A MULTIFRACTAL ANALYSIS FOR STERN-BROCOT
INTERVALS, CONTINUED FRACTIONS AND DIOPHANTINE
GROWTH RATES

MARC KESSEBOHMER AND BERND O. STRATMANN

ABsTRACT. In this paper we obtain multifractal generalizations of classical
results by Lévy and Khintchin in metrical Diophantine approximations and
measure theory of continued fractions. We give a complete multifractal analysis
for Stern—Brocot intervals, for continued fractions and for certain Diophantine
growth rates. In particular, we give detailed discussions of two multifractal
spectra closely related to the Farey map and the Gauss map.

1. INTRODUCTION AND STATEMENTS OF RESULT

In this paper we give a multifractal analysis for Stern—Brocot intervals, continued
fractions and certain Diophantine growth rates. We apply and extend the multi-
fractal formalism for average growth rates of [12] to obtain a complete multifractal
description of two dynamical systems originating from the set of real numbers.

Recall that the process of writing an element x of the unit interval in its regular
continued fraction expansion

r = lai(z), a2(x),a3(x),...] =

ay(x) + N
as (x) + ...

can be represented either by a uniformly hyperbolic dynamical system which is
based on an infinite alphabet and hence has infinite topological entropy, or by a
non-uniformly hyperbolic dynamical system based on a finite alphabet and having
finite topological entropy. Obviously, for these two systems the standard theory
of multifractals (see e.g. [25]) does not apply, and therefore an interesting task
is to give a multifractal analysis for these two number-theoretical dynamical sys-
tems. There is a well known result which gives some information in the generic
situation, that is for a set of full 1-dimensional Lebesgue measure A. Namely with
P (@) /qn(x) := [a1(x), a2(x),. .., an(x)] referring to the n-th approximant of x, we
have for A-almost every x € [0, 1),

as(x) +

l1(z) := lim 21og gn ()

=i 5 =0
n—o0 Zi:l a;(x)
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Note that by employing the analogy between regular continued fraction expansions
of real numbers and geodesics on the modular surface, the number 2log ¢, (x) can be
interpreted as the "hyperbolic length’ associated with the approximant p,,(z) /¢, (z).
Also, the parameter n represents the word length associated with p,(z)/g,(x) with
respect to the dynamical system on the infinite alphabet, whereas 2?21 ai(x) can
be interpreted as the word length associated with p,(x)/q,(x) with respect to
the dynamical system on the finite alphabet. There are two classical results by
Khintchin and Lévy [16, 17, 14, 15] which allow a closer inspection of the limit ¢;.
That is, for A-almost every = € [0,1) we have, with y := 72 /(6log2),
n
ly(z) :== lim 2zt %) =00 and /(3(z) := lim

n—oo n n—oo

2log gn(z)
4 —

Clearly, dividing the sequence in ¢35 by the sequence in {5 leads to the sequence in
£1. Therefore, if we define the level sets

Li(s):={ze€[0,1):¢;(x) =s} for s€R,

then these classical results by Lévy and Khintchin imply for the Hausdorff dimen-
sions (dimg) of these level sets

dimg (£41(0)) = dimpg(L2(c0) N L3(x)) = 1.

A natural question to ask is what happens to this relation between these Hausdorff
dimensions for prescribed non-generic limit behavior. Our first main results in this
paper will give an answer to this question. Namely, with v := (1 4+ /5)/2 referring
to the Golden Mean, we show that for each o € [0,2log~] there exists a number
of = af(a) € RU{oo} such that, with the convention af(0) := oo and 0-a#(0) := ¥,

dimg (£1 () = dimy (L2 (af) N L3(a - aF)).
Furthermore, for the dimension function 7 given by
T(a) := dimpy (L1 (),

we show that 7 can be expressed explicitly in terms of the Legendre transform P
of a certain pressure function P, referred to as the Stern-Brocot pressure. For the
function P we obtain the result that it is real-analytic on the interval (—oco, 1) and
vanishes on the complement of this interval. We then show that the dimension func-
tion 7 is continuous and strictly decreasing on [0,2log~], that it vanishes outside
the interval [0,21log~), and that for « € [0,2log~] we have

a-7(a) = —P(—aq).

Before we state the main theorems, let us recall the following classical construction
of Stern—Brocot intervals (cf. [29], [2]). For each n € Ny, the elements of the n-th
member of the Stern—-Brocot sequence

T, = {S”—kk 1,...,2"+1}
tn,k
are defined recursively as follows.

e 501:=0 and sg2: =1t :=to2:=1;
® Sut12k—1:=5nk and tpii19p—1 :=tpp, fork=1,...,2"+1;
® Sut12k =58nk+ Snk+1 and  tpyiok =tn g +tn k1, for k=1,...2".
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With this ordering of the rationals in [0,1] we define the set 7,, of Stern-Brocot
intervals of order n by

T, = {Tn,k = {Sn—k,w) : kl,...,Q”}.
tn,k tn,k—i—l

Clearly, for each n € Ny we have that 7,, represents a partition of the interval [0, 1).
The first members in this sequence of sets are the following, and it should be clear
how to proceed with this list using the well known method of mediants.

T = {[%:1)}

i~ (153131}
7= (3.3 [3.3). 1.2 3. D)
= {5035 B 5D 3B B

As already mentioned above, crucial in our multifractal analysis will be the Stern-
Brocot pressure function P, which is defined for § € R by

1 0
PO) := lim — .
(0) := lim —log »  |T|
TET,
In here |T'| refers to the length of the interval 7. We will see that P is a well defined
convex function (cf. Proposition 4.1). One immediately verifies that

1. (s k)’ 1, & 1 ‘
P(#) = lim —log (M — n—’k> = lim —log <7> .
( ) n—oo 1 ; tn,kJrl tn,k n—oo N ; tn,k . tn,kJrl

The following theorem gives the first main results of this paper. In here, P refers
to the Legendre transform of P, given for o € R by P(0) := supger{fo — P(6)}.

Theorem 1.1. (see Fig. 1.1)

(1) The Stern—Brocot pressure P is convex, non-increasing and differentiable
throughout R. Furthermore, P is real-analytic on the interval (—oo, 1) and
is equal to 0 on [1,00).

(2) For every o € [0,2log~] there exist a* = a*(a) € R and of = of(a) €
R U {oc} related by o - af = a* such that, with the conventions a*(0) := x
and o (0) := oo,

dimyg (£1(e)) = dimpg (ﬁg(aﬁ) N Eg(a*)) (=:7(a)).
Furthermore, the dimension function T is continuous and strictly decreas-
ing on [0,2log~], it vanishes outside the interval [0,2log~), and for a €
[0,2log~] we have
o r(a) = —P(-a),
where 7(0) := limy~ o —P(—a)/a = 1. Also, for the left derivative of T at
2logy we have limy 2105~ 7' () = —00.

