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Chapter 1

Introduction

The idea of Witten [Wit94] to replace the anti-selfduality equation by the Seiberg-Witten
equations simplified many applications of gauge theory to the geometry of four-dimensional
manifolds, in particular to the study of smooth structures. Similar to the Seiberg-Witten
equations in dimension four, there are also Seiberg-Witten equations in dimension three.
Replacing the Dirac operator by a nonlinear Dirac operator acting on sections in a fibre
bundle, one obtains the generalized Seiberg-Witten equations. To construct such a Dirac
operator, one has to require some properties of the typical fibre of this bundle. The spinor
representation is replaced by a hyperkähler manifold, also called target manifold, with
additional symmetries. Instead of sections in a spinor bundle, or equivalently equivariant
maps from a principal Spinc-bundle into the spinor representation, the spinors are now
equivariant maps from a principal bundle into the target manifold, or equivalently sections
in the associated fibre bundle. The generalized Seiberg-Witten equations in dimension
three were introduced by Taubes in [Tau99]. In dimension four, these were studied by
Pidstrygach in [Pid04].

In this diploma thesis we study the generalized Seiberg-Witten equations in dimensions
three and four and, in particular, the generalized Seiberg-Witten equations on the cylinder
over a three-dimensional manifold. Assuming temporal gauge, these equations reduce to
the flow equations for a vector field on the configuration space of the three-dimensional
manifold. Moreover, we prove that there is a functional on the configuration space whose
gradient is this vector field. Such a functional is called Chern-Simons-Dirac functional.
We study the properties of this functional and give explicit examples under certain
assumptions on the target manifold.

One motivation to study the dimensional reduction and the Chern-Simons-Dirac functional
is that it is essential in the constructions of the Seiberg-Witten Floer homology group for
the usual Seiberg-Witten equations. The important invariants of smooth structures on
four-manifolds can be encoded in Floer homology groups. In the case of Donaldson theory,
this is an observation of Floer [Flo88]. A detailed account is given in [Don02]. The idea
of this theory is to apply Morse theoretic constructions to the Chern-Simons functional
on the infinite dimensional configuration space. There are also Seiberg-Witten Floer
homology groups. In this case, the Chern-Simons-Dirac functional plays the role of the
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2 Chapter 1. Introduction

Morse function on the infinite dimensional configuration space. A detailed account of the
construction and properties of the Seiberg-Witten-Floer homology is given in [KM07]. Our
Chern-Simons-Dirac functional generalized the one used to construct the Seiberg-Witten
Floer homology groups.

We will first review some notions and constructions from differential geometry and gauge
theory. In Chapter 3, we construct the nonlinear Dirac operator in dimensions three
and four, and then formulate the generalized Seiberg-Witten equations in Chapter 4.
The dimensional reduction of the Seiberg-Witten equations in four dimensions is studied
in Chapter 5 and relates the Seiberg-Witten equations in dimensions three and four.
Finally, in Chapter 6, we prove the existence of a Chern-Simons-Dirac functional for the
generalized Seiberg-Witten equations and provide an example for such a functional for
certain hyperkähler manifolds which permit a hyperkähler potential.

At this point, I would like to thank all those people who supported me during the time of
my studies and the period of work on this diploma thesis. First of all, I am grateful to
my advisor Prof. Pidstrygach for introducing me to many areas of mathematics related
to differential geometry and gauge theory and for his comments and helpful suggestions.
I am also grateful to Prof. Schick for his commitment as co-supervisor. I also want to
thank all participants of the “tea seminar”, where many interesting topics were discussed.
In particular, I am grateful to Vadim Alekseev, Henrik Schumacher, Kirstin Strokorb
and Dr. Ulrich Pennig for a pleasant time and many fruitful discussions. Moreover,
I am grateful to Carsten Thiel proofreading, many LATEX-related hints and numerous
interesting conversations. Last but not least, I would like to thank my parents for their
never ending support.



Chapter 2

Preliminaries and notation

In this chapter we review some basis definitions and notions from differential geometry and
gauge theory which we need later on, in particular fibre bundles, connections, hyperkähler
manifolds, Clifford algebras and Spin groups.

2.1 Fibre bundles

Throughout this text all manifolds are smooth, paracompact and, if not stated otherwise,
finite-dimensional.

2.1.1 Definition (fibre bundle). Let F be a manifold. A smooth map π : E → M
between two manifolds is said to be a smooth fibre bundle with typical fibre F if for every
x ∈ M there is an open neighborhood U ⊂ M of x (i.e. x ∈ U) and a diffeomorphism
ΦU : π−1(U) → U × F satisfying prU ◦ΦU = π. Such a pair (U,ΦU) is called bundle
chart. A bundle atlas is an open cover {Ui}i∈I of M with bundle charts {(Ui, Φi)}i∈I .
We denote by Ex := π−1({x}) the fibre over x ∈ M . In particular, for a bundle chart
(Ui, Φi) the restriction Φi,x := prF ◦Φi|Fx : Fx → F is a diffeomorphism. For a bundle atlas
{(Ui, Φi)}i∈I , we have transition functions

Φi ◦ Φ−1
j : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F.

These define smooth maps Φij to the group of diffeomorphisms of the fibre

Φij : Ui ∩ Uj → Diff (F ) ,
x 7→ Φi,x ◦ Φ−1

j,x,

which satisfy the cocycle conditions Φij ◦ Φjk = Φik and Φii = idF for all i, j, k ∈ I. The
family {Φij}i,j∈I is the cocycle for the bundle atlas {(Ui, Φi)}i∈I . A smooth map s : M → E
satisfying π ◦ s = idM is said to be a section of E →M . The space of all smooth sections
is denoted by Γ (M,E). Let π : E → M and π′ : E ′ → M be two smooth fibre bundles
over M . A smooth bundle map is a smooth map f : E → E ′ such that π′ ◦ f = π.

3



4 Chapter 2. Preliminaries and notation

2.1.2 Definition (general connection). Let π : E → M be a smooth fibre bundle
and Tπ : TE → TM the differential of π. The vertical bundle VE is the subbundle
ker(Tπ) ⊂ TE. A general connection on E →M is a smooth subbundle H ⊂ TE such
that TE = VE ⊕H. We denote the projections to VE and H by prV : TE → VE and
prH : TE →H, respectively. These are homomorphisms of vector bundles over E.

2.1.1 Vector bundles

2.1.3 Definition. A smooth fibre bundle π : E →M is said to be a (real/complex) vector
bundle if the typical fibre F is a K-vector space (K = R or C) and the transition maps
are linear (i.e. Φij(x) ∈ AutK (V ) for all i, j ∈ I, x ∈M).

Covariant derivative and connections

2.1.4 Remark. Let E →M be a vector bundle and consider the pullback E×M E. Note
that vlE : E ×M E → VE, (v, w) 7→ d

dt
(v + tw)|t=0 is an isomorphism of vector bundles

over E. Is is called vertical lift.

2.1.5 Definition. A covariant derivative on a vector bundle E →M a linear map

∇ : Γ (M,E)→ Γ (M,T ∗M ⊗ E)

satisfying the Leibnitz rule

∇(fs) = df ⊗ s+ f ⊗∇s for all f ∈ C∞(M,R), s ∈ Γ (M,E).

2.1.6 Remark. Given a vector bundle π : E →M , there are two vector bundle structures
on the total space TE. One the one hand, πE : TE → E is the tangent bundle of E, on
the other hand, Tπ : TE → TM is also a vector bundle.

2.1.7 Definition. Let π : E →M be a vector bundle. A general connection on E is said
to be a linear connection, if the composition TE

prV−−→ V ⊂ TE is linear with respect to the
vector bundle structure Tπ : TE → TM . A connector on E is a smooth map K : TE → E
which satisfies K ◦ vlE = pr2 : E ×M E → E and is a vector bundle homomorphism for
both vector bundle structures on TE, i.e. the following two diagrams are vector bundle
homomorphisms:

TE
K //

πE
��

E

π

��

E
π // M

TE
K //

Tπ
��

E

π

��

TM
πM // M

2.1.8 Remark ([KM97, 37.27]). Given a linear connection on a vector bundle E →M ,
the composition

TE
prV−−→ V

vl−1
E−−→ E ×M E

pr2−−→ E
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is a connector. Conversely, given a connector K, we can reconstruct the vertical projection
prV = vlE ◦ (prE,K) : TE → E ×M E → VE and the horizontal subbundle is H =
ker(prV) ⊂ TE. Therefore, instead of specifying a linear connection, we can equivalently
specify a connector on a vector bundle.

2.1.9 Remark. A connector K : TE → E on a vector bundle E →M induces a covariant
derivative on ∇ : Γ (M,E)→ Γ (M,T ∗M ⊗ E):

∇vs := K(Ts(v)) for v ∈ Γ (M,TM), s ∈ Γ (M,E).

Moreover, given a smooth map f : N →M , the same formula defines a covariant derivative

Γ (N, f ∗E)→ Γ (N, T ∗N ⊗ f ∗E).

2.1.2 Group actions

2.1.10 Definition. Let M be a manifold and G a Lie group. A smooth left action of G
on M is a smooth map

G×M →M

(g, x) 7→ g · x

such that

1. for all g ∈ G the map Lg : M →M , Lg(x) := g · x is a diffeomorphism,

2. 1 · x = x for all x ∈M , where 1 ∈ G is the unit element in G, and

3. g · (h · x) = (gh) · x for all g, h ∈ G, x ∈M .

Similarly, for a right action, one has a smooth map M ×G→M , (x, g) 7→ x · g and the
maps Rg : P → P , Rg(x) = x · g are diffeomorphisms. In many situations, we will also
write gx for g · x in the case of a left action and xg for x · g in the case of a right action.

2.1.11 Remark. If a Lie group G acts smoothly on a manifold M , then we have an
induced action of G on TM denoted by G × TM 3 (g, v) 7→ g∗v ∈ TM , where g∗v :=
TxLg(v) for v ∈ TxM .

2.1.12 Definition. Let g = Lie(G) be the Lie algebra of G. For ξ ∈ g, the fundamental
vector field KM,G

ξ ∈ Γ (M,TM) for a smooth left action of a Lie group G on a manifold
M is

(KM,G
ξ )x := d

dt
exp(tξ) · x|t=0 ∈ TxM for ξ ∈ g, x ∈M.

Note that for x ∈M , ξ ∈ g and g ∈ G we have

TxLg(KM,G
ξ )x = d

dt
g exp(tξ) · x|t=0 = d

dt
exp(tAdg(ξ))g · x|t=0 = (KM,G

Adg(ξ))gx.
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Here Ad : G → Aut (g) is the adjoint representation of G on its Lie algebra g. More
precisely, we have Adg := T1cg, where c : G → Aut (G) is the conjugation action, i.e.
g 7→ cg, cg(h) := ghg−1.

Similarly, for a smooth right action of G on M , the fundamental vector field KM,G
ξ ∈

Γ (M,TM) is

(KM,G
ξ )x := d

dt
x · exp(tξ)|t=0 ∈ TxM for ξ ∈ g, x ∈M.

Again, note that for x ∈M , ξ ∈ g and g ∈ G we have

TxRg(KM,G
ξ )x = d

dt
x · exp(tξ)g|t=0 = d

dt
x · g exp(tAdg−1(ξ))|t=0 = (KM,G

Adg−1 (ξ))xg.

The fundamental vector field defines a G-equivariant linear map g → Γ (M,TM), ξ 7→
KM,G
ξ from the Lie algebra g with the adjoint action of G to Γ (M,TM) with the induced

action.

2.1.13 Definition. Let V be a vector space (over R). Using the fundamental vector
fields, we have a homomorphism

ιg : Ωk(M,V )→ Ωk−1(M, g∗ ⊗ V ),
α 7→ ιgα, 〈ιgα, ξ〉 = ιKM,G

ξ
α for ξ ∈ g.

There is also a corresponding Lie derivative

Lg : Ωk(M,V )→ Ωk(M, g∗ ⊗ V ),
α 7→ Lgα, 〈Lgα, ξ〉 := LKM,G

ξ
α for ξ ∈ g.

Note that ιg and Lg are related by Lg := dιg + ιgd.

2.1.14 Remark. Let ρ : G → Aut (V ) be a G-representation, M a manifold with a
smooth (left) G-action. A k-form α ∈ Ωk(M,V ) is said to be G-equivariant if L∗gα = ρ(g)α
for all g ∈ G. The space of equivariant k-forms is denoted by Ωk(M,V )G.

Let α ∈ Ωk(M,V )G be a G-equivariant k-form and w1, · · · , wk−1 ∈ TxM for some x ∈M .
Then

〈L∗g(ιgα), ξ〉(w1, . . . , wk−1) = α(KM,G
ξ , TLg(w1), . . . , TLg(wk−1))

= ρ(g)α(TLg−1KM,G
ξ , w1, . . . , wk−1)

= ρ(g)〈ιgα,Adg−1ξ〉(w1, . . . , wk−1)
= 〈(ρ(g)⊗ Ad∗g)ιgα, ξ〉(w1, . . . , wk−1).

Here Ad∗ : G→ Aut (g∗) is the coadjoint representation Ad∗g(ν)(ξ) = ν(Adg−1(ξ)) for all
g ∈ G, ν ∈ g∗ and ξ ∈ g. This proves that ιgα ∈ Ωk−1(M, g∗ ⊗ V )G and that ιg maps
G-equivariant forms into G-equivariant forms:

ιg : Ωk(M,V )G → Ωk−1(M, g∗ ⊗ V )G.
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2.1.3 Principal bundles

2.1.15 Definition (principal bundle). Let G be a Lie group and π : P →M a smooth
fibre bundle with typical fibre G. We say that π : P →M is a principal G-bundle if the
transition functions map to G ⊂ Diff (G), where G acts on itself by left multiplication (i.e.
there are maps gij : Ui ∩ Uj → G such that Φij(x)(h) = gij(x)h for all h ∈ G). The maps
{gij}i,j∈I again satisfy the cocycle conditions gij(x)gjk(x) = gik(x) for all x ∈ Ui ∩Uj ∩Uk
and gii(x) = 1 for all x ∈ Ui, where 1 ∈ G is the unit element. Note that we have a
right G-action on P , (p, g) 7→ pg := Φ−1

i,π(p)((Φi,π(p)(p))g) for a bundle chart (Ui, Φi) with
π(p) ∈ Ui, each fibre of P is a G-torsor and P/G = M .

Let λ : G′ → G be a group homomorphism and P → M be a principal G-bundle. A
λ-reduction of P is a principal G′-bundle P ′ →M and a smooth bundle map f : P ′ → P
satisfying f(pg) = f(p)λ(g) for all p ∈ P ′ and g ∈ G′.

Two principal G-bundle π : P →M , π′ : P ′ →M are said to be isomorphic if there is a
smooth G-equivariant diffeomorphism f : P → P ′.

2.1.16 Remark. Let π : P →M be a principalG-bundle with a bundle atlas {(Ui, Φi)}i∈I .
The cocycle {gij}ij∈I determines an element in the first Čech cohomology set Ȟ1(M,G).
We have a bijection between Ȟ1(M,G) and the isomorphism classes of principal G-bundles
over M (cf. [Hir66, Thm 3.2.1] or [LM89, Appendix A]).

2.1.17 Example (bundle of frames). Let E →M be a real vector bundle of rank n.
For x ∈M define

Px := {f : Rn → Ex|f linear isomorphism}.

This defines a bundle P →M , called bundle of linear frames in E. Using the composition

GLn(R)× P 3 (A, f) 7→ A∗f = f ◦ A ∈ P,

the bundle of linear frames is a principal GLn(R)-bundle. Given a Riemannian metric gE
on E and an orientation, we can also study the bundle of oriented orthonormal frames
PSO(n), where (PSO(n))x = { f ∈ Px | f orientation preserving isometry }. This principal
SO(n)-bundle is a reduction of the bundle of linear frames P . In particular, we will be
interested in the case when the vector bundle is the tangent bundle TM →M .

Equivariant vector bundles and associated vector bundles

2.1.18 Definition. Let G be a Lie group. A vector bundle π : E → M with a smooth
action of G on E is said to be an equivariant vector bundle if there is a smooth action of
G on the base manifold M such that π : E →M is G-equivariant and Lg : Ex → Egx is
linear. Given a G-equivariant vector bundle E →M , we denote π!E := E/G.
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2.1.19 Example. Let G be a Lie group.

1. Given a smooth action of G on a manifold M , there is an induced action of G on
the tangent bundle TM . Equipped with these actions, TM →M is a G-equivariant
vector bundle.

2. Given a smooth action of G on a manifold P and a G-representation V , the trivial
vector bundle P ×V → P with the action (h, (p, v)) 7→ (ph−1, hv) is a G-equivariant
vector bundle. If P → M is a principal G-bundle, then π!(P × V ) → M is the
associated vector bundle which is denoted by P ×G V .

Associated fibre bundles

The construction in the second part of Example 2.1.19 generalizes to arbitrary fibres:

2.1.20 Definition (associated fibre bundle). Let P → M be a principal G-bundle
and let G act smoothly on a manifold F . Then G acts (from the left) on the product
P × F by (h, (p, f)) 7→ (ph−1, hf). The quotient by G is a fibre bundle over M with
typical fibre F and is denoted by P ×G F := (P × F )/G.

2.1.21 Example. Let P → M be a bundle of orthonomal frames in a vector bundle
E →M of rank k. Then E = P ×O(k)R

k. In particular, this holds for the tangent bundle
TM →M .

2.1.22 Proposition ([Bau09, Satz 2.9]). Let P → M be a principal G-bundle and
F a manifold with a smooth G-action. Then there is a bijection between the space of
G-equivariant maps from P to F and the sections of the associated fibre bundle,

C∞(P, F )G → Γ (M,P ×G F ),
f 7→ sf , where sf (x) = [x, f(x)] for x ∈M.

2.1.23 Definition. Let P →M be a principal G-bundle and let V be a representation
of G. A k-form α ∈ Ωk(P, V ) on P with values in V is said to be horizontal if ιgα = 0.
The subspace of horizontal k-forms is denoted by Ωk(P, V )hor ⊂ Ωk(P, V ).

The Proposition 2.1.22 generalizes to

2.1.24 Proposition ([Bau09, Satz 3.5]). Let P →M be a principal G-bundle and V
a G-representation. Then there is a bijection

Ωk(P, V )Ghor → Ωk(M,P ×G V ).
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2.1.4 Connections

2.1.25 Definition (connection 1-form). A connection 1-form on a principal G-bundle
P → M is a G-equivariant 1-form A ∈ Ω1(P, g)G, satisfying ιgA ≡ idg. The subbundle
HA := ker(A) ⊂ TP is the horizontal bundle or horizontal distribution for A.

The space of all connection 1-forms on P will be denoted by A (P ).

2.1.26 Remark. The condition ιgA ≡ idg for a connection 1-form A ∈ Ω1(P, g)G can be
written as

A(KP,G
ξ ) = ξ for all ξ ∈ g.

Being equivariant means that for all g ∈ G we have:

R∗gA = Adg−1A

where Ad : G→ End (g) is the adjoint representation of G on its Lie algebra g. Here the
inverse g−1 appears because we consider a left action of G on g and a right action of G
on P .

2.1.27 Proposition ([Bau09, Folgerung 3.1]). The space of connection 1-forms A (P )
is an affine space for the vector space Ω1(P, g)Ghor.

2.1.28 Remark. A connection 1-form A on a principal G-bundle P → M induces a
general connection TP = HA⊕VP and we denote the projections to HA and VP by prHA

and prVA
respectively. Since A is G-equivariant, this decomposition in also G-equivariant,

i.e. (HA)pg = TRg(HA)p for all p ∈ P and g ∈ G.

