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Abstrat

In this paper we study in�nite ergodi theory for limit sets of essentially free Kleinian

groups whih may have paraboli elements of arbitrary rank. By adapting a method of Adler,

we onstrut a setion map S for the geodesi ow on the assoiated hyperboli manifold. We

then show that this map has the Markov property and that it is onservative and ergodi with

respet to the invariant measure indued by the Liouville{Patterson measure. Furthermore,

we obtain that S is rationally ergodi with respet to di�erent types of return sequenes (a

n

),

whih are governed by the exponent of onvergene Æ and the maximal possible rank k

max

of

the paraboli elements of the group as follows

a

n

�

8

<

:

n

2Æ�k

max

for Æ < (k

max

+ 1)=2

n= log n for Æ = (k

max

+ 1)=2

n for Æ > (k

max

+ 1)=2:

Subsequently, we give a disussion of an assoiated anonial map T whih is an analogue of

the Bowen{Series map in the Fuhsian ase. We show that T is pointwise dual ergodi with

respet to these return sequenes (a

n

), whih then allows to determine the index of variation

� = minf1; 2Æ � k

max

g, and to dedue that the ergodi sums S

n

(f)=a

n

onverge strongly

distributional to the Mittag-Le�er distribution of index �. We then give appliations to

number theory and to the statistis of uspidal windings. Also, as a orollary we obtain a

speial ase of Sullivan's result that the geodesi ow on a geometrially �nite hyperboli

manifold is ergodi with respet to the Liouville{Patterson measure.

Introdution and statement of main results

In this paper we study the ation of a Kleinian group on its limit set by using methods from

non{invertible in�nite ergodi theory. Reall that a Kleinian group is a disrete subgroup of

the group of orientation preserving isometries of hyperboli 3{spae H

3

= H (for whih we shall

mainly use the Poinar�e ball model equipped with the hyperboli metri d = d

H

(see e.g. [Be2℄)).

Throughout, we exlusively onsider essentially free Kleinian groups G, that is we assume that G

admits the hoie of a Poinar�e polyhedron F (f. [Ma℄) with �nitely many faes suh that if two

faes s and t of F interset inside H , then the two assoiated generators g

s

and g

t

of G ommute.

By Poinar�e's theorem (f. [EP℄), we hene have that an essentially free Kleinian group has no

relations other than those whih originate from usps of rank 2. Also, note that groups in this

lass are in partiular geometrially �nite.

Our �rst aim is to onstrut a oding map T assoiated with G. This onstrution generalises

the well{known Bowen{Series map (f. [BS℄ [Sta1℄) to Kleinian groups of the seond kind, that is

to groups G whose limit set L(G) does not oinide with the whole boundary �H of hyperboli

spae. In partiular, T is an endomorphism of the radial limit set L

r

(G), whih is the intersetion

of L(G) with the omplement of the set of paraboli �xed points of G.

In order to obtain a anonial T{invariant measure �, we then employ the well{known Patter-

son measure and its assoiated Liouville{Patterson measure (f. [Pa℄ [Su1℄). More preisely, by

speifying a Poinar�e setion, we show how to obtain a measure ~� whih is invariant under the

�rst{return map S. The map S will also be referred to as a setion map. It then turns out that

T is a fator of S, and we obtain our measure � by a straight{forward disintegration proedure.
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The following theorem gives the main results of this paper. In here k

max

refers to the maximal

possible rank of the paraboli �xed points of G, and Æ = Æ(G) denotes the exponent of onvergene

of G, that is the abzissa of onvergene of the Poinar�e series

X

g2G

exp(�sd(0; g(0))):

Main Theorem

The oding map T : L

r

(G) ! L

r

(G) is a is a topologially mixing Markov map whih is onser-

vative and ergodi with respet to �. If G has no paraboli elements, then � is �nite. If G has

paraboli elements, then � is in�nite if and only if Æ � (k

max

+1)=2. Moreover, the following holds.

In here

b

T refers to the dual of T .

1. If � is �nite then the return sequene (a

n

) of T is given by Birkho�'s theorem. That is

a

n

= n for all n 2 N, and

�

1

n

n�1

X

k=0

f Æ T

k

!

1

�(L

r

(G))

Z

fd� for all f 2 L

1

(�) and �{a.e. ;

�

1

n

n�1

X

k=0

b

T

k

(f)!

1

�(L

r

(G))

Z

fd� for all f 2 L

1

(�) and �{a.e. :

2. If � is in�nite, then T is pointwise dual ergodi with respet to �. In this ase the return

sequene (a

n

) is given by

a

n

�

�

n

2Æ�k

max

for Æ <

k

max

+1

2

n

logn

for Æ =

k

max

+1

2

:

In partiular we hene have, where Y

�

refers to the Mittag{Le�er distribution of index

� := 2Æ � k

max

and `s.d.' to strong distributional onvergene,

�

1

a

n

n�1

X

i=0

f Æ T

i

s.d.

�! Y

�

Z

fd� for all f 2 L

1

(�) and f � 0;

�

1

a

n

n�1

X

k=0

b

T

k

(f)!

Z

fd� for all f 2 L

1

(�) and �{a.e. :

The reader might like to reall that Y

�

is given in terms of its generating funtion by

E(e

zY

�

) =

1

X

n=0

(�(1 + �))

n

�(1 + �n)

z

n

for z 2 C :

In partiular, for Æ = (k

max

+ 1)=2 we have that � = 1, and therefore that Y

1

= 1. Furthermore,

for Æ = (2k

max

+ 1)=4 the orresponding distribution of Y

1=2

is half{Gaussian. Also, reall that

the strong distributional onvergene as stated in the theorem means that for every probability

measurem absolutely ontinuous with respet to �, we have the following weak onvergene, where

P

�

denotes the distribution of Y

�

([Aa2℄, p. 112),

m Æ

 

1

a

n

n�1

X

i=0

f Æ T

i

!

