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Abstract. We give a new frame for factorization of polynomials F (X) ∈ Fq [X] with Fq a

finite field of characteristic p, which have equal degree factorization. Under some additional
condition, the dominant term in the complexity of the factorization then depends on the
number of factors and not on the degree of F (X).

A general class of polynomials satisfying our conditions are the polynomials with abelian

lift - i.e. polynomials which arise as reduction of polynomials defining relative abelian
extensions of number fields, modulo some prime ideal of the base field. We give details
for the special cases of cyclotomic polynomials and cyclic factors of division polynomials.

Even in the case of cyclotomic polynomials, which is one of the best understood problems
in computational algebra, the gains are noteworthy.

1. Introduction

Let Φr = xr−1
x−1 , the r−th cyclotomic polynomial and Fq a finite field of characteristic p; if

f = ordr(q), the polynomial Φr(X) splits over the field Fq in d = r−1
f irreducible factors of

degree f . In order to compute these factors one uses improved [Sh] variants of the Berlekamp
algorithm, requiring

O
(
r log(r)2 log log(r) + r log(r) log log(r)× log(q)

)
(1)

operations. The second term dominates when q > r. The value of d is in general quite small
compared to q. Since a random element x ∈ F×

r has the order f with probability ϕ(f)/(q−1).
the expected values of f and d are

E(d) = E


 ∑

f |(r−1)

r − 1

f
· ϕ(f)
r − 1


 = E


 ∑

f |(r−1)

ϕ(f)

f


 = E




∏

p|r−1

p prime

(
2− 1

p

)



≈ E
(
Cω(r−1)

)
= O(log(r − 1)), for some constant 3/2 < C < 2.

The function ϕ(f)/f is multiplicative and this explains the last equality in the first line.
Since 3/2 ≤ 2− 1/p < 2 for all primes p|(r− 1), the final estimate follows, using the expected
value of the number of factors E(ω(r − 1)) = log log(n). The very scarce totally splitting
polynomials have the same contribution to the above expected value as the frequent inert
ones. It is therefore more enlightening to consider the median

µ(d) = min
d|(r−1)





∑

e|(r−1),e≤d

ϕ

(
r − 1

e

)
>

r − 1

2



 = O (log log(r − 1)) .

Note that the same estimates hold in general for every cyclic polynomial of degree r−1. It
is therefore a tempting question, whether factoring of Φr(X) can be performed in dependence
of the number of factors, rather than of their degree . The answer is essentially yes and will
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made precise in the fourth section. The algorithm described there was first presented in [Mi]
and similar ideas were developed for the case d = 2 be Stein [St1], while subsequent papers of
the same author were specifically interested in deterministic algorithms. The algorithms we
present here are only conditionally deterministic, depending upon the truth of the extended
Riemann hypotheses.

We write the complexity of algorithms in dependence of the cost of an Fq - multiplication,
which is a unit denoted by M(q). When there is more than one variable which may vary in
a run - time estimate, the notation O∼ refers to all of these variables. For instance we may
write O

(
log(n) · (log log(n))2 + r2 log(r)

)
= O∼

(
log(n) + r2

)
, when n, r → ∞.

The running time of our algorithm for factoring cyclotomic polynomials is essentially
O∼ ((r + d · log(q))M(q)), where the word essentially refers to the fact that the dependence
on d can be improved to one on the prime power factors of d. Observe that the factor log(q)
is multiplied here by O∼(d) compared to O∼(r) in (1).

The basic idea which was successful in improving the performance for factoring cyclotomic
polynomials is more general, while cyclotomy offers some additional useful features, like the
simple explicite formulae for Gauss and Jacobi sums. Led by this idea, we develop in Lemma
1 a general frame for factoring polynomials with equal degree factorization over finite fields.
It turns out that this frame is closely related to a special case treated by Kaltofen and Shoup
in [KaSh], [Sh1]. This general frame, in its common points with [Sh], uses splitting elements -
elements of the Berlekamp algebra in the terms of [GG] - in a more efficient way than in the
Berlekamp null space approach. In [Sh], the splitting elements are obtained as traces of the
Frobenius - thus the algorithm requires the computation of the Frobenius map modulo the
polynomial to factor.