2.1.29 Remark. Let P →M be a principal G-bundle. Consider the adjoint representa-
tion of G on its Lie algebra g and denote the associated vector bundle by gP := P ×G g.
Using the isomorphism Ω1(P, g)Ghor ∼= Ω1(M, gP ) from Proposition 2.1.24, we can also
think of A (P ) as an affine space for the vector space Ω1(M, gP ).

2.1.30 Remark. Note that there is a bijection between the set of covariant derivatives
on a vector bundle and the connection 1-forms on its bundle of linear frames. The
metric compatible covariant derivatives correspond to connection 1-forms on the bundle
of orthonomal frames.

2.1.31 Definition. Let V be a G-representation and P a principal G-bundle with con-
nection 1-form A ∈ A (P ). The covariant exterior derivative for A is

dA := pr∗HA
d : Ωk(P, V )G → Ωk+1(P, V )Ghor.

2.1.32 Definition (curvature). The curvature FA of a connection 1-form A ∈ A (P )
on a principal G-bundle P →M is

FA := dAA = dA+ 1
2 [A,A] ∈ Ω2(P, g)Ghor.
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Using the isomorphism Ω2(P, g)Ghor ∼= Ω2(M, gP ), we can also interpret the curvature as
an element in Ω2(M, gP ), which will also be denoted by FA. If P is a bundle of frames in
TM , we have gP ⊂ End (TM) and the image of FA under Ω2(P, g)Ghor → Ω2(M,End (E))
is the curvature tensor RA.

2.1.33 Remark. For a horizontal 1-from α ∈ Ω1(P, g)Ghor on a principal G-bundle P →
M and a connection 1-form A ∈ A (P ), we have

FA+α = d(A+ α) + 1
2 [A+ α,A+ α] = dA+ dα + 1

2 [A,A] + [A,α] + 1
2 [α, α]

= FA + dAα + 1
2 [α, α].

2.1.34 Definition (canonical 1-form). Let M be an n-dimensional manifold and let
π : P →M the bundle of linear frames in TM . The canonical 1-form θ ∈ Ω1(P,Rn)GLn(R)

hor

is
θf (v) := f−1(Tfπ(v)) for f ∈ P, v ∈ TfP.

We will also denote the pullback of the canonical 1-form to any other bundle of frames by
θ.

2.1.35 Definition (torsion form). Consider a bundle of frames π : P → M in the
tangent bundle TM of an n-dimensional manifold M . Then for a connection 1-form
A ∈ A (P ) the torsion form ΘA ∈ Ω2(P,Rn)GLn(R)

hor is the covariant exterior derivative of
the canonical 1-form θ:

ΘA := dAθ.

The image of ΘA under the isomorphism Ω2(P,Rn)GLn(R)
hor

∼= Ω2(M,TM) is the torsion
tensor TA.

Induced covariant derivative on associated vector bundles

Let P →M be a principal G-bundle and V a representation of G. Let E = P ×G V the
associated vector bundle. A connection 1-form A induces a covariant derivative ∇A on E:
We define ∇A to be the map which makes the following diagram commutative:

C∞(P, V )G dA //

o
��

Ω1(P, V )Ghor
o

��

Γ (M,E) ∇A // Γ (M,T ∗M ⊗ E)

Here we use Proposition 2.1.24 for the vertical isomorphisms and on the right hand side
additionally Ω1(M,E) ∼= Γ (M,T ∗M ⊗ E).

2.1.36 Remark. A section s in an associated bundle E = P ×GV is said to be parallel or
covariantly constant with respect to A (or ∇A) if ∇As = 0. Usual examples are the tangent
bundle TM , cotangent bundle T ∗M , second symmetric power S2T ∗M of the cotangent
bundle and the bundle of endomorphisms End (TM) = T ∗M ⊗ TM of TM . Examples
of corresponding sections are a vector field v ∈ Γ (M,TM), a 1-form α ∈ Γ (M,T ∗M), a
metric g ∈ Γ (M,S2T ∗M) and a complex structure I ∈ End (TM).
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2.1.37 Theorem ([Bau09, Satz 3.21, Aufgabe 3.7]). Let P → M be a bundle of
frames in TM . Let A be a connection 1-form on P . Then, in terms of covariant
differentiation, the curvature and torsion tensors can be expressed as follows:

RA(v, w)u = ∇A
v∇A

wu−∇A
w∇A

v u−∇A
[v,w]u,

TA(v, w) = ∇A
v w −∇A

wv − [v, w],

where u, v, w ∈ Γ (M,TM) are vector fields on M .

2.1.38 Proposition ([KMS93, §6.12]). Let M be a manifold. There is the unique
smooth map κM : TTM → TTM such that for all smooth c : R2 →M :

d
dt

d
ds
c(t, s)|s=0|t=0 = κM

d
ds

d
dt
c(t, s)|t=0|s=0.

This map κM : TTM → TTM is called the canonical flip on M .

2.1.39 Theorem ([KMS93, Thm 37.15]). Let ∇ be a covariant derivative on TM
with corresponding connector K. Then the torsion tensor can be written as

T∇(v, w) = (K ◦ κM −K)Tv ◦ w for all v, w ∈ Γ (M,TM).

In particular, a connection is torsion-free iff its connector satisfies K ◦ κM = K.

2.1.40 Theorem ([KN96, Ch IV, Thm 2.2]). Every Riemannian manifold M ad-
mits a unique covariant derivative ∇ on TM which is metric compatible (i.e. ∇g = 0) and
has vanishing torsion. This covariant derivative as well as the corresponding connection
1-form on the principal bundle of orthonomal frames are called Levi-Civita connection.

2.1.5 Gauge group

2.1.41 Definition. The gauge group G (P ) of a principal G-bundle P →M is the group
of automorphism of P, i.e. G-equivariant diffeomorphisms P → P :

G (P ) := { ψ : P → P diffeomorphism | ψ(pg) = ψ(p)g ∀p ∈ P, g ∈ G } .

Elements of the gauge group are called gauge transformations.

2.1.42 Note. Consider the G-action on itself by conjugation. A smooth G-equivariant
map g : P → G induces a gauge transformation Ψ ∈ G (P ), Ψ(p) := pg(p). Conversely, for
every gauge transformation Ψ ∈ G (P ) there is a smooth G-equivariant map g : P → G
such that Ψ(p) = pg(p) for all p ∈ P . This implies that there is an isomorphism

G (P ) ∼= C∞(P,G)G.

In particular, we have an isomorphism Lie(G (P )) ∼= C∞(P, g)G, where we consider the
adjoint action of G on its Lie algebra g. Using Proposition 2.1.22, we can also think of
G (P ) ∼= C∞(P,G)G as of section in the associated bundle P ×GG→M , where G acts on
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itself by conjugation. The Lie algebra Lie(G (P )) can also be identified with the sections
in an associated bundle gP = P ×G g→M for the adjoint representation of G on its Lie
algebra g = Lie(G):

Lie(G (P )) ∼= Γ (M, gP ).

If G is abelian, then the bundle gP is a trivial bundle overM with fibre G. In this case the
description as equivariant maps reduces to smooth maps from M to G and g, respectively:

G (P ) ∼= C∞(M,G) and Lie(G (P ) ∼= C∞(M, g).

The group of connected components of the gauge group can be described in terms of
principal bundles:

2.1.43 Lemma ([Don02, 2.5.2]). Let P →M be a principal G-bundle. Then

π0(G (P )) ∼=
{

[Q] ∈ Ȟ1(M × S1, G)
∣∣∣ Q|M×{0} ∼= P

}
.

Proof. First observe that π0(G ) = G /G0, where G0 is the connected component of the
identity. For a gauge transformation ψ ∈ G (P ) we construct a principal G-bundle on
M × S1 as follows: Take the principal G-bundle P × [0, 1]/∼ where (p, 0) ∼ (ψ(p), 1) for
all p ∈ P . The map G → Ȟ1(M × S1, G) is invariant under the identity component G0 of
the gauge group and induces the isomorphism. �

Action of the gauge group on connections

Let P → M be a principal G-bundle, ψ ∈ G (P ) an element of the gauge group and
A ∈ A (P ) a connection 1-form. Pulling back the connection 1-form by the gauge
transformation again produces a connection 1-form ψ∗A ∈ A (P ) on P . We obtain a right
action of the gauge group G (P ) on the space of connections A (P ).

2.1.44 Proposition ([Bau09, Satz 3.22]). Let A ∈ A (P ) be a connection 1-form,
ψ ∈ G (P ) a gauge transformation and g : P → G the corresponding G-equivariant map.
Then

ψ∗A = Ag, where (Ag)p := Adg−1(p)(Ap) + (g∗η)p for p ∈ P.

Here η ∈ Ω1(G, g)G denotes the left-invariant Maurer-Cartan form on G, which is defined
to be η(v) := ThLh−1(v) = h−1

∗ v for h ∈ G, v ∈ ThG. Furthermore, we have

ψ∗FA = Fψ∗A = FAg = Adg−1(FA).

2.1.45 Lemma. Given an G-equivariant smooth map ξ : P → g interpreted as an element
of the Lie algebra Lie(G (P )) of the gauge group, the fundamental vector field for the
action of the gauge group G (P ) on the space of connections A (P ) is

(KA (P ),G (P )
ξ )A = dAξ ∈ Ω1(P, g)Ghor = TAA (P ).
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Proof. For v ∈ TpP we have:
d
dt

exp(tξ)∗η(v)|t=0 = d
dt
Texp(tξ(p))Lexp(−tξ(p))(Tp exp(tξ)(v))|t=0

= d
dt
tTexp(tξ(p))Lexp(−tξ(p))(Tξ(p) exp(Tpξ(v)))|t=0

= d
dt
tTξ(p)(exp(−tξ(p)) exp)(Tpξ(v))|t=0

= Tpξ(v).

The last equality holds since

T (exp(−tξ(p)) exp) =
∫ 1

0
e−sad(tξ(p))ds = 1− t

2ad(ξ(p)) +O(t2).

For a proof of this formula, we refer the reader to [DK00, Thm 1.5.3]. Furthermore,
d
dt
Adexp(tξ)|t=0 = T1Ad( d

dt
exp(tξ)|t=0) = T1Ad(ξ) = adξ.

Finally, we conclude
d
dt
Adexp(−tξ)(A) + exp(tξ)∗η|t=0 = ad−ξ(A) + dξ = dξ + [A, ξ] = dAξ. �

2.2 Hyperkähler manifolds

2.2.1 Definition (Kähler manifold). An almost complex structure on a manifold M
is an endomorphism I ∈ End (TM) satisfying I2 = − idTM . A Kähler manifold is a
Riemannian manifold (M, gM ) with a parallel (with respect to the Levi-Civita connection)
orthogonal almost complex structure I ∈ End (TM) such that the 2-form ω ∈ Ω2(M) is
closed, where ω(v, w) = gM(v, I(w)) for all v, w ∈ TxM . The symplectic form ω is called
Kähler form.

2.2.2 Definition (hyperkähler manifold). A hyperkähler manifold is a Riemannian
manifold (M, gM ) with three parallel (with respect to the Levi-Civita connection) orthog-
onal almost complex structures I1, I2, I3 ∈ End (TM) such that I1I2I3 = − idTM and M
is a Kähler manifold with respect to each of the three complex structures.

2.2.3 Remark ([Hit87, Lemma 6.8]). It is enough to require the existence of two anti-
commuting orthogonal almost complex structures I1, I2 ∈ End (TM) (define I3 := I1I2)
such that the three 2-forms are closed: dω1 = dω2 = dω3 = 0, where ω`(v, w) =
gM(v, I`(w)) for all v, w ∈ TxM and ` ∈ {1, 2, 3}.

2.2.4 Remark (dimensions and holonomy groups). The existence of the complex
structure on a Kähler manifold M implies that the dimension of M is even. The existence
of the three complex structures on a hyperkähler manifold M implies that the dimension
of M is a multiple of 4. We also allow dim(M) = 0 . In this case, the identity is
the only endomorphism of TM . However, it is a complex structure and we can take
I1 = I2 = I3 = idTM .
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The holonomy group of a 2n-dimensional Kähler manifold is contained in U(n) ⊂ SO(2n).
Conversely, every 2n-dimensional manifold with holonomy group contained in U(n) ⊂
SO(2n) is a Kähler manifold.

Let H be the skew field of quaternions. As a vector space we identify H ∼= R4. The
holonomy group of a 4n-dimensional hyperkähler manifold M is contained in Sp(n) ⊂
SO(4n), where Sp(n) is the group of H-linear metric perserving automorphisms of
Hn. Conversely, every 4n-dimensional manifold with holonomy group contained in
Sp(n) ⊂ SO(4n) is a hyperkähler manifold.

The group Sp(1) can be identified with the sphere S3 in the quaternions. We have an
isomorphism H ⊃ S3 → Sp(1), q 7→ Rq̄, Rq̄(h) := hq̄ for h ∈ H. We will from now on use
this isomorphism to identify Sp(1) with the sphere in the quaternions and its Lie algebra
sp(1) with the space of imaginary quaternions Im(H) :=

{
h ∈ H

∣∣∣ h̄ = −h
}
.

2.2.5 Note (scalar multiplication). The tangent bundle of a hyperkähler manifold M
is a bundle of H-modules, i.e. we have a ring homomorphism called scalar multiplication

I : H→ End (TM) ,
h 7→ Ih,

where Ih := h0 idTM +h1I1 + h2I2 + h3I3 for h = h0 + h1i+ h2j + h3k. In particular, for
all ζ ∈ Im(H) with ‖ζ‖2 = 1 we have

I2
ζ = Iζ2 = −Iζζ̄ = −I1 = − idM

This implies that I maps the sphere S2 ⊂ Im(H) ⊂ H into the space of complex structures
on M . If dim(M) > 0, then I is injective and we have a sphere of complex structures{ 3∑
`=1

ζ`I`

∣∣∣∣ 3∑
`=1

ζ2
` = 1

}
.

We define a 2-form ω ∈ Ω2(M, sp(1)∗) as follows:

〈ω, ζ〉 := ωζ for all ζ ∈ sp(1) = Im(H),

where ωζ(v, w) = gM(v, Iζw) for all x ∈ M and v, w ∈ TxM . If ζ ∈ Im(H) = sp(1) is of
norm one, ‖ζ‖2 = 1, then Iζ is an (almost) complex structure and ωζ the corresponding
symplectic form.

2.2.6 Example. Consider M = H. The tangent bundle is trivial, TH = H×H pr1−−→ H =
M . For (h, v) ∈ TH = H×H let

I1((h, v)) := (h, iv) I2((h, v)) := (h, jv) I3((h, v)) := (h, kv).

This defines three complex structures I1, I2, I3 ∈ End (TH) which are compatible with the
standard metric gMh (v, v′) = Re(vv̄′) for all v, v′ ∈ H = ThH. The scalar multiplication is
given by Ih′((h, v)) = (h, h′v) for all h′ ∈ H, (h, v) ∈ TH.
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The three symplectic forms ω` = gM(·, I`(·)) for ` ∈ {1, 2, 3} are

ω1 = −dh0 ∧ dh1 − dh2 ∧ dh3,

ω2 = dh1 ∧ dh3 − dh0 ∧ dh2,

ω3 = −dh0 ∧ dh3 − dh1 ∧ dh2,

where h = h0 + ih1 + jh2 + kh3. Note that iω1 + jω2 + kω3 = 1
2dh ∧ dh̄.

2.2.1 Group actions and moment maps

Consider the coadjoint representation g∗ = Lie(G)∗ of a Lie group G.

2.2.7 Definition (moment map). A smooth action of a Lie group G on a symplectic
manifold (M,ω) is said to be a symplectic action if it fixes the symplectic form ω (i.e.
L∗hω = ω for all h ∈ G). A smooth map µ : M → g∗ is said to be a moment map for the
symplectic G-action on M if

1. dµ = ιgω (moment map condition),

2. µ(gx) = Ad∗g(µ(x)) for all g ∈ G, x ∈M (equivariance).

2.2.8 Proposition (existence/uniqueness of moment maps, [CdS01]).
1. Let G be a compact connected Lie group. If a moment map µ : M → g∗ for

a symplectic G-action on a symplectic manifold M exists, then the set of mo-
ment maps is a [g, g]0-torsor, where [g, g]0 is the annihilator of the commutator
ideal [g, g] in g∗. In particular, if G is abelian, then the set of moment maps is
{ µ+ ν : M → g∗ | ν ∈ g∗ }.

2. If G is a compact semisimple Lie group, then for any symplectic G-action there is a
unique moment map.

2.2.9 Definition (hyperkähler action). A smooth action of a Lie group G on a hy-
perkähler manifold (M, gM , I1, I2, I3) is said to be a hyperkähler action, if

1. G acts isometrically, i.e. for all h ∈ G : L∗hgM = gM ,

2. G respects the three complex structures, i.e. for all h ∈ G : h∗I1 = I1h∗, h∗I2 = I2h∗
and h∗I3 = I3h∗.

The definition of a moment map for a hyperkähler action is analoguous to the definition
for symplectic actions, but now we have to take care of three symplectic structures.

2.2.10 Definition. Let (M, gM , I1, I2, I3) be a hyperkähler manifold with a hyperkähler
action of a Lie group G. Consider the form ω ∈ Ω2(M, sp(1)∗). A smooth map µ : M →
g∗ ⊗ sp(1)∗ is said to be a hyperkähler moment map for the G-action on M if

1. dµ = ιgω (moment map condition),
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2. µ(gx) = Ad∗g(µ(x)) for all g ∈ G, x ∈M (equivariance).

2.2.11 Remark. If µ : M → g∗ ⊗ sp(1)∗ is a hyperkähler moment map, then d〈µ, ζ〉 =
ιgωζ , and therefore 〈µ, ζ〉 : M → g is a moment map for ωζ . In particular, let

µ1 := 〈µ, i〉, µ2 := 〈µ, j〉, µ3 := 〈µ, k〉.

Then µ : M → g∗ ⊗ sp(1)∗ is a hyperkähler moment map iff µ1, µ2, µ3 are moment maps
for ω1, ω2, ω3, respectively.

2.2.12 Example. Consider the hyperkähler manifold H from Example 2.2.6 and for
fixed ` ∈ Z the action S1 y H, (z, h) 7→ hz`. The fundamental vector field for this action
is

(KH,S1

ξ )h = d
dt
h exp(t`ξ)|t=0 = `hξ ∈ H = ThH.

Consider the map µ̃ : H → Im(H), µ̃(h) = `
2hih̄ and let µ1, µ2, µ3 ∈ C∞(M,R)S1 be

defined by µ̃ = iµ1 + jµ2 + kµ3. Then

idµ1 + jdµ2 + kdµ3 = dµ̃ = ( `2dhih̄+ `
2hidh̄) = 1

2ι`hidh ∧ dh̄
= ι

KH,S1
i

(iω1 + jω2 + kω3).

If we use the Ad-invariant scalar product 〈·, ·〉 : iR ⊗ iR → R with 〈i, i〉 = 1, and the
standard metric on Im(H) to identify sp(1)∗ = Im(H)∗ ∼= Im(H) = sp(1), then µ := i⊗ µ̃
is a hyperkähler moment map.

2.2.2 Hyperkähler potential

2.2.13 Definition (Kähler potential). Let (M, gM , I) be a Kähler manifold with Käh-
ler form ω. For a 1-form α ∈ Ω1(M) define Iα ∈ Ω1(M) by Iα(v) := α(I(v)) for all
v ∈ TM . A smooth function ρ : M → R is said to be a Kähler potential if dIdρ = 2ω.

