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. . . casting aside all scruples, we shall plunge wholeheartedly
into the “new universe” which Bolyai “created from nothing”.

—H.S.M. Coxeter (1907 - 2003), [20] page 287

Abstract In this survey we give a report on some recent results obtained in the
studies of hyperbolic manifolds by means of fractal geometry. Empha-
sis has been put on results derived in the quantitative and qualitative
fractal analysis of long term geodesic dynamics on hyperbolic manifolds.
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1. Fractal geometry and hyperbolic manifolds

Hyperbolic manifolds are located at the junction of various different
areas of modern mathematics. For instance, they play a central role in
low-dimensional topology, complex dynamics, Teichmüller theory, har-
monic analysis, spectral theory, analytic number theory, Diophantine
approximations, and non-commutative algebra, to name a few.

On small scales the geometry of a (n + 1)-dimensional hyperbolic
manifold G coincides with the geometry of the surrounding (n + 1)-
dimensional hyperbolic space D, whereas on large scales the topology of
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G affects the global geometry of G. This can then be analysed by a group
of isometries, namely G can be represented by a Kleinian group, that is a
discrete subgroup of the group of all isometries of D. For a more detailed
study of the interplay between the local and the global structures, it is
a rather fruitful method to investigate G in terms of geodesic dynamical
systems. Part of this type of investigations is to locate various different
dynamical aspects of G and then to study these by means of concepts
from fractal geometry. This is the main theme of this survey.

Throughout let G be a non-elementary Kleinian group acting discon-
tinuously on hyperbolic (n+1)-space D = {z ∈ R

n+1; ‖z‖ < 1} (we shall
always use the Poincaré ball model (D, d) whose boundary at infinity is
the unit sphere S = {z ∈ R

n+1; ‖z‖ = 1}) (cf. [5]). We shall always
assume that G has no torsion. The limit set L(G) ⊂ S of G is the set of
accumulation points of the G-orbit of some arbitrary point in D. Since
we are mainly interested in fractal properties of L(G), we shall always
assume that the set of ordinary points Ω(G) := S \ L(G) is non-empty.
Important subsets of L(G) are the set Lp(G) of bounded parabolic fixed
points of G, the radial limit set Lr(G) and the uniformly radial limit set
Lur(G). In here sξ refers to the hyperbolic ray from the origin to ξ, and
b(x, r) ⊂ D refers to the hyperbolic ball of radius r centred at x.

Lr: A point ξ ∈ L(G) is called radial limit point if there exists a positive
constant c = c(ξ) such that sξ ∩ b(g(0), c) 6= ∅ for infinitely many
different orbit points g(0) ∈ G(0).

Lur: A point ξ ∈ L(G) is called uniformly radial limit point if for some
positive c = c(ξ) we have that sξ ⊂

⋃

g∈G b(g(0), c).

Lp: A point p ∈ L(G) is called bounded parabolic point if it is fixed point
of some parabolic element of G and if its stabiliser Gp has the
following properties. There exists a set M ⊂ S and a compact set
N ⊂ S \ {p} such that

⋃

g∈Gp
g(M) = S \ {p} and (M \N)∩ g(M \

N) = ∅ for all g ∈ G\{id}. In particular, Gp is always isomorphic

to some finite extension of Zk(p) for some k(p) ∈ {1, . . . , n}, where
k(p) is referred to as the rank of p.

It is well-known that, by fixing some base frame, we can associate
to each Kleinian group G a hyperbolic (n + 1)-manifold G = D/G (we
always assume that G is oriented) (cf. [34], [77]). In G the limit set L(G)
is recovered as follows. For m ∈ G fixed, let Λm(G) denote the set of
all geodesic loops1 which start and terminate at m. A geodesic l in G

1note that these loops are not necessarily closed geodesics.
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is called loop-approximable if each finite segment of l can be approxi-
mated with arbitrary accuracy by segments of elements in Λm(G)2. The
geodesic core C(G) of G is then defined by

C(G) := {l geodesic in G : l is loop-approximable}.

A limit direction is an element of the unit tangent space of G at m
such that tracing this direction on G results in a geodesic ray which is
eventually asymptotic to a geodesic in C(G). The set of these so ob-
tained limit directions is in 1-1-correspondence to the limit set L(G).
To demonstrate this transfer between L(G) and the set of limit direc-
tions we remark that clearly every ray sξ for ξ ∈ S admits a projection
via the universal covering map onto G where it becomes a geodesic ray
emanating from the point corresponding to the origin. If now for in-
stance ξ ∈ Lr(G) then the projected ray is recurrent on G, meaning that
while travelling along this ray some bounded region in G gets visited in-
finitely often. Similarly, if ξ ∈ Lur(G) then the projected ray describes
a bounded excursion, meaning that the whole ray is contained in some
suitable bounded region of G. Clearly, every uniformly radial point is
radial (whereas the opposite is only true for convex cocompact Kleinian
groups3).