In order to state the second main result, recall that the elements of 7, cover
the interval [0,1) without overlap. Therefore, for each z € [0,1) and n € N there
exists a unique Stern-Brocot interval T,,(z) € 7, containing x. The interval T, ()
is covered by two neighboring intervals from 7,41, a left and a right subinterval.
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>

FiGURE 1.1. The Stern—Brocot pressure P and the multifractal
spectrum 7 for /7.

If T,,+1(x) is the left of these then we encode this event by the letter A, otherwise
we encode it by the letter B. In this way every « € [0,1) can be described by a
unique sequence of nested Stern—Brocot intervals of any order that contain x, and
therefore by a unique infinite word in the alphabet {A, B}. Tt is well known that
this type of coding is canonically associated with the continued fraction expansion
of x (see Section 2 or [13] for further details). In particular, this allows to relate
the level sets £1 and L3 to level sets given by means of the Stern-Brocot growth
rate ¢4 of the nested sequences (T, (z)), and to level sets of certain Diophantine
growth rates £5 and £g (cf. Section 3). These growth rates are given by (assuming
the limits exist)

log | T,
ly(z) := lim 70g| (:c)|7
n—oo —Nn
_ pn(z) _ pn(m)
05(2) = lim %g’x—‘”(“ and {5(x) = lim QIOg’aC an (@)
ST hine =Y ai() R e —n '

Theorem 1.2. We have that
by =10y =1l5 and U3 = Lg.
By Theorem 1.1, it therefore follows that for each o € [0,21og7],
dimy (L4(a)) = dimp (L5(a)) = dimy (L2(a?) N Le(a*)) = 7(a).

Obviously, Theorem 1.1 and 1.2 are about the dynamical system associated with
the finite alphabet, which is closely related to the Farey map. Our third main result
gives a multifractal analysis for the system based on the infinite alphabet, which
is closely related to the Gauss map. In here the relevant pressure function is the
Diophantine pressure Pp, given by

1 _ 1
Pp(6) := lim +log > ak(lar, .. ak]) > for 6> 3

Theorem 1.3. (see Fig. 1.2) The function Pp has a singularity at 1/2, and Pp is
decreasing, convezr and real-analytic on (1/2,00). Furthermore, for o € [2log~y, c0)
we have

dimg (L3(a)) = dimy (Le(e)) = ——2 =: 7p(a).
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FiGURE 1.2. The Diophantine pressure Pp and the multifractal
spectrum 7p for /3.

The dimension function Tp is real-analytic on (2log~y, ), it is increasing on
[21logv, x] and decreasing on [x,o0). In particular, Tp has a point of inflexion
at some point greater than x and a unique mazimum equal to 1 at x. Also,
limy oo 7p (@) = 1/2, lima 2105 7D (@) = 0, and lima~ 2105 T = 00.

The paper is organized as follows. In Section 2 we first recall two ways to code
elements of the unit interval by means of finite and infinite alphabets, both using
the modular group. These codings are canonically related to regular continued frac-
tion expansions, and we end the section by commenting on a 1-1 correspondence
between Stern-Brocot sequences and finite continued fraction expansions. In Sec-
tion 3 we introduce certain cocycles which are relevant in our multifractal analysis.
In particular, we give various estimates relating these cocycles with the geometry of
the modular codings and with the sizes of the Stern-Brocot intervals. This will then
enable us to prove the first part of Theorem 1.2. Section 4 is devoted to the discus-
sion of several aspects of the Stern-Brocot pressure and its Legendre transform. In
Section 5 we give the proof of Theorem 1.1, which we have split into the parts Lower
bounds, Upper bounds and Discussion of boundary points. Finally, in Section 6 we
give the proof of Theorem 1.3 by showing how to adapt our general multifractal
formalism to the situation here. Also, we have included an appendix in which we
briefly recall some of the cornerstones of the general multifractal formalism of [12]
which are relevant also in this paper.

Throughout, we shall use the notation f < g to denote that for two non-negative
functions f and g we have that f/g is uniformly bounded away from infinity. If
f < g and g < f, then we write f < g.

Remark 1.1. We remark that one immediately verifies that the results of Theorem
1.1 and Theorem 1.2 can be expressed in terms of the Farey map f acting on [0, 1],
and then 7 represents the multifractal spectrum of the measure of maximal entropy
(see e.g. [23]). Likewise, the results of Theorem 1.3 can be written in terms of the
Gauss map g, and then in this terminology 7p describes the Lyapunov spectrum of
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g. For the definitions of § and g and for a discussion of their relationship we refer
to Remark 2.1.

Remark 1.2. Since the theory of multifractals started through essays of Mandel-
brot [18, 19], Frisch and Parisi [7], and Halsey et al. [8], there has been a steady
increase of the literature on multifractals and calculations of specific multifractal
spectra. For a comprehensive account of the mathematical work we refer to [26, 25].
Essays which are closely related to the work on multifractal number theory in this
paper are for instance [3], [9], [22], and [23].

2. THE GEOMETRY OF MODULAR CODINGS BY FINITE AND INFINITE
ALPHABETS

Let I := PSLy (Z) refer to the modular group acting on the upper half-plane H.
It is well known that I' is generated by the two elements P and @, given by
-1

P:z—z—1and Q:z+— —.
z

0

R(F) R2(F)

0 1

FIGURE 2.1. A fundamental domain F for PSL; (Z) and the im-
ages under R and R?.

Defining relations for ' are Q% = (PQ)3 = {id.}, and a fundamental domain
F for T is the hyperbolic quadrilateral with vertices at i,1 + ¢, {oo} and z{ :=
(1 +iv/3)/2. For R := QP such that R: z — —1/(z — 1), one easily verifies that
Ty :=T/(R) is a subgroup of I' of index 3 and that Fp is a fundamental domain
for g, for Fy := FUR(F)U R?*(F) the ideal triangle with vertices at 0,1 and {co}
(see Fig. 2.1). Consider the two elements A, B € T" given by

= (01 - c o (p=14-1p) . -1
A= (Q PQ) Dz P and B := (P A P) 2o ——,
and let GG denote the free semi-group generated by A and B. It is easy to see that
for 29 := A(z)) = B(z}) = (1 +i/y/3)/2 we have that the Cayley graph of G with
respect to zg coincides with the restriction to

{z€eH:0 <Re(z) <1, 0<TIm(z) <1/2}
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of the the Cayley graph of I'y with respect to zo (see Fig. 2.2).