2.2.14 Remark. In terms of complex valued differential forms and Dolbeault operators,
we have

i∂∂̄ρ = i(∂ + ∂̄)∂̄ρ = id∂̄ρ = id1
2(1 + iI)dρ = −1

2dIdρ

for all ρ ∈ C∞(M,R). Therefore, a smooth function ρ is a Kähler potential iff −i∂∂̄ρ = ω.

2.2.15 Definition (hyperkähler potential). A smooth map ρ : M → R on a hyper-
kähler manifold (M, gM , I1, I2, I3) is said to be a hyperkähler potential if ρ is a Kähler
potential for each of the three complex structures:

dI`dρ = 2ω` for all ` ∈ {1, 2, 3}.
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2.2.16 Example. Consider the hyperkähler manifold M = H (cf. Example 2.2.6) and
the function ρ : H→ R, ρ(h) = 1

2‖h‖
2. We have

dρ =
3∑
`=0

h`dh`.

For a complex structure Iζ we have

dIζdρ =
3∑
`=0

dh`Iζdh`.

More explicitly,

I1dh0 =− dh1, I1dh1 =dh0, I1dh2 =− dh3, I1dh3 =dh2,

I2dh0 =− dh2, I2dh1 =dh3, I2dh2 =dh0, I2dh3 =− dh1,

I3dh0 =− dh3, I3dh1 =− dh2, I3dh2 =dh1, I3dh3 =dh0,

and therefore

dI1dρ =
3∑
`=0

dh`I1dh` = −dh0 ∧ dh1 + dh1 ∧ dh0 − dh2 ∧ dh3 + dh3 ∧ dh2 = 2ω1,

dI2dρ =
3∑
`=0

dh`I2dh` = −dh0 ∧ dh2 + dh1 ∧ dh3 + dh2 ∧ dh0 − dh3 ∧ dh1 = 2ω2,

dI3dρ =
3∑
`=0

dh`I3dh` = −dh0 ∧ dh3 − dh1 ∧ dh2 + dh2 ∧ dh1 + dh3 ∧ dh0 = 2ω3.

This implies that ρ : H→ R, ρ(h) = 1
2‖h‖

2 is a hyperkähler potential.

2.3 Clifford algebras and Spin groups

2.3.1 The Clifford algebra

2.3.1 Definition. Let V be a vector space (over R) equipped with a quadratic form q.
The Clifford algebra Cl(V, q) is the quotient of the tensor algebra T (V ) := ⊕∞

k=0 V
⊗k by

the ideal I(V, q) which is generated by elements of the form v ⊗ v + q(v) for v ∈ V :

Cl(V, q) := T (V )/I(V, q).

The equivalence class of an element v1 ⊗ v2 ⊗ · · · ⊗ vk ∈ T (V ) is denoted by v1v2 · · · vk.
The Clifford algebra Cl(V, q) has the universal property that every linear map f : V → A
into an associative algebra A (over R) with unit satisfying f(v)2 + q(v) = 0 for all v ∈ V
extends uniquely to a homomorphism Cl(V, q)→ A.
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Let α : Cl(V, q) → Cl(V, q) be the automorphism which extends − idV : V → V . The
even part Cl0(V, q) and the odd part Cl1(V, q) are defined as

Cl`(V, q) := ker(α− (−1)` id) for ` ∈ {0, 1}.

This defines a Z/2Z-grading on the Clifford algebra. Let now Cl×(V, q) be the multiplica-
tive group of units in the Clifford algebra Cl(V, q) and define the group Pin(V, q) to be
the subgroup of Cl×(V, q) generated by elements v ∈ V with q(v) = ±1. The Spin group
for V and q is

Spin(V, q) := Pin(V, q) ∩ Cl0(V, q).

If V = Rm is the m-dimensional Euclidean space and q(v) = ‖v‖2, then we denote the
corresponding Clifford algebra by Clm := Cl(Rn, ‖ · ‖2). The corresponding Spin group is
denoted by Spin(m) := Spin(Rm, ‖ · ‖2) Furthermore, we define

Spinc(m) := (Spin(m)× S1)/{(±1,±1)}.

2.3.2 Note. The map

Λ•Rm → Clm,

v1 ∧ · · · ∧ vk 7→ v1 · · · vk

is an isomorphism of vector spaces. Restricting to Λ2Rm, we obtain an isomorphism
Lie(Spin(m)) ∼= Λ2Rm.

2.3.3 Definition (volume element). The volume element of the Clifford algebra Clm
is volm := e1 · · · em. The complex volume element is volCm := ib

m+1
2 ce1 · · · em ∈ Clm ⊗ C.

2.3.4 Examples (Clifford algebras).
1. Cl1 ∼= C, where 1 7→ 1, e1 7→ i.

2. Cl2 ∼= H, where 1 7→ 1, e1 7→ i, e2 7→ j.

3. Cl3 ∼= H⊕H, where 1 7→ (1, 1), e1 7→ (−i, i), e2 7→ (−j, j), e3 7→ (−k, k).

4. Cl4 ∼= M2(H), where

1 7→
(

1 0
0 1

)
, e0 7→

(
0 −1
1 0

)
,

e1 7→
(

0 −i
−i 0

)
, e2 7→

(
0 −j
−j 0

)
, e3 7→

(
0 −k
−k 0

)
.

The images of the volume elements vol3 = e1e2e3 and vol4 = e0e1e2e3 under the iso-

morphisms above are (1,−1) and
(
−1 0
0 1

)
, respectively. For m ∈ {3, 4} we have

volCm = −volm.
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2.3.5 Note. The decomposition of Cl3 in the previous example as a sum of two copies of
the quaternions H corresponds to the decomposition Cl3 = Cl+3 ⊕Cl−3 : In Cl3, the volume
element vol3 = e1e2e3 is central and (vol3)2 = 1. Define two projections π+ := 1

2(1 + vol3)
and π− := 1

2(1 − vol3), and Cl+3 := π+Cl3, Cl−3 := π−Cl3. In terms of quaternions,
we have π+ = (1, 0) and π− = (0, 1), so Cl+3 ∼= H ⊕ {0} ⊂ H ⊕ H ∼= Cl3 and Cl−3 =
{0}⊕H ⊂ H⊕H ∼= Cl3. The decomposition Cl3 = Cl03⊕Cl13 into even and odd elements
is given in terms of quaternions as Cl03 ∼= { (h, h) ∈ H⊕H | h ∈ H } ⊂ H⊕H ∼= Cl3 and
Cl13
∼= { (h,−h) ∈ H⊕H | h ∈ H } ⊂ H⊕H ∼= Cl3. The automorphism α : Cl3 → Cl3 is

given in this picture by H⊕H→ H⊕H, (h, h′) 7→ (h′, h).

2.3.6 Proposition ([LM89, Ch I Thm 3.7]). The map Rm→Cl0m+1, v 7→ vem+1 in-
duces an isomorphism

Clm
∼−→ Cl0m+1

2.3.7 Remark. We will mostly be interested in the case m = 3, where we use the
convention that R3 = span{e1, e2, e3} and R4 = span{e0, e1, e2, e3}. In this case we use
the map R3 3 v 7→ ve0 ∈ Cl04. Note that vol3 7→ −vol4 and volC3 7→ −volC4 . If we use the
isomorphisms from Examples 2.3.4, the composition H⊕H ∼= Cl3 ↪→ Cl4 ∼= M2(H) reads

H⊕H 3 (h, h′) 7→
(
h 0
0 h′

)
∈M2(H).

2.3.8 Note. For m ≥ 3 the Spin group Spin(m) is the universal covering of SO(m). In
particular, we have a short exact sequence

0→ Z/2Z→ Spin(m) λ−→ SO(m)→ 1,

where λ of is the restriction of

Ad : Cl×m → Aut(Clm)
ϕ 7→ Adϕ, Adϕ(y) := α(ϕ)yϕ−1

to Spin(m) ⊂ Cl×m and Rm ⊂ Clm. The differential T1λ : spin(m) → so(m) is an
isomorphism of Lie algebras. Here so(n) = Lie(SO(n)) and spin(n) = Lie(Spin(n)) are
the Lie algebras of SO(n) and Spin(n), respectively.

This map is compatible with the embedding Rm ↪→ Rm+1, i.e. we have a commuting
diagram

Spin(m) � � //

λ
��

Spin(m+ 1)
λ

��

SO(m) � � // SO(m+ 1)
Similarly, we have a short exact sequence

0→ Z/2Z→ Spinc(m) λc−→ SO(m)× S1 → 1,

where λc([(ϕ, z)]) = (λ(ϕ), z2) for [(ϕ, z)] ∈ Spinc(m) and the Z/2Z is the subgroup of
Spinc(m) generated by [(1,−1)] = [(−1, 1)]. Here [(ϕ, z)] ∈ Spinc(m) denotes the image
of (ϕ, z) ∈ Spin(m)× S1 under the projection Spin(m)× S1 → (Spin(m)× S1)/± 1 =
Spinc(m).
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2.3.9 Example. We will also use the quaternions to construct the universal covering of
SO(3). Identify R3 with the imaginary quaternions Im(H) and consider the homomor-
phism

Sp(1)→ SO(3),
which is mapping H× ⊃ Sp(1) 3 q 7→ cq ∈ SO(3), where cq(v) := qvq−1 for v ∈ Im(H) ∼=
R3. Since Sp(1) is simply connected and the kernel of this map is {±1} ⊂ Sp(1), we
obtain an isomorphism

Sp(1) ∼= Spin(3)
from the universal property of Spin(3). The induced isomorphism on the level of Lie
algebras is

sp(1) = Im(H)→ Λ2R3,

i 7→ e2 ∧ e3,

j 7→ −e1 ∧ e3,

k 7→ e1 ∧ e2.

This is also an isomorphism of Spin(3)-representations. If we again identify R3 ∼= Im(H),
this isomorphism is given by the Hodge star operator ∗ : R3 ∼−→ Λ2R3.

2.3.10 Remark. Consider the diagonal embedding H ↪→ H⊕H, h 7→ (h, h). Using the
isomorphism from Examples 2.3.4, the group Sp(1) ∼= Spin(3) can be interpreted as the
unit sphere in Cl03 ∼= H ↪→ H⊕H ∼= Cl3. Its Lie algebra is sp(1) ∼= Im(H) ⊂ H ∼= Cl03 ⊂
Cl3.

2.3.11 Example. There is a similar construction for Spin(4). Identify R4 with the
quaternions H and consider the homomorphism

Sp(1)× Sp(1)→ SO(4),

which is mapping H× × H× ⊃ Sp(1) × Sp(1) 3 (q+, q−) 7→ cq+,q− ∈ SO(4), where
cq+,q−(v) := q+vq

−1
− . Again, notice that Sp(1)× Sp(1) is simply connected and the kernel

of this map is {(±1,±1)}, so we obtain an isomorphism

Spin(4) ∼= Sp(1)× Sp(1).

To distinguish the two copies of Sp(1), we will denote the first one by Sp(1)+ and the
second one by Sp(1)−. The induced isomorphism of Lie algebras is given by

sp(1)+ ⊕ sp(1)− ∼−→ Λ2R4,

(i, 0) 7→ 1
2(e0 ∧ e1 + e2 ∧ e3),

(j, 0) 7→ 1
2(e0 ∧ e2 − e1 ∧ e3),

(k, 0) 7→ 1
2(e0 ∧ e3 + e1 ∧ e2),

(0, i) 7→ 1
2(e2 ∧ e3 − e0 ∧ e1),

(0, j) 7→ −1
2(e0 ∧ e2 + e1 ∧ e3),

(0, k) 7→ 1
2(e1 ∧ e2 − e0 ∧ e3).
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This is also an isomorphism of Spin(4)-representations. The Hodge star operator
∗ : Λ2R4 → Λ2R4 induces a direct sum decomposition Λ2R4 = Λ2

+R
4 ⊕ Λ2

−R
4 of the

Spin(4)-representation Λ2R4, where
Λ2
±R

4 := ker(id∓∗ : Λ2R4 → Λ2R4).
Note that the isomorphism sp(1)+ ⊕ sp(1)− ∼−→ Λ2R4 maps sp(1)+ isomorphically to
Λ2

+R
4 and sp(1)− isomorphically to Λ2

−R
4. In particular, we obtain isomorphisms of

Spin(4)-representations
sp(1)+ ∼= Λ2

+R
4 and sp(1)− ∼= Λ2

−R
4.

2.3.12 Remark. The product structure of Spin(4) = Sp(1)+ × Sp(1)− is induced by
the decomposition Cl04

∼= Cl3 = Cl+3 ⊕ Cl−3 . The two components Sp(1)+ and Sp(1)−
are the images of Spin(4) ⊂ Cl04

∼= Cl3 = Cl+3 ⊕ Cl−3
pr±−−→ Cl±3 . Using the isomorphism

Cl3 ∼= H⊕H from Note 2.3.5, we can interpret Sp(1)+ and Sp(1)− as the unit spheres in
Cl+3
∼= H⊕{0} ⊂ H⊕H ∼= Cl3 and Cl−3 ∼= {0}⊕H ⊂ H⊕H ∼= Cl3 and the corresponding

Lie algebras as sp(1)+ ∼= Im(H) ⊂ H ∼= Cl+3 and sp(1)− ∼= Im(H) ⊂ H ∼= Cl−3 .

2.3.13 Example. Using the isomorphisms from Example 2.3.9 and Example 2.3.11, we
have a commuting diagram

Spin(3) � � //

o
��

Spin(4)
o

��

Sp(1) � � // Sp(1)+ × Sp(1)−
where the map at the bottom is the diagonal Sp(1) 3 q 7→ (q, q) ∈ Sp(1)+ × Sp(1)−.

2.3.14 Note. Notice that the composition

Sp(1) ∼= Spin(3) ↪→ Spin(4) ∼= Sp(1)+ × Sp(1)−
pr±−−→ Sp(1)±

is the identity. On the level of Lie algebras, the composition

R3 ∗3−→ Λ2R3 ↪→ Λ2R4 (·)+−−→ Λ2
+R

4,

is an isomorphism mapping
R3 3 v 7→ (e0 ∧ v)+ := 1

2(1 + ∗4)(e0 ∧ v) = 1
2(e0 ∧ v + ∗4e0 ∧ v) ∈ Λ2

+R
4.

This is an isomorphism of SO(3)-representations. Dually, we also have an isomorphism
τ0 : (R3)∗ ∼−→ Λ2

+(R4)∗ of SO(3)-representations. Here we used ∗3 and ∗4 for the Hodge
star operators in dimension three and four, respectively.

2.3.2 Representations of the Clifford algebras and Spin groups

We will now collect some representations of Clm, Spin(m) and Spinc(m) for m ∈ {3, 4}.
To write these in terms of quaternions, we will use the isomorphisms Cl3 ∼= H ⊕ H
and Cl4 ∼= M2(H) from Examples 2.3.4 and also Spin(3) ∼= Sp(1) and Spin(4) ∼=
Sp(1)+ × Sp(1)− from Example 2.3.9 and Example 2.3.11. Furthermore, we also use
Spinc(3) ∼= (Sp(1)× S1)/± 1 and Spinc(4) ∼= (Sp(1)+ × Sp(1)− × S1)/± 1.
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Representations of Cl3

Consider the two irreducible Cl3-representations

Cl3 = Cl+3 ⊕ Cl−3
π±−→ Cl±3

∼= H→ Aut (H) ,
Cl3 ∼= H⊕H 3 (h+, h−) 7−→ h± 7−→ (v 7→ h±v for v ∈ H) .

Here H acts on itself by left multiplication. Since the decomposition of Cl3 as a direct
sum of two copies of the quaternions is the decomposition into the eigenspaces Cl+3
and Cl−3 of the volume element vol3, these two representation can be distinguished
by the action of the volume element. The restrictions of these two representations to
the even part Cl03 = { (h, h) ∈ H⊕H | h ∈ H } are isomorphic. Restricting further to
Spin(3) ⊂ Cl03 ⊂ Cl3, we obtain the spinor representation S. We will only use the Cl3-
representation in which the volume element acts as the identity, which we also denote by
S. This is the one induced by the projection to the first component Cl3 ∼= H⊕H pr1−−→ H.

Here is a list of useful representations of Spin(3) and Spinc(3):

Representations of Spin(3) and Spinc(3)

name vector space homomorphism
R3 R3 ∼= Im(H) Sp(1)→ SO(3) q · v = qvq̄ for v ∈ Im(H) ∼= R3

S H Sp(1)→ Aut (H) q · h = qh for v ∈ H = S
W H Spinc(3)→ Aut (H) [(q, z)] · h = q̄hz for v ∈ H

Here q ∈ Sp(1), z ∈ S1 and [(q, z)] ∈ (Sp(1)× S1)/± 1 ∼= Spinc(3).

Representation of Cl4

Consider the tautological irreducible representation of Cl4 ∼= M2(H) on H2. Restricting
this representation to

Cl04
∼=
{ (

h 0
0 h′

) ∣∣∣∣∣ h, h′ ∈ H
}
∼= H⊕H ∼= Cl3,

we obtain a direct sum of the two irreducible representations of Cl3 ∼= Cl04. As representa-
tions Spin(4) ⊂ Cl04, these are the spinor representations which are denoted by S+ and
S−. Note that this notation comes from the direct sum decomposition Cl3 = Cl03 ⊕ Cl13
and not from Cl4. The element vol4 acts as − idS+ on S+ and as idS− on S−.

Here is a list of useful representations of Spin(4) and Spinc(4):
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Representations of Spin(4) and Spinc(4)

name vector space homomorphism
R4 R4 ∼= H Spin(4)→SO(4) (q+, q−)·h = q+hq̄− for h ∈ H ∼= R4

S+ H Spin(4)→Aut (H) (q+, q−)·h = q+h for h ∈ H
S− H Spin(4)→Aut (H) (q+, q−)·h = q−h for h ∈ H
R4 R4 ∼= H Spinc(4)→SO(4) [(q+, q−, z)]·h = q+hq̄− for h ∈ H ∼= R4

W+ H Spinc(4)→Aut (H) [(q+, q−, z)]·h = q+hz for h ∈ W ∼= H

W− H Spinc(4)→Aut (H) [(q+, q−, z)]·h = q−hz for h ∈ W ∼= H

Here q+ ∈ Sp(1)+, q− ∈ Sp(1)−, z ∈ S1, [(q+, q−, z)] ∈ (Sp(1)+ × Sp(1)− × S1)/ ± 1 ∼=
Spinc(4).

Clifford multiplication

2.3.15 Definition. Let V be a Clm-representation. Restricting to Spin(m) ⊂ Clm,
we interpret V as a Spin(m)-representation. The Clifford multiplication is the map of
Spin(m)-representations

cm : Rm ⊗ V → V,

which is obtained by restricting the Clm-action on V to Rm ⊂ Clm. Similarly, a repre-
sentation V of Clm ⊗ C can be interpreted as a Spinc(m)-representation by restriction
to Spinc(m) ⊂ Clm ⊗ C. The Clifford multiplication is again the homomorphism of
Spinc(m)-representations

cm : Rm ⊗ V → V,

which is obtained by restricting the Clm ⊗ C-action on V to Rm ⊂ Clm ⊂ Clm ⊗ C.

We will now give the Clifford multiplication for the above Spin(c)(m)-representations for
m ∈ {3, 4}, which are restrictions of irreducible (complex) Clm-representations, in terms
of quaternions: Consider the representation S of Cl3 ∼= H⊕H (cf. Examples 2.3.4) which
is induced by the projection to the first component and left multiplication. If we restrict
to Im(H) ∼= R3 ⊂ Cl3, we obtain the Clifford multiplication

R3 ⊗ S ∼= Im(H)⊗ S → S,

h⊗ h′ 7→ hh′.

