, then it follows that Æ(�) = sup

k

Æ(�

k

): Applying

this result to our sequene (G

k

) here, we obtain

Æ(G) = Æ

�

[

G

k

�

= sup Æ(G

k

) � sup �

k

= �:

Also note that by onstrution we have that f�

1

; :::; �

k

g � L(G

k

) \

S


2O

0


,

for eah k 2 N. This implies that X � L(G) \

S


2O

0


, and hene, sine

X is dense in

S


2O

0


 (and thus G

0

(X) is dense in S

N

), it follows that

L(G) is dense in S

N

. Using the fat that L(G) is losed, it then follows

that L(G) = S

N

, and hene that G is a Kleinian group of the �rst kind.

Summarizing the above, we now have that

Æ(G) � � < N = dim

H

(L(G));

whih gives that G is a d-group.

Remark.

It is straightforward to re�ne the latter onstrution to obtain a d-group

G whih has the property that the N -dimensional spherial Lebesgue mea-

sure �

N

(L

J

(G)) of the set of J�rgensen points is stritly positive. In order

to obtain suh a group, one proeeds as follows. Let (�

k

)

k2N

denote some

sequene of positive numbers suh that

P

k2N

�

k

< 1=2. With the nota-

tion introdued in Example 3 above, let 

k

be speially hosen suh that

�

N

(�(H

1

(

k

))) � �

k

�

N

�

S


2O

0




�

, for eah k 2 N. By onstrution we have

�

N

(�(H

1

(

k

))) = �

N

(�(H

2

(

k

))) for all k, and that f�(H

i

(

k

)) : k 2 N; i =

1; 2g is a family of mutually disjoint N -dimensional spherial diss ontained

in

S


2O

0


. Hene, it follows that

�

N

 

[


2O

0


 n L

J

(G)

!

�

X

k2N

X

i=1;2

�

N

(�(H

i

(

k

)))

� 2

X

k2N

�

k

�

N

 

[


2O

0




!

< �

N

 

[


2O

0




!

;

whih learly gives that L

J

(G) is of positive Lebesgue measure.

as follows. One easily veri�es that L

ur

(�) =

S

k

L

ur

(�

k

). Hene, using the monotoniity

of Hausdor� dimension (see e.g. [9℄) and the fat that Æ(H) = dim

H

(L

ur

(H)) for every

non-elementary Kleinian group H ([6℄, [24℄), it follows that

Æ(�) = dim

H

(L

ur

(�)) = dim

H

(

S

k

L

ur

(�

k

)) = sup

k

dim

H

(L

ur

(�

k

)) = sup

k

Æ(�

k

):
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