However, the improvements obtained for factoring cyclotomic polynomials are related also
to the possibility of avoiding such Frobenius evaluations and requiring exponentiation only in
smaller extensions. This improvements can be obtained for a larger class of polynomials with
abelian lift. It is on this class that our algorithm focuses and we give an additional application
for factoring eigenfactors of division polynomials of elliptic curves over finite fields.

We now give the formal definition of polynomials with abelian lifts, which are instances of
polynomials to which our method applies.

Definition 1. Let Fq be a finite field of characteristic p and F (X) ∈ Fq[X]. Let L/K be an
abelian extension of number fields, which is not ramified above p, let B ⊃ A be the respective
orders of the integers and suppose that there is a monic polynomial Φ(X) ∈ A[X] such that
L = K[X]/(Φ(X)) as simple algebraic extension; we write ω = X mod Φ(X) ∈ L and assume
that the discriminant (δ(ω), p) = 1. Let p ⊂ A be a prime above (p).

We say that F (X) has an abelian lift (which is Φ(X)) if in this situation, the following
conditions are fulfilled:

A. A/p ⊆ Fq.
B. Φ(X) mod p = F (X).

We give a brief overview of the connection between prime ideal factorization in L/K and
polynomial factorization over Fq, see also [Ri], [La].

Fact 1. With the notations introduced in the definition above, let T ⊂ Gal (L/K) be the

decomposition group of p, generated by the Artin symbol
(

L/K
p

)
and let K1 = LT be the

decomposition field, with order of integers C. Let d = [K1 : K] and f = [L : K], the residual
field degree, n = f · d = [L : K]. If P ⊂ B is a prime above p and P0 = P ∩C, then

1. B/P = Fqf and C/P0 = Fq.
2. There is an irreducible polynomial ρ(X) ∈ C(X) with L = K1[X]/(ρ(X)) and such

that f(X) = (ρ(X) mod P0) ∈ Fq[X] is an irreducible factor of F (X).



ON POLYNOMIALS IN Fq[X] WITH ABELIAN LIFTS AND THEIR FACTORIZATION 3

3. If S = Gal (L/K)/T = Gal (K1/K), then all the irreducible factors of F (X) arise
as τ(ρ(X)) mod P0, for τ ∈ S.

4. Let η ∈ C generate K1 as K - extension: K1 = K[η]. Let µ(X) ∈ A[X] be the
minimal polynomial of η and m(X) = (µ(X) mod p) ∈ Fq[X], a polynomial of degree.
Let τ ∈ Gal (L/K) and γτ (X) ∈ A[X] be a polynomial such that

τ(ω) = γτ (ω) ∈ L,

let Γ(X) =
∑

τ∈T γτ (X) ∈ A(X), and let the reduction be G(X) = Γ(X) mod p ∈
Fq[X] 1.

The GCD f(X) = (G(X)− η̂, F (X)) is an irreducible factor of F (X) and it can
be obtained by computing η̂ = η mod P0 as a zero of µ(X).

Proof. See [La], Ch. I, §8 and [Ri], Ch. 14 for the general theory of splitting of primes in
Galois extensions. We take here, most specifically in 4., advantage of the abelian structure
and of the presentation as a simple algebraic extension L = K[ω] of the field considered. The
existence of the polynomial γτ and the properties of G(X) = Γ(X) mod p follow from these
conditions. �

The paper is structured as follows: in the next section we present some auxiliary algorithms,
in the third section we present the main algorithm and prove that it applies to polynomials
with abelian lifts. In the fourth and fifth sections we develop detailed algorithms for the
important cases when F (X) is a cyclotomic or a division polynomial, respectively.