For the four-dimensional case, we use the isomorphism Cl04
∼= Cl3 from Proposition 2.3.6

and the Cl4-representation Cl4⊗Cl3 S, where the Cl4-action is given by left multiplication.
The tensor product means that βve0 ⊗ h = β ⊗ v̄h for β ∈ Cl4, v ∈ R3 ∼= Im(H) and
h ∈ S.

2.3.16 Lemma. There is an isomorphism of Cl4 ∼= M2(H)-representations

Ψ : H2 → Cl4 ⊗Cl3 S,
(v, w) 7→ 1⊗ v + e0 ⊗ w,
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where H2 is the tautological representation of Cl4 ∼= M2(H) and Cl4 acts on Cl4 ⊗Cl3 S
by left multiplication. Restricting to Spin(4) ⊂ Cl04, this induces an isomorphism of
Spin(4)-representations

S+ ⊕ S− ∼= Cl4 ⊗Cl3 S.

Proof. The element e0 and Cl04 generate Cl4. This implies that Ψ is surjective and
using dimension counting, we conclude that Ψ is an isomorphism of vector spaces. For
(v, w) ∈ H2, we have

e1Ψ(v, w) = e1 ⊗ v + e1e0 ⊗ w = e0e1e0 ⊗ v + e1e0 ⊗ w = −e0 ⊗ iv − 1⊗ iw
= Ψ(−iw,−iv),

and note that (
0 −i
−i 0

)(
v
w

)
=
(
−iw
−iv

)
.

The same holds if we replace e1 by e2 or e3 and i by j or k, respectively. Finally,

e0.Ψ(v, w) = e0 ⊗ v + e0e0 ⊗ w = e0 ⊗ v − 1⊗ w = Ψ(−w, v).

and (
0 −1
1 0

)(
v
w

)
=
(
−w
v

)
.

Therefore, Ψ : H2 → Cl3 ⊗Cl3 S is an isomorphism of Cl4-representations. Since the
restriction of the tautological representation to Cl04 is a direct sum S+ ⊕ S−, we obtain
an isomorphism of Spin(4)-representations S+ ⊕ S− ∼= Cl4 ⊗Cl3 S. �

2.3.17 Remark. Note that the Clifford multiplication for the tautological representation
H2 is given by

R4 ∼= H 7→M2(H) ⊂ End
(
H2
)
,

h 7→
(

0 −h
h̄ 0

)
.

In particular, if we identify R4 ∼= H then the restriction of the Clifford multiplication to
R4 ⊗ S+ → S− is given by h⊗ h′ 7→ h̄h′ .

2.3.18 Remark (Clifford multiplication for Spinc). Let Ri be the complex struc-
ture on the Cl3-representation S which is given by multiplication with i from the right.
This induces an action of Cl3 ⊗ C. This representation is denoted by W . Its restriction
to Spinc(3) is the one in the list above. Similarly, we have an action of Cl4 ⊗ C on
H2 in the four-dimensional case. Since the isomorphism from Lemma 2.3.16 is compati-
ble with the complex structures, we obtain an isomorphism of Spinc(4)-representations
W+ ⊕W− ∼= Cl4 ⊗Cl3 W with the same Clifford multiplication as above.



2.3. Clifford algebras and Spin groups 25

2.3.19 Conclusion (Clifford multiplication in terms of quaternions).
In all considered cases, the Clifford multiplication is given by

H⊗H→ H,

h⊗ h′ 7→ hh′.

This can be interpreted as a homomorphism of Spin(m) or Spinc(m)-representations

R3 ⊗ S → S and R3 ⊗W → W for m = 3,
R4 ⊗ S+ → S− and R4 ⊗W+ → W− for m = 4,

where in the three-dimensional case, we take the restriction of the above homomorphism
to Im(H)⊗H. Note that this reflects our choice of the irreducible Cl3-representation S.

2.3.3 Spin-structures and Spinc-structures

2.3.20 Definition (Spin-structure). A Spin-structure on an oriented Riemannian
vector bundle E → M of rank m ≥ 3 is a λ-reduction PSpin(m) → PSO(m), where
PSO(m) →M is the bundle of oriented orthonormal frames in E and λ : Spin(m)→ SO(m)
is the universal cover from Note 2.3.8. An oriented Riemannian vector bundle E →M is
said to be Spin if a Spin-structure on E →M exists. A Spin-structure on an oriented
m-dimensional Riemannian manifold M is a Spin-structure on TM →M . An oriented
Riemannian manifold M is said to be a Spin-manifold if a Spin-structure on M exists.

2.3.21 Definition (Spinc-structure). A Spinc-structure on an oriented Riemannian
vector bundle E →M of rank m ≥ 3 is a principal S1-bundle PS1 →M together with a
λc-reduction PSpinc(m) → PSO(m) ×M PS1 , where PSO(m) → M is the bundle of oriented
orthonormal frames in E and λc : Spinc(m) → SO(m)× S1 is the 2-fold covering from
Note 2.3.8. An oriented Riemannian vector bundle E → M is said to be Spinc if a
Spinc-structure on E → M exists. A Spinc-structure on an oriented m-dimensional
Riemannian manifold M is a Spinc-structure on TM →M . An oriented m-dimensional
Riemannian manifold M is said to be a Spinc-manifold if a Spinc-structure exists.

The following theorem answers the question for existence and uniqueness of Spin-structures
and Spinc-structures.

2.3.22 Theorem ([LM89, Ch II Thm 1.7, App D Thm D.2]).
An oriented Riemannian vector bundle E → M is Spin iff its second Stiefel-Whitney
class w2(E) ∈ H2(M,Z/2Z) vanishes. In this case, the collection of isomorphism classes
of Spin-structures is a H2(M,Z/2Z)-torsor.

An oriented Riemannian vector bundle E → M is Spinc iff its second Stiefel-Whitney
class w2(E) ∈ H2(M,Z/2Z) is a mod2 reduction of an integral class. In this case, the
collection of isomorphism classes of Spinc-structures is a H2(M,Z/2Z) ⊕ 2H1(M,Z)-
torsor.
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2.3.23 Corollary.
1. An oriented Riemannian manifold M is a Spin-manifold if and only if its second

Stiefel-Whitney class w2(TM) ∈ H2(M,Z/2Z) vanishes.

2. An oriented Riemannian manifold M is a Spinc-manifold if and only if its second
Stiefel-Whitney class w2(TM) ∈ H2(M,Z/2Z) is a mod 2 reduction of an integral
class.

In dimensions three and four, the following two theorems guarantee the existence of
Spin(c)-structures.

2.3.24 Theorem (Stiefel, [Sti35]). Every compact orientable three-dimensional mani-
fold is parallelizable, i.e. the tangent bundle is trivial.

2.3.25 Corollary. Every compact three-dimensional oriented manifold is a Spin-manifold.

2.3.26 Theorem (Whitney, [HH58]). Every compact oriented four-dimensional Rie-
mannian manifold is a Spinc-manifold.

2.3.4 Spinor bundles

2.3.27 Definition. Consider a Spin-structure PSpin(m) → PSO(m) on an oriented m-
dimensional Riemannian manifold M . A spinor bundle is an associated vector bundle
E = PSpin(m) ×Spin(m) V where V is a Clm-module. Here V is interpreted as a Spin(m)-
representation, using the embedding Spin(m) ⊂ Clm.

Let PSpinc(m) → PSO(m) ×M PS1 be Spinc-structure on an oriented m-dimensional Rie-
mannian manifold M . A complex spinor bundle is an associated vector bundle E =
PSpinc(m) ×Spinc(m) V where V is a complex Clm-module. Here V is interpreted as a
Spinc(m)-representation, using the embedding Spinc(m) ⊂ Clm ⊗ C. Sections of a
(complex) spinor bundle are called spinors.

2.3.28 Example. For an irreducible Clm-representation S, we denote the spinor bundle
by S. In the Spinc(m) case, ifW is the irreducible complex Clm-representation, we denote
the complex spinor bundle by W. For m = 4 we have the direct sum decompositions
S = S+ ⊕ S− and W = W+ ⊕W− (cf. subsection 2.3.2). The associated vector bundles
for these representations are denoted by S+,S−,W+,W−, respectively.

2.3.29 Example (Dirac operator). Let M be an m-dimensional manifold M with a
Spin(m)-structure PSpin(m) → PSO(m) and let S be an irreducible Clm-representation.
The Dirac operator D is defined to be the composition

D : Γ (M,S) ∇−→ Γ (M,T ∗M ⊗ S) cm−→ Γ (M,S),

where ∇ is the Levi-Civita connection on M and cm is the Clifford multiplication induced
by (Rm)∗ ⊗ S ∼= Rm ⊗ S → S.
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For m = 4, any irreducible Cl4-representation S splits into a direct sum of two irreducible
Spin(4)-representations S = S+ ⊕ S− and the Clifford multiplication with an element
v ∈ Rm interchanges S+ and S−. In particular, we are interested in the restriction D+ of
the Dirac operator D:

D+ : Γ (M,S+) ∇−→ Γ (M,T ∗M ⊗ S+) c−→ Γ (M,S−).

2.3.30 Example (Spinc(m) Dirac operator). Let PSpinc(m)
(πSO,πS1 )
−−−−−−→ PSO(m)×MPS1

be a Spinc(m)-structure on an m-dimensional manifold M and let W be an irreducible
complex Clm representation. Let ϕM be the Levi-Civita connection, A ∈ A (PSpinc(m))
a connection 1-form such that π∗SOϕM = prso(m) A and ∇A the corresponding covariant
derivative. The Spinc(m) Dirac operator DA is defined to be the composition

DA : Γ (M,W) ∇
A

−−→ Γ (M,T ∗M ⊗W) cm−→ Γ (M,W),

where cm is the Clifford multiplication induced by (Rm)∗ ⊗W ∼= Rm ⊗W → W .

If m is even, then the irreducible complex Clm-representationW splits into a direct sum of
two irreducible Spinc(m)-representations W = W+ ⊕W− and the Clifford multiplication
with an element v ∈ Rm interchanges W+ and W− (cf. [LM89, App D]). In particular,
we are intersted in the restriction D+

A of the Dirac operator DA:

D+
A : Γ (M,W+) ∇

A

−−→ Γ (M,T ∗M ⊗W+) cm−→ Γ (M,W−).





Chapter 3

The nonlinear Dirac operator

In this chapter, we construct the nonlinear Dirac operator in dimensions three and four
associated to a hyperkähler manifold with permuting action. This Dirac operator was
introduced by Taubes [Tau99] for three-dimensional manifolds and by Pidstrygach [Pid04]
for four-dimensional manifolds.

3.1 The group SpinGε (m)

In order to define the nonlinear generalization of the Dirac operator, we need the Lie group
SpinGε (m), which will be the replacement of Spin(m) or Spinc(m) in the construction of
the Spin or Spinc Dirac operator.

3.1.1 Definition. Let G be a compact Lie group and ε ∈ Z(G) a central element of G
satisfying ε2 = 1. The element (−1, ε) ∈ Spin(m)×G generates a normal subgroup of
order 2, which we denote by ±1. For m ∈ {3, 4} we define the group SpinGε (m) as

SpinGε (m) := (Spin(m)×G)/± 1.

3.1.2 Examples.
1. If G = Z/2Z and ε = −1, then

Spin
Z/2Z
−1 (m) = (Spin(m)× Z/2Z)/± 1 = Spin(m).

2. If G = S1 and ε = −1, then

SpinS
1

−1(m) = (Spin(m)× S1)/± 1 = Spinc(m).

3. If ε = 1 and G is an arbitrary compact Lie group, then

SpinG1 (m) = SO(m)×G.

29
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4. In particular, for the trivial group G = 1 we obtain

Spin1
1(m) = Spin(m)/± 1 = SO(m).

3.1.3 Note. Denote by 〈(1, ε)〉 the (normal) subgroup of SpinGε (m) generated by [(1, ε)] =
[(−1, 1)] ∈ SpinGε (m) and by G/ε the quotient of G by the subgroup generated by ε.
Then

SpinGε (m)/〈(1, ε)〉 = SO(m)×G/ε.

We have a short exact sequence

1→ 〈(1, ε)〉 → SpinGε (m) λG−→ SO(m)×G/ε→ 1, (3.1)

where λG : SpinGε (m)→ SO(m)×G/ε is the quotient map. In particular, the Lie algebra
spinGε (m) = Lie(SpinGε (m)) of SpinGε (m) is

spinGε (m) ∼= so(m)⊕ g.

3.1.4 Remark. There is a second short exact sequence, which will be useful. We have
an embedding G ↪→ SpinGε (m) as a normal subgroup. The quotient of SpinGε (m) by G is
SO(m). Therefore the following sequence is exact

1→ G→ SpinGε (m)→ SO(m)→ 1.

3.1.5 Remark. Using the injection ι : Spin(m)→ Spin(m+ 1) we also obtain an injec-
tion

SpinGε (m) = (Spin(m)×G)/± 1 [ι,id]−−→ (Spin(m+ 1)×G)/± 1 = SpinGε (m+ 1).

3.1.6 Note. For m = 3 and m = 4, the isomorphisms Spin(3) ∼= Sp(1) from Exam-
ple 2.3.9 and Spin(4) ∼= Sp(1)+ × Sp(1)− from Example 2.3.11 induce isomorphisms
SpinGε (3) ∼= (Sp(1)×G)/± 1 and SpinGε (4) ∼= (Sp(1)+ × Sp(1)− ×G)/± 1.

3.1.1 SpinG
ε (m)-structures

Having the group SpinGε (m) at hand, we can study principal SpinGε (m)-bundles and
SpinGε (m)-structures on m-dimensional manifolds. These generalize Spin-structures and
Spinc-structures and replace these in the construction of the Dirac operator.

3.1.7 Definition (SpinG
ε (m)-structures). A SpinGε (m)-structure on an oriented m-

dimensional Riemannian manifold Z (m ≥ 3) is a principal G/ε-bundle PG/ε → Z
together with a λG-reduction π : Qm → PSO(m) ×Z PG/ε, where PSO(m) → Z is the bundle
of orthonormal frames in TZ, and λG : SpinGε (m)→ SO(m)×G/ε is the homomorphism
from Note 3.1.3. We will denote the components of π by πSO : Qm → PSO(m) and
πG/ε : Qm → PG/ε.
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3.1.8 Examples.
1. A SpinG1 (m)-structure on Z is the same as a principal G-bundle PG → Z. In this

case Qm
∼= PSO(m) ×Z PG.

2. A Spin
Z/2Z
−1 (m)-structure on Z is the same as a Spin-structure on Z.

3. A SpinS
1
−1(m)-structure on Z is the same as a Spinc-structure on Z.

3.1.9 Remark. The quotient map SpinGε (m) → SO(m) = SpinGε (m)/G induces an
isomorphism Qm/G ∼= PSO(m). Similarly, SpinGε (m)/Spin(m) = G/ε implies that
Qm/Spin(m) ∼= PG/ε.

3.1.10 Remark. From the short exact sequence (3.1) we obtain an exact sequence in
Čech-cohomology:

Ȟ1(Z, 〈(1, ε)〉)→Ȟ1(Z, SpinGε (m))→Ȟ1(Z, SO(m))⊕ Ȟ1(Z,G/ε)→Ȟ2(Z, 〈(1, ε)〉)

If ε = 1, then the first and the last term vanish, and we obtain a bijection

Ȟ1(Z, SpinG1 (m)) ∼= Ȟ1(Z, SO(m))⊕ Ȟ1(Z,G).

In this case, the principal SpinG1 (m)-bundle Qm is isomorphic to the fibre product of the
bundle of oriented orthonormal frames PSO(m) and a principal G-bundle PG, i.e. we have
Qm
∼= PSO(m) ×Z PG.

If ε 6= 1, the quotient Qm/〈(1, ε)〉 is a principal SO(m) × G/ε-bundle. There is not
necessarily a lift of this principal G/ε-bundle to a principal G-bundle. Given a principal
G/ε-bundle PG/ε, we observe from the exact sequence in Čech cohomology that the
obstruction for the existence of a lift of PSO(m) ×Z PG/ε to a principal SpinGε (m)-bundle
is an element in Ȟ2(Z, 〈(1, ε)〉) ∼= H2(Z,Z/2Z). This element is

w2(PSO(m)) + δ(PG/ε) ∈ H2(Z,Z/2Z),

where δ : Ȟ1(Z,G/ε) → H2(Z,Z/2Z) is the map from the exact sequence in Čech-
cohomology, which is induced by the short exact sequence

1→ Z/2Z→ G→ G/ε→ 1.

For G = Z/2Z, we have SpinZ/2Z−1 (m) = Spin(m). In this case, G/ε = 1 is trivial
and therefore H1(Z,G/ε) = 0. We obtain δ = 0 and the obstruction is the second
Stiefel-Whitney class w2(PSO(m)) ∈ H2(Z,Z/2Z) (cf. Theorem 2.3.22).

For G = S1 and ε = −1, we have SpinS1
−1(m) = Spinc(m) and δ(PS1) = c̃1(PS1) is the

mod 2 reduction of the first Chern class c1(PS1) and there is a lift of PSO ×Z PS1 iff
w2(PSO(m)) ≡ c1(PS1) mod 2 (cf. Theorem 2.3.22). For details on Spin-structures and
Spinc-structures we refer the reader to [LM89, Ch 2 §1, App A]. For similar computations
for other groups G see [Zen06, Appendix].
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3.1.2 Gauge group

We can now study the automorphism group of a SpinGε (m)-structure.

3.1.11 Definition. Let Qm → PSO(m) ×Z PG/ε be a SpinGε (m)-structure on Z. The
gauge group of the Spin(m)-equivariant principal G-bundle Qm → PSO(m) is denoted by
Gm, i.e.

Gm :=G (Qm → PSO(m))Spin
G
ε (m)

=
{
ψ ∈ G (Qm → PSO(m))

∣∣∣ ψ is SpinGε (m)-equivariant
}
.

We will refer to Gm as the gauge group.

Consider the action of SpinGε (m) on G, which is induced by the conjugation action of G.
We can describe the gauge group in terms of equivariant maps:

3.1.12 Lemma.

G (Qm → PSO(m))Spin
G
ε (m) ∼= C∞(Qm, G)SpinGε (m).

Proof. First, note that Qm → PSO(m) is a principal G-bundle, and Note 2.1.42 implies
G (Qm → PSO(m)) ∼= C∞(Qm, G)G. Let g : Qm → G be SpinGε (m)-equivariant and
ψ : Qm → Qm the corresponding automorphims, i.e. ψ(p) = pg(p) for all p ∈ Qm. Then
for all h ∈ Spin(m) and p ∈ Qm:

ψ(ph) = phg(ph) = phh−1g(p)h = pg(p)h = ψ(p)h.

This proves that ψ is Spin(m)-equivariant and therefore also SpinGε (m)-equivariant.
Conversely, if ψ : Qm → Qm is SpinGε (m)-equivariant and g : Qm → G the corresponding
G-equivariant map, then for all p ∈ Qm, h ∈ Spin(m):

phh−1g(p)h = pg(p)h = ψ(p)h = ψ(ph) = phg(ph),

and this implies h−1g(p)h = g(ph), so g : Qm → G is Spin(m)-equivariant and therefore
also SpinGε (m)-equivariant. �

3.1.13 Corollary. The Lie algebra of Gm is

Lie(Gm) ∼= C∞(Qm, g)SpinGε (m) ∼= Γ (Z, gQm).