Poincaré was presumably the first who realised the significance of a
certain series which can be associated in a canonical way to any arbitrary
hyperbolic manifold. This series is nowadays called the Poincaré series
and its abzissa of convergence is usually referred to as the exponent of
convergence or often also as the Poincaré exponent. More precisely, for
s ∈ R the Poincaré series Ps(z, w) associated with G is given by

Ps(z, w) :=
∑

g∈G

exp(−sd(z, g(w))).

Clearly, convergence and divergence of this series does not depend on
the choice of z and w. Hence, the exponent of convergence of G, that is
the Poincaré exponent δ(G), is uniquely determined by

δ(G) := inf{s ∈ R : Ps(0, 0) converges}.

For various special types of Kleinian groups it had been know for
some time that δ(G) quantifies the fractal nature of the uniformly ra-
dial limit set (see e.g. [31] [61], [52] [22] [63] [66] [26]). More recently,

2i.e. each finite segment of γ is contained in an arbitrarily small neighbourhood of some
element of Λm(G).
3A Kleinian group is convex cocompact if and only if L(G) = Lr(G). Note that in this paper
we exclusively consider groups for which L(G) 6= S, i.e. G can not be cocompact
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Bishop and Jones [8] found an astonishingly elementary method which
allows to specify this relation between δ(G) and the Hausdorff dimen-
sion dimH(Lur(G)) in its complete generality, that is for arbitrary non-
elementary Kleinian groups. Consequently, their result gives an ultimate
clarification of the Hausdorff-dimensional significance of the Poincaré ex-
ponent of any arbitrary Kleinian group. More precisely, the following
result was obtained in [8] (cf. also [70]).

Theorem 1 (Theorem of Bishop and Jones (I))
For every Kleinian group G we have that

δ(G) = dimH(Lr(G)) = dimH(Lur(G)).

Also, in this survey we shall be concerned with the Patterson measure
which represents a fundamental concept canonically associated to every
Kleinian group G. In his pioneering work [50] Patterson laid the foun-
dation for a comprehensive study of L(G) in terms of measure theory
and in particular in terms of fractal dimensions. Patterson’s original
construction dealt with the case of Fuchsian groups, that is the case of
2-dimensional hyperbolic space, and was then generalised by Sullivan in
[73] to the general Kleinian group case (cf. [48] [75]). We now briefly
recall this construction. For some sequence of positive numbers ǫk tend-
ing to zero (and given that G is of δ(G)-divergence type4, meaning that
the Poincaré series Ps(0, 0) diverges for s = δ(G) (otherwise, a slowly
varying function has to be introduced which then forces this divergence
(cf. [50]))), µ is the weak limit of the sequence of measures

µk :=
(

Pδ(G)+ǫk(0, 0)
)−1 ∑

g∈G

exp (−(δ(G) + ǫk)d(0, g(0)))1g(0),

where 1x refers to the Dirac measure at x ∈ D
N+1. Note that in the

geometrically finite case it is known that µ does not depend on the choice
of the sequence (ǫk), and hence that µ is unique (cf. [73]). However, this
is certainly not the case in general.
One of the important geometric properties of the Patterson measure is
that it transforms nicely under elements of G. This property is referred
to as δ(G)-conformality, which means that for arbitrary Borel sets E ⊂
Sn and for every g ∈ G we have

µ(g−1E) =

∫

E

(

1− ‖g(0)‖2

‖ξ − g(0)‖2

)δ(G)

dµ(ξ).

4Note, a geometrically finite Kleinian group G is always of δ(G)-divergence type (cf. [73]).
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Remarks.
The easiest examples of Kleinian groups with non-empty ordinary set

are classical Schottky groups, that are subgroups of index 2 of groups
generated by reflections at pairwise disjoint circles in C. Further classical
examples are for instance quasi-Fuchsian groups and certain subgroups
of the Picard group, which in particular include a group with limit set
the Apollonian packing. Interesting more advanced examples are for
instance hyperbolic manifolds fibred over the circle, or normal subgroups
of geometrically finite Kleinian groups. For an extensive list of examples
we refer to [38] [40] [45]. For general discussions of Kleinian groups we
refer to [1] [2] [5] [34] [38] [40] [43] [45] [48] [77].

Finally, we mention that there are various natural generalisations of
hyperbolic manifolds. For instance, for rank 1 manifolds and higher rank
symmetric spaces (see e.g. [3] [37] [18] [19] [33] [82]), and in particular for
Hadamard manifolds (e.g. [29]) and for groups which act discontinuously
on complex hyperbolic space (e.g. [47]), most of the fractal analysis in
this survey continues to hold, although so far this has been written up
only partially. We also mention that convex cocompact Kleinian groups
are the cradle of ‘hyperbolic groups in the sense of Gromov’, and that
finitely generated Kleinian groups with parabolic elements (which are
not Gromov-hyperbolic) have motivated the concept of ‘relative hyper-
bolicity’ ([28] [16] [17]).