�1

weak

�! P

�

Z

fd�:

For the proof of the theorem, we �rst show that the oding map T is a topologially mixing

Markov map (Proposition 2). We then give some estimates for the measure � (Lemma 1), whih

then allow to determine the wandering rate for a ertain set B of �nite measure (Theorem 1).

2



This gives that the indued map T

B

is well{de�ned (implying that T is onservative), as well as

the riterium for the �niteness of �. We then show that T

B

has the Gibbs{Markov property with

respet to the measure � restrited to B (Theorem 2), whih then implies that T

B

is ergodi and

hene that T is ergodi. Furthermore, the Gibbs{Markov property gives that B is a Darling{Ka

set and therefore T is pointwise dual ergodi (Theorem 3). Combining this with the estimates for

the wandering rate of B, we obtain our estimates for the return sequene of T (Theorem 4) as

well as the onvergene to the Mittag{Le�er distribution (Corollary 8).

Further Conlusions.

We remark that, using standard tehniques from in�nite ergodi theory (f. [Aa2℄, setion 3.3.,

see also [De℄), our main theorem allows to dedue the following interesting onsequenes for the

oding map T .

� The map T is rationally ergodi with respet to �. That is, there exists a set A � L

r

(G)

with 0 < �(A) <1 suh that for all n 2 N,

Z

A

(

n�1

X

i=0

1

A

Æ T

i

)

2

d� �

 

Z

A

n�1

X

i=0

1

A

Æ T

i

d�

!

2

: (�)

� The map T has the following mixing property. For every A with �(A) < 1 suh that (�)

holds, we have for all U; V � A,

lim

n!1

1

a

n

n�1

X

i=0

�(U \ T

�i

V ) = �(U)�(V ): (��)

Also, our analysis of T has some interesting onsequenes for the setion map S.

� The map S is the natural extension of T (Proposition 3). Therefore, S is a topologially

mixing Markov map.

� The fat that S is invertible immediately implies that S annot be pointwise dual ergodi

(f. [Aa2℄). However, sine T is rationally ergodi and S is the natural extension of T ,

we nevertheless have that S is rationally ergodi with respet to the assoiated anonial

measure ~�. Moreover, S has the mixing property as stated in (��) with respet to ~� and

with respet to the same return sequene (a

n

).

� Combining the previous remark, Proposition 1 and the fat that S is onservative and er-

godi, a result of [HIK℄ gives that the geodesi ow on H =

G

is ergodi with respet to the

Liouville{Patterson measure. This is a speial ase of Sullivan's result for general geometri-

ally �nite hyperboli manifolds (f. [Su1℄).

� The fat that S is onservative implies that for A suh that ~�(A) > 0, the indued map

S

A

is well{de�ned. The map S

A

is an alternative setion map, and therefore it gives rise

to another representation of the geodesi ow by means of a speial ow. In partiular, for

a suitably hosen set A with ~�(A) < 1 , the map S

A

preserves a �nite measure and the

assoiated Markov partition has in�nitely many atoms.

We end this introdution by giving the following appliations and remarks.

Appliations to elementary number theory.

For this we employ the well{known relation between the regular ontinued fration expansions

of real numbers and odings of geodesis on the three{sheated overM of the modular surfae (see

e.g. [Moe℄, [Se1℄, [Ha℄). ForM we have that the invariant measure is in�nite and that the relevant

Mittag{Le�er distribution is of index 1. Using the fat that the hyperboli area of M is equal to

�, a result of [Sta1℄[Sta2℄ implies that the return sequene is given preisely by a

n

= n=(12 logn).

Combining this with Corollary 8, we obtain the following statement, where � denotes the Lebesgue

measure on the unit interval and [a

1

(�); a

2

(�); a

2

(�); : : :℄ refers to the regular ontinued fration
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expansion of � 2 [0; 1℄ n Q.

For every n 2 N and � > 0, we have that

lim

n!1

�

�

� 2 [0; 1℄ :

�

�

�

�

log

P

n

i=1

a

i

(�)

P

n

i=1

a

i

(�)

ardfi : a

i

(�) � N; 1 � i � ng �

1

3

log

�

2N

2N � 1

�

�

�

�

�

< �

�

= 1:

Appliations to statistis of uspidal windings.

As an example we onsider a group G for whih Æ < (k

max

+ 1)=2. Let K be the subset of a

fundamental domain F of G whih orresponds to the thik part of the onvex ore of H =

G

. The

ray from the origin to any � 2 L

r

(G) is learly overed by the G{orbit of F . For n 2 N, let k

n

(�)

be the number of visits to G(K) after the ray has met n opies of F . Hene l

n

(�) := n � k

n

(�)

denotes the number of uspidal windings after n visits. An immediate appliation of the seond

part of our main theorem gives rise to the following result.

There exist onstants 

1

; 

2

> 0 depending on K suh that for the Patterson measure � we have,

for all � 2 (0;1),

P

2Æ�k

max

((0; 

1

�)) � lim

n!1

�(f� 2 L

r

(G) j

k

n

(�)

l

n

(�)

2Æ�k

max

< �g) � P

2Æ�k

max

((0; 

2

�)):

Paraboli rational maps.