3.1.14 Example. If the group G is abelian, then the action of SpinGε (m) on G is trivial,
and we obtain

Gm = G (Qm → PSO(m))Spin
G
ε (m) ∼= C∞(Qm, G)SpinGε (m) ∼= C∞(Z,G).
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3.2 The target manifold

The next step is to replace the fibre of the spinor bundle by a target manifold M . We will
now restrict to the dimensions three and four. In these cases, we can use the isomorphisms
SpinGε (3) ∼= (Sp(1)×G)/±1 and SpinGε (4) ∼= (Sp(1)+×Sp(1)−×G)/±1 from Note 3.1.6.
To construct a Dirac operator, we have to impose some requirements on M .

3.2.1 Definition. An action of Sp(1) on a hyperkähler manifold M is said to be permut-
ing if Sp(1) acts by isometries and the induced action on the sphere of complex structures
is the standard action of Sp(1) on S2, i.e.

q∗Iζq∗ = Iqζq for all q ∈ Sp(1), ζ ∈ Im(H), ‖ζ‖2 = 1.

Consider a permuting action of Sp(1) on M and let G be a compact Lie group with a
hyperkähler action on M which commutes with the Sp(1)-action. Furthermore, assume
that (−1, ε) ∈ Sp(1)×G acts trivially on M . Therefore the action of Sp(1)×G on M
descends to an action of (Sp(1)×G)/±1 ∼= SpinGε (3). Such an action of SpinGε (3) is said to
be permuting. An action of SpinGε (4) is said to be permuting if it is induced by a permuting
action of SpinGε (3) via the homomorphism SpinGε (4)→ SpinGε (4)/Sp(1)− ∼= SpinGε (3).

3.2.2 Example. The first example of a hyperkähler manifold with permuting Sp(1)-
action is the quaternionic vector space Hn with the standard metric. The tangent bundle is
trivial and the complex structures are given by componentwise multiplication with i, j and
k respectively, I1(v) = iv, I2(v) = jv and I3(v) = kv for all x ∈ Hn and v ∈ Hn = TxH

n.
Consider the Sp(1)-action by multiplication Sp(1)×Hn 3 (q, x) 7→ qx ∈ Hn. The induced
action on THn is again given by multiplication, and the action on the sphere of complex
structures is (q, Iζ) 7→ q̄∗Iζq∗, q̄∗Iζq∗(v) = q̄ζqv = Iq̄ζq for all q ∈ Sp(1), ζ ∈ sp(1), ‖ζ‖2 =
1, x ∈ Hn and v ∈ TxHn. This proves that the Sp(1)-action is permuting.

For the hyperkähler action, we can take any Lie subgroup G of Sp(n) acting by H-linear
isometries on Hn. In particular, this includes the following example: Let n = 1, G = S1

and ε = −1. Define an action of (Sp(1)×G)/± 1 on M = H:

[(q, z)] · h := qhz for [(q, z)] ∈ (Sp(1)×G)/± 1, h ∈ H.

The hyperkähler structure on H is the same as in Example 2.2.6. The G = S1 action
on M = H is a hyperkähler action and that the Sp(1) action is permuting. This is
the representation W of Spinc(3) = (Sp(1) × G)/ ± 1 from subsection 2.3.2. If we
interpret M = H as a hyperkähler manifold with permuting Spinc(4)-action, we obtain
the Spinc(4)-representation W+.



34 Chapter 3. The nonlinear Dirac operator

Properties of hypkähler manifolds with permuting action

The Hodge star operator ∗ : R3 → Λ2R3 is an isomorphism of representations of Spin(3) ∼=
Sp(1). Using the identification R3 ∼= sp(1), we obtain a homomorphism

sp(1) ∗−→ Λ2sp(1) ↪→ sp(1)⊗ sp(1),
i 7→ j ∧ k 7→ 1

2(j ⊗ k − k ⊗ j),
j 7→ k ∧ i 7→ 1

2(k ⊗ i− i⊗ k),
k 7→ i ∧ j 7→ 1

2(i⊗ j − j ⊗ i).

Dually, we have a homomorphism πsp(1)∗ : sp(1)∗ ⊗ sp(1)∗ → sp(1)∗. We will now recall
some properties of hyperkähler manifolds with permuting actions. These were first studied
by Swann [Swa91]. The third part of the following proposition is due to Boyer, Galicki,
Mann [BGM93, Prop. 2.7] and the fourth part is due to Pidstrygach [Pid04, Section
2.2.1].

3.2.3 Proposition. Let (M, gM , I1, I2, I3) be a hyperkähler manifold with permuting
SpinGε (3)-action. Then

1. The 2-form ω is SpinGε (3)-equivariant, i.e. ω ∈ Ω2(M, sp(1)∗)SpinGε (3).

2. The sp(1) Lie derivative of ω is 〈Lsp(1)ω, ζ ⊗ ζ ′〉 = −〈ω, [ζ, ζ ′]〉 for all ζ, ζ ′ ∈ sp(1).

3. The 2-form ω ∈ Ω2(M, sp(1)∗)SpinGε (3) is exact, and in particular we have ω = dγ
for γ := −1

2πsp(1)∗ιsp(1)ω ∈ Ω1(M, sp(1))SpinGε (3).

4. The map µ := −ιgγ ∈ C∞(M, g∗ ⊗ sp(1)∗)SpinGε (3) is a hyperkähler moment map for
the action of G on M .

Proof.
1. Let q ∈ Sp(1), ζ ∈ sp(1), x ∈M and v, w ∈ TxM . We use that the action of Sp(1)

is permuting to obtain

〈L∗qω, ζ〉(v, w) = ωζ(q∗v, q∗w) = gM(q∗v, Iζ(q∗w)) = gM(v, q−1
∗ Iζ(q∗w))

= gM(v, IAdq−1 (ζ)(w)) = 〈ω,Adq−1(ζ)〉(v, w)
= 〈Ad∗q ◦ ω, ζ〉(v, w).

This proves that ω is Sp(1)-equivariant. Let g ∈ G, ζ ∈ sp(1), x ∈ M and
v, w ∈ TxM . Since the action of G is hyperkähler,

〈L∗gω, ζ〉(v, w) = gM(g∗v, Iζ(g∗w)) = gM(g∗v, g∗Iζ(w)) = gM(v, Iζ(w))
= 〈ω, ζ〉(v, w).

This proves that ω is G-invariant. Together with the Sp(1)-equivariance, this implies
that ω ∈ Ω2(M, sp(1)∗)SpinGε (3).
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2. Using the previous assertion, we obtain

〈Lsp(1)ω, ζ ⊗ ζ ′〉 = L
K
M,Sp(1)
ζ

ωζ′ = d
dt

(Lexp(tζ))∗ωζ′ |t=0 = d
dt
ωAdexp(−tζ)(ζ′)|t=0

= 〈ω, d
dt
Adexp(−tζ)(ζ ′)|t=0〉 = 〈ω,−adζ(ζ ′)〉

= −〈ω, [ζ, ζ ′]〉

for all ζ, ζ ′ ∈ sp(1).

3. The definition of πsp(1)∗ and the previous assertion imply

〈πsp(1)∗Lsp(1)ω, i〉 = 1
2〈Lsp(1)ω, j ⊗ k − k ⊗ j〉 = −1

2〈ω, 2[j, k]〉 = −2〈ω, i〉,
〈πsp(1)∗Lsp(1)ω, j〉 = 1

2〈Lsp(1)ω, k ⊗ i− i⊗ k〉 = −1
2〈ω, 2[k, i]〉 = −2〈ω, j〉,

〈πsp(1)∗Lsp(1)ω, k〉 = 1
2〈Lsp(1)ω, i⊗ j − j ⊗ i〉 = −1

2〈ω, 2[i, j]〉 = −2〈ω, k〉,

and hence πsp(1)∗Lsp(1)ω = −2ω. Finally,

dγ = −1
2dπsp(1)∗ιsp(1)ω = −1

2πsp(1)∗dιsp(1)ω = −1
2πsp(1)∗Lsp(1)ω = ω.

4. TheG-invariance of γ implies Lgγ = 0. Since γ is equivariant and ιg maps equivariant
forms to equivariant forms, the map µ = −ιgγ : M → g∗ ⊗ sp(1)∗ is SpinGε (3)-
equivariant. We use the Cartan formula Lg = dιg + ιgd to check the moment map
condition

dµ = −dιgγ = −Lgγ + ιgdγ = ιgω.

This proves that µ : M → g∗ ⊗ sp(1)∗ is a hyperkähler moment map. �

3.2.4 Remark. The second assertion of the previous proposition implies that a hyper-
kähler manifold M of dimension dim(M) > 0 with permuting Sp(1)-action cannot be
compact: For ζ ∈ sp(1), ‖ζ‖2 = 1, the form ωζ is a Kähler form and exact. Therefore,
the volume form is also exact, and hence M cannot be compact.

3.2.1 Target manifolds with hyperkähler potential

Among the hyperkähler manifolds with permuting SpinGε (3)-action, there are those
hyperkähler manifolds with permuting action, which admit a hyperkähler potential.

3.2.5 Example (Swann’s construction). Let N be a compact quaternionic Kähler
manifold with positive scalar curvature. Then Swann’s construction [Swa91] produces
a hyperkähler manifold M = U(N) with permuting Sp(1)-action. This is a fibre bundle
U(N)→ N with typical fibre H×/± 1. The fundamental vector fields for the permuting
Sp(1)-action on M = U(N) satisfy IζKM,Sp(1)

ζ = −χ for a vector field χ ∈ Γ (M,TM)
and all ζ ∈ sp(1), ‖ζ‖2 = 1. Moreover, M = U(N) has a hyperkähler potential ρ =
1
2‖ · ‖

2, where ‖ · ‖ is the norm on the fibres of M = U(N). Examples for compact
quaternionic Kähler manifolds with positive scalar curvature are Wolf spaces. These are
compact homogeneous quaternionic Kähler manifolds. There is a list of these manifolds,
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namely quaternionic projective spaces HPn = Sp(n)
Sp(n−1)×Sp(1) , some complex Grassmannians

Gr2(Cn) = SU(n)
S(U(n−2)×U(2)) , some oriented Grassmannians G̃r4(Rn) = SO(n)

SO(n−4)×SO(4) and
five quotients of the exotic simply connected compact Lie groups G2, F3, E6, E7, E8. The
corresponding hyperkähler manifold M = U(N) for a Wolf space N is a certain coadjoint
orbit of the simple complex Lie group (for details cf. [Swa91]).

Properties of hyperkähler manifolds with permuting action and potential

Consider the homomorphism of representations of Spin(3) ∼= Sp(1)

πR : sp(1)∗ ⊗ sp(1)∗ → R

α⊗ β 7→ 1
3(α(i)β(i) + α(j)β(j) + α(k)β(k)).

In the following proposition, the third assertion is due to Henrik Schumacher and the last
assertion first appeared in [Swa91].

3.2.6 Proposition (Target manifold with potential). Let M be a hyperkähler man-
ifold with permuting SpinGε (m)-action such that IζKM,Sp(1)

ζ ∈ Γ (M,TM) is independent
of ζ ∈ sp(1), ‖ζ‖2 = 1. Denote χ := −IζKM,Sp(1)

ζ and let ∇ be the Levi-Civita connection
on M . Then

1. γ = 1
2ιχω and µ = −1

2ιgιχω.

2. The function ρ = −πRιsp(1)γ is a SpinGε (m)-invariant hyperkähler potential ρ : M →
R satisfying χ = grad(ρ).

3. ∇χ = idΓ (M,TM).

4. dµ(χ) = 2µ.

5. ρ = 1
2g

M(χ, χ).

Proof. We denote the image of i, j, k ∈ Im(H) under the isomorphism Im(H) ∼= sp(1) by
ζ1, ζ2, ζ3, respectively.

1. We have

〈γ, i〉 = −1
2〈πsp(1)∗ιsp(1)ω, i〉 = −1

2〈ιsp(1)ω, j ⊗ k〉 = −1
2ιKM,Sp(1)

ζ2
ω3 = 1

2ιχω1,

〈γ, j〉 = −1
2〈πsp(1)∗ιsp(1)ω, j〉 = −1

2〈ιsp(1)ω, k ⊗ i〉 = −1
2ιKM,Sp(1)

ζ3
ω1 = 1

2ιχω2,

〈γ, k〉 = −1
2〈πsp(1)∗ιsp(1)ω, k〉 = −1

2〈ιsp(1)ω, i⊗ j〉 = −1
2ιKM,Sp(1)

ζ1
ω2 = 1

2ιχω3.

These can be combined into γ = 1
2ιχω. Furthermore, this immediately implies that

µ = −ιgγ = −1
2ιgιχω.
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2. Consider the function ρ := −πRιsp(1)γ : M → R. First, note that for each tangent
vector v ∈ TM :

πRιsp(1)ω(v) = 1
3(ω1(KM,Sp(1)

ζ1 , v) + ω2(KM,Sp(1)
ζ2 , v) + ω3(KM,Sp(1)

ζ3 , v))
= −1

3(gM(I1K
M,Sp(1)
ζ1 , v) + gM(I2K

M,Sp(1)
ζ2 , v) + gM(I3K

M,Sp(1)
ζ3 , v))

= gM(χ, v).

Since γ ∈ Ω1(M, sp(1)∗)SpinGε (m) is Sp(1)-equivariant, we have

〈Lsp(1)γ, ζ ⊗ ζ ′〉 = d
dt
〈(Lexp(tζ))∗γ, ζ ′〉|t=0 = d

dt
〈Ad∗exp(tζ)γ, ζ

′〉|t=0

= d
dt
〈γ,Adexp(−tζ)ζ

′〉|t=0 = −〈γ, [ζ, ζ ′]〉

for all ζ, ζ ′ ∈ sp(1). In particular, πRLsp(1)γ = 0. We conlude

dρ = −dπRιsp(1)γ = −πRdιsp(1)γ = −πRLsp(1)γ + πRιsp(1)dγ = πRιsp(1)ω = ιχg.

This implies that grad(ρ) = χ.

Iζdρ(v) = dρ(Iζ(v)) = gM(χ, Iζ(v)) = ιχωζ(v) for all v ∈ TM

and finally
dIζdρ = dιχωζ = 2d〈γ, ζ〉 = 2ωζ ,

so ρ is a hyperkähler potential.

3. Swann proves in [Swa91, Prop 5.6] that f ∈ C∞(M,R) is a hyperkähler potential
iff ∇(df) = gM . Therefore, ∇(dρ) = gM . Using χ = grad(ρ), we conclude that for
all x ∈M and v, w ∈ TxM

gM(∇vχ,w) = ∇v(gM(χ,w))− gM(χ,∇vw) = ∇v(dρ(w))− dρ(∇vw)
= ∇v(dρ)(w) = gM(v, w),

and therefore ∇vχ = v for all v ∈ TM .

4. The SpinGε (3)-invariance of the potential ρ : M → R implies the invariance of the
1-form dρ. The group SpinGε (3) acts isometrically on M and hence χ = grad(ρ)
is SpinGε (3)-equivariant, i.e. TxLh(χx) = χhx for all h ∈ SpinGε (3), x ∈ M . This
implies that for all x ∈M, ν ∈ spinGε (3):

〈(LspinGε (3)χ)x, ν〉 = d
dt
Texp(tν)xLexp(−tν)(χexp(tν)x)|t=0 = d

dt
χx|t=0 = 0.

Therefore LspinGε (3)χ = 0 and in particular Lsp(1)χ = 0 and Lgχ = 0. The Lie
derivatives of the symplectic forms are

Lχω1 = −L
I2K

M,Sp(1)
ζ2

ω1 = −dι
I2K

M,Sp(1)
ζ2

ω1 = −dι
K
M,Sp(1)
ζ2

ω3 = −L
K
M,Sp(1)
ζ2

ω3,

Lχω2 = −L
I3K

M,Sp(1)
ζ3

ω2 = −dι
I3K

M,Sp(1)
ζ3

ω2 = −dι
K
M,Sp(1)
ζ3

ω1 = −L
K
M,Sp(1)
ζ3

ω1,

Lχω3 = −L
I1K

M,Sp(1)
ζ1

ω3 = −dι
I1K

M,Sp(1)
ζ1

ω3 = −dι
K
M,Sp(1)
ζ1

ω2 = −L
K
M,Sp(1)
ζ1

ω2.
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We use Proposition 3.2.3 to obtain
Lχω1 = −L

K
M,Sp(1)
ζ2

ω3 = −〈Lsp(1)ω, j ⊗ k〉 = 2ω1,

Lχω2 = −L
K
M,Sp(1)
ζ3

ω1 = −〈Lsp(1)ω, k ⊗ i〉 = 2ω2,

Lχω3 = −L
K
M,Sp(1)
ζ1

ω2 = −〈Lsp(1)ω, i⊗ j〉 = 2ω3,

and hence Lχω = 2ω.

For two vector fields v, w ∈ Γ (M,TM) we have [Lv, ιw] = ι[v,w] = −ιLwv and
therefore [Lχ, ιspinGε (3)] = −ιL

spinGε (3)χ
= 0. In other words, LχιspinGε (3) = ιspinGε (3)Lχ

and in particular, Lχιg = ιgLχ and Lχιsp(1) = ιsp(1)Lχ.

We use this to compute
Lχγ = 1

2Lχ(πsp(1)∗ιsp(1)ω) = 1
2πsp(1)∗Lχιsp(1)ω

= 1
2πsp(1)∗ιsp(1)Lχω = 1

2πsp(1)∗ιsp(1)2ω
= 2γ.

Finally, we obtain
dµ(χ) = Lχµ = −Lχιgγ = −ιgLχγ = −2ιgγ = 2µ.

5. Since Lχιsp(1) = ιsp(1)Lχ and Lχγ = 2γ, we get
gM(χ, χ) = dρ(χ) = Lχρ = −Lχ(πRιsp(1)γ)

= −πRLχ(ιsp(1)γ) = −πRιsp(1)Lχγ = −2πRιsp(1)γ

= 2ρ. �

3.2.7 Corollary. In the proof of the previous proposition, we also proved the following
useful formulae:

1. Lχω = 2ω,

2. Lχγ = 2γ,

3. LspinGε (3)χ = 0, and in particular Lsp(1)χ = 0 and Lgχ = 0,

4. Lχρ = 2ρ.

3.2.8 Example. Consider the hyperkähler manifold M = Hn from Example 3.2.2 with
the action of Sp(1) onHn given by left multiplication in each component. The fundamental
vector field for this action is

(KHn,Sp(1)
ζ )x = d

dt
exp(tζ)x|t=0 = ζx ∈ Hn = TxH

n for all x ∈ Hn, ζ ∈ sp(1).
We obtain

Iζ(KHn,Sp(1)
ζ )x = ζζx = −x ∈ Hn = TxH

n for all ζ ∈ sp(1), ‖ζ‖2 = 1.

The vector field χ = −IζKHn,Sp(1)
ζ is independent of ζ ∈ sp(1), ‖ζ‖2 = 1. This is the

Euler vector field χx = x ∈ Hn = TxH
n. The hyperkähler potential is

ρ(x) = 1
2g

M(χx, χx) = 1
2‖χx‖

2 = 1
2‖x‖

2.
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3.3 Configuration space

We will now describe the configuration space for the generalized Seiberg-Witten equations
in dimensions three and four, which is a product of an affine space of connections and
the space of spinors. Therefore, we fix a compact Lie group G and a central element
ε ∈ Z(G) satisfying ε2 = 1. We also fix a SpinGε (m)-structure Qm → Z on a oriented
Riemannian manifold Z (m = dim(Z) ∈ {3, 4}) and a hyperkähler manifold M with
permuting SpinGε (m)-action. To simplify notation, we write Ĝm for SpinGε (m).