Throughout we shall use the notation a ≍ b for two positive reals a, b
to indicate that a/b is uniformly bounded away from zero and infinity.
We write a ≪ b if a/b uniformly bounded away from infinity.

2. Geometrically finite hyperbolic manifolds

Recall that G is called geometrically finite if the action of G on D ad-
mits a fundamental polyhedron with finitely many sides. The following
theorem goes back to Beardon and Maskit [6] (see also [7] [11]) and gives
a characterisation of geometrical finiteness in terms of L(G).

Theorem 2 (Theorem of Beardon and Maskit)
If G is a geometrically finite Kleinian group, then L(G) = Lr(G)∪Lp(G)
(where Lp(G) might be empty, in which case G is convex cocompact).

Thurston was presumably the first to realise the dynamical significance
of the concept geometrical finiteness. He observed the following ([77]).

Theorem 3 (Thurston’s observation)
A Kleinian group G and its associated hyperbolic (n+1)-manifold G are
geometrically finite if and only if a neighbourhood of the convex hull of
the geodesic core C(G) has finite hyperbolic volume.
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Diophantine analysis of the Patterson measure

In this section we discuss some of the results obtained in the study of
the essential support of the Patterson measure. For this we introduce
the following notation. For ξ ∈ L(G) and t > 0, let ξt denote the
unique point on the ray between 0 and ξ with hyperbolic distance t from
0. Let b(ξt) denote the intersection of S with the (n + 1)-ball whose
boundary is orthogonal to S, which contains ξ, and which intersects sξ
orthogonally at ξt. Hence, b(ξt) is a n-ball in S with radius comparable
to e−t. Also, define k(ξt) to be equal to k(p) if the projection of ξt
onto G is contained in the cusp region of G associated with the parabolic
point p; otherwise we let k(ξt) to be equal to δ(G). Furthermore, define
∆(ξt) := d(ξt, G(0)), and let kmin and kmax denote the minimal and
maximal occurring rank for the parabolic elements in G.

The following result provides a key observation in the investigations
of the coarse geometry of the Patterson measure µ. We remark that
this measure formula has recently been extended to complex hyperbolic
manifolds [47] and to Hadamard manifolds [60].

Theorem 4 (Global measure formula ) ([75][72])
For all ξ ∈ L(G) and t > 0, we have

µ(b(ξt)) ≍ exp (−tδ(G)−∆(ξt)(δ(G)− k(ξt))) .

Immediate implications are that the Patterson measure is a doubling
measure and that the limit set of a geometrically finite Kleinian group
is uniformly perfect.

In order to derive further informations on the fractal nature of the
limit set of a geometrically finite Kleinian group, it is vital to give good
approximations of the essential support of the Patterson measure. The
following three theorems shed some light on the essential support from
different perspectives. For the first theorem recall that an element of
L(G) is called Myrberg limit point if the projection of sξ onto G has
the property that it approximates every finite part of every geodesic in
C(G) with arbitrary accuracy infinitely many times. The theorem was
obtained by Tukia in [79] and independently by the author in [67].

Theorem 5 (Generalised Myrberg Theorem)
For µ-almost every ξ ∈ L(G) we have that ξ is a Myrberg limit point.

We remark that based on Sullivan’s results in [73], it was shown in [67]
that for an arbitrary Kleinian groups G the set of Myrberg limit points
is of full µ-measure if and only if the geodesic flow on G is ergodic with
respect to the Liouville-Patterson measure.
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For the remainder of this section we shall now assume that G has
parabolic elements. We remark that for the cases in which there are no
parabolic elements, analogous results can be obtained and the proofs are
far less involved.
The following theorem represents a generalisation of a classical theorem
of Khintchine in metrical Diophantine approximations ([36]). An im-
portant point here is that the theorem, if combined with the measure
formula, gives some useful insight into the fluctuation of µ, as will be
demonstrated in the sequel.

Theorem 6 (Generalised Khintchine Theorem) ([72])
For µ-almost all ξ ∈ L(G), we have

lim sup
t→∞

(∆(ξt)/ log t) = 1/ (2δ(G)− kmax) .

An immediate implication is that for µ-almost all ξ ∈ L(G) we have that
limt→∞∆(ξt)/t = 0 (Sullivan’s ergodic law [73]).

Also, we have the following description in terms of asymptotic frequen-
cies with which recurrent geodesics on G enter the cusp regions. For this
let Cp(τ) refer to the region inside the cuspidal region of G associated
with the parabolic fixed point p, which has hyperbolic distance τ to the
projection of 0 onto G. Let Np,τ (ξ, t) denote the number of geodesic
connected components of the intersection of Cp(τ) with the projection
onto G of the geodesic segment between 0 and ξt. Generalising a result
by Nakada [46] for imaginary quadratic fields which is closely related to
the Doeblin-Lenstra conjecture proven in [10], the following result was
obtained in [64].

