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1 Introduction

The main content of this dissertation is the comparison of statistical experiments which are
based on the Ranked Set Sampling (RSS) technique. Using the randomization criterion in
the theory of experiments we decide on the existence or non-existence of an informational
order between RSS experiments.

Sampling and Resampling Techniques
In the era of cheap and fast computation, more and more attention is given to sampling
(resampling respectively) problems. The purpose of sampling (resampling) theory is to
make sampling (resampling) of observations more efficient with respect to costs, speed of
sampling (resampling) and information gained from a sample, which is used in further sta-
tistical inference. From an applied point of view, sampling techniques are defined before
the process of observing and measuring and then directly involved into it, while resampling
techniques is a generic name for all methods which evaluate an estimator of a parameter
with the help of reweighted versions of the empirical probability distribution, i.e. resam-
pling techniques rely on an already existing sample of observations. Cochran’s [10] book
Sampling Techniques is one of the first books giving an overview of the most important
sampling procedures used in sampling surveys, like Simple Random Sampling (further
denoted by SRS), Stratified Random Sampling, Systematic Sampling, Double Sampling,
etc. Quenuille [22] and later Tukey [28] invented a nonparametric estimate of the bias
respectively the variance, subsequently named the Jackknife. The Bootstrap method, first
mentioned by Efron [13] is a more general method of estimation. The latter two method
are as the Random Subsampling, the balanced Repeated Replications, resampling techniques.

The Ranked Set Sampling
The technique Ranked Set Sampling (RSS), a sampling technique, was first introduced
by McIntyre [20] as an efficient alternative to simple random sampling for estimating the
expected pasture yields. In environmental and ecological sampling, or more generally in
spacial sampling, one may encounter situations where exact measurements of the variable
of interest are expensive (in terms of time, money, or other), but where ranking on the
basis of visual inspection or on the basis of another highly correlated random variable can
be done easily. In McIntyre’s case, measuring the plots of pasture yields requires moving
and weighting crop yields, which is time consuming. However, a small number of plots
can be even though sufficiently well ranked by eye without measurement. McIntyre’s goal
was to develop a sampling technique to reduce the number of necessary measurements to
be made, maintaining the unbiasedness of the SRS mean and reducing the variance of the
mean estimator by incorporating the outside information provided by visual inspection.
Therefore, since the ranking of the plots could be done very cheap, he developed a tech-
nique to implement this advantage.
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In the original form, the practical RSS technique can be described as follows: A set of p,
p ≥ 2, independent and identically distributed (i.i.d.) random variables Xi, 1 ≤ i ≤ p, is
drawn from a population with unknown distribution, denote it by P X . In practice, the
items of the set are not yet measured, but ranked visually. The item which is believed
to be the smallest is measured, denote it by X[1]. Then another set p of i.i.d. random
variables is drawn, ranked visually and the item which is believed to be the second small-
est is measured, denote it by X[2]. The procedure is repeated until the item ranked the
largest in the p-th set of p i.i.d. random variables is measured, say X[p]. This completes a
cycle of the sampling and is called in literature the RSS technique with one cycle. McIn-
tyre estimates the expectation of the underlying probability distribution P X with the RSS
mean estimator p−1

∑p

i=1 X[i] and concludes that it is unbiased and has a smaller variance
than the sample mean estimator obtained via SRS, p−1

∑p
i=1 Xi. In practice, the set size

p is kept small to ease the visual ranking and the cycle mentioned above can be repeated
several times. The balanced RSS technique with n cycles then gives rise to the random
variables Xi[1], . . . , Xi[p], 1 ≤ i ≤ n.

McIntyre’s RSS technique did not find further interest for over a decade. Then Halls
[14] conducted a field trial by using RSS technique for estimating forage yields in a pine
forest. They reported the gain of efficiency by using RSS instead of SRS and mentioned
also the practical problems which can arise when using RSS. Halls gave also the name
Ranked Set Sampling which is today in use. The first attempts of a mathematical mod-
eling of the RSS technique were made by Takahasi [27] and Dell [12]. They showed that
the relative efficiency of the RSS mean estimator (in the perfect case, to be defined later)
with respect to the SRS mean estimator is bounded below by 1 and above by p+1

2
for all

continuous distributions with a finite variance. Since then, the RSS technique has found
more and more interest in diverse statistical problems and a considerable number of pa-
pers have been published. These papers can be classified into theoretical papers, design
improvement papers and practical applications papers.

For an overview of the papers dealing with theoretical statistical problems, we introduce
some notations: Assume X1, . . . , Xnp is a SRS sample of size np, p ≥ 2, n ∈ N, of i.i.d. ran-
dom variables with distribution P X . Further, let Xi[1], . . . , Xi[p], 1 ≤ i ≤ n, be independent
random variables, Xi[j] ∼ P X[j] for all 1 ≤ i ≤ n, 1 ≤ j ≤ p, the RSS with n cycles. We do
not give here a detailed description of the distribution of the RSS random variables. We
only mention the difference between the perfect RSS and imperfect RSS, which has found
great attention in the literature. Loosely speaking, the perfect RSS is the RSS technique
in case the visual ranking is done perfectly, i.e. the j-th measurement in the j-th sample
is with probability 1 the j-th largest measurement in a sample of size p. Theoretically this
means P X[j] := P X(j:p) is the distribution of the j-th order statistic in a sample of size p
and in this case we denote Xi[j] := Xi(j), 1 ≤ i ≤ n and 1 ≤ j ≤ p. All the other cases are
called in literature imperfect RSS, error in model RSS or judgment RSS. In this disserta-
tion, we give a well defined mathematical expression for the above mentioned cases of RSS.
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In what follows we list some of the relevant statistical decision problems which were treated
by the RSS technique and mention the important results.

• Let the functional to be estimated be expectation EP XX. This estimation problem
was first treated by McIntyre [20]. The SRS estimator compared with the RSS
estimator is the usual sample mean, X̄SRS = 1

np

∑np

i=1 Xi. The RSS estimator is

defined by X̄RSS := 1
np

∑n
i=1

∑p
j=1 Xi[j]. The RSS estimator is unbiased: E[X̄RSS] =

EP XX. Moreover it has an asymptotic normal distribution,
√

np(X̄RSS−EP XX)
n→∞→

N(0, 1
p

∑p
j=1 var[(X1[j])]). The gain of information by using RSS as compared to SRS,

in terms of relative efficiency is obtained as

RE :=
var[X̄SRS]

var[X̄RSS]
= 1 +

∑p
j=1(E[X1[j]] − EP XX)2

∑p

j=1 var[X1[j]]
≥ 1.

• Let the functional to be estimated be the variance varP X [X]. This estimation problem
was first treated in the case of perfect RSS by Stokes [24]. The SRS estimator con-
sidered is s2

SRS = (np−1)−1
∑np

i=1(Xi − X̄SRS)2. The RSS Estimator is s2
RSS = (np−

1)−1
∑n

i=1

∑p

j=1(Xi(j) − X̄RSS)2. The RSS estimator is biased, E[s2
RSS] = varP X [X] +

∑p
j=1(EX1(j)−EX)2

p(np−1)
but asymptotically unbiased as limn→∞ E[s2

RSS] = varP X [X]. The
gain of information in terms of asymptotic relative efficiency can be summarized as

follows: ∃N ∈ N such that for np > N ,
var[s2

SRS]

var[s2
RSS

]
≥ 1. For example, if P X = N(0, 1)

then we need p ≥ 5 to achieve the latter inequality. The asymptotic relative efficiency

is then ARE = limn→∞
var[s2

SRS
]

var[s2
RSS

]
≥ 1.

• A more recent application is the kernel estimation problem, as treated for example
also in the case of perfect RSS by Barabesi [2]. Consider P X ≪ λ where we have de-
noted by λ the Lebesgue measure on the real line. Then the functional to be estimated
is f = dP X

dλ
. The usually SRS kernel estimator is f̂SRS(x) := (np)−1

∑np
i=1 Kh(x−Xi),

Kh(u) = h−1K(u/h) where K is a kernel function. The bandwidth h is chosen
such that consistency of the estimator is achieved. The RSS estimator as given by
Barabesi is f̂RSS(x) := (np)−1

∑n
i=1

∑p
j=1 Kh(x−Xi(j)). The expectation of the RSS

estimator equals the expectation of the SRS estimator: E[f̂SRS(x)] = E[f̂RSS(x)] =
EKh(x−X). The two estimators are asymptotically equivalent, therefore in the case
of kernel estimation, the RSS technique is relevant for finite sample sizes. The gain
of information by using the RSS technique is described by the relationship

var[f̂SRS(x)] = var[f̂RSS(x)] +
1

np2

p
∑

j=1

(EKh(x − X1(j)) − EKh(x − X))2,

MISE(f̂SRS) = MISE(f̂RSS) +
1

np2

p∑

j=1

∫

EKh(x − X1(j)) − EKh(x − X))2dx,

where MISE is the mean integrated squared error.
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• The sign test was treated by several authors, under many derivatives of the original
RSS technique. We mention here Hettmansperger [15]. Consider the family of proba-
bility distributions on the real line {P X

θ = P X(x−θ) : θ ∈ Θ}, where θ is the median.
Assume P X(0) = 1/2. Consider the test: H0 : θ = θ0 versus H1 : θ 6= θ0. The usu-
ally SRS test statistic is TSRS :=

∑np
i=1 1{Xi>0}. The new defined RSS test statistic

is denoted by TRSS :=
∑n

i=1

∑p

j=1 1{Xi(j)>0}. Then, under regularity conditions, the
Pitman efficiency of the RSS test versus the SRS test is given by

e(TRSS, TSRS) =
1

1 − 4
p

∑p

j=1(P
X(j)(0) − 1

2
)2

≥ 1.

Other relevant problems treated via the RSS technique are for example the comparison of
the Fisher information matrix in specific parametric RSS with the Fisher information in
specific parametric SRS (Bai [1]), RSS M-estimation for symmetric location families (Zhao
[30]), RSS estimation of quantiles (Chen [8]), RSS regression estimation (Chen [9]).

The Theoretical Background
The mathematical tool used for the definition of the RSS technique will be that of the
statistical experiment. The notion of a statistical experiment was introduced by Blackwell
[5] and is now wide-spread. Due to Blackwell and LeCam and in the spirit of Kolmogorov’s
axiomatic system of the probability theory a statistical experiment is considered a triple
for the parameter space Θ 6= ∅, (E,B, {Pθ : θ ∈ Θ}) where E is the sampling space, B a
σ-algebra for E and {Pθ : θ ∈ Θ} is a family of probability measures on B. We therefore
define statistical experiments which correspond to the RSS technique and derivatives of it
and to SRS. In the defined family of statistical experiments we investigate the relationship
between the RSS experiment and the SRS experiment given a decision problem1 or gener-
ally, for every decision problem.
The main difference between the usual decision theory and the theory of statistical ex-
periments is the following: The aim of decision theory is to investigate a fixed statistical
experiment and to find an optimal decision rule2 for a given decision problem. Questions of
comparison of different statistical experiments for arbitrary decision problems is subject of
the general theory of statistical experiments. The main ideas of this theory are formulated
by LeCam [19] even though the investigation of the comparison of statistical experiments
was initiated by the papers Bohnenblust [7] followed by the papers of Blackwell [5], [6]. A
natural question in the theory of experiments is how much ”statistical information” con-
tains a considered experiment, or in other words how much information is carried by the
observed data. In spite of the various existing definitions of ”information” (for example,
Fisher information, Shannon information or Kullback information), the definition intro-
duced first in Blackwell [5] and generalized by LeCam [19] is suitable and always defined

1A decision problem is a triple (Θ, D, W ) consisting of a parameter space Θ, a topological space D of
the possible decisions and a loss function W .

2Example: For the family of all absolutely continuous w.r.t. Lebesgue measure distribution functions
on R, the sample mean as estimator for the expectation has the smallest convex risk in the family of all
unbiased estimators.
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for a wide class of statistical comparisons. We give here the LeCam version (see the Pre-
requisites): The statistical experiment E is more informative than E∗ (denoted by E∗ ⊆ E)
for the parameter space Θ, if for every decision (D, W ) with a continuous, bounded loss
function W and any generalized decision function β∗ in the experiment E∗ there exists a
generalized decision function β in the experiment E such that

β(E , W ) ≤ β∗(E∗, W ), θ ∈ Θ.

For the case of a decision problem on a locally compact space, this definition reduces to
the comparison of the risks in the corresponding experiments. There are several methods
to compare experiments which lead to assertions equivalent to the definition of informa-
tion. The criteria to be chosen for the comparison depend mostly on assertions made on
the measurable spaces of the experiments as well as on the families of the measures of
the experiments. The randomization criterion first stipulated by LeCam [19] gives the
necessary and sufficient conditions for the existence of an informational order between two
arbitrary experiments. The criterion can be summarized as follows: An experiment E is
more informative than another experiment E∗ if and only if E∗ is a randomization of E . If
the experiments E and E∗ are dominated, then E∗ is a randomization of E if there exists
a stochastic operator M : L1(E) → L1(E∗) such that E∗ = ME . If the experiment E is
dominated and the measurable space of E∗ is a locally compact separable space, then E∗ is
a randomization of E if there exists a Markov kernel K from E to E∗ such that E∗ = KE
(for arbitrary experiments this property is called exhaustivity). In this dissertation we will
need the definition of randomization of two experiments via the existence of Markov kernels.

Motivation of the Comparisons via the Randomization Criterion
Consider the SRS experiment ({Rn,B(Rn), {⊗n

i=1P
X : P X ≪ λ,

∫
x2P X(dx) < ∞}). As-

sume we want to estimate the expectation with respect to P X , i.e. EP X [X]. In this
family of probability distributions, the sample mean as a nonrandomized decision func-
tion, 1

n

∑n
i=1 xi minimizes the convex risk among all mean unbiased estimators. But as

we have briefly shown in the examples above, the RSS estimator, constructed also via the
sample mean, as the nonrandomized decision function to be taken in the RSS experiment,
is unbiased and has a smaller variance than the SRS estimator. Therefore, we do not have
to consider the search of an optimal decision in a fixed experiment, but the comparison of
the SRS and RSS as statistical experiments. Furthermore, one could search for a sufficient
statistic which should induce the RSS experiment and generate via conditional expecta-
tion also the sample mean as the nonrandomized decision to be made for the estimation of
EP X [X], but as the results show, there does not exist such a sufficient statistic. Thus, the
next step would be not to search for a sufficient statistic, but for a more general exhaus-
tivity relation between SRS and RSS on proper probability spaces.

Results
We give a well-defined expression of the RSS random variables, the perfect and non-perfect
cases being differentiated only via distributional assumptions on the model. Assume Θ 6= ∅
to be a parameter set, the characteristics of which will be made precise in the thesis. We
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consider a family of statistical experiments derived by the RSS technique. We only mention
here the relevant experiments, the SRS of size n,

(Rn,B(Rn), {⊗n
i=1P

X
θ : θ ∈ Θ}),

the RSS of size n without repetition

(Rn,B(Rn), {⊗n
i=1P

X
(n)
[i]

θ : θ ∈ Θ}),

and the RSS with n repetitions

(Rnp,B(Rnp), {⊗n
i=1 ⊗p

j=1 P
X

(p)
[j]

θ : θ ∈ Θ}).

The upper index of the probability distributions is used to control the fixed set size of the
ranked samples. Since we restrict ourselves to dominated experiments, we establish the
existence or non-existence of Markov kernels between the experiments mentioned above
(randomization criterion) and, by this, we decide on the existence of an informational
order. The main relevant results are: The RSS experiment without repetition of size n
is not more informative than the SRS experiment of size n. Therefore it exists at least a
decision problem where a decision with the SRS gives more information than a decision
with the RSS experiment without repetition of size n. Analogously, the RSS experiment
with n repetitions is not more informative than the SRS of size np. The same implication
for the information follows here. Another relevant result, perhaps not directly for the
applications, but for the rest of the assertions, is that the RSS with n repetitions is more
informative than the SRS of size n. Despite the intuitive thought that an observation of a
RSS random variable would contain more information than a purely random observation,
since for example it carries the additional information given by the prior visual ranking, we
show that this is not true, since the experiment generated by a single RSS random variable

({R,B(R), {P X
(n)
[i]

θ : θ ∈ Θ})

is not more informative than a purely random experiment

({R,B(R), {P X
θ : θ ∈ Θ}).

In the Appendix of the thesis we relate RSS experiments with repetition to stratified
random sampling experiments. The main result here is that the stratification generated by
the RSS random variables is not the optimal stratification one can use for the estimation
of the sample mean. The results are given for fixed but arbitrary sample sizes. All the
results mentioned here hold under some regularity conditions for the respective families of
probability distributions. The proofs rely basically on the sufficiency and completeness of
the order statistic for specific families of probability distributions.
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The Content of the Chapters
This dissertation is structured as follows: The first chapter is the Introduction. In the
second chapter, the Prerequisites, we give the necessary notations and the basic results
from the theory of experiments and order statistics. The purpose of the third chapter is to
give a precise mathematical definition of the RSS random variables and of RSS statistical
experiments. Starting from a new definition of RSS random variables via random stochas-
tic matrices, we construct two models of RSS statistical experiments. The first model,
the RSS experiments without repetition, consists of a family of experiments indexed by
the number of RSS random variables to be considered in the model. The second model
consists of the RSS experiments with repetition. They are defined as a product experiment
of RSS experiments without repetition. The fourth chapter focuses on the comparisons
in the family of RSS experiments without repetition. In the beginning of the chapter we
recall and make some new relevant remarks on the order statistic as a sufficient, exhaustive
and complete statistic. The main result of this chapter is that the RSS without repetition
is not more informative than the SRS and that the family of RSS experiments without
repetition is not more informative. In section 4.3 we treat some decision problems where
RSS behaves more informative than the SRS. The content of the fifth chapter is the com-
parison of RSS experiments with repetition with a SRS of a smaller dimension. In this
case, we prove the existence of a Markov kernel to assure the informational order, that
RSS with repetition is more informative than the SRS. From an applied point of view,
the result is of relative importance, even though we give two examples, to see how the
existing Markov kernel generates a better decision. The second example shows that the
comparison of an estimator based on n observations with an estimator based on a higher
number of observations is in the case of subconvex loss functions motivated. In the next
chapter we proceed with the comparison of the RSS experiment with repetition with the
SRS of the same size and the result is that the RSS is not more informative than the SRS.
In the last chapter, the Appendix, we treat the RSS technique from a different point of
view. We introduce stratified random sampling as statistical experiments, the RSS falls
into this group. Then, by using results by Taga [26], we conclude that the RSS experiment
is not the optimal stratification one can choose for the estimation of the expectation. On
the other hand, a reasonable compromise in this case, since the boundaries of the strata
for the optimal stratification are computationally difficult to achieve.

Acknowledgments
I am especially grateful to Prof. Dr. M. Denker who supervised my Ph.D. thesis. I would
like to thank him not only for the fruitful discussions during the preparation, but also for
his kindness to teach me recognizing relevance. I thank him also for his trust in me and
the freedom he gave me in doing research.
I would like to thank Prof. Dr. A. Munk for being the co-referee of my thesis.
Moreover, I would like to thank Dr. W. Schwarzwäller, Dr. M. Stadlbauer and Dr. G.
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2 Prerequisites

In this chapter we repeat some definitions from statistical decision theory and recall some
well-known facts, which are needed in the sequel.

2.1 Notations

If not otherwise specified, we will always denote by B the corresponding σ-Algebra of a
measurable space E. All random variables are defined on a probability space (Ω,F , P ).
Expectations with respect to P will be denoted by EP . For a topological space D we
denote by B(D) the Borel σ-Algebra and by B0(D) the Baire σ-Algebra in D. The Borel
σ-Algebra B(Rn) is equal to the product σ-Algebra3 B(R)n. If T : (E,B) → (E ′,B′) is
a measurable map then we denote by P T the image measure on B′. For the probability
space (Rn,B(R)n, P ) we write P (B) for an arbitrary set B ∈ B(R)n and P (x) for the
distribution function. If T is a matrix then we denote by Ti∗ (respectively T∗j) the i-th row
vector (respectively the j-th column vector) of the matrix. We denote by M(B(R)n) the
set of all probability measures on (Rn,B(R)n).

2.2 Comparison of Experiments

Definition 1 (Statistical experiment) Let Θ 6= ∅ be an arbitrary set. A statistical
experiment for the parameter space Θ is a triple E = (E,B,P) where (E,B) is a measurable
space called the sample space and P = {Pθ : θ ∈ Θ} is a family of probability measures
on B. The collection of all experiments for the parameter space Θ is denoted by E(Θ).

Remark 2 We say that a statistical experiment E = (E,B, {Pθ : θ ∈ Θ}) is dominated if
it exists a σ-finite measure ν on B such that Pθ ≪ ν, for every θ ∈ Θ.

Remark 3 In a parametric setting we could consider Θ to be an open subset in Rk,
k ≥ 1. In a nonparametric setting we do not make any assumptions on the distribution of
the random variables in the sample space. In this case the parameter space can be taken
to be a function space, for example the space of all continuous distribution functions on
the sample space.

Definition 4 (Markov Kernel) Let (E,B) and (E ′,B′) be two measurable spaces. A
kernel from (E,B) to (E ′,B′) is a function on E × B′ with the properties:

• x 7→ K(x, B′) is B measurable for all B′ ∈ B′

• B′ → K(x, B′) is a measure on B′ for all x ∈ E.

The kernel K is a Markov kernel if K(x, E ′) = 1 for all x ∈ E.

3See BAUER [3], section 6.
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Let E = (E,B,P) be a statistical experiment and let D be a topological space. We call
(D,B0(D)) the decision space. Note that if D is a metric space then B0(D) = B(D).

Definition 5 (Decision Function) Let (D,B0(D)) be a decision space. Any Markov
kernel ρ : E × B0(D) → [0, 1] is called a decision function and the set of all decision
functions for an experiment is denoted by R(E , D). A decision function ρ ∈ R(E , D) is
said to be nonrandomized if ρ(·, B) ∈ {0, 1}, Pθ −a.s for every θ ∈ Θ and B ∈ B0(D). The
set of all nonrandomized decision functions will be denoted by R0(E , D).

Definition 6 (Loss Function) A family (Wθ)θ∈Θ of functions Wθ : D → R, θ ∈ Θ,
B0(D) measurable, is called a loss function. We say that (Wθ)θ∈Θ is a lower semicontinuous
loss function if each Wθ is bounded from below (inft Wθ(t) > −∞) and the sets {Wθ(t) ≤
a}, a ∈ R are closed. We say (Wθ)θ∈Θ is a continuous loss functions if each Wθ is continuous.