Finite Coding. Let X := {A, B} denote the full shift space on the finite alphabet
{A, B}, and assume that X is equipped with the usual left-shift o : ¥ — 3. We
clearly have that ¥ is isomorphic to the completion of G, where the completion is
taken with respect to a suitable metric on G (see [6]). One then easily verifies that
the canonical map

T b — [0,1],

(x1,22,...) +— lim z1---x,(20),

n—oo

is 1-1 almost everywhere, that is 2-1 on the rationals in [0,1] and 1-1 on I,
where T refers to the irrational numbers in [0,1]. Note that for each n € N,
the Stern-Brocot sequence ¥, .1 coincides with the set of vertices at infinity of
{g(Fo) : g € G of word length n}.

&)
x
Fy
C20
X A(R) = B(R)
Alz)
AAA(20) X T AB(z0)
x X x| : ‘
0 1/4  1/3 2/5 1/2  3/52/3 3/4 1
- T5,1 T Ty Tz Tza o T35 Tzs Tz 138
151 152 153 To 4

FIcurE 2.2. Part of the Cayley graph rooted at zg, for T'g(2o)
restricted to [0,1] x R, and the Stern-Brocot intervals of order 2
and 3.

Infinite Coding. For the infinite alphabet A := {X":n e N, X € {4, B}} we
define the shift space of finite type

5= {(XM, Y™, X)) {X, Y = {4, B}, (n;) € NV,



8 MARC KESSEBOHMER. AND BERND O. STRATMANN

which we assume to be equipped with the usual left-shift o* : ¥* — ¥*. Then there
exists a canonical bijection 7* given by
T * — 1
W1,92,--) = lm yays - -yk(zo).
This coding is closely related to the continuous fraction expansion. Namely, if
y=(X™,Y"2 X" | ) then
*()_ [n1+1,n2,n3,...] for X=A
TW=N 1m0, n, . for X = B.
Also, if S : [0,1] — [0,1] and s : ¥* — X* are given by, for € [0,1] and
{X,Y} ={A B},
S(x):=(1—2) and s(X™, Y™ X" .. ):=(Y"™, X" YY", ..),
then we have by symmetry S o7n* = 7% o s.

Remark 2.1. Note that the finite coding is in 1-1 correspondence to the coding
of [0,1] via the inverse branches f; and fo of the Farey map f, which are given
by fi(x) = z/(x + 1) and fa(z) = 1/(x + 1). One easily verifies that f; = A
and fy 0 S = B, and hence Y can be interpreted as arising from a ‘twisted Farey
map’. Similarly one notices that X* is closely related to the coding of [0, 1] via the
infinitely many branches of the Gauss map g(x) := 1/z mod 1. More precisely, we
have that the dynamical system (I, g) is a topological 2—1 factor of the dynamical
system (X*,0*), that is the following diagram commutes.

2 2
I m*oog*o(n*) ™ I
| |
I : I

Stern—Brocot sequences versus continued fractions. We end this section by
showing that there is a 1-1 correspondence between elements of the Stern-Brocot
sequence and finite continued fraction expansions. This will turn out to be useful
in the sequel.

For n > 2, let A} refer to the set all k-tuples of positive integers which add up
to n and whose k-th entry exceeds 1. That is,

k
(2.1) Z:{(al,ag,...,ak)ENk:Zain, ak7é1}-

i=1
Since ar # 1, we can identify an element (a1,...,ax) € A} in a unique way with
the finite continued fraction expansion [a1,as,...ak]. Also, one easily verifies that
forl<k<n-1,

(2.2) card (A7) = (Z B f)
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Lemma 2.1. For all n > 2 we have

n—1

U [alaa%-"ak]g:nl\(an{y:lggggn_Q}.

k=1 A7 n—1,2¢
Furthermore, if (Sni/tnk) = [a1,02,...,am] € Ty then its two siblings in Tpi1
are, for {m,1} = {2k, 2k — 2},
Sntlm _ [a1,a2,...,G4m-1,am +1] and Snttl _ [a1,a2,...,Gm—1,0m — 1,2].
tn-l—l,m tn—i—l,l

Proof. For the first part of the lemma note that the second equality follows by
definition of ¥,,. The first equality is obtained by induction as follows. We clearly
have {[2]} = %1 \ Tp. Then assume that the assertion holds for n — 1. Since the
sets ¥, are S—invariant it follows for n > 3,

T\ Tu2= |J A@UBS(@)
€%y 2\Tn—3

For [a1,...,ax] € T2\ Tpn_3 we have by the inductive assumption that Zle a; =
n — 1, and hence

1

A([ala"'vak]) = 1/[&1 ak]+1 :[a1+1;a27"'7ak]€‘425
1

BS([al,...,ak]) = m:[l,al,ag,...,ak]eAZ+l.

Combining the two latter observation we obtain

n—1
Th_1 \‘En_g C U U [al,ag,...,ak].

k=1 AP
Therefore, since
card (T,_1 \ Tp_2) = card(%, 1) —card (T, o) =2""7
n—1 n— n—1
= Z<k_1)card< AZ),
k=1 k=1
the first part of the lemma follows.
For the second part note that by the above
[a1,a2,...,am + 1], [a1,a2,.. . am — 1,2] € Tpi1 \ L.
Therefore, since [a1,az,...,am + 1], [a1,a2,...,an], [a1,a2,...,am — 1,2] are con-
secutive neighbors in ¥, 11, the lemma follows. O

Remark 2.2. We remark that P can be written alternatively also in terms of
denominators of approximants as follows

.1 & _
P(O)=lim ~logd > gkl )™
k=1 (a1,...,ar)EA}
In order to see this note that for 6§ <0,

omn 271,—1

—0 —260 —0
D tnntngr) " <2 (tnok) ' <Y (bngrstnprern)
k=1 k=1 =1

n+1

[}

=
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On the other hand, using the recursive definition of ¢,, ;, we have for § > 0,

gn—1 gn—1 _g 2"t

—0 29 _ (n+1) —0
Z (tn—1ktn—1k+1) > Z (tn,2K) > 1 Z (tnt1 kg1 k+1) -
k=1 k=1 k=1

Therefore, by taking logarithms, dividing by n and letting n tend to infinity, we
obtain

271—1
1 _
P (6) = lim —log > (tnar) ™
k=1

Hence, using Lemma 2.1, the result follows.

3. DYNAMICAL COCYCLES VERSUS BROCOT-STERN SEQUENCES

In this section we introduce some dynamical cocycles which will be crucial in our
multifractal analysis. We give some estimates which relate these cocycles with the
underlying geometry, which then allows to prove the first part of Theorem 1.2.