Theorem 7 (Generalised Nakada Theorem)
For every parabolic fixed point p and for all τ > 0 sufficiently large, we
have for µ-almost all ξ ∈ L(G),

lim
t→∞

(Np,τ (ξ, t)/t) ≍ exp(−τ(2δ(G)− k(p))).

Finally, we state the following immediate consequence of a combina-
tion of the measure formula and the generalised Khintchine theorem. In
here Iµ refers to the information dimension, Rµ(q) to the q-th gener-
alised Renyi dimension, and Lµ(q+1) to the q-th logarithmic index (see
[21] for the definitions).

Theorem 8 [68]
For q 6= 0, we have

Iµ = Rµ(q) = δ(G) and Lµ(q + 1) = qδ(G).
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Hence in particular, µ is a δ(G)-regular measure, which means that for
µ-almost all ξ ∈ L(G) we have

lim inf
t→∞

(log µ(b(ξt)))/(−t) = lim sup
t→∞

(log µ(b(ξt)))/(−t) = δ(G).

Coarse-structure fractal analysis

By a result of Beardon [4] we have that if G has parabolic elements,
then δ(G) > kmax/2. On the other hand if G does not have parabolic
elements of rank n, then an immediate consequence of the theorem of
Beardon and Maskit is that every geodesic in C(G) is contained in some
fixed hyperbolic neighbourhood of the boundary of C(G). Using this
observation, one easily verifies that L(G) is a porous set and hence,
by a standard result in fractal geometry, the box-counting dimension
dimB(L(G)) is strictly less than n. If there are parabolic elements of
rank n then, although then L(G) is not porous, it was shown by Sullivan
[73] and Tukia [78] that we still have dimH(L(G)) < n. More generally,
we have the following theorem which shows that for a geometrically
finite group Hausdorff-, packing- (dimP ), and box-counting dimension
all agree and are equal to δ(G). Clearly, an immediate consequence of
the theorem is that dimB(L(G)) < n. The theorem was obtained in [71]
and later extended in [8] to analytically finite groups (that are groups
which have the ‘Ahlfors property’, meaning that Ω(G)/G is a finite union
of cofinite Riemann surfaces).

Theorem 9 ( Box-counting dimension Theorem)
We have that

dimH(L(G)) = dimP (L(G)) = dimB(L(G)) = δ(G).

Let us look closer at the behaviour of the s-dimensional Hausdorff
measure Hs and packing measure Ps of the limit set, and also how
these relate to the Patterson measure µ. The following table gives the
complete picture for geometrically finite Kleinian groups acting on hy-
perbolic 3-space. The table is an immediate consequence of the measure
formula and the generalised Khintchine theorem, using the well known
‘generalised mass distribution principle’ ([23] [44]). We remark that sim-
ilar tables can be produced for geometrically finite Kleinian groups in
higher dimensions (cf. [68] [75]).

CUSPS vs. δ = δ(G) 0 < δ(G) < 1 δ(G) = 1 1 < δ(G) < 2

no cusps µ ≍ Hδ ≍ Pδ µ ≍ H1 ≍ P1 µ ≍ Hδ ≍ Pδ

kmax = 1 µ ≍ Pδ,Hδ = 0 µ ≍ H1 ≍ P1 µ ≍ Hδ,Pδ = ∞

kmin = 2 6 ∃ 6 ∃ µ ≍ Pδ,Hδ = 0

kmin = 1, kmax = 2 6 ∃ 6 ∃ Hδ = 0, Pδ = ∞
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Of special interest is the case described in the final row of the table,
where 1 < δ(G) < 2 and where there are parabolic elements of rank
1 as well as of rank 2. Here the Patterson measure does not have an
immediate geometric interpretation, and it is still an open problem if in
this case the Patterson measure can be described in terms of generalised
geometric measures. We expect that it should be helpful to employ
techniques developed by Makarov [39] to answer similar questions for
harmonic measures. However, by combining the measure formula and
the generalised Khintchine theorem, we at least can obtain the following
approximations to the geometric nature of the Patterson measure in this
case. Namely, for the Hausdorff measure Hφ

θ
with respect to the gauge

function φ
θ
, given by φ

θ
(r) := rδ(G) exp

((

1
2 + θ

)

2−δ(G)
δ(G)−1 log log

1
r

)

, we

find that ([68])

Hφ
−θ

(L(G)) ≪ 1 ≪ Hφ
θ
(L(G)) for all θ > 0.

We remark that by the same means, similar estimates can be given for
gauge functions in the context of the generalised packing measure of the
limit set. Finally, let us remark that our analysis strongly supports the
following.

Conjecture.

If G has parabolic elements of rank 1 and 2, then µ and Hφ are compa-
rable, for φ given by

φ(r) = rδ(G) exp

(

2− δ(G)

2(δ(G)− 1)

(

log log
1

r
+ log log log log

1

r

))

.