2. Auxiliary algorithms

Let Fq be a finite field of characteristic p, F (X) ∈ Fq[X] with degree n = f · d and equal
degree factorization:

F (X) =

d∏

j=1

fj(X) with irreducible fj(X) ∈ Fq[X], deg(fj) = f,(2)

and consider the Fq - algebra R = Fq[X]/(F (X)). We also write

θ = X mod F (X) ∈ R, Kj = Fq[X]/(fj(X)), θj = X mod fj(X) ∈ Kj .

The following problems are solved by Shoup in [Sh] by using linear projectors and linearly
defined recursions.

P1. Find the minimal polynomial of an element η ∈ R, if R is a field, or a generating
polynomial for the sequence of the powers of η otherwise.

P2. Given two elements η, β ∈ R, find a polynomial γ(X) ∈ Fq[X] for which β = γ(η), if
such one exists.

We use the definition of linearly generated sequences and their generating polynomial given
by Soup in [Sh], §3. Since the setting is here slightly more general than Shoup’s2, we give an
outline of the algorithms and their running times in our specific context. We start by proving

Lemma 1. Let Fq, F (X), fj(X),R be as above and

η = (η1, η2, . . . , ηd) ∈ R with ηj = η mod fj(X)

an element of the algebra R together with its representation in the Chinese Remainder The-
orem and

E = {1, η, η2, . . . , ηm, . . .}

1Note that η = Γ(ω).
2Shoup mentions that his ideas easily generalize to the case when the polynomial F (X) is not irreducible,

i.e. R is not a field. However, he only treats the latter case in the paper.
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the sequence of powers of η.
Let gj(X) ∈ Fq[X] be the minimal polynomial of ηj ∈ Fq[X]/(fj(X)) over Fq. The power

sequence is linearly generated and has the minimal polynomial

g(X) =

d∏

j=1

gj(X).

In particular, if ηj ∈ Fq then g(X) has degree d and splits completely over Fq.

Proof. The algebra R/Fq is a vector space and the power sequence generates a subspace.
One verifies in particular that it is linearly generated. Let g(X) be the minimal polynomial;
since the product g∼(X) =

∏
j gj(X) generates the power sequence modulo fj(X) for each

j, it generates also the power sequence in R and is a multiple of g(X). The converse follows
from the minimality of gj(X): if g∼(X) 6= g(X), there is a j such that g(X) mod fj(X) 6=
g∼(X) = gj(X); since both gj(X) and g(X) mod fj(X) generate the j−th projection of the
power sequence, we obtain a contradiction of the minimality of gj(X). The case when ηj ∈ Fq

is evident: the minimal polynomials gj(X) have degree one, and thus deg(g(X)) = d. �

Following [Sh], one defines the projector P : R → Fq by P (ωi) = δ0,i and the minimal
generating polynomial g(X) in the Lemma can be found by the following steps:

1. Compute 2m − 1 successive elements of the linear generated sequence P (ηi) ∈ Fq,
where m = deg(g(X)) =

∑
j deg(gj(X)).

2. Compute g(X) either by a GCD computation - [Sh], Fact 3. - or by solving a linear
Toeplitz system - as in Theorem 5.

In both cases, the operation count over Fq is O∼
(
m(ω−1)/2n

)
with ω the exponent of matrix

multiplication - so, for not too large values of m, the cost is indeed O∼ (m · n). This solves
problem P1. As for P2., assume that η ∈ R as above and β ∈ Fq[η] ⊂ R are given and one
seeks a polynomial with β = h(η).

One may also consider the more restricted question of interest, when one knows explicitely
that

β = τ(η) = (η2, η3, . . . , ηd, η1),

yet without knowing the factors and thus the actual values of ηj . In general, one proceeds as
follows:

3. Compute the 2m − 1 successive elements P (ηi) : i = 0, 1, . . . , 2m − 2 and find the
generating polynomial g(X) of the sequence.

4. Compute the m projections P (β), P (βη), . . . , P (βηm−1).
5. Compute h(X) by solving a linear Toeplitz system - as in [Sh], Theorem 5.

