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Abstra
t

In this paper we study in�nite ergodi
 theory for limit sets of essentially free Kleinian

groups whi
h may have paraboli
 elements of arbitrary rank. By adapting a method of Adler,

we 
onstru
t a se
tion map S for the geodesi
 
ow on the asso
iated hyperboli
 manifold. We

then show that this map has the Markov property and that it is 
onservative and ergodi
 with

respe
t to the invariant measure indu
ed by the Liouville{Patterson measure. Furthermore,

we obtain that S is rationally ergodi
 with respe
t to di�erent types of return sequen
es (a

n

),

whi
h are governed by the exponent of 
onvergen
e Æ and the maximal possible rank k

max

of

the paraboli
 elements of the group as follows

a

n

�

8

<

:

n

2Æ�k

max

for Æ < (k

max

+ 1)=2

n= log n for Æ = (k

max

+ 1)=2

n for Æ > (k

max

+ 1)=2:

Subsequently, we give a dis
ussion of an asso
iated 
anoni
al map T whi
h is an analogue of

the Bowen{Series map in the Fu
hsian 
ase. We show that T is pointwise dual ergodi
 with

respe
t to these return sequen
es (a

n

), whi
h then allows to determine the index of variation

� = minf1; 2Æ � k

max

g, and to dedu
e that the ergodi
 sums S

n

(f)=a

n


onverge strongly

distributional to the Mittag-Le�er distribution of index �. We then give appli
ations to

number theory and to the statisti
s of 
uspidal windings. Also, as a 
orollary we obtain a

spe
ial 
ase of Sullivan's result that the geodesi
 
ow on a geometri
ally �nite hyperboli


manifold is ergodi
 with respe
t to the Liouville{Patterson measure.

Introdu
tion and statement of main results

In this paper we study the a
tion of a Kleinian group on its limit set by using methods from

non{invertible in�nite ergodi
 theory. Re
all that a Kleinian group is a dis
rete subgroup of

the group of orientation preserving isometries of hyperboli
 3{spa
e H

3

= H (for whi
h we shall

mainly use the Poin
ar�e ball model equipped with the hyperboli
 metri
 d = d

H

(see e.g. [Be2℄)).

Throughout, we ex
lusively 
onsider essentially free Kleinian groups G, that is we assume that G

admits the 
hoi
e of a Poin
ar�e polyhedron F (
f. [Ma℄) with �nitely many fa
es su
h that if two

fa
es s and t of F interse
t inside H , then the two asso
iated generators g

s

and g

t

of G 
ommute.

By Poin
ar�e's theorem (
f. [EP℄), we hen
e have that an essentially free Kleinian group has no

relations other than those whi
h originate from 
usps of rank 2. Also, note that groups in this


lass are in parti
ular geometri
ally �nite.

Our �rst aim is to 
onstru
t a 
oding map T asso
iated with G. This 
onstru
tion generalises

the well{known Bowen{Series map (
f. [BS℄ [Sta1℄) to Kleinian groups of the se
ond kind, that is

to groups G whose limit set L(G) does not 
oin
ide with the whole boundary �H of hyperboli


spa
e. In parti
ular, T is an endomorphism of the radial limit set L

r

(G), whi
h is the interse
tion

of L(G) with the 
omplement of the set of paraboli
 �xed points of G.

In order to obtain a 
anoni
al T{invariant measure �, we then employ the well{known Patter-

son measure and its asso
iated Liouville{Patterson measure (
f. [Pa℄ [Su1℄). More pre
isely, by

spe
ifying a Poin
ar�e se
tion, we show how to obtain a measure ~� whi
h is invariant under the

�rst{return map S. The map S will also be referred to as a se
tion map. It then turns out that

T is a fa
tor of S, and we obtain our measure � by a straight{forward disintegration pro
edure.
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The following theorem gives the main results of this paper. In here k

max

refers to the maximal

possible rank of the paraboli
 �xed points of G, and Æ = Æ(G) denotes the exponent of 
onvergen
e

of G, that is the abzissa of 
onvergen
e of the Poin
ar�e series

X

g2G

exp(�sd(0; g(0))):

Main Theorem

The 
oding map T : L

r

(G) ! L

r

(G) is a is a topologi
ally mixing Markov map whi
h is 
onser-

vative and ergodi
 with respe
t to �. If G has no paraboli
 elements, then � is �nite. If G has

paraboli
 elements, then � is in�nite if and only if Æ � (k

max

+1)=2. Moreover, the following holds.

In here

b

T refers to the dual of T .

1. If � is �nite then the return sequen
e (a

n

) of T is given by Birkho�'s theorem. That is

a

n

= n for all n 2 N, and

�

1

n

n�1

X

k=0

f Æ T

k

!

1

�(L

r

(G))

Z

fd� for all f 2 L

1

(�) and �{a.e. ;

�

1

n

n�1

X

k=0

b

T

k

(f)!

1

�(L

r

(G))

Z

fd� for all f 2 L

1

(�) and �{a.e. :

2. If � is in�nite, then T is pointwise dual ergodi
 with respe
t to �. In this 
ase the return

sequen
e (a

n

) is given by

a

n

�

�

n

2Æ�k

max

for Æ <

k

max

+1

2

n

logn

for Æ =

k

max

+1

2

:

In parti
ular we hen
e have, where Y

�

refers to the Mittag{Le�er distribution of index

� := 2Æ � k

max

and `s.d.' to strong distributional 
onvergen
e,

�

1

a

n

n�1

X

i=0

f Æ T

i

s.d.

�! Y

�

Z

fd� for all f 2 L

1

(�) and f � 0;

�

1

a

n

n�1

X

k=0

b

T

k

(f)!

Z

fd� for all f 2 L

1

(�) and �{a.e. :

The reader might like to re
all that Y

�

is given in terms of its generating fun
tion by

E(e

zY

�

) =

1

X

n=0

(�(1 + �))

n

�(1 + �n)

z

n

for z 2 C :

In parti
ular, for Æ = (k

max

+ 1)=2 we have that � = 1, and therefore that Y

1

= 1. Furthermore,

for Æ = (2k

max

+ 1)=4 the 
orresponding distribution of Y

1=2

is half{Gaussian. Also, re
all that

the strong distributional 
onvergen
e as stated in the theorem means that for every probability

measurem absolutely 
ontinuous with respe
t to �, we have the following weak 
onvergen
e, where

P

�

denotes the distribution of Y

�

([Aa2℄, p. 112),

m Æ

 

1

a

n

n�1

X

i=0

f Æ T

i

!

