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Abstract

In this paper we study infinite ergodic theory for limit sets of essentially free Kleinian
groups which may have parabolic elements of arbitrary rank. By adapting a method of Adler,
we construct a section map S for the geodesic flow on the associated hyperbolic manifold. We
then show that this map has the Markov property and that it is conservative and ergodic with
respect to the invariant measure induced by the Liouville-Patterson measure. Furthermore,
we obtain that S is rationally ergodic with respect to different types of return sequences (an»),
which are governed by the exponent of convergence § and the maximal possible rank k,,,, of
the parabolic elements of the group as follows

n? ke for § < (ke +1)/2
an < n/logn for 6= (kn.+1)/2
n for 6> (knaw +1)/2.

Subsequently, we give a discussion of an associated canonical map T which is an analogue of
the Bowen-Series map in the Fuchsian case. We show that T is pointwise dual ergodic with
respect to these return sequences (ar), which then allows to determine the index of variation
B = min{1,20 — km.}, and to deduce that the ergodic sums S,(f)/a, converge strongly
distributional to the Mittag-Leffler distribution of index S. We then give applications to
number theory and to the statistics of cuspidal windings. Also, as a corollary we obtain a
special case of Sullivan’s result that the geodesic flow on a geometrically finite hyperbolic
manifold is ergodic with respect to the Liouville-Patterson measure.

Introduction and statement of main results

In this paper we study the action of a Kleinian group on its limit set by using methods from
non—invertible infinite ergodic theory. Recall that a Kleinian group is a discrete subgroup of
the group of orientation preserving isometries of hyperbolic 3-space H® = H (for which we shall
mainly use the Poincaré ball model equipped with the hyperbolic metric d = dy (see e.g. [Be2])).
Throughout, we exclusively consider essentially free Kleinian groups G, that is we assume that G
admits the choice of a Poincaré polyhedron F (cf. [Ma]) with finitely many faces such that if two
faces s and t of F intersect inside H, then the two associated generators gs and g; of G commute.
By Poincaré’s theorem (cf. [EP]), we hence have that an essentially free Kleinian group has no
relations other than those which originate from cusps of rank 2. Also, note that groups in this
class are in particular geometrically finite.

Our first aim is to construct a coding map T associated with G. This construction generalises
the well-known Bowen—Series map (cf. [BS] [Stal]) to Kleinian groups of the second kind, that is
to groups G whose limit set L(G) does not coincide with the whole boundary OH of hyperbolic
space. In particular, T is an endomorphism of the radial limit set L,.(G), which is the intersection
of L(G) with the complement of the set of parabolic fixed points of G.

In order to obtain a canonical T—invariant measure v, we then employ the well-known Patter-
son measure and its associated Liouville-Patterson measure (cf. [Pa] [Sul]). More precisely, by
specifying a Poincaré section, we show how to obtain a measure 7 which is invariant under the
first—return map S. The map S will also be referred to as a section map. It then turns out that
T is a factor of S, and we obtain our measure v by a straight—forward disintegration procedure.



The following theorem gives the main results of this paper. In here k,,,, refers to the maximal
possible rank of the parabolic fixed points of G, and § = 6(G) denotes the exponent of convergence
of G, that is the abzissa of convergence of the Poincaré series

S exp(—sd(0, 9(0))).
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Main Theorem

The coding map T : L.(G) — L,.(G) is a is a topologically mizing Markov map which is conser-
vative and ergodic with respect to v. If G has no parabolic elements, then v is finite. If G has
parabolic elements, then v is infinite if and only if § < (k,..+ 1)/2. Moreover, the following holds.
In here T refers to the dual of T'.

1. If v is finite then the return sequence (a,) of T is given by Birkhoff’s theorem. That is
an, =n for alln € N, and

O—ZfOT’c /fdyforallfGLl()andl/ae,
1”‘1A,c 1 .

. EZT (f)—)m/fdl/for all f € L*(v) and v-a.e. .
k=0 r

2. If v is infinite, then T is pointwise dual ergodic with respect to v. In this case the return
sequence (an) is given by

n20—Fkmaz for § < kmart1
Ay X

2
n for 6= k?nn5:+1

logn

In particular we hence have, where Yy refers to the Mittag—Leffler distribution of index
B:=20 —k,.. and ‘s.d.’ to strong distributional convergence,

.azf ot 2% Yg/fduforallfeL()andeO,

i=0

. %;T\k(f) — /fdl/ for all f € L'(v) and v-a.e. .

The reader might like to recall that Y} is given in terms of its generating function by

; =T+,
E(eYﬁ):;%z for z € C.