Recall that the Poisson kernel B for the upper half-plane is given by

Jm(2)
P: (2,8 —
(Re (2) — €)° + Tm(2)?
With zo as defined in Section 2, the cocycle I : ¥ — [0,00) associated with the
finite alphabet is given by

I(z) := |log (P (z1(20), 7 (x))) — log (B (20,7 ()))| for x=(z1,22,...) € X.
Clearly, I is continuous with respect to the standard metric. Note that it is well
known that SpI(z) := Y1 | I (¢ (2)) is equal to the hyperbolic distance of zg to
the horocycle through 1o - - -, (20) based at 7(x).

Similarly, the cocycle I* : ¥* — [0, 00) associated with the infinite alphabet is

defined by, for y = (X", Y2, ...) € ¥* with {X,Y} = {4, B},
I*(y) == [log (B (X™Y (20), 7" (y))) — log (B (20, 7" ()))] -

Also, SiI*(y) := Zle I* ((o*)i (y)) is equal to the the hyperbolic distance of zg
to the horocycle based at 7*(y) containing either X™Y™2 ... XY (24) (for k odd)
or X™Ynm2...Y"™ X (zq) (for k even).
Finally, we introduce N : ¥* — N which is given by N ((X",Y"2 ...)) := n;.
Note that S;N(y) = S5, ni, for y = (X™,Y"2,..) € %

for zeH, £ e€R.

Lemma 3.1. For each n € N and z € I such that 7='(z) = (z1,72,...) € ¥ we
have, where my(x) := max{k : Tpy1-; = x5, for i=1,....k},

Ty ()| =< my, (z) e~ 4Fo @1 znlz0))
Proof. For n = 1 the statement is trivial. For n > 2, we first consider the case
mp(z) = 1. If g := 21..x—1 € G, then g~ }(T},(z)) is equal to either T} (for

xn = A) or Ty 2 (for x, = B). Also, note that for the modulus of the conformal
derivative we have

‘(971)I (5)‘ = ed20:9(20))  for ¢ € Tn().
Combining these two observations, we obtain

— o~ ¥20,9(20)) - o—d(20,9%n(20))

Ta@)] = 19 lo] = |(07) Iro|
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This proves the assertion for m,,(z) = 1.
For the general situation we only consider the case z1---x, = AY*BY2... BYx,

The remaining cases can be dealt with in a similar way. Then m,,(x) = yx, and by

the above it follows, for [ := Zi:ll Yis

|Ty41(x)| = e~ (z0,@1z141(20))

Also note that by the hyperbolic triangle inequality and a well known estimate for
the hyperbolic distance between two points on a horosphere (cf. [6], [30]), we have
for 1 <m < yy,

ed(zo,ﬂﬂl“‘IHm(zo)) - ed(zmll“‘11(20))611(11‘“11(Zo),wl"“ll+m(zo)) - m2ed('z0111“‘ll+l(zo)).

Finally, one easily verifies that, for 1 < m < yz,
(3.1) T (@) = Y k72 T (@) < m™ [T ()
k=m

Combining the three latter observations, the statement of the lemma follows. [

Corollary 3.2. For each n € N and x € I such that 7~ 1(z) = (21, 22,...) € X, we
have

[Snl(x) +log|Th(x)|| < logn.

Lemma 3.3. For each k € N and x € I we have, with ny, := S;N ((7r*)71 (:c)),

Ty 11(2)| = exp (75;1* ((w*)—1 (:c))) = gu(z)2.

Proof. We only consider the case k& even and X = A. The remaining cases are
obtained in a similar way. Let g := AY* BY2 ... AY% € . First note that we clearly
have

qk(x)*Q ~ o~ 4(20,9(20))

Combining this with the fact that for £ € T}, 11(x) we have

exp(—d(20,9(20))) = exp (-S;I* ()7 (€)))
(which is an immediate consequence of the fact that on T),41(z) we have that
exp (S’;I* o (w*)fl) is comparable to | (7)), it follows
S (T @) < gu(a) 2.

Finally note that by Lemma 3.1 and since exp (d (20, gB(20))) =< exp (d (20, g9(20))),
we have
Ty ()] = e~ (20,9B(20)) — o—d(20,9(20))

Combining these estimates, the lemma follows. O
We are now in the position to prove the first part of Theorem 1.2.

Proof of first part of Theorem 1.2. The equality ¢35 = s is an immediately conse-
quence of the following well known Diophantine inequalities (see e.g. [14]), which
hold for all x € [0,1] and k € N,

1
0r (@) (@r1 (@) + ge(@)

(3.2)
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In order to prove the equalities /1 = ¢4 = {5, fix x € T and k£ € N, and let ny :=

SiN ((ﬂ'*)_l (:1:)) For n € N with S;N ((7r*)_1 (x)) <n < SN ((7r*)_1 (m)),

let m := my,(z) (see Lemma 3.1). Combining (3.1) and Lemma 3.3, it follows that
| Tstm (x)l_l =m-qj.

Using the fact that (a +log(c+1))/(b+¢) < a/b for all a,b > 0 and ¢ > 0, we
obtain that there exists a constant C' > 0 such that

g |Tyam (@) 2logau(a) ~C _ 2loggin(x) log(m+1)+C

Yk +m - Yk+1 - Ykt1 yk+m
—log [Ty, +m ()] < 2log g (z) +log(m+1)+C < 2log qx(x) + C
Y +m - Yk +m - Yk '

This gives that ¢; = £,. Then using (3.2) we also derive the remaining equality. [

4. ANALYTIC PROPERTIES OF P AND P

In this section we give a discussion of the Stern-Brocot pressure P and its Le-
gendre transform P. The main properties of P and P are summarized in the
following proposition. In here C, := {C,(z) : © € X} refers to the set of all n—
cylinders

Cp(x) ={yeX:y=a,i=1,...,n}.
Proposition 4.1.

(1) The Stern—Brocot pressure P coincides with the homological pressure P,
which is given by

P(O) = nan;o % log Z exp <sup Sp (—0I) (z)> for 0 cR.

cecC, ved
(2) P is convex and non-increasing on R and real-analytic on (—oo,1).
(3) P(9) =0, for all 6 > 1.
(4) P is differentiable throughout R.
(5) The domain of P is equal to [—a,0], where
P
oy = lim % = —2log~.

(6) We have lima~ o P (—a) /(—a) = 1.
(7) We have lim, ~210g~ (713 (foz)) =0.
(8) We have limg—._ o, P(0) + 20log~ = 0.

For the proofs of (7) and (8) the following lemma will turn out to be useful.