Again, the number of Fq - operations is O∼(nm). This solves the general case of our problem
P2 and allows us to formulate an algorithm for factoring polynomials over finite fields, by
using relations between the roots.

3. Factoring of a special class of polynomials over finite fields

We use the same notations as in the previous section and consider the problem of factoring
the polynomial F (X) under the additional assumption that there is a polynomial φ(X) ∈
Fq[X] such that

ηj = φ(θj) ∈ Fq ∩Kj , j = 1, 2, . . . , d, and(3)

∃ i0 : ηi0 6= ηj for j 6= i0.(4)
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If η satisfies the conditions (3) and (4), we say that η is a splitting element for F (X).

Algorithm 1: Factoring Polynomials over Finite Fields, which satisfy (3)

Input : A finite field Fq, a polynomial F (X) ∈ Fq[X] with equal degree factorization (2)
and a polynomial φ(X) ∈ Fq[X] satisfying the assumption (3) with respect to the irreducible
factors of F (X).
Output : An irreducible factor f(X)|F (X).

A. Compute G(T ) ∈ Fq[T ], a generating polynomial for the linearly generated sequence
1, φ(ω), φ(ω)2, . . . ∈ K.

B. Let G1(T ) be the square free part of G(T ), if necessary, and find η ∈ Fq, a zero of
G1(T ).

C. Let f(X) = (G(X)− η, F (X)) and output f(X).

Given that the degree of G(T ) is known a priori to be d, the first step requires [Sh]
O∼(n ·dM(q)) while the second is the only one which needs an exponentiation and thus takes
O∼(d log(q)M(q)) and finally, the GCD computation in step 3. takes O∼(n · M(q)). The
complexity adds thus up to:

O∼ (d · (n+ log(q)) ·M(q))

operations.

3.1. Applications. Let F (X) be a polynomial with abelian lift Φ(X). Using the notation
in the previous sections, there is a map:

ι : B → B/ (p ·B) ∼= R.

With the polynomial G(X) = Γ(X) mod p one verifies that

η = G(θ) ∈ R

is a splitting element for F (X) in the sense of Algorithm 1, which can be applied in this case.
Methods for fast evaluation of traces of the Frobenius in algebras over finite fields are known
[GS], [Sh1]. Using the abelian lift, the same idea may be used for speeding the computation
of traces even without evaluation of the Frobenius - which we consider in our context as a
time - consuming operation, to perform is extensions as small as possible. Rather than the
Frobenius, one shall use the polynomials ga(X) = (γa(X) mod p) ∈ Fq[X].

It interesting to observe that there is a degree of freedom in the choice of the extension Fq

which can be useful for instance when the precise factoring type of F (X) is not known.
The notion of splitting element arises from a quite different context; it is a fact that the

set of splitting elements build and Fq - algebra, which is the Berlekamp - algebra [GG]. In the
algorithm with the same name, one considers the linear map σ : R → R given by a 7→ aq − a;
its kernel is the Berlekamp algebra and is used for factoring the polynomial F (X).

In fact one can use the Algorithm 1, after having found at least one element in B = Ker (σ).
This fact, also shown in [KaSh], [Sh1], reduces the computations in the probabilistic step of
that algorithm, and also the amount of randomness required: basically one only needs the
random bits for finding a d−th root of unity. The important additional gain from the use of
abelian lifts consists in the possibility of computing splitting elements without evaluation of
the Frobenius modulo the polynomial to split.

4. Factoring cyclotomic polynomials

Let Fq be a finite field of characteristic p and m > 2 an integer, (p,m) = 1, Φm(X) the
m−th cyclotomic polynomial and Fm(X) = Φm(X) mod p. Since Q(ζm) = Q[X]/(Φm(X))
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is an abelian field, Fm(X) has an abelian lift and we may apply Algorithm 1. In fact the
polynomial G(X) in this case the simple shape

G(X) =

n−1∑

i=0

Xqi mod Fm(X),

and the corresponding splitting element is

η =
n−1∑

i=0

ζq
i

m mod pZ[ζm].