Fine-structure fractal analysis

In this section we give some results derived from generalisations of
methods in metrical Diophantine approximations, the theory of large
deviations, ergodic theory and multifractal analysis. In particular these
results contribute to a finer fractal analysis of limit sets of geometrically
finite Kleinian groups, and hence of the geodesic dynamics on geomet-
rically finite hyperbolic manifolds. Throughout this section we shall
assume that G is a geometrically finite Kleinian group with parabolic
elements.

Coarse multifractal analysis.
Coarse multifractal analysis studies global irregularities of the distri-

bution of µ(b(ξt)) for large values of t. In order to perform such inves-
tigations in the context of Kleinian groups, it is helpful first to consider
σ-Jarńık limit sets Lσ(G). These sets represent a canonical generalisa-
tion of the sets of well-approximable irrational numbers (see [31]).
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For 0 < σ < 1, let

Lσ(G) := {ξ ∈ L(G) : lim sup
t→∞

(∆(ξt)/t) ≥ σ}.

The following theorem was obtained by Hill and Velani in [30], and
independently by the author in [65] [69]. For ease of exposition, in here
we have restricted the statement once more to the case of Kleinian groups
acting on hyperbolic 3-space.

Theorem 10 ( Generalised Jarńık-Besicovitch Theorem)

(1) For δ(G) ≤ kmax, we have dimH(Lσ(G)) = δ(G)(1− σ).
(2) For δ(G) > kmax, we have

dimH(Lσ(G)) =

{

δ(G)(1− σ) for δ(G)(1− σ) ≤ 1

δ(G)
(

1− σ
1+σ

2δ(G)−1
δ(G)

)

for δ(G)(1− σ) ≥ 1.

Hence, for δ(G) ≤ kmax the theorem shows that dimH(Lσ(G)) is a linear
function in σ. Whereas in the second case, where δ(G) > 1 and where
G necessarily has parabolic elements of rank 1, this function is partially
non-linear. In particular, in this case there exists a unique point σ∗ at
which the derivative of this function is not continuous (note, for Kleinian
groups in higher dimension there can be more than one such point). The
significance of σ∗ is that dimH(Lσ∗

(G)) = 1.
Refinements of the above results on Jarńık limit sets then give rise

to the following coarse multifractal analysis of the Patterson measure µ.
Consider the following level sets

kµ(θ) := dimH{ξ ∈ L(G) : lim infr→0 log µ(b(ξt))/(−t) ≤ θ},

lµ(θ) := dimH{ξ ∈ L(G) : lim supr→0 logµ(b(ξt))/(−t) ≥ θ},

and their associated multifractal spectra

{kµ(θ) : θ ∈ (2δ(G)− kmax, δ(G))} the upper liminf-spectrum,

{lµ(θ) : θ ∈ (δ(G), 2δ(G)− kmin)} the lower limsup-spectrum.

As shown in [69], for Hδ(G)(L(G)) 6= 0 the upper liminf-spectrum is
trivial, whereas for Pδ(G)(L(G)) 6= ∞ the lower limsup-spectrum turns
out to be trivial. More interestingly, for the remaining cases the following
results were obtained in [69].

Theorem 11 (Coarse multifractal spectra)
(1) Hδ(G)(L(G)) = 0 if and only if we have, for all θ in the domain of
the upper liminf-spectrum,

kµ(θ) = δ(G)− (θ − δ(G))
δ(G)

δ(G)− kmax
.
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(2) Pδ(G)(L(G)) = ∞ if and only if we have, for all θ in the domain of
the lower limsup-spectrum,

lµ(θ) =

{

δ(G)− (θ − δ(G))2δ(G)−1
θ−1 for θ ≤ θ∗

δ(G)− (θ − δ(G)) δ(G)
δ(G)−1 for θ ≥ θ∗,

where we have set θ∗ := (2δ(G)− 1)− δ(G)−1
δ(G) .

The theorem shows that if the packing measure of L(G) is infinite, then
the lower limsup-spectrum is partially non-linear, and linear and non-
linear part intersect precisely at θ∗. Again, the significance of θ∗ is that
lµ(θ

∗) = 1. Furthermore, the derivative of the lower limsup-spectrum
is not continuous at θ∗. Therefore, θ∗ can be interpreted as a point
at which a coarse multifractal phase transition occurs. Note that our
analysis in particular shows that such a phase transition occurs if and
only if Pδ(G)(L(G)) = ∞.

Fine multifractal analysis.
Fine multifractal analysis studies fractal entities for level sets of cer-

tain real-valued functions, where the level sets are defined by means of
strict limit processes. We remark that fine multifractal analysis imbeds
into the ergodic-theoretical discipline of thermodynamical formalism.
(For elementary introductions into the relevant dimension theory we re-
fer to [24] [56]).