In particular, for 6 = (k... + 1)/2 we have that 8 = 1, and therefore that Y; = 1. Furthermore,
for § = (2k,.. + 1)/4 the corresponding distribution of Y}/, is half-Gaussian. Also, recall that
the strong distributional convergence as stated in the theorem means that for every probability

measure m absolutely continuous with respect to v, we have the following weak convergence, where
P3 denotes the distribution of Y3 ([Aa2], p. 112),

—1
i weak
(Gn iEOfOT> — Pﬁ/fdl/.

For the proof of the theorem, we first show that the coding map T is a topologically mixing
Markov map (Proposition 2). We then give some estimates for the measure v (Lemma 1), which
then allow to determine the wandering rate for a certain set B of finite measure (Theorem 1).



This gives that the induced map T is well-defined (implying that T is conservative), as well as
the criterium for the finiteness of v. We then show that T has the Gibbs—Markov property with
respect to the measure v restricted to B (Theorem 2), which then implies that Tz is ergodic and
hence that T is ergodic. Furthermore, the Gibbs—Markov property gives that B is a Darling—Kac
set and therefore T is pointwise dual ergodic (Theorem 3). Combining this with the estimates for
the wandering rate of B, we obtain our estimates for the return sequence of 7' (Theorem 4) as
well as the convergence to the Mittag—Leffler distribution (Corollary 8).

Further Conclusions.

We remark that, using standard techniques from infinite ergodic theory (cf. [Aa2], section 3.3.,
see also [De]), our main theorem allows to deduce the following interesting consequences for the
coding map T'.

e The map T is rationally ergodic with respect to v. That is, there exists a set A C L,(Q)
with 0 < v(A) < oo such that for all n € N,

n—1

/AZleT dV<<</ZleTdy> . (%)

i=0

e The map T has the following mixing property. For every A with v(4) < oo such that (x)
holds, we have for all U,V C A,

Tim ai z_: v(UNT™V) = v(U)p(V). (%)
™ i=0

Also, our analysis of T has some interesting consequences for the section map S.

e The map S is the natural extension of T (Proposition 3). Therefore, S is a topologically
mixing Markov map.

e The fact that S is invertible immediately implies that S cannot be pointwise dual ergodic
(cf. [Aa2]). However, since T is rationally ergodic and S is the natural extension of T,
we nevertheless have that S is rationally ergodic with respect to the associated canonical
measure ¥. Moreover, S has the mixing property as stated in (x*) with respect to # and
with respect to the same return sequence (a,).

e Combining the previous remark, Proposition 1 and the fact that S is conservative and er-
godic, a result of [HIK] gives that the geodesic flow on H/; is ergodic with respect to the
Liouville-Patterson measure. This is a special case of Sullivan’s result for general geometri-
cally finite hyperbolic manifolds (cf. [Sul]).

e The fact that S is conservative implies that for A such that 7(A) > 0, the induced map
S4 is well-defined. The map S4 is an alternative section map, and therefore it gives rise
to another representation of the geodesic flow by means of a special flow. In particular, for
a suitably chosen set A with 7(A4) < oo , the map S preserves a finite measure and the
associated Markov partition has infinitely many atoms.

We end this introduction by giving the following applications and remarks.

Applications to elementary number theory.
For this we employ the well-known relation between the regular continued fraction expansions
of real numbers and codings of geodesics on the three—sheated cover M of the modular surface (see
g. [Moe], [Sel], [Ha]). For M we have that the invariant measure is infinite and that the relevant
Mittag—Leffler distribution is of index 1. Using the fact that the hyperbolic area of M is equal to
m, a result of [Stal][Sta2] implies that the return sequence is given precisely by a,, = n/(12logn).
Combining this with Corollary 8, we obtain the following statement, where A denotes the Lebesgue
measure on the unit interval and [a;(£), a2(&), az(§),...] refers to the regular continued fraction



expansion of ¢ € [0,1]\ Q.
For every n € N and € > 0, we have that

log 2?21 2 (5)
Z?:1 ai(§)

2N -1

n—o0

lim A (5 €0,1] :

card{i : aAf)ZN,lSiSn}—%log( 2N >‘<e>:1.

Applications to statistics of cuspidal windings.

As an example we consider a group G for which ¢ < (k,.. + 1)/2. Let K be the subset of a
fundamental domain F' of G which corresponds to the thick part of the convex core of H/ . The
ray from the origin to any ¢ € L,.(G) is clearly covered by the G-orbit of F. For n € N, let k(&)
be the number of visits to G(K) after the ray has met n copies of F. Hence [,,(§) := n — kn(§)
denotes the number of cuspidal windings after n visits. An immediate application of the second
part of our main theorem gives rise to the following result.

There exist constants c1,cy > 0 depending on K such that for the Patterson measure u we have,
for all § € (0,00),

En©) 01 < Pos_ ((0,c2)).

Poj—t, ((0,¢10)) < lim p({€ € L (G) | (6%

Parabolic rational maps.

Finally we remark that results similar to the conclusions obtained in this paper were obtained
for parabolic rational maps in [ADU]. Therefore, a combination of our analysis with the results of
[ADU] gives a further extension of Sullivan’s famous dictionary translating between the theories
of Kleinian groups and rational maps (cf. [Su2]).
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1 Canonical coding and conformal measure theory

Codings of geodesics on hyperbolic surfaces were originally studied for instance by Artin, Hedlund
and Morse (see e.g. [Ar],[He],[HM],[Morl],[Mor2]). They considered the following two types of
codings. The first is based on the idea that an oriented geodesic can be coded by its successive
visits to G—images of a fundamental domain of G. The second type leads to a coding map which
is obtained by recording the positions of the G—orbits of the endpoints of a geodesic. For cofinite
Fuchsian groups this map was described in greater detail in [BS], where it was employed to derive
the well-known result of Hopf concerning the ergodicity of the geodesic flow on the underlying
surface (cf. [Ho]). Moreover, for geometrically finite Fuchsian groups a discussion of these two
types of codings was given in [Se2], where it was shown that they are topologically isomorphic.

Our first aim is to construct a Poincaré section for the geodesic flow associated with an essen-
tially free Kleinian groups G. Our construction is inspired by the methods in [Sel],[AF],[Stal],[Sta2].
Subsequently, we shall see that the associated section map is a measure theoretical analogue of
the coding obtained by the successive visits to copies of a fundamental domain. Also, it will turn
out that a factor of this map is a 3—dimensional version of the above coding map.

Geodesic flow and Liouville—Patterson measure. In order to introduce the Liouville-Patterson
measure, we first have to recall the notion of the Patterson measure p (for a detailed discussion of



u we refer to [Pa], [Sul], [Ni], [SV]). It is well known that p is a probability measure supported on
the limit set L(G). Furthermore, the measure p is §—conformal, that is for all g € G and ¢ € L(G)
we have the following identity, which relates the Radon—Nikodym derivative to the Poisson kernel
P,

dpog 1 s

= 0 .
O =P 0.0

Using the common representation {(¢,n,t) | &,n € IH, ¢ # n,t € R} for the unit tangent bun-
dle T'H, the Liouville-Patterson measure [i is a straight—forward generalisation of the Liouville
measure. Namely, with A referring to the Lebesgue measure on R,

N d d dX(t
e ) = OB D0

Since G is geometrically finite, the limit set L(G) splits into the radial limit set L,(G) and the
set of bounded parabolic fixed points of G, where the latter set is at most countable (cf. [BM]).
Since p is non—atomic, it then follows that u(L.(G)) = 1 and therefore,

T'H L {(€,0,0)| €1 € Lo(G), #n,t € R}.

Recall that G acts on T H and that fi is invariant under this action as well as under the action of
the geodesic flow. This gives rise to the projected Liouville-Patterson measure, which is invariant
under the geodesic flow (¢¢)ter on the quotient space Tl]HI/G. For ease of notation, this projected
measure will also be denoted by fi.

Canonical section maps. Let F be the Poincaré polyhedron as stated in the definition of
‘essentially free’. The polyhedron F' gives rise to a fundamental domain for the action of G on
T'H as follows. For &n € OH, let 7¢, : R — H refer to the directed geodesic from 7 to &
normalised such that ¢ ,(0) is the summit of ¢ ,. We now have that

T'H/G £ F/q, where F:={(€,n,1) | &1 € Ln(G), € # 0,4 (t) € CI(F)}.

Note that measure theoretically F coincides with F /. The only ambiguity occurs at the boundary
of F, which is a set of measure zero. For (£,n,t) € F, the entrance time tey and the exit time t£+n
are defined, where CI(-) denotes the closure in H, by

ten = inf{s | v¢,,(s) € CI(F)} and tg_,n = sup{s | v¢,,(s) € CI(F)}.
Since {,n € L, (G), we clearly have that |t | < oo and |t;n| < 00. We now define the set
Vi={(&n) [&n € Le(G),§ #nand It €R = v ,(t) € CI(F)},

as well as the measure 7 on Y by

(e, o= HELD

In order to construct a map S : Y — Y, we use the combinatorial structure of F' as follows.
Recall that by Poincaré’s polyhedron theorem (cf. [EP]), the set S of faces of F' carries an
involution & — &, which is given by s — s’ and s = s. Also, for each s € S there is a unique
face—pairing transformation g, € G such that g;(Cl(F)) N CI(F) = Cl(s'). The map S is then
defined by

S(&,m) = (95(£),9s(n)) for all (£,n) € Y such that 75,77(th) € s, for some s € S.

The following notion of a special flow and its section map is a measure theoretical analogue of
a suspension flow (cf. [AK]). For h : Y — R, measurable, the special flow (Y3, (¥¢)ter, 7 X A)
over S with height function A is given by

Yh = {(yae) | Yy € Y70 S 0 < h(y)} and '(/}t(yae) = (Sny70+t - hn(y))



In here, the number n € Z is uniquely determined, for (y,6) € Y, and t € R, by
ho(y) <O+t < hni1(y),

where we have set

0 for n=20
ha(y) = oo h(Sk(y) for n>1
— Yl h(SE(y)) for n<O.

In this situation the map S is called a section map for (;). Throughout, we consider exclusively
the special height function h, which is given by h(&,7) = th —tey

We now have the following result.

Proposition 1 The geodesic flow (T'H/ y, (¢1)icr, it) is measure theoretically isomorphic to the
special flow (Y, (Y1) ter, U X X) over the section map S with the special height function h.

Proof: The product structure of i gives the measure theoretical isomorphism
(T'H/ g, i) = (F, 7 x A).

Since F = {({,n,t) | (§,n) € Vit , <t < tg'n}, we also have the measure theoretical isomorphism

F =Y, (fﬂ?at) = (ganat - t;’?)'

Hence we have that (T'H/ ¢y, i) = (Y4, 7 X A). In order to obtain that the latter isomorphism
transfers the two flows into each other, we have to remove the following flow invariant set of
measure zero. This complication only occurs if G has parabolic elements of rank 2. Namely, we
have to remove the set of geodesics on H/ which intersect the projections of the faces of F' of
codimension 2. This gives rise to a set of measure zero, since in the presence of a rank 2 cusp we
always have that the Hausdorff dimension ¢ of L(G) exceeds 1 (recall that by [Bel], we have that
d > ky./2), and therefore the intersection of L(G) with any arbitrary circle in OH is necessarily of
Patterson measure zero. It follows that the section map S is well-defined on a set of full measure,
and that the two flows coincide on the corresponding sets of full measure. d

Combining the latter proposition and results of [AK] [HIK], we obtain the following result.

Corollary 1 The measure U is S—invariant. Moreover, the section map S is ergodic with respect
to U if and only if the geodesic flow is ergodic with respect to [i.

Markov coding. In this section we derive a Markov coding for the geodesic flow. For this we
show that the section map S admits a Markov partition. We introduce the following collection of
subsets of OH . For s € S, let H, refer to the closed hyperbolic halfspace for which F' C H; and
s C OH,;. We then define the projections ag of the side s to H by

a, = (Cl=(H,) N OH)° N L,(G).

If there are no parabolic fixed points of rank 2, then a; Na; = B for all distinct s, € S. Hence
by convexity of F', we have for £ € L,.(G) that ’V&n(tzn) € s if and only if £ € as. In other words,
S(&€,n) = (gs&,gsn) for all £ € as. This immediately gives that the projection 7 onto the first
coordinate of Y leads to a canonical factor T of S, that is we obtain the map T : L,.(G) — L,(G)
which is given by T|,, := gs and which has the property that m oS = T o 7. Since T'(as) =
gs(as) = (as)® N Ly (G), it follows that T is a non-invertible Markov map with respect to the
partition {as | s € S}. The image measure v := 7 o 7! is given by disintegration as follows, for
all s € S and £ € ay,
dp(y)

dv(§) = / =y dp(§).




Clearly, we have that v is T—invariant. Moreover, it will turn out that (Y,7,S) is the natural
extension of (L,(G),v,T). This will then imply that S is conservative and ergodic if and only if
T has these properties.

If there are parabolic points of rank 2, then S has no canonical factor. In this situation the idea
is to construct an invertible Markov map S which is isomorphic to S and which has a canonical
factor. We now introduce the following notation. Let P be the set of parabolic points given by
P := ClgF N L(G), let k(p) refer to the rank of p € P, let S, := {s € S| g, is parabolic }, and let
P;:={p€ P | k(p) =i} for i =1,2. Moreover, we define the set A C Y by

A=Y \{(&n) eY |{€as,n€a,s,t €Sy, for some p € Pr}.

For (¢,m) € Y \ A there exists p € P, and s,t € S, such that £ € a; and n € a;. Since p is a
repelling fixed point for the action of gs on ag, one easily verifies that there exists n € N such that
Sn(&,m) € A. Let ¢35 : Y — N refer to the first return time to A, which is given for (¢,7) € Y by

¢3(&m) :==min{n € N | 5"(&,n) € A}.

Since ¢%(&,m) < oo for all (§,7) € Y, we can now define the induced map S4 : A — A by

S
Sa(€m) =SP4 (€, n). i
In order to construct our Markov map S associated to S, we introduce the following convention

T U{(s,t)eprSp|asﬂat7é(Z),S7ét}—> U Sps

PEP> peEP:

where 7 has the properties that 7(s,t) = 7(t,s) € {s,t}, and 7(s,t) # 7(s,t') for (s,t) in the
domain of 7 (see Figure 1). With this convention, the map S is given by

Se o { €0 if € € ay\Uyes.ips at for some s € S
1) (9r (s 9r(s,yn) if € € as Nay for distinct s,t € S.

Note that S is defined on L,.(G) x L, (G) and invertible on {({,n) € as x a; | 5,t € S,asNa; = P}.
Moreover, the latter set is invariant under S. In order to relate S to S, we restrict S to the set

V= U S"A.

nEZ

By construction we then have that S(Y) = Y and that S|; is invertible. Also, by the same
argument as for S above, the first return time ¢35 of S to A is finite. It is then easy to see that
¢35 = ¢35 and that the induced map S, coincides with S4. Combining these observations, it
now follows that S and S are isomorphic, and that the invariant measure for S is given also by
dp(€)du(n)/|€ — n|?®. We are now able to extend our coding map T and its associated measure v
to the case in which there are rank 2 cusps. Namely, we define

T:L.(G) — L.(G)

¢ o gs& if fEas\UtE&#sat for some s € S
9r(s,)§ if § € asNay for distinet s,t € S

w(e) = /{ N Lﬂ)& au(e).

€y)EY} € -y

Proposition 2 The map T is a topological mizing Markov map with respect to the partition o
which is generated by {as | s € S}. Furthermore, the measure v is invariant under T.

Proof: Using the fact that two faces s,¢ € S intersect if and only if gs(p) = ¢:(p) = p for some
p € Py, we have the following complete description of the behaviour of an arbitrary atom b of the
partition a.



Case 1. If b = a4 for some s ¢ |J Sp, then T'(b) = gs(as) = a5 N Ly (G) = Uy ar-

PEP>
Case 2. If b = a, \ U, ., a+ for some s € S, and p € P>, then T'(b) = (a5, N Ly (G)) \ (au U aw).
In here, u refers to the element of S, for which u # s,s’. Note that in this situation we

have that gs(a,) = a, and gs(a.) = a,s. This follows since the stabiliser G}, of p is Abelian
and is generated by gs and g,. Furthermore, we have that b = a5 \ (a, U ay ), and hence

T(b) = gs(as \ (ay Uay)) = (a‘s:' N Lp(G)) \ (au U ay).
Case 8. If b = as N a; for some distinct s,t € S, and for some p € P, then T'(b) = ai(s’t), N ay.

In here, u refers to the element of S, for which u # 7(s,t) and u € {s,t}. The fact that T'(b)
is of this particular form follows as in the previous case.

It follows that T'(b) is measurable with respect to the o—field generated by a, for each b € a. Also,
recall that for every sequence (g,) of pairwise disjoint elements of G, the Euclidean diameter of
gn(F) tends to zero for n tending to infinity. Therefore, the diameters of the atoms of the refined
partition \/?Z) T~ *a (generated by T~*(«) for 0 < k < n) tend to zero for n tending to infinity.
Combining these observations with the fact that T'|y is injective for every b € «, it follows that T'
has the Markov property.

Finally, note that the incidence graph of T is explicitly given by the above description of the
images of the atoms of a. One easily verifies that this graph is aperiodic, which then implies that
T is topologically mixing. O

In order to link the properties of T' and S, we show that the map S is the natural extension of
T. For this we have to show that the projection 7 has the following properties (see e.g. [Aa2]).

(NE1l) roS=Torand vor ' =v
(NE2) /o2, S"(7 'a) is the Borel o—field of Y up to sets of measure zero.

Also, recall the notion of a cylinder set associated with «. Namely, for by, ..., b, € a such that
T'(b;) C by for all 4, let [by ...b,] refer to the cylinder of length n which is given by

[bi...bp] :={€ € L.(G) | T ¢ €b;forali=1,...,n}

Proposition 3 The map S is the natural extension of T.

Proof: By construction of T' and v, the properties in (NE1) are clearly satisfied. In order to
obtain (NE2), let [b; ...b,] denote some arbitrary cylinder, for b; € a for all i = 1,...,n. Also,
for each i let s; € S refer to face for which T'|,, = gs,. We then have, for m < n,

S™or M by...by] C T™([b1...bn)) X gs,. -+ g5, (aS))
= [bm+1---ba] X gs,, -+ 95,951 (as))
= [bmt1...bo] X (gs’2 "'gs;)il(as’l)-

Clearly, for suitably chosen n,m € N, the Euclidean diameter of the latter expression tends to
zero for n,m tending to infinity. O

Recall that the natural extension of the system (L,.(G),v,T) is uniquely determined up to an
isomorphism. Moreover, by a standard result in infinite ergodic theory (see e.g. [Aa2]), we have
the following corollary.

Corollary 2 The map T is conservative and ergodic with respect to v if and only if S has these
properties with respect to U. Moreover, T is rationally ergodic with respect to some return sequence
if and only if S is rationally ergodic with respect to the same return sequence.



2 Non—invertible Ergodic theory

2.1 Wandering rates

In this section we obtain some estimates for the wandering rates of the T—invariant measure v.
For this we first give some estimates for the measure v on certain fundamental cells associated
with the stabilisers of the parabolic points. Note that throughout this section we always assume
that the elements of P are fixed points of T'. This can be assumed without loss of generality, since
otherwise one simply replaces T by a suitable power of T'.

For p € P, let G), refer to the stabiliser of p and let (), be defined by

Qp = () a5 NL(G).

u€ES,

Lemma 1 Let h € G \ {id} such that dg(p, h(Qp)) < 1/n for some n € N.

e Ifp € Py, then we have
1

v(h(Qp)) = 201"

o Ifp € P, then we have

1 . .,
(h(Q,)) = { T if h(Qp) C asNay for distinct s,t € S,

# else.

Proof: Let h be given as stated in the lemma. For k(p) =1 and s € S such that h(Q),) C ay,
we have

{(&m eV 1€en@p)}=m@y) x | |J auu | 6(@y)
u¢Sy m=1

Using a well known estimate from hyperbolic geometry (cf. [Str], Lemma 2), it follows that
if £ € h(Qp) and n € gI"(Q)), for some m € N, then |£ —n| < % + % Also, by a result of [SV]
(Lemma 3.1) we have that u(¢g™(Q,)) < m~2°. Combining these observations, we obtain

v(h(Qp)) v | h(Qp) x U ay | + Z 7(h(Qp) % g5"(Qp))

ug¢S, meN
—26
= W@+ X (24 0) (@) ula (@)
meN

X

00
Zk72(5 +n725 = n72(5+1‘
k=n

For k(p) = 2, we first consider the case in which h(Q,) C asNa, for distinct s,t € S,. Assume
that 7(s,t) = s. We then have

{EmM eV Een@)=h@p) x| (] acnL.(G)

u€S,\{s'}

Clearly, we can now employ a similar argument as above to obtain the same estimate.
For the remaining case we have that 2(Qp) C (,es,\(s} @u \ @p for some s € S, Again, for
ease of notation, we assume that 7(s,t) = s. In this situation we have that (see Figure 1)

{(&m) €Y | €€ (@)} = h(Qp) x (af Naf N Ly(G)).
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Figure 1: A rank 2 cusp at p = oo.

Using the above observations concerning the geometry and the Patterson measure in a neighbour-

hood of p, we now have

v(h(Qp))

X

7 (h(Qp) x (a5 N ag)))
Z 7 (h(Qp) X 9(Qp))

9EGY
g(Qp)Cagma:,

1 1\ m 1
2 \atm) w

n—26+2.

Recall that the wandering rate of v with respect to a set A C L,.(G) is given by

wa(A) = v(J T™(4)).
m=0

For our purposes it is sufficient to investigate the behaviour of v around each of the parabolic
points. Therefore, we introduce the following set, for p € P and n € N,

B,m) = | U@y,

m=0 *1

where [ J,, refers to the union over all inverse branches T}, 7 of T™ fixing p. Also, let B C L,(G)
refer to the set which is given, for ng € N sufficiently large, by

B:= (] By(no) N L, (G).

peEP

Since B is bounded away from P, we have that 0 < v(B) < oco. Furthermore, by construction,

one easily verifies that

| 77™(B) = L.(G).
m=0
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Note that we shall see later that the set B is a Darling—Kac set for 7', which will then imply that T’
is pointwise dual ergodic with respect to v. For the following theorem, we consider the wandering
rate (wP (B)) associated with p € P, which is given by

wP (B) = v(Bp(no + n)).
Theorem 1 With the notation above we have, for alln € N and p € P,
nk@)=20+1 for § < (k(p) + 1)/2
wP(B) = logn for 6= (k(p)+1)/2
1 for 6> (k(p)+1)/2.

In particular, we hence have for the wandering rate w,(B) =} . pwh(B) of B that

nhme=20+1 for  § < (k.. +1)/2
wy(B) < < logn for §=(k,.+1)/2
1 for 6> (k,.+1)/2.

Proof: First note that for p € P, we have by Lemma 1, for each m € N,

S @) = Y (@) + Y rh(@) < Yy g <

heGyp, *9 *3 *9
dp(p,h(Qp))=< L

In here ) refers to the summation over all elements h € G, for which dg(p, h(Q,)) < 1/m and
h(Qp) C asNay for distinct s,¢ € Sp (clearly, ), then refers to the summation over the remaining
summands). Using this observation and once more Lemma 1, we now have

No+n

I/(U T ™B) = +Z Z Z v (@p))
m=0

pEP m=ng *i

no+n
< > 2 2 vh(@y)
peEP m=ng h€E€Gp,
ap(p,h(Qp))x &
no+n no+n
=YY Y et T Y s
pEP m=ngo h€Gp, pE P> m=ngo
dE(P-h(Qp))XE
D Pl
= To20—1
pEP m=ng m
nFme=2041 for  § < (k. +1)/2
= logn for 6= (k,.+1)/2
1 for 6> (k,..+1)/2.

As an immediate consequence of the latter theorem, we obtain the following result of [KS].
Corollary 3 The measure v is infinite if and only if § < (k... + 1)/2. Moreover, if G has parabolic

elements of rank 1 as well as of rank 2, then v gives finite mass to small neighbourhoods of the
parabolic fized points of rank 1.

11



2.2 Gibbs—Markov property and ergodicity

In this section we give a finer analysis for the induced map Tp. We show that Tg has the Gibbs—
Markov property with respect to vg, where vp refers to the restriction of v to B. Using standard
results from ergodic theory, this then allows to deduce that T is ergodic and that T is pointwise
dual ergodic and conservative.

In order to show that Ts has the Gibbs—Markov property with respect to vp, we have to
show that there exists a number 6 € (0,1) such that the following holds. For arbitrary cylinders
wy of length n and wsy of length m such that [ws] C TE([w1]), we have for vp—almost every pair
T,y € [w2]7

dvg o TR"
log %(m) —log

—-n
dvpg o TBM1

o (y)| < 0™

In here T, refers to the inverse branch of Ty which maps Tg([wi]) to [wi].

Theorem 2 The map Ty has the Gibbs—Markov property with respect to the measure vg.

Proof: Let wy,ws be given as above. We then have, for z,y € [ws],

. dvoTy ™ duoT="
LEE@) Gty ) ) )
log _— =log — + log — + log 2——.
dl/oTB‘u1 duoTB’(ﬂ d,uoTE,’wl ﬂ(y)
rramC)) anor=n - (¥) —a () dv
w1

We split the estimate of the modulus of this expression into separate parts according to the three
summands in the latter expression.

For the third summand, let Cp := max{|z —w| ™! | 2 € a; N B, w € (a;)¢,t € S}. Fors € S
such that [w;] C as, we then have

dv dv 1 dv
log —(x —log—y‘ = log/ ———du(n) —log —(y
du( ) du( ) (n: (@myevy 1z —nl* () du( )
1 |z —n + |z —y|\*° dv
< |log / ( du(n) —log —(y)
(s @myevy [y —nl* |z —nl dp

1 dv
< log [ (1+ Colz — yl)”/ —_du(n) | - log = (y)
( ’ {n:(z,n)eY} |y - 77|26 du

<L |z -yl

For the first summand, note that for 2 € [wi] we have (dv/du)(2) = (dvoTy ", [/duoTg?, )(T5z).
Therefore, for a suitably chosen @; of length n, the modulus of the first summand is bounded from
above by [Tz () — Tg', (y)], which is clearly less than |z — y|.

For the second summand, let g,, be the element of G which corresponds to ngl. Now
observe that by the triangle inequality we have [g;!(0) — z| < |9, }(0) — y| + |z — y|. Moreover,
by construction of B, there exists a constant C; such that |g;!(0) — z| > Ci, for all z € [w,].
Therefore, it follows that

1 0 _ _
|g°ill( ) =yl <14 Jf y|
|gw1 (0) - :E| |gw1 (0) - :L”|

<1+ Cilz -yl

12



Combining this observation with the d—conformality of u, we now have

Apoge

du (ZL”) _ ,P(gujll (0)7x)
log———| = Jd|log —
o (y) P(ga, (0),9)
195, (0) — ¥
= §|log ————
gw11(0) - :E|
< dllog(1+ Cilz —yl)]
<L |z -yl

Finally, by uniform expansiveness of Tg, we have that there exists a constant 8 depending on the
choice of B, such that |z — y| < 8™. This completes the proof. O

The following two statements can be deduced immediately from the proof of the previous
proposition. They are not essential for the purposes of this paper, nevertheless they might be of
interest elsewhere.

Corollary 4 The map Tp has the Gibbs—Markov property with respect to the Patterson measure
restricted to B.

Corollary 5 The logarithm of the density Z—Z is Lipschitz continuous on B.

The Gibbs—Markov property of Ts with respect to vg allows to employ the following standard
chain of arguments from ergodic theory, where it is well known that (i) = --- = (iv) (cf. [Aa2],
[ADUJ, [Th]).

(i) Tg has the Gibbs—Markov property with respect to the invariant measure vp.

(ii) For the dual operator T there exists p € (0,1) such that for all f € L'(B) and n € N, we
<L P fle-

have
‘fﬁf - [ an
B L

Here || - ||1, refers to the Lipschitz norm (see e.g. [ADU], p. 541).

(#¢) Tp is continued fraction mixing (see e.g. [ADU], p. 500).

(4v) The set B is a Darling-Kac set for 7. This means that there exists a sequence (an)nen such
that

1 n—1 .
— Z T'1p(xz) — v(B) uniformly for v a.e. z € B.
an <

i=0

The sequence (a,) is usually referred to as the return sequence of T'.

Using [Aa2] (Proposition 3.7.5), we can now complete this chain of arguments and obtain the
following result.

Theorem 3 The map T is pointwise dual ergodic with respect to v. That is, with (an)nen referring
to the return sequence of T', we have

1 nflA
—ZT’f—)/fdu for all f € L'(v).
=0

an &

In particular, we also have the following immediate consequences (cf. [Aa2]).

13



Corollary 6 The map T is rationally ergodic with respect to v. That is, there exists a set A C
L,.(G) with 0 < v(A) < oo such that for all n € N,

A(;1A0Ti)2du< (/A;leTidu> : (%)

Corollary 7 The map T has the following mizing property. For A with v(A) < oo such that ()
holds, we have for oll U,V C A,

n—1

1 .
lim — 3 T=iv) = _
Jim i 2 v(UNTV) =v(U)v(V)

The results of Theorem 1 concerning the wandering rate w,(B) of B now allow to determine
the return sequence (a,) of T explicitly. For this recall that a sequence (s,) is called a regularly
varying sequence with index of variation & if lim;, 00 Spm/$m = 1", for all n € N. Using Theorem
1, one easily verifies that (w,(B)) is a regularly varying sequence with index of variation a given
by

a =max{0;k,.. — 25 + 1}.

Since T is pointwise dual ergodic and B is a Darling—Kac set, we may now apply a result of [Aa2]
(3.8.7), which gives
n

r2—-a)r(l+a)

G Wy (B) ~

Therefore, combining this result and our estimates for w,(B) in Theorem 1, we now obtain the
following theorem.

Theorem 4 For the return sequence (a,) of T we have, for each n € N,

n20—kmas for 6 < (kmm + 1)/2
an << n/logn for 6= (kn.+1)/2
n for 0> (k,..+1)/2.

Clearly, the sequence a,, is also a regularly varying sequence. A straight—forward calculation
shows that its index of variation f is given by

B =min{1,26 — k,..}.

Applying a result of [Aal] (Theorem 1), we can now conclude that for 8 € [0, 1], the ergodic sums
Sn(f)/an have the following remarkable statistical behaviour. Note that for 8 ¢ [0, 1], the measure
v is finite and hence the behaviour of these sums is given by Birkhoff’s Theorem as stated in the
first part of our main theorem.

Corollary 8 For§ < (k,..+1)/2 we have for f € L! (v) that the ergodic sums Sy, (f)/a, converge
strongly distributional to the Mittag—Leffler distribution Ys of index 5. That is, we have that

1 n—1 d
=N for GELY Yﬁ/ fdv.
an L (G)

i=0

Note that the upper bound of the domain where these distributional laws hold is precisely
(ke +1)/2. By a result of [KS], this value coincides with the value at which the system exhibits
a thermodynamical phase transition.

14
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