Lemma 4.2. For each x := [a1,a9,as3,...] € (0,1) and k € Ny we have, with
T0=0, 7 := Zle a; fork>1, and p:=1—~9,
kakfl.

ar(x) <Y™p
Proof. We give an inductive proof of the slightly stronger inequality

(4.1) g (x) <A™ TR
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in which § denotes the Kronecker symbol.
First note that o = 1, ¢1([1,...]) = 1 < y'p'~1, and if a; > 2 then one immediately
verifies that ¢ [a1,...] = a1 <% p®~1p~t. Also, we have

(4.2) Gy — 1) = (1, 1,1,..]) = fr < A" =~ pmk,

where fr = (fyk - (f'y)*k) /v/5 denotes the k-th member of the Fibonacci se-
quence. Now suppose that (4.1) holds for some k£ > 1 and for all 0 < m < k. It is
then sufficient to consider the following two cases.
(1) If ax41 = 1 such that a, > 2 and a,y; = 1, for all ¢ = 1,...,1 and
somen < kand [ >k —n+1, then ¢, () < y™-1p™-177Hp=1 and
qn(x) <A™ p™~"p~1 Hence, an elementary calculation gives

nyi(z) = fir1qn(x) + fign-1()
-1

< fl+1’YT"pT"_"p_1 + fl,yrn,lp-rn,l—n-i-lp
it -t [ 1 ( Jix1 fi
< ’YT +lpT +1—"n <p ( /71 +,yan,+lpan,—1>>
< ,yTanTnH—n—l p—l fl-il-l + l fl . .
7 A ()
<1
(2) If agr1 = 2, then either a; = 1 for i = 1,... k, or there exists n < k such

that a,, > 2 and a; = 1 for all ¢ with n < ¢ < k. In the first case we use
(4.2), whereas in the second case we employ (1), and obtain

Qk-',-l ([a/la"'aa/k‘?2]) = Qk+2 ([al,...,ak—,l,l])
< ,ka+1ka+1—k‘—1p—1.

For axy1 > 2 the inequality follows by induction over ax41, using (1) and
the fact that qk+1 ([al, e, Qg ak+1]) = Qk+2 ([al, ey Qg1 — 1, 1])
([l

Before giving the proof of Proposition 4.1, we remark that the statements in (7)
and (8) are in fact equivalent. Nevertheless, we shall prove these two statements
separately, where the proof of (7) primarily uses ergodic theory, whereas the proof
of (8) is of elementary number theoretical nature.

Proof of Proposition 4.1.

ad (1) The assertion is an immediate consequence of Corollary 3.2 and Lemma
3.3.

ad (2) In [12, Theorem 1.2] it is shown that P is real-analytic on (—o0,1),
convex and non-increasing. Therefore, using (1) P also has this property.

ad (3) By definition of P we have P(1) = 0. Since by (2) P is non-increasing,
it is sufficient to show that P is non-negative. Indeed, we have

on

.1 -9 .1 -0 .0
P(6) = lim =1 T,k > lim =log|T, 1| = Lim —1 1) =0.
(6) = Jim > Oggl k7 2 lim —log|Tya | = lim —log(n+1)
ad (4) For the left derivative P—(1) of P at 1 we have (cf. [12, p. 164])

e AT

"= TN
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In here pj refers to the unique Gibbs measure on ¥* for which u} (C* (y)) =<
exp (—=SET* (y)), with C* (y) == {z €X* 1 y1 = 21,y2 = 22,...,Yn = 2} denoting
the n—cylinder containing y = (y1,y2,...) € X* (cf. Appendix). For each n € N
choose yg?) € ¥* such that ygy) = (X",...) for X € {A,B}. We then have by
Lemma 3.3,

/Nd/ﬁ = Z in,u’{ (Cf (yg?))) = in - exp (—I* (954")))

Xe{A,B}n=1
o

> Z n-n?= +o0.
n=2

On the other hand,

/I* duy = Z i "3 (Cf (yg?))) logn < i exp (—I* (y&"))) logn
n=1

Xe{A,B}n=1

= Zn_Qlogn < 00
n=1
This shows that P~ (1) = 0, and hence P is differentiable everywhere.

ad (5) Since limg_.o. P () /6 = 0, the upper bound of the domain of P is equal

to 0. For the lower bound —« of the domain we have by [12, Proposition 2.3],
P6
(4.3) —at = lim P0) =— sup /Idl/,
§——oc0 0 VEM(S,0)

where M (X, o) refers to the set of o—invariant Borel probability measures on .
We are left with to determine a. For this first note that for the linear combi-
nation m := 1/2 (55 + 0541) € M (E,0) of the two unit point masses d;7 and
55 at the periodic points AB := 7! (2—+) and BA := 771 (y—1), an ele-
mentary calculation shows [ Idm = 2log~. Tt follows that sup,ecas,0) [ I dv >
2log~. For the reverse inequality note that for all v € M (X, 0) we have [Idv <
sup, ¢y, limsup,, . (S,I(z))/n. In order to calculate the right hand side of the lat-
ter inequality, recall that the shortest interval in 7,, is of length (f, fn_l)fl, where
(fm) denotes the Fibonacci sequence. Using this observation and Corollary 3.2, we
obtain

Snl —1 T, . 1 nJn—
sup lim sup (y) = sup lim sup og | (:C)| — lim 0og (f f 1)
yEeY n—oo n z€[0,1) n—oo n n—oo n
log (7” - (*7)*") +log (v"*l - (*7)7"“)
= lim
n—oo n
= 2logn.

Note that in here the supremum is achieved for instance at any noble number in
(0,1), that is at numbers whose continued fraction expansion eventually consists of
1’s only.

ad (6) The result in (3) implies that

lim —P(—a)/a=inf{t e R: P(t) = 0}.
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Therefore, it is sufficient to show that 1 is the least zero of P. For this assume by
way of contradiction that P(s) = 0, for some s < 1. Since P is non-increasing, it
follows that P vanishes on the interval (s,1). But this contradicts the fact that P
is real-analytic on (—oo, 1) and positive at for instance 0.

ad (7) For all n € N and 6 <0, we have

V5

Hence, it follows

n _n\ —20 on
(%) < (freaf) 0 <Y NTkl’ <27 (faafa) 0 < 2my 7,
k=1

—20log~y < P(0) <log2—20logy for 6 <0,

which implies 13(—04) < 0 for all @ € [0,2log~]. Therefore, in order to show that
lima,_210g4 P (—a) = 0 it is sufficient to show that this limit is non-negative. For
this let #(a) := (P')~" (—a) and recall that by the variational principle (cf. [4]) we
have that for each o € [0,21log~] there exists p, € M (X, 0) such that

P (t(a)) = hy, ~ t(e) [ Tdpa

In here, h,, refers to the measure theoretical entropy. Furthermore, by [12, Pro-
postion 2.3] we have [ Idu, = a. Therefore, if v € M (X, 0) denotes a weak limit
of some sequence ((uq) for @/ 2log~, then by lower semi-continuity of the entropy
(cf. [4]) it follows

h, > limsup h,, = limsup (P (t(a)) + a - t()) = limsup (—ﬁ (—a)) .
a,/2log~y a,/2log~y o,/ 2logy
Clearly, we have [Idv = 2log~. The final step is to show that for the discrete
measure m considered in the proof of (5) we have

{y eM(,0): /Idz/ = 210g'y} = {m}.

This will be sufficient since h,, = 0. Therefore, suppose by way of contradiction
that there exists pu # m such that

,uE{uGM(Z,a):/Idu:Qlog'y}.

Since {1/ EM(Z,0): [Idv=2log 'y} is convex, we can assume that p is ergodic.
Then p({x €X: 21 =22 =X}) > 0, for X equal to either A or B. Without
loss of generality we can assume that n := u({x € ¥ : 21 =22 = A}) € (0,1). By
ergodicity we then have that lim,, .o (S, (x))/n = [ I du for p-almost every x € X,
and also that for n sufficiently large,

n
(44) Sn]]-{meE:zlzzz:A}(x) > 777

Consider T),(x) = [Sn.k/tn ks Snk+1/tn k+1) € Tn, for n > 2. Without loss of gener-
ality let k& be even (otherwise consider k + 1 instead of k). Then ¢, > t, x+1 and
Snke/tnk € Tn \ Tn—1, and hence by Lemma 2.1 there exists (al(n), e Q) (n)) €

Afl(}:i such that

Sn,k

[a1(n), ..., aum)(n)] = P and [T (2)] = (qe(n) ([a1(n), ..., ag(n)(n)]))_2 )
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Combining Lemma 2.1 and inequality (4.4), we deduce (n — ¢(n)) > nn/2. Then,
using Corollary 3.2, Lemma 3.3 and Lemma 4.2, we obtain

Spl log | T},
2logy = /Idu: i Snl@) o log [ Tn ()]
n—00 n n— 00 n
2lo n s n
< limsup g(qé( )([(h(n) e )(n)]))
n—o0 n
21 n+1 (n—£(n)) 21 n+1,nn/2
< limsup s ("p ) < limsup og ("o
n=eo n n—oo n

= 2logy+n-logp < 2logn.

ad (8) First note that t, o0 > tn 2011, for each n > 2 and £ = 1,...,2"~1. This
implies that |T,1724|71 = tn,2¢ - tno2e+1 and |T,1724,1|71 = tp,20-1 - tn,2¢ are both less
than (f,.2¢)°. Hence, using Lemma 2.1 and Lemma 4.2, it follows for n > 2 and
0 <0,

IN

23" > a(la,. - ak))

k=1 gn+1

—~(n—1 n+l ntl—k—1) 20
2;<k_1) (1)

2’71
Z |Tn,k|9
k=1

IN

< 27—29(71-‘,-1) (1 p—29)n—
Recalling the definition of P, we then deduce
P(0) < —20log~y + log (1 + p_29) .

For the lower estimate, first observe that

Since f, = (v" — (—7)_")/\/5_), it therefore follows
P (6) > —20log~.

Combining these two estimates and letting 6 tend to (—o0), the proposition follows.
O

5. MULTIFRACTAL FORMALISM FOR CONTINUED FRACTIONS

In this section we give the proof of Theorem 1.1, which we divide into the three
separate parts Lower bounds, Upper bounds and Discussion of boundary points. We
begin with the following important preliminary remarks.
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First note that by Corollary 3.2, Lemma 3.3 and the proof of Theorem 1.2 at
the end of Section 3, we have for z € ¥ and y € ¥*,

% (W*(y)) = nlingo ?éf\;gzi, ly (W*(’y)) _ nh_)n;o S;;%(y),
b ) = Jim SO () = g )

Secondly, note that the analysis for limit sets of Kleinian groups in [12] did not
make use of the group structure of the Kleinian group (we remark that the recent
paper [5] gives a multifractal analysis of weak Gibbs measure, and the results there
are closely related to some of the results in [12]). In fact, the arguments in [12]
exclusively use certain rooted sub-trees of the Cayley graph of the Kleinian group,
and by a straight forward inspection of the construction in [12] one obtains that the
results there continue to hold if the underlying algebraic structure is a semi-group
acting on hyperbolic space. Hence, the main theorem of our general multifractal
analysis for growth rates then gives that P is differentiable everywhere, real-analytic
on (—oo, 1) and equal to 0 otherwise. Furthermore, for each a € (0, 2log "),

(5.1) dimy (L4 (o)) = —

We remark that the proof of Theorem 1.1 which we give in this paper will in
particular give an alternative proof of the identity (5.1).

5.1. The lower bound.

Lemma 5.1. For each o € (0,2log~y) there exists a unique Gibbs measure pf, on
¥* such that for

(5.2) o = /I* du?, and of = /Ndug,
we have
(53) Lo (Ozn) NLs (Oé*) C L (Oé) .

Proof. For a € (0,2logy) let t(a) := (P')"'(—a). The formalism of [12] (cf.
Appendix) implies that there exists a Gibbs measure p}, := ;L; P(t) such that

(5.4) a=—P'(t(a)) = % - %

Using the first remark from the beginning of this section, it follows Lo (aﬂ) N
L3 (a*) C Ly (Oé)
O

For the following lemma recall that the Hausdorff dimension dimg (1) of a prob-
ability measure p on a metric space is given by

dimpy () := inf {dimy (K) : p(K) = 1}.
Lemma 5.2. For each o € (0,2logy) we have, with fio := puf, o (7%) ",
dimpy (fia) < dimp (L2 (aﬁ) NLs(a*)) < dimp (£ ().
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Proof. The first inequality follows since by ergodicity of u* we have
fia (L2 (@*) N L5 (")) = 1.
The second inequality is an immediate consequence of Lemma 5.1. O
Lemma 5.3. For each o € (0,2log~y) we have
P(=a)

—Q

dimp (fia) =

Proof. We shall show that for each « € (0,2log~) the local dimension of [z, exists
and is equal to P(—a)/(—«). For this let B(z,r) :=[x —r,a+r]NL for 0 <r <1
and z € I, and define

m,(z) := max {n eN:7*C; ((ﬁ*)fl z) D B(x,r)} ,
ny(z) = min {n eEN:7*C} ((ﬂ'*)_l :I:) C B(m,r)} .

Obviously, we have that |m,(z) — n,(z)| is uniformly bounded from above, and
hence lim, g m, (x) /n, () = 1. Combining the Gibbs property of u% (see Appen-
dix), Lemma 3.3, as well as (5.2) and (5.4), it follows for ji,-almost every z,

log fio, (B
o sup 128 (Bl 1)
r—0 logr

< gy — Gl (¢ *)_1<)) ffl())” Shn N ()7 0)

(
,t(a)w P (t (a))

@ N(() e

= limsup n
r—0 M) I*((W*)’ ) S;T(I)I*((w*) ! ) n,(z) (@)
TS o N(E) ) mr(x) o N() ) ()
t(a)a + P(t(a))  P(—a)
B e - —a
The reverse inequality for the ‘liminf’ is obtained along the same lines. O

5.2. The upper bound.
Lemma 5.4. For each o € (0,2log~) we have

. . . Spl*(z) P(—a)
> < .
dimgy (ﬂ' {:I: ex 1£1H_I,I£f S N(z) = a}) < —

Proof. Using the fact max {t (a) + P(t («))/s: s € [a,2logv)} = t(a) + P(t(a))/
for a € (0,2log~), the Gibbs property of u implies, for each ¢ > 0 and = € ¥*
with 7 (x) € L4 (),

b (Ca)) > exp(—t(a) SSI*(z) — P(t(a)) S3N(x))
B - 1N (2)
= eXp(‘gnl (t )s;zf*w)))

>
)

)
> (exp(—Siif*( -

> | (Cha)

’TJ)
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Hence, for the sequence of radii r, := |7* (C}(x))| tending to 0, we have for the
ball B (w(x),ry) centered at 7(zx) of radius r,,

- . P(=a)

flo (B (x(2), 7)) > i, (Cr () > (rn) = %
Applying the mass distribution principle, the proposition follows. O
Corollary 5.5. For each o € (0,2log~y) we have

P(—
max {dimp (L2 (aﬂ) NLs (")), dimy (L1 (o)} < %.
Proof. This is an immediate consequence of combining Lemma 5.4 and the fact

* Tk

. SET ()
f * * n >
Ez(a)ﬁﬁg(a)cﬁl(a)c{zGE .hnmlnfis* @ _a}.

n

O

5.3. Discussion of the boundary points of the spectrum. For o = 0 recall
from the introduction that by two classical results of Lévy and Khintchin [14, 15,
16, 17] we have 7(0) = 1. By Proposition 4.1 (6) we have lim,\ o P(—a)/(—a) =
1. Therefore, it follows 7(0) = lima~ o P(—a)/(—a) = 1, which implies that the
dimension function 7 is continuous from the right at 0.

For o = 2log~ we proceed as follows. By Proposition 4.1 (7) we have that
1ima/210g713(—a)/(—a) = 0. Using Lemma 5.4, it follows by monotonicity of
Hausdorff dimension that

0<7(2logny) < a/lgﬁqu-(a) =0.
Hence, we have that 7(2log~) = 0 and that the dimension function 7 is continuous
from the left at 2log-y.

For o = 0 we already know that 0 = [ I*dyuj/ [ N dp; = o* (0) /oo, and further-
more that limy_ o (2log gx(2))/k = a*(0) for pi o (7*) '-almost every z € (0,1).
Hence, by Lévy’s result we have that a* (0) = x, given that ujo (7r*)_1 is absolutely
continuous to the Lebesgue measure A on (0,1). But this can be deduced from the
Gibbs property of ui as follows. For T' € 7, and n € N, fix y € ¥* and k € N such
that 7* (C}(y)) = T N1 Then, using Lemma 3.3, we obtain

pio(n*)H(T) p1 (Ck (y)) =< exp (=5g (I" ()
[T (Cx ()| = A(T).
Finally, we determine the left derivative of 7 at 2log~y. For the derivative of 7

for a € (0,2log~) one computes that 7/(a) = —P (t(«)) /a?. Since t() tends to
(—o0) as a approaches 2log~y, it follows that lim, ~210g~ 7' () = —00.

X

X

6. MULTIFRACTAL FORMALISM FOR APPROXIMANTS

In this section we comment on the proof of Theorem 1.3. In order to obtain the
analytic properties of Pp as stated in Theorem 1.3, replace in the arguments of
the previous section and in the appendix the function N : ¥* — N by the constant
function 1 equal to 1. In this way we obtain, where we refer to the appendix for
the definition of the pressure P* associated with ¥* (or NV respectively),

P (—0I* — P* (—0I") 1) = 0.
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(In the following we shall specify the range of 6 for which this equality holds). Also,
note that Lemma 3.3 implies
Pp(0) =P (—0I7).

Therefore, combining these two observations and using the Analytic Properties of
Pressure from the Appendix, the properties of Pp follow.

For the discussion of the boundary points of the corresponding multifractal spec-
trum we first remark that Pp has a singularity at 1/2. This follows since for an
arbitrary approximant [ay, ..., ar] we have (see e.g. [15])

k k
[T < a(ar,-. - ai]) <2 @i
=1 =1

from which we deduce
0 <log¢(0#) — Pp () <20log2 ford >1/2,

with ¢ referring to the Riemann zeta-function. In particular, it hence follows that
Pp (—a) is well defined for arbitrary large values of «, and limg~\ oo P(—a)/(—a) =

1/2.
In order to see that the domain of Pp is the interval [2logvy,o0) and that
lima\ 2105+ P(—)/(—a) = 0, it is now sufficient to verify
elim |Pp (0) 4 201og ~| = 0.

Indeed, on the one hand

k—o0

o1 _ . 1
lim —log Z ]qk([al,...,ak]) 20 < klin;ofEQHIquk (v) = —201og~.

lai,...,ar

On the other hand, using Lemma 4.2 and 2.1 we have for N > 1 and for 6§ >
(1+1log N)/(2log7),

.1 26
klglgoglog Z ax ([a1, - .-, ax])

la1,...,ax]

1 > n
< limsup — log Z ()7_2‘9"
k—oo0 k n=k+1 k
1 = (n+k
= —201 li ~1 —20m
ogy + lim sup o Og;< N >7
: 1 N (n+ k) —20n
< 7291og'y+hinj£pglog; Eoe
1 = E\" n\k
< —201 lim sup — 1 Lo ) N (14 7)o
< ogy + 1£Ls;pk og%( + Nn) + A Y
1 o0
< —20log~ + limsup — log Z k/N gn(1tlog N=20log )
k—o0 k n—0
< —20log~y+ 1/N.

The combination of these two inequalities gives the statement above.
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Next, for the continuity of 7p at 2log~ observe that for a < ¥,

wI* Pr(—
dimpy (77* {xEE*:limsupL(m)ga}) < M.

n—00 n —

This can be seen similar to the arguments leading to Lemma 5.4. Therefore, com-
bining this observation with the monotonicity of Hausdorff dimension, it follows
that dimp (L3 (2logy)) < lima 2108 Pp(—a)/(—a) = 0.

Finally, arguing exactly in the same way as we did for 7/ in Section 5.3, we obtain
Hma\Qlog'yTb (Oé) = Q.

APPENDIX: MULTIFRACTAL ANALYSIS FOR GROWTH RATES, REVISITED

In this appendix we briefly summarize the most important results from finite
and infinite ergodic theory which were crucial for the analysis in [12] and which we
also employ in this paper.