In this section we consider the special case in which G is an essen-
tially free Kleinian group. This means that G is basically a free ge-
ometrically finite Kleinian group, except that there might be group-
relations arising from stabilisers of parabolic fixed points of G. In order
to describe the results for this type of Kleinian group, we recall the fol-
lowing lexicographical coding of L(G). Let F ⊂ D be a fundamental
polyhedron of G. Then the hyperbolic ray sξ from the origin to some
arbitrary ξ ∈ L(G) passes in succession through fundamental domains
F, gξ,1(F ), gξ,2(F ), gξ,3(F ), . . . ., where the g−1

ξ,ngξ,n+1
are elements of the

set of generators of G. Here we assume for ease of exposition that sξ
passes exclusively through n-dimensional and hence through no lower
dimensional faces of F . For α ∈ R, we then define the following level
sets

Fα(G) :=
{

ξ ∈ L(G) : lim
n→∞

d(0, gξ,n(0))/n = α
}

.

In the investigations of the Hausdorff dimensions of these level sets the
following pressure function P turns out to be crucial. In here |g| refers
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to the word length of g in G.

P : R → R given by P (α) := lim
n→∞

1

n
log

∑

g∈G
|g|=n

exp(−αd(0, g(0))).

The following result was obtained in [35].

Theorem 12 (Fine multifractal spectra)
There exists α−, α+ ∈ R such that Fα(G) 6= ∅ if and only if α ∈ [α−, α+],
and such that for each α ∈ (α−, α+), we have

dimH(Fα(G)) = α−1 inf
β∈R

{αβ + P (β)} . (∗)

(1) For G convex cocompact we have (∗) holds for all α ∈ [α−, α+],
and P is real analytic everywhere. Furthermore, on (α−, α+) we
have for (P ′)−1, the inverse of the derivative of P ,

dimH(Fα(G)) = (P ′)−1(α)− P (α)/α.

(2) If G has parabolic elements, then P is real analytic on (−∞, δ(G))
and equal to 0 otherwise. Additionally, the following holds.

(i) If δ(G) ≤ (kmax + 1)/2, then P is differentiable everywhere.

(ii) If δ(G) > (kmax + 1)/2, then there exists a fine multifractal
phase transition, meaning that the right derivative of P at
δ(G) vanishes, whereas the left derivative of P at δ(G) is
strictly negative.

We remark that the two types of phase transitions which we discussed,
namely the coarse multifractal and the fine multifractal phase transition,
seem to be two completely unrelated phenomena which can be detected
within the limit set of a Kleinian group. As our analysis clearly shows,
a Kleinian group permits either both, or none, or exactly one of these
two types, and each of these possibilities can actually occur. Further
note that the coarse multifractal analysis is of pure geometric nature,
whereas the fine multifractal analysis results from mixing the algebraic
appearance of G (here in form of the use of the word length) with its
geometric realisation.

3. Finitely generated hyperbolic manifolds

In this section we give a brief report on some of the results obtained in
the fractal analysis of limit sets of finitely generated, geometrically infi-
nite Kleinian groups G acting on hyperbolic 3-space. Such geometrically
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infinite groups were first shown to exist over 30 years ago by Greenberg
in [27]. The first explicit examples were constructed by Jørgensen in [32].
Subsequently, these groups have attracted a great deal of attention from
various different points of view. One of the most important conjectures
in this area, which is still undecided but which over the years sparked
off a vast amount of fruitful and stimulating research, is the following.
In here λ2 refers to the 2-dimensional Lebesgue measure in S

2.

The Ahlfors Conjecture.
For every finitely generated Kleinian group G we have

λ2(L(G)) = 0.

For geometrically finite groups this conjecture clearly holds, since
then, as we already saw, we have that dimB(L(G)) < 2 which in par-
ticular implies that λ2(L(G)) = 0. In the geometrically infinite case the
following result was obtained in [8].

Theorem 13 (Theorem of Bishop and Jones (II))
For every finitely generated, geometrically infinite Kleinian groups G we
have

dimH(L(G)) = 2.

We remark that in the light of the Ahlfors conjecture it seems worthwhile
to comment on the strategy of the proof of this result. Namely, the
essential part of the proof of Bishop and Jones is to show that

δ(G) < 2 =⇒ λ2(L(G)) > 0.

(Clearly, this gives the theorem, since then either δ(G) = 2 which implies
that dimH(Lur(G)) = 2 and hence dimH(L(G)) = 2, or δ(G) < 2 which
gives λ2(L(G)) > 0 and hence in particular dimH(L(G)) = 2). With
other words, the proof shows that a finitely generated, geometrically
infinite Kleinian group G with dimH(Lr(G)) < 2 is necessarily a counter
example for the Ahlfors conjecture. Of course it is a problem to show
that a group of this type does exist. For instance, it is known that such
a counter example cannot be a topologically tame Kleinian group of
bounded type ([15] [14] [74]), which means that the associated hyperbolic
manifold has injectivity radius uniformly bounded from below and is
homeomorphic to the interior of a compact 3-manifold with boundary.
In fact for the Patterson measure µ of such tame groups we have the
following result. (Note that in this case the Patterson measure is not
necessarily unique).