3.3.1 Connections

We have seen in Note 3.1.3 that the Lie algebra ĝm of Ĝm = SpinGε (m) splits as a direct
sum ĝm = so(m)⊕ g. Let ϕZ be the Levi-Civita connection on PSO(m) → Z.

3.3.1 Definition. By Am we denote the affine space of connections on Qm → Z with
so(m)-component given by the lift of the Levi-Civita connection ϕZ , i.e.

Am :=
{
A ∈ A (Qm)

∣∣∣ prso(m) ◦A = π∗SO(m)ϕZ
}
.

3.3.2 Lemma. The space Am is an affine space for the vector space Ω1(Qm, g)Ĝmhor ∼=
Ω1(Z, gQm).

Proof. Let A,A′ ∈ Am be two connections. Then A − A′ ∈ Ω1(Qm, ĝm)Ĝmhor . From
prso(m) ◦A = π∗SO(m)ϕZ = prso(m) ◦A′, we obtain that actually A − A′ ∈ Ω1(Qm, g)Ĝmhor .
Conversely, let A ∈ Am be a connection and α ∈ Ω1(Qm, g)Ĝmhor . Then A + α is again a
connection 1-form on Qm and

prso(m) ◦(A+ α) = prso(m) ◦A = π∗SO(m)ϕZ . �

3.3.3 Note. We obtain an isomorphism

Am → A (Qm → PSO(m))Spin(m), A 7→ prg ◦A = A− π∗SO(m)ϕZ ,

with an inverse

A (Qm → PSO(m))Spin(m) → A , a 7→ π∗SO(m)ϕY + a.

Here A (Qm → PSO(m))Spin(m) is the space of Spin(m)-invariant connection 1-forms on
the Spin(m)-equivariant principal G-bundle Qm → Qm/G = PSO(m).

3.3.4 Notation. If Z is a compact oriented Riemannian manifold, then for a SpinGε (m)-
invariant smooth function f : Qm → R, we denote by π!f the induced function π!f : Z → R.
To simplify notation, we define ∫

Z

f :=
∫
Z

π!f ∗ 1.
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Here ∗ : Ω0(Z,R) → Ωm(Z,R) is the Hodge star operator and 1 ∈ C∞(Z,R) is the
constant function with value 1. Therefore, ∗1 is the volume form on Z.

3.3.5 Remark. Let Z = Qm/Ĝm be compact. Given an Ad-invariant scalar product
〈·, ·〉g : g⊗ g→ R, the L2-metric on Ω1(Qm, g)Ĝmhor ∼= Ω1(Qm/Ĝm, gQm) defines a Rieman-
nian metric on Am, considered as an (infinite dimensional) manifold:

gA : TAAm ⊗ TAAm = Ω1(Qm, g)Ĝmhor ⊗Ω1(Qm, g)Ĝmhor → R,

α⊗ β 7→
∫
Z

〈α ∧ ∗β〉g.

Here we implicitly used the isomorphism Ωm(Qm,R)Ĝmhor ∼= Ωm(Z,R).

3.3.2 Spinors

Let Qm → PSO(m) ×Z PG/ε be a SpinGε (m)-structure on Z.

3.3.6 Definition (spinor). A smooth Ĝm-equivariant map u : Qm →M is said to be a
(generalized) spinor . We will denote the space of spinors by

Nm := C∞(Qm,M)Ĝm .

3.3.7 Remark. Using Proposition 2.1.22, we can also interpret spinors as sections of the
associated bundle Qm ×Ĝm M → Z.

3.3.8 Proposition. The space of spinors Nm = C∞(Qm,M)Ĝm is a smooth manifold.
The tangent space at u ∈ Nm is TuNm = Γc(Qm, u

∗TM)Ĝm ∼= C∞c (Qm, TM)Ĝmu , where
C∞c (Qm, TM)Ĝmu :=

{
v ∈ C∞c (Qm, TM)Ĝm

∣∣∣ πM ◦ v = u
}
⊂ C∞(Qm, TM)Ĝm. The pro-

jection of the tangent bundle is given by composition with πM :

TNm ⊂ C∞(Qm, TM)Ĝm πN−−→ Nm,

v 7→ πM ◦ v.

If Z is compact, then TNm = C∞(Qm, TM)Ĝm and there is a metric

TuNm × TuNm 3 v, w 7→ gN (v, w) :=
∫
Z
gMu (v, w),

where gMu is the pullback metric on u∗TM . The connector KM of the Levi-Civita connection
on M induces a connector TTNm → TNm:

KN : C∞(Qm, TTM)Ĝm → C∞(Qm, TM)Ĝm , ξ 7→ KM ◦ ξ.

The corresponding covariant derivative ∇N is compatible with the metric gN and torsion-
free.
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Proof. We discuss this in Appendix A. �

3.3.9 Remark. Proposition 2.1.22 shows that C∞(Qm,M)Ĝm ∼= Γ (Z,Qm ×Ĝm M), so
we can think of spinors as sections in the associated fibre bundle Qm ×Ĝm M with typical
fibre M . If Z is compact, then this isomorphism is smooth (cf. Note A.2.7). However,
the description of spinors as equivariant maps will be more suitable for our purposes.

3.3.10 Definition (Configuration space). Let Z be an oriented Riemannian manifold
of dimension m = dim(Z) ∈ {3, 4} and Qm → PSO(m) ×Z PG/ε a SpinGε (m)-structure on
a Z. The configuration space for the Seiberg-Witten equations is the product of the space
of spinors Nm and the affine space of connections Am:

Cm := Nm ×Am.

Note that the spaces of spinors and connections and the configuration space as well as
the gauge group depend on the SpinGε (m)-structure. Since we always consider one fixed
SpinGε (m)-structure at a time, we use the short notations Nm,Am,Cm and Gm althought
they do not reflect these dependencies.

3.3.11 Proposition. The configuration space Cm = Nm×Am is an (infinite dimensional)
smooth manifold. If Z is compact, then Cm is a Riemannian manifold with a metric
gC = pr∗N gN + pr∗A gA . Furthermore, the covariant derivative ∇N on TN and the
tautological covariant derivative on the vector space Am induce a metric compatible
covariant derivative ∇C on TCm with vanishing torsion.

Proof. We discuss this in Lemma A.2.3, Lemma A.2.10 and Proposition A.2.11. �

3.3.3 The action of the gauge group on connections and spinors

3.3.12 Lemma. The gauge group Gm acts by pullback (from the right) on the space of
connections Am.

Proof. Let A ∈ Am be a connection and ψ ∈ Gm a gauge transformation. We have to
prove that ψ∗A ∈ Am. Since ψ fixes the bundle PSO(m), we get

prso(m) ◦ψ∗A = ψ∗ prso(m) ◦A = ψ∗π∗SO(m)ϕY = π∗SO(m)ϕZ . �

3.3.13 Lemma. The gauge group Gm acts by pullback (from the right) on the space of
spinors Nm. This action can be written as Nm × C∞(Q,G)Ĝm 3 (u, g) 7→ g−1u ∈ Nm.

Proof. Let ψ ∈ Gm and g ∈ C∞(Qm, G)Ĝm be the equivariant map satisfying ψ(p) = pg(p)
for all p ∈ Qm. Then

ψ∗u(p) = u(ψ(p)) = u(pg(p)) = (g(p))−1u(p). �
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3.4 Covariant derivative

We will now define the first ingredient to our Dirac operator, the covariant derivative.
Let Qm → PSO(m) ×Z PG/ε be a SpinGε (m)-structure on Z and M a hyperkähler manifold
with a permuting SpinGε (m)-structure.

3.4.1 Definition. For a connection 1-form A ∈ Am we define a covariant derivative

dMA : C∞(Qm,M)Ĝm → C∞(Qm, (Rm)∗ ⊗ TM)Ĝm ,
〈(dMA u)(p), w〉 := Tu(w̃) for w ∈ Rn.

Here w̃ ∈ TpQm is the horizontal lift of πSO(p)(w) ∈ TπZ(p)Z.

We will also use the following variation of the concept of covariant derivative: Consider a
Ĝm-equivariant vector bundle E →M with a fixed Ĝm-equivariant connection on E and
the corresponding connector K : TE → E. We define

dEA,K : C∞(Qm, E)Ĝm → C∞(Qm, (Rm)∗ ⊗ E)Ĝm ,

dEA,Kv := (id(Rm)∗ ⊗K) ◦ dEAv, v ∈ C∞(Qm, E)Ĝm .

Here dEA : C∞(Qm, E)Ĝm → C∞(Qm, (Rm)∗ ⊗ TE)Ĝm is the covariant derivative defined
above for the total space of the vector bundle E →M .

3.4.2 Remark. For a representation M = V of Ĝm the map dMA is the covariant exterior
derivative from Definition 2.1.31 if we identify C∞(Qm, (Rn)∗ ⊗ V )Ĝm ∼= Ω1(Qm, V )Ĝmhor .

3.4.3 Remark. Notice the difference between dMA and dEA,K . While dMA generalizes the
exterior covariant derivative, dEA,K is a combination of dEA and the connector K : TE → E.
Consider a bundle of frames F → M in E → M with structure group G ⊂ GLk(R).
Then F ×G Rk = E. Lifting v ∈ C∞(Qm, E)Ĝm to v̂ : (πM ◦ v)∗F → (Rm)∗ ⊗Rk, we can
interpret the lift of dEA,Kv to (πM ◦ v)∗F as the exterior covariant derivative of v̂ with
respect to a connection 1-form on (πM ◦ v)∗F induced by the connection 1-form A on Qm

and the connection 1-form on F corresponding to the connector K. This approach is used
in [Pid04].

The other extreme would be to consider the induced covariant derivative ∇A,K on the
vector bundle π!(πM ◦ v)∗E → Z. From this perspective dEA,Kv is the lift of ∇A,Ks ∈
Γ (Z, T ∗Z⊗π!(πM ◦v)∗E) to Qm, where s ∈ Γ (Z, π!(πM ◦v)∗E) is the section corresponding
to v ∈ C∞(Qm, E)Ĝm .

However, for our purposes it is more convenient to work with Ĝm-equivariant maps from
Qm toM or the Ĝm-equivariant vector bundles. Moreover, this approach makes it easier to
understand the generalized Dirac operator as a generalization of the usual Dirac operator,
where the spinor representation is replaces by the hyperkähler manifold M .
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3.4.4 Lemma. Let A ∈ Am and K the connector of a connection on TM → M with
vanishing torsion. Then the covariant derivative

dMA : C∞(Qm,M)Ĝm → C∞(Qm, (Rm)∗ ⊗ TM)Ĝm

is smooth and we have

1. dMA u ∈ C∞(Qm, (Rn)∗ ⊗ TM)Ĝmu for u ∈ C∞(Qm,M)Ĝm and therefore defines an
element ∇Au ∈ Γ (Z, T ∗Z ⊗ π!u

∗TM),

2. TdMA = (id(Rm)∗ ⊗κM) ◦ dTMA ,

3. (id(Rm)∗ ⊗K) ◦ TdMA = dTMA,K,

4. Tu(prHA
(v)) = Tu(v) + (KM,Ĝm

A(v) )u(p) ∈ Tu(p)M for u ∈ Nm, v ∈ TpQm.

Proof.
1. Let w ∈ Rm, p ∈ Qm and w̃ ∈ TpQm the horizontal lift of πSO(p)(w) ∈ TZ. Then

πM(〈(dMA u)(p), w〉) = πM(Tu(w̃)) = u(πQm(w̃)) = u(p)

and therefore dMA u ∈ C∞(Qm, (Rn)∗ ⊗ TM)Ĝmu . The image of dMA u under the
isomorphism C∞(Qm, (Rn)∗ ⊗ TM)Ĝmu ∼= Γ (Qm, (Rn)∗ ⊗ u∗TM)Ĝm ∼= Γ (Z, T ∗Z ⊗
π!u
∗TM) is denoted by ∇Au.

2. Let v ∈ C∞(Qm, TM)Ĝmu and γ : R→ C∞(Qm,M)Ĝm a smooth path representing
v = d

dt
γ(t)|t=0. Let w ∈ Rm and p ∈ Qm. Denote the horizontal lift of πSO(p)(w) ∈

TπZ(p)Z by w̃ ∈ TpQm. Let σ : R→ Qm be a smooth path representing d
dt
σ(t)|t=0 =

w̃ ∈ TpQm. Then

〈TudMA (v)(p), w〉 = 〈 d
dt

(dMA (γ(t)))(p)|t=0, w〉 = d
dt
〈(dMA (γ(t)))(p), w〉|t=0

= d
dt
Tγ(t)(w̃)|t=0 = d

dt
d
ds
γ(t)(σ(s))|s=0|t=0

= κM
d
ds

d
dt
γ(t)(σ(s))|t=0|s=0 = κM

d
ds
v(σ(s))|s=0 = κMTv(w̃)

= 〈(id(Rm)∗ ⊗κM) ◦ dTMA (v)(p), w〉.

3. Since the torsion of the connection on TM → M with connector K vanishes, we
can use Theorem 2.1.39 to prove the third assertion:

(id(Rm)∗ ⊗K) ◦ T (dMA ) = (id(Rm)∗ ⊗(K ◦ κM)) ◦ dTMA = (id(Rm)∗ ⊗K) ◦ dTMA .

4. For ξ ∈ Ĝm, let KQm,Ĝm
ξ ∈ Γ (Qm, TQm) be the fundamental vector field for the

right Ĝm-action on Qm. Then, for all p ∈ Qm:

Tu((KQm,Ĝm
ξ )p) = d

dt
u(p exp(tξ))|t=0 = d

dt
exp(−tξ)u(p)|t=0 = −(KM,Ĝm

ξ )u(p)

= −
(
KM,Ĝm

A(KM,Ĝm
ξ

)

)
u(p)

.
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Since A(v) = 0 for horizontal v ∈ TQm, this equation can be written as

Tu(prVA
(v)) = −(KM,Ĝm

A(v) )u(p) for all v ∈ TQm.

Finally, we obtain

Tu(prHA
(v))=Tu(v)− Tu(prVA

(v)) = Tu(v) + (KM,Ĝm
A(v) )u(p) for all v ∈ TpQm.

�

3.4.5 Remark. Under the isomorphism C∞(Qm, (Rm)∗ ⊗ TM)Ĝm ∼= Ω1(Qm, TM)Ĝmhor ,
the covariant exterior derivative dMA u corresponds to pr∗HA

Tu. The last assertion in
Lemma 3.4.4 gives an explicit formula for pr∗HA

Tu.

3.4.6 Example. For G = S1 and M = H as in Example 3.2.2 we have

N3 = C∞(Q3,H)Spinc(3) ∼= Γ (Y,W) and N4 = C∞(Q4,H)Spinc(4) ∼= Γ (X,W+).

In this case the generalized spinors are exactly the usual spinors. The covariant derivative
is the usual covariant derivative.

3.5 Clifford multiplication and hyperkähler manifolds

We will now study the Clifford multiplication, which is the second ingedient for a Dirac
operator. Let (M, gM , I1, I2, I3) be a hyperkähler manifold with a permuting SpinGε (3)-
action. We also have an induced action of SpinGε (3) on TM .

3.5.1 Clifford multiplication in three dimensions

The first observation is that we can use the scalar multiplication to construct an action of
Cl3 on TM .

3.5.1 Lemma. The tangent bundle TM → M is a bundle of Cl3-modules. The corre-
sponding homomorphism c3 : R3 ⊗ TM → TM is SpinGε (3)-equivariant.

Proof. Let {e1, e2, e3} be the standard basis of R3. Since (−I`)2 = − idTM , the map

R3 → End (TM) ,
e` 7→ −I` for ` ∈ {1, 2, 3}

induces a homomorphism c3 : Cl3 → End (TM). Identifying R3 with Im(H), we have

c3(h) = Ih : TM → TM for all h ∈ Im(H).
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We will also denote the restriction R3⊗TM → TM , h⊗ v 7→ c3(h)(v) = Ih̄(v) by c3. Let
[(q, g)] ∈ SpinGε (3). Since the SpinGε (3)-action is permuting, we have

g∗q∗c3(h⊗ v)=g∗q∗Ih̄(v)=q∗Ih̄(g∗v)=q∗Ih̄(q̄∗q∗g∗v)=Iqh̄q̄(q∗g∗v)=c3(qhq̄ ⊗ q∗g∗v)

for all h ∈ R3 = Im(H) and v ∈ TM . Therefore, c3 : R3 ⊗ TM → TM is SpinGε (3)-
equivariant. �

3.5.2 Note. We use the action of Cl3 on TM induced by e` 7→ −I` and not e` 7→ I`.
Therefore,

c3(vol3) = c3(e1e2e3) = c3(e1)c3(e2)c3(e3) = (−I1)(−I2)(−I3) = idTM .

This choice is the analogue of the choise of the Cl3-representation S in Section 2.3.2,
where the volume element also acts as the identity. It is also possible to use the other
Cl3-module structure to define a Dirac operator. However this choice will be useful in
Chapter 5, where we study the Seiberg-Witten equations on the cylinder.

3.5.3 Remark. With the help of the isomorphism g] : (R3)∗ ∼= R3 induced by the
standard metric on R3 we can also interpret the Clifford multiplication as a SpinGε (3)-
equivariant homomorphism

(R3)∗ ⊗ TM → TM,

x⊗ v 7→ c3(g](x))(v).

We also have the corresponding map c3 : Γ (M, (R3)∗ ⊗ TM) → Γ (M,TM) and for a
SpinGε (3)-structure Q3 → PSO(3) ×Y PG/ε, this induces a smooth map

C∞(Q3, (R3)∗ ⊗ TM)SpinGε (3) → C∞(Q3, TM)SpinGε (3),

which we also denote by c3. This will be the Clifford multiplication used in the definition
of the Dirac operator on three-dimensional manifolds.

3.5.4 Lemma. Let K : TTM → TM be the connector for the Levi-Civita connection on
M .

1. The Clifford multiplication c3 : Γ (M, (R3)∗ ⊗ TM) → Γ (M,TM) is parallel with
respect to the Levi-Civita connection, i.e. ∇(c3) = 0.