Indeed, in this case we have plainly R = Z[ζm]/(p · Z[ζm]).
One can do even better in this case by using Gauss and Jacobi sums, which allow simpler

computations of η.

4.1. Gauss Periods and Jacobi Sums. The approach to factoring cyclotomic polynomials
presented in this section has been solved completely over finite fields and certain galois rings
in [Mi]. Stein presented independently some related ideas and particular solutions, [St1],
[St2].

We consider further a finite field Fq but restrict our attention to the r−th cyclotomic
polynomial, with r some prime. We let f = ordr(q) and n = r − 1 = f · d. Furthermore,
F (X) = (Φr(X) mod p) ∈ Fp[X] ⊂ Fq[X], ζ = ζr is a complex r−th root of unity and
K = Q(ζ) the r−th cyclotomic extension of Q. The automorphisms of Gal (K/Q) are
denoted by σa : ζ 7→ ζa. If H =< q mod r > ⊂ Gal (K/Q), let the fixed field be L = KH , a
field of degree d.

We let g ∈ (Z/r · Z)∗ be a generator; then

Φr(X) =
Xr − 1

X − 1
=

r−1∏

i=1

(
X − ζi

)
=

d∏

j=1

Ψj(X), where(5)

Ψj(X) =

f∏

i=1

(
X − σgj (ζq

i

)
)
∈ O(L)[X].

The factors of Φr(X) over Fq are Ψ̂j(X) = Ψj(X) mod P, with P ⊂ O(L), a prime above
p; by construction, the prime will have the right residue field degree, so that O(L)/P = Fq.

Let αi,j = σgj (ζp
i

) be the roots of Ψj(X). The corresponding power sums are

Sk(j) =

f∑

i=1

αk
i,j = σkgj (η) with η = TrK/L(ζ) =

f∑

i=1

ζq
i

.(6)

The central remark for this algorithm are the following two facts:

A. The polynomial Ψj(X) is retrieved from its power sums and this can be done with
fast algorithms, in O(f ·M(q)) operations [BMSS].

B. There are exactly d distinct conjugates of η in L.

It follows from B. that the knowledge of the d conjugates of η yields the factors of Φr in time
O(f · M(q)). The conjugates of η are determined by their Lagrange resolvents, the Gauss
sums.

Let χ be a primitive character of conductor r and order d, with χ(q) = 0 and τ(χ) =∑
x∈(Z/q·Z)∗ χ(x)ζ

x the Gauss sum. If ρ is a d−th root of unity which generates the image

χ((Z/q · Z)∗) and such that χ(g) = ρ, the Gauss sum is related to η by:

τ(χ) =
d∑

j=1

ρjσgj (η).(7)
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We also need the Jacobi sums, which are defined, for χa, χa+1 6= 1 by

j(χ, χa) =
τ(χ)τ(χa)

τ(χa+1)
=

q∑

x=1

χ(x)χ(1− x) ∈ Z[ρ],(8)

and yield the multiple Jacobi sums

Ja(χ) =
τa(χ)

τ(χa)
= τ(χ)a−νa =

a−1∏

i=1

j(χ, χi),(9)

where νa : ρ 7→ ρa. We have in particular

τ(χ)d = χ(−1) · q · Jd−1(χ) ∈ Z[ρ].(10)

Since Gauss sums are Lagrange resolvents, the conjugates of η can be computed from the
values of τ(χa) by formulae of the type:

d · σb(η) = −1 +
d−1∑

a=1

ρ−ab · τ(χa).(11)

This already suggests an algorithm for computing the traces σ(η):

G1. Compute P = τ(χ)d ∈ Z[ρ] and retrieve T = τ(χ) = P 1/d by a root computation.

G2. Determine τ(χa) = τ(χ)τ(χa−1)
j(χ,χa) ∈ Z[ρ, T ] by induction on a. Here divisions may be

replaced by multiplications using the identities

τ(χ) · τ(χ−1) = χ(−1) · r, and thus

j(χ, χa) · j(χ−1, χ−a) = r,
r

j(χ, χa)
= j(χ−1, χ−a).

G3. Determine η ∈ Z[T ] by means of (11).

All the steps may be thought of in K but reduced to some extension of Fq containing
the appropriate roots of unity. This essentially bypasses the step A of Algorithm 1. and
leads directly to the analog of the root computation in step B. Since the computations in G1.
may be transported with an homomorphism to some ring or field R ⊃ Fq which contains a
d−th root of unity, and since such a ring may have smaller degree over Fq than the algebra
Fq[X]/(g(X)) in step B. of algorithm 1., this reveals a further advantage of direct computation
with Jacobi sums.

The above procedure may be reduced to the case of Gauss sums of prime power order.
Indeed, assume that d =

∏
i si with si being prime powers and R ⊃ Fq is a ring containing

primitive si−th roots of unity, i.e. ρi ∈ R such that Φsi(ρi) = 0. Furthermore, we assume
that for each i, we computed Pi = τ(χi)

si ∈ R for characters of conductor r and order si
and an si−th root of Pi is Ti ∈ R. This requires an exponentiation in an extension of degree
ni = ordsi(q) for each i. From these values, all Gauss sums of conductor r and order dividing
d can be computed. Indeed, we have shown how this is done for each si. Suppose that all
Gauss sums of orders m,m′|d with (m,m′) = 1 are computed. If χ is a character of order
M = m ·m′ it can be split in a product of characters of orders m and m′, say χ = χ′ · χ′′.
Then

τ(χ) =
τ(χ′) · τ(χ′′)

j(χ′ · χ′′)
,

and by induction, the Gauss sums on the right hand side have been computed. Note that the
coefficients of Jacobi sums of conductor r as algebraic integers j(χ, χ′) ∈ Z[ρ] are bounded by
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O∼(
√
r). This is useful especially for large values of q. There are methods for fast evaluation

of Jacobi sums using lattice reduction, [BK], [Wa].

Algorithm 2: Factoring cyclotomic polynomials over finite fields

Input : A finite field Fq of characteristic p and an odd prime r with f = ordr(q), n = r−1 =
d · f and d =

∏c
i=1 si, with si being prime powers; a Galois extension ring R ⊃ Fq which

contains roots of unity ρi ∈ R with Φsi(ρi) = 0. Let Ri = Fq[ρi] have degree ni = [Ri : Fq].

Output : Ψ̂j(X), j = 1, 2, . . . , d, the factorization of Φq(X) over Fp.

1. For i = 1, 2, . . . , c compute the Gauss sum powers ti = τ(χi)
si ∈ Ri, with χi charac-

ters of order si
2. Compute Ti ∈ Ri with T si

i = ti.
3. Compute recursively the images of τ(χ)R, for all the characters of conductor r and

order d.
4. Compute using additions in R the d traces

η̂j = σgj

(
TrK/L(ζ) mod P

)
, for j = 1, 2, . . . , d.

5. Retrieve the d factors Ψ̂j(X)|Φq(X) using algorithms in [BMSS] or [Bo] for inversion
of the Newton formulae. Alternately one can use the GCD computation in Algorithm
1.

Let S =
∑

i s
2
i and M(q) the number of operations for a Fq multiplication. The first

step requires O(si) multiplications in extensions of degree O(si) for a total of O∼ (S2 ·M(q))
operations. The root taking in step 2 requires exponentiations in the same extensions and
with exponents in the order of qsi , which leads to O∼ (S2 log(q)M(q)) operations. Step 3 takes
O∼ (dM(q)) operations, the 4. step consisting of additions may be neglected and the 5. step
requires O∼ (fM(q)) operations per factor found, using either of the two methods proposed;
if all factors are required, this amounts to O∼ (r ·M(q)). The total run time of the algorithm
is herewith

O∼ ((S2 log(q) + r)M(q))

operations. Note that the reduction to prime power factors of d is a variant which also applies
to the first algorithm. However in that case traces may be more cumbersome to evaluate and
the trade off has to be decided on a case by case base.