Theorem 14 (Theorem of Bishop and Jones (III)) ([9])
Let G be a geometrically infinite, topologically tame Kleinian group of
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bounded type, and let Hϕ refer to the Hausdorff measure with respect to
the gauge function ϕ given by

ϕ(r) = r2 exp

(

1

2

(

log log
1

r
+ log log log log

1

r

))

.

Then the following holds

µ ≍ Hϕ and µ(Lr(G)) = 0.

4. Infinitely generated hyperbolic manifolds

Finally, we give a brief report on some of the results derived in the
fractal analysis of geodesic dynamics on infinitely generated hyperbolic
manifolds. It is evidently clear that the class of all infinitely generated
groups as such is by far too large. Hence, one of the problems is to
elaborate some structure inside this huge class of groups which makes it
feasible to study these groups systematically.

As a first subclass we mention groups which can be exhausted by
an increasing chain of subgroups. More precisely, here we consider a
Kleinian group G such that G =

⋃

k Gk, for some sequence of Kleinian
subgroups G1 ⊂ G2 ⊂ ... ⊂ Gk ⊂ .... In this situation we clearly have
that

⋃

k Lur(Gk) ⊂ Lur(G). On the other hand, if ξ ∈ Lur(G) then
there exists an infinite path cξ in the Cayley graph of G such that sξ is
fully contained in some fixed hyperbolic neighbourhood of cξ, and such
that the hyperbolic lengths of the geodesic segments of cξ are uniformly
bounded from above. Therefore Lur(G) =

⋃

k Lur(Gk), and hence it
follows, by monotonicity of Hausdorff dimension (see e.g. [23]),

dimH(Lur(G)) = dimH(
⋃

k

Lur(Gk)) = sup
k

dimH(Lur(Gk)).

Combining this observation with the theorem of Bishop and Jones (I),
we then immediately obtain the following result. We remark that this
result was conjectured by Patterson in [51] [53] [54] and subsequently
proven by Sullivan in [73], using the Patterson measure.

Theorem 15

Let G be a Kleinian group such that G =
⋃

k Gk, for some sequence of
Kleinian subgroups G1 ⊂ G2 ⊂ ... ⊂ Gk ⊂ .... We then have

δ(G) = sup
k

δ(Gk).

We remark that by similar means one shows that the Hausdorff dimen-
sion of Lur(G) is lower semi-continuous with respect to algebraic con-
vergence (see [41]).
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Another interesting class of infinitely generated Kleinian groups is pro-
vided by intermediate coverings of geometrically finite hyperbolic man-
ifolds. Here one considers normal subgroups N of a geometrically finite
Kleinian group G. As one easily verifies, in this situation we have that
L(G) = L(N). Hence, this class of Kleinian groups gives the opportunity
to study geodesic cores which are both, the geodesic core of an infinitely
generated manifold (associated with N) as well as the geodesic core of
a geometrically finite manifold (associated with G).
The following result was obtained in [25].

Theorem 16

For a normal subgroup N of a geometrically finite Kleinian group G we
have

dimH(Lur(N)) ≥ dimH(Lur(G))/2.

Recall that for a δ(G)-divergence type group G the geodesic flow on G
is ergodic with respect to the Liouville-Patterson measure. As mentioned
before, geometrically finite groups are always of δ(G)-divergence type,
and hence the following result of Rees in particular shows under which
circumstances ergodicity of the geodesic flow is preserved if one passes to
an intermediate covering of a geometrically finite hyperbolic 2-manifold
(see also the discussion in [55] [62]).

Theorem 17 (Theorem of Rees) ([58][59])
Let N be a normal subgroup of a geometrically finite Fuchsian group G
such that G/N is isomorphic to Z

m, for m ∈ N. Then δ(N) = δ(G), and

(i) if G has no parabolic elements, then N is of δ(N)-divergence type
if and only if m = 1 or 2;

(ii) if G has parabolic elements, then N is of δ(N)-divergence type if
and only if m = 1.

This theorem seems to suggest that polynomial growth of the factor
group might be a necessary and sufficient condition for having equality
of the two exponents of convergence. The following theorem shows that
the right condition is in fact ‘amenabilty’ (see [12] [83] [81]), at least
for certain convex cocompact Kleinian groups. In here the condition
δ(G) > n/2 occurs since the proof of Brooks in [13] uses spectral theory
of the Laplacian, and it seems extremely likely that this condition can
be removed (see [80]).