2. KT (c3) = c3 ◦ (id(R3)∗ ⊗K).

Proof. Let s ∈ Γ (M, (R3)∗ ⊗ TM) and v ∈ TM . Let {e1, e2, e3} be the standard basis of
R3 and {e∗1, e∗2, e∗3} the dual basis of (R3)∗. Then s = ∑3

`=1 e
∗
` ⊗ s` for s` = 〈s, e`〉. The

complex structures are parallel (∇I` = 0) and hence

∇v(c3(s))) =
3∑
`=1
∇v(c3(e∗` ⊗ s`)) = −

3∑
`=1
∇v(I`(s`))

= −
3∑
`=1

I`(∇vs`) =
3∑
`=1

c3(e∗` ⊗∇v(s`))

= c3(∇v(s)).
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This implies that the Clifford multiplication c3 : Γ (M, (R3)∗ ⊗ TM)→ Γ (M,TM) is par-
allel. Let us now consider the connector K : TTM → TM for the Levi-Civita connection.
For a vertical v ∈ (R3)∗⊗ TTM , i.e. v = (id(R3)∗ ⊗vlTM )(v1, v2) for v1, v2 ∈ (R3)∗⊗ TxM ,
we have (id(R3)∗ ⊗K)(v) = (id(R3)∗ ⊗K)((id(R3)∗ ⊗vlTM)(v1, v2)) = pr2(v1, v2) = v2 and
therefore

K(Tc3(v)) = K( d
dt
c3(v1 + tv2)|t=0) = K( d

dt
c3(v1) + tc(v2)|t=0)

= K(vlTM(c3(v1), c3(v2))) = c3(v2)
= c3((id(R3)∗ ⊗K)((id(R3)∗ ⊗vlTM)(v1, v2)))
= c3((id(R3)∗ K((v))

On the other hand, if v ∈ (R3)∗⊗TTM is not vertical, then 0 6= (id(R3)∗ ⊗TπM )(v) ∈ TM .
Since w := TπM(v) 6= 0, we can find a section s ∈ Γ (M, (R3)∗ ⊗ TM) such that
v = Ts(w) ∈ (R3)∗ ⊗ TTM . Then

KTc3(v) = KT (c3 ◦ s)(w) = ∇w(c3(s)) = ∇w(c3)(s) + c3(∇w(s))
= c3((id(R3)∗ ⊗K)(Ts(w))) = c3 ◦ (id(R3)∗ ⊗K)(v)

for all v ∈ (R3)∗ ⊗ TTM with (id(R3)∗ ⊗TπM)(v) 6= 0. Combining the results for vertical
and non-vertical vectors, we can conclude that

K ◦ Tc3 = c3 ◦ (id(R3)∗ ⊗K). �

We will now give a different description of the spinor bundles. Note that the permuting
action implies that

Iq̄q∗Iζ = Iq̄q∗Iζ q̄∗q∗ = Iq̄Iqζq̄q∗ = IζIq̄q∗ for all q ∈ Sp(1) and ζ ∈ sp(1), ‖ζ‖2 = 1.

Therefore the diffeomorphism Iq̄q∗ : TM → TM commutes with the complex structures
and thus also with the scalar multiplication. We can define an action of Sp(1)× G on
TM by

(Sp(1)×G)× TM 3 ((q, g), v) 7→ g∗q∗Iqv ∈ TM. (3.2)

The element (−1, ε) acts as − idTM . The bundle TM with this action is denoted by
E to distinguish the action from the induced one of Ĝ3. Let S = H be the standard
Cl3-representation from Section 2.3.2. The element −1 ∈ Sp(1) ∼= Spin(3) also acts as
− id on S. Therefore the action of group Ĝ3 on S⊗CE is well-defined. Here we think of S
as the trivial vector bundle with fibre S and use the complex structures Ri ∈ End (S) and
I1 ∈ End (E) to form the tensor product (i.e. hi⊗ v = h⊗ I1(v) for all h ∈ S = H, v ∈ E).

3.5.5 Lemma ([Hay06, Prop 3.1.1]). For the two complex vector bundles TM ⊗C =
(TM ⊗ C, id⊗i) and E = (TM, I1) and the complex vector space S = (H, Ri) we have an
isomorphism of Ĝ3-equivariant vector bundles over M :

Ψ : TM ⊗ C ∼−→ S ⊗C E,
v ⊗ z 7→ z ⊗ v − jz ⊗ I2(v).

Furthermore, Ψ ◦ (Ih ⊗ idC) = (Ih ⊗ idE) ◦ Ψ for all h ∈ H.
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Proof. From

Ψ(I1(v)⊗ z)=z ⊗ I1(v)+jz ⊗ I1I2(v)= iz ⊗ v−ijz ⊗ I2(v)=(Li ⊗ idE)Ψ(v ⊗ z),
Ψ(I2(v)⊗ z)=z ⊗ I2(v)+jz ⊗ v=−jjz ⊗ I2(v)+jz ⊗ v=(Lj ⊗ idE)Ψ(v ⊗ z),
Ψ(I3(v)⊗ z)=z ⊗ I3(v)−jz ⊗ I1(v)=−kjz ⊗ I2(v)+kz ⊗ v=(Lk ⊗ idE)Ψ(v ⊗ z),

we can conclude that Ψ ◦ (Ih ⊗ idC) = (Ih ⊗ idE) ◦ Ψ for all h ∈ H.

For all g ∈ G, v ∈ TM, z ∈ C we have

Ψ(g∗v ⊗ z)=z ⊗ g∗v − jz ⊗ I2(g∗v)=z ⊗ g∗v − jz ⊗ g∗I2(v)=(idS ⊗g∗)(Ψ(v ⊗ z)).

This proves that Ψ is G-equivariant. For q ∈ Sp(1), v ∈ TM and z ∈ C we have

Ψ(q∗v ⊗ z) = Ψ(q∗Iq̄Iqv ⊗ z) = z ⊗ q∗Iq̄Iqv − jz ⊗ I2(q∗Iq̄Iqv)
= z ⊗ q∗Iq̄Iqv − jz ⊗ q∗Iq̄I2(Iqv) = (idS ⊗q∗Iq̄)(Ψ(Iqv ⊗ z))
= (Lq ⊗ q∗Iq̄)(Ψ(v ⊗ z)),

and therefore, Ψ is Sp(1)-equivariant and thus SpinGε (3)-equivariant. �

3.5.6 Corollary. For the Clifford multiplication we have

Ψ ◦ (c3(v)⊗ idC) = (c3(v)⊗ idE) ◦ Ψ for all v ∈ R3.

3.5.7 Remark. The real structure on TM⊗C given by complex conjugation corresponds
to the real structure on S ⊗C E given by r := −Rj ⊗ I2:

Ψ(v ⊗ z̄) = z̄ ⊗ v − jz̄ ⊗ I2(v) = jzj ⊗ I2
2 (v)− zj ⊗ I2(v) = (−Rj ⊗ I2)(Ψ(v ⊗ z))

for all v ∈ TM, z ∈ C. The restriction of Ψ : TM ⊗ C → S ⊗C E to the real parts is
a SpinGε (3)-equivariant isomorphism Ψ : TM → [S ⊗C E]r, and we have a commuting
diagram

(R3)∗ ⊗ TM
Ψ

��

c3 // TM

Ψ
��

(R3)∗ ⊗ [S ⊗C E]r
c3⊗idE // [S ⊗C E]r

where the map at the bottom is induced by the usual Clifford multiplication (R3)∗⊗S → S.

3.5.2 Clifford multiplication in four dimensions

To define the nonlinear Dirac operator in four dimensions, we need to replace the Clifford
multiplication R4 ⊗ S+ → S−. In particular, we need a replacement for S+ and S− and
the Cl4-module S+⊕ S−. In Lemma 2.3.16, we have seen that S+⊕ S− ∼= Cl4⊗Cl04 S. At
this point, the following proposition is useful.
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3.5.8 Proposition ([LM89, Ch I Prop 5.20]). There is a natural equivalence between
the category of (ungraded) Cl04-modules and the category of Z/2Z-graded Cl4-modules.
The functors are given as follows: A Cl04-module V is mapped to Cl4 ⊗Cl04 V with the
left multiplication as Cl4-module structure and the grading induced by the grading of Cl4.
A Z/2Z-graded module W = W 0 ⊕W 1 is mapped to its even part W 0. Since the even
elements preserve the grading, this is a Cl04-module.

We can apply the same construction to TM , which replaces the Cl3-module S. Since
TM is a bundle of left Cl04-modules, we obtain a bundle of Z/2Z-graded Cl4-modules
T̂M . Since we also have to take care of the action of SpinGε (4) on M and TM , we again
consider the bundle E. This is the bundle TM with the Sp(1)+ ×G-action from (3.2).
We define

T̂M := Cl4 ⊗Cl04 E,

with the grading induced by the Z/2Z-grading of Cl4, i.e. T̂M = T̂M0 ⊕ T̂M1, T̂M0 =
Cl04 ⊗Cl04 E and T̂M1 = Cl14 ⊗Cl04 E. We also consider the action of SpinGε (3) on T̂M ,
which is induced by the action of Spin(4) on Cl4 by left multiplication and the action of
Sp(1)+ ×G on E:

SpinGε (4)× T̂M 3 ([(z, g)], β ⊗ v) 7→ zβ ⊗ Iπ+z(π+z)∗g∗v ∈ T̂M

Here π+z is the image of z ∈ Spin(4) → Sp(1)+. This is a well-defined action since
(−1,−1, ε) acts as − idE on E and as − idCl4 on Cl4, and

zβe`e0 ⊗ Iπ+z(π+z)∗g∗v = −zβ ⊗ I`Iπ+z(π+z)∗g∗v = −zβ ⊗ Iπ+z(π+z)∗I`g∗v
= −zβ ⊗ Iπ+z(π+z)∗g∗I`v

for all z ∈ Spin(4), β ∈ Cl4, g ∈ G and v ∈ E.

Restricting the Cl4-action by multiplication from the left to R4 ⊂ Cl4, we obtain a Clifford
multiplication c4 : R4 → End

(
T̂M

)
, which interchanges the even and odd part of T̂M .

To describe the action of SpinGε (4) on T̂M1, we have to consider yet another action of
SpinGε (4) on TM :

SpinGε (4)× TM 3 ([(z, g)], w) 7→ Iπ−zIπ+z(π+z)∗g∗w ∈ TM,

where z ∈ Spin(4) and (π+z, π−z) ∈ Sp(1)+ × Sp(1)− its image under the isomorphism
Spin(4) ∼= Sp(1)+ × Sp(1)−. We denote TM with this action by TM˜ . The following
lemma is the analogue of Lemma 2.3.16:

3.5.9 Lemma. There is an equivariant isomorphism of SpinGε (4)-equivariant vector
bundles

Ψ : TM ⊕ TM˜ ∼−→ T̂M

(v, w) 7→ (1⊗ v + e0 ⊗ w)

In particular, T̂M0 ∼= TM and T̂M1 ∼= TM˜ as SpinGε (4)-equivariant vector bundles.
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Under the isomorphism End
(
T̂M

) ∼= End
(
TM ⊕ TM˜

)
, the Clifford multiplication on

T̂M corresponds to the map

e0 7→
(

0 − idTM
idTM 0

)
and e` 7→

(
0 c3(e`)

c3(e`) 0

)
for ` ∈ {1, 2, 3}.

Proof. The same argument as in Lemma 2.3.16 applied fibrewise shows that Ψ is an
isomorphism of vector bundles. Furthermore,

c4(e0)Ψ(v, w) = c4(e0)(1⊗ v + e0 ⊗ w) = −1⊗ w + e0 ⊗ v = Ψ(−w, v)

and

c4(e`)(1⊗ v + e0 ⊗ w) = e` ⊗ v + e`e0 ⊗ w = 1⊗ c3(e` ⊗ w) + e0 ⊗ c3(e` ⊗ v)
= Ψ(c3(e` ⊗ w), c3(e` ⊗ v))

for all x ∈ M , v, w ∈ TxM and ` ∈ {1, 2, 3}. This proves the asserted formula for the
Clifford multiplication.

Next, we prove that Ψ is G-equivariant. For g ∈ G and (v, w) ∈ TM ⊕ TM we have

Ψ(g∗v, g∗w) = 1⊗ g∗v + e0 ⊗ g∗w = (1⊗ g∗)(Ψ(v, w)). (3.3)

We now consider the Spin(4)-actions. Note that Spin(4) ⊂ Cl04
∼= Cl3 = Cl+3 ⊕ Cl−3 .

The image of e1 ∈ Cl3 under the isomorphism Cl3 ∼= H ⊕ H from Examples 2.3.4 is
(−i, i) ∈ H⊕H and π+(−i, i) = −i, π−(−i, i) = i. Therefore,

(Le1e0 ⊗ idE)(Ψ(v, w))=e1e0 ⊗ v + e1e0e0 ⊗ w=−1⊗ I1(v) + e0 ⊗ I1(w)
=1⊗ I−i(v) + e0 ⊗ Ii(w)=1⊗ Iπ+(−i,i)(v) + e0 ⊗ Iπ−(−i,i)(w)
=Ψ(Iπ+(−i,i)(v), Iπ−(−i,i)(w))

for all (v, w) ∈ TM ⊕ TM . The same formula holds if we replace e1 by e2 or e3 and i by
j or k, respectively. Since the elements e`e0 (` ∈ {1, 2, 3}) generate Cl04, we obtain

(Lz ⊗ idE)(Ψ(v, w)) = z(1⊗ v + e0 ⊗ w) = 1⊗ Iπ+zv + e0 ⊗ Iπ−zw
= Ψ(Iπ+zv, Iπ−zw)

(3.4)

for all z ∈ Cl04 ∼= Cl3 and (v, w) ∈ TM ⊕ TM . In particular, this holds for all elements of
the group Spin(4) ⊂ Cl04.

Furthermore,

(idCl4 ⊗Iπ+z(π+z)∗)(Ψ(v, w)) = 1⊗ Iπ+z(π+z)∗v + e0 ⊗ Iπ+z(π+z)∗w
= Ψ(Iπ+z(π+z)∗v, Iπ+z(π+z)∗w)

(3.5)

for all z ∈ Spin(4) and (v, w) ∈ TM ⊕ TM .



50 Chapter 3. The nonlinear Dirac operator

Finally, combining the equations (3.3), (3.4) and (3.5), we obtain

(Lz ⊗ Iπ+z(π+z)∗g∗)(Ψ(v, w)) = (Lz ⊗ Iπ+z(π+z)∗)(Ψ(g∗v, g∗w))
= (Lz ⊗ idE)(Ψ(Iπ+z(π+z)∗g∗v, Iπ+z(π+z)∗g∗w))
= Ψ(Iπ+zIπ+z(π+z)∗g∗v, Iπ−zIπ+z(π+z)∗g∗w)
= Ψ((π+z)∗g∗v, Iπ−zIπ+z(π+z)∗g∗w)

for all z ∈ Spin(4), g ∈ G and (v, w) ∈ TM⊕TM . This proves that Ψ : TM⊕TM˜ → T̂M
is SpinGε (4)-equivariant. �

3.5.10 Corollary. c4(e0)−1c4(e`) = c3(e`) ∈ End (TM) = End
(
T̂M0

)
for ` ∈ {1, 2, 3}.

3.5.11 Corollary (4D Clifford multiplication). We have

T̂M ∼= [(S+ ⊕ S−)⊗C E]r

with T̂M0 ∼= [S+ ⊗C E]r and T̂M1 ∼= [S− ⊗C E]r and the 4-dimensional Clifford multipli-
cation can be interpreted as a SpinGε (4)-equivariant homomorphism

c4 : R4 ⊗ TM → [S− ⊗C E]r.

In particular, we have a commuting diagram

R4 ⊗ T̂M0

o

��

c3 // T̂M1

o

��

R4 ⊗ TM

∼
66mmmmmmmmmmmmm

∼

((QQQQQQQQQQQQQ

R4 ⊗ [S+ ⊗C E]r
c3⊗idE // [S− ⊗C E]r

Proof. Using TM ∼= [S ⊗C E]r, we obtain an isomorphism of Cl4-modules

T̂M = Cl4 ⊗Cl04 TM
∼= Cl4 ⊗Cl04 [S ⊗C E]r = [Cl4 ⊗Cl04 S ⊗C E]r = [(S+ ⊕ S−)⊗C E]r

where the even and odd parts are T̂M0 ∼= [S+ ⊗C E]r and T̂M1 ∼= [S− ⊗C E]r. The real
structure on S± ⊗C E is again r = −Rj ⊗ I2. �

3.5.12 Remark. Our convention from Note 3.5.2 implies that the restriction of c4(vol4)
to TM = T̂M0 is

c4(vol4) = c4(e0e1e2e3) = −c4(e1e0e2e0e3e0) = −c3(e1e2e3) = − idTM .

3.5.13 Remark. Using the isomorphism g] : (R4)∗ ∼= R4 induced by the standard
scalar product on R4, we can also understand the Clifford multiplication as a SpinGε (4)-
equivariant homomorphism

(R4)∗ ⊗ TM → T̂M1 ∼= [S− ⊗ E]r ∼= TM˜ ,

x⊗ v 7→ c4(g](x))(v).
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For a SpinGε (4)-structure Q4 → PSO(4) ×Y PG/ε, this induces a smooth map

C∞(Q4, (R4)∗ ⊗ TM)SpinGε (4) → C∞(Q4, T̂M
1)SpinGε (4),

which we also denote by c4. This will be the Clifford multiplication used in the definition
of the Dirac operator on four-dimensional manifolds.

3.6 Dirac operator

We define the Dirac operator as the composition of the covariant derivative and Clifford
multiplication.

3.6.1 Definition (Dirac operator). The (three-dimensional) Dirac operator DA for a
connection A ∈ A3 is defined to be the composition

C∞(Q3,M)Ĝ3
dMA−−→ C∞(Q3, (R3)∗ ⊗ TM)Ĝ3 c3−→ C∞(Q3, TM)Ĝ3 ,

DAu := c3(dMA u).

The (four-dimensional) Dirac operator D+
A for a connection A ∈ A4 is defined to be the

composition

C∞(Q4,M)Ĝ4
dMA−−→ C∞(Q4, (R4)∗ ⊗ TM)Ĝ4 c4−→ C∞(Q4, T̂M

1)Ĝ4 ,

D+
Au := c4(dMA u).

3.6.2 Remark. Using the isomorphism T̂M1 ∼= [S−⊗CE]r from Corollary 3.5.11, we can
also interpret the Dirac operator as a map D+

A : C∞(Q4,M)Ĝ4 → C∞(Q4, [S− ⊗C E]r)Ĝ4 .

3.6.3 Note. Notice that

F3 := C∞(Q3, TM)Ĝ3 → C∞(Q3,M)Ĝ3 = N3

v 7→ πM ◦ v

and

F4 := C∞(Q4, T̂M
1)Ĝ4 → C∞(Q4,M)Ĝ4 = N4

v 7→ πM ◦ v

are vector bundles Fm → Nm. The fibres of these bundles are C∞(Q3, TM)Ĝ3
u
∼=

Γ (Y, π!u
∗TM) and C∞(Q4, T̂M

1)Ĝ4
u
∼= Γ (X, π!u

∗T̂M1) ∼= Γ (X, π![S− ⊗ u∗E]r), respec-
tively. The first part of Lemma 3.4.4 implies that the Dirac operators DA and D+

A are
sections of these bundles.
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3.6.4 Example (Spinc Dirac operator). For M = H, G = S1 as in Example 3.2.2,
the tangent bundle TM = H×H pr1−−→ H = M is the trivial bundle with fibre H.

Interpreting M as a hyperkähler manifold with permuting SpinS1
−1(3) = Spinc(3)-action,

this is the trivial bundle with fibreW . The equivariant map dMA u ∈ C∞(Q3, (R3)∗⊗TM)Ĝ3

corresponds to the section ∇A(u) ∈ Γ (Y, T ∗Y ⊗ S). Furthermore, c3(h⊗ v) = Ih̄(v) for
h ∈ Im(H) ∼= R3, x ∈ M and v ∈ TxM = W . This is the usual Clifford multiplication
and therefore DA is the usual Spinc(3) Dirac operator.

If we interpret the action as a permuting SpinS1
−1(4)-action, this is the trivial bundle

with fibre W+. The equivariant map dMA u ∈ C∞(Q4, (R4)∗ ⊗ TM)Ĝ4 corresponds to the
section ∇A(u) ∈ Γ (X,T ∗X⊗W+). Again, c4(h⊗ v) = Ih̄(v) for h ∈ H ∼= R4, x ∈M and
v ∈ TxM = W+ is the usual Clifford multiplication and D+

A is the usual Spinc(4)-Dirac
operator D+

A : Γ (X,W+)→ Γ (X,W−).