In here, we use (NV,7) to denote the full shift over N equipped with the usual
left-shift map @. To overcome the fact that (X*,0*) is not topological transitive,
define the 2-1 factor map p by

(6.1) p:(X*,0") — (NN,E) , (XM Y™ X)) = (g, ng,ng, ... .
For X € {A, B}, let px refer to the inverse branch of p given by
PXx ((nl,ng,n3, .. )) = (an,Ynz,Xna, .. ) .

The relevant potentials on N are then I* opy = I* o pg and Nopy = N o pg,
which for ease of notation will also be referred to as I* and N. Clearly, (NV,7) is
finitely primitive in the sense of [21], and this property is a necessary preliminary
for the thermodynamical formalism which we have used in this paper.

Remark 6.1. Let 7., : N¥ — I be given by 7. ((n1,n2,...)) := [n1,n2,...]. Then
we have that the functions 7., o p and f o #* coincide as functions from ¥* to I,
and hence the following diagram commutes (see also Remark 2.1).

o*

5 5
”l l”
NN —Z > NN

re) l lWCF

I ! I

Continuity of the Cocycle I* ([12, Lemma 3.4]). The cocycle I* is Holder
continuous in the sense that there exists x > 0 such that for each n € N,

sup sup |I"(z) — I"(y)| < exp(—rn),
Ccecr z,yeC

where C; refers to the set of n-cylinders in ¥*, or NY respectively.
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Sarig’s Variational Principle ([28]). Let P* refer to the pressure function as-
sociated with NN which is given for f : NY¥ — R continuous by

PH(f) = nlin;o % log Z exp <sup Syf (y)> .

cecx yec

For f: NN — R Hélder continuous, we then have
(6.2) P*(f)=sup {h# + /fdu pueM (NN,U*) such that — /fdu < oo} )

Existence of Gibbs Measures ([20]). For each (0,q) € ((—o0,1) x (0,00)) U
(1,0) there exists a unique ergodic o-invariant Gibbs measure 7, , on NN associated
with the potential —0I* — ¢/N. This means that we have uniformly for all n € N
and y in some n-cylinder C C NV,

(6.3) Tig,o(C) < exp (S;, (—0I"(y) — ¢N(y)) —nP*(=0I" — qN)).

One verifies that the Borel measure pj  := 1/2- (ﬁ&q o pzl + g 4 op]_gl) on X* has
the Gibbs property (6.3) and is ergodic, and hence Hg,q 18 unique with respect to
this property. Clearly, we have 1, , = 15 4 op~L.
Kac’s Formulae ([10]).

e Given p* € M(X*,0*), then there exists a o—invariant measure i on ¥ which

is given by, for M C X Borel measurable,

N(y)—1 .
(6.4) A(M) = / > Luootuly) i),

In here ¢ : ¥* — X refers to the canonical injection which maps an element of ¥*
to its representation in terms of the finite alphabet of ¥. Clearly, if z1(X) < oo then
w = /1(X) is a o-invariant probability measure on ¥.. (Note that 11 (X) = p* (N)).

o If H := {(z1,22,...) € X: 21 # 2z} then we can induce (X,0) on H, where
the return time to H of a point y = (X, Y™, X" ...) € H is given by n; =
N (o*(X, Y™, X" ). Let G := ¢+ (X*) N'H. We then have that if m € M(X, o)
is ergodic such that

m(¥) =m (X)) =mon ' (I),

then the probability measure m* := ﬁnﬂg oo~ oy is o*-invariant. For this
measure we have

m*(N) =1/m(G).

Abramov’s Formula ([1], [24]). Let p* € M(X*,0*) such that u*(N) < oo, and
let u be determined by p* as described in Kac’s formulae. We then have

(6.5) hy, =

Pinsker’s Relative Entropy (]|27]). For p* € M(X*,0*) and i :== p*op~! €
M (NN,7), the relative entropy hy- (0*[) of p* vanishes. Therefore,

(6.6) hys — h = hy (0*[7) = 0.
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Analytic Properties of Pressure ([9]). Let P* be given by
P*:(—00,1) x (0,00) = R, (6,q) — P*(—0I* — gN).

We then have that P* is convex, decreasing, real-analytic with respect to both
coordinates, and in the second coordinate P* is strictly decreasing to (—oo). This
implies that there exists a positive real-analytic function 8 on (—oo,1) such that
P*(0,5(0)) = 0. Furthermore, for the derivative of 5 we have

— [ 1" dy _ — [T dp
6’(9):7*:— Idpg for 6 <1and g (1):7*.
deﬂe deﬂl
In here pp = puy 3(6) refers to the unique o*—invariant Gibbs measure associated

with the potential —0I* — B(0)N. Note that the analytic properties are derived
using the spectral theory for the Perron-Frobenius operator as developed in [9].

Significance of 3 ([12]). We have P(0) = (), for each 6 € (—o0, 1). Indeed, for
6 < 1 and with uj referring to the Gibbs measure considered above, we have for
the measure fiy obtained from pj via the Kac’s formula (6.4),

fo(2) =3 Lig ((N = £}) = S 672041 PO < o
=1 =1

This guarantees the existence of g := fig/fig (X). (We remark that up has the weak
Gibbs property with respect to the potential —6I, and therefore the results of [11]

are applicable). Using [ I dug = pj(N)~! [ I* dpjy it now follows for iy := pjop™?,

P@®) > hy, — /t] diig (by the variational principle)

) (g = [oran) v 69)

— @) (1, - foram) oy 66)
— 400).

In here, the latter equality is a consequence of the fact that 7, is an equilibrium
measure on (NN,E) for the potential —6I* — S(0)N, which follows from Sarig’s
Variational Principle by combining (6.3) and the finiteness of &, (6I* + 5(6)N).
For the reverse inequality, let myp € M(X, o) be an ergodic equilibrium measure
for the potential —01, that is P(0) = hy,, — 6 [ Idmg. In this situation we then
have mg(G) > 0. This follows, since otherwise we would have my (X \ G) = 1,
giving hy,, =myg (—0I) = 0, and hence P(#) = 0, which contradicts the fact that
P(0) > 5(0) > 0 (cf. Analytic Properties of Pressure). Using Kac’s formulae for
1

— -1 :
my = mm9|g o0~ oy, it now follows

~ [ o = 50 ani = (a0 ( [ o1dma +50)) < .

1

For T := mj op~" we can then conclude
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v

homy — [ (017 + B(OIN) arm (by (6.2))
— o~ [ (61" + HON) (by (6.6))

= mi(V) (hme - / 01 dmy — ﬂ(@)) (by (6.5))
) — B(0))

= my(N)(P(6 (since myg is an equilibrium state).
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