�1

weak

�! P

�

Z

fd�:

For the proof of the theorem, we �rst show that the 
oding map T is a topologi
ally mixing

Markov map (Proposition 2). We then give some estimates for the measure � (Lemma 1), whi
h

then allow to determine the wandering rate for a 
ertain set B of �nite measure (Theorem 1).
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This gives that the indu
ed map T

B

is well{de�ned (implying that T is 
onservative), as well as

the 
riterium for the �niteness of �. We then show that T

B

has the Gibbs{Markov property with

respe
t to the measure � restri
ted to B (Theorem 2), whi
h then implies that T

B

is ergodi
 and

hen
e that T is ergodi
. Furthermore, the Gibbs{Markov property gives that B is a Darling{Ka


set and therefore T is pointwise dual ergodi
 (Theorem 3). Combining this with the estimates for

the wandering rate of B, we obtain our estimates for the return sequen
e of T (Theorem 4) as

well as the 
onvergen
e to the Mittag{Le�er distribution (Corollary 8).

Further Con
lusions.

We remark that, using standard te
hniques from in�nite ergodi
 theory (
f. [Aa2℄, se
tion 3.3.,

see also [De℄), our main theorem allows to dedu
e the following interesting 
onsequen
es for the


oding map T .

� The map T is rationally ergodi
 with respe
t to �. That is, there exists a set A � L

r

(G)

with 0 < �(A) <1 su
h that for all n 2 N,

Z

A

(

n�1

X

i=0

1

A

Æ T

i

)

2

d� �

 

Z

A

n�1

X

i=0

1

A

Æ T

i

d�

!

2

: (�)

� The map T has the following mixing property. For every A with �(A) < 1 su
h that (�)

holds, we have for all U; V � A,

lim

n!1

1

a

n

n�1

X

i=0

�(U \ T

�i

V ) = �(U)�(V ): (��)

Also, our analysis of T has some interesting 
onsequen
es for the se
tion map S.

� The map S is the natural extension of T (Proposition 3). Therefore, S is a topologi
ally

mixing Markov map.

� The fa
t that S is invertible immediately implies that S 
annot be pointwise dual ergodi


(
f. [Aa2℄). However, sin
e T is rationally ergodi
 and S is the natural extension of T ,

we nevertheless have that S is rationally ergodi
 with respe
t to the asso
iated 
anoni
al

measure ~�. Moreover, S has the mixing property as stated in (��) with respe
t to ~� and

with respe
t to the same return sequen
e (a

n

).

� Combining the previous remark, Proposition 1 and the fa
t that S is 
onservative and er-

godi
, a result of [HIK℄ gives that the geodesi
 
ow on H =

G

is ergodi
 with respe
t to the

Liouville{Patterson measure. This is a spe
ial 
ase of Sullivan's result for general geometri-


ally �nite hyperboli
 manifolds (
f. [Su1℄).

� The fa
t that S is 
onservative implies that for A su
h that ~�(A) > 0, the indu
ed map

S

A

is well{de�ned. The map S

A

is an alternative se
tion map, and therefore it gives rise

to another representation of the geodesi
 
ow by means of a spe
ial 
ow. In parti
ular, for

a suitably 
hosen set A with ~�(A) < 1 , the map S

A

preserves a �nite measure and the

asso
iated Markov partition has in�nitely many atoms.

We end this introdu
tion by giving the following appli
ations and remarks.

Appli
ations to elementary number theory.

For this we employ the well{known relation between the regular 
ontinued fra
tion expansions

of real numbers and 
odings of geodesi
s on the three{sheated 
overM of the modular surfa
e (see

e.g. [Moe℄, [Se1℄, [Ha℄). ForM we have that the invariant measure is in�nite and that the relevant

Mittag{Le�er distribution is of index 1. Using the fa
t that the hyperboli
 area of M is equal to

�, a result of [Sta1℄[Sta2℄ implies that the return sequen
e is given pre
isely by a

n

= n=(12 logn).

Combining this with Corollary 8, we obtain the following statement, where � denotes the Lebesgue

measure on the unit interval and [a

1

(�); a

2

(�); a

2

(�); : : :℄ refers to the regular 
ontinued fra
tion
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expansion of � 2 [0; 1℄ n Q.

For every n 2 N and � > 0, we have that

lim

n!1

�

�

� 2 [0; 1℄ :

�

�

�

�

log

P

n

i=1

a

i

(�)

P

n

i=1

a

i

(�)


ardfi : a

i

(�) � N; 1 � i � ng �

1

3

log

�

2N

2N � 1

�

�

�

�

�

< �

�

= 1:

Appli
ations to statisti
s of 
uspidal windings.

As an example we 
onsider a group G for whi
h Æ < (k

max

+ 1)=2. Let K be the subset of a

fundamental domain F of G whi
h 
orresponds to the thi
k part of the 
onvex 
ore of H =

G

. The

ray from the origin to any � 2 L

r

(G) is 
learly 
overed by the G{orbit of F . For n 2 N, let k

n

(�)

be the number of visits to G(K) after the ray has met n 
opies of F . Hen
e l

n

(�) := n � k

n

(�)

denotes the number of 
uspidal windings after n visits. An immediate appli
ation of the se
ond

part of our main theorem gives rise to the following result.

There exist 
onstants 


1

; 


2

> 0 depending on K su
h that for the Patterson measure � we have,

for all � 2 (0;1),

P

2Æ�k

max

((0; 


1

�)) � lim

n!1

�(f� 2 L

r

(G) j

k

n

(�)

l

n

(�)

2Æ�k

max

< �g) � P

2Æ�k

max

((0; 


2

�)):

Paraboli
 rational maps.

Finally we remark that results similar to the 
on
lusions obtained in this paper were obtained

for paraboli
 rational maps in [ADU℄. Therefore, a 
ombination of our analysis with the results of

[ADU℄ gives a further extension of Sullivan's famous di
tionary translating between the theories

of Kleinian groups and rational maps (
f. [Su2℄).
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1 Canoni
al 
oding and 
onformal measure theory

Codings of geodesi
s on hyperboli
 surfa
es were originally studied for instan
e by Artin, Hedlund

and Morse (see e.g. [Ar℄,[He℄,[HM℄,[Mor1℄,[Mor2℄). They 
onsidered the following two types of


odings. The �rst is based on the idea that an oriented geodesi
 
an be 
oded by its su

essive

visits to G{images of a fundamental domain of G. The se
ond type leads to a 
oding map whi
h

is obtained by re
ording the positions of the G{orbits of the endpoints of a geodesi
. For 
o�nite

Fu
hsian groups this map was des
ribed in greater detail in [BS℄, where it was employed to derive

the well{known result of Hopf 
on
erning the ergodi
ity of the geodesi
 
ow on the underlying

surfa
e (
f. [Ho℄). Moreover, for geometri
ally �nite Fu
hsian groups a dis
ussion of these two

types of 
odings was given in [Se2℄, where it was shown that they are topologi
ally isomorphi
.

Our �rst aim is to 
onstru
t a Poin
ar�e se
tion for the geodesi
 
ow asso
iated with an essen-

tially free Kleinian groupsG. Our 
onstru
tion is inspired by the methods in [Se1℄,[AF℄,[Sta1℄,[Sta2℄.

Subsequently, we shall see that the asso
iated se
tion map is a measure theoreti
al analogue of

the 
oding obtained by the su

essive visits to 
opies of a fundamental domain. Also, it will turn

out that a fa
tor of this map is a 3{dimensional version of the above 
oding map.

Geodesi
 
ow and Liouville{Patterson measure. In order to introdu
e the Liouville{Patterson

measure, we �rst have to re
all the notion of the Patterson measure � (for a detailed dis
ussion of
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� we refer to [Pa℄, [Su1℄, [Ni℄, [SV℄). It is well known that � is a probability measure supported on

the limit set L(G). Furthermore, the measure � is Æ{
onformal, that is for all g 2 G and � 2 L(G)

we have the following identity, whi
h relates the Radon{Nikodym derivative to the Poisson kernel

P ,

d� Æ g

d�

(�) = P(g

�1

(0); �)

Æ

:

Using the 
ommon representation f(�; �; t) j �; � 2 �H ; � 6= �; t 2 Rg for the unit tangent bun-

dle T

1

H , the Liouville{Patterson measure ~� is a straight{forward generalisation of the Liouville

measure. Namely, with � referring to the Lebesgue measure on R,

d~�(�; �; t) :=

d�(�) d�(�) d�(t)

j� � �j

2Æ(G)

:

Sin
e G is geometri
ally �nite, the limit set L(G) splits into the radial limit set L

r

(G) and the

set of bounded paraboli
 �xed points of G, where the latter set is at most 
ountable (
f. [BM℄).

Sin
e � is non{atomi
, it then follows that �(L

r

(G)) = 1 and therefore,

T

1

H

~�

= f(�; �; t) j �; � 2 L

r

(G); � 6= �; t 2 Rg:

Re
all that G a
ts on T

1

H and that ~� is invariant under this a
tion as well as under the a
tion of

the geodesi
 
ow. This gives rise to the proje
ted Liouville{Patterson measure, whi
h is invariant

under the geodesi
 
ow (�

t

)

t2R

on the quotient spa
e T

1

H =

G

. For ease of notation, this proje
ted

measure will also be denoted by ~�.

Canoni
al se
tion maps. Let F be the Poin
ar�e polyhedron as stated in the de�nition of

`essentially free'. The polyhedron F gives rise to a fundamental domain for the a
tion of G on

T

1

H as follows. For �; � 2 �H , let 


�;�

: R ! H refer to the dire
ted geodesi
 from � to �

normalised su
h that 


�;�

(0) is the summit of 


�;�

. We now have that

T

1

H =

G

~�

= F=

G

; where F := f(�; �; t) j �; � 2 L

r

(G); � 6= �; 


�;�

(t) 2 Cl(F )g:

Note that measure theoreti
allyF 
oin
ides with F=

G

. The only ambiguity o

urs at the boundary

of F , whi
h is a set of measure zero. For (�; �; t) 2 F , the entran
e time t

�

�;�

and the exit time t

+

�;�

are de�ned, where Cl(�) denotes the 
losure in H , by

t

�

�;�

:= inffs j 


�;�

(s) 2 Cl(F )g and t

+

�;�

:= supfs j 


�;�

(s) 2 Cl(F )g:

Sin
e �; � 2 L

r

(G), we 
learly have that jt

�

�;�

j <1 and jt

+

�;�

j <1. We now de�ne the set

Y := f(�; �) j �; � 2 L

r

(G); � 6= � and 9 t 2 R : 


�;�

(t) 2 Cl(F )g;

as well as the measure ~� on Y by

d~�(�; �) :=

d�(�)d�(�)

j� � �j

2Æ

:

In order to 
onstru
t a map S : Y ! Y , we use the 
ombinatorial stru
ture of F as follows.

Re
all that by Poin
ar�e's polyhedron theorem (
f. [EP℄), the set S of fa
es of F 
arries an

involution S ! S, whi
h is given by s 7! s

0

and s

00

= s. Also, for ea
h s 2 S there is a unique

fa
e{pairing transformation g

s

2 G su
h that g

s

(Cl(F )) \ Cl(F ) = Cl(s

0

). The map S is then

de�ned by

S(�; �) := (g

s

(�); g

s

(�)) for all (�; �) 2 Y su
h that 


�;�

(t

+

�;�

) 2 s, for some s 2 S:

The following notion of a spe
ial 
ow and its se
tion map is a measure theoreti
al analogue of

a suspension 
ow (
f. [AK℄). For h : Y ! R

+

measurable, the spe
ial 
ow (Y

h

; ( 

t

)

t2R

; ~� � �)

over S with height fun
tion h is given by

Y

h

:= f(y; �) j y 2 Y; 0 � � < h(y)g and  

t

(y; �) := (S

n

y; � + t� h

n

(y)):
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In here, the number n 2 Z is uniquely determined, for (y; �) 2 Y

h

and t 2 R, by

h

n

(y) � � + t < h

n+1

(y);

where we have set

h

n

(y) :=

8

<

:

0 for n = 0

P

n�1

k=0

h(S

k

(y)) for n � 1

�

P

�1

k=n

h(S

k

(y)) for n < 0:

In this situation the map S is 
alled a se
tion map for ( 

t

). Throughout, we 
onsider ex
lusively

the spe
ial height fun
tion h, whi
h is given by h(�; �) := t

+

�;�

� t

�

�;�

.

We now have the following result.

Proposition 1 The geodesi
 
ow (T

1

H =

G

; (�

t

)

t2R

; ~�) is measure theoreti
ally isomorphi
 to the

spe
ial 
ow (Y

h

; ( 

t

)

t2R

; ~� � �) over the se
tion map S with the spe
ial height fun
tion h.

Proof: The produ
t stru
ture of ~� gives the measure theoreti
al isomorphism

(T

1

H =

G

; ~�)

�

=

(F ; ~� � �):

Sin
e F = f(�; �; t) j (�; �) 2 Y; t

�

�;�

� t � t

+

�;�

g, we also have the measure theoreti
al isomorphism

F ! Y

h

; (�; �; t) 7! (�; �; t� t

�

�;�

):

Hen
e we have that (T

1

H =

G

; ~�)

�

=

(Y

h

; ~� � �). In order to obtain that the latter isomorphism

transfers the two 
ows into ea
h other, we have to remove the following 
ow invariant set of

measure zero. This 
ompli
ation only o

urs if G has paraboli
 elements of rank 2. Namely, we

have to remove the set of geodesi
s on H =

G

whi
h interse
t the proje
tions of the fa
es of F of


odimension 2. This gives rise to a set of measure zero, sin
e in the presen
e of a rank 2 
usp we

always have that the Hausdor� dimension Æ of L(G) ex
eeds 1 (re
all that by [Be1℄, we have that

Æ > k

max

=2), and therefore the interse
tion of L(G) with any arbitrary 
ir
le in �H is ne
essarily of

Patterson measure zero. It follows that the se
tion map S is well{de�ned on a set of full measure,

and that the two 
ows 
oin
ide on the 
orresponding sets of full measure. �

Combining the latter proposition and results of [AK℄ [HIK℄, we obtain the following result.

Corollary 1 The measure ~� is S{invariant. Moreover, the se
tion map S is ergodi
 with respe
t

to ~� if and only if the geodesi
 
ow is ergodi
 with respe
t to ~�.

Markov 
oding. In this se
tion we derive a Markov 
oding for the geodesi
 
ow. For this we

show that the se
tion map S admits a Markov partition. We introdu
e the following 
olle
tion of

subsets of �H . For s 2 S, let H

s

refer to the 
losed hyperboli
 halfspa
e for whi
h F � H

s

and

s � �H

s

. We then de�ne the proje
tions a

s

of the side s to �H by

a

s

:= (Cl

H

(H

s

) \ �H )




\ L

r

(G):

If there are no paraboli
 �xed points of rank 2, then a

s

\ a

t

= ; for all distin
t s; t 2 S. Hen
e

by 
onvexity of F , we have for � 2 L

r

(G) that 


�;�

(t

+

�;�

) 2 s if and only if � 2 a

s

. In other words,

S(�; �) = (g

s

�; g

s

�) for all � 2 a

s

. This immediately gives that the proje
tion � onto the �rst


oordinate of Y leads to a 
anoni
al fa
tor T of S, that is we obtain the map T : L

r

(G)! L

r

(G)

whi
h is given by T j

a

s

:= g

s

and whi
h has the property that � Æ S = T Æ �. Sin
e T (a

s

) =

g

s

(a

s

) = (a

s

0

)




\ L

r

(G), it follows that T is a non{invertible Markov map with respe
t to the

partition fa

s

j s 2 Sg. The image measure � := ~� Æ �

�1

is given by disintegration as follows, for

all s 2 S and � 2 a

s

,

d�(�) =

Z

a




s

d�(y)

j� � yj

2Æ

d�(�):
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Clearly, we have that � is T{invariant. Moreover, it will turn out that (Y; ~�; S) is the natural

extension of (L

r

(G); �; T ). This will then imply that S is 
onservative and ergodi
 if and only if

T has these properties.

If there are paraboli
 points of rank 2, then S has no 
anoni
al fa
tor. In this situation the idea

is to 
onstru
t an invertible Markov map

~

S whi
h is isomorphi
 to S and whi
h has a 
anoni
al

fa
tor. We now introdu
e the following notation. Let P be the set of paraboli
 points given by

P := Cl

H

F \L(G), let k(p) refer to the rank of p 2 P , let S

p

:= fs 2 S j g

s

is paraboli
 g, and let

P

i

:= fp 2 P j k(p) = ig for i = 1; 2. Moreover, we de�ne the set A � Y by

A := Y n f(�; �) 2 Y j � 2 a

s

; � 2 a

t

; s; t 2 S

p

for some p 2 P

2

g:

For (�; �) 2 Y n A there exists p 2 P

2

and s; t 2 S

p

su
h that � 2 a

s

and � 2 a

t

. Sin
e p is a

repelling �xed point for the a
tion of g

s

on a

s

, one easily veri�es that there exists n 2 N su
h that

S

n

(�; �) 2 A. Let �

S

A

: Y ! N refer to the �rst return time to A, whi
h is given for (�; �) 2 Y by

�

S

A

(�; �) := minfn 2 N j S

n

(�; �) 2 Ag:

Sin
e �

S

A

(�; �) < 1 for all (�; �) 2 Y , we 
an now de�ne the indu
ed map S

A

: A ! A by

S

A

(�; �) := S

�

S

A

(�;�)

(�; �).

In order to 
onstru
t our Markov map

~

S asso
iated to S, we introdu
e the following 
onvention

� :

[

p2P

2

f(s; t) 2 S

p

� S

p

j a

s

\ a

t

6= ;; s 6= tg !

[

p2P

2

S

p

;

where � has the properties that �(s; t) = �(t; s) 2 fs; tg, and �(s; t) 6= �(s; t

0

) for (s; t) in the

domain of � (see Figure 1). With this 
onvention, the map

~

S is given by

~

S(�; �) :=

�

(g

s

�; g

s

�) if � 2 a

s

n

S

t2S;t6=s

a

t

for some s 2 S

(g

�(s;t)

�; g

�(s;t)

�) if � 2 a

s

\ a

t

for distin
t s; t 2 S:

Note that

~

S is de�ned on L

r

(G)�L

r

(G) and invertible on f(�; �) 2 a

s

�a

t

j s; t 2 S; a

s

\a

t

= ;g.

Moreover, the latter set is invariant under

~

S. In order to relate

~

S to S, we restri
t

~

S to the set

~

Y :=

[

n2Z

~

S

n

A:

By 
onstru
tion we then have that

~

S(

~

Y ) =

~

Y and that

~

Sj

~

Y

is invertible. Also, by the same

argument as for S above, the �rst return time �

~

S

A

of

~

S to A is �nite. It is then easy to see that

�

~

S

A

= �

S

A

and that the indu
ed map

~

S

A


oin
ides with S

A

. Combining these observations, it

now follows that S and

~

S are isomorphi
, and that the invariant measure for

~

S is given also by

d�(�)d�(�)=j� � �j

2Æ

. We are now able to extend our 
oding map T and its asso
iated measure �

to the 
ase in whi
h there are rank 2 
usps. Namely, we de�ne

T : L

r

(G) ! L

r

(G)

� 7!

�

g

s

� if � 2 a

s

n

S

t2S;t6=s

a

t

for some s 2 S

g

�(s;t)

� if � 2 a

s

\ a

t

for distin
t s; t 2 S

d�(�) :=

Z

fy : (�;y)2

~

Y g

d�(y)

j� � yj

2Æ

d�(�):

Proposition 2 The map T is a topologi
al mixing Markov map with respe
t to the partition �

whi
h is generated by fa

s

j s 2 Sg. Furthermore, the measure � is invariant under T .

Proof: Using the fa
t that two fa
es s; t 2 S interse
t if and only if g

s

(p) = g

t

(p) = p for some

p 2 P

2

, we have the following 
omplete des
ription of the behaviour of an arbitrary atom b of the

partition �.

7



Case 1. If b = a

s

for some s =2

S

p2P

2

S

p

, then T (b) = g

s

(a

s

) = a




s

0

\ L

r

(G) =

S

t6=s

0

a

t

.

Case 2. If b = a

s

n

S

t6=s

a

t

for some s 2 S

p

and p 2 P

2

, then T (b) = (a




s

0

\ L

r

(G)) n (a

u

[ a

u

0

).

In here, u refers to the element of S

p

for whi
h u 6= s; s

0

. Note that in this situation we

have that g

s

(a

u

) = a

u

and g

s

(a

u

0

) = a

u

0

. This follows sin
e the stabiliser G

p

of p is Abelian

and is generated by g

s

and g

u

. Furthermore, we have that b = a

s

n (a

u

[ a

u

0

), and hen
e

T (b) = g

s

(a

s

n (a

u

[ a

u

0

)) = (a




s

0

\ L

r

(G)) n (a

u

[ a

u

0

).

Case 3. If b = a

s

\ a

t

for some distin
t s; t 2 S

p

and for some p 2 P

2

, then T (b) = a




�(s;t)

0

\ a

u

.

In here, u refers to the element of S

p

for whi
h u 6= �(s; t) and u 2 fs; tg. The fa
t that T (b)

is of this parti
ular form follows as in the previous 
ase.

It follows that T (b) is measurable with respe
t to the �{�eld generated by �, for ea
h b 2 �. Also,

re
all that for every sequen
e (g

n

) of pairwise disjoint elements of G, the Eu
lidean diameter of

g

n

(F ) tends to zero for n tending to in�nity. Therefore, the diameters of the atoms of the re�ned

partition

W

n�1

k=0

T

�k

� (generated by T

�k

(�) for 0 � k < n) tend to zero for n tending to in�nity.

Combining these observations with the fa
t that T j

b

is inje
tive for every b 2 �, it follows that T

has the Markov property.

Finally, note that the in
iden
e graph of T is expli
itly given by the above des
ription of the

images of the atoms of �. One easily veri�es that this graph is aperiodi
, whi
h then implies that

T is topologi
ally mixing. �

In order to link the properties of T and

~

S, we show that the map S is the natural extension of

T . For this we have to show that the proje
tion � has the following properties (see e.g. [Aa2℄).

(NE1) � Æ

~

S = T Æ � and ~� Æ �

�1

= �

(NE2)

W

1

n=1

~

S

n

(�

�1

�) is the Borel �{�eld of

~

Y up to sets of measure zero.

Also, re
all the notion of a 
ylinder set asso
iated with �. Namely, for b

0

; : : : ; b

n

2 � su
h that

T (b

i

) � b

i+1

for all i, let [b

1

: : : b

n

℄ refer to the 
ylinder of length n whi
h is given by

[b

1

: : : b

n

℄ := f� 2 L

r

(G) j T

i�1

� 2 b

i

for all i = 1; : : : ; ng:

Proposition 3 The map

~

S is the natural extension of T .

Proof: By 
onstru
tion of T and �, the properties in (NE1) are 
learly satis�ed. In order to

obtain (NE2), let [b

1

: : : b

n

℄ denote some arbitrary 
ylinder, for b

i

2 � for all i = 1; : : : ; n. Also,

for ea
h i let s

i

2 S refer to fa
e for whi
h T j

b

i

= g

s

i

. We then have, for m < n,

~

S

m

Æ �

�1

[b

1

: : : b

n

℄ � T

m

([b

1

: : : b

n

℄)� g

s

m

� � � g

s

1

(a




s

1

)

= [b

m+1

: : : b

n

℄� g

s

m

� � � g

s

1

g

s

0

1

(a

s

0

1

)

= [b

m+1

: : : b

n

℄� (g

s

0

2

� � � g

s

0

m

)

�1

(a

s

0

1

):

Clearly, for suitably 
hosen n;m 2 N, the Eu
lidean diameter of the latter expression tends to

zero for n;m tending to in�nity. �

Re
all that the natural extension of the system (L

r

(G); �; T ) is uniquely determined up to an

isomorphism. Moreover, by a standard result in in�nite ergodi
 theory (see e.g. [Aa2℄), we have

the following 
orollary.

Corollary 2 The map T is 
onservative and ergodi
 with respe
t to � if and only if S has these

properties with respe
t to ~�. Moreover, T is rationally ergodi
 with respe
t to some return sequen
e

if and only if S is rationally ergodi
 with respe
t to the same return sequen
e.
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2 Non{invertible Ergodi
 theory

2.1 Wandering rates

In this se
tion we obtain some estimates for the wandering rates of the T{invariant measure �.

For this we �rst give some estimates for the measure � on 
ertain fundamental 
ells asso
iated

with the stabilisers of the paraboli
 points. Note that throughout this se
tion we always assume

that the elements of P are �xed points of T . This 
an be assumed without loss of generality, sin
e

otherwise one simply repla
es T by a suitable power of T .

For p 2 P , let G

p

refer to the stabiliser of p and let Q

p

be de�ned by

Q

p

:=

\

u2S

p

a




u

\ L

r

(G):

Lemma 1 Let h 2 G

p

n fidg su
h that d

E

(p; h(Q

p

)) � 1=n for some n 2 N.

� If p 2 P

1

, then we have

�(h(Q

p

)) �

1

n

2Æ�1

:

� If p 2 P

2

, then we have

�(h(Q

p

)) �

�

1

n

2Æ�1

if h(Q

p

) � a

s

\ a

t

for distin
t s; t 2 S

p

1

n

2Æ�2

else:

Proof: Let h be given as stated in the lemma. For k(p) = 1 and s 2 S su
h that h(Q

p

) � a

s

0

,

we have

f(�; �) 2

~

Y j � 2 h(Q

p

)g = h(Q

p

)�

0

�

[

u=2S

p

a

u

[

1

[

m=1

g

m

s

(Q

p

)

1

A

:

Using a well known estimate from hyperboli
 geometry (
f. [Str℄, Lemma 2), it follows that

if � 2 h(Q

p

) and � 2 g

m

s

(Q

p

), for some m 2 N, then j� � �j �

1

n

+

1

m

. Also, by a result of [SV℄

(Lemma 3.1) we have that �(g

m

s

(Q

p

)) � m

�2Æ

. Combining these observations, we obtain

�(h(Q

p

)) = ~�

0

�

h(Q

p

)�

[

u=2S

p

a

u

1

A

+

X

m2N

~�(h(Q

p

)� g

m

s

(Q

p

))

� �(h(Q

p

)) +

X

m2N

�

1

n

+

1

m

�

�2Æ

�(h(Q

p

)) �(g

m

s

(Q

p

))

�

1

X

k=n

k

�2Æ

+ n

�2Æ

� n

�2Æ+1

:

For k(p) = 2, we �rst 
onsider the 
ase in whi
h h(Q

p

) � a

s

\ a

t

for distin
t s; t 2 S

p

. Assume

that �(s; t) = s. We then have

f(�; �) 2

~

Y j � 2 h(Q

p

)g = h(Q

p

)�

0

�

\

u2S

p

nfs

0

g

a




u

\ L

r

(G)

1

A

:

Clearly, we 
an now employ a similar argument as above to obtain the same estimate.

For the remaining 
ase we have that h(Q

p

) �

T

u2S

p

nfsg

a




u

n Q

p

for some s 2 S

p

. Again, for

ease of notation, we assume that �(s; t) = s. In this situation we have that (see Figure 1)

f(�; �) 2

~

Y j � 2 h(Q

p

)g = h(Q

p

)� (a




s

\ a




t

0

\ L

r

(G)) :
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τ (s,t)=s

p

s

t

t’

s’

g

c

g

g

gs

Qp hQ

t’

t

s’

c
t’s

ca Ua

Figure 1: A rank 2 
usp at p =1.

Using the above observations 
on
erning the geometry and the Patterson measure in a neighbour-

hood of p, we now have

�(h(Q

p

)) = ~� (h(Q

p

)� (a




s

\ a




t

0

))

=

X

g2G

p

g(Q

p

)�a




s

\a




t

0

~� (h(Q

p

)� g(Q

p

))

�

X

m2N

�

1

n

+

1

m

�

�2Æ

m

m

2Æ

1

n

2Æ

� n

�2Æ+2

:

�

Re
all that the wandering rate of � with respe
t to a set A � L

r

(G) is given by

w

n

(A) := �(

n

[

m=0

T

�m

(A)):

For our purposes it is suÆ
ient to investigate the behaviour of � around ea
h of the paraboli


points. Therefore, we introdu
e the following set, for p 2 P and n 2 N,

B

p

(n) :=

n�1

[

m=0

[

�

1

T

�m

!;p

(Q

p

);

where

S

�

1

refers to the union over all inverse bran
hes T

�m

!;p

of T

m

�xing p. Also, let B � L

r

(G)

refer to the set whi
h is given, for n

0

2 N suÆ
iently large, by

B :=

\

p2P

B

p

(n

0

) \ L

r

(G):

Sin
e B is bounded away from P , we have that 0 < �(B) < 1. Furthermore, by 
onstru
tion,

one easily veri�es that

1

[

m=0

T

�m

(B) = L

r

(G):
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Note that we shall see later that the set B is a Darling{Ka
 set for T , whi
h will then imply that T

is pointwise dual ergodi
 with respe
t to �. For the following theorem, we 
onsider the wandering

rate (w

p

n

(B)) asso
iated with p 2 P , whi
h is given by

w

p

n

(B) := �(B

p

(n

0

+ n)):

Theorem 1 With the notation above we have, for all n 2 N and p 2 P ,

w

p

n

(B) �

8

<

:

n

k(p)�2Æ+1

for Æ < (k(p) + 1)=2

logn for Æ = (k(p) + 1)=2

1 for Æ > (k(p) + 1)=2:

In parti
ular, we hen
e have for the wandering rate w

n

(B) =

P

p2P

w

p

n

(B) of B that

w

n

(B) �

8

<

:

n

k

max

�2Æ+1

for Æ < (k

max

+ 1)=2

logn for Æ = (k

max

+ 1)=2

1 for Æ > (k

max

+ 1)=2:

Proof: First note that for p 2 P

2

we have by Lemma 1, for ea
h m 2 N,

X

h2G

p

;

d

E

(p;h(Q

p

))�

1

m

�(h(Q

p

)) =

X

�

2

�(h(Q

p

)) +

X

�

3

�(h(Q

p

)) �

X

�

2

1

m

2Æ�1

+

4

m

2Æ�2

�

1

m

2Æ�2

:

In here

P

�

2

refers to the summation over all elements h 2 G

p

for whi
h d

E

(p; h(Q

p

)) � 1=m and

h(Q

p

) � a

s

\a

t

for distin
t s; t 2 S

p

(
learly,

P

�

3

then refers to the summation over the remaining

summands). Using this observation and on
e more Lemma 1, we now have

�(

n

[

m=0

T

�m

B) = �(B) +

X

p2P

n

o

+n

X

m=n

0

X

�

1

�(T

�m

!;p

(Q

p

))

�

X

p2P

n

0

+n

X

m=n

0

X

h2G

p

;

d

E

(p;h(Q

p

))�

1

m

�(h(Q

p

))

�

X

p2P

1

n

0

+n

X

m=n

0

X

h2G

p

;

d

E

(p;h(Q

p

))�

1

m

1

m

2Æ�1

+

X

p2P

2

n

0

+n

X

m=n

0

1

m

2Æ�2

�

X

p2P

n

0

+n

X

m=n

0

m

k(p)�1

m

2Æ�1

�

8

<

:

n

k

max

�2Æ+1

for Æ < (k

max

+ 1)=2

logn for Æ = (k

max

+ 1)=2

1 for Æ > (k

max

+ 1)=2:

�

As an immediate 
onsequen
e of the latter theorem, we obtain the following result of [KS℄.

Corollary 3 The measure � is in�nite if and only if Æ � (k

max

+ 1)=2. Moreover, if G has paraboli


elements of rank 1 as well as of rank 2, then � gives �nite mass to small neighbourhoods of the

paraboli
 �xed points of rank 1.
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2.2 Gibbs{Markov property and ergodi
ity

In this se
tion we give a �ner analysis for the indu
ed map T

B

. We show that T

B

has the Gibbs{

Markov property with respe
t to �

B

, where �

B

refers to the restri
tion of � to B. Using standard

results from ergodi
 theory, this then allows to dedu
e that T

B

is ergodi
 and that T is pointwise

dual ergodi
 and 
onservative.

In order to show that T

B

has the Gibbs{Markov property with respe
t to �

B

, we have to

show that there exists a number � 2 (0; 1) su
h that the following holds. For arbitrary 
ylinders

!

1

of length n and !

2

of length m su
h that [!

2

℄ � T

n

B

([!

1

℄), we have for �

B

{almost every pair

x; y 2 [!

2

℄,

�

�

�

�

�

log

d�

B

Æ T

�n

B;!

1

d�

B

(x) � log

d�

B

Æ T

�n

B;!

1

d�

B

(y)

�

�

�

�

�

� �

m

:

In here T

�n

B;!

1

refers to the inverse bran
h of T

n

B

whi
h maps T

n

B

([!

1

℄) to [!

1

℄.

Theorem 2 The map T

B

has the Gibbs{Markov property with respe
t to the measure �

B

.

Proof: Let !

1

; !

2

be given as above. We then have, for x; y 2 [!

2

℄,

log

d�ÆT

�n

B;!

1

d�

(x)

d�ÆT

�n

B;!

1

d�

(y)

= log

d�ÆT

�n

B;!

1

d�ÆT

�n

B;!

1

(x)

d�ÆT

�n

B;!

1

d�ÆT

�n

B;!

1

(y)

+ log

d�ÆT

�n

B;!

1

d�

(x)

d�ÆT

�n

B;!

1

d�

(y)

+ log

d�

d�

(x)

d�

d�

(y)

:

We split the estimate of the modulus of this expression into separate parts a

ording to the three

summands in the latter expression.

For the third summand, let C

0

:= maxfjz � wj

�1

j z 2 a

t

\ B; w 2 (a

t

)




; t 2 Sg. For s 2 S

su
h that [!

1

℄ � a

s

, we then have

�

�

�

�

log

d�

d�

(x)� log

d�

d�

(y)

�

�

�

�

=

�

�

�

�

�

log

Z

f� : (x;�)2

~

Y g

1

jx� �j

2Æ

d�(�)� log

d�

d�

(y)

�

�

�

�

�

�

�

�

�

�

�

log

Z

f� : (x;�)2

~

Y g

1

jy � �j

2Æ

�

jx� �j+ jx� yj

jx� �j

�

2Æ

d�(�)� log

d�

d�

(y)

�

�

�

�

�

�

�

�

�

�

�

log

 

(1 + C

0

jx� yj)

2Æ

Z

f� : (x;�)2

~

Y g

1

jy � �j

2Æ

d�(�)

!

� log

d�

d�

(y)

�

�

�

�

�

� jx� yj:

For the �rst summand, note that for z 2 [!

1

℄ we have (d�=d�)(z) = (d�ÆT

�n

B;!

1

=d�ÆT

�n

B;!

1

)(T

n

B

z).

Therefore, for a suitably 
hosen ~!

1

of length n, the modulus of the �rst summand is bounded from

above by jT

�n

B;~!

1

(x) � T

�n

B;~!

1

(y)j, whi
h is 
learly less than jx� yj.

For the se
ond summand, let g

!

1

be the element of G whi
h 
orresponds to T

�n

B;!

1

. Now

observe that by the triangle inequality we have jg

�1

!

1

(0) � xj � jg

�1

!

1

(0) � yj + jx � yj. Moreover,

by 
onstru
tion of B, there exists a 
onstant C

1

su
h that jg

�1

!

1

(0) � zj > C

1

, for all z 2 [!

2

℄.

Therefore, it follows that

jg

�1

!

1

(0)� yj

jg

�1

!

1

(0)� xj

< 1 +

jx� yj

jg

�1

!

1

(0)� xj

< 1 + C

1

jx� yj:

12



Combining this observation with the Æ{
onformality of �, we now have

�

�

�

�

�

�

log

d�Æg

!

1

d�

(x)

d�Æg

!

1

d�

(y)

�

�

�

�

�

�

= Æ

�

�

�

�

log

P(g

�1

!

1

(0); x)

P(g

�1

!

1

(0); y)

�

�

�

�

= Æ

�

�

�

�

log

jg

�1

!

1

(0)� yj

jg

�1

!

1

(0)� xj

�

�

�

�

< Æ jlog(1 + C

1

jx� yj)j

� jx� yj:

Finally, by uniform expansiveness of T

B

, we have that there exists a 
onstant � depending on the


hoi
e of B, su
h that jx� yj < �

m

. This 
ompletes the proof. �

The following two statements 
an be dedu
ed immediately from the proof of the previous

proposition. They are not essential for the purposes of this paper, nevertheless they might be of

interest elsewhere.

Corollary 4 The map T

B

has the Gibbs{Markov property with respe
t to the Patterson measure

restri
ted to B.

Corollary 5 The logarithm of the density

d�

d�

is Lips
hitz 
ontinuous on B.

The Gibbs{Markov property of T

B

with respe
t to �

B

allows to employ the following standard


hain of arguments from ergodi
 theory, where it is well known that (i) ) � � � ) (iv) (
f. [Aa2℄,

[ADU℄, [Th℄).

(i) T

B

has the Gibbs{Markov property with respe
t to the invariant measure �

B

.

(ii) For the dual operator

b

T

B

there exists � 2 (0; 1) su
h that for all f 2 L

1

(B) and n 2 N, we

have













b

T

n

B

f �

Z

B

fd�













L

� �

n

kfk

L

:

Here k � k

L

refers to the Lips
hitz norm (see e.g. [ADU℄, p. 541).

(iii) T

B

is 
ontinued fra
tion mixing (see e.g. [ADU℄, p. 500).

(iv) The set B is a Darling{Ka
 set for T . This means that there exists a sequen
e (a

n

)

n2N

su
h

that

1

a

n

n�1

X

i=0

b

T

i

1

B

(x)! �(B) uniformly for � a.e. x 2 B:

The sequen
e (a

n

) is usually referred to as the return sequen
e of T .

Using [Aa2℄ (Proposition 3.7.5), we 
an now 
omplete this 
hain of arguments and obtain the

following result.

Theorem 3 The map T is pointwise dual ergodi
 with respe
t to �. That is, with (a

n

)

n2N

referring

to the return sequen
e of T , we have

1

a

n

n�1

X

i=0

b

T

i

f !

Z

fd� for all f 2 L

1

(�):

In parti
ular, we also have the following immediate 
onsequen
es (
f. [Aa2℄).

13



Corollary 6 The map T is rationally ergodi
 with respe
t to �. That is, there exists a set A �

L

r

(G) with 0 < �(A) <1 su
h that for all n 2 N,

Z

A

(

n�1

X

i=0

1

A

Æ T

i

)

2

d� �

 

Z

A

n�1

X

i=0

1

A

Æ T

i

d�

!

2

: (�)

Corollary 7 The map T has the following mixing property. For A with �(A) <1 su
h that (�)

holds, we have for all U; V � A,

lim

n!1

1

a

n

n�1

X

i=0

�(U \ T

�i

V ) = �(U)�(V ):

The results of Theorem 1 
on
erning the wandering rate w

n

(B) of B now allow to determine

the return sequen
e (a

n

) of T expli
itly. For this re
all that a sequen
e (s

n

) is 
alled a regularly

varying sequen
e with index of variation � if lim

m!1

s

nm

=s

m

= n

�

, for all n 2 N. Using Theorem

1, one easily veri�es that (w

n

(B)) is a regularly varying sequen
e with index of variation � given

by

� = maxf0 ; k

max

� 2Æ + 1g:

Sin
e T is pointwise dual ergodi
 and B is a Darling{Ka
 set, we may now apply a result of [Aa2℄

(3.8.7), whi
h gives

a

n

w

n

(B) �

n

�(2� �)�(1 + �)

:

Therefore, 
ombining this result and our estimates for w

n

(B) in Theorem 1, we now obtain the

following theorem.

Theorem 4 For the return sequen
e (a

n

) of T we have, for ea
h n 2 N,

a

n

�

8

<

:

n

2Æ�k

max

for Æ < (k

max

+ 1)=2

n= logn for Æ = (k

max

+ 1)=2

n for Æ > (k

max

+ 1)=2:

Clearly, the sequen
e a

n

is also a regularly varying sequen
e. A straight{forward 
al
ulation

shows that its index of variation � is given by

� = minf1; 2Æ � k

max

g:

Applying a result of [Aa1℄ (Theorem 1), we 
an now 
on
lude that for � 2 [0; 1℄, the ergodi
 sums

S

n

(f)=a

n

have the following remarkable statisti
al behaviour. Note that for � =2 [0; 1℄, the measure

� is �nite and hen
e the behaviour of these sums is given by Birkho�'s Theorem as stated in the

�rst part of our main theorem.

Corollary 8 For Æ � (k

max

+1)=2 we have for f 2 L

1

+

(�) that the ergodi
 sums S

n

(f)=a

n


onverge

strongly distributional to the Mittag{Le�er distribution Y

�

of index �. That is, we have that

1

a

n

n�1

X

i=0

f Æ T

i

s.d.

�! Y

�

Z

L

r

(G)

fd�:

Note that the upper bound of the domain where these distributional laws hold is pre
isely

(k

max

+ 1)=2. By a result of [KS℄, this value 
oin
ides with the value at whi
h the system exhibits

a thermodynami
al phase transition.
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