3.6.5 Example (twisted Dirac operator). Let Y be an oriented 3-dimensional Rie-
mannian manifold Y with a Spin(3)-structure PSpin(3) → PSO(3) and let ξ → Y be a
Riemannian vector bundle of rank k with a metric compatible covariant derivative ∇ξ.
Consider a bundle P of orthonormal frames in ξ, so ξ = P ×O(k)R

k. The covariant deriva-
tive ∇ξ corresponds to a connection a on P . Take Q3 = PSpin(3) ×Y P , G = Z/2Z×O(k)
and ε = (−1, 1). Then SpinGε (3) = Spin(3)×O(k). LetM = S⊗Rk with the hyperkähler
structure induced from S. Using the connection A = a+ π∗SO(m)ϕY ∈ A3, we recover the
twisted Dirac operator

Dξ : Γ (S ⊗ ξ) ∇
S⊗ξ
−−−→ Γ (T ∗Z ⊗ S ⊗ ξ) c3⊗idξ−−−−→ Γ (S ⊗ ξ).

A similar construction can be done for m = 4, where we recover

Dξ,+ : Γ (S+ ⊗ ξ) ∇
S+⊗ξ
−−−−→ Γ (T ∗Z ⊗ S+ ⊗ ξ) c4⊗idξ−−−−→ Γ (S− ⊗ ξ).

This construction can also be modified to work if only a Spinc(m)-structure is given. One
has to replace S by W (or S± by W±) and take G = S1 × O(k) with ε = (−1, 1) and
Qm = PSpinc(m) ×Z P . In this case, one has to choose an additional connection on PS1 for
the Spinc(m)-structure.

3.6.1 The linearized Dirac operator

We will now linearize the Dirac operator in three dimensions. Let Q3 → PSO(3) ×Y PG/ε
be a SpinGε (3)-structure on a compact oriented Riemannian manifold Y .

3.6.6 Definition. Using the connector K : TTM → TM for the Levi-Civita connection
on M , we define the linearized Dirac operator Dlin,uA (at u ∈ C∞(Q3,M)Ĝ3) to be

Dlin,uA : C∞(Q3, TM)Ĝ3
u → C∞(Q3, TM)Ĝ3

u ,

v 7→ K ◦ TuDA(v).
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3.6.7 Remark. Note that the linearized Dirac operator Dlin,uA is the covariant derivative
∇N DA at u ∈ N3, where ∇N is the metric compatible covariant derivative corresponding
to the connector KN in Proposition 3.3.8.

3.6.8 Lemma. We have

Dlin,uA = c3 ◦ dTMA,K ,

where K : TTM → TM is the connector for the Levi-Civita connection on M .

Furthermore, for each v, w ∈ C∞(Q3, TM)Ĝ3
u :

gN (Dlin,uA v, w) = gN (v,Dlin,uA w).

Proof. From Lemma 3.5.4 we obtain

Dlin,uA (v) = K ◦ TuDA(v) = K ◦ T (c3)T (dMA )(v) = c3 ◦ (id(R3)∗ ⊗K) ◦ T (dMA )(v)
= c3 ◦ dTMA,K(v).

Consider the covariant derivative ∇u∗TM on u∗TM → Q3, which is the pullback of the
Levi-Civita connection on M . For Z ∈ TQ3 and v ∈ C∞(Q3, TM)Ĝ3

u
∼= Γ (Q3, u

∗TM)Ĝ3

we obtain

∇u∗TM
Z v = KTv(Z).

Since the Levi-Civita connection is compatible with the metric on M , the pullback ∇u∗TM

is compatible with the pullback metric on u∗TM :

gM(∇u∗TMv, w) + gM(v,∇u∗TMw) = d(gM(v, w)) for all v, w ∈ C∞(Q3, TM)Ĝ3
u .

Note that if we insert a horizontal lift X̃ ∈ TQ (with respect to A) of X ∈ TY , the right
hand side is

d(gM(v, w))(X̃) = dA(gM(v, w))(X̃) = dπ!(gM(v, w))(X),

where π!(gM(v, w)) ∈ C∞(Y,R) is induced by gM(v, w) : Q3 → R, and its exterior
derivative on Y is dπ!(gM(v, w)) ∈ Ω1(Y,R).

Fix a point p ∈ Q3, y := πY (p) and let X` := πSO(p)(e`) ∈ TyY for ` ∈ {1, 2, 3}. Extend
X` ∈ TyY to (locally) parallel vector fields X` ∈ Γ (Y, TY ). This means that ∇X` = 0 for
the Levi-Civita connection ∇ on Y . Since TY is the associated bundle TY = Q3 ×Ĝ3

R3,
these correspond to Ĝ3-equivariant maps f` : Q3 → R3. In particular, X` = πSO(p)(e`)
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implies that f`(p) = e`. With these choices, we obtain

gM(Dlin,uA (v)(p), w(p)) =gM(c3d
TM
A,Kv(p), w(p))

=
3∑
`=1

gM(c3(e` ⊗∇u∗TM
X̃`

v)(p), w(p))

=−
3∑
`=1

gM(∇u∗TM
X̃`

v(p), c3(e` ⊗ w)(p))

=−
3∑
`=1

gM(∇u∗TM
X̃`

v(p), c3(f`(p)⊗ w(p)))

=−
3∑
`=1

d(gM(v, c3(f` ⊗ w)))(X̃`)

+
3∑
`=1

gM(v(p),∇u∗TM
X̃`

(c3(f` ⊗ w))).

(3.6)

Define a vector field Uv,w ∈ Γ (Y, TY ) by gY (Uv,w, Z) = π!(gM(v, c3(fZ ⊗ w))) for Z ∈
Γ (Y, TY ) and fZ : Q3 → R3 the corresponding Ĝ3-equivariant map. Then the first
summand on the right hand side of equation (3.6) is

−
3∑
`=1

d(gM(v, c3(f` ⊗ w)))(X̃`) = −
3∑
`=1

dπ!(gM(v, c3(f` ⊗ w)))(X`)

= −
3∑
`=1

d(gY (Uv,w, X`))(X`)

= −
3∑
`=1

gY (∇X`Uv,w, X`))−
3∑
`=1

gY (Uv,w,∇X`X`))

= −
3∑
`=1

gY (∇X`Uv,w, X`))

= − div(Uv,w).

Since the Clifford multiplication c3 as well as the vector fields X` (` ∈ {1, 2, 3}) are parallel
(Lemma 3.5.4), the second summand on the right hand side of equation (3.6) is

3∑
`=1

gM(v(p),∇u∗TM
X̃`

(c3(f` ⊗ w))) =
3∑
`=1

gM(v(p), c3(f` ⊗∇u∗TM
X̃`

w)(p))

= gM(v(p),Dlin,uA (w)(p)).

We obtain

gM(Dlin,uA (v)(p), w(p)) = gM(v(p),Dlin,uA (w)(p))− div(Uv,w)(y).

In particular, integrating over the compact manifold Y , the integral of the divergence
div(Uv,w) vanishes and we obtain

gN (Dlin,uA v, w) = gN (v,Dlin,uA w). �
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Under the assumptions of Proposition 3.2.6, the nonlinear Dirac operator DA is determined
by its linearization:

3.6.9 Lemma. Assume that the fundamental vector fields for the permuting action satisfy
IζKM,Sp(1)

ζ = −χ for a vector field χ ∈ Γ (M,TM) and all ζ ∈ sp(1), ‖ζ‖2 = 1. Then

Dlin,uA (χ ◦ u) = DA(u).

Proof. Let ρ : M → R be the hyperkähler potential from Proposition 3.2.6. Then
χ = grad(ρ) and KTχ = ∇Kχ = idΓ (M,TM), where K is the connector for the Levi-Civita
connection on M . Using Lemma 3.4.4 we obtain

〈(dTMA,K(χ ◦ u))(p), w〉 = KTχTu(w̃) = Tu(w̃) = 〈(dMA u)(p), w〉
for all w ∈ R3, p ∈ Q3 and where w̃ ∈ TpQ3 is the horizontal lift of πSO(p)(w) ∈ TπY (p)Y .
Therefore, dTMA,K(χ ◦ u) = dMA u and with the help of Lemma 3.6.8, we conclude that

Dlin,uA (χ ◦ u) = c3(dTMA,K(χ ◦ u)) = c3(dMA u) = DAu. �

3.6.2 The Dirac operator and the gauge group

3.6.10 Lemma. Let u ∈ Nm be a spinor, A ∈ Am a connection and ψ ∈ Gm a gauge
transformation. Let g : Qm → G be the map satisfying ψ(p) = pg(p) for all p ∈ Q3. Then

Dψ∗A(ψ∗u) = g−1
∗ DA(u) = ψ∗(DA(u)) for m = 3

and
D+
ψ∗A(ψ∗u) = g−1

∗ D+
A(u) = ψ∗(D+

A(u)) for m = 4.

Proof. For a connection 1-form A and a gauge transformation ψ ∈ Gm, we have
Hψ∗A = ker(ψ∗A) = Tψ−1HA.

The horizontal projection prHψ∗A
can also be expressed in terms of prHA

and ψ:

prHψ∗A
= Tψ−1 prHA

Tψ.

In particular, the horizontal lift w̃A ∈ Tψ(p)Qm of πSO(ψ(p))(w) ∈ TπY (p)Y with respect to
A is given by w̃A = Tpψ(w̃ψ∗A), where w̃ψ∗A ∈ TpQm is the horizontal lift of πSO(p)(w) ∈
TπY (p)Y with respect to ψ∗A. We obtain

〈(dψ∗A(ψ∗u))(p), w〉 = Tψ(p)u(Tpψ(w̃ψ∗A)) = Tψ(p)u(w̃A) = 〈(dAu)(ψ(p)), w〉,
and thus dψ∗A(ψ∗u) = ψ∗(dAu). Finally, for m = 3:

Dψ∗A(ψ∗u)(p) = c3(dψ∗A(ψ∗u)(p)) = c3(dMA u(ψ(p)))
= ψ∗(DAu)(p).

The map DA(u) is G-equivariant by construction, hence for p ∈ Q3:
Dψ∗A(ψ∗u)(p) = ψ∗(DA(u)) = DA(u)(ψ(p)) = DA(u)(pg(p)) = g−1(p)∗DA(u)(p).

The same arguments holds for m = 4 if we substitute D+
A for DA and c4 for c3. �





Chapter 4

The Seiberg-Witten equations

In this chapter, we will study the Seiberg-Witten equations associated to a hyperkähler
manifold with permuting SpinGε (m)-action for m ∈ {3, 4}. For this purpose, we fix a
compact Lie group G, an central element ε ∈ Z(M) satisfying ε2 = 1, a SpinGε (3)-structure
Q3 → PSO(3)×Y PG/ε on a 3-dimensional compact oriented Riemannian manifold Y and a
SpinGε (4)-structure Q4 → PSO(4)×XPG/ε on a 4-dimensional compact oriented Riemannian
manifold X. To write the Seiberg-Witten equations, we also fix an Ad-invariant scalar
product 〈·, ·〉g on the Lie algebra g. We use this to identify g ∼= g∗. For a compact Lie
group G with semisimple Lie algebra g we can take 〈x, y〉g = −B(x, y), where B is the
Killing form B(x, y) := tr(ad(x)ad(y)) for x, y ∈ g.

4.1 The moment map

Let M be a hyperkähler manifold with permuting SpinGε (m)-action and let µ : M →
g∗ ⊗ sp(1)∗ be the SpinGε (m)-equivariant hyperkähler moment map for the G-action from
Proposition 3.2.3.

4.1.1 Definition.
1. Composing a spinor u ∈ N3 with the moment map µ we obtain a smooth Ĝ3-

equivariant map
Q3

u−→M
µ−→ g∗ ⊗ sp(1)∗ ∼= g⊗ (R3)∗.

This composition is a map in C∞(Q3, g⊗ (R3)∗)Ĝ3 and defines an element Φ3(u) ∈
Ω1(Q3, g)Ĝ3

hor
∼= Ω1(Y, gQ3). Here we used the isomorphism of Ĝ3-representations

sp(1)∗ ∼= (R3)∗, which is induced by the isomorphism Sp(1) ∼= Spin(3) from
Example 2.3.9.

2. Composing a spinor u ∈ N4 with the moment map µ we obtain a smooth Ĝ4-
equivariant map

Q4
u−→M

µ−→ g∗ ⊗ sp(1)∗ ∼= g⊗ Λ2
+(R4)∗.

57
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This composition is a map in C∞(Q4, g ⊗ Λ2
+(R4)∗)Ĝ and therefore defines an el-

ement Φ4(u) ∈ Ω2
+(Q4, g)Ĝhor ∼= Ω2

+(X, gQ4). Here Ω2
+(Q4, g)Ĝhor denotes the image

of Ω2
+(X, gQ4) under the isomorphism Ω2(X, gQ4) ∼= Ω2(Q4, g)Ĝ4

hor. For the com-
position, we use the isomorphism of Ĝ4-representations sp(1)∗ ∼= Λ2

+(R4)∗ from
Example 2.3.11.

4.1.2 Lemma. Let Z be compact. Then the maps Φ3 : N3 → Ω1(Q3, g)Ĝ3
hor and Φ4 : N4 →

Ω2
+(Q4, g)Ĝhor are smooth and

TΦm = dµ.

Proof. The map u 7→ µ ◦ u is smooth, as it is defined by composing with the moment
map µ (cf. [KM97, Ch IX Thm 42.13]). We now compute the derivative: Let u ∈ Nm be
a spinor, v ∈ TuNm a tangent vector represented by the smooth curve σ : R→ Nm and
p ∈ Qm. Then

TuΦm(v)(p) = d
dt
µ(σ(t)(p))|t=0 = dµ

(
d
dt
σ(t)(p)|t=0

)
= dµ(v(p)). �

4.2 Seiberg-Witten section and equations

We have now collected all the necessary ingrediants to write the generalized Seiberg-Witten
equations in dimensions three and four.

4.2.1 Definition. Consider the map

F3 : C3 = N3 ×A3 → C∞(Q3, TM)Ĝ3 ×Ω1(Q3, g)Ĝ3
hor,

(u,A) 7→ (DAu, ∗Fa + Φ3(u)),

where a = A−π∗SO(3)ϕY is the g-component of A ∈ A3 and ∗ : Ω2(Q3, g)Ĝ3
hor → Ω1(Q3, g)Ĝ3

hor

is the Hodge star operator induced by ∗ : Λ2(R3)∗ → (R3)∗. This map is called Seiberg-
Witten section in three dimensions. The system of equations F3(u,A) = 0 was introduced
by Taubes in [Tau99]:  DA(u) = 0

∗Fa + Φ3(u) = 0

These are the generalized Seiberg-Witten equations in three dimensions.

In the first equation, the zero on the right hand side is the composition of the spinor u
and the zero section 0 ∈ Γ (M,TM).

4.2.2 Remark. Using the isomorphism Ω1(Q3, g)Ĝ3
hor
∼= Ω1(Y, gQ3), we can also think of

the Seiberg-Witten section as a map N3 ×A3 → C∞(Q3, TM)Ĝ3 ×Ω1(Y, gQ3) and of the
second equation as an equation in Ω1(Y, gQ3).
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4.2.3 Definition. As in the three-dimensional case, consider the map

F4 : C4 = N4 ×A4 → C∞(Q4, T̂M
1)Ĝ4 ×Ω2

+(Q4, g)Ĝ4
hor,

(u,A) 7→ (DAu, F+
a + Φ4(u)).

where a = A − π∗SO(4)ϕX is the g-component of A ∈ A4 and F+
a ∈ Ω2

+(Q4, g)Ĝ3
hor is the

selfdual part of the curvature Fa of a. This map is called Seiberg-Witten section in four
dimensions. The system of equations F4(u,A) = 0 was introduced by Pidstrygach in
[Pid04]:  DA(u) = 0

F+
a + Φ4(u) = 0

These are the generalized Seiberg-Witten equations in four dimensions.

In the first equation, the zero on the right hand side is the composition of the spinor u
and the zero section 0 ∈ Γ (M, T̂M1).

4.2.4 Remark. Using the isomorphism Ω2
+(Q4, g)Ĝ4

hor
∼= Ω2

+(X, gQ4), we can also think
of the Seiberg-Witten section as a map N4 ×A4 → C∞(Q4, T̂M

1)Ĝ4 ×Ω2
+(X, gQ4) and

of the second equation as an equation in Ω2
+(X, gQ4).

4.2.5 Note. We will now explain why the maps Fm are called Seiberg-Witten sections.
In Note 3.6.3, we have seen that the Dirac operator is a section in the Fm → Nm.
Interpreting the second component of the Seiberg-Witten section as a section in a trivial
vector bundle, we can think of the map Fm as a section in a vector bundle Em → Cm

(m ∈ {3, 4}). These vector bundles are

E3 := C∞(Q3, TM)Ĝ3 × π∗A TA3 → C3 = C∞(Q3,M)Ĝ3 ×A3,

E4 := C∞(Q4, T̂M
1)Ĝ4 × (A4 ×Ω2

+(Q4, g)Ĝ4
hor)→ C4 = C∞(Q4,M)Ĝ4 ×A4.

The fibres of these bundles are

(E3)(u,A) = C∞(Q3, TM)Ĝ3
u ⊕Ω1(Q3, g)Ĝ3

hor

∼= Γ (Y, π!u
∗TM)⊕Ω1(Y, gQ3) for (u,A) ∈ C3,

(E4)(u,A) = C∞(Q4, T̂M
1)Ĝ4
u ⊕Ω2

+(Q4, g)Ĝ4
hor

∼= Γ (X, π!u
∗T̂M1)⊕Ω1(X, gQ4) for (u,A) ∈ C4.

Furthermore, note that the vector bundles Em are Gm-equivariant vector bundles. If the
three-dimensional base manifold Y is compact, then E3 = TC3.

4.2.6 Example (usual Seiberg-Witten equations). Consider M = H as in Exam-
ple 3.2.2, G = S1 and ε = −1. In this case, a SpinS1

−1(m)-structure is the same as a
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Spinc(m)-structure and the Dirac operator is the usual Spinc(m) Dirac operator (cf.
Example 3.6.4). Consider the following isomorphism of complex vector spaces

Ψ : (C2, i)→ (H, Ri),
(u1, u2) 7→ u1 + ju2.

The moment map µ : H→ iR⊗ Im(H) from Example 2.2.12 (` = 1), µ = i⊗ µ̃, where
µ̃ : H→ Im(H), µ̃(h) = 1

2hih̄ can be written as

µ̃(u1 + ju2) = 1
2(u1 + ju2)i(ū1 − ū2j) = i

2((|u1|2 − |u2|2) + 2jiu2ū1).

We obtain

Ψ−1Iµ̃(u1+ju2)Ψ =
(
i
2(|u1|2 − |u2|2) iū2u1

iu2ū1
i
2(|u2|2 − |u1|2)

)
∈ su(2).

Note that this is i(u⊗ u∗)0, where u = (u1, u2) ∈ C2 and (u⊗ u∗)0 is the endomorphism
(u⊗ u∗)0 ∈ End (C2) , w 7→ 〈w, u〉u− 1

2‖u‖
2w and 〈·, ·〉 is the standard hermitian product

on C2. We use the convention, that 〈·, ·〉 is linear in the first component and antilinear
in the second. Therefore, also writing c3 : R3 → End (C2) for the Clifford multiplication
induced by Ψ : C2 ∼−→ H,

c3(µ̃(u1 + ju2)) = −Ψ−1Iµ̃(u1+ju2)Ψ = −i(u⊗ u∗)0.

Extending c3 complex linearly and using c3(∗Fa) = −c3(Fa), we obtain

(u⊗ u∗)0 − c3(Fa) = ic3(µ̃(u1 + ju2))− c(Fa) = c3(µ(u1 + ju2)) + c3(∗Fