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Abstrat

We prove the existene of approximate equilibria for a speial lass of quitting

games alled \esape games". A quitting game is an game played on an

in�nitely many stages with �nitely many players N where every player in

N has only two moves, \q" to end the game with ertainty or \" to allow

the game to ontinue to the next stage. If nobody ever ats to end the

game, all players reeive payo�s of 0. The importane of quitting games is

that they are the simplest form of stohasti games for whih the existene

of approximate equilibria is in doubt. The proof for esape games reveals

muh about quitting games and their approximate equilibria, indeed about

stohasti games in general. The most important tehnique of the proof

belongs to algebrai topology.

Key words: Stohasti Games, Dynami Systems (Disrete Time)
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1 Introdution

Suppose you are playing a game and you do not know if and when the game

will end. Your options and the options of your �nitely many opponents and

their onsequenes hange stohastially aording to what was played in the

past. You and all your opponents have omplete knowledge of the present

options of all players and of the past history of play. Furthermore there is a

uniform bound on all the payo� onquenes at all stages. Are there relatively

stable olletive ways to play suh a game?

The above desribes a stohasti game, and the question onerns the

existene of an approximate equilibria.

For any � � 0, an �-equilibrium in a game is a set of strategies, one

for eah player, suh that no player an gain in payo� by more than � by

hoosing a di�erent strategy, given that all the other players do not hange

their strategies. An equilibrium is an �-equilibrium for � = 0. We say that

approximate equilibria exist if for every � there exists an �-equilibrium.

The game of hess has an equilibrium beause there are only �nitely many

positions, moves, and stages of play (though of ourse astronomially many

ways for a player to respond to the ations of his opponent). Chess has a

�nite struture beause in�nite repetition of the same position is not allowed,

�nitely many repetitions of the same position de�nes a draw. At present

there are three possibilities for the termination of a game, win for white,

loss for white, and draw. Change the rules to allow for in�nite repetition

of positions and make the evaluation of in�nite repetition equivalent to two

losses for both players! (Of ourse if the players spend the rest of their lives

playing the game then they are both big losers, but one ould imagine that

both players leave the table with deterministi playing instrutions to be

realled to the table only if the opponent returns �rst to the table and does

something di�erent.) Now both players would be faed with a new type of

dilema { should I resign and su�er only one loss, or should I be stubborn

with the expetation that my opponent will give in and give me the win

eventually? There is a way to re-establish the existene of an equilibrium

{ when a position is repeated over and over it is always white who refuses

to resign and blak who would resign eventually (or vie-versa). (Finite

struture is re-established by assigning a win for white whenever repetition

would our.) Unsatisfying is the asymmetry in behavior (not generated by

any asymmetry in the game) and of ourse the possibility of reating even
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more ompliated variations on hess where suh asymmetri behavior would

not make sense.

It is not known whether all stohasti games have approximate equilibria.

This question is arguably the most important open question of game theory

today. Given �nitely many players and a uniform bound on the payo�s, any

vetor luster point of � equilibrium payo�s as � onverges to zero will give

the game a \value" to eah players, a quantity that a player is willing to pay

to partiipate in the game. The two entral harateristis of a stohasti

game is the omplete knowledge of the players onerning the history of play

and the unlimited time dimension. The question of approximate equilibria is

entral to game theory beause it asks if a game with suh deep knowledge

by the players needs a �nite termination for the existene of suh values.

So far, positive results of profound generality have onerned two-player

stohasti games. Mertens and Neyman [5℄ proved that every zero-sum

stohasti game played on a �nite state spae has approximate equilibria.

Maitra and Sudderth [3℄ extended this result to zero-sum stohasti games

with ountably many states and Martin [4℄ extended this result further to

payo� funtions that are not neessarily de�ned as the limits of stage payo�

averages but by funtions on the in�nite paths of play that are Borel with

respet to their �nite stage trunations.

Conerning two-player non-zero-sum games the entral result was aom-

plished by Vieille [11℄; he proved that all suh stohasti game with �nitely

many states have approximate equilibria. For two-player non-zero-sum games

with ountably many states the question is still open.

Advantageous for approximate equilibria in stohasti games is the knowl-

edge by the players. The only unertainty onerns what the other players

will do in the present (and of ourse in future stages). This same unertainty

exists for games with �nitely many players, ations and stages, and yet the

existene of equilibria was established (Nash [6℄). The major di�erene is

that this unertainty strethes over an a-priori unlimited number of stages,

and this unertainty is suÆient to prevent the existene of an equilibrium

(a 0 equilibrium). In general, however, there is a lose onnetion between

stohasti games and laws of large numbers. In many ases statistial testing

(of the behavior of fellow players) is a powerful guide to present and future

behavior. Often it allows for every hoie of � > 0 an approximation by and

redution to a losely related ompat struture with �xed point behavior

suh that when the �xed points are translated bak to the original game an
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� equilibria is generated.

However, there may be a limit to what statistial testing an aomplish

for the players in stohasti games, partiularly when there are too many

dissimilar opportunities for a player to aquire minimal advantages from

deviant behavior that may add up umulatively to a signi�ant quantity

(perhaps without involving signi�ant statistial deviation). Also a multitude

of players who an alter permanently and suddenly the outome of the game

on arbitrarily many loations an make the analysis of stohasti games very

diÆult.

Quitting Games

If we take up the opposite hallenge, to look for a ounter-example, we

enounter a serious problem. Stohasti games are played on in�nitely many

stages, and therefore the game trees are in�nite. Usually there are rapidly

growing ways that a player ould respond to the past behavior of the other

players.

If one thinks about how a ounter-example ould be on�rmed, one is

lead naturally to quitting games as the simplest stohasti games where at

every stage of play the only relevant part of the game tree ontains only one

past history of behavior, namely the history where all players have hosen

only  in the past. Essentially this makes all strategies of all players Marko-

vian, meaning that they depend only on the stage of play and not on the

past history. Exept for stohasti games that are almost quitting games,

the analysis of most other plausible andidate ounter-examples ould be

prohibitively ompliated.

Quitting games were introdued formally by Solan and Vieille [10℄, but

were studied impliitly by Flesh, Thuijsman, and Vrieze [1℄. The important

relation to dynami systems is not the diret one, from the transitions de�ned

by the game (and with quitting games these transitions are very simple).

Flesh, Thuijsman, and Vrieze disovered that in general quitting games do

not possess equilibrium payo�s that are stable with respet to the advaning

stages. For suÆiently small � > 0 as the players stop the game with positive

probability the future expeted payo�s onditioned on the event that nobody

has ended the game must hange dramatially over time. We return to this

aspet later.

Quitting games are mysterious. They seem to have approximate equilib-

ria, but what is the theoretial basis behind this intuition? We introdue a
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sublass of quitting games alled esape games and prove that they have ap-

proximate equilibria. We argue below that an attempt to on�rm a ounter-

example will lead usually to an esape game. We do not suggest that the

most plausible andidate ounter-examples have been esape games, (and

indeed our main result negates suh an approah). Instead, the situation is

that of the person looking for her lost keys under the street lamp, not be-

ause she believes that she dropped the keys there, but only beause under

the street lamp she an searh most e�etively!

It is also possible that the metaphore applies to all quitting games. Quit-

ting games redue to a minimum the statistial aspets of stohasti games

and onentrate instead on the in�nitely reursive drama of many players

who an end the game suddenly. We suspet that both ompliations are

suÆient independently to deny approximate equilibria to stohasti games,

but we may be wrong.

Before we de�ne esape games, we need a few formalities onerning quit-

ting games.

For every player j 2 N let v

j

be the payo� that player j reeives for

quitting alone. LetR

N

be the Eulidean spae whose oordinates are indexed

by the set N , and if r 2 R

N

and j 2 N then r

j

is the j oordinate of r. De�ne

W := fx 2 R

N

j x

j

� v

j

for some j 2 Ng = R

N

nfx j 8j 2 N x

j

> v

j

g. For

any r 2 R

N

let �

r

be the one stage game suh that if all players hoose 

(to ontinue) then r is the payo� to the players (meaning Player j reeives

r

j

) and otherwise if some player hooses q then their payo�s are the same as

that of the quitting game.

Assume that positiveM is a bound for the absolute value of all di�erenes

of payo�s de�ned by the quitting game.

De�ne � 2 R

N

to be that vetor suh that for every j 2 N �

j

is the

min-max value for Player j in the quitting game (the upper bound for what

Player j an obtain in response to all strategy hoies of the other players).

The importane of the min-max value �

j

is that it represents the ability of

the players to punish Player j with pre-determined strategies (for example

as part of an approximate equilibrium).

A quitting game is an esape game if

1) for every player j 2 N v

j

� �

j

,

and there is a losed subset Q of R

N

and a positive � > 0 with the following

existene and losure properties:

2) Q \ �W 6= ; and for every x 2 Q \ �W then there is a y with y

j

> v

j

for
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all j 2 N suh that the losed line segment from x to y is in Q,

3) if x 2 QnW then any payo� vetor y 2 R

N

resulting from an equilibrium

of �

x

suh that some player hooses the move q with positive probability

satis�es y

j

> v

j

+ � for all j 2 N ,

4) if x 2 Q then all payo� vetors from equilibria of �

x

are in Q and whenever

x

j

� v

j

for all players j and a single player quitting alone generates an �

equilibrium of �

x

then the resulting payo� vetor is also in Q.

The Pathway to Esape Games

Now we show why the attempt to on�rm a quitting game ounter-

example leads one naturally to esape games.

To separate a quitting game from one shot-games for whih do exist Nash

equilibria, we restrit ourselves to quitting games suh that for some small

positive � > 0 there is no � equilibrium generated by some player quitting with

ertainty on any stage of play. Lets assume that positive � is a lower bound

on the probability that all players hoose  for any one-shot � equilibrium of

�

x

, where for every j 2 N the oordinate x

j

is between �

j

� � and M .

Seond, one needs a quitting game where at least one player gets a positive

quantity for quitting alone { otherwise every player hoosing to ontinue at

every stage would desribe an equilibrium. (And better for the mathematial

analysis, we assume the weaker Property 1 for all players.) Without loss of

generalization, for the player j with v

j

> 0 we an normalize her payo�s so

that v

j

= 1. Combined with the previous paragraph, whih guarantees the

relevane of future stages, a Æ equilibrium for a quitting game must involve

a probability of quitting of at least 1 � 7Æ, sine otherwise a stage would

be reahed with a probability of at least 6Æ where the total probability that

somebody quits in the future does not exeed

1

10M

. At suh a stage Player j

ould get at least 3=5 for quitting and no more than 2=5 for not quitting. A

gain of 1=5 with a probability of at least 6Æ of obtaining it would ontradition

the Æ equilibrium property.

With our two above assumptions on the quitting game and motivated

by the desire to on�rm the lak of approximate equilibria, we desire the

existene of a small positive quantity � > 0 suh that if one starts from a

payo� vetor with the j oordinates for every player j bounded between �

j

��

andM and alulate bakward in time with one-stage � equilibria then before

the umulative probability that somebody hooses q reahes 1� � one would

obtain a payo� vetor suh that any ontinuation of the bakward analysis
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would involve only zero probability that somebody hooses the move q.

The result would be a ounter-example to an ���=14 equilibrium for very

simple reasons! Assume x is the expeted payo� of an ���=14 equilibrium.

By the above, the equilibrium must involve at least a 1 �

���

2

probability

of quitting. But sine on any one stage the probability of quitting annot

exeed � there must be a stage i reahed with a probability between �=2

and ��=2 suh that all stages between 0 and i exhibit � equilibrium behavior.

Sine the ith stage is reahed with a probability of at least ��=2 and therefore

what follows is an �=7 equilibrium, for all j 2 N the j oordinates of this

vetor are between �

j

� � and M . But we have assumed that the probability

of somebody hoosing q between these stages annot be as high as 1 � �, a

ontradition. The initial payo�s from the vetor x are exposed as �titious

quantities, muh like the stok market pries of a bubble that will burst

eventually.

The most natural way to on�rm a ounter-example along the above lines

of argument would be with a game and a orresponding � > 0 where

1) the bakward analysis of one-stage � equilibria leads inevitably to vetors

x where x

j

> v

j

+ � for all players j, and

2) from all vetors x with x

j

> v

j

+� for all j 2 N one passes through vetors

satisfying the same ondition leading inevitably to some vetor y suh that

the only � equilibria of �

y

involve no quitting behavior at all.

The seond property implies that the game is an esape game (with Q de�ned

to be all of R

N

and of ourse the additional assumption that v

j

� �

j

for all

j 2 N). The name \esape" reets the assumption that one one has left

the set fx j x

j

� v

j

+ � for some jg then one has also \esaped" this set for

good. The importane of the ondition x

j

> v

j

+ � for all j 2 N rest on the

fat that if x

j

� v

j

+ � for any player j then there will be an � equilibrium of

�

x

where some player hooses q with positive probability. If x

j

< v

j

for some

j 2 N then some other player k must hoose q with positive probability to

prevent Player j from prefering the move q to the move  and if x

j

� v

j

for

all j 2 N and x

k

� v

k

+ � for some player k 2 N then there will be an �

equilibrium of �

x

where Player k hooses q alone with small probability (no

more than �=M). Our proof shows that the seond property denies the �rst

property.

We prove that esape games have approximate equilibria with a redution

to two dimensional Eulidean spae. In general for non-esape quitting games

we see no suh similar redution that delivers a positive result. Indeed we
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suspet that there are quitting games without approximate equilibria, and

we present a andidate ounter-example at the end of this paper.

The rest of the paper is organized as follows. The next setion presents

the existing results neessary for our main result. The third setion is the

proof of our main result. The last setion will be a presentation of two

quitting games. We prove that the �rst example is an esape game.

2 Bakground

Let 0 stand for the origin of any Eulidean spae. If X is a subset of a

Eulidean spae E, �X will stand for the boundary of X relative to E and

X will be its losure, the union of X with �X. The distane in Eulidean

spae will be the Eulidean distane.

2.1 Correspondenes

By a orrespondene F : X !! Y we mean any subset of X � Y . If X

0

is a

subset of X then F \(X

0

�Y ) is alled the restrition of F to X

0

and denoted

by F jX

0

. For every x 2 X de�ne F (x) := fy j (x; y) 2 Fg. If F : X !! Y

is a orrespondene it is not assumed a priori that F (x) 6= ; for all x 2 X.

If F : X !! X is a orrespondene then a forward orbit of the orrespon-

dene F is an in�nite sequene (x

0

; x

1

; : : :) of points of X suh that for every

non-negative integer n � 0 we have (x

n

; x

n+1

) 2 F . A part of a forward orbit

is suh a sequene of �nite length. An extended forward orbit is a sequene

((x

j;0

; x

j;1

; : : :) j 0 � j < L) of forward orbits, possibly with L = 1, suh

that for every j with j + 1 < L we have lim

k!1

x

j;k

= x

j+1;0

. The extended

forward orbit has bounded variation if

P

j<L

P

1

i=0

jjx

j;i

� x

j;i�1

jj < 1, and

otherwise it has unbounded variation.

A homotopy is a ontinuous map h : X � [0; 1℄ ! Y , where X and Y

are topologial spaes. If Y an be embedded in a onvex spae then the

homotopy h : X � [0; 1℄ ! Y is a straight line homotopy if for every x 2 X

and t 2 [0; 1℄ h(x; t) = t h(x; 1) + (1� t)h(x; 0).

We use ritially a property for orrespondenes alled the \spanning"

property, de�ned in Simon, Spiez, and Torunzyk [9℄. The homology used is

the Ceh homology with oeÆients in a non-trivial ompat abelian group.

Let E be an n-dimensional Eulidean spae. If C is an n-dimensional om-
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pat manifold with boundary in E then by [�C℄ we denote the generator

element of

~

H

n�1

(�C). Let U be an open bounded subset of E. A ompat

orrespondene F : E !! Y is said to have the spanning property for U if

there exists a z in the redued homology group

~

H

n�1

(F j�U) suh that the

images of z in

~

H

n�1

(�U ) and

~

H

n�1

(F ) are [�U ℄ and 0, respetively, where the

�rst map is that indued by the anonial projetion of F j�U to �U and the

seond map is that indued by the inlusion of F j�U in the set F . We say

the orrespondene F has the spanning property for a ompat set C � E

if F has it for the interior of C. If F has the spanning property for an open

set U then F (x) 6= ; for every point x in U (proven in Simon, Spie_z, and

Toru�nzyk [8℄). This property is the origin for the term \spanning".

There is a strong onnetion between quitting games and another area

of game theory usually not assoiated with stohasti games { struture

theorems used to establish stability properties of one-shot games. We remind

the readers of the main theorem of Kohlberg and Mertens, [2℄. Let N be a

�nite player set, (A

j

j j 2 N) the �nite sets of ations for the players, X the

spae of all jA

1

j�: : :�jA

jN j

jmatries with vetor payo� entries fromR

N

. For

any x 2 X let G

x

be the one stage game de�ned by the matries determined

by x. Let

~

A be

Q

j2N

�(A

j

), the strategy spae, (where �(A

j

) is the simplex

of probability distributions on A

j

). Let E � X �

~

A be the orrespondene

de�ned by E(x) := fy 2

~

A j y is an equilibrium of the game G

x

g. Let � :

X�

~

A! X be the anonial projetion. The struture theorem of Kohlberg

and Mertens states that there is a straight line homotopy H(�; �) from X �

[0; 1℄ to X �

~

A suh that � Æ H(x; 0) = x for all x 2 X, the image of

H(�; 1) is exatly the orrespondene E, and the funtion H an be extended

ontinuously to the one-point ompati�ation of X (meaning that for every

ompat set C � X there is an R > 0 large enough that if the norm jjxjj

exeeds R then for all t 2 [0; 1℄ the point H(x; t) does not lie over C). Here

we have slightly modi�ed the statement of the struture theorem, using the

fat that

~

A is onvex.

The spanning property will be ombined with the Kohlberg-Mertens stru-

ture theorem to prove that all esape games have approximate equilibria. To

do this we use the following lemma.

Lemma 1: If a orrespondene F has the spanning property for an open

and bounded set U and C is a onneted and ompat subset of U then for

every pair x; y 2 C the orrespondene F jC onnets some (x; z

1

) 2 F with
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some (y; z

2

) 2 F .

Proof: Lemma 2 of Simon, Spiez, and Torunzyk [9℄ states that if F

is spanning for a ompat A and D is any losed subset of A then F jD is

also spanning for D. Let U

i

be a dereasing sequene of open, bounded and

onneted subsets of U onverging to C, (for example for every x 2 C take a

�xed open ball entered at x and ontained in U and interset it will the open

balls of radius 1=k also entered at x). Sine the U

i

are onneted, there are

onneted and ompat subsets Z

i

of F demonstrating the spanning property

for the U

i

(meaning that Z

i

is also spanning for U

i

). Due to Simon, Spiez,

and Torunzyk [8℄ for every i there are pairs (x; a

i

) and (y; b

i

) in Z

i

. Beause

the U

i

are a dereasing sequene, due to Lemma 2 of Simon, Spiez, and

Torunzyk ([9℄) we an assume that the Z

i

are also a dereasing sequene.

De�ne Z to be the intersetion of the Z

i

. Beause the Z

i

are onneted and

ompat, Z is also. By its ompatness Z ontains a pair (x; a) and (y; b) for

some a and b as limits, respetively, of some subsequenes of the a

i

and b

i

.

2

2.2 Quitting games

As stated above, let N be the set of players. Eah player has exatly two

moves, q and , q for \quit" and  for \ontinue".

For every player let [0; 1℄ stand for her strategy spae in a one stage game,

with the quantity p 2 [0; 1℄ representing the probability that she hooses to

end the game (with the move q). [0; 1℄

N

stands for the produt of the strategy

spaes of all the players in a one stage game. Sine 0 2 R

N

stand for the

origin, 0 2 [0; 1℄

N

means that all players hoose the move  with ertainty.

A strategy pro�le for the players is a sequene of probability vetors

(p

i

j i = 0; 1; 2; : : :) suh that for every stage i p

i

2 [0; 1℄

N

. p

j

i

stands for the

probability that Player j will stop the game (with the move q) at stage i.

The payo�s are de�ned as follows. For every non-empty subset A � N

of players there is a payo� vetor v(A) 2 R

N

. At the �rst stage that any

player hooses the move q and A is the non-empty subset of players that

hoose q, the players reeive the payo� v(A). This means that Player j

reeives v(A)

j

2 R. As stated in the abstrat, if nobody plays the move q

throughout all stages of play, then all players reeive 0; M is an upper bound

for the maximal di�erene between all payo�s in the game.
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For every r 2 R

N

and p 2 [0; 1℄

N

, let a

j

(p) be the expeted payo� for

Player j if he hooses q against the strategies (p

k

jk 6= j) and let b

j

(p; r) be

the expeted payo� for Player j from the move , given that the other players

hoose the strategies (p

k

jk 6= j) and he will reeive the payo� r

j

if everyone

hooses the move  (meaning that the game �

r

is played. One an alulate

a

j

(p) and b

j

(p; r) easily. We have

a

j

(p) =

X

A�Nnfjg

v(A [ fjg)

j

Y

k2A

p

k

Y

k 6=j; k 62A

(1� p

k

)

and

b

j

(p; r) = r

j

Y

k 6=j

(1� p

k

) +

X

;6=A�Nnfjg

v(A)

j

Y

k2A

p

k

Y

k 6=j; k 62A

(1� p

k

):

De�ne a funtion q : [0; 1℄

N

! [0; 1℄ by q(p) := 1 �

Q

j2N

(1 � p

j

). The

funtion q is the total probability that at least one player hooses the move

q.

2.3 Approximate Equilibria

We want to onsider orrespondenes generated by moving bakward from

stage i + 1 to stage i through an approximate equilibrium of the one-shot

game. For any �; � � 0 we onstrut orrespondenes E

�;�

� R

N

� [0; 1℄

N

and F

�;�

� R

N

�R

N

in the following way. We set

E

�;�

(r) := fp 2 [0; 1℄

N

j p

j

> 0) a

j

(p) � b

j

(p; r)� �;

p

j

< 1) b

j

(p; r) � a

j

(p)� �; q(p) � �g:

For every r 2 R

N

and p 2 [0; 1℄

N

de�ne a new member f(r; p) of R

N

repre-

senting the expeted payo�s from the strategies p in the game �

r

, namely

f(r; p) := r

Y

j2N

(1� p

j

) +

X

;6=A�N

v(A)

Y

j2A

p

j

Y

j 62A

(1� p

j

):

We de�ne F

�;�

(r) := ff(r; p) j p 2 E

�;�

(r)g. For every r 2 R

N

E

�;�

(r) is a

subset of the � equilibria of the game �

r

with at least a � probability that

somebody hooses to quit; F

�;�

(r) are their orresponding payo�s.

12



If x 2 R

N

satis�es x

j

� �

j

� � for all j 2 N then a member p of E

�;1

(x)

(with q(p) = 1) is alled an instant �

+

equilibrium.

In Simon [7℄ we show that if either one of the following two assumptions

fail for all � > 0 then there exists approximate equilibria. (This proof of both

laims is easy and elementary.)

Assumption A: x 2 fz j 8j z

j

� �

j

� �g and (x; y) 2 F

�;0

imply that

� q(p) � jjx� yjj for the orresponding p 2 E

�;0

(x) with y = f(x; p).

Assumption B: there is no instant �

+

equilibrium.

The following result was proven in Simon [7℄, using ritially results

proven in Solan and Vieille [10℄. It is based on the law of large numbers

and the punishment of any player whose behavior is statistial deviant.

Proposition A If for all positive � > 0 the orrespondene F

�;0

has an

extended forward orbit in fx j 8j x

j

i

� �

j

� �g with unbounded variation

then the quitting game has approximate equilibria.

2.4 Finitely repeated quitting games

For every k � 0 and vetor x 2 R

N

let �

k

x

be the k stage game suh that at

the onlusion of k stages the players reeive the payo� x if all players hose 

on all stages. A strategy in �

k

x

is a sequene p = (p

0

; p

1

; : : : p

k�1

) 2 ([0; 1℄

N

)

k

representing the probabilities that a player would quit on the various stages.

De�ne a funtion q : ([0; 1℄

N

)

k

! [0; 1℄ by q(p) := 1 �

Q

k

i=0

Q

j2N

(1 � p

j

k

).

The funtion q is the total probability that at least one player hooses the

move q. De�ne f : R

N

� ([0; 1℄

N

)

k

! R

N

as before, with f(x; p) the payo�

vetor resulting from the use of the strategy p in the game �

k

x

. Let E

k

�

R

N

� ([0; 1℄

N

)

k

be the equilibrium orrespondene of the games �

k

, meaning

that E

k

(x) are the equilibria of �

k

x

. De�ne the orrespondene F

k

� R

N

�R

N

by F

k

(x) = ff(x; p) j p 2 E

k

(x)g. F

k

inludes the kth iteration of the

orrespondene F

0;0

and the opposite inlusion holds when the probability of

quitting on all stages is less than one.

Let k, the number of stages, be �xed, and inrease the player set to

N�f0; 1; : : : ; k�1g. Let

~

X

k

be the spae of all payo� matries (with entries in

R

N�f0;1;:::;k�1g

) generated by the player set N�f0; 1; : : : ; k�1g suh that eah

player has only two moves, q and . Give

~

X

k

the Eulidean metri inherited

from its kjN j2

kjN j

dimensional struture. De�ne I

k

: R

N

! R

R

N

�f0;:::;k�1g

13



by I

k

(x)

(j;i)

= x

j

. Consider the following matrix: in all positions where at

least some player (j; i) has hosen q let i

0

be the smallest number suh that

a player (j; i

0

) had hosen q and with A := fj 2 N j Player (j; i

0

) hose qg,

the orresponding payo� vetor I

k

(v(A)) is plaed in this position. Where

all players have hosen the move  we plae the variable I

k

(x) for an x 2 R

N

that represents the future expeted payo�s on the k + 1st stage (stage k)

given that nobody hose to quit. This de�nes an Eulidean subspae of

~

X

k

isomorphi anonially toR

N

suh that the game and its equilibria assoiated

with the plaement of I

k

(x) in this position is equivalent to that of �

k

x

.

Lemma 2: If k � 1 and x and y belong to a onneted and ompat sub-

set D of R

N

then there is a pair p

x

= (p

x

1

; p

x

2

; : : : ; p

x

k

) and p

y

= (p

y

1

; p

y

2

; : : : ; p

y

k

)

in ([0; 1℄

N

)

k

with (x; p

x

) 2 E

k

and (y; p

y

) 2 E

k

suh that (x; p

x

) and (x; p

y

)

are onneted through E

k

jD, the equilibrium orrespondene lying over D.

Proof: Let

~

D be the anonial embedding of D into

~

X

k

as desribed

above. Let H(�; �) from

~

X

k

�[0; 1℄ to

~

X

k

�([0; 1℄

N

)

k

be the straight line homo-

topy (Kohlberg and Mertens [2℄) as desribed above suh that �ÆH(r; 0) = r

for all r 2

~

X

k

, the image of H(�; 1) is the equilibrium orrespondene, and

R > 0 is large enough so that if jjrjj exeeds R then for all t 2 [0; 1℄ the

point H(r; t) does not lie over

~

D. De�ne a funtion b

R

:

~

X

k

! [0; 1℄

by b

R

(r) = 0 if jjrjj � R + 1, b

R

(r) = 1 if jjrjj � R, and otherwise

b

R

(r) = R + 1 � jjrjj if R � jjrjj � R + 1. De�ne a ontinuous funtion

h :

~

X

k

!

~

X

k

� ([0; 1℄

N

)

k

by h(r) = H(r; b

R

(r)). The orrespondene in

~

X

k

� ([0; 1℄

N

)

k

generated by the image h on fr j jjrjj � R+2g has the span-

ning property for fr j jjrjj � R+2g (the projetion to

~

X

k

of the equilibrium

orrespondene over fr j jjrjj = R + 2g is the identity funtion). By our

hoie of R this orrespondene (the image of h) over the set

~

D is equivalent

to the equilibrium orrespondene E

k

over the set D. The rest follows by

Lemma 1. 2

Lemma 3: If there is no instant �

+

equilibrium then there is a quantity

B so large that if x

j

� B for all j 2 N then there is only one equilibrium

in E

k

, namely 0, the equilibrium where no player hooses q with positive

probability on any stage.

Proof: By indution, it suÆes to prove this for E

0;0

. This was proven

already in Simon [7℄, (as part of Lemma 3 of that paper), but for the sake of

ompleteness we sketh its proof.
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Assume that p is an equilibrium of �

x

and p is altered to p̂ so that p̂

j

= 1 if

p

j

� 1��=(M jN j) and otherwise p̂

j

= p

j

. It follows that p̂ is an � equilibrium

of �

x

.

If B > 0 is larger than

2M

2jNj

jN j

2jNj

+1

�

2jNj

and x

j

� B for all j 2 N then

p being an equilibrium of �

x

with p

l

> 0 for some player l implies that

p

j

� 1 � �=(M jN j) for some player j (sine otherwise Player l would prefer

to hoose  and get at least B with a probability of at least

�

jNj�1

(M jN j)

jNj�1

). With

the above paragraph this would ontradit the assumption that there exists

no �

+

equilibrium. 2

3 Esape Games have Approximate Equilib-

ria

For this setion, we assume that the quitting game in question is an esape

game. Until the proof the theorem, we make the following assumption.

Assumption C: Positive � > 0 is so small that both Assumptions A and

B hold, and furthermore � is smaller than the quantity de�ning the esape

game properties.

De�ne the positive quantity Æ to be

�

2M jN j

. De�ne T := fx j v

j

� x

j

�

v

j

+ � for some j 2 Ng \ fx j x

j

� v

j

for all j 2 Ng. Reall the de�nition of

W .

De�ne the orrespondene

~

F

j;Æ

to be f(x; y) j x 2 T; x

j

� v

j

+ �; y =

f(x; p) for some p satisfying 0 � p

j

� Æ and p

k

= 0 for all k 6= jg. De�ne

~

F

Æ

:= F

0;0

[

j2N

~

F

j;Æ

.

Lemma 4:

~

F

Æ

� F

�;0

and if an extended forward orbit of

~

F

Æ

starts at a

point in fx j x

j

� �

j

� �g then it remain in this set. If the extended forward

orbit of

~

F

Æ

started at a point in Q then it remains in Q, and if it starts in

Qn(W [ T ) then it remains in Qn(W [ T ).

Proof: Assume that x 2 T with x

j

� v

j

+ �. By quitting alone Player

j gets a payo� of v

j

and by not quitting a payo� of x

j

. By not quitting any

other player k gets a payo� of at least v

k

� ÆM � v

k

� �=2 � �

k

� �=2 and

by quitting a payo� no better than v

k

+ ÆM � v

k

+ �=2. This ompletes the

proof of

~

F

Æ

� F

�;0

.
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If x 2 R

N

satis�es x

j

� �

j

� � then any p 2 E

0;0

(x) with both a

j

(p) <

�

j

� � and b

j

(p; x) < �

j

� � would ontradit the de�nition of �

j

(sine

otherwise repetitive use of the p would be a way to hold Player j down to a

payo� below �

j

� �). Combined with an inequality of the last paragraph we

have that starting in fx j x

j

� �

j

� � for all j 2 Ng an extended forward

orbit of

~

F

Æ

remains in this set.

Containment in Q follows by the ontainment of

~

F

Æ

in F

�;0

, the fourth

property de�ning esape games, and the losure of Q.

We assumed that � is smaller than the � > 0 de�ning the esape game

properties. Assume that x; y 2 Q with x 62 W [ T and y 2

~

F

Æ

(x). Sine x

is already outside of T we know that y 2 F

0;0

(x). By the third and fourth

properties de�ning esape games either y = x or y

j

> v

j

+ � for all j 2 N .

Sine � is larger than � this does not allow for the possibility that the orbit

onverges from outside of T bak to a point in T . 2

De�ne an x 2 �W to be ritial if there exists a pair of player j; k in

N suh that x

j

= v

j

, x

k

= v

k

, and v(fjg)

k

< v

k

, meaning that by quitting

alone Player j gives to Player k less than what Player k would get by quitting

alone.

Lemma 5: From any start at a point in T either there is a forward orbit

of

~

F

Æ

that is of unbounded variation and stays entirely inside of T or there

is part of a forward orbit in T that ends at a ritial point.

Proof: Let x be any point in T that is not already a ritial point.

Letting any player j with x

j

� v

j

+ � quit alone with a probability of Æ gives

an expeted payo� vetor in (T [ W ) \

~

F

Æ

(x). Due to Assumption A the

distane between x and y is at least �Æ. If y is in T , we ontinue with the

point y. Otherwise if y is in the interior of W let ŷ be the last point on the

line segment from x to y that lies in T with ŷ = f(x; p̂) for 0 < p̂

j

< Æ and

p̂

k

= 0 for all k 6= j. ŷ is the ritial point we seek. 2

Lemma 6: From any ritial point x 2 Q \ �W there is an extended

forward orbit of

~

F

Æ

in (W [ T ) \Q with unbounded variation.

Proof: Let y be a point in the interior of W resulting from some player

j quitting with a probability of Æ. By Lemma 4 y is in Q.

Case 1; there is a forward orbit of F

0;0

starting at y and ontained

in W [ T that does not onverge: The laim follows from Lemma 4 and
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that non-onvergent orbits have unbounded variation.

Case 2; there is a forward orbit of F

0;0

starting at y and ontained

in W [ T that does onverge:

If the orbit onverged to a point z in the interior of W then with d

equaling the distane of z to �W there must be some i

0

� 0 suh that

for all stages i greater than i

0

the probability that some player hooses q

at stage i must be at least

d

2M jN j

(sine otherwise a player j

�

2 N with

z

j

�

� v

j

�

�

d

jN j

would prefer to hoose q over the move , ontraditing the

lak of an instant �

+

equilibrium). But then by Property A at all stages

beyond i

0

the distane between onseutive elements of the orbit would be

at least

d�

2M jN j

, ontraditing the laim that the orbit onverged. Therefore

we must assume that the orbit onverges to a point in T . By Assumption A,

a variation of at least �Æ is obtained in the motion from x to y. By Lemma 4

all points in the forward orbit and its point of onvergene are in Q\(W [T ).

If the point of onvergene is a ritial point, we ontinue with this point.

Otherwise we apply Lemma 5.

Case 3; there is no forward orbit of F

0;0

starting at y and on-

tained in W [ T :

There must be a k suh that the kth iteration of F

0;0

applied to y is

ontained in the omplement of W [ T , sine otherwise by Lemma 4 there

would be part of a forward orbit of F

0;0

of length k ontained in W [ T and

by the losure of F

0;0

if there were part of a forward orbit of F

0;0

inW [T for

every �nite length then there would be a forward orbit (of in�nite length) of

F

0;0

in W [ T , (an easy exerise). Beause there is no instant �

+

equilibrium

the kth interation of F

0;0

is the orrespondene F

k

.

Let p be any equilibrium inE

k

(y). LetB be a large positive quantity given

by Lemma 3 and let x be a point satisfying x

j

> v

j

for all j 2 N suh that

the losed line segment between x and x is in Q (from Property 2). Consider

three line segments, that from y to x, that from x to x, and that from x to

the point z := (B;B; : : : ; B); de�ne D to be the union of these three line

segments. By Lemma 2 (z; 0) must be onneted to (y; p) in E

k

jD (Lemma 3

implies that 0 is the only member of E

k

(z)). Notie that for any ~x 2 D with

~x

j

� x

j

+ for all j 2 N if (~x; p̂) 2 E

k

jD with q(p̂) > 0 then q(p̂) �



M

(sine

otherwise there would be no reason for any player to hoose the move q on any

stage). Furthermore from Property 2 de�ning esape games q(p̂) > �=M if ~x
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is in the line segment between x and x. This implies that f(~x; 0) j x 62 Wg is

an open set of E

k

jD whose ommon boundary with its omplement in E

k

jD

is only the point (x; 0), and therefore the onnetion between (z; 0) and (y; p)

in the set E

k

jD is possible only if there is a onnetion between (x; 0) and

(y; p) in the set (E

k

jD)nf(x̂; 0) j x 62 Wg.

De�ne the funtion � : R

N

! R by �(x) = min

j

fx

j

� v

j

g , so that

�(�W ) = f0g. We projet (E

k

jD)nf(x̂; 0) j x 62 Wg to D � R by the

map (x; p) ! (x; �(f(x; p)). (x; 0) projets to (x; 0) and (y; p) projets

to (y; b) with b > �. Let � � D � R be the image of this projetion of

(E

k

jD)nf(x̂; 0) j x 62 Wg to D �R. Sine onnetivity annot be destroyed

by the projetion, the set � onnets (y; b) with (x; 0). By the ontainment

of the line segment between x and x in Q and by Lemma 4 we must also

assume that � \ ([x; x℄� (�1; �℄) is ontained in fxg � (�1; �℄, with [x; x℄

the losed line segment (interval of D) between x and x. Sine fyg� (�1; �℄

also has an empty intersetion with � (the assumption of Case 3), to onnet

(x; 0) with (y; b) it is neessary that there exist some (ŷ; �) in � with ŷ in the

line segment between y and x. Therefore there is part of a forward orbit of

F

0;0

of length k starting at ŷ and ending at some ẑ with ẑ

j

= v

j

+ � for some

j 2 N . By Lemma 4 all points in this sequene of length k are in Q\(W [T ).

Now we apply Lemma 5. A variation of at least � is obtained after the point

ẑ. 2

Theorem: All esape games have approximate equilibria.

Proof: If there is no � small enough to satisfy Assumption C, then as

stated above there are approximate equilibria. Continue with Assumption

C. By the seond property of esape games there is some x 2 �W \ Q. By

Lemmatta 4, 5, and 6 there is an extended forward orbit of

~

F

Æ

of unbounded

variation staying within Q \ (W [ T ). By Lemma 4 it is an orbit remaining

in fy j �

j

� � � y

j

� M for all j 2 Ng. The rest follows by Proposition A.

q.e.d.

We ould improve on the theorem slightly by narrowing the de�nition of a

ritial point, requiring Property 2 only for ritial points, and also relaxing

Property 2 to allow for pathways instead of line segments.
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4 Examples:

The proof of the above theorem is suggestive onerning what a ounter-

example for quitting games might look like. The proof for esape games

was entirely two dimensional in harater, involving something similar to the

intermediate value theorem. In Case 3 of the proof of Lemma 6, without the

properties of esape games we ould move in the projetion � diretly from

(x; 0) to points (x̂; ) where the x̂ are outside of W . This shows that if there

is a proof of approximate equilibria for all quitting games one annot expet

it to use extended forward orbits that remain in or lose to the set W . Given

the examples of orrespondenes presented in Simon [7℄ without extended

forward orbits but with ontinuity assumptions and with the property that

from the boundary of a ompat set C there is always motion bak into the set

C, there should be onsiderable unertainty onerning the viability of any

suessful approah to all quitting games generalizing our proof for esape

games. In Simon [7℄ a topologial question of dynamis is presented whose

on�rmation would imply that all quitting games have approximate equilibria

(following a similar approah to the above proof), however we suspet that

this question will be answered negatively by a ounter-example.

With the following two examples, the payo�s are de�ned with a similar

struture. For every distint pair j; k 2 N of players we de�ne two val-

ues, (j; k) and q(j; k). If j 62 A and A is not empty then v(A [ fjg)

j

=

min

k2A

q(k; j). If j 62 A and A is not empty then v(A)

j

= max

k2A

(k; j).

Otherwise we assume that v(fjg)

j

= 1 for all j 2 N .

4.1 Example 1: Slow axe

The following is a simple four player quitting game. The players are repre-

sented modulo 4. The formal relations are the following:

q(i; i+ 1) = q(i; 1 + 2) = 97,

q(i; i� 1) = �1,

(i; i+ 1) = (i; i� 1) = 0,

(i; i+ 2) = 100.

Slow Axe was presented in Simon [7℄ as an example of a quitting game for

whih it is not obvious that there are approximate equilibria. The players

are paired in two teams, Player 1 with Player 3, Player 2 with Player 4.
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If Player i quits and his partner Player i + 2 does not, then Player i + 2

reeives a high payo�. On the other hand, if partners quit together and no

other player quits then both reeive high payo�s also. This allows for many

opportunities for a point x to be in W , y 2 F

0;0

(x), and yet y is far away

from W . Therefore it is not obvious that an approximate equilibrium ould

be generated by extended forward orbits (of

~

F

Æ

) lying in or near to the setW .

We prove, however, that Slow Axe is an esape game, and therefore exatly

this must happen.

For the analysis of this game (and any quitting game) it is onvenient

to say that a player ats to mean that she hooses the move q with positive

probability.

Lemma 7: With Q de�ned to be the set fx j

P

4

j=1

x

j

� 100; 0 � x

j

�

100 for all j = 1; 2; 3; 4g and � de�ned to be 1=1000, Conditions 1,2, and 4

de�ning esape games are satisi�ed.

Proof: Property 1 holds by the de�nition of the game and Property 2

by the de�nition of Q. Left is to prove Property 4.

Assume that (x; p) 2 E

0;0

with x 2 Q and y = f(x; p). By hoosing 

Player j reeives at least (1�p

j+1

)(1�p

j+2

)(1�p

j�1

)x

j

+100p

j+2

, and in any

ase at least 0. Putting these quantities together and summing over all four

players we get at least

Q

j

(1� p

j

)(

P

j

x

j

) + 100

P

j

p

j

� (1�

P

j

p

j

)(

P

j

x

j

) +

100

P

j

p

j

� 100. If Player j hooses q alone, similar alulations holds. The

sum of resulting payo�s for all the players would be p

j

+(1� p

j

)x

j

+100p

j

+

(1� p

j

)x

j+2

+ (1� p

j

)(x

j�1

+ x

j+1

) � (1� p

j

)(

P

k

x

k

) + 100p

j

� 100. 2

Lemma 8: Assume x 2 Q satis�es x

j

> 1 for all j and that p is an

equilibrium of �

x

with q(p) > 0 resulting in a payo� of y = f(x; p).

a: p

j

> 0 for all j = 1; 2; 3; 4.

b: If p

j+2

� 1=99 then y

j

> 1 + 1=1000.

: If p

j+1

� 1=80 then y

j

> 1 + 1=1000.

d: If p

j�1

� 1=50 then y

j

> 1 + 1=1000.

e: If p

j

� 1=3 then y

j

> 1 + 1=1000.

Proof of a: Player j is disouraged from ating by all players other than

j � 1, and therefore j will at only if j � 1 ats. Assuming that Player j � 1

does not at, formally one must on�rm (1� p

j+1

)(1� p

j+2

)� p

j+1

+97(1�
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p

j+1

)p

j+2

< (1� p

j+1

)(1� p

j+2

)x

j

+ 100p

j+2

. The inequality is obvious. By

indution we have all players ating.

b: Even if the event that all players had hosen  had no ontribution to

his payo�, Player j would still reeive more than 100=99 for not ating.

: Why does Player j � 1 at? (And he must at by Part a.) The ation

of Player j an only disourage Player j � 1 from ating, so the following

inequality holds:

(1�p

j+1

)(1�p

j+2

)+97(p

j+1

+p

j+2

�p

j+1

p

j+2

) � 100p

j+1

+(1�p

j+1

)(1�p

j+2

):

This redues to p

j+2

�

3p

j+1

97(1�p

j+1

)

.

We an exlude the ase of p

j+1

� 1=3, sine it implies that p

j+2

� 1=99,

the situation of Part b. By ating, regardless of what Player j � 1 does

(and using the above inequality relating p

j+2

to p

j+1

) Player j reeives at

least 97p

j+2

(1� p

j+1

)� p

j+1

+ (1� p

j+1

)(1� p

j+2

) � 2p

j+1

+ (1� p

j+1

)(1�

p

j+2

) � p

j+1

+ 1 � p

j+2

. With the assumption that p

j+2

� 1=99 (sine

otherwise Part b applies) we onlude that Player j gets from ating at least

1 + 1=80� 1=99 > 1:001.

d: By ating Player j gets at least �p

j+1

+ 97(1 � p

j+1

)p

j�1

+ (1 �

p

j+1

)(1� p

j�1

). To prevent this from being at least 1:001 it is neessary that

1:94(1� p

j+1

)� p

j+1

< 1:001, or p

j+1

> 1=4. This ase is overed by Part .

e: Why does Player j � 1 at? (And he must at by Part a.) As with

the proof of Part , the following inequality is neessary:

97p

j+2

(1� p

j

)� p

j

+ (1� p

j+2

)(1� p

j

) � (1� p

j+2

)(1� p

j

);

whih means that p

j+2

�

p

j

97(1�p

j

)

�

1

194

. If Player j + 1 does not at then

Player j will reeive at least

97

194

+

193

194

> 1:49 from hoosing q. To prevent

Player j from getting 1:001 from hoosing q it is neessary that Player j + 1

ats with a probability of at least 1=5, a ase overed already by Part . 2

Lemma 9: If b is positive, x

k

� 1 + b and Player k is ating then in any

equilibrium of �

x

Player k � 1 must hoose q with a probability of at least

b

97+b

.

Proof: Players k + 1 and k + 2 only disourage Player k from ating, so

the following inequality must hold:

97p

k�1

+ (1� p

k�1

) � (1� p

k�1

)(1 + b);
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whih implies that p

k�1

�

b

97+b

.

Proposition 1: The quitting game of Example 1 (slow axe) is an esape

game.

Proof: So far we have shown all properties exept for the third. Choosing

any x 2 Q with x

j

> 1 for all j, and assuming that y = f(x; p) for some

p 2 E

0;0

(x) suh that q(p) > 0 and y

j

� 1:001 for some player j the following

four laims result from Lemmatta 8 and 9:

p

j+1

< 1=80 from Part  implies that x

j+2

< 5=2,

p

j+2

< 1=99 from Part b implies that x

j�1

< 2,

p

j�1

< 1=50 from Part d implies that x

j

< 7=2.

p

j

< 1=3 from Part e implies that x

j+1

< 51.

But then the sum of the x

j

is less than 59, and this ontradits x being in

Q. 2

4.2 Star of Bethlehem

For the following example named the Star of Bethlehem we would be sur-

prised if there existed approximate equlibria. The struture is expressed

modulo 8.

For all players i we have

q(i; i+ 1) = q(i+ 3) = 10,

q(i; i+ 4) = 99,

q(i; i� 1) = q(i; i� 3) = �

1

1000

,

(i; i+ 1) = (i; i + 3) = (i; i� 3) = (i; i� 1) = 0,

(i; i+ 4) = 100.

For even i we have

q(i; i+ 2) = 99,

q(i; i� 2) = 10,

(i; i+ 2) = 100,

(i; i� 2) = 0.

For odd i we have

q(i; i+ 2) = 10,

q(i; i� 2) = 99,

(i; i+ 2) = 0,

(i; i� 2) = 100.
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