Theorem 18 (Theorem of Brooks) ([13])
Let N be a normal subgroup of a convex cocompact Kleinian group G such
that δ(G) > n/2. Then δ(N) = δ(G) if and only if G/N is amenable.
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Yet another interesting class of geometrically infinite Kleinian groups
is the following. A Kleinian group G is called discrepancy group if and
only if dimH(Lur(G)) < dimH(L(G)). This type of groups seems to
have been studied for the first time by Patterson in [53] (see also [57]).
Note that by the previous theorem we immediately have that every nor-
mal subgroup with non-amenable factor in a convex cocompact Kleinian
group (with Poincaré exponent greater than n/2) is a discrepancy group.
In [25] we gave further examples of discrepancy groups, and started with
a finer fractal analysis of the limit sets of these groups by considering
the following set of τ -weakly recurrent limit points

L(τ)
r (G) := {ξ : sξ ∩ b (g(0), τ d(0, g(0))) 6= ∅ for infinitely many g ∈ G} .

Theorem 19 ([25])

For a discrepancy group G we have for all 0 < τ < dimH(L(G))−δ(G)
dimH(L(G)) ,

δ(G) ≤ dimH(L(τ)
r (G)) < dimH(L(G)),

and hence in particular,

dimH(L(G) \ L(τ)
r (G)) = dimH(L(G)).

Finally, we mention a class of Kleinian groups which we have called
geometrically tight. This type of groups has recently been studied by
Matsuzaki in [42]. A Kleinian group G is called geometrically tight if
there exists ρ > 0 and a countable exceptional set E ⊂ L(G) (where E
is either empty, or represents endings of G which are either ‘cusp-like’
or contained in a fixed neighourhood of some geodesic in G) such that
for every ξ ∈ L(G) \ E, the projection of sξ onto G ‘returns infinitely
many times’ to the hyperbolic ρ-neighbourhood of the boundary of C(G).
Clearly, if the set E is empty then every geodesic in C(G) is contained in
the ρ-neighbourhood of the boundary of C(G). In this special situation
one can then argue as for geometrically finite groups without parabolic
points of rank n, which gives that L(G) is a porous set, and hence
dimB(L(G)) < n. For E non-empty, a straight-forward adaptation of
Tukia’s techniques in [78] leads to the following. In here it would be
interesting to show that Hausdorff dimension can be replaced in general
by box-counting dimension, which can obviously be done for E = ∅.

Theorem 20 (Theorem of Matsuzaki) ([42])
For a geometrically tight Kleinian group G we have

dimH(L(G)) < n.
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[35] M. Kesseböhmer, B. O. Stratmann, ‘A multifractal formalism for growth rates
and applications to geometrically finite Kleinian groups’, Math. Gottingensis 07
(2001) 1 – 29 (preprint); to appear in Ergod. Th. & Dynam. Sys. (2003).

[36] A. Y. Khintchine, Continued fractions, Univ. of Chicago Press, Chicago and
London, 1964.

[37] G. Knieper, ‘Closed geodesics and the uniqueness of maximal measure for rank 1
geodesic flows’, Proc. Sympos. Pure Math, vol. 69, Amer. Math. Soc., Providence,
RI, (2001) 573 – 590.

[38] S.L. Krushkal, B.N. Apanasov, N.A. Gusevskii, Kleinian groups and uniformiza-
tion in examples and problems, Transl. Math. Monographs 62 AMS, 1986.

[39] N.G. Makarov, ‘Probability methods in the theory of conformal mappings’,
Leningrad Math. Jour. 1 (1990) 1–56.

[40] B. Maskit, ’Kleinian groups, Grundlehren d. Math. Wiss. 287, Springer-Verlag,
Berlin, 1988.

[41] K. Matsuzaki, ‘Convergence of the Hausdorff dimension of the limit sets of
Kleinian groups’, Contemp. Math. 256 (1998) 243–254,

[42] K. Matsuzaki, ‘Hausdorff dimension of limit sets of infinitely generated Kleinian
groups’, Math. Proc. Camb. Phil. Soc 128 (2000) 123 – 139.

[43] K. Matsuzaki & M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford
Math. Monographs, 1998.



Fractal Geometry On Hyperbolic Manifolds 19

[44] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and
rectifiability, Cambridge University Press, 1995.

[45] D. Mumford, C. Series, D. Wright, Indra’s pearls. The vision of Felix Klein,
Cambridge University Press, New York, 2002.

[46] H. Nakada, ‘On metrical theory of diophantine approximation over imaginary
quadratic fields’, Acta Arith. 51 (1988) 131 – 154.

[47] F. Newberger, ‘On the Patterson-Sullivan measure for geometrically finite groups
acting on complex hyperbolic space or quaternionic hyperbolic space’, preprint
(2003).

[48] P.J. Nicholls, The ergodic theory of discrete groups, Cambridge University Press,
1989.

[49] J.R. Parker, B.O. Stratmann, ‘Kleinian groups with singly cusped parabolic fixed
points’, Kodai J. Math. 24 (2001) 169 – 206.

[50] S.J. Patterson, ‘The limit set of a Fuchsian group’, Acta Math. 136 (1976) 241–
273.

[51] S.J. Patterson, ‘The exponent of convergence of Poincaré series’, Monatsh. f.
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