Finally we remark that results similar to the onlusions obtained in this paper were obtained

for paraboli rational maps in [ADU℄. Therefore, a ombination of our analysis with the results of

[ADU℄ gives a further extension of Sullivan's famous ditionary translating between the theories

of Kleinian groups and rational maps (f. [Su2℄).
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for their warm hospitality. Furthermore, the �rst author likes to thank the `DFG{Forshergruppe
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1 Canonial oding and onformal measure theory

Codings of geodesis on hyperboli surfaes were originally studied for instane by Artin, Hedlund

and Morse (see e.g. [Ar℄,[He℄,[HM℄,[Mor1℄,[Mor2℄). They onsidered the following two types of

odings. The �rst is based on the idea that an oriented geodesi an be oded by its suessive

visits to G{images of a fundamental domain of G. The seond type leads to a oding map whih

is obtained by reording the positions of the G{orbits of the endpoints of a geodesi. For o�nite

Fuhsian groups this map was desribed in greater detail in [BS℄, where it was employed to derive

the well{known result of Hopf onerning the ergodiity of the geodesi ow on the underlying

surfae (f. [Ho℄). Moreover, for geometrially �nite Fuhsian groups a disussion of these two

types of odings was given in [Se2℄, where it was shown that they are topologially isomorphi.

Our �rst aim is to onstrut a Poinar�e setion for the geodesi ow assoiated with an essen-

tially free Kleinian groupsG. Our onstrution is inspired by the methods in [Se1℄,[AF℄,[Sta1℄,[Sta2℄.

Subsequently, we shall see that the assoiated setion map is a measure theoretial analogue of

the oding obtained by the suessive visits to opies of a fundamental domain. Also, it will turn

out that a fator of this map is a 3{dimensional version of the above oding map.

Geodesi ow and Liouville{Patterson measure. In order to introdue the Liouville{Patterson

measure, we �rst have to reall the notion of the Patterson measure � (for a detailed disussion of
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� we refer to [Pa℄, [Su1℄, [Ni℄, [SV℄). It is well known that � is a probability measure supported on

the limit set L(G). Furthermore, the measure � is Æ{onformal, that is for all g 2 G and � 2 L(G)

we have the following identity, whih relates the Radon{Nikodym derivative to the Poisson kernel

P ,

d� Æ g

d�

(�) = P(g

�1

(0); �)

Æ

:

Using the ommon representation f(�; �; t) j �; � 2 �H ; � 6= �; t 2 Rg for the unit tangent bun-

dle T

1

H , the Liouville{Patterson measure ~� is a straight{forward generalisation of the Liouville

measure. Namely, with � referring to the Lebesgue measure on R,

d~�(�; �; t) :=

d�(�) d�(�) d�(t)

j� � �j

2Æ(G)

:

Sine G is geometrially �nite, the limit set L(G) splits into the radial limit set L

r

(G) and the

set of bounded paraboli �xed points of G, where the latter set is at most ountable (f. [BM℄).

Sine � is non{atomi, it then follows that �(L

r

(G)) = 1 and therefore,

T

1

H

~�

= f(�; �; t) j �; � 2 L

r

(G); � 6= �; t 2 Rg:

Reall that G ats on T

1

H and that ~� is invariant under this ation as well as under the ation of

the geodesi ow. This gives rise to the projeted Liouville{Patterson measure, whih is invariant

under the geodesi ow (�

t

)

t2R

on the quotient spae T

1

H =

G

. For ease of notation, this projeted

measure will also be denoted by ~�.

Canonial setion maps. Let F be the Poinar�e polyhedron as stated in the de�nition of

`essentially free'. The polyhedron F gives rise to a fundamental domain for the ation of G on

T

1

H as follows. For �; � 2 �H , let 

�;�

: R ! H refer to the direted geodesi from � to �

normalised suh that 

�;�

(0) is the summit of 

�;�

. We now have that

T

1

H =

G

~�

= F=

G

; where F := f(�; �; t) j �; � 2 L

r

(G); � 6= �; 

�;�

(t) 2 Cl(F )g:

Note that measure theoretiallyF oinides with F=

G

. The only ambiguity ours at the boundary

of F , whih is a set of measure zero. For (�; �; t) 2 F , the entrane time t

�

�;�

and the exit time t

+

�;�

are de�ned, where Cl(�) denotes the losure in H , by

t

�

�;�

:= inffs j 

�;�

(s) 2 Cl(F )g and t

+

�;�

:= supfs j 

�;�

(s) 2 Cl(F )g:

Sine �; � 2 L

r

(G), we learly have that jt

�

�;�

j <1 and jt

+

�;�

j <1. We now de�ne the set

Y := f(�; �) j �; � 2 L

r

(G); � 6= � and 9 t 2 R : 

�;�

(t) 2 Cl(F )g;

as well as the measure ~� on Y by

d~�(�; �) :=

d�(�)d�(�)

j� � �j

2Æ

:

In order to onstrut a map S : Y ! Y , we use the ombinatorial struture of F as follows.

Reall that by Poinar�e's polyhedron theorem (f. [EP℄), the set S of faes of F arries an

involution S ! S, whih is given by s 7! s

0

and s

00

= s. Also, for eah s 2 S there is a unique

fae{pairing transformation g

s

2 G suh that g

s

(Cl(F )) \ Cl(F ) = Cl(s

0

). The map S is then

de�ned by

S(�; �) := (g

s

(�); g

s

(�)) for all (�; �) 2 Y suh that 

�;�

(t

+

�;�

) 2 s, for some s 2 S:

The following notion of a speial ow and its setion map is a measure theoretial analogue of

a suspension ow (f. [AK℄). For h : Y ! R

+

measurable, the speial ow (Y

h

; ( 

t

)

t2R

; ~� � �)

over S with height funtion h is given by

Y

h

:= f(y; �) j y 2 Y; 0 � � < h(y)g and  

t

(y; �) := (S

n

y; � + t� h

n

(y)):
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In here, the number n 2 Z is uniquely determined, for (y; �) 2 Y

h

and t 2 R, by

h

n

(y) � � + t < h

n+1

(y);

where we have set

h

n

(y) :=

8

<

:

0 for n = 0

P

n�1

k=0

h(S

k

(y)) for n � 1

�

P

�1

k=n

h(S

k

(y)) for n < 0:

In this situation the map S is alled a setion map for ( 

t

). Throughout, we onsider exlusively

the speial height funtion h, whih is given by h(�; �) := t

+

�;�

� t

�

�;�

.

We now have the following result.

Proposition 1 The geodesi ow (T

1

H =

G

; (�

t

)

t2R

; ~�) is measure theoretially isomorphi to the

speial ow (Y

h

; ( 

t

)

t2R

; ~� � �) over the setion map S with the speial height funtion h.

Proof: The produt struture of ~� gives the measure theoretial isomorphism

(T

1

H =

G

; ~�)

�

=

(F ; ~� � �):

Sine F = f(�; �; t) j (�; �) 2 Y; t

�

�;�

� t � t

+

�;�

g, we also have the measure theoretial isomorphism

F ! Y

h

; (�; �; t) 7! (�; �; t� t

�

�;�

):

Hene we have that (T

1

H =

G

; ~�)

�

=

(Y

h

; ~� � �). In order to obtain that the latter isomorphism

transfers the two ows into eah other, we have to remove the following ow invariant set of

measure zero. This ompliation only ours if G has paraboli elements of rank 2. Namely, we

have to remove the set of geodesis on H =

G

whih interset the projetions of the faes of F of

odimension 2. This gives rise to a set of measure zero, sine in the presene of a rank 2 usp we

always have that the Hausdor� dimension Æ of L(G) exeeds 1 (reall that by [Be1℄, we have that

Æ > k

max

=2), and therefore the intersetion of L(G) with any arbitrary irle in �H is neessarily of

Patterson measure zero. It follows that the setion map S is well{de�ned on a set of full measure,

and that the two ows oinide on the orresponding sets of full measure. �

Combining the latter proposition and results of [AK℄ [HIK℄, we obtain the following result.

Corollary 1 The measure ~� is S{invariant. Moreover, the setion map S is ergodi with respet

to ~� if and only if the geodesi ow is ergodi with respet to ~�.

Markov oding. In this setion we derive a Markov oding for the geodesi ow. For this we

show that the setion map S admits a Markov partition. We introdue the following olletion of

subsets of �H . For s 2 S, let H

s

refer to the losed hyperboli halfspae for whih F � H

s

and

s � �H

s

. We then de�ne the projetions a

s

of the side s to �H by

a

s

:= (Cl

H

(H

s

) \ �H )



\ L

r

(G):

If there are no paraboli �xed points of rank 2, then a

s

\ a

t

= ; for all distint s; t 2 S. Hene

by onvexity of F , we have for � 2 L

r

(G) that 

�;�

(t

+

�;�

) 2 s if and only if � 2 a

s

. In other words,

S(�; �) = (g

s

�; g

s

�) for all � 2 a

s

. This immediately gives that the projetion � onto the �rst

oordinate of Y leads to a anonial fator T of S, that is we obtain the map T : L

r

(G)! L

r

(G)

whih is given by T j

a

s

:= g

s

and whih has the property that � Æ S = T Æ �. Sine T (a

s

) =

g

s

(a

s

) = (a

s

0

)



\ L

r

(G), it follows that T is a non{invertible Markov map with respet to the

partition fa

s

j s 2 Sg. The image measure � := ~� Æ �

�1

is given by disintegration as follows, for

all s 2 S and � 2 a

s

,

d�(�) =

Z

a



s

d�(y)

j� � yj

2Æ

d�(�):
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Clearly, we have that � is T{invariant. Moreover, it will turn out that (Y; ~�; S) is the natural

extension of (L

r

(G); �; T ). This will then imply that S is onservative and ergodi if and only if

T has these properties.

If there are paraboli points of rank 2, then S has no anonial fator. In this situation the idea

is to onstrut an invertible Markov map

~

S whih is isomorphi to S and whih has a anonial

fator. We now introdue the following notation. Let P be the set of paraboli points given by

P := Cl

H

F \L(G), let k(p) refer to the rank of p 2 P , let S

p

:= fs 2 S j g

s

is paraboli g, and let

P

i

:= fp 2 P j k(p) = ig for i = 1; 2. Moreover, we de�ne the set A � Y by

A := Y n f(�; �) 2 Y j � 2 a

s

; � 2 a

t

; s; t 2 S

p

for some p 2 P

2

g:

For (�; �) 2 Y n A there exists p 2 P

2

and s; t 2 S

p

suh that � 2 a

s

and � 2 a

t

. Sine p is a

repelling �xed point for the ation of g

s

on a

s

, one easily veri�es that there exists n 2 N suh that

S

n

(�; �) 2 A. Let �

S

A

: Y ! N refer to the �rst return time to A, whih is given for (�; �) 2 Y by

�

S

A

(�; �) := minfn 2 N j S

n

(�; �) 2 Ag:

Sine �

S

A

(�; �) < 1 for all (�; �) 2 Y , we an now de�ne the indued map S

A

: A ! A by

S

A

(�; �) := S

�

S

A

(�;�)

(�; �).

In order to onstrut our Markov map

~

S assoiated to S, we introdue the following onvention

� :

[

p2P

2

f(s; t) 2 S

p

� S

p

j a

s

\ a

t

6= ;; s 6= tg !

[

p2P

2

S

p

;

where � has the properties that �(s; t) = �(t; s) 2 fs; tg, and �(s; t) 6= �(s; t

0

) for (s; t) in the

domain of � (see Figure 1). With this onvention, the map

~

S is given by

~

S(�; �) :=

�

(g

s

�; g

s

�) if � 2 a

s

n

S

t2S;t6=s

a

t

for some s 2 S

(g

�(s;t)

�; g

�(s;t)

�) if � 2 a

s

\ a

t

for distint s; t 2 S:

Note that

~

S is de�ned on L

r

(G)�L

r

(G) and invertible on f(�; �) 2 a

s

�a

t

j s; t 2 S; a

s

\a

t

= ;g.