5. Eigenfactors of Division Polynomials

Let Fq and p be as before and ℓ be an odd prime. Consider the elliptic curve:

Eq : Y 2 = f(X) with f(X) = X3 +AX +B, A,B ∈ Fq,

defined over Fq. We assume that E is not supersingular and let ∆ = t2−4q be the (unknown)

discriminant of the Frobenius of the curve over the algebraic closure of Fq. We assume

that
(
∆
ℓ

)
= 1 3 and that an eigenpolynomial corresponding to some eigenpoint P of the

representation of Φq in the ℓ - torsion was found. Let this polynomial be

F (X) = FP (X) =

(ℓ−1)/2∏

a=1

(X − ([a]P )x) ∈ Fp[X].(12)

The reader may consult [BMSS] for a comprehensive overview of currently known methods
for computing such eigenpolynomials.

3so, using a denomination which is common in the context of point counting on curves over finite fields, ℓ
is an Elkies prime for q.
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For counting the number of points |E(A,B)|, one needs to solve the discrete logarithm
problem:

[λ]P = Φq(P ) = (P q
x , P

q
y );(13)

in the SEA algorithm this is done via an exponentiation modF (X) which yields Φq(P ). The
factorization of F (X) can thus be a useful preprocessing step of this algorithm, provided it
can be performed in time which is affordable compared to the state of the art approach to
this discrete logarithm step.

We set R = Fq[X]/(F (X)) and R′ = R[Y ]/
(
Y 2 − (X3 +AX +B)

)
and show that the

polynomial F (X) has an abelian lift. Indeed, since the curve E(A,B) is not singular and not
supersingular, it has a Deuring lift. There is a field K = Q[A′, B′], a prime ideal p ⊂ O(K)
with O(K)/p ⊆ Fq and A′ mod p = A, B′ mod p = B and such that the elliptic curve
E ′(A,B′) has CM and E ′ good reduction at p. We let Kℓ be the ℓ - torsion extension, i.e. the
smallest field which contains all the coordinates of ℓ - torsion points of E ′, let Ψ′

ℓ[A,B
′](X)

be the ℓ−th division polynomial of E ′, an irreducible polynomial over K (see e.g. [CCR]);
by definition of the reduction, we have Ψℓ[A,B](X) = Ψ′

ℓ[A,B
′] mod p. Thus, the algebraic

extension K1 = K[X]/(Ψ′
ℓ(X)) maps to Fq[X]/(Ψℓ). We choose an embedding of K1 ⊂ Kℓ

and so there is a point P ∈ E ′[ℓ] such that K1 = K[θ] with θ = Px.
The division polynomials Ψ′

a(X), a ∈ N>1 are pairwise coprime for coprime values of a and
the x coordinates of the multiples of any point ([a]Q)x, Q ∈ E ′/C are expressed by a rational
function Ra(X) depending on the curve E ′ and with denominator Ψ2

a(X)4. This holds in
particular for ℓ - torsion points. It follows from the coprimality of the division polynomials
for a < ℓ that Ψa(Qx) ∈ K×

ℓ for all Q ∈ E ′[ℓ] and there is a polynomial γa(X) ∈ O(K)[X]
such that

γa(Qx) = ([a]Q)x.

For Q = P ∈ K1 we have γa(Px) = ([a]P)x ∈ K1 and it follows that the x - coordinates
of all the multiples of P are in K1. There is thus a group of automorphisms of K1/K with
ρa : Px → ([a]P)x , 1 ≤ a ≤ ℓ−1

2 ; let H be this group and K2 = KH
1 be its fixed field.