Definition 7 (Risk Function) The risk of the decision ρ ∈ R(E , D) at θ ∈ Θ is denoted
by

WθρPθ :=

∫

E

∫

D

Wθ(t)ρ(x, dt)Pθ(dx),

and the function θ 7→ WθρPθ, θ ∈ Θ is called the risk function of the decision ρ.

Remark 8 If ρ ∈ R0(E , D) then, obviously,

WθρPθ =

∫

E

Wθ(ρ(x))Pθ(dx), θ ∈ Θ.

Definition 9 (Decision Problem) The triple (Θ, D, W ) consisting of a parameter space
Θ, a decision space D and a loss function (Wθ)θ∈Θ is called a decision problem (for Θ).

Remark 10 Here, Θ can be identified with a fixed family of probability distributions.

In what follows we extend the definitions usually used in common decision theory to defini-
tions used in the theory of the comparison of statistical experiments. For further details see
LeCam [19], Strasser [25] or Shiryaev-Spokoiny [23]. Let (E,B, {Pθ : θ ∈ Θ}) be a statisti-
cal experiment. We denote by Cb(D) the set of all real continuous and bounded functions
on D, ‖f‖ := supt∈D |f(t)| and by L(E) := {µ ∈ ca(E,B) : σ⊥Pθ, θ ∈ Θ ⇒ σ⊥µ} where
ca(E,B) is the set of all bounded, signed measures on (E,B), ‖µ‖ := (µ+ + µ−)(E). For
convenience we denote

fρµ =

∫ ∫

f(t)ρ(x, dt)µ(dx)

if f ∈ Cb(D) and µ ∈ L(E). Every decision function ρ ∈ R(E , D) defines a bilinear function
βρ : Cb(D) × L(E) → R according to

βρ(f, µ) := fρµ, f ∈ Cb(D), µ ∈ L(E).
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Definition 11 (Generalized Decision Function) A generalized decision function for
the statistical experiment E = (E,B,P) and D is a bilinear function β : Cb(D)×L(E) → R
satisfying the following conditions:

1. | β(f, P ) |≤ ‖f‖∞ ‖P‖, if f ∈ Cb(D), P ∈ L(E).

2. β(f, P ) ≥ 0, if f ≥ 0, P ≥ 0.

3. β(1, P ) = P (E), if P ∈ L(E).

The set of all generalized decision functions is denoted by B(E , D). For every ρ ∈ R(E , D)
we have βρ ∈ B(E , D).

Definition 12 (More Informative Experiments) Let E1 = (E1,B1, {Pθ : θ ∈ Θ}) and
E2 = (E2,B2, {Qθ : θ ∈ Θ}) be two statistical experiments and (Θ, D, W ) be a decision
problem such that (Wθ)θ∈Θ is a lower semicontinuous loss function. The experiment E1

is called more informative than the experiment E2 for the decision problem (Θ, D, W )

denoted by E2

(D,W )

⊆ E1, if for every generalized decision function β2 ∈ B(E2, D) there exists
β1 ∈ B(E1, D) such that

β1(Wθ, Pθ) ≤ β2(Wθ, Qθ), θ ∈ Θ. (1)

If E2

(D,W )

⊆ E1 holds for every (D, W ) with a continuous and bounded loss function, then we
denote E2 ⊆ E1. The relation ” ⊆ ” is an order relation on the space of experiments E(Θ).
If E2 ⊆ E1 then E1 is called more informative than E2 for the parameter space Θ. If neither
E2 ⊆ E1 nor E1 ⊆ E2, then we say that the experiments E1 and E2 are not comparable for the
parameter space Θ. We say that a family of statistical experiments E{i∈I}, with an ordered
index set I, is more informative if Ei+1 is more informative than Ei for every {i, i + 1} ∈ I.

Remark 13 Even though according to Definition 9, a decision problem is given by the
triple (Θ, D, W ), in the notation for the informational order, the parameter space for which
the comparison between the experiments is done, is omitted and assumed to be fixed.

Remark 14 Let E1 and E2 be dominated experiments and let (Θ, D, W ) be a decision
problem such that D is a locally compact space with countable base and (Wθ)θ∈Θ is a
continuous loss function. The experiment E1 is more informative than the experiment E2

for the decision problem (Θ, D, W ), i.e. E2

(D,W )

⊆ E1, if for every ρ2 ∈ R(E2, D) there is
ρ1 ∈ R(E1, D) such that

Wθρ1Pθ ≤ Wθρ2Qθ, θ ∈ Θ. (2)

For a proof, see Strasser [25], Section 43.

The following definition of the randomization of experiments is given for the particular
case of dominated experiments on locally compact spaces, for the general definition see
Strasser [25], Section 55.
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Definition 15 (Randomization of Experiments) Suppose E1 = (E1,B1, {Pθ : θ ∈
Θ}) is a dominated experiment and E2 = (E2,B2, {Qθ : θ ∈ Θ}) is such that E2 is a locally
compact space with countable base and B2 = B(E2). Then E2 is a randomization of E1 if
there is a Markov kernel K from (E1,B1) to (E2,B2) such that

Qθ(A) =

∫

K(x, A)Pθ(dx)

for every θ ∈ Θ and A ∈ B2.

Analogously, the following theorem has a more general context, for the general randomiza-
tion case, stipulated first by LeCam [19]. This version is in the spirit of Heyer [16].

Theorem 16 Let E1 = (E1,B1, {Pθ : θ ∈ Θ}) be a dominated statistical experiment and
E2 = (E2,B2, {Qθ : θ ∈ Θ}) be a statistical experiment such that E2 is locally compact
with countable base and B2 = B(E2). Then E2 ⊆ E1 (i.e. E1 is more informative then E2)
if and only if E2 is a randomization of E1.

Proof.
See for example Theorem 55.9 and Corollary 55.11 in Strasser [25]. �

Sufficiency, Exhaustivity

Definition 17 (Conditional Probability Distribution) Let X : (Ω,F , P ) → (E1,B1)
be a random variable and let G ⊆ F be a σ-subfield. The conditional distribution of X
given G is any Markov kernel P X|G from (Ω,G) to (E1,B1) such that for all B1 ∈ B1,
ω 7→ P X|G(ω, B1) is a version of the conditional probability P (X−1(B1) | G).

Proposition 18 Let X : (Ω,F , P ) → (E1,B1) be a random variable and E1 be a Polish
space. Then for every σ-subfield G ⊆ F there exists the conditional distribution P X|G.
Two versions of the conditional probability are equal up to a set of measure 0.

Proof.
See Proposition 56.5 in Bauer [3]. �

Definition 19 (Sufficiency) Let (E1,B1) be a measurable space and P = {Pθ : θ ∈ Θ}
be a set of probability measures on B1. A σ-Algebra B0 ⊆ B1 is said to be P-sufficient if
for every B ∈ B1 there is a B0-measurable function fB such that fB = Pθ(B | B0) Pθ − a.e.
for every θ ∈ Θ. A measurable map S : (E1,B1) → (E2,B2) is called a sufficient statistic4

if S−1B2 is P-sufficient. Then we also write fB(x) = P (B | S(x)), x ∈ E1.

4Historical Remark: Fisher developed the idea that a statistic S is sufficient if any statistic T has
a conditional distribution, given S, which is independent of the probability measure. Knowing T (x), in
addition to S(x), can therefore, contribute nothing to the knowledge about the ’true’ probability measure.

12



Remark 20 (1) By Proposition 18, if E1 is a Polish space and B0 ⊆ B1 a σ-subfield, then
there exist Markov kernels Kθ : E1 × B1 → [0, 1] such that

Kθ(x, B) := Pθ(B | B0)(x) Pθ − a.s., B ∈ B1

If B0 is sufficient, then we can choose Kθ independent of θ and the measurable functions
fB in Definition (19) can be determined by the Markov kernels.
In this case, by definition of the conditional probability, the Markov kernels are B0 mea-
surable solutions of the equation:

∫

C

K(x, B)(Pθ |B0)(dx) =

∫

C

1B(x)Pθ(dx) = Pθ(B ∩ C), B ∈ B1

for all C ∈ B0 and θ ∈ Θ.
(2) Analogously, if E1 is a Polish space and if S : (E1,B1) → (E2,B2) is a sufficient statistic
then it exists the Markov kernel Q : E2 × B1 → [0, 1],

Q(s, B) := Pθ(B | S = s) P S
θ − a.s., B ∈ B1

such that the right hand side does not depend P S
θ -a.s. on θ ∈ Θ.

In this case, by the definition of factorised conditional probability, the equality holds
∫

C2

Q(s, B)P S
θ (ds) =

∫

S−1(C2)

1B(x)Pθ(dx) = Pθ(B ∩ S−1(C2))

for every C2 ∈ E2, B ∈ B1 and θ ∈ Θ.

Definition 21 (Minimal Sufficiency) The sufficient statistic S∗ : (E1,B1) → (E3,B3)
is said to be minimal sufficient if for any sufficient statistic S : (E1,B1) → (E2,B2) there
exists a function H : (E2,B2) → (E3,B3) such that S∗ = H ◦ S, Pθ − a.s., for every θ ∈ Θ.

Definition 22 (Exhaustivity) Let Ei = (Ei,Bi, {Pi,θ : θ ∈ Θ}), i = 1, 2, be statistical
experiments. E2 is called exhaustive5 for E1 if there is a Markov kernel K from (E2,B2) to
(E1,B1) such that

P1,θ(A1) =

∫

K(x, A1)P2,θ(dx) (3)

for every θ ∈ Θ and every A1 ∈ B1.
We call S : (E1,B1) → (E2,B2) an exhaustive statistic for the experiment E1 if there is a
Markov kernel Q from (E2,B2) to (E1,B1) such that

P1,θ(A1) =

∫

Q(y, A1)P
S
1,θ(dy) (4)

for every θ ∈ Θ and every A1 ∈ B1.

5The concept of exhaustivity goes back to Blackwell [5]
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Example
Let E = (E,B, {Pθ : θ ∈ Θ}) be a statistical experiment and B0 ⊆ B a σ-subfield. Denote
by E | B0 := (E,B0, {Pθ |B0: θ ∈ Θ}) the statistical experiment restricted to the σ-subfield
B0. Then E is exhaustive for E | B0. To prove this note that K(x, A) = 1A(x) for A ∈ B0

and x ∈ E defines a Markov kernel K : E × B0 → [0, 1] from E to E | B0.

Remark 23 (Interpretation of Exhaustivity) By Theorem 1.10.33 in Pfanzagl [21],
if (E1,B1) is a Polish space, then for every Markov kernel K from (E2,B2) to (E1,B1)
there exists a measurable function m : E2 × (0, 1) → E1 such that for every y ∈ E2,
the probability measure K(y, ·) is the image of the Lebesgue measure U on (0, 1) by the
transformation u 7→ m(y, u) i.e.

K(y, B) = U{u ∈ (0, 1) : m(y, u) ∈ B}, B ∈ B2.

Therefore, if E2 is exhaustive for E1, i.e. there exists a Markov kernel such that

P1,θ(A1) =

∫

K(y, A1)P2,θ(dy), θ ∈ Θ.

Thus, we obtain
P2,θ ⊗ U{m(y, u) ∈ A1} = P1,θ(A1)

for every θ ∈ Θ and A1 ∈ B1. If we know y and determine a realization u from the
uniform distribution over (0, 1), m(y, u) defines a random variable with exactly the same
distribution as the original one, for every θ ∈ Θ.

Proposition 24

1. A sufficient statistic is exhaustive if (E1,B1) is a Polish space.

2. Any exhaustive statistic is sufficient.

Proof.
(1) Obvious, by remark (20).
(2) See Theorem 1.3.9. in Pfanzagl [21]. �

Remark 25 The fact that any exhaustive statistic is sufficient does, however, not involve
that the Markov kernel which occurs in the definition of exhaustivity is a conditional
distribution given the sufficient statistic. The situation is different if the sufficient statistic
is minimal.

Proposition 26 Assume that B1 is countably generated and S : (E1,B1) → (E2,B2) is a
minimal sufficient statistic. Then any Markov kernel Q from (E2,B2) to (E1,B1) fulfilling

Pθ(A) =

∫

Q(y, A)P S
θ (dy) (5)

for every θ ∈ Θ and A ∈ B1 is a conditional distribution Pθ(· | S = s) and therefore unique
in the following sense: if Qi, i = 1, 2 fulfill (5), then Q1(y, ·) = Q2(y, ·), P S

θ − a.s..
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Proof.
See Proposition 1.4.9. in Pfanzagl [21]. �

Lemma 27 Suppose that E = (E,B, {Pθ : θ ∈ Θ}) is an experiment and F : (E,B) →
(E1,B1) is a measurable mapping. Then the experiments F∗E := (E1,B1, {Pθ ◦ F−1 : θ ∈
Θ}) and E |F−1B1

:= (E, F−1B1, {Pθ |F−1B1
: θ ∈ Θ}) are mutually exhaustive.

Proof.
Define the kernel K1 : E × B1 → [0, 1],

K1(x, A) = (1A ◦ F )(x), x ∈ E, A ∈ B1

Then we have that

Pθ ◦ F−1(A) =

∫

K1(x, A) dPθ(x) ∀θ ∈ Θ, A ∈ B1.

Therefore E is exhaustive for F∗E . It is clear that F∗E = F∗(E |F−1B1
). This implies that

E |F−1B1
is exhaustive for F∗E . To prove the converse define K2 : E1 × F−1B1 → [0, 1],

K2(x1, A) = 1F (A)(x1), A ∈ F−1B1, x1 ∈ E1.

Note that A = F−1(A1) implies F−1(F (A)) = F−1(A1). It follows that

Pθ(A) = Pθ(F
−1(A1)) =

∫

1F−1(A1)(x) dPθ(x)

=

∫

1F−1(F (A))(x) dPθ(x) =

∫

1F (A)(x1) dPθ ◦ F−1(x1).

�

Definition 28 (Completeness) A family of probability distributions {P : P ∈ P} on
(E,B) is q-complete, 1 ≤ q ≤ ∞, if for every measurable f ∈ ⋂P∈P Lq(P ),

∫

f(x)P (dx) = 0 ∀P ∈ P ⇒ f = 0 P − a.s. ∀P ∈ P.

We call S : (E,B) → (E1,B1) a q-complete statistic if {P S : P ∈ P} is a q-complete family
of probability measures. When we say a family of probability distributions is complete, we
mean 1-completeness.

Definition 29 (Symmetrically Completeness) A family of probability distributions
{P : P ∈ P} on (E,B) is symmetrically q-complete of order n if for any real permutation
invariant function fn on En, with fn ∈ ⋂P∈P  Lq(P n) we have

∫

fn(x1, . . . , xn)

n∏

i=1

P (dxi) = 0 ∀P ∈ P ⇒ fn = 0 P n − a.s. ∀P ∈ P.
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Proposition 30 Every sufficient and complete statistic on a Polish space is minimal suf-
ficient.

Proof.
See Proposition 1.4.8 in Pfanzagl [21]. �

Lemma 31 (Plachky-Landers-Rogge) For i ∈ {1, . . . , n} let (Ei,Bi) be measurable
spaces and Pi q-complete families of probability measure on Bi. Then the family

{⊗n
i=1Pi : Pi ∈ Pi, i = 1, ..., n}

is q-complete.

Proof.
See Proposition 1.5.6 in Pfanzagl [21]. �

Proposition 32 (Mandelbaum-Rüschendorf) Assume that P is q-complete and closed
under convex combinations. Then P is symmetrically q-complete of order n for every n ∈ N.

Proof.
See for example Proposition 7.78 in Witting [29]. �

2.3 Order Statistics

Let n ∈ N be fixed and arbitrary. Denote the group of permutations on {1, ..., n} by Sn.
Define the map τπ : Rn → Rn by τπ((x1, . . . , xn)) = (xπ(1), . . . , xπ(n)) for every π ∈ Sn.

Definition 33 (Order Statistic) The map On : Rn → Rn defined as

On((x1, . . . , xn)) = (y1, . . . , yn)

with y1 ≤ . . . ≤ yn and it exists a permutation π ∈ Sn such that τπ(x1, . . . , xn) =
(y1, . . . , yn) is called order statistic.

Let X, Xi : (Ω,F , P ) → R, 1 ≤ i ≤ n be a sample of i.i.d. random variables each having
probability distribution P X . The order statistic for the sample of size n is given by

(X(1:n), . . . , X(n:n)) := On((X1, . . . , Xn))

and the probability distribution by P OnXn

where Xn := (X1, . . . , Xn). The i-th order
statistic in a sample of size n is given by

X(i:n) := pr(i:n)On(X1, . . . , Xn), 1 ≤ i ≤ n

16



and we denote the probability distribution by P X(i:n). The probability distribution of two
order statistics is denoted by P X(i:n),X(j:n).

The Exact Probability Distribution of the Order Statistic

Proposition 34 Let Xi, 1 ≤ i ≤ n be i.i.d. real random variables each with distribution
P X . For each 1 ≤ i < j ≤ n and y, z ∈ R and by denoting πnl(P

X(z)) :=
(

n

l

)
(P X(z))l(1 −

P X(z))n−l and

πn,m,l(P
X(y), P X(z)) :=

n!

m!l!(n − m − l)!
(P X(y))m(P X(z) − P X(y))l(1 − P X(z))n−l−m

we have

P X(i:n)(z) =

n∑

l=1

πnl(P
X(z)),

P X(i:n),X(j:n)(y, z) =

{
P (X(j:n) ≤ z) z ≤ y
∑n

m=i

∑n−m
l=0∨(j−m) πn,m,l(P

X(y), P X(z)) y < z

Proof.
See for example Witting [29], section 7.2.2. �

Denote for 1 ≤ i ≤ n the density with respect to to the Lebesgue measure of the Beta
distribution, β(i:n) : [0, 1] → R,

β(i:n)(u) = n!
ui−1

(i − 1)!

(1 − u)n−i

(n − i)!
, 1 ≤ i ≤ n. (6)

Analogously, denote the density with respect to the Lebesgue measure of a m-dimensional
Beta distribution by

β(i1,...,im:n)(u1, . . . , um) = n!
ui1−1

(i1 − 1)!

(u2 − u1)
i2−i1−1

(i2 − i1 − 1)!
· · · (1 − um)n−im

(n − im)!
(7)

for 0 ≤ u1 < . . . < um ≤ 1 and 0 else.

Proposition 35 Let Xi, 1 ≤ i ≤ n be i.i.d. real random variables each with the continuous
distribution P X. Then the following holds:

1. P X(i:n) ≪ P X and

dP X(i:n)

dP X
(x) = β(i:n)(P

X(x)), P X − a.s. (8)

2. Generally, for 1 ≤ i1 < . . . < im ≤ n

dP X(i1:n),...,X(im:n)

d(P X)m
(x1, . . . , xm) = β(i1,...,im:n)(P

X(x1), . . . , P
X(xm)), (P X)m − a.s. (9)

Proof.
See for example Witting [29], section 7.2.2. �
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3 Ranked Set Sampling Experiments

In this chapter we define the Ranked Set Sampling (RSS) random variables to generate the
RSS statistical experiments by making use of the properties of random stochastic matrices.

3.1 Sampling Random Variables

Consider n ∈ N to be fixed but arbitrary and 1 ≤ r ≤ n. A random matrix (Tij)1≤i,j≤n :
(Ω,F , P ) → Rn×n is called a random stochastic matrix if

∑n
j=1 Tij = 1 holds P − a.s. for

every 1 ≤ i ≤ n. If the condition
∑n

i=1 Tij = 1 also holds P − a.s. for every 1 ≤ j ≤ n,
then the matrix is called a random double stochastic matrix.We call a random stochastic
matrix T ∈ Rn×n a sampling matrix of size r if the following conditions are fulfilled:

1. Tij ∈ {0, 1}, 1 ≤ i, j ≤ n

2. Tij = 0, P-a.s., r + 1 ≤ j ≤ n, 1 ≤ i ≤ r

3. Tii = 1, P-a.s., r + 1 ≤ i ≤ n

4. Ti1∗ independent of Ti2∗ for all 1 ≤ i1 6= i2 ≤ n.

Henceforth we denote such a random matrix by T(r) := (T
(r)
ij )1≤i,j≤n where the upper index

corresponds to the size of the sampling matrix.

Remark 36 The rows of the sampling matrix T(r)
i∗ , 1 ≤ i ≤ n, have a multinomial distri-

bution,

T(r)
i∗ ∼ Mn(1, pi1, . . . , pin),

n∑

j=1

pij = 1, pij = 0 ∀j ≥ r + 1

where we have denoted by pij := P (T
(r)
ij = 1), 1 ≤ i, j ≤ n. For each t := (tj)1≤j≤n, such

that tj ∈ {0, 1} and
∑n

j=1 tj = 1 we have P (T
(r)
i1 = t1, . . . , T

(r)
in = tn) =

∏r
j=1(pij)

tj .

Let X : (Ω,F , P ) → R be a random variable with distribution P X . Denote by X :=
(Xij)1≤i,j≤n a matrix of i.i.d. real random variables each with distribution P X .

Definition 37 (Sampling Random Variables) Let T(r) be a sampling matrix of size
r and let X be a matrix of i.i.d. real random variables each with distribution P X , such
that Xi∗ is independent of (T(r)

k∗ )1≤k 6=i≤n. Then the sampling random variables of size r are
given by

X
(r)
[i] := (T(r)

i∗ )′Xi∗, 1 ≤ i ≤ n. (10)

Lemma 38 The distribution of the sampling random variables of size r satisfies:
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1. X
(r)
[i] ∼ P X

(r)
[i] , where

P
X

(r)
[i] (A) =

{ ∑r

j=1 P (Xij ∈ A, T
(r)
ij = 1), 1 ≤ i ≤ r

P X(A), r + 1 ≤ i ≤ n

for every A ∈ R.

2. The Fundamental Equation

P X(A) =
1

n

(
r∑

i=1

P
X

(r)
[i] (A) + (n − r)P X(A)

)

, A ∈ B(R). (11)

3. The sampling random variables of size r are independent random variables.

Proof.
Let A ∈ B(R).
1. If 1 ≤ i ≤ r, then

P (X
(r)
[i] ∈ A) = P (

r∑

j=1

T
(r)
ij Xij ∈ A)

= P (

{
r∑

j=1

T
(r)
ij Xij ∈ A

}

∩ {
r⋃

j=1

{T (r)
ij = 1}})

=
r∑

j=1

P (Xij ∈ A, T
(r)
ij = 1).

If r + 1 ≤ i ≤ n the assertion is obvious.

2. Let F1, . . . , Fr be i.i.d. random double stochastic matrices such that F k
ij ∈ {0, 1}

for all 1 ≤ i, j ≤ n and 1 ≤ k ≤ r. We assume Fi
i∗ = T(r)

i∗ -P.a.s for all 1 ≤ i ≤ r. Then it
follows that

n∑

i=1

P X
(r)
[i] (A) =

r∑

i=1

P X
(r)
[i] (A) + (n − r)P X(A)

=
r∑

i=1

r∑

j=1

P (Xij ∈ A, T
(r)
ij = 1) + (n − r)P X(A)

=

r∑

i=1

r∑

j=1

P (Xij ∈ A, F i
ij = 1) + (n − r)P X(A)

=

r∑

i=1

r∑

j=1

P (X1j ∈ A, F 1
ij = 1) + (n − r)P X(A)
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=
r∑

i=1

r∑

j=1

∫

{F 1
ij=1}

1{X1j∈A}dP + (n − r)P X(A)

=

r∑

j=1

∫

{
⋃r

i=1 F 1
ij=1}

1{X1j∈A}dP + (n − r)P X(A)

=
r∑

j=1

∫

1{X1j∈A}dP + (n − r)P X(A)

= nP X(A)

3. The assertion is obvious, since the rows of the sampling matrix of size r, T(r)
i∗ are

independent and Xi∗ is independent of Xk∗ and T(r)
k∗ for all 1 ≤ k 6= i ≤ n.

3.2 Ranked Set Sampling Random Variables

Let M(B(R)2) be the set of all probability distributions on (R2,B(R)2). Denote by Θ0 :=
{P XY ∈ M(B(R)2) : P Y continuous} and let (Xij , Yij)1≤i,j≤n : (Ω,F , P ) → R2 be a
random matrix of i.i.d. random vectors, (Xij, Yij) ∼ P XY

θ , θ ∈ Θ0, 1 ≤ i, j ≤ n. Denote
X := (Xij)1≤i,j≤n (respectively Y := (Yij)1≤i,j≤n) with the marginal distribution Xij ∼ P X

θ ,
1 ≤ i, j ≤ n and independent (respectively Yij ∼ P Y

θ , 1 ≤ i, j ≤ n and independent).

Remark 39 For every 1 ≤ i ≤ n let Bi be the ω-set, where Yij(ω) = Yik(ω) for some
distinct pair of integers j, k, then by continuity P (Bi) = 0. For every 1 ≤ i ≤ n we
remove Bi from the space Ω on which Y is defined, and this will leave the joint distribution
unchanged and make ties impossible.

Proposition 40 Every random double stochastic matrix of dimension n with 0−1 entries
is uniquely determined by a random permutation defined on the group Sn of permutations
on {1, . . . , n}.

Proof.
Let (Fij)1≤i,j≤n : (Ω,F , P ) → {0, 1}n×n be a random double stochastic matrix. Let ω ∈ Ω,
Fij(ω) = fij, 1 ≤ i, j ≤ n. Define Π : (Ω,F , P ) → Sn random permutation such that
Π(ω) = π ⇔ ω ∈ ∩n

i,j=1F
−1
ij (fij), π(j) := {i : Tij(ω) = 1}, 1 ≤ i ≤ n. Conversely,

define (Tij)1≤i,j≤n a random matrix such that Tij(ω) = tij ⇔ ω ∈ Π−1(π), tij := 1π(j)=i,
1 ≤ i, j ≤ n. One can easily see that (Tij)1≤i,j≤n is indeed a random double stochastic
matrix with 0 − 1 entries and T = F P-a.s. �

Return now to the matrix Y = (Yij)1≤i,j≤n. Let 1 ≤ r ≤ n. Let Πk : (Ω,F , P ) → Sr be the
random permutations which generate the order statistics for Yk1, . . . , Ykr, 1 ≤ k ≤ r, i.e.

YkΠk(1) < . . . < YkΠk(r), 1 ≤ k ≤ r.
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By the continuity of the distribution of Y , the random permutations are well defined.
Therefore, we can define the random double stochastic matrices Fk := (F k

ij)1≤i,j≤n, 1 ≤
k ≤ r,

F k
ij :=

{
1{Πk(j)=i} 1 ≤ i, j ≤ r
0 i, j /∈ {1, ..., r}.

Henceforth, if we let r vary, then we denote the matrix above by (F(r))k := (F
(r)
ij )k

1≤i,j≤n.

This is equivalent to (F
(r)
ij )k = 1{Ykj=Yk(i:r)} for 1 ≤ i, j ≤ r and 0 otherwise.

Definition 41 (Ranked Set Sampling Random Variables) Let (Xij , Yij)1≤i,j≤n be a
random matrix of i.i.d. random vectors, each with distribution P XY

θ , θ ∈ Θ0 and let

the random double stochastic matrices (F(r))k ∈ Rn×n, 1 ≤ k ≤ r be (F
(r)
ij )k

1≤i,j≤r :=
(1{Ykj=Yk(i:r)})1≤i,j≤r and 0 otherwise. Then the RSS random variables of size r are sampling

random variables X
(r)
[i] := (T(r)

i∗ )′Xi∗, 1 ≤ i ≤ n, where the sampling matrix of size r, T(r)

is given by

T(r)
i∗ :=

{

(F(r)
i∗ )i 1 ≤ i ≤ r

(δi)1≤j≤n r + 1 ≤ i ≤ n

and δi
1≤j≤n are vectors satisfying δi

j = 1 ⇔ i = j and 0 otherwise.

Remark 42 In a notationally more convenient form, the RSS random variables of size r
have the form

X
(r)
[i] :=

{ ∑r

j=1 1{Yij=Yi(i:r)}Xij 1 ≤ i ≤ r

Xii r + 1 ≤ i ≤ n.

Proposition 43 Let θ ∈ Θ0. If 1 ≤ i ≤ r, then RSS random variables of size r are

distributed as X
(r)
[i] ∼ P

X
(r)
[i]

θ , where

P
X

(r)
[i]

θ (A) =

∫

A×R

1

B(i, n − i + 1)
P Y

θ (y)i−1(1 − P Y
θ (y))n−iP

X|Y =y

θ (dx)P Y
θ (dy) (12)

for every A ∈ B(R). If r+1 ≤ i ≤ n, then X
(r)
[i] ∼ P X

θ , where P X
θ is the marginal probability

distribution P X
θ (A) =

∫

A×R
P XY

θ (dx, dy), A ∈ B(R), θ ∈ Θ0. Moreover, the RSS random
variables of size r are independent.

Proof.

Let θ ∈ Θ0 and A ∈ B(R). Then, analogously to Lemma 38 we have P
X

(r)
[i]

θ (A) =

=

r∑

j=1

P (Xij ∈ A, T
(r)
ij = 1)

=
r∑

j=1

P (Xij ∈ A, Yij = Yi(i:r))

= r P (X11 ∈ A, Y11 = Y1(i:r))

= r P (X11 ∈ A, ∃! (i − 1) of {Y11, . . . , Y1r} \ {Y1(i:r)}which are < Y1(i:r))
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= r

∫ ∫

1A(x)P (∃! (i − 1) of {Y11, . . . , Y1r} \ {Y1(i:r)}

which are < Y1(i:r) | Y1(i:r) = y)P XY
θ (dx, dy)

= r

∫ ∫

1A(x)

(
n − 1

i − 1

)

P Y
θ (y)i−1(1 − P Y

θ (y))n−iP
X|Y =y

θ (dx)P Y
θ (dy)

=

∫ ∫

1A(x)
1

B(i, n − i + 1)
P Y

θ (y)i−1(1 − P Y
θ (y))n−iP

X|Y =y

θ (dx)P Y
θ (dy)

That X
(r)
[i] ∼ P X

θ , for r + 1 ≤ i ≤ n is obvious. The independence follows by Lemma 38.
�

Remark 44 In the case {P Y
θ : θ ∈ Θ0} ≪ λ, the distribution of the RSS random variables

of size r is determined by

P
X

(r)
[i]

θ (A) =

∫ ∫

1A(x)P
X|Y =y

θ (dx)P
Y(i:r)

θ (dy), 1 ≤ i ≤ r, A ∈ B(R). (13)

Remark 45 Notice also that a single RSS random variable X
(r)
[i] has the analog probability

distribution of a random variable called in literature concomitant of order statistics or
induced order statistic with the difference that a sample of induced order statistics is only
conditionally independent. For example, in Bhatacharya [4], the induced order statistics
are defined as follows: Let (Z1, Y1), . . . , (Zr, Yr) be i.i.d. random vectors, (Zi, Yi) ∼ P ZY ,
1 ≤ i ≤ r. The i-th induced order statistic Z[i:r] is defined to be Z[i:r] = Zj if Y(i:r) = Yj, for
1 ≤ i ≤ r. In particular, if P Y ≪ λ, then Z[i:r] has an analog distribution as in equation
(13). Despite the fact that each of the random variables in a set of RSS random variables
is in fact an induced order statistic, the RSS random variables are due to the sampling
separately in each row, independent. In comparison to this, the induced order statistics
are derived from a single sample of observations and are conditionally independent given
Y(i:r) = yi, 1 ≤ i ≤ r: Denote by P Z|Y the conditional distribution of Z given Y . Then it
holds

P (Z[i:r] ≤ zi, 1 ≤ i ≤ r | Y1 = y1, . . . , Yr = yr) = ⊗r
i=1P

X|Y =y(i:r)(zi), zi, yi ∈ R, 1 ≤ i ≤ r.

For a proof see Bhatacharya [4], Lemma 3.1. For more details about concomitants of order
statistics see also David [11].

Denote in what follows the parameter space Θ̃ ⊂ Θ0 given by

Θ̃ := {P XY
θ ∈ Θ0 : P

X|Y =y

θ = δ{y}, P Y
θ − a.s.}, (14)

where δ{y} is the Dirac measure. In this case we remark that the distribution of X is the
same as the distribution of Y , i.e.

P X
θ (A) =

∫

R2

1A(x)δ{y}(dx)P Y
θ (dy) = P Y

θ (A), A ∈ B(R), θ ∈ Θ̃.
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Analogously, remark that for this parameter space, the distribution of the i-th RSS random
variable is equal to the distribution of the i-th order statistic since

P
X

(r)
[i]

θ (A) =

∫ ∫

1A(x)
1

B(i, n − i + 1)
P Y

θ (y)i−1(1 − P Y
θ (y))n−iP

X|Y =y

θ (dx)P Y
θ (dy)

=

∫ ∫

1A(x)
1

B(i, n − i + 1)
P X

θ (y)i−1(1 − P X
θ (y))n−iδ{y}(dx)P X

θ (dy)

=

∫

1A(y)
1

B(i, n − i + 1)
P X

θ (y)i−1(1 − P X
θ (y))n−iP X

θ (dy)

=

∫

A

P
X(i:r)

θ (dx)

for each A ∈ B(R) and θ ∈ Θ̃.

Definition 46 (Perfect RSS Random Variables) Perfect RSS random variables of size

r are RSS random variables of size r X
(r)
[i] , 1 ≤ i ≤ n, with distribution X

(r)
[i] ∼ P

X
(r)
[i]

θ , θ ∈ Θ̃,
1 ≤ i ≤ n.

Remark 47 Notice that we can use the more convenient notational form for the perfect
RSS random variables:

X
(r)
[i] :=

{
Xi(i:r) 1 ≤ i ≤ r
Xii r + 1 ≤ i ≤ n.

Here Xi(i:r) is the i-th order statistic in a sample of size r.

3.3 Ranked Set Sampling Experiments without Repetition

Consider a sample of RSS random variables of size r,

X
(r)
[i] ∼

{

P
X

(r)
[i]

θ 1 ≤ i ≤ r
P X

θ r + 1 ≤ i ≤ n

for θ ∈ Θ0 and independent.

The probability distribution P
X

(r)
[i]

θ is determined in equation (12). By independence, the
distribution of the vector of RSS random variables of size r, generating a statistical exper-
iment is

(X
(r)
[1] , . . . , X

(r)
[n] ) ∼ ⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 P X

θ , θ ∈ Θ0.

Now we are able to define the RSS experiments without repetition, which includes the
original RSS technique.

Definition 48 (RSS Experiments without Repetition) Let the parameter space Θ0 :=
{P XY ∈ M(B(R)2) : P Y continuous} and consider parameter spaces Θk ⊆ Θ0, k ∈ N.
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Then the RSS experiments without repetition for the parameter space Θk are a family of
statistical experiments generated by RSS random variables

Gn
r := (Rn,B(R)n, {⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 P X

θ : θ ∈ Θk}) ∈ E(Θk), 1 ≤ r ≤ n.

Definition 49 (Perfect RSS Experiments) Let the parametrization Θ̃k ⊂ Θk be

Θ̃k := {P XY ∈ Θk : P
X|Y =y

θ = δ{y}, P
Y
θ − a.s.}, k ∈ N. The perfect RSS experiments

without repetition are given by

Gn,perfect
r := (Rn,B(R)n, {⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 P X

θ : θ ∈ Θ̃k}), 1 ≤ r ≤ n.

Remark 50 1) By the properties of the parameter space Θ̃k, the perfect RSS experiments
are determined by the perfect RSS random variables

Gn,perfect
r := (Rn,B(R)n, {⊗r

i=1P
X(i:r)

θ ⊗n
i=r+1 P X

θ : θ ∈ Θ̃k}), 1 ≤ r ≤ n.

2) Notice that the original RSS technique, called in literature the RSS with one cycle, is
determined by the statistical experiment Gn

n.
3) As a particular case, the RSS experiment without repetition Gn

1 = (Rn,B(R)n, {⊗n
i=1P

X
θ :

θ ∈ Θk}), Θk ⊆ Θ0, k ∈ N, will be called in the sequel the Simple Random Sampling (SRS)
experiment of size n.
4) Even if the parameter space Θk in the definition of the SRS experiment (or the param-
eter space Θ̃k in the case of perfect RSS experiments) is a subset of the set of all bivariate
probability distributions on (R2,B(R)2), we will not make any further notations and under-
stand the probability distribution P X

θ (P Y
θ respectively) as the marginal distribution with

respect to X (marginal distribution with respect to Y respectively) of P XY
θ , for θ ∈ Θk,

k ∈ N.

3.4 Ranked Set Sampling Experiments with Repetition

If Ei = (Ei,Bi, {Pθ,i : θ ∈ Θ}) ∈ E(Θ), 1 ≤ i ≤ n are statistical experiments for the
parameter space Θ then we denote the product statistical experiment by

E1 ⊗ · · · ⊗ En := (

n∏

i=1

Ei,⊗n
i=1Bi, {⊗n

i=1Pθ,i : θ ∈ Θ}).

For the definition of a RSS experiment with repetition, we consider a product experiment
of RSS experiments without repetition of the full size, where the ranking is done in every
row of the original starting matrix and purely random observations are not included any
longer. Here, we denote by n the number of repetitions of the experiment, in comparison
to the case of RSS without repetition, where n was the notation for largest size of the
experiment. This has a motivation for asymptotic considerations of the experiments.
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Definition 51 (Unbalanced RSS Experiments with Repetition) Let the parameter
space be Θ0 := {P XY ∈ M(B(R)2) : P Y continuous} and consider parameter spaces
Θk ⊆ Θ0, k ∈ N. Then the unbalanced RSS experiment with n repetitions for the param-
eter space Θk is the product experiment of RSS experiments without repetition

⊗n
i=1G

ti
ti

:= (R
∑n

i=1 ti ,B(R)
∑n

i=1 ti , {⊗n
i=1 ⊗ti

j=1 P
X

(ti)

[j]

θ θ ∈ Θk}),

ti ∈ N, 1 ≤ i ≤ n.

If t1 = . . . = tn = p, p ∈ N, then the experiment will be called the balanced RSS experiment

with n repetitions.

Definition 52 (Balanced RSS Experiments with Repetition) Let Θ0 := {P XY ∈
M(B(R)2) : P Y continuous} and consider parameter spaces Θk ⊆ Θ0, k ∈ N. Then the
balanced RSS experiment with n repetitions for the parameter space Θk is the product
experiment of RSS experiments without repetition

⊗n
i=1G

p
p := (Rnp,B(R)np, {⊗n

i=1 ⊗p
j=1 P

X
(p)
[j]

θ θ ∈ Θk}),

ti ∈ N, 1 ≤ i ≤ n.

Remark 53 Analogously as in the case of RSS experiments without repetition, when
restricting to the parameter space Θ̃k = {P XY ∈ Θk : P

X|Y =y

θ = δ{y}P
Y
θ − a.s.}, we obtain

the perfect RSS experiment with n repetitions and balanced

⊗n
i=1G

p,perfect
p := (Rnp,B(R)np, {⊗n

i=1 ⊗p
j=1 P

X(j:p)

θ θ ∈ Θ̃k}),

ti ∈ N, 1 ≤ i ≤ n.
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4 Comparisons in the family of RSS Experiments with-

out Repetition

In the sequel, the definition of the RSS random variables by means of random stochastic
matrices will no longer be used. We will resume our attention only to the RSS experiments
as probability spaces which we compare with respect to the informational order in the
space of all experiments for a fixed parameter space. This chapter is divided as follows:
In the first section of the chapter we recall some facts about sufficiency and completeness
and make also some new remarks for this subject. In the second section we derive the
non-existence of an informational order between relevant statistical experiments in the
RSS problematic. The last section contains examples to motivate the treatment of the
comparisons.

4.1 Remarks on Order Statistics, Sufficiency and Completeness

Definition 54 A probability distribution P on (Rr,B(R)r) is called exchangeable if P is
invariant with respect to the group of permutations Sr on {1, . . . , r}, i.e. invariant under
all maps τπ : Rr → Rr with

τπ(x1, . . . , xr) = (xπ(1), . . . , xπ(r)), ∀π ∈ Sr. (15)

Denote by Br
0 := {B ∈ B(R)r : τπB = B ∀π ∈ Sr} ⊂ B(R)r the σ-subfield of τπ invariant

sets.

Proposition 55 If P is an exchangeable probability distribution on B(R)r then for all
B ∈ B(R)r

E(1B | Br
0) =

1

r

∑

π∈Sr

1τπB P − a.s.

i.e. Br
0 is a sufficient σ-subfield for all exchangeable probability distributions.

Proof.
See Witting [29]. �

Proposition 56 The order statistic Or : Rr → Rr is sufficient for all exchangeable distri-
butions, i.e.

O−1
r B(Rr) = Br

0.

Proof.
We show O−1

r B(R)r = Br
0.

⊂: Or ◦ τπ = Or ⇒ Or is Br
0 measurable ⇒ O−1

r B(R)r ⊂ Br
0.

⊃: Let B ∈ Br
0. If x ∈ B then we have Orx = τπ0(x) ∈ B for a π0 ∈ Sr, this implies

x ∈ O−1
r B ∈ O−1

r B(R)r. Therefore, Br
0 ⊃ O−1

r B(R)r. �
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Corollary 57 Let Θ 6= ∅ be an arbitrary parameter set and {⊗r
i=1P

Y
θ : θ ∈ Θ} an arbi-

trary family of probability distributions on (Rr,B(R)r). Let Or be the order statistic on
Rr. Then the following affirmations hold:
(1) The experiment (Rr,Br

0, {⊗r
i=1P

Y
θ |Br

0
: θ ∈ Θ}) is exhaustive for the experiment

(Rr,B(R)r, {⊗r
i=1P

Y
θ : θ ∈ Θ}).

(2) The experiments (Rr,Br
0, {(⊗r

i=1P
Y
θ ) |Br

0
: θ ∈ Θ}) and (Rr,B(R)r, {P OrY r

θ : θ ∈ Θ}) are
mutually exhaustive.
(3) The experiment (Rr,B(R)r, {P OrY r

θ : θ ∈ Θ}) is exhaustive for the experiment
(Rr,B(R)r, {⊗r

i=1P
Y
θ : θ ∈ Θ}).

Proof.
(1) Denote by Kr

1 : Rr × B(R)r → [0, 1] the Markov kernel

Kr
1(·, B) := Eθ(1B | Br

0), ⊗r
i=1P

Y
θ − as. (16)

Then by the sufficiency of the σ-algebra Br
0, the right hand side does not depend a.s. on θ

and by the properties of the conditional probability it follows

⊗r
i=1P

Y
θ (B) =

∫

Kr
1(y1, . . . , yr, B)(⊗r

i=1P
Y
θ ) |Br

0
(dy1, . . . , dyr)

for every B ∈ B(R)r and θ ∈ Θ.
(2) Denote by OrB := {Or(x1, . . . , xr) : (x1, . . . , xr) ∈ B} and by Kr

2 : Rr × Br
0 → [0, 1]

the Markov kernel
Kr

2(·, B) := 1OrB, B ∈ Br
0. (17)

Then by Lemma 27 it follows that

(⊗r
i=1P

Y
θ ) |Br

0
(B) =

∫

Kr
2(x1, . . . , xr, B)P OrY r

θ (dx1, . . . , dxr)

for every B ∈ Br
0 and θ ∈ Θ.

Conversely, let Kr
3 : Rn × B(R)r → [0, 1] be the Markov kernel

Kr
3(·, B) := (1B ◦ Or).

Then also by Lemma 27 it follows that

P OrY r

θ (B) =

∫

Kr
3(x1, . . . , xr, B)(⊗r

i=1P
Y
θ ) |Br

0
(dx1, . . . , dxr)

for every B ∈ B(R)r and θ ∈ Θ.
(3) Define the kernel Kr : Rr × B(R)r → [0, 1],

Kr(·, B) :=

∫

Rr

Kr
1(y1, . . . , yr, B)Kr

2(·, dy1, . . . , dyr) (18)

=

∫

Rr

1

r!

∑

π∈Sr

1τπB(y1, . . . , yr)K
r
2(·, dy1, . . . , dyr). (19)
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Then it follows that

⊗r
i=1P

Y
θ (B) =

∫

Rr

Kr(z1, . . . , zr, B)P OrY r

θ (dz1, . . . , dzr) (20)

for every B ∈ B(R)r and θ ∈ Θ. �

For more details see also Proposition 24 and Lemma 27 in the Prerequisites chapter.
Recall the family of RSS experiments without repetition for the parameter space Θk, k ∈ N:

Gn
r := (Rn,B(R)n, {⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 P X

θ : θ ∈ Θk}) ∈ E(Θk), 1 ≤ r ≤ n,

where Θk ⊆ Θ0 := {P XY ∈ M(B(R)2) : P Y continuous}, k ∈ N. In what follows we define
parameter spaces Θk to take into consideration in the rest of the assertions.

We establish for which families of probabilities distributions, the order statistic is com-
plete. The functions on Rr depending on (x1, . . . , xr) through the order statistic are the
functions of (x1, . . . , xr) which are invariant under all permutations of (x1, . . . , xr). There-
fore, completeness of a family {P OrY r

θ : θ ∈ Θ} is the same as symmetrically completeness
of order r of {P Y

θ : θ ∈ Θ}. The principle to be followed here is stipulated in Proposition
32.

Proposition 58

1. Let P0 ∈ M(B(R)) and 1 ≤ q ≤ ∞. Then the family of probability distributions

∆1(P0) := {P Y ∈ M(B(R)) : P Y << P0, dP Y /dP0 bounded, P Y with compact support}

is q-complete and convex.

2. Let h1, . . . , hl be B(R)m-measurable non-negative numerical functions. Then the
families of probability distributions

∆2 := {P Y ∈ M(B(R)) :

∫

hi(x1, . . . , xm)

m∏

i=1

P Y (dxi) < ∞, i = 1, . . . , l},

∆3 := {P Y ∈ ∆2 : P Y continuous}, ∆4 := {P Y ∈ ∆2 : P Y ≪ λ},
are q-symmetrically complete of each order n.

Proof.
See Propositions 7.79 and 7.80 in Witting [29].

�

Corollary 59 For the families of probability distributions {⊗r
i=1P

Y
θ : θ ∈ ∆j}, 1 ≤ j ≤ 4,

the order statistic Or is complete.
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Denote by M(B(R)2) the space of all probability distributions on B(R)2 and let M0(B(R)2) ⊆
M(B(R)2). We define the parameter spaces we will consider in the sequel:

Θ0 := {P XY ∈ M(B(R)2) : P Y continuous} (21)

Θ1 := {P XY ∈ M0(B(R)2) : P Y ∈ ∆1} (22)

Θ2 := {P XY ∈ M0(B(R)2) : P Y ∈ ∆2} (23)

Θ3 := {P XY ∈ M0(B(R)2) : P Y ∈ ∆3} (24)

Θ4 := {P XY ∈ M0(B(R)2) : P Y ∈ ∆4} (25)

Θ5 := {P XY ∈ M0(B(R)2) : P XY ≪ λ2, P Y ∈ ∆2} (26)

Θ6 := {P XY ∈ M0(B(R)2) : P XY ≪ λ2, P X ∈ ∆2, P
Y ∈ ∆2} (27)

Proposition 60 If P := {P OrY r

θ : θ ∈ Θ} is a complete family of probability distributions

then the families Pi := {P Y(i:r)

θ : θ ∈ Θ}, 1 ≤ i ≤ r are also complete.

Proof.
Let h ∈ ⋂θ∈Θ L1(P

Y(i:r)

θ ) such that

∫

h(y)P
Y(i:r)

θ (dy) = 0, θ ∈ Θ.

But this is equivalent to
∫

h(yi)P
OrY r

θ (dy1, . . . , dyr) = 0, θ ∈ Θ. Since Or is complete for
this family of probability distributions, it follows that g = 0, P OrY r

θ -a.s. where g : Rr → R

is defined by (y1, . . . , yr) 7→ h(yi) for all (y1, . . . , yr) ∈ Rr. This implies h = 0 P
Y(i:r)

θ -a.s.
which proves the assertion. �

Remark 61 The order statistic Or is minimal sufficient for the family of probability dis-
tributions {⊗r

i=1P
Y
θ : θ ∈ ∆j}, 1 ≤ j ≤ 4. This is a consequence of Proposition 30.

Therefore, the kernel Kr defined in equation (18) is a version of the conditional probability
distribution P OrY r |Or(x1,...,xr)=y1,...,yr . This follows from Proposition 26.

Proposition 62 Let {⊗r
i=1P

Y
θ : θ ∈ Θ} be a symmetrically complete family of probability

distributions. Then, for all B ∈ B(R)r, B := R × . . . × R×
︸ ︷︷ ︸

i-1 times

A×R × . . . × R
︸ ︷︷ ︸

r-i-1 times

, A ∈ B(R),

the following equation holds:

Kr(·, B) =
1

r

r∑

j=1

1τ(ij)R×...×R×A×R×...×R, P OrY r

θ − a.s., θ ∈ Θ, (28)

where we have denoted by τ(ij) : Rr → Rr the map τπ restricted to all transpositions
π = (i, j) ∈ Sr, 1 ≤ i, j ≤ r.
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Proof.
Let B ∈ B(R)r such that B = R × . . . × R×

︸ ︷︷ ︸

i-1 times

A×R × . . . × R
︸ ︷︷ ︸

r-i-1 times

, A ∈ B(R). Then by equation

(18) it follows that P Y
θ (A) = ⊗r

i=1P
Y
θ (B) =

=

∫

Rr

∫

Rr

1

r!

∑

π∈Sn

1τπB(y1, . . . , yr)K
r
2(x1, . . . , xr, dy1, . . . , dyr)P

OrY r

θ (dx1, . . . , dxr)

=

∫

Rr

∫

Rr

1

r!

∑

π∈Sn

1τπR×...×A×...×R(y1, . . . , yr)K
r
2(x1, . . . , xr, dy1, . . . , dyr)P

OrY r

θ (dx1, . . . , dxr)

=

∫

Rr

∫

Rr

1

r

r∑

j=1

1τ(ij)(R×...R×A×R×...×R)(y1, . . . , yr)K
r
2(x1, . . . , xr, dy1, . . . , dyr)

P OrY r

θ (dx1, . . . , dxr).

Additionally, by the fundamental equation (11) we also have that:

P Y
θ (A) =

1

r

r∑

i=1

P
Y(i:r)

θ (A)

=
1

r

r∑

i=1

∫

R

1A(x)P
Y(i:r)

θ (dx)

=

∫

Rr

1

r

r∑

i=1

1A(xi)

r∏

i=1

P
Y(i:r)

θ (dxi)

=

∫

Rr

1

r

r∑

j=1

1τ(ij)(R×...R×A×R×...×R)(x1, . . . , xr)

r∏

i=1

P
Y(i:r)

θ (dxi)

=

∫

Rr

1

r

r∑

j=1

1τ(ij)(R×...R×A×R×...×R)(x1, . . . , xr)P
OrY r

θ (dx1, . . . , dxr).

Therefore,

∫

Rr

(

Kr(x1, . . . , xr, B) − 1

r

r∑

j=1

1τ(ij)(B)(x1, . . . , xr)

)

P OrY r

θ (dx1, . . . , dxr) = 0,

for every θ ∈ Θ and B ∈ B(R)r with the specified form. The completeness of the order
statistic implies that

Kr(·, B) =
1

r

r∑

j=1

1τ(ij)B, P OrY r

θ − a.s.

for every θ ∈ Θ and B ∈ B(R)r with the specified form. The assertion is proved.
�
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4.2 The Informational Order

The main purposes of this section is to prove, that the family of RSS experiments without
repetition,

Gn
r = (Rn,B(Rn), {⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 P X

θ : θ ∈ Θk}), 1 ≤ r ≤ n, k ∈ {5, 6}

is not more informative, i.e. ∃r ∈ {1, . . . , n − 1} such that Gn
r+1 is not more informative

than Gn
r , and perhaps the most relevant result, that Gn

n is not more informative than Gn
1 , in

other words, the original RSS experiment is not more informative than the SRS experiment.
In order to prove the non-existence of the informational order mentioned above, we restrict
first our attention to statistical experiments on (R,B(R)) generated by a single RSS random
variable. These experiments can also be viewed as experiments generated by concomitants
of order statistics. Although the non-existence of the informational order is proved for the
parameter spaces Θ5 and Θ6 (here we need dominated experiments) defined in equations
(26) and (27), important results regarding the exhaustivity of RSS experiments hold for
the parameter spaces Θk, 1 ≤ k ≤ 6.
The motivation of the next theorem is the following: When observing a RSS random
variable of size r + 1, one could believe that it contains more information than a RSS
random variable of size r. This because the first is arising from the ordering of the larger
sample Y1, . . . , Yr+1. We prove that, contrary to the intuition, the affirmation does not
hold.

Theorem 63 Let 1 ≤ k ≤ 6. Assume that for the family of probability distributions
{P XY

θ : θ ∈ Θk} there exists a version of the conditional distribution P
X|Y
θ which is

independent of θ ∈ Θk, P X
θ − a.s.. Denote it by P

X|Y
· . Then for every 1 ≤ i ≤ r and

1 ≤ j ≤ r + 1 the experiment

(R,B(R), {P X
(r+1)
[j]

θ : θ ∈ Θk})

is not exhaustive for the experiment

(R,B(R), {P X
(r)
[i]

θ : θ ∈ Θk}).

Proof.
We will prove the assertion by a contradiction argument. We assume the exhaustivity of
the experiments takes place, i.e. we assume there exists a Markov kernel L from (R,B(R))
to (R,B(R)) such that

P
X

(r)
[i]

θ (A) =

∫

R

L(x, A)P
X

(r+1)
[j]

θ (dx), θ ∈ Θk, A ∈ B(R). (29)

For the right-hand side of equation (29) we have then
∫

R

L(x, A)P
X

(r+1)
[j]

θ (dx) =

∫

R

∫

R

L(x, A)P X|Y =y
· (dx)P

Y(j:r+1)

θ (dy)
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=

∫

Rr+1

∫

R

L(x, A)P
X|Y =yj
· (dx)P

Or+1Y
r+1

θ (dy1, . . . , dyr+1)

=

∫

Rr+1

gA(y1, . . . , yr+1)P
Or+1Y

r+1

θ (dy1, . . . , dyr+1),

where we have denoted by gA : R → R the measurable function

(y1, . . . , yr+1) 7→
∫

R

L(x, A)P
X|Y =yj
· (dx). (30)

For the left-hand side of equation (29) it follows that:

P
X

(r)
[i]

θ (A) =

∫

R

∫

R

1A(x)P X|Y =t
· (dx)P

Y(i:r)

θ (dt)

=

∫

Rr

∫

R

1A(x)P X|Y =ti
· (dx)P OrY r

θ (dt1 . . . , dtr)

=

∫

Rr

∫

R

1A(x)
dP OrY r

θ

d(P Y
θ )r

(t1, . . . , tr)P
X|Y =ti
· (dx)

r∏

i=1

P Y
θ (dti)

=

∫

Rr

∫

R

1A(x)r!1t1<...<trP
X|Y =ti
· (dx)

r∏

i=1

P Y
θ (dti)

=

∫

Rr+1

∫

R

1A(x)r!1t1<...<trP
X|Y =ti
· (dx)

r+1∏

i=1

P Y
θ (dti)

=

∫

Rr+1

∫

Rr+1

∫

R

1A(x)r!1t1<...<trP
X|Y =ti
· (dx)

Kr+1(y1, . . . , yr+1, dt1, . . . , dtr+1)P
Or+1Y r+1

θ (dy1, . . . , dyr+1)

=

∫

Rr+1

hA(y1, . . . , yr+1)P
Or+1Y r+1

θ (dy1, . . . , dyr+1)

where Kr+1 is the Markov kernel defined in equation (18), and where we have denoted by
hA : Rr+1 → R the measurable function

(y1, . . . , yr+1) 7→
∫

Rr+1

∫

R

1A(x)r!1{t1<...<tr}P
X|Y =ti
· (dx)Kr+1(y1, . . . , yr+1, dt1, . . . , dtr+1)

for every A ∈ B(R). Also, by equation (18) it follows that we can rewrite the function hA

above as

∫

Rr+1

∫

Rr+1

∫

R

1A(x)r!1{t1<...<tr}P
X|Y =ti
· (dx)




1

(r + 1)!

∑

π∈Sr+1

δ{z1,...,zr+1}(τπ(dt1, . . . , dtr+1)





Kr+1
2 (y1, . . . , yr+1, dz1, . . . , dzr+1)

where the Markov kernel Kr+1
2 : Rr+1 × B(R)r+1 → [0, 1] is given by Kr+1

2 (·, B) = 1Or+1B

for every B ∈ B(R)r+1.

32



Therefore, hA is equal to

1

r + 1

∑

π∈Sr+1

∫

Rr+1

∫

Rr+1

∫

R

1A(x)1{t1<...<tr}P
X|Y =ti
· (dx)δ{z1,...,zr+1}τπ(dt1, . . . , dtr+1)

Kr+1
2 (y1, . . . , yr+1, dz1, . . . , dzr+1)

=
1

r + 1

∑

π∈Sr+1

∫

Rr+1

∫

Rr+1

∫

R

1A(x)1{t1<...<tr}P
X|Y =ti
· (dx)δτπ({z1,...,zr+1})(dt1, . . . , dtr+1)

Kr+1
2 (y1, . . . , yr+1, dz1, . . . , dzr+1)

=
1

r + 1

∑

π∈Sr+1

∫

Rr+1

∫

R

1A(x)1{zπ(1)<...<zπ(r)}P
X|Y =zπ(i)
· (dx)δ{y1,...,yr+1}Or+1(dz1, . . . , dzr+1)

=
1

r + 1

∑

π∈Sr+1

∫

Rr+1

∫

R

1A(x)1{zπ(1)<...<zπ(r)<zπ(r+1)}P
X|Y =zπ(i)
· (dx)

δ{y1,...,yr+1}Or+1(dz1, . . . , dzr+1) +

+
1

r + 1

∑

π∈Sr+1

∫

Rr+1

∫

R

1A(x)1Bπ
(z1, . . . , zr+1)P

X|Y =zπ(i)
· (dx)δ{y1,...,yr+1}Or+1(dz1, . . . , dzr+1)

where we have denoted by Bπ ∈ B(R)r+1 the set such that {zπ(1) < . . . < zπ(r) < zπ(r+1)}∪
Bπ = {zπ(1) < . . . < zπ(r)} and {zπ(1) < . . . < zπ(r) < zπ(r+1)} ∩Bπ = ∅, for every π ∈ Sr+1.
In the first term of the sum above we can proceed easily with the integration, hence
hA(y1, . . . , yr+1) =

=
1

r + 1

∑

π∈Sr+1

∫

R

1A(x)P
X|Y =yπ(i)
· (dx) +

+
1

r + 1

∑

π∈Sr+1

∫

Rr+1

∫

R

1A(x)1Bπ
(z1, . . . , zr+1)P

X|Y =zπ(i)
· (dx)δ{y1,...,yr+1}Or+1(dz1, . . . , dzr+1)

=
1

r + 1

r+1∑

i=1

∫

R

1A(x)P X|Y =yi
· (dx) +

+
1

r + 1

∑

π∈Sr+1

∫

Rr+1

∫

R

1A(x)1Bπ
(z1, . . . , zr+1)P

X|Y =zπ(i)
· (dx)δ{y1,...,yr+1}Or+1(dz1, . . . , dzr+1).

Summarizing, we obtain that

∫

Rr+1

(gA(y1, . . . , yr+1) − hA(y1, . . . , yr+1))P
Or+1Y

r+1

θ (dy1, . . . , dyr+1) = 0,

for all θ ∈ Θk and A ∈ B. Remark also that (gA − hA) ∈ ⋂

θ∈Θk
L1(P

Or+1Y r+1

θ ), for
every A ∈ B(R). Moreover, the order statistic is complete for the parameter space Θk,
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1 ≤ k ≤ 6, it follows that gA = hA, P
Or+1Y r+1

θ − as. for every fixed but arbitrary A ∈ B(R).

Since hA(y1, . . . , yr+1) = 1
r+1

∑r+1
i=1

∫

R
1A(x)P

X|Y =yi
· (dx) + rA, where we have denoted by

rA the function on Rr+1, (y1, . . . , yr+1) 7→
1

r + 1

∑

π∈Sr+1

∫

Rr+1

∫

R

1A(x)1Bπ
(z1, . . . , zr+1)P

X|Y =zπ(i)
· (dx)δ{y1,...,yr+1}Or+1(dz1, . . . , dzr+1),

we remark that hA depends on yi, 1 ≤ i ≤ r + 1. This implies that gA depends on yi,
1 ≤ i ≤ r + 1, fact which by the definition of the function gA, certainly leads to a contra-
diction. �

Remark 64 We can always find M0(B(R)2) ⊆ M(B(R)2) such that for Θk, 1 ≤ k ≤ 6 it

exists a version of the conditional distribution P
X|Y
θ which is independent of θ ∈ Θk. The

most natural example would be the restriction to the perfect RSS experiments, i.e. we
define M0(B(R)2) = {P XY ∈ M(B(R)2) : P X|Y =y = δ{y}, P

Y − a.s.}. We can also relax
the requirement of the existence of the conditional distribution which is independent of
θ ∈ Θk and only assume the existence of a conditional distribution which is independent
of the family of the Y marginal distributions. For example consider the family of bivariate
distributions

M0(B(R)2) := {
(

1

2πστ
e
− 1

2

(

y2

σ2 +
(x−y)2

τ2

))

λ2 : σ, τ > 0}.

For this family of distributions we have Y ∼ N(0, σ2) and the conditional distribution
P X|Y =y = N(y, τ 2) P Y − a.s., therefore, independent of σ2. For this family of distribu-
tions though, the order statistic is no longer complete, but instead of the completeness of
the order statistic, we could use the completeness property in the families of exponential
distributions and proceed with the proof in a similar way as above.

Proposition 65 Let 1 ≤ k ≤ 6. Assume that for the family of probability distributions
{P XY

θ : θ ∈ Θk} there exists a version of the conditional distribution P
X|Y
θ which is

independent of θ ∈ Θk, P X
θ − a.s.. Denote it by P

X|Y
· . Then the statistical experiment

generated by a RSS random variable

(R,B(R), {P X
(r)
[i]

θ : θ ∈ Θk}),

1 ≤ i ≤ r, is not exhaustive for the statistical experiment

(R,B(R), {P X
θ : θ ∈ Θk}).

Proof.
We will prove the assertion by a contradiction argument. We assume the exhaustivity of
the experiments, i.e. we assume that there exists a Markov kernel L : R × B(R) → [0, 1]
such that

P X
θ (A) =

∫

R

L(x, A)P
X

(r)
[i]

θ (dx) (31)
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for every A ∈ B(R) and θ ∈ Θk. Then for the right-hand side of equation (31) we have

∫

R

L(x, A)P
X

(r)
[i]

θ (dx) =

=

∫

R

∫

R

L(x, A)P X|Y =y
· (dx)P

Y(i:r)

θ (dy)

=

∫

Rr

(∫

R

L(x, A)P X|Y =yi
· (dx)

)

P OrY r

θ (dy1, . . . , dyr)

=

∫

Rr

gA(y1, . . . , yr)P
OrY r

θ (dy1, . . . , dyr)

where we have denoted for each A ∈ B(R) by gA : Rn → R the measurable function

(y1, . . . , yr) 7→
∫

R

L(x, A)P X|Y =yi
· (dx).

For the left hand-side of equation (31) we have P X
θ (A) =

=

∫

R

∫

R

1A(x)P XY
θ (dx, dt)

=

∫

R

∫

R

1A(x)P X|Y =t
· (dx)P Y

θ (dt)

=

∫

Rr

∫

R

1A(x)P X|Y =ti
· (dx)

r∏

i=1

P Y
θ (dti)

=

∫

Rr

∫

Rr

∫

R

1A(x)P X|Y =ti
· (dx)Kr(y1, . . . , yr, dt1, . . . , dtr)P

OrY r

θ (dy1, . . . , dyr),

where Kr is the Markov kernel determined in equation (18). Now, by Proposition 62 it
follows that the integration with respect to Kr reduces to

∫

Rr

∫

Rr

∫

R

1A(x)P X|Y =ti
· (dx)

(

1

r!

∑

π∈Sr

1τπ(dt1,...dtr)(y1, . . . , yr)

)

P OrY r

θ (dy1, . . . , dyr)

=

∫

R

∫

Rr

∫

R

1A(x)P X|Y =ti
· (dx)

(

1

r

r∑

j=1

δpriτ(ij)(y1,...,yr)(dti)

)

P OrY r

θ (dy1, . . . , dyr)

=

∫

Rr

(

1

r

r∑

j=1

∫

R

1A(x)P
X|Y =yj
· (dx)

)

P OrY r

θ (dy1, . . . , dyr)

=

∫

Rr

(g̃A(y1, . . . , yr)) P OrY r

θ (dy1, . . . , dyr),
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where we have denoted for each A ∈ B(R) by g̃A : Rr → R the measurable function

(y1, . . . , yr) 7→
1

r

r∑

j=1

∫

R

1A(x)P
X|Y =yj
· .

For each A ∈ B(R) the functions gA, g̃A ∈ ⋂θ∈Θk
L1(P

OrY r

θ ). Notice also that the order
statistic is for the particular choice of the parameter sets complete, therefore gA = g̃A,
P OrY r

θ − a.s., for every A ∈ B(R) and θ ∈ Θk. Since the function g̃A depends on yi,
1 ≤ i ≤ r this implies that gA also depends on yi, 1 ≤ i ≤ r. But this leads to a contradic-
tion since by definition, the function gA is independent of yj, 1 ≤ j 6= i ≤ r. �

The next proposition is relevant for example in cases where we consider decision functions
from the full RSS experiments which are defined for every sample size, i.e. ρn : Rn×B(D) →
[0, 1]. One possible question in this case is: does the risk of this decision function decrease
while the sample size increases or is it possible that there are situations where a smaller
sample size is more informative? The answer to this question can be given also in terms
of the exhaustivity of statistical experiments.

Proposition 66 Let 1 ≤ k ≤ 6. Assume that for the family of probability distributions
{P XY

θ : θ ∈ Θk} there exists a version of the conditional distribution P
X|Y
θ which is

independent of θ ∈ Θk, P X
θ − a.s.. Denote it by P

X|Y
· . Then the RSS experiment

Gn+1
n+1 = (Rn+1,B(R)n+1, {⊗n+1

i=1 P
X

(n+1)
[i]

θ : θ ∈ Θk})

is exhaustive for the experiment

Gn
n = (Rn,B(R)n, {⊗n

i=1P
X

(n)
[i]

θ : θ ∈ Θk})

if and only if n = 1.

(n = 1) ⇒ Exhaustivity: Treated in Proposition 84.
Exhaustivity ⇒ (n = 1): We assume there exists a Markov kernel L : Rn+1×B(R)n → [0, 1]
such that the exhaustivity condition is fulfilled

⊗n
i=1P

X
(n)
[i]

θ (B) =

∫

Rn+1

L(x1, . . . , xn+1; B)

n+1∏

i=1

P
X

(n+1)
[i]

θ (dxi) (32)

for every B ∈ B(R)n and θ ∈ Θk. We prove that the exhaustivity condition can take
place only when n = 1. Making use of the proposition of Fubini, the left-hand side of the
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equation (32) is then equal to

∫

Rn+1

∫

Rn+1

L(x1, . . . , xn+1; B)
n+1∏

i=1

P X|Y =yi
· (dxi)

Y(i:n+1)
∏

i=1

(dyi)

=

∫

R(n+1)2

∫

Rn+1

L(x1, . . . , xn+1; B)
n+1∏

i=1

P
X|Y =yi

i
· (dxi)

n+1∏

i=1

P
On+1Y n+1

θ (dyi
1, . . . , dyi

n+1)

=

∫

R(n+1)2
gB(yi

j, 1 ≤ i, j ≤ n + 1)

n+1∏

i=1

P
On+1Y n+1

θ (dyi
1, . . . , dyi

n+1)

where for each B ∈ B(R)n we have denoted by gB : R(n+1)2 → R the measurable function

(yi
j : 1 ≤ i, j ≤ n + 1) 7→

∫

Rn+1

L(x1, . . . , xn+1; B)
n+1∏

i=1

P
X|Y =yi

i
· (dxi).

On the other hand, we know from Proposition 63 that the following equation holds

P
X

(n)
[i]

θ (A) =

∫

Rn+1

hA(y1, . . . , yn+1)P
On+1Y n+1

θ (dy1, . . . , dyn+1)

for every 1 ≤ i ≤ n, A ∈ B(R), θ ∈ Θk and where the function hA : Rn+1 → R is given by
hA(y1, . . . , yn+1) =

1

n + 1

∑

π∈Sn+1

∫

R

∫

Rn+1

1A(x)1{zπ(1)<...<zπ(n)}P
X|Y =zπ(i)
· (dx)δ{y1,...,yn+1}On+1(dz1, . . . , dzn+1)

for every A ∈ B(R).
Therefore for every θ ∈ Θk, B ∈ B(R)r, B = B1 × · · · × Bn, Bi ∈ B(R) the left-hand side
of equation (32) is determined by

⊗n
i=1P

X
(n)
[i]

θ (B) =

n∏

i=1

∫

R

1Bi
(x)P

X
(n)
[i]

θ (dx)

=
n∏

i=1

∫

Rn+1

hBi
(y1, . . . , yn+1)P

On+1Y n+1

θ (dy1, . . . , dyn+1)

=

∫

Rn(n+1)

n∏

i=1

hBi
(yi

1, . . . , y
i
n+1)

n∏

i=1

P
On+1Y n+1

θ (dyi
1, . . . , dyi

n+1)

=

∫

R(n+1)2

n∏

i=1

hBi
(yi

1, . . . , y
i
n+1)

n+1∏

i=1

P
On+1Y n+1

θ (dyi
1, . . . , dyi

n+1)

=

∫

R(n+1)2
g̃B(yi

j : 1 ≤ i, j ≤ n + 1)
n+1∏

i=1

P
On+1Y n+1

θ (dyi
1, . . . , dyi

n+1)
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where for each B ∈ B(R)n, B = B1 × · · ·×Bn, Bi ∈ B(R) we have defined the measurable
function g̃B : R(n+1)2 → R by

(yi
j : 1 ≤ i, j ≤ n + 1) 7→

n∏

i=1

hBi
(yi

1, . . . , y
i
n+1).

Notice that for a fixed but arbitrary B ∈ B(R)n, B = B1 × · · · × Bn, Bi ∈ B(R), the

functions gB, g̃B ∈ ⋂

θ∈Θk
L1(⊗n+1

i=1 P
On+1Y n+1

θ ). Now, the order statistic is complete for
the chosen parametric families, therefore, by Proposition 31 it follows that gB and g̃B are

equal ⊗n+1
i=1 P

On+1Y n+1

θ -a.s. and for every θ ∈ Θk which is possible only in case that g̃B is
independent of the coordinates (yi

j : 1 ≤ i 6= j ≤ n + 1). But this is again possible only in
the case n = 1, i.e. when

g̃B(yi
j : 1 ≤ i, j ≤ 2) = hB(y1

1, y
1
2) =

1

2

2∑

j=1

∫

1B(x)P
X|Y =y1

j
· (dx), B ∈ B(R).

�

Proposition 67 Let 1 ≤ k ≤ 6. Assume that for the family of probability distributions
Θk, 1 ≤ k ≤ 6 it exists a version of the conditional distribution P

X|Y
θ which is independent

of θ ∈ Θk, P X
θ − a.s.. Denote it by P

X|Y
· . Then the RSS experiment without repetition of

full size

Gn
n = (Rn,B(R)n, {⊗n

i=1P
X

(n)
[i]

θ : θ ∈ Θk})

is not exhaustive for the SRS experiment of size n

Gn
1 = (Rn,B(R)n, {⊗n

i=1P
X
θ : θ ∈ Θk}).

Proof.
Let 1 ≤ k ≤ 6. We prove the assertion of the proposition by a contradiction argument. We
assume there exists a Markov kernel L : Rn × B(R)n → [0, 1] such that the exhaustivity
condition is fulfilled:

⊗n
i=1P

X
θ (B) =

∫

Rn

L(x1, . . . , xn, B)
n∏

j=1

P
X

(n)
[j]

θ (dxj) (33)

for every B ∈ B(R)n and θ ∈ Θk. By using the proposition of Fubini, the right-hand side
of equation (33) is equal to

∫

Rn

∫

Rn

L(x1, . . . , xn, B)

n∏

j=1

P
X|Y =yj
· (dxj)P

Y(j:n)

θ (dyj)

=

∫

Rn

∫

Rn

L(x1, . . . , xn, B)
n∏

j=1

P
X|Y =yj
· (dxj)

n∏

j=1

P
Y(j:n)

θ (dyj)
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=

∫

Rn2

(
∫

Rn

L(x1, . . . , xn, B)

n∏

j=1

P
X|Y =y

j
j

· (dxj)

)
n∏

i=1

n∏

j=1

P
Y(j:n)

θ (dyi
j)

=

∫

Rn2
gB(yi

j : 1 ≤ i, j ≤ n)

n∏

i=1

n∏

j=1

P
Y(j:n)

θ (dyi
j).

The last implication follows after the multiplication of the equation by
∫

R
P

Y(j:n)

θ (dyi
j), for

1 ≤ i 6= j ≤ n, i.e. by multiplication with the identity. For each B ∈ B(R)n we have
denoted by gB : Rn2 → R the measurable function

(yi
j : 1 ≤ i, j ≤ n) 7→

∫

Rn

L(x1, . . . , xn, B)

n∏

j=1

P
X|Y =y

j
j

· (dxj). (34)

By Proposition 84, the statistical experiment (Rn2
,B(R)n2

, {⊗n
i=1 ⊗n

j=1 P
X

(n)
[j]

θ : θ ∈ Θk}) is
exhaustive for the experiment (Rn,B(R)n, {⊗n

i=1P
X
θ : θ ∈ Θk}), and the following equation

holds

⊗n
i=1P

X
θ (B) =

∫

Rn

∫

Rn

n∏

i=1

Kn(xi
1, . . . , x

i
n, Bi)

n∏

i=1

n∏

j=1

P
X

(n)
[j]

θ (dxi
j)

for every B ∈ B(R)n, B = B1 × · · · ×Bn, Bi ∈ B(R) and θ ∈ Θk. Here Kn : Rn ×B(R) →
[0, 1] is the Markov kernel

Kn(x1, . . . , xn, A) =
1

n

n∑

j=1

1τ(1j)(A×R×...×R)(x1, . . . , xn), A ∈ B(R).

Let B ∈ B(R)n such that B = B1 × · · · × Bn, Bi ∈ B(R). Then the left-hand side of the
equation (33), after the analogous multiplication by 1, is equal to

=

∫

Rn2

(
∫

Rn2

n∏

i=1

Kn(xi
1, . . . , x

i
n, Bi)

n∏

i=1

n∏

j=1

P
X|Y =yi

j
· (dxi

j)

)
n∏

i=1

n∏

j=1

P
Y(j:n)

θ (dyi
j)

=

∫

Rn2
g̃B(yi

j : 1 ≤ i, j ≤ n)
n∏

i=1

n∏

j=1

P
Y(j:n)

θ (dyi
j)

where we have denoted by g̃B : Rn2 → R the measurable function g̃B(yi
j : 1 ≤ i, j ≤ n) =

=

∫

Rn2

n∏

i=1

Kn(xi
1, . . . , x

i
n, Bi)

n∏

i=1

n∏

j=1

P
X|Y =yi

j
· (dxi

j)

=

n∏

i=1

∫

Rn

Kn(xi
1, . . . , x

i
n, Bi)

n∏

j=1

P
X|Y =yi

j
· (dxi

j)
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=
n∏

i=1

∫

Rn

1

n

n∑

j=1

1τ(1j)(Bi×R×...×R)(x1, . . . , xn)
n∏

j=1

P
X|Y =yi

j
· (dxi

j)

=

n∏

i=1

(

1

n

n∑

j=1

∫

τ(1j)(Bi×R×...×R)

n∏

j=1

P
X|Y =yi

j
· (dxi

j)

)

=

n∏

i=1

(

1

n

n∑

j=1

P
X|Y =yi

j
· (Bi)

)

.

For every B ∈ B(R)n the functions gB and g̃B belong to
⋂

θ∈Θk
L1((⊗n

j=1P
Y(j:n)

θ )n). There-

fore, by Lemma 31 it follows that gB = g̃B (⊗n
j=1P

Y(j:n)

θ )n-a.s., ∀θ ∈ Θk and for every
B ∈ B(R)n such that B = B1 × · · · × Bn, Bi ∈ B(R). This implies that the function gB

depends as g̃B, on all yi
j, 1 ≤ i, j ≤ n which by the definition of gB in equation (34) leads

to a contradiction. �

Proposition 68 Let 1 ≤ k ≤ 6. Assume that for the family of probability distributions
Θk, 1 ≤ k ≤ 6 it exists a version of the conditional distribution P

X|Y
θ which is independent

of θ ∈ Θk, P X
θ − a.s.. Denote it by P

X|Y
· . Then there exists 1 ≤ r ≤ n − 1 such that the

RSS experiment without repetition

Gn
r+1 = (Rn,B(R)n, {⊗r

i=1P
X

(r+1)
[i]

θ ⊗n
i=r+2 P X

θ : θ ∈ Θk})

is not exhaustive for the RSS experiment

Gn
r = (Rn,B(R)n, {⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 P X

θ : θ ∈ Θk}).

Proof.
We prove the assertion by a contradiction argument. Assume that ∀ r ∈ {1, ..., n − 1} the
experiment Gn

r+1 is exhaustive for Gn
r , i.e. there exist Markov kernels Lr : Rn × B(R) →

[0, 1], 1 ≤ r ≤ n − 1, such that

⊗r
i=1P

X
(r)
[i]

θ ⊗n
i=r+1 P X

θ (B) =

∫

Rn

Lr(x1, . . . , xn, B) ⊗r+1
i=1 P

X
(r+1)
[i]

θ (dxi) ⊗n
i=r+2 P X

θ (dxi)

for every B ∈ B(R)n and θ ∈ Θk. Define L : Rn × B(R)n → [0, 1] by

L(·, B) :=

∫

Rn(n−2)

L1(x1
1, . . . , x

1
n, B)

n−2∏

i=2

Li(xi
1, . . . , x

i
n, dxi−1

1 , . . . , dxi−1
n )Ln−1(·, dxn−2

1 , . . . , dxn−2
n ).
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Obviously, L is a Markov kernel and it therefore has to satisfy

∫

Rn

L(x1, . . . , xn, B)

n∏

i=1

P
X

(n)
[i]

θ (dxi)

=

∫

Rn(n−1)

L1(x1
1, . . . , x

1
n, B)

n−2∏

i=2

Li(xi
1, . . . , x

i
n, dxi−1

1 , . . . , dxi−1
n )

Ln−1(·, dxn−2
1 , . . . , dxn−2

n )

n∏

i=1

P
X

(n)
[i]

θ (dxi)

=

∫

Rn(n−2)

L1(x1
1, . . . , x

1
n, B)

n−2∏

i=2

Li(xi
1, . . . , x

i
n, dxi−1

1 , . . . , dxi−1
n )

n−1∏

i=1

P
X

(n−1)
[i]

θ (dxn−2
i )P X

θ (dxn−2
n )

=

∫

Rn

L1(x1
1, . . . , x

1
n, B)

2∏

i=1

P
X

(2)
[i]

θ (dx1
i )

n∏

i=3

P X
θ (dx1

i )

which, by the assumptions made, is equal to ⊗n
i=1P

X
θ (B). This would imply that the

Markov kernel serves for the exhaustivity relation

⊗n
i=1P

X
θ (B) =

∫

Rn

L(x1, . . . , xn, B)

n∏

i=1

P
X

(n)
[i]

θ (dxi)

for every B ∈ B(R)n and θ ∈ Θk which leads to a contradiction, since we have proved
in Proposition 67 that the statistical experiment Gn

n is not exhaustive for the statistical
experiment Gn

1 .
�

By applying Definition 15 and Theorem 16 in the Prerequisites chapter, we show that
the order relation between the RSS experiments does not hold: Gn

1 ⊆ Gn
n, i.e. the common

RSS experiment is not more informative than the SRS experiment of size n. The men-
tioned theorem can be applied only in the case of dominated experiments, i.e. it has to

exist a σ-finite measure ν such that ⊗n
i=1P

X
(n)
[i]

θ ≪ ν for every θ ∈ Θk. Therefore, for this
to happen, we restrict to the parameter spaces Θ5 and Θ6 respectively.

Theorem 69 Assume that for the family of probability distributions {P XY
θ : θ ∈ Θk},

k ∈ {5, 6} there exists a version of the conditional distribution P
X|Y
θ which is independent

of θ ∈ Θk, P X
θ − a.s.. Then for the RSS experiments without repetition

Gn
r = (Rn,B(R)n, {⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 : θ ∈ Θk}), 1 ≤ r ≤ n, k ∈ {5, 6},

it holds:
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1. Gn
n is not more informative than Gn

1 (the common RSS experiment is not more
informative than the SRS experiment of size n).

2. The family of statistical experiments Gn
r , 1 ≤ r ≤ n is not informative.

Proof.
1. By Proposition 67 we have that the RSS experiment Gn

n is not exhaustive for the SRS
experiment of size n, therefore the assertion follows by applying Theorem 16.
2. By Proposition 68 it follows that ∃ r ∈ {1, . . . , n− 1} such that the experiment Gn

r+1 is
not more informative than the experiment Gn

r . Therefore, the assertion follows analogously
by applying Theorem 16.

�

Corollary 70 For the parameter spaces Θ5 and Θ6, there exists (D, W ) decision problem

with W a continuous loss function such that Gn
1

(D,W )

* Gn
n. If D is a locally compact metric

space then for this decision problem it follows that ∃ ρ1 ∈ R(Gn
1 , D) such that for every

ρn ∈ R(Gn
n, D)

Wθρ1(⊗n
i=1(P X

θ )) < Wθρn(⊗n
i=1P

X
(n)
[i]

θ ), θ ∈ Θ5, Θ6.

Proof. The assertion follows by the definition of the informational order 12 and by The-
orem 69.

�

4.3 Examples

Assume in a fixed statistical experiment E = (E,B, {Pθ : θ ∈ Θ}) with a decision problem
(D, W ) and a functional f(θ), the problem is to find an estimator k which minimizes the risk
∫

Wθ(k(x))Pθ(dx) simultaneously for all θ ∈ Θ. Formulated in this way, the problem is from
an applied point of view not meaningful, it might happen that an estimator minimizes the
risk at one θ ∈ Θ but we obtain different minimizing estimators for the rest of the family.
The situation is different if we restrict for examples to mean unbiased estimators. The
definition of more informative statistical experiments has also this impediment. Although
one can construct experiments which are more informative via the randomization criterion
(for example via sufficient statistics), for a large class of experiments, including therefore
our family of RSS experiments, the informational order does not take place. Even though,
this is the first step to be done when comparing statistical experiments. An important
break in this direction occurred when LeCam[19] stated instead of the question when a
statistical experiment is more informative than other, another question, how much do we
loose respectively win if we use the one experiment instead of another. The answer to this
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question can be given by using the definition of ∆-deficiency.6 which can be applied for
every comparison of statistical experiments. The calculus of the ∆-deficiency between the
RSS experiment without repetition and the SRS starts by considering for example first

δ(RSS, SRS) = δ(Gn
n, G

n
1)

= inf
L∈K(Gn

n,B(R)n)
sup
θ∈Θ

∥
∥
∥
∥
L ⊗n

i=1 P
X

(n)
[i]

θ −⊗n
i=1P

X
θ

∥
∥
∥
∥

= inf
L∈K(Gn

n,B(R)n)
sup
θ∈Θ

sup
|f(x)|≤1

∣
∣
∣
∣

∫

Rn

f(x)d(L ⊗n
i=1 P

X
(n)
[i]

θ −⊗n
i=1P

X
θ )

∣
∣
∣
∣

= inf
L∈K(Gn

n,B(R)n)
sup
θ∈Θ

sup
|f(x)|≤1

∣
∣
∣
∣

∫ ∫

f(x)L(y, dx) ⊗n
i=1 P

X
(n)
[i]

θ (dy) −
∫

f(x) ⊗n
i=1 P X

θ (dx)

∣
∣
∣
∣

where we have denoted by K(Gn
n,B(R)n) the set of all Markov kernels from Gn

n to (Rn,B(R)n),

L ⊗n
i=1 P

X
(n)
[i]

θ is then a probability measure on (Rn,B(R)n) defined by

L ⊗n
i=1 P

X
(n)
[i]

θ (B) =

∫

Rn

L(x, B) ⊗n
i=1 P

X
(n)
[i]

θ (B)(dx), B ∈ B(R)n

and the norm is treated as the total variation in L∞(Rn,B(R)n)) (see JACOD[18], section
V.4a). It follows directly from the definition of the deficiency that δ(RSS, SRS) = 0 ⇔
the RSS experiment Gn

n is more informative than the SRS experiment Gn
1 , which by The-

orem 69 is not the case. This considerations for the deficiency between the two relevant
experiments are topic for further research.

Let us restrict now, as in the case of a fixed experiment, only to the case of mean un-
biased estimators for regular functionals and try to see how the relationship between RSS
and SRS looks like for this particular class of decisions.

Definition 71 A decision problem (Θ, D, W ) is called an estimation problem if there is a
function f : Θ → D such that Wθ depends on θ only through f, θ ∈ Θ.

Definition 72 A function f : Θ → Rk admits an mean unbiased estimator k for the
statistical experiment E = (E,B, {Pθ : θ ∈ Θ}) if k satisfies

∫
kPθ = f(θ), θ ∈ Θ. The

set of all mean unbiased estimates of f for the statistical experiment mentioned is denoted
with H(E , f).

Remark 73 Let E = (E,B, {Pθ : θ ∈ Θ}) be a statistical experiment and (Θ, D, W ) an
estimation problem. If k is an estimator then it exists a randomized decision function given

6Let E and F be two statistical experiments. Then the experiment E is ǫ-deficient with respect to the
experiment F if for every decision problem (Θ, D, W ) with a bounded continuous loss function and for
every β2 ∈ B(F , D) there is β1 ∈ B(E , D) such that β1(Wθ , Pθ) ≤ β2(Wθ , Qθ) + ǫ ‖Wθ‖, θ ∈ Θ. We denote

F
ǫ

⊆ E . Define δ(E, F ) = inf{ǫ > 0 : F
ǫ

⊆ E}. Then ∆(E, F ) := max{δ(E ,F), δ(F , E)} is called the
deficiency between E and F .
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by ρ(·, B) = 1B ◦ k and the risk function for this decision function reduces to WθρPθ =
∫

Wθ(k(x))Pθ(dx), θ ∈ Θ.

For the purposes of this section, elements of L2(Gn
r ) :=

⋂

θ∈Θ L2(⊗r
i=1P

X
(r)
[i]

θ ⊗n
i=r+1 P X

θ ) are
called estimates for the experiment Gn

r for every 1 ≤ r ≤ n and for particular choices of Θ.

Estimating Regular Statistical Functionals of Degree 1

Definition 74 Let {Pθ : θ ∈ Θ} a family of probability distributions on (R,B(R)). Then
the functional f : Θ → R is called a regular statistical functional if it exists a measurable
function h : Rm → R such that f(θ) =

∫

Rm h(x1, . . . , xm)
∏m

i=1 P X
θ (dxi) for all θ ∈ Θ. The

function h is called the kernel of the functional and the smallest m such that the equality
above holds, is called the degree of the kernel h, respectively the degree of the functional
f .

Despite the fact that most of the following considerations hold for arbitrary parameter
spaces Θk ⊆ Θ0, k ∈ N, where Θ0 is defined in equation (21), the relevant assertions
will hold only for parameter space for which in the SRS experiment we can construct
minimum variance unbiased estimators, for example parameter spaces for which the order
statistic is sufficient and complete. This is possible for example for the parameter space
defined in equation (27): Θ6 := {P XY ∈ MB(R)2 : P XY ≪ λ2, P Y ∈ ∆2, P

X ∈ ∆2} and
∆2 = {P ∈ M(B(R)) :

∫
hi(x1, . . . , xm)

∏m

i=1 P (dx) < ∞, i = 1, . . . , l}).

Proposition 75 Let the SRS experiment be Gn
1 = (Rn,B(R)n : {⊗n

i=1P
X
θ : θ ∈ Θ6} and

let h : Rm → R be a symmetric kernel of degree m. The the U-statistic Un(x1, . . . , xn) :=
E·[h(X1, . . . , Xm) | On(x1, . . . , xn)] = 1

(n

m)

∑

1≤i1<···<im≤n h(xi1 , . . . , xim), n ≥ m, is an un-

biased estimator for f(θ) =
∫

Rm h(x1, . . . , xm)
∏m

i=1 P X
θ (dxi), θ ∈ Θ6, i.e. Un ∈ H(Gn

1 , f).
Moreover, it minimizes the convex risk among all mean unbiased estimators for f(θ).

Proof.
See for example Theorem 3.2.7. in Pfanzagl [21].

�

The question is how the estimator Un behaves if chosen as an estimator for all the other
RSS experiments without repetition. Since we have proved that the RSS experiment is not
more informative than the SRS experiment, there exists no Markov kernel to consistently
construct from SRS estimators better RSS estimators, which is possible in the case of the
existence of sufficient statistics, for example. The choice of the same Un as an estimator in
the RSS experiment is based on considerations for the unbiasedness in the RSS experiment
for the chosen functional. The next proposition, typical for the RSS problematic, is used
in many papers dealing with RSS.

Proposition 76 If m = 1 then Un ∈ H(Gn
r , f) for every f regular statistical functional of

degree 1 for the SRS experiment, f(θ) =
∫

h(x)P X
θ (dx), θ ∈ Θk, Θk ∈ Θ0, k ∈ N.
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Proof.
By direct use of the fundamental equation (11):

EGn
r
[Un(x1, . . . , xn)] =

∫

U(x1, . . . , xn)
r∏

i=1

P
X

(r)
[i]

θ (dxi)
n∏

i=r+1

P X
θ (dxi)

=

∫
1

n

n∑

i=1

h(xi)

r∏

i=1

P
X

(r)
[i]

θ (dxi)

n∏

i=r+1

P X
θ (dxi)

=
1

n

r∑

i=1

∫

h(x)P
X

(r)
[i]

θ (dx) +
n − r

n

∫

h(x)P X
θ (dx)

=
r

n

∫

h(x)
1

r

r∑

i=1

P
X

(r)
[i]

θ (dx) +
n − r

n

∫

h(x)P X
θ (dx)

=
r

n

∫

h(x)P X
θ (dx) +

n − r

n

∫

h(x)P X
θ (dx) = f(θ)

for every θ ∈ Θk.
�

We show that for a particular choice of the parameter space, the converse of the previous
result is also true.

Proposition 77 Assume we are in the case of perfect RSS experiment, i.e.

Gn
n = (Rn,B(R)n, {⊗n

i=1P
X(i:n)

θ : θ ∈ Θ̃k})

Θ̃k ∈ Θ0, k ∈ N. Let f a regular statistical functional of degree m for the SRS experiment,
f(θ) =

∫
h(x)P X

θ (dx), θ ∈ Θ̃k. Then m = 1 ⇔ Un ∈ H(Gn, f).

Proof.
(Un ∈ H(Gn

n, f)) ⇒ (m = 1):
Let θ ∈ Θ̃k. By direct use of the fundamental equation (11) it follows that:

f(θ) =

∫

Rm

h(x1, . . . , xm)

m∏

i=1

P X
θ (dxi)

=

∫

Rm

h(x1, . . . , xm)

m∏

i=1

(

1

n

n∑

j=1

P
X(j:n)

θ (dxi)

)

=

∫

Rm

h(x1, . . . , xm)
1

nm

n∑

j1,...,jm

P
X(j1:n)

θ (dx1) . . . P
X(jm:n)

θ (dxm)

=
1

nm

n∑

j1,...,jm

∫

Rm

h(x1, . . . , xm)P
X(j1:n)

θ (dx1) . . . P
X(jm:n)

θ (dxm)
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=

∫

Rn

1

nm

n∑

j1,...,jm

h(xj1 , . . . , xjm
)

n∏

i=1

P
X(i:n)

θ (dxi)

=

∫

Rn

Vn(x1, . . . , xn)

n∏

i=1

P
X(i:n)

θ (dxi)

where we have denoted by Vn the V-statistic Vn(x1, . . . , xn) = 1
nm

∑n

j1,...,jm
h(xj1 , . . . , xjm

)

Suppose further that Un ∈ H(GI
n, f)), i.e. f(θ) =

∫

Rn Un(x1, . . . , xn)
∏n

i=1 P
X(i:n)

θ (dxi) for

every θ ∈ Θ̃k. Therefore we have that
∫

Rn(Un(x1, . . . , xn)−Vn(x1, . . . , xn))
∏n

i=1 P
X(i:n)

θ (dxi) =

0 for every θ ∈ Θ̃k. By Lemma 31 and Proposition 60 it follows that Un = Vn ⊗n
i=1P

X(i:n)

θ −
a.s which is possible only in the case m = 1.

(m = 1) ⇒ Un ∈ H(Gn
n, f)):

Particular case of the Proposition 76. �

Let us now consider arbitrary convex loss functions for evaluating estimators. A loss func-
tion is convex if t 7→ Wθ(t) is convex. A natural convex loss function is Wθ(t) :=| t−f(θ) |,
a mathematically more convenient one is the quadratic loss function Wθ(t) := (t − f(θ))2.
More generally, Wθ(t) := C(t − f(θ)) is a convex loss function if C is a function attaining
its minimum at 0.

Proposition 78 For any convex loss function which depends only of a regular statistical
functional f of degree 1, the relation holds:

∫

Rn

Wθ(Un(x1, . . . , xn))
r∏

i=1

P
X

(r)
[i]

θ (dxi)
n∏

i=r+1

P X
θ (dxi) ≤

∫

R

Wθ(h(x))P X
θ (dx),

where Un is the U-Statistic of degree 1 and θ ∈ Θk, Θk ⊆ Θ0, k ∈ N.

Proof.
By the convexity of the loss function and making use of the fundamental equation (11) it
follows:

∫

Rn

Wθ(Un(x1, . . . , xn)

r∏

i=1

P
X

(r)
[i]

θ (dxi)

n∏

i=r+1

P X
θ (dxi) =

=

∫

Rn

Wθ

(

1

n

n∑

i=1

h(xi)

)

P
X

(r)
[i]

θ (dxi)

n∏

i=r+1

P X
θ (dxi)

≤
∫

Rn

1

n

n∑

i=1

Wθh(xi)P
X

(r)
[i]

θ (dxi)
n∏

i=r+1

P X
θ (dxi)

r

n

∫

Wθ(h(x))P X
θ (x) +

n − r

n

∫

Wθ(h(x))P X
θ (x)

=

∫

Wθ(h(x))P X
θ (x)
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for every θ ∈ Θk. �

Therefore for a decision problem (R, W ) where we only know that W is a convex loss func-
tion we can only derive an order relation between the experiment (R,B, {P X

θ : θ ∈ Θk})
and Gn

r , the second one being more informative then the first one. This comparison shows
that the U-Statistic for a regular statistical functional of degree 1, based on a sample of
RSS random variables will have always a smaller risk given any convex loss function, then
the U-Statistic based on a single observation from the target unknown distribution, P X

θ .
Further, we consider the more specific quadratic loss function and recall in our framework,
the perhaps most relevant result for the applications dealing with RSS.

Proposition 79 Consider the common quadratic loss function Wθ = (t − f(θ))2, θ ∈ Θ6

where f(θ) is a regular statistical functional of degree 1, f(θ) = P X
θ (dx). Then the following

inequality holds:

var
⊗r

i=1P
X

(r)
[i]

θ
⊗n

i=r+1P X
θ

[Un(x1, . . . , xn)] ≤ var⊗n
i=1P X

θ
[k(x1, . . . , xn)] (35)

for every θ ∈ Θ6, k ∈ H(Gn
1 , f) and Un the U-statistic of degree 1.

Proof.

Let θ ∈ Θ6. Let k ∈ H(GI
1, f) and denote by P

Z[i]

θ := P
X

(r)
[i]

θ for all 1 ≤ i ≤ r and

P
Z[i]

θ := P X
θ for all r + 1 ≤ i ≤ n. Then by the theorem of Lehmann-Scheffe and by the

fundamental equation (11) it follows that
∫

Rn(k(x1, . . . , xn) − f(θ))2
∏n

i=1 P X
θ (dxi) ≥

≥
∫

Rn

(Un(x1, . . . , xn) − f(θ))2

n∏

i=1

P X
θ (dxi)

=
1

n

∫

R

(h(x) − f(θ))2P X
θ (dx)

=
1

n2

n∑

i=1

∫

R

h(x)2P
Z[i]

θ (dx) − 1

n
f(θ)2

=
1

n2

n∑

i=1

(∫

R

(h(x) − f(θ))2P
Z[i]

θ (dx) +

∫

R

h(x)P
Z[i]

θ (dx)

)

−

− 1

n

(

1

n

n∑

i=1

∫

h(x)P
Z[i]

θ (dx)

)2

=
1

n2

n∑

i=1

∫

R

(h(x) − f(θ))2P
Z[i]

θ (dx) +
1

n2

n∑

i=1

(∫

R

(h(x) − f(θ))P
Z[i]

θ (dx)

)2
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=
1

n2

n∑

i=1

∫

Rn

(h(xi) − f(θ))2
r∏

i=1

P
X

(r)
[i]

θ (dxi)
n∏

i=r+1

P X
θ (dxi) +

+
1

n2

n∑

i=1

(∫

R

(h(x) − f(θ))P
Z[i]

θ (dx)

)2

=

∫

Rn

Wθ(Un(x1, . . . , xn))
r∏

i=1

P
X

(r)
[i]

θ (dxi)
n∏

i=r+1

P X
θ (dxi) +

+
1

n2

r∑

i=1

(∫

R

(h(x) − f(θ))P
X

(r)
[i]

θ (dx)

)2

Since the second term is positive the assertion follows immediately. �

Since we have restricted to the class of unbiased estimators, the last proposition can-

not imply the assertion Gn
1

(D,W )

⊆ Gn
r , 2 ≤ r ≤ n for the decision problem (R, (t − f(θ)2)

where f(θ) =
∫

h(x)P X
θ (dx) is a regular statistical functional of degree 1. Therefore, the

decision problem (R, (t− f(θ)2) cannot serve as an example to lead to the result ”the SRS
experiment is not more informative that the RSS experiment” that would imply the non-
comparability of the RSS experiments with the SRS by the informational order definition.
Even though, we affirm that the result is strong enough to use it from an applied point of
view, analogously to a result like an estimator is the minimum variance unbiased estimator
in the class of all unbiased estimators in a fixed statistical experiment.

The next proposition serves for a motivation of the treatment of the comparison of the
RSS experiment with the SRS experiment via Markov kernels. We show that there exists
no sufficient statistic that could induce the RSS experiment such that the sufficient statistic
would lead to the sample mean as estimator of the expectation. Therefore the next natural
step is to search not for a sufficient statistic but for a Markov kernel which does not has to
exist necessary only through the existence of a sufficient or exhaustive statistic. Since we
need the existence of the second moments with respect to X, we restrict to the parameter

space Θ6. Denote by Θ̂k ⊂ Θk the subset Θ̂k := {θ ∈ Θk : ∃i ∈ {1, . . . , r}, P X
(r)
[i]

θ 6= P X
θ }.

Theorem 80 For every k : Rn → R, ⊗n
i=1P

X
θ -unbiased estimator of f(θ), regular statisti-

cal functional of degree 1 it holds

Un(x1, . . . , xn) 6= E⊗n
i=1P X

θ
[k | S = (x1, . . . , xn)],⊗n

i=1P
X
θ S−1 − a.s.

∀θ ∈ Θ̂6, where Un is the U-statistic of degree 1 and S : Rn → Rn is assumed to be a
sufficient statistic for the SRS experiment Gn

1 = (Rn,B(R)n, {⊗n
i=1P

X
θ : θ ∈ Θ6}) such that

⊗n
i=1P

X
θ ◦ S−1 = ⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 P X

θ for every θ ∈ Θ6.

Proof.
For the parameter space Θ6, the order statistic On is a minimal sufficient statistic for the
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SRS experiment, (Rn,B(R)n, {⊗n
i=1P

X
θ : θ ∈ Θ6}). Let h be the kernel of the functional to

be estimated, i.e. f(θ) =
∫

h(x)P X
θ (dx). Then h(x) is an unbiased estimator of f(θ). By

the minimal sufficiency of the order statistic, the conditional expectation of h given On,
denote it by gO(x1, . . . , xn) = E⊗n

i=1P X
θ

[h | On = (x1, . . . , xn)], is independent of θ ∈ Θ6. By
the Lehmann-Scheffe theorem it follows that the estimator gO ◦ On = Un is the minimum
variance unbiased estimator in the SRS experiment, i.e.

var⊗n
i=1P X

θ
[gO(On(x1, . . . , xn)] ≤ var⊗n

i=1P X
θ

[k(x1, . . . , xn)], θ ∈ Θ6

for any k, ⊗n
i=1P

X
θ -unbiased estimator of f(θ). Consider now the sufficient statistic S. Since

⊗n
i=1P

X
θ ◦O−1

n 6= ⊗r
i=1P

X
(r)
[i]

θ ⊗n
i=r+1 P X

θ for every θ ∈ Θ6 we notice that S 6= On ⊗n
i=1P

X
θ -a.s.

Let k be an arbitrary ⊗n
i=1P

X
θ -unbiased estimator of f(θ). Also by sufficiency of S for the

SRS experiment, it follows that the conditional expectation of k given S, gS(x1, . . . , xn) =
E⊗n

i=1P X
θ

[k | S = (x1, . . . , xn)] is independent of θ ∈ Θ6. By the Rao-Blackwell theorem,

the measurable function gS ◦S is an unbiased estimator of f(θ), therefore, since gO ◦On is
minimum variance unbiased estimator we obtain

var⊗n
i=1P X

θ
[gO(On(x1, . . . , xn)] ≤ var⊗n

i=1P X
θ

[gS(S(x1, . . . , xn)]

⇔ var⊗n
i=1P X

θ
[gO(On(x1, . . . , xn)] ≤ var⊗n

i=1P X
θ

S−1[gS(x1, . . . , xn)]

for every θ ∈ Θ6. Let θ ∈ Θ̂6 ⊂ Θ6. Therefore ∃i ∈ {1, . . . , r} such that P
X

(p)
[i]

θ 6= P X
θ .

Moreover, we know from Proposition 79 that

var⊗n
i=1P X

θ
S−1[Un(x1, . . . , xn)] +

1

n2

r∑

i=1

(∫

R

(h(x) − f(θ))P
X

(r)
[i]

θ (dx)

)2

≤

≤ var⊗n
i=1P X

θ
[Un(x1, . . . , xn)].

When restricting to the parameter space Θ̂6 the stipulated inequality is strict and it follows
that

var⊗n
i=1P X

θ
S−1[Un(x1, . . . , xn)] < var⊗n

i=1P X
θ

[gO(On(x1, . . . , xn)]

⇒ var⊗n
i=1P X

θ
S−1[Un(x1, . . . , xn)] < var⊗n

i=1P X
θ

S−1[gS(x1, . . . , xn)].

Therefore, Un 6= gS, ⊗n
i=1P

X
θ S−1-a.s. ∀θ ∈ Θ̂k.

�

Takahasi [27] proved in the case of perfect RSS, i.e. when X = Y P-a.s., that the vari-
ance of the RSS estimator, var

⊗n
i=1P

X(i:n)
θ

[ 1
n

∑n
i=1 xi] decreases as n increases. Consider Θ6

as given by equation (27). We generalize Takahasi’s proof by showing that the assertion
holds uniformly in the family of RSS experiments

Gn
r = (Rn,B(R)n, {⊗r

i=1P
X

(r)
[i]

θ ⊗n
i=r+1 P X

θ : θ ∈ Θ6})

for the estimation of a regular statistical functional of degree 1.
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Proposition 81 Consider the quadratic loss function Wθ = (t − f(θ))2, θ ∈ Θ6 where
f(θ) is a regular statistical functional of degree 1. Then the following inequality holds:

var
⊗r+1

i=1 P
X

(r+1)
[i]

θ
⊗n

i=r+2P X
θ

[Un(x1, . . . , xn)] ≤ var
⊗r

i=1P
X

(r)
[i]

θ
⊗n

i=r+1P X
θ

[Un(x1, . . . , xn)]

for every 1 ≤ r ≤ n, θ ∈ Θ6 and Un the U-statistic of degree 1.

Proof.
The inequality above is equivalent to:

var

[

1

n

(
r∑

i=1

h(X
(r)
[i] ) +

n∑

i=r

h(Xi)

)]

− var

[

1

n

(
r+1∑

i=1

h(X
(r+1)
[i] ) +

n∑

i=r+2

h(Xi)

)]

≥ 0

⇔ 1

n2

r∑

i=1

var[h(X
(r)
[i] )] − 1

n2

r+1∑

i=1

varh(X
(r+1)
[i] ) +

var[h(X)]

n2
≥ 0

Denote by f(i:r)(x) the density function of the i-th order statistic in a sample of size r and
by fX|Y (x) the conditional density function of X given Y . Then the following recurrence
relation holds:

f(i:r)(x) =
r + 1 − i

r + 1
f(i:r+1)(x) +

i

r + 1
f(i+1:r+1)(x)

for every r ∈ N, 1 ≤ i ≤ r and x ∈ R. According to this recurrence relation, we can
express the k-th moments of the RSS random variables recurrently:

E[h(X
(r)
[i] )]k =

∫

h(x)kP
X

(r)
[i]

θ (dx)

=

∫ ∫

h(x)kfX|Y =y(x)f(i:r)(y)dxdy

=

∫ ∫

h(x)kfX|Y =y(x)(
r + 1 − i

r + 1
f(i:r+1)(y) +

i

r + 1
f(i+1:r+1)(y))dxdy

=
r + 1 − i

r + 1
E[h(X

(r+1)
[i] )]k +

i

r + 1
E[h(X

(r+1)
[i+1] )]k

Therefore

var[h(X
(r)
[i] )] = E[h(X

(r)
[i] )]2 − [Eh(X

(r)
[i] )]2

=

(
r + 1 − i

r + 1
var[h(X

(r+1)
[i] )] +

i

r + 1
var[h(X

(r+1)
[i+1] )]

)

+

+

(
r + 1 − i

r + 1
E[h(X

(r+1)
[i] )] +

i

r + 1
E[h(X

(r+1)
[i+1] )]

)2

+

+

(
r + 1 − i

r + 1
E[h(X

(r+1)
[i] )]2 +

i

r + 1
E[h(X

(r+1)
[i+1] )]2

)

.

Using the recurrence relation we obtain:
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r∑

i=1

var[h(X
(r)
[i] )] =

r

r + 1

r+1∑

i=1

var[h(X
(r+1)
[i] )] +

r

r + 1

r+1∑

i=1

E[h(X
(r+1)
[i] )]2 −

− 1

(r + 1)2

r∑

i=1

(

(r + 1 − i)E[h(X
(r+1)
[i] )] + iE[h(X

(r+1)
[i+1] )]

)2

.

Additionally, remark that given euquation (11) the following equation holds

var[h(X)] =
1

r + 1

r+1∑

i=1

var[h(X
(r+1)
[i] )] +

1

r + 1

r+1∑

i=1

(E[h(X
(r+1)
[i] )] − E[h(X)])2. (36)

Summarizing, we obtain for the left hand side of equation (36) multiplied by n2:

r∑

i=1

varh(X
(r)
[i] ) −

r+1∑

i=1

varh(X
(r+1)
[i] ) + varh(X) =

=
r∑

i=1

varh(X
(r)
[i] ) −

r+1∑

i=1

varh(X
(r+1)
[i] ) +

1

r + 1

r+1∑

i=1

var[h(X
(r+1)
[i] )] +

+
1

r + 1

r+1∑

i=1

(E[h(X
(r+1)
[i] )] − E[h(X)])2

=
r

r + 1

r+1∑

i=1

E[h(X
(r+1)
[i] )]2 − 1

(r + 1)2

r∑

i=1

(

(r + 1 − i)E[h(X
(r+1)
[i] )] + iE[h(X

(r+1)
[i+1] )]

)2

+

+
1

r + 1

r+1∑

i=1

(E[h(X
(r+1)
[i] )] − E[h(X)])2

=
1

(r + 1)2

(

r(r + 1)

r+1∑

i=1

E[h(X
(r+1)
[i] )]2 −

r∑

i=1

(

(r + 1 − i)E[h(X
(r+1)
[i] )]+

+ iE[h(X
(r+1)
[i+1] )]

)2
)

+
1

r + 1

r+1∑

i=1

(E[h(X
(r+1)
[i] )] − E[h(X)])2

=
1

(r + 1)2

r∑

i=1

i(r + i − 1)
(

E[h(X
(r+1)
[i+1] )] − E[h(X

(r+1)
[i] )]

)2

+

+
1

r + 1

r+1∑

i=1

(E[h(X
(r+1)
[i] )] − E[h(X)])2 ≥ 0.

�

In order to prove that a possible information order for estimation problems in the family
of RSS experiments is possible when restricting to unbiased estimators, we need to prove
first that the sample mean is the minimum variance unbiased estimator in every fixed RSS
experiment in the family.
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Proposition 82 For every 1 ≤ r ≤ n fixed but arbitrary, the sample mean is the minimum
variance unbiased estimator in the perfect RSS experiment

Gn,perfect
r = (Rn,B(R)n, {⊗r

i=1P
X(i:r)

θ ⊗n
i=r+1 P X

θ : θ ∈ Θ6})

Proof.
Define the measurable function S : (RnB(R)n) → (RnB(R)n),

(x1, . . . , xn) 7→ (x1, . . . , xr, On−r(xr+1, . . . , xn))

where On−r is the ordinary order statistic function. The function S is then a sufficient and
complete statistic for the experiment Gn,perfect

r . To prove the sufficiency let B ∈ B(R)n

such that B = B1 × · · · × Bn, Bi right open interval in R, 1 ≤ i ≤ n and θ ∈ Θ6. Then
the conditional expectation with respect to the probability distribution in Gn,perfect

r of 1B

given S is

Eθ[1B | (x1, . . . , xr, On−r(xr+1, . . . , xn))]

= Eθ[1B1×···×Br
1Br+1×···×Bn

| (x1, . . . , xr, On−r(xr+1, . . . , xn))]

= Eθ[1B1×···×Br
| (x1, . . . , xr)]Eθ[1Br+1×···×Bn

| O(xr+1, . . . , xn)]

= 1B1×···×Br

1

(n − r)!

∑

π∈Sn−r

1τπ(Br+1×···×Bn), ⊗r
i=1P

X(i:r)

θ ⊗n
i=r+1 P X

θ − a.s.

Denote by Γn the system of all finite unions of figures in Rn. Then the function
H : Rn × Γn → [0, 1]

H(·, B) = 1B1×···×Br

1

(n − r)!

∑

π∈Sn−r

1τπ(Br+1×···×Bn)

can be extended ∀(x1, . . . , xn) ∈ Rn to a probability measure on B(R)n, say H̃ such
that H̃ is a version of the conditional distribution given S and independent of θ ∈ Θ6,

⊗r
i=1P

X(i:r)

θ ⊗n
i=r+1 P X

θ − a.s., therefore, S is a sufficient statistic.

For the completeness, let h ∈ ⋂θ∈Θ6
L1(GI

r) such that

∫

h(x1, . . . , xr, O(xr+1, . . . , xn)) ⊗r
i=1 P

X(i:r)

θ ⊗n
i=r+1 P X

θ (dx1, . . . , dxn) = 0 θ ∈ Θ6.

By the transformation formula it follows that,

∫

h(x1, . . . , xn)

r∏

i=1

P
X(i:r)

θ (dxi)P
On−rXn−r

θ (dxr+1, . . . , dxn) = 0, θ ∈ Θ6.

Since the order statistic is complete, by the Proposition 60 and the Proposition 31 it follows

that h = 0, ⊗r
i=1P

X(i:r)

θ P
On−rXn−r

θ -a.s., which implies that S is a complete statistic for the
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RSS experiment Gn,perfect
r . Let 1

n

∑r

i=1 h(xi) + n−r
n

h(xr+1) be an unbiased estimator of
f(θ). Let g(y1, . . . , yn) := Eθ(

1
n

∑r
i=1 h(xi) + n−r

n
h(xr+1) | S(x1, . . . , xn) = (y1, . . . , yn)),

⊗r
i=1P

X(i:r)

θ ⊗n
i=r+1 P X

θ − a.s. Therefore, by the theorem of Lehmann-Scheffe, the estimator
g ◦S is an unbiased estimator and has the smallest variance among all unbiased estimators
with respect to the Gn

r experiment, i.e.

varθ[g(S(x1, . . . , xn)] ≤ varθ[k(x1, . . . , xn]

for any k unbiased estimator of f(θ) and for each θ ∈ Θ6. The uniformly minimum variance
estimator for the functional f(θ) is then:

g(S(x1, . . . , xn)) = Eθ(
1

n

r∑

i=1

h(xi) +
n − r

n
h(xr+1) | S(x1, . . . , xn))

= Eθ(
1

n

r∑

i=1

h(xi) | (x1, . . . , xr, On−r(xr+1, . . . , xn)) +

+
n − r

n
Eθ(xr+1 | (x1, . . . , xr, On−r(xr+1, . . . , xn))

=
1

n

r∑

i=1

h(xi) +
n − r

n

1

n − r

n∑

i=r+1

h(xi)

=
1

n

n∑

i=1

h(xi)

= Un(x1, . . . , xn).

�

Corollary 83 Let f(θ) =
∫

h(x)P X
θ (dx), θ ∈ Θ6 a functional to be estimated. Then the

following inequality holds in the family of perfect RSS experiments:

var
⊗r+1

i=1 P
X(i:r+1)
θ

⊗n
i=r+2P X

θ

[Un(x1, . . . , xn)] ≤ var
⊗r+1

i=1 P
X(i:r+1)
θ

⊗n
i=r+2P X

θ

[k(x1, . . . , xn)], θ ∈ Θ6

for every 1 ≤ r ≤ n−1. Here Un is the U-statistic for estimating f(θ) and k is any unbiased
estimator in the Gn,perfect

r experiment.

Proof.
Let 1 ≤ r ≤ n − 1 and θ ∈ Θ6. By the Proposition 81 it follows that

var
⊗r+1

i=1 P
X(i:r+1)
θ

⊗n
i=r+2P X

θ

[Un(x1, . . . , xn)] ≤ var
⊗r

i=1P
X(i:r)
θ

⊗n
i=r+1P X

θ

[Un(x1, . . . , xn)] ≤

≤ var
⊗r+1

i=1 P
X(i:r+1)
θ

⊗n
i=r+2P X

θ

[k(x1, . . . , xn)]

where the last inequality follows from the minimum variance property of the U-Statistic in
the experiment Gn,perfect

r . �
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5 RSS Experiment with Repetition and SRS of Smaller

Dimension

5.1 The Informational Order

In the last section we have treated comparisons of RSS experiments without repetition
on probability spaces of the same dimension. We concluded that the family of RSS ex-
periments without repetition is not more informative, i.e. there exists no Markov kernels
which should recursively generate the randomization of the experiments. In this section
we are interested in the comparison of RSS experiments with repetition with the SRS ex-
periment of a smaller dimension. We conclude that in this case the RSS with repetition is
more informative than the SRS experiment. The results are particular relevant for further
comparison of the RSS experiments. At the end of the chapter we present an example to
motivate the results also from an applied point of view.

Recall the RSS experiments with repetition for the parameter spaces Θk ⊆ Θ0, k ∈ N:

Gt1
t1
⊗ · · · ⊗ Gtn

tn
:= (R

∑n
i=1 ti ,B(R)

∑n
i=1 ti , {⊗t1

j=1P
X

(t1)

[j]

θ ⊗ · · · ⊗tn
j=1 P

X
(tp)

[n]

θ : θ ∈ Θk}),

ti ∈ N, 1 ≤ i ≤ n. The parameter space Θ0 is defined in equation (21).

Proposition 84 Let Θk ⊆ Θ0, k ∈ N an arbitrary parameter space. The experiment

(Rn,B(R)n, {⊗n
i=1P

X
(n)
[i]

θ : θ ∈ Θk}) is exhaustive for the experiment (R,B(R), {P X
θ : θ ∈

Θk}), n ∈ N.

Proof.
Let A ∈ B(R) and θ ∈ Θk. Then, by the fundamental equation (11) it follows that

P X
θ (A) =

1

n

n∑

i=1

P
X

(n)
[i]

θ (A)

=
1

n

n∑

i=1

∫

R

1A(x)P
X

(n)
[i]

θ (dx)

=

∫

Rn

1

n

n∑

i=1

1A(xi)

n∏

i=1

P
X

(n)
[i]

θ (dxi)

=

∫

Rn

1

n

n∑

j=1

1
τ(1j)(A×R × . . . × R

︸ ︷︷ ︸
n−1

)
(x1, . . . , xn)

n∏

i=1

P
X

(n)
[i]

θ (dxi)

Therefore, the Markov kernel denoted by Kn : Rn × B(R) → [0, 1],

Kn(·, A) =
1

n

n∑

j=1

1
τ(1j)(A×R × . . . × R

︸ ︷︷ ︸
n−1

)
, A ∈ B(R) (37)
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fulfills the exhaustivity equation.
�

Remark 85 Let θ0 ∈ Θk, k ∈ N such that P XY
θ0

= P X
θ0

P Y
θ0

, i.e. X and Y are independent.

Then P
X

(n)
[i]

θ0
= P X

θ0
for every 1 ≤ i ≤ n. Therefore, for such a distribution the Markov

kernel defined in (37) serves for the exhaustivity equation P X
θ0

(A) = 1
n

∑n
i=1 P X

θ0
(A), for

every θ0 which stands for independence and for every A ∈ B(R). In the case of dominated
experiments, this implies that a SRS experiment of size n is always more informative than
a SRS experiment of size 1. In other words, this serves for a proof that every decision
made with more than one observation in an experiment with i.i.d. observations, is better
than a decision made upon one observation.

Proposition 86 Assume that for the family of probability distributions Θk, 1 ≤ k ≤ 6
it exists a version of the conditional distribution P

X|Y
θ which is independent of θ ∈ Θk,

P X
θ −a.s.. Denote it by P

X|Y
· . Then the kernel Kn defined in equation (37) is unique in the

following sense: for every other kernel L : Rn×B(R) → [0, 1] which fulfills the exhaustivity

equation P X
θ (A) =

∫

Rn L(x1, . . . , xn, A)
∏n

i=1 P
X

(n)
[i]

θ (dxi) for every A ∈ B(R) and θ ∈ Θk it
holds:

∫

Rn

L(x1, . . . , xn, A)

n∏

i=1

P X|Y =yi
· =

∫

Rn

Kn(x1, . . . , xn)

n∏

i=1

P X|Y =yi
·

⊗n
i=1P

Y(i:n)

θ − a.s. and for every A ∈ B(R).

Proof.
Assume there exists a Markov kernel L : Rn × B(R) → [0, 1] such that

P X
θ (A) =

∫

Rn

L(x1, . . . , xn, A)

n∏

i=1

P
X

(n)
[i]

θ (dxi)

for every A ∈ B(R) and θ ∈ Θk. Therefore

∫

Rn

(L(x1, . . . , xn, A) − Kn(x1, . . . , xn, A))

n∏

i=1

P
X

(n)
[i]

θ (dxi) = 0

⇔
∫

Rn

∫

Rn

(L(x1, . . . , xn, A) − Kn(x1, . . . , xn, A))
n∏

i=1

P X|Y =y
· (dxi)

n∏

i=1

P
Y(i:n)

θ (dyi) = 0

Since for the families Θk the order statistic is complete, the assertion follows then by
Lemma 31 and Proposition 60. �
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Lemma 87 There exists a unique Markov kernel Qt1,t2 : R
∑2

i=1 ti × B(R)2 → [0, 1] such
that

Qt1,t2(xi
j : 1 ≤ i ≤ 2, 1 ≤ j ≤ ti; B) =

2∏

i=1

Kti(xi
1, . . . , x

i
ti

; Bi) (38)

∀B = B1 × B2 Bi ∈ B(R), 1 ≤ i ≤ 2. For each B ∈ B(R)2 it holds Qt1,t2(xi
j : 1 ≤ i ≤

2, 1 ≤ j ≤ ti; B) =
∫

Kt2(x2
1, . . . , x

2
t2

; Bz1)Kt1(x1
1, . . . , x

1
t1

; dz1) =

∫

Kt1(x1
1, . . . , x

1
t1

; Bz2)K
t2(x2

1, . . . , x
2
t2

; dz2)

where Bz1 := {z2 : (z1, z2) ∈ B} (respectively Bz2 := {z1 : (z1, z2) ∈ B}).

Proof.
That Qt1,t2 defined by
Qt1,t2(xi

j : 1 ≤ i ≤ 2, 1 ≤ j ≤ ti; B) =
∫

Kt2(x2
1, . . . , x

2
t2

; Bz1)K
t1(x1

1, . . . , x
1
t1

; dz1) is a
probability measure on B(R)2 is obvious. Analogously, Qt1,t2 defined by Qt1,t2(xi

j : 1 ≤
i ≤ 2, 1 ≤ j ≤ ti; B) =

∫
Kt1(x1

1, . . . , x
1
t1

; Bz2)Kt2(x2
1, . . . , x

2
t2

; dz2) is a probability mea-
sure on B(R)2. The uniqueness follows by arguments similar like for the uniqueness of
the product measure, see for example Bauer [3], section 21. Let us check the prop-
erty (38). Denote for each x ∈ Rt2 and B ∈ B(R)2 by sB(x, ·) the B(R) measurable
function z1 7→ Kt2(x, Bz1) on R. Therefore, Qt1,t2(xi

j : 1 ≤ i ≤ 2, 1 ≤ j ≤ ti; B) =
∫

sB(x2
1, . . . , x

2
t2
, z1)K

t1(x1
1, . . . , x

1
t1

; dz1). Let B ∈ B(R)2 such that B = B1×B2, Bi ∈ B(R),
1 ≤ i ≤ 2 and (x2

1, . . . , x
2
t2

) ∈ Rt2 . Then

sB1×B2(x2
1, . . . , x

2
t2
, z1) = Kt2(x2

1, . . . , x
2
t2
, (B1 × B2)z1)

=
1

t2

t2∑

j=1

1τ1j{(B1×B2)z1×R···×R}(x1, . . . , xt2)

= Kt2(x2
1, . . . , x

2
t2
, B2)1B1(z1)

and therefore

Qt1,t2(xi
j : 1 ≤ i ≤ 2, 1 ≤ j ≤ ti; B) =

∫

Kt2(x2
1, . . . , x

2
t2
, B2)1B1(z1)Kt1(x1

1, . . . , x
1
t1

; dz1)

= Kt2(x2
1, . . . , x

2
t2

; B2)K
t1(x1

1, . . . , x
1
t1

; B1)

for every B ∈ B(R)2 such that B = B1 × B2.
�

Lemma 88 There exists a unique Markov kernel Qt1,...,tn : R
∑n

i=1 ti × B(R)n → [0, 1] for
n ≥ 2 such that that

Qt1,...,tn(xi
j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti; B) =

n∏

i=1

Kti(xi
1, . . . , x

i
ti

; Bi) (39)

∀B = B1 × · · · × Bn Bi ∈ B(R), 1 ≤ i ≤ n.
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Proof.
If n = 2 than the existence and uniqueness are proved by the previous lemma. Assume now
that such a Markov kernel exists for n − 1, i.e. it exists Qt1,...,tn−1 : R

∑n−1
i=1 ti × B(R)n−1 →

[0, 1] such that that

Qt1,...,tn−1(xi
j : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ti; B) =

n−1∏

i=1

Kti(xi
1, . . . , x

i
ti

; Bi) (40)

∀B = B1×· · ·×Bn−1 Bi ∈ B(R), 1 ≤ i ≤ n−1. We define Qt1,...,tn : R
∑n

i=1 ti×B(R)n → [0, 1]
by Qt1,...,tn(xi

j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti; B) :=

∫

Qt1,...,tn−1(xi
j : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ti; Bzn

)Ktn(xtn
1 , . . . , xtn

tn
; dzn)

for every B ∈ B(R)n and where Bzn
:= {(z1, . . . , zn−1) : (z1, . . . , zn) ∈ B}. Then, analo-

gously as in the previous lemma, the Markov kernel satisfies equation (39). The uniqueness
follows by the same arguments as in Bauer [3], Proposition 22.3.

�

Theorem 89 Let Θk ⊆ Θ0, k ≥ 0 be an arbitrary parameter space. Let n ∈ N be fixed
but arbitrary. The RSS experiment with repetition

Gt1
t1
⊗ · · · ⊗ Gtn

tn
= (R

∑n
i=1 ti ,B(R)

∑n
i=1 ti , {⊗t1

j=1P
X

(t1)

[j]

θ ⊗ . . . ⊗tn
j=1 P

X
(tn)
[j]

θ : θ ∈ Θk}),

ti ∈ N∗, 1 ≤ i ≤ n, is exhaustive for the SRS experiment

Gn
1 = (Rn,B(R)n, {⊗n

i=1P
X
θ : θ ∈ Θk}).

Proof.
Let Qt1,...,tn : R

∑n
i=1 ti × B(R)n → [0, 1] be the Markov kernel such that

Qt1,...,tn(xi
j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti; B) =

n∏

i=1

Kti(xi
1, . . . , x

i
ti

; Bi) (41)

∀B = B1 × · · · × Bn Bi ∈ B(R), 1 ≤ i ≤ n. Then we affirm that

⊗n
i=1P

X
θ (B) =

∫

Qt1,...,tn(xi
j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti; B)

n∏

i=1

ti∏

j=1

P
X

(ti)

[j]

θ (dxi
j)

for all B ∈ B(R)n and θ ∈ Θk. We prove the assertion by making use of the previous lemma
and several use of the proposition of Fubini. Additionally, recall the Markov kernel Kti
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defined in equation (37) and serving for the exhaustivity in Proposition 84. Let B ∈ B(R)n

and θ ∈ Θk. Then

∫

Qt1,...,tn(xi
j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti; B)

n∏

i=1

ti∏

j=1

P
X

(ti)

[j]

θ (dxi
j)

=

∫

Qt1,...,tn−1(xi
j : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ti; Bzn

)

Ktn(xtn
1 , . . . , xtn

tn
; dzn)

n∏

i=1

ti∏

j=1

P
X

(ti)

[j]

θ (dxi
j)

=

∫

Qt1,...,tn−1(xi
j : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ti; Bzn

)

P X
θ (dzn)

n−1∏

i=1

ti∏

j=1

P
X

(ti)

[j]

θ (dxi
j)

=

∫

Qt1,...,tn−2(xi
j : 1 ≤ i ≤ n − 2, 1 ≤ j ≤ ti; Bzn,zn−1)

Ktn−1(xtn
1 , . . . , xtn

tn
; dzn−1)P

X
θ (dzn)

n−2∏

i=1

ti∏

j=1

P
X

(ti)

[j]

θ (dxi
j)

=

∫

Qt1,...,tn−2(xi
j : 1 ≤ i ≤ n − 2, 1 ≤ j ≤ ti; Bzn,zn−1)

P X
θ (dzn−1)P

X
θ (dzn)

n−2∏

i=1

ti∏

j=1

P
X

(ti)

[j]

θ (dxi
j).

Here we define for an iterative use the sets Bzn,...,zk
∈ B(R)k−1,

Bzn,...,zk
:= {(z1, . . . , zk−1) : (z1, . . . , zk) ∈ Bzn,...,zk

}, 2 ≤ k ≤ n.

By repeating the steps above we obtain
∫

Qt1,...,tn(xi
j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti; B)

∏n
i=1

∏ti
j=1 P

X
(ti)

[j]

θ (dxi
j) =

∫

Kt1(xt1
1 , . . . , xt1

t1
; Bzn,...,z2) ⊗n

i=2 P X
θ (dzi)

t1∏

j=1

P
X

(t1)

[j]

θ (dxi
j)

=

∫

P X
θ (Bzn,...,z2)

n∏

i=1

P X
θ (dzi)

= ⊗n
i=1P

X
θ (B).

�
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Theorem 90 Assume Θk ⊆ Θ0, k ≥ 0 are dominated families of probability distributions.
Then for the RSS experiment with repetition

Gt1
t1
⊗ · · · ⊗ Gtn

tn
:= (R

∑n
i=1 ti ,B(R)

∑n
i=1 ti , {⊗n

i=1 ⊗t1
j=1 P

X
(ti)

[j]

θ : θ ∈ Θk}), ti ∈ N, 1 ≤ i ≤ n

and the SRS experiment

Gn
1 = (Rn,B(R)n, {⊗n

i=1P
X
θ : θ ∈ Θk})

the informational order holds
Gn

1 ⊆ Gt1
t1
⊗ · · · ⊗ Gtn

tn
.

Proof.
By the last proposition it follows that the experiment Gt1

t1
⊗ · · ·⊗Gtn

tn is exhaustive for the
experiment Gn. Therefore, the assertion follows by the Definition 15 and the Theorem 16.

�

Corollary 91 For every decision problem (Θk, D, W ) with a continuous loss function and

∀ ρ1 ∈ R(Gn
1 , D), ∃ ρ2 ∈ R(⊗n

i=1G
ti
ti
, D) such that Wθρ2 ⊗n

i=1 ⊗ti
j=1P

X
(ti)

[j]

θ ≤ Wθρ1 ⊗n
i=1

P X
θ , θ ∈ Θ.

Proof.
By the definition of the informational order.

�

From an applied point of view, this result is of relative importance. In the case of es-
timation, the last corollary implies the comparison of an estimator based on X1, . . . , Xn,

i.i.d P X
θ observations with an estimator based on X

(ti)
[j] ∼ P

X
(ti)

[j]

θ , 1 ≤ i ≤ n, 1 ≤ j ≤ ti and
all independent. Thus and estimator based on n observations is compared to an estimator
based on

∑n

i=1 ti observations. In the common estimation problems, the precision of an
estimator in terms of variance increases with the sample size, i.e. the variance of an esti-
mator decreases as the sample size increases. Despite this, there are a few examples where
within the SRS experiment this assertion does not hold, i.e. where an estimator with less
observations will be more precise. When comparing the SRS experiment, Gn

1 with the RSS
experiment ⊗n

i=1G
ti
ti

, this impediment will not happen. Let us give some examples, the first
being the analogous example from the end of the chapter 4.

5.2 Examples

Example 1.
Consider the balanced RSS experiment with repetition, i.e. t1 = . . . = tn = p, p ∈ N for
the parameter space Θk ⊆ Θ0, k ∈ N

⊗n
i=1G

p
p = (Rnp,B(R)np, {⊗i=1 ⊗p

j=1 P
X

(p)
[j]

θ : θ ∈ Θk})

59



and the SRS of size n

Gn
1 = (Rn,B(R)n, {⊗n

i=1P
X
θ : θ ∈ Θk}).

Let the decision problem be an estimation problem. Assume we want to estimate f(θ) =
∫

h(x)P X
θ (dx), θ ∈ Θk where h is the integrable kernel of the regular functional of degree

1. The loss function is the common quadratic loss. The informational order between
the RSS experiments with repetition and the SRS of smaller dimension implies that for
every estimator we choose in the SRS experiment, there is a better estimator in the RSS
experiment. We know, for certain parameter spaces, the U-statistic of degree 1 is the
minimum variance unbiased estimator within the SRS experiment, therefore, we choose U-
statistic Un = n−1

∑n
i=1 h(xi) to estimate the functional above. We define a new estimator

k : Rnp → R by making use of the Markov kernel defined in equation (41), k(xi
j : 1 ≤ j ≤

p, 1 ≤ i ≤ n) :=

∫

Rn

Un(y1, . . . , yn)Qp,...,p(xi
j : 1 ≤ j ≤ p, 1 ≤ i ≤ n; dy1, . . . , dyn).

Proposition 92

k(xi
j : 1 ≤ j ≤ p, 1 ≤ i ≤ n) =

1

np

n∑

i=1

p
∑

j=1

h(xi
j).

Proof.
∫

Rn

Un(y1, . . . , yn)Qp,...,p(xi
j : 1 ≤ i ≤ n, 1 ≤ j ≤ p; dy1, . . . , dyn)

=

∫

Rn

1

n

n∑

i=1

h(yi)

n∏

i=1

Kp(xi
1, . . . , x

i
p, dyi)

=
1

n

n∑

i=1

∫

Rn

h(yi)K
p(xi

1, . . . , x
i
p, dyi)

=
1

n

n∑

i=1

∫

R

h(yi)

(

1

p

p
∑

j=1

1τ1j (dyj×R...×R)(x
i
1, . . . , x

i
p)

)

=
1

np

n∑

i=1

p
∑

j=1

∫

R

h(yi)δ{pr1τ1j (xi
1,...,xi

p)}(dyi) =
1

np

n∑

i=1

p
∑

j=1

h(xi
j)

�

Therefore, it follows that

var
⊗n

i=1⊗
p
j=1P

X
(p)
[j]

θ

[
1

np

n∑

i=1

p
∑

j=1

h(xi
j)] ≤ var⊗n

i=1P X
θ

[
1

n

n∑

i=1

h(xi)], θ ∈ Θk.
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Remark also that by integrating with respect to the Markov kernel Qp,...,p we obtain the
U-statistic as estimator in the RSS experiment. In the case of the common quadratic loss
function, the variance of the U-statistic decreases as the sample size increases, so the ob-
tained estimator is here from an applied point of view of relative importance.

Example 2.
To present the second example we need to introduce some more definitions and a proposi-
tion relevant to the assertions which we are going to make. For more details on the example
within a fixed experiment, see Pfanzagl [21], example 2.7.6.

Definition 93 (Concentration of Estimators) A probability measure Q1 on B(R) is
more concentrated about 0 than another probability measure Q2 on B(R) if

Q1(−t′, t′′) ≥ Q2(−t′, t′′), t′, t′′ ≥ 0.

Consider we have two real estimators k1 and k2 defined with respect to an arbitrary sta-
tistical experiment whith the family of probability distributions {Pθ : θ ∈ Θ}. A criteria
to compare two estimators is their concentration around the parameter to be estimated,
say f(θ). Comparing the concentration of k1 and k2 about the parameter f(θ) can be
reformulated as the problem of comparing the concentration of the probability measures
Pθ ◦ (ki − f(θ)) about 0. Consider now o more natural class of loss functions, the class of
all subconvex functions.

Definition 94 (Subconvex Loss Functions) A familiy of loss functions (Wθ)θ∈Θ, Wθ :
Rn → R+ is called subconvex if {t ∈ Rn : Wθ(t) ≤ u} is convex for u ≥ 0 and θ ∈ Θ.

Any convex loss functions is subconvex. If n = 1, the condition of subconvexity is reduces to
the requirement that t 7→ Wθ(t) is increasing as t moves away from f(θ), in each direction.
An example of a subconvex loss function which is not convex is for instance, Wθ = 1−1Cf(θ)

where Cf(θ) is a measurable convex set containing f(θ). If two estimators are comparable,
simultaneously for all (symmetric) subconvex loss functions, they are comparable with
respect to their concentration on all convex sets containing f(θ) (symmetric about f(θ)).
This is the content of the following proposition.

Proposition 95 The following assertions are equivalent.

1. Pθ(k1 ∈ C) ≥ Pθ(k2 ∈ C) for every convex set C containing f(θ) (symmetric about
f(θ)).

2. For every subconvex (and symmetric) loss function (Wθ)θ∈Θ, the risk of k1 is smaller
than the risk of k2.

Proof. See Proposition 2.5.3. in Pfanzagl [21]. �
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If an estimator, say kn : Rn → R is defined for every sample size n, one normally expects
that the variance of kn+1 is smaller than the variance of kn or that kn+1 is more concentrated
around the parameter to be estimated than kn. We want to show to which extent this is
true. Consider the family of bivariate normal probability distributions:

ΘN = {N(µx,µy,σ2
x,σ2

y ,ρ) : (µx, µy, σ
2
x, σ

2
y), µx, µy ∈ R, σ2

x > 0, σ2
y > 0, ρ ∈ (0, 1)}.

Consider the SRS experiment of dimension n

Gn
1 = {Rn,B(R)n, {⊗n

i=1P
X
θ : θ ∈ ΘN})

and the RSS experiment with repetition

⊗n
i=1G

ti
ti

= (R
∑n

j=1 tj ,B(R)
∑n

j=1 tj , {⊗n
i=1 ⊗ti

j=1 P
X

(ti)

[j]

θ : θ ∈ ΘN}).

The problem is to estimate the variance with respect to P X
θ , i.e. σ2

x. Let us first treat
the problem only within the SRS experiment. Within the SRS experiment, the estimator
s2

n(x1, . . . , xn) := (n − 1)−1
∑n

i=1(xi − x̄)2 minimizes the convex risk among all mean un-
biased estimators (by the theorem of Lehmann and Sheffe). Moreover, the risk of s2

n+1 is
smaller than the risk of s2

n for every convex function. We put the question if s2
n+1 is more

concentrated than s2
n. Since Nn+1

µx,σ2
x
(s2

n+1 ≤ σ2
x) 6= Nn

µx,σ2
x
(s2

n ≤ σ2
x), s2

n+1 cannot be more

concentrated than s2
n on all intervals containing σ2

x. Therefore, by Proposition 95 it exists
at least a subconvex loss function, denote it by Lθ, such that the risk with respect to Lθ

of s2
n is smaller than the risk with respect to Lθ of s2

n+1. This impediment will not happen
if we proceed with the estimation of σ2

x within a RSS experiment with repetition where
we fix ti, 1 ≤ i ≤ n such that

∑n

j=1 tj = n + 1. By Theorem 90, the RSS experiment,

⊗n
i=1G

ti
ti

is more informative than the SRS for every decision problem. Therefore, also for
(R, (Lθ)θ∈Θk

). By using the kernel defined in equation (41) we construct a new estimator,
denote it by s2

n+1,RSS, s2
n+1,RSS(xi

j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti) =
∫

s2
n(y1, . . . , yn)Qt1,...,tn(xi

j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti; dy1, . . . , dyn)

Therefore, by Corollary 91 it follows that:

∫

Lθ(s2
n+1,RSS(xi

j : 1 ≤ i ≤ n, 1 ≤ j ≤ ti))

n∏

i=1

ti∏

j=1

P
X

(ti)

[j]

θ (dxi
j) ≤

≤
∫

Lθ(s2
n(x1, . . . , xn))

n∏

i=1

P X
θ (dxi)

≤
∫

Lθ(s2
n+1(x1, . . . , xn+1))

n+1∏

i=1

P X
θ (dxi)

which gives another motivation of the treatment of the comparison between RSS without
repetition and the SRS of a smaller dimension.
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6 RSS Experiments with Repetition and SRS of the

Same Dimension

In this chapter, we investigate the relationship between the RSS experiment with repetition
and the SRS of the same dimension. Since the general case has an analog proof, we treat
only the balanced case of RSS with repetition, i.e. we consider t1 = . . . = tn = p, p ∈ N.
Recall the RSS experiment with repetition for the parameter spaces Θk, 1 ≤ k ≤ 6 defined
in equations (22)-(27).

⊗n
i=1G

p
p = (Rnp,B(R)np, {⊗n

i=1 ⊗p
j=1 P

X
(p)
[j]

θ : θ ∈ Θk})

and the SRS experiment of size np:

Gnp
1 = (Rnp,B(R)np, {⊗np

i=1P
X
θ : θ ∈ Θk}).

Analogously as in chapter 4, we will prove that under certain considerations, the RSS
experiment ⊗n

i=1G
p
p is not more informative than a SRS experiment of size np.

Proposition 96 Let 1 ≤ k ≤ 6 be fixed. Assume that for the family of probability
distributions {P XY

θ : θ ∈ Θk} it exists a version of the conditional distribution P
X|Y
θ which

is independent of θ ∈ Θk, P X
θ − a.s.. Denote it by P

X|Y
· . Then the RSS experiment with

repetition, the balanced case

⊗n
i=1G

p
p = (Rnp,B(R)np, {⊗n

i=1 ⊗p
j=1 P

X
(p)
[j]

θ : θ ∈ Θk})

is not exhaustive for the the SRS experiment of size np:

Gnp
1 = (Rnp,B(R)np, {⊗np

i=1P
X
θ : θ ∈ Θk}).

Proof.
We will prove the proposition by a contradiction argument. Assume that there exists a
Markov kernel L : Rnp × B(R)n → [0, 1] such that the required exhaustivity condition is
fulfilled, i.e. for every B ∈ B(R)np and θ ∈ Θk,

⊗np
i=1P

X
θ (B) =

∫

Rnp

L(xi
1, . . . , x

i
p, 1 ≤ i ≤ n; B)

n∏

i=1

p
∏

j=1

P
X

(p)
[j]

θ (dxi
j). (42)

Making use of the proposition of Fubini, the right-hand side of equation (42) is then equal
to

∫

Rnp

∫

Rnp

L(xi
1, . . . , x

i
p, 1 ≤ i ≤ n; B)

n∏

i=1

p
∏

j=1

P
X|Y =yi

j
· (dxi

j)
n∏

i=1

p
∏

j=1

P
Y(j:p)

θ (dyi
j)

=

∫

Rnp2

∫

Rnp

L(xi
1, . . . , x

i
p, 1 ≤ i ≤ n; B)

n∏

i=1

n∏

j=1

P
X|Y =yi

jj
· (dxi

j)

n∏

i=1

p
∏

j=1

p
∏

k=1

P
Y(j:n)

θ (dyi
kj)

=

∫

Rnp2
hB(yi

jk : 1 ≤ i ≤ n, 1 ≤ k, j ≤ p)
n∏

i=1

p
∏

j=1

p
∏

k=1

P
Y(j:n)

θ (dyi
kj)
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where we have denoted for each B ∈ B(R)np by hB the measurable function

(yi
kj : 1 ≤ i ≤ n, 1 ≤ k, j ≤ p) 7→

∫

Rnp

L(xi
1, . . . , x

i
p, 1 ≤ i ≤ n; B)

n∏

i=1

p∏

j=1

P
X|Y =yi

jj
· (dxi

j).

Let B ∈ B(R)np such that B = B1 × . . . × Bp, Bk ∈ B(R)n, 1 ≤ k ≤ p. We know from
Theorem 89 that the experiment ⊗n

i=1G
p
p is exhaustive for the experiment Gn

1 and that the
Markov kernel defined in equation (41) satisfies

(P X
θ )n(Bk) =

∫

Rnp

Qp,...,p(xi
k1, . . . , x

i
kp, 1 ≤ i ≤ n; Bk)

n∏

i=1

p
∏

j=1

P
X

(p)
[j]

θ (dxi
kj)

for every 1 ≤ k ≤ p and θ ∈ Θk.
By independence it follows that ⊗np

i=1P
X
θ (B) =

∏p
k=1(P

X
θ )n(Bk) =

=

p
∏

k=1

∫

Rnp

Qp,...,p(xi
k1, . . . , x

i
kp, 1 ≤ i ≤ n; Bk)

n∏

i=1

p
∏

j,k=1

P
X

(p)
[j]

θ (dxi
kj)

=

∫

Rnp2

p
∏

k=1

Qp,...,p(xi
k1, . . . , x

i
kp, 1 ≤ i ≤ n; Bk)

n∏

i=1

p
∏

j,k=1

P
X

(p)
[j]

θ (dxi
kj)

=

∫

Rnp2

∫

Rnp2

p
∏

k=1

Qp,...,p(xi
k1, . . . , x

i
kn, 1 ≤ i ≤ n; Bk)

n∏

i=1

p
∏

j,k=1

P
X|Y =yi

kj
· (dxi

kj)

n∏

i=1

p
∏

j,k=1

P
Y(j:p)

θ (dyi
kj)

=

∫

Rnp2
gB(yi

kj : 1 ≤ i ≤ n, 1 ≤ k, j ≤ p)

n∏

i=1

p
∏

j,k=1

P
Y(j:p)

θ (dyi
kj)

where we have denoted by gB the measurable function

(yi
kj : 1 ≤ i ≤ n, 1 ≤ k, j ≤ p) 7→

∫

Rnp2

p
∏

k=1

Qp,...,p(xi
k1, . . . , x

i
kn, 1 ≤ i ≤ n; Bk)

n∏

i=1

p
∏

j,k=1

P
X|Y =yi

kj
· (dxi

kj)

for each B ∈ B(R)np such that B = B1 × . . . × Bp, Bk ∈ B(R)n, 1 ≤ k ≤ p. For each B ∈
B(R)np, therefore also for our particular choice, the functions hB, gB ∈ ⋂θ∈Θk

L1

(

⊗p
j=1P

Y(j:p)

θ

)np

are by proposition (60) and (31) equal
(

⊗p
j=1P

Y(j:p)

θ

)np

− a.s.. By arguments similar as in

in Proposition 67 it follows that the equality of the functions leads to a contradiction ar-
gument. �
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Theorem 97 Assume that for the family of probability distributions {P XY
θ : θ ∈ Θk},

k ∈ {5, 6} it exists a version of the conditional distribution P
X|Y
θ which is independent of

θ ∈ Θk, P X
θ − a.s.. Denote it by P

X|Y
· . Then the RSS experiment with repetition, the

balanced case

⊗n
i=1G

p
p = (Rnp,B(R)np, {⊗n

i=1 ⊗p
j=1 P

X
(p)
[j]

θ : θ ∈ Θk})

is not more informative than the SRS experiment of size np

Gnp
1 = (Rnp,B(R)np, {⊗np

i=1P
X
θ : θ ∈ Θk}).

Proof.
By the previous proposition we have that the RSS experiment with repetition is not more
informative than the SRS experiment of the same size. The proof of the theorem follows
therefore by Definition 15 and Theorem 16.

�

Corollary 98 For the parameter space Θ5 or Θ6 it exists (D, W ) decision problem with

W a continuous loss function such that Gnp
1

(D,W )

* ⊗n
i=1G

p
p. If D is a locally compact metric

space then for this decision problem it follows that ∃ ρ1 ∈ R(Gnp
1 , D) such that for every

ρn ∈ R(⊗n
i=1G

p
p, D)

Wθρ1(⊗np
i=1(P X

θ )) < Wθρn(⊗n
i=1 ⊗p

j=1 P
X

(p)
[j]

θ ), θ ∈ Θ5(Θ6).

Proof. By the definition of the informational order. �
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7 Appendix

The Ranked Set Sampling and Stratifications

In this chapter we will treat the RSS experiment with repetition, the balanced and perfect
case, from another point of view, by regarding the RSS fundamental equation (11) as a
particular mixture distribution, or in a statistical terminology, as a particular stratification
of the population. The results can be generalized to arbitrary RSS experiments.
Consider the parametrization Θ = {P X ∈ M(B(R)) : P X ≪ λ} and the corresponding
perfect RSS experiment with repetition and balanced

⊗n
i=1G

p,perfect
p = (Rnp,B(R)np, {⊗n

i=1 ⊗p
j=1 P

X(j:p)

θ : θ ∈ Θ}), (43)

p ∈ N∗, 1 ≤ i ≤ n. Recall also the SRS of size np for the parameter space Θ:

Gnp
1 = (Rnp,B(R)np, {⊗np

i=1P
X
θ : θ ∈ Θ}).

Let θ ∈ Θ. It is shown in Isii [17] and Taga [26] that the stratification of a set of random
variables with distribution P X

θ into p strata may be represented by a decomposition of
P X

θ into functions Q̃j
θ : R → [0,∞), 1 ≤ j ≤ p which, similar to distribution functions,

are right-continuous and non-decreasing such that P X
θ (dx) =

∑p

j=1 Q̃j
θ(x) holds for all

x ∈ R. Let αj := limx→∞ Q̃j
θ(x), for 1 ≤ j ≤ p and define Qj

θ := α−1
j Q̃j

θ. Then Qj
θ is the

distribution function of the j-th stratum. For a fixed p ∈ N nd θ ∈ Θ we define the set of
vector functions

Qθ := {(Q̃1
θ, . . . , (Q̃p

θ) :

p
∑

j=1

Q̃j
θ(x) = P X

θ (x), x ∈ R} (44)

which will be called the set of all stratifications with p strata for P X
θ . Analogously, if we

first fix the weights αj := limx→∞ Q̃j
θ(x), 1 ≤ j ≤ p then the set

Qθ,α := {(Q̃1
θ, . . . , Q̃

p
θ) :

p
∑

j=1

Q̃j
θ(x) = P X

θ (x), x ∈ R, αj := lim
x→∞

Q̃j
θ(x)}

will be called the set of all stratifications with p strata and fixed weighting vector for P X
θ .

Definition 99 (The Stratified Experiment with Fixed Weights) Consider the pa-
rameter space Θ = {P X ∈ M(B(R)) : P X ≪ λ}. The stratified experiment with

p strata and fixed weights is a statistical experiment (E,B,P) where E := R
∑p

j=1 nj ,

B := B(R)
∑p

j=1 nj , P := {⊗p
j=1 ⊗nj

i=1 Qj
θ : Qj

θ := α−1
j Q̃j

θ, (Q̃1
θ, . . . , Q̃

p
θ) ∈ Qθ,α, θ ∈ Θ}

where (n1, . . . , np) is called the sample allocation vector and (α1, . . . , αp) the weighting
vector.
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The measures Q̃j
θ are absolutely continuous with respect to P X

θ , i.e. Q̃j
θ << P X

θ , 1 ≤ j ≤ p.
Therefore, there exists the measurable functions φj

θ : R → [0, 1] which are the Radon-

Nykodim7 derivatives of Q̃j
θ with respect to P X

θ , φj
θ(x) =

dQ̃
j
θ

dP X
θ

(x), P X
θ − a.s., for which

the relation holds
∑p

j=1 φj
θ(x) = 1, P X

θ − a.s., for every θ ∈ Θ. Let two such functions be

identified if they are equal except on sets of P X
θ -measure zero. For each θ ∈ Θ we define

the set of vector functions

Φθ := {(φ1
θ, . . . , φ

p
θ) : φj

θ : R → [0, 1],

p
∑

j=1

φj
θ(x) = 1, P X

θ − a.s.} (45)

One can easily see that for each θ ∈ Θ there is a one-to-one correspondence between the
sets Qθ and Φθ defined in (44) and (45).
Therefore, a stratification for P X

θ can be identified with a function vector φθ ∈ Φθ.
Analogously, there is a ono-to-one correspondence between the sets Qθ,α and the set

Φθ,α := {(φ1
θ, . . . , φ

p
θ) : φj

θ : R → [0, 1],

p∑

j=1

φj
θ(x) = 1, P X

θ − a.s.,

∫

φj
θ(x)P X

θ (dx) = αj}.

Therefore, an alternative expression for a stratified experiment with fixed weights is
(R

∑p
j=1 tj ,B(R)

∑p
j=1 nj ,P) where

P := {⊗p
j=1 ⊗

nj

i=1 Qj
θ : Qj

θ := α−1
j Q̃j

θ, dQ̃j
θ = φj

θdP X
θ , φ ∈ Φθ,α, θ ∈ Θ}.

Remark 100 Let θ ∈ Θ, p, n ∈ N be fixed and arbitrary. Consider the weight vector
α = (p−1, . . . , p−1) to be fixed.

1. We define φSRS ∈ Φθ,α by φSRS := (p−1, . . . , p−1) then this stratification vector
together with the allocation vector (n, . . . , n) generates the SRS experiment of size
np, i.e. the statistical experiment Gnp

1 .

2. We define the stratification vector φθ,RSS ∈ Φθ,α by

φθ,RSS(x) := (p−1β(1:p)(P
X
θ (x)), . . . , p−1β(p:p)(P

X
θ (x))), x ∈ R

where the function β(i:p) is defined in equation (6). By Proposition 35, we have

P
X(j:p)

θ ≪ P X
θ with

dP
X(j:p)
θ

dP X
θ

(x) = β(i:p)(P
X
θ (x)), P X

θ − a.s.. Therefore the stratifi-

cation vector φRSS together with the allocation vector (n, . . . , n) generates the RSS
experiment with repetition, the perfect and balanced case, i.e. ⊗n

i=1G
p,perfect
p defined

in equation (43).

7Let P and Q be two measures on a σ-field B in a space E. If P is σ-finite, then Q has a density
with respect to P if and only if Q is absolutely continuous with respect to P . The density is called the
Radon-Nykodim density of Q with respect to P .
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Next, we recall two theorems from Taga [26], relevant for the perspective on the Ranked Set
Sampling as a particular stratification of the original probability distribution. We restrict
to balanced stratified experiments.

Uniformly Minimum Variance Estimators in Stratified Experiments
Consider f(θ) =

∫

Rm h(x1, . . . , xm)
∏m

i=1 P X
θ (dxi), θ ∈ Θ, a regular statistical functional of

degree m with a symmetric kernel h ∈ L2(⊗m
i=1P

X
θ ). In the balanced stratified case, Taga

[26] defines the estimator

Ustrat :=
m!

nm

∑

r

1

r1! . . . rp!
Ur (46)

where

Ur =

[(
n

r1

)

· · ·
(

n

rp

)]−1∑

τ

h(x1
τ(11), . . . , x

1
τ(1r1), . . . , x

p

τ(p1), . . . , x
p

τ(prp)).

Here the first summation should be taken over all combinations (r1, . . . , rp) of non-negative
integers such that

∑p
j=1 rj = m and the second summation over all combinations τ =

(τ(11), . . . , τ(prp)) of positive integers corresponding to each (r1, . . . , rp) s.t. 1 ≤ τ(j1) <
. . . < τ(jrj) ≤ n for 1 ≤ j ≤ p.

Theorem 101 (Uniformly Minimum Variance Estimator in Stratified Experiment)
Consider the parameter space Θ = {P X ∈ M(B(R)) : P X ≪ λ} and let Φθ,α be the set
of all stratifications with p strata for P X

θ , θ ∈ Θ, corresponding to any fixed weighting
vector. Then the estimator Ustrat is a uniformly minimum variance unbiased estimator for
the functional f(θ) in the stratified balanced experiment:

(Rnp,B(R)np,P := {⊗p
j=1 ⊗n

i=1 Qj
θ : Qj

θ := α−1
j Q̃j

θ, dQ̃j
θ = φjdP X

θ , φ ∈ Φθ,α, θ ∈ Θ}).

Proof.
See Theorem 3.1 in Taga [26]. Basically, the proof relies on the sufficiency and completeness
of the generalized order statistic, Ostrat : Rnp → Rnp,

Ostrat({x1
1, . . . , x

1
n}, . . . , {xp

1, . . . , x
p
n}) = (On(x1

1, . . . , x
1
n) . . . , On(xp

1, . . . , x
p
n)),

where On is the usual order statistic of size n.
�

Corollary 102 Fix φ ∈ Φθ,α, φ := φθ,RSS. Then the estimator Ustrat is a uniformly
minimum variance unbiased estimator for the functional f(θ) in the Ranked Set Sampling
experiment with repetition, the perfect and balanced case in equation (43).

Proof.
Obvious.

�
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Optimum Stratification
Suppose now the number of the strata, p, the balanced allocation (n, . . . , n) are fixed and
consider the set of stratifications Φθ for a θ ∈ Θ. The variance, respective asymptotic
variance of the estimator Ustrat with respect to θ ∈ Θ and under a stratification φ ∈ Φθ

is a continuous function of φ on the set Φθ which is convex and compact with respect
to the weak topology (for a proof see Taga [26]). Therefore, there exists an optimum
stratification in Φθ which attains the minimum of the variance of Ustrat for all θ ∈ Θ such
that the support of P X

θ contains at least p points. For further details, see Isii [17]. Let us
denote by

φo
θ := arg min

φ∈Φθ

lim
n→∞

varθ,φθ
[Ustrat]

the stratification vector which attains the minimum of the asymptotic variance.

Theorem 103 Let θ ∈ Θ such that the support of P X
θ has at least p points. Then

asymptotically optimum stratifications φo
θ exists in Φθ. Moreover, in the case f(θ) =

∫
xP X

θ (dx), φo
θ coincides with the indicator function vector (1Aj

)1≤j≤p of an interval division
of the real line, Aj := [xj−1, xj), −∞ = x0 < x1 < . . . < xp = ∞. Every end point xj

in Aj can be taken at a continuity point of P X
θ (x) such that the condition is satisfied

simultaneously xj =
µj+µj+1

2
, 1 ≤ j ≤ p, where µj = α−1

j

∫

Aj
xP X

θ (dx).

Proof.
See Taga [26].

�

Remark 104 In the case of the estimation of f(θ) =
∫

xP X
θ (dx), the asymptotic optimal

stratisfication coincides with with the optimal stratification, i.e.

arg min
φ∈Φθ

lim
n→∞

varθ,φθ
[Ustrat] = arg min

φ∈Φθ

varθ,φθ
[Ustrat].

Theorem 105 The stratification determined by the RSS experiments, φθ,RSS does not co-
incide with the optimal stratification of P X

θ , θ ∈ Θ for the estimation of f(θ) =
∫

xP X
θ (dx).

Proof.
Since for a 1 ≤ j ≤ p it exists y ∈ R such that p−1β(j:p)(P

X
θ (y)) ∈ (0, 1), there exists no

partition −∞ = x0 < x1 < . . . < xp = ∞ of the real line such that

p−1β(j:p)(P
X
θ (x)) ≡ 1[xj−1,xj)

simultaneously for all 1 ≤ j ≤ p. Therefore, the assertion follows by Theorem 103. �

Corollary 106 The following inequality holds:

varθ,φo
θ
[Ustrat] ≤ varθ,φθ,RSS

[Ustrat] ≤ varθ,φo
θ,SRS

[Ustrat], θ ∈ Θ.
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Although the Ranked Set Sampling stratification is therefore not the optimal stratification,
in terms of the minimization of the variance, it is an compromise one can do in practice, to
avoid computationally problems regarding the numerical calculus of the optimal stratifica-
tion points. Another future research consists in simulations for the calculus of the distance
between the optimal stratification φo

θ and φθ,RSS, for diverse, fixed θ ∈ Θ.
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