Moreover, the latter set is invariant under

~

S. In order to relate

~

S to S, we restrit

~

S to the set

~

Y :=

[

n2Z

~

S

n

A:

By onstrution we then have that

~

S(

~

Y ) =

~

Y and that

~

Sj

~

Y

is invertible. Also, by the same

argument as for S above, the �rst return time �

~

S

A

of

~

S to A is �nite. It is then easy to see that

�

~

S

A

= �

S

A

and that the indued map

~

S

A

oinides with S

A

. Combining these observations, it

now follows that S and

~

S are isomorphi, and that the invariant measure for

~

S is given also by

d�(�)d�(�)=j� � �j

2Æ

. We are now able to extend our oding map T and its assoiated measure �

to the ase in whih there are rank 2 usps. Namely, we de�ne

T : L

r

(G) ! L

r

(G)

� 7!

�

g

s

� if � 2 a

s

n

S

t2S;t6=s

a

t

for some s 2 S

g

�(s;t)

� if � 2 a

s

\ a

t

for distint s; t 2 S

d�(�) :=

Z

fy : (�;y)2

~

Y g

d�(y)

j� � yj

2Æ

d�(�):

Proposition 2 The map T is a topologial mixing Markov map with respet to the partition �

whih is generated by fa

s

j s 2 Sg. Furthermore, the measure � is invariant under T .

Proof: Using the fat that two faes s; t 2 S interset if and only if g

s

(p) = g

t

(p) = p for some

p 2 P

2

, we have the following omplete desription of the behaviour of an arbitrary atom b of the

partition �.

7



Case 1. If b = a

s

for some s =2

S

p2P

2

S

p

, then T (b) = g

s

(a

s

) = a



s

0

\ L

r

(G) =

S

t6=s

0

a

t

.

Case 2. If b = a

s

n

S

t6=s

a

t

for some s 2 S

p

and p 2 P

2

, then T (b) = (a



s

0

\ L

r

(G)) n (a

u

[ a

u

0

).

In here, u refers to the element of S

p

for whih u 6= s; s

0

. Note that in this situation we

have that g

s

(a

u

) = a

u

and g

s

(a

u

0

) = a

u

0

. This follows sine the stabiliser G

p

of p is Abelian

and is generated by g

s

and g

u

. Furthermore, we have that b = a

s

n (a

u

[ a

u

0

), and hene

T (b) = g

s

(a

s

n (a

u

[ a

u

0

)) = (a



s

0

\ L

r

(G)) n (a

u

[ a

u

0

).

Case 3. If b = a

s

\ a

t

for some distint s; t 2 S

p

and for some p 2 P

2

, then T (b) = a



�(s;t)

0

\ a

u

.

In here, u refers to the element of S

p

for whih u 6= �(s; t) and u 2 fs; tg. The fat that T (b)

is of this partiular form follows as in the previous ase.

It follows that T (b) is measurable with respet to the �{�eld generated by �, for eah b 2 �. Also,

reall that for every sequene (g

n

) of pairwise disjoint elements of G, the Eulidean diameter of

g

n

(F ) tends to zero for n tending to in�nity. Therefore, the diameters of the atoms of the re�ned

partition

W

n�1

k=0

T

�k

� (generated by T

�k

(�) for 0 � k < n) tend to zero for n tending to in�nity.

Combining these observations with the fat that T j

b

is injetive for every b 2 �, it follows that T

has the Markov property.

Finally, note that the inidene graph of T is expliitly given by the above desription of the

images of the atoms of �. One easily veri�es that this graph is aperiodi, whih then implies that

T is topologially mixing. �

In order to link the properties of T and

~

S, we show that the map S is the natural extension of

T . For this we have to show that the projetion � has the following properties (see e.g. [Aa2℄).

(NE1) � Æ

~

S = T Æ � and ~� Æ �

�1

= �

(NE2)

W

1

n=1

~

S

n

(�

�1

�) is the Borel �{�eld of

~

Y up to sets of measure zero.

Also, reall the notion of a ylinder set assoiated with �. Namely, for b

0

; : : : ; b

n

2 � suh that

T (b

i

) � b

i+1

for all i, let [b

1

: : : b

n

℄ refer to the ylinder of length n whih is given by

[b

1

: : : b

n

℄ := f� 2 L

r

(G) j T

i�1

� 2 b

i

for all i = 1; : : : ; ng:

Proposition 3 The map

~

S is the natural extension of T .

Proof: By onstrution of T and �, the properties in (NE1) are learly satis�ed. In order to

obtain (NE2), let [b

1

: : : b

n

℄ denote some arbitrary ylinder, for b

i

2 � for all i = 1; : : : ; n. Also,

for eah i let s

i

2 S refer to fae for whih T j

b

i

= g

s

i

. We then have, for m < n,

~

S

m

Æ �

�1

[b

1

: : : b

n

℄ � T

m

([b

1

: : : b

n

℄)� g

s

m

� � � g

s

1

(a



s

1

)

= [b

m+1

: : : b

n

℄� g

s

m

� � � g

s

1

g

s

0

1

(a

s

0

1

)

= [b

m+1

: : : b

n

℄� (g

s

0

2

� � � g

s

0

m

)

�1

(a

s

0

1

):

Clearly, for suitably hosen n;m 2 N, the Eulidean diameter of the latter expression tends to

zero for n;m tending to in�nity. �

Reall that the natural extension of the system (L

r

(G); �; T ) is uniquely determined up to an

isomorphism. Moreover, by a standard result in in�nite ergodi theory (see e.g. [Aa2℄), we have

the following orollary.

Corollary 2 The map T is onservative and ergodi with respet to � if and only if S has these

properties with respet to ~�. Moreover, T is rationally ergodi with respet to some return sequene

if and only if S is rationally ergodi with respet to the same return sequene.
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2 Non{invertible Ergodi theory

2.1 Wandering rates

In this setion we obtain some estimates for the wandering rates of the T{invariant measure �.

For this we �rst give some estimates for the measure � on ertain fundamental ells assoiated

with the stabilisers of the paraboli points. Note that throughout this setion we always assume

that the elements of P are �xed points of T . This an be assumed without loss of generality, sine

otherwise one simply replaes T by a suitable power of T .

For p 2 P , let G

p

refer to the stabiliser of p and let Q

p

be de�ned by

Q

p

:=

\

u2S

p

a



u

\ L

r

(G):

Lemma 1 Let h 2 G

p

n fidg suh that d

E

(p; h(Q

p

)) � 1=n for some n 2 N.

� If p 2 P

1

, then we have

�(h(Q

p

)) �

1

n

2Æ�1

:

� If p 2 P

2

, then we have

�(h(Q

p

)) �

�

1

n

2Æ�1

if h(Q

p

) � a

s

\ a

t

for distint s; t 2 S

p

1

n

2Æ�2

else:

Proof: Let h be given as stated in the lemma. For k(p) = 1 and s 2 S suh that h(Q

p

) � a

s

0

,

we have

f(�; �) 2

~

Y j � 2 h(Q

p

)g = h(Q

p

)�

0

�

[

u=2S

p

a

u

[

1

[

m=1

g

m

s

(Q

p

)

1

A

:

Using a well known estimate from hyperboli geometry (f. [Str℄, Lemma 2), it follows that

if � 2 h(Q

p

) and � 2 g

m

s

(Q

p

), for some m 2 N, then j� � �j �

1

n

+

1

m

. Also, by a result of [SV℄

(Lemma 3.1) we have that �(g

m

s

(Q

p

)) � m

�2Æ

. Combining these observations, we obtain

�(h(Q

p

)) = ~�

0

�

h(Q

p

)�

[

u=2S

p

a

u

1

A

+

X

m2N

~�(h(Q

p

)� g

m

s

(Q

p

))

� �(h(Q

p

)) +

X

m2N

�

1

n

+

1

m

�

�2Æ

�(h(Q

p

)) �(g

m

s

(Q

p

))

�

1

X

k=n

k

�2Æ

+ n

�2Æ

� n

�2Æ+1

:

For k(p) = 2, we �rst onsider the ase in whih h(Q

p

) � a

s

\ a

t

for distint s; t 2 S

p

. Assume

that �(s; t) = s. We then have

f(�; �) 2

~

Y j � 2 h(Q

p

)g = h(Q

p

)�

0

�

\

u2S

p

nfs

0

g

a



u

\ L

r

(G)

1

A

:

Clearly, we an now employ a similar argument as above to obtain the same estimate.

For the remaining ase we have that h(Q

p

) �

T

u2S

p

nfsg

a



u

n Q

p

for some s 2 S

p

. Again, for

ease of notation, we assume that �(s; t) = s. In this situation we have that (see Figure 1)

f(�; �) 2

~

Y j � 2 h(Q

p

)g = h(Q

p

)� (a



s

\ a



t

0

\ L

r

(G)) :
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τ (s,t)=s

p

s

t

t’

s’

g

c

g

g

gs

Qp hQ

t’

t

s’

c
t’s

ca Ua

Figure 1: A rank 2 usp at p =1.

Using the above observations onerning the geometry and the Patterson measure in a neighbour-

hood of p, we now have

�(h(Q

p

)) = ~� (h(Q

p

)� (a



s

\ a



t

0

))

=

X

g2G

p

g(Q

p

)�a



s

\a



t

0

~� (h(Q

p

)� g(Q

p

))

�

X

m2N

�

1

n

+

1

m

�

�2Æ

m

m

2Æ

1

n

2Æ

� n

�2Æ+2

:

�

Reall that the wandering rate of � with respet to a set A � L

r

(G) is given by

w

n

(A) := �(

n

[

m=0

T

�m

(A)):

For our purposes it is suÆient to investigate the behaviour of � around eah of the paraboli

points. Therefore, we introdue the following set, for p 2 P and n 2 N,

B

p

(n) :=

n�1

[

m=0

[

�

1

T

�m

!;p

(Q

p

);

where

S

�

1

refers to the union over all inverse branhes T

�m

!;p

of T

m

�xing p. Also, let B � L

r

(G)

refer to the set whih is given, for n

0

2 N suÆiently large, by

B :=

\

p2P

B

p

(n

0

) \ L

r

(G):

Sine B is bounded away from P , we have that 0 < �(B) < 1. Furthermore, by onstrution,

one easily veri�es that

1

[

m=0

T

�m

(B) = L

r

(G):
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Note that we shall see later that the set B is a Darling{Ka set for T , whih will then imply that T

is pointwise dual ergodi with respet to �. For the following theorem, we onsider the wandering

rate (w

p

n

(B)) assoiated with p 2 P , whih is given by

w

p

n

(B) := �(B

p

(n

0

+ n)):

Theorem 1 With the notation above we have, for all n 2 N and p 2 P ,

w

p

n

(B) �

8

<

:

n

k(p)�2Æ+1

for Æ < (k(p) + 1)=2

logn for Æ = (k(p) + 1)=2

1 for Æ > (k(p) + 1)=2:

In partiular, we hene have for the wandering rate w

n

(B) =

P

p2P

w

p

n

(B) of B that

w

n

(B) �

8

<

:

n

k

max

�2Æ+1

for Æ < (k

max

+ 1)=2

logn for Æ = (k

max

+ 1)=2

1 for Æ > (k

max

+ 1)=2:

Proof: First note that for p 2 P

2

we have by Lemma 1, for eah m 2 N,

X

h2G

p

;

d

E

(p;h(Q

p

))�

1

m

�(h(Q

p

)) =

X

�

2

�(h(Q

p

)) +

X

�

3

�(h(Q

p

)) �

X

�

2

1

m

2Æ�1

+

4

m

2Æ�2

�

1

m

2Æ�2

:

In here

P

�

2

refers to the summation over all elements h 2 G

p

for whih d

E

(p; h(Q

p

)) � 1=m and

h(Q

p

) � a

s

\a

t

for distint s; t 2 S

p

(learly,

P

�

3

then refers to the summation over the remaining

summands). Using this observation and one more Lemma 1, we now have

�(

n

[

m=0

T

�m

B) = �(B) +

X

p2P

n

o

+n

X

m=n

0

X

�

1

�(T

�m

!;p

(Q

p

))

�

X

p2P

n

0

+n

X

m=n

0

X

h2G

p

;

d

E

(p;h(Q

p

))�

1

m

�(h(Q

p

))

�

X

p2P

1

n

0

+n

X

m=n

0

X

h2G

p

;

d

E

(p;h(Q

p

))�

1

m

1

m

2Æ�1

+

X

p2P

2

n

0

+n

X

m=n

0

1

m

2Æ�2

�

X

p2P

n

0

+n

X

m=n

0

m

k(p)�1

m

2Æ�1

�

8

<

:

n

k

max

�2Æ+1

for Æ < (k

max

+ 1)=2

logn for Æ = (k

max

+ 1)=2

1 for Æ > (k

max

+ 1)=2:

�

As an immediate onsequene of the latter theorem, we obtain the following result of [KS℄.

Corollary 3 The measure � is in�nite if and only if Æ � (k

max

+ 1)=2. Moreover, if G has paraboli

elements of rank 1 as well as of rank 2, then � gives �nite mass to small neighbourhoods of the

paraboli �xed points of rank 1.
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2.2 Gibbs{Markov property and ergodiity

In this setion we give a �ner analysis for the indued map T

B

. We show that T

B

has the Gibbs{

Markov property with respet to �

B

, where �

B

refers to the restrition of � to B. Using standard

results from ergodi theory, this then allows to dedue that T

B

is ergodi and that T is pointwise

dual ergodi and onservative.

In order to show that T

B

has the Gibbs{Markov property with respet to �

B

, we have to

show that there exists a number � 2 (0; 1) suh that the following holds. For arbitrary ylinders

!

1

of length n and !

2

of length m suh that [!

2

℄ � T

n

B

([!

1

℄), we have for �

B

{almost every pair

x; y 2 [!

2

℄,

�

�

�

�

�

log

d�

B

Æ T

�n

B;!

1

d�

B

(x) � log

d�

B

Æ T

�n

B;!

1

d�

B

(y)

�

�

�

�

�

� �

m

:

In here T

�n

B;!

1

refers to the inverse branh of T

n

B

whih maps T

n

B

([!

1

℄) to [!

1

℄.

Theorem 2 The map T

B

has the Gibbs{Markov property with respet to the measure �

B

.

Proof: Let !

1

; !

2

be given as above. We then have, for x; y 2 [!

2

℄,

log

d�ÆT

�n

B;!

1

d�

(x)

d�ÆT

�n

B;!

1

d�

(y)

= log

d�ÆT

�n

B;!

1

d�ÆT

�n

B;!

1

(x)

d�ÆT

�n

B;!

1

d�ÆT

�n

B;!

1

(y)

+ log

d�ÆT

�n

B;!

1

d�

(x)

d�ÆT

�n

B;!

1

d�

(y)

+ log

d�

d�

(x)

d�

d�

(y)

:

We split the estimate of the modulus of this expression into separate parts aording to the three

summands in the latter expression.

For the third summand, let C

0

:= maxfjz � wj

�1

j z 2 a

t

\ B; w 2 (a

t

)



; t 2 Sg. For s 2 S

suh that [!

1

℄ � a

s

, we then have

�

�

�

�

log

d�

d�

(x)� log

d�

d�

(y)

�

�

�

�

=

�

�

�

�

�

log

Z

f� : (x;�)2

~

Y g

1

jx� �j

2Æ

d�(�)� log

d�

d�

(y)

�

�

�

�

�

�

�

�

�

�

�

log

Z

f� : (x;�)2

~

Y g

1

jy � �j

2Æ

�

jx� �j+ jx� yj

jx� �j

�

2Æ

d�(�)� log

d�

d�

(y)

�

�

�

�

�

�

�

�

�

�

�

log

 

(1 + C

0

jx� yj)

2Æ

Z

f� : (x;�)2

~

Y g

1

jy � �j

2Æ

d�(�)

!

� log

d�

d�

(y)

�

�

�

�

�

� jx� yj:

For the �rst summand, note that for z 2 [!

1

℄ we have (d�=d�)(z) = (d�ÆT

�n

B;!

1

=d�ÆT

�n

B;!

1

)(T

n

B

z).

Therefore, for a suitably hosen ~!

1

of length n, the modulus of the �rst summand is bounded from

above by jT

�n

B;~!

1

(x) � T

�n

B;~!

1

(y)j, whih is learly less than jx� yj.

For the seond summand, let g

!

1

be the element of G whih orresponds to T

�n

B;!

1

. Now

observe that by the triangle inequality we have jg

�1

!

1

(0) � xj � jg

�1

!

1

(0) � yj + jx � yj. Moreover,

by onstrution of B, there exists a onstant C

1

suh that jg

�1

!

1

(0) � zj > C

1

, for all z 2 [!

2

℄.

Therefore, it follows that

jg

�1

!

1

(0)� yj

jg

�1

!

1

(0)� xj

< 1 +

jx� yj

jg

�1

!

1

(0)� xj

< 1 + C

1

jx� yj:

12



Combining this observation with the Æ{onformality of �, we now have

�

�

�

�

�

�

log

d�Æg

!

1

d�

(x)

d�Æg

!

1

d�

(y)

�

�

�

�

�

�

= Æ

�

�

�

�

log

P(g

�1

!

1

(0); x)

P(g

�1

!

1

(0); y)

�

�

�

�

= Æ

�

�

�

�

log

jg

�1

!

1

(0)� yj

jg

�1

!

1

(0)� xj

�

�

�

�

< Æ jlog(1 + C

1

jx� yj)j

� jx� yj:

Finally, by uniform expansiveness of T

B

, we have that there exists a onstant � depending on the

hoie of B, suh that jx� yj < �

m

. This ompletes the proof. �

The following two statements an be dedued immediately from the proof of the previous

proposition. They are not essential for the purposes of this paper, nevertheless they might be of

interest elsewhere.

Corollary 4 The map T

B

has the Gibbs{Markov property with respet to the Patterson measure

restrited to B.

Corollary 5 The logarithm of the density

d�

d�

is Lipshitz ontinuous on B.

The Gibbs{Markov property of T

B

with respet to �

B

allows to employ the following standard

hain of arguments from ergodi theory, where it is well known that (i) ) � � � ) (iv) (f. [Aa2℄,

[ADU℄, [Th℄).

(i) T

B

has the Gibbs{Markov property with respet to the invariant measure �

B

.

(ii) For the dual operator

b

T

B

there exists � 2 (0; 1) suh that for all f 2 L

1

(B) and n 2 N, we

have









b

T

n

B

f �

Z

B

fd�









L

� �

n

kfk

L

:

Here k � k

L

refers to the Lipshitz norm (see e.g. [ADU℄, p. 541).

(iii) T

B

is ontinued fration mixing (see e.g. [ADU℄, p. 500).

(iv) The set B is a Darling{Ka set for T . This means that there exists a sequene (a

n

)

n2N

suh

that

1

a

n

n�1

X

i=0

b

T

i

1

B

(x)! �(B) uniformly for � a.e. x 2 B:

The sequene (a

n

) is usually referred to as the return sequene of T .

Using [Aa2℄ (Proposition 3.7.5), we an now omplete this hain of arguments and obtain the

following result.

Theorem 3 The map T is pointwise dual ergodi with respet to �. That is, with (a

n

)

n2N

referring

to the return sequene of T , we have

1

a

n

n�1

X

i=0

b

T

i

f !

Z

fd� for all f 2 L

1

(�):

In partiular, we also have the following immediate onsequenes (f. [Aa2℄).

13



Corollary 6 The map T is rationally ergodi with respet to �. That is, there exists a set A �

L

r

(G) with 0 < �(A) <1 suh that for all n 2 N,

Z

A

(

n�1

X

i=0

1

A

Æ T

i

)

2

d� �

 

Z

A

n�1

X

i=0

1

A

Æ T

i

d�

!

2

: (�)

Corollary 7 The map T has the following mixing property. For A with �(A) <1 suh that (�)

holds, we have for all U; V � A,

lim

n!1

1

a

n

n�1

X

i=0

�(U \ T

�i

V ) = �(U)�(V ):

The results of Theorem 1 onerning the wandering rate w

n

(B) of B now allow to determine

the return sequene (a

n

) of T expliitly. For this reall that a sequene (s

n

) is alled a regularly

varying sequene with index of variation � if lim

m!1

s

nm

=s

m

= n

�

, for all n 2 N. Using Theorem

1, one easily veri�es that (w

n

(B)) is a regularly varying sequene with index of variation � given

by

� = maxf0 ; k

max

� 2Æ + 1g:

Sine T is pointwise dual ergodi and B is a Darling{Ka set, we may now apply a result of [Aa2℄

(3.8.7), whih gives

a

n

w

n

(B) �

n

�(2� �)�(1 + �)

:

Therefore, ombining this result and our estimates for w

n

(B) in Theorem 1, we now obtain the

following theorem.

Theorem 4 For the return sequene (a

n

) of T we have, for eah n 2 N,

a

n

�

8

<

:

n

2Æ�k

max

for Æ < (k

max

+ 1)=2

n= logn for Æ = (k

max

+ 1)=2

n for Æ > (k

max

+ 1)=2:

Clearly, the sequene a

n

is also a regularly varying sequene. A straight{forward alulation

shows that its index of variation � is given by

� = minf1; 2Æ � k

max

g:

Applying a result of [Aa1℄ (Theorem 1), we an now onlude that for � 2 [0; 1℄, the ergodi sums

S

n

(f)=a

n

have the following remarkable statistial behaviour. Note that for � =2 [0; 1℄, the measure

� is �nite and hene the behaviour of these sums is given by Birkho�'s Theorem as stated in the

�rst part of our main theorem.

Corollary 8 For Æ � (k

max

+1)=2 we have for f 2 L

1

+

(�) that the ergodi sums S

n

(f)=a

n

onverge

strongly distributional to the Mittag{Le�er distribution Y

�

of index �. That is, we have that

1

a

n

n�1

X

i=0

f Æ T

i

s.d.

�! Y

�

Z

L

r

(G)

fd�:

Note that the upper bound of the domain where these distributional laws hold is preisely

(k

max

+ 1)=2. By a result of [KS℄, this value oinides with the value at whih the system exhibits

a thermodynamial phase transition.
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