Then the extension K1/K2 is abelian and if T = TrK1/K2
Px =

∑(ℓ−1)/2
a=1 ([a]P)x ∈ K2,

then K2 = K[T]. We want to show that this extension gives raise to an abelian lift of F (X).
Let ι : O(K) → Fq be the reduction modp; we have seen that this induces a map of curve

equations E ′ → E and of divsion polynomials Ψ′
a[A

′, B′](X) → Ψa[A,B](X). In particular, it
extends ι to map O(K1) → R = Fq[X]/(Ψℓ(X)) defined by θ 7→ X mod Ψℓ(X) ∈ R. Since
FP (x)|Ψℓ(X), there is a further map R → R and we let the composition be

κ : O(K1) → R where θ 7→ X mod FP (X) ∈ R.

Let Φ(X)O(K2) be the minimal polynomial of θ over K2, a polynomial of degree (ℓ−1)/2 =
[K1 : K2]. Then

κ(Φ(X)) = FP (X).

Since the extension K1/K2 is abelian, so is the polynomial Φ(X) and this completes the proof
that F (X) = FP (X) has an abelian lift and allows the application of Algorithm 1. for the
factorization of the division eigenpolynomial F (X).

Let ga(X) = γa(X) mod P ∈ Fq[X]. By definition, we have ga(Px) = ([a]P )x. Let λ ∈ Fℓ

be the eigenvalue of P , so φq(P ) = [λ]P and let f be the order of λ in the group F×
ℓ /{−1, 1}.

Let c be a generator for the group F×
ℓ /{−1, 1} and consider the polynomial

G(X) =

f∑

i=1

(gcdi(X)) mod F (X).

4It is useful to recall that the division polynomials can be defined in the ring in Z[A,B] of two formal
parameters.
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Letting ω = X mod F (X) ∈ R and η = G(ω) it follows that η is a splitting element. We
have thus proved:

Theorem 1. Let E : Y 2 = X3 + AX + B be a non-supersingular elliptic curve over a finite
field Fq with discriminant of the Frobenius ∆ = t2 − 4q and let ℓ be an odd prime different

from the characteristic and such that
(
∆
ℓ

)
= 1. Suppose that P ∈ Fq is an eigenpoint of the

representation of the Frobenius in the ℓ - torsion of E and the polynomial

F (X) =

(ℓ−1)/2∏

a=1

(X − ([a]P )x) ∈ Fq[X]

is given together with the order f of the corresponding eigenvalue λ ∈ F×
ℓ /{−1, 1}. Let

ℓ − 1 = 2 · f · d. Then there is an algorithm which is deterministic under the ERH and
computes the irreducible factors of F (X) in time

O∼ ((d · (log(q) + ℓ) + fℓ)M(q))

operations.

In general one does not know the value of λ or f . However, the Lemma 1 and the steps
3.-5. of the related algorithms of Shoup for linear generated sequences yield

Theorem 2. Let Fq, E , ℓ, F (X), P, ga(X),R, ω be like above, let c ∈ F×
ℓ be a generator and

d · f = (ℓ− 1). If H = {cdi : i = 1, 2, . . . , f} and

η =
∑

a∈H

ga(ω), η1 =
∑

a∈H

gac(ω) ∈ R.

Then there is an algorithm which computes the minimal generating polynomial g(X) of the
power sequence of η together with a polynomial h(X) such that h(η) = η1 in time

O∼ (d · ℓ ·M(q)) .

This result is of particular use in the context of a new algorithm [Mi1] for computing the
discrete logarithm in the SEA algorithm for counting points on elliptic curves.

6. Conclusions

We have proposed a new frame for factoring polynomials F (X) ∈ Fq[X] with Fq a finite
field, which is particularly efficient for polynomials with abelian lift . The resulting algorithms
depend on the number of factors of F (X) rather than on their degree and are interesting
whenever the former figure is sensibly smaller than the latter.

We have shown that this frame is applicable to interesting cases of polynomials, such as
the cyclotomic polynomials and eigenfactors of division polynomials of elliptic curves. Future
research might reveal larger classes of polynomials than the ones with abelian lifts and to
which the presented frame applies.

Acknowledgment: I thank V. Vuletescu for interesting discussions and careful proof -
reading and A. Bostan for his observations and literature pointers during the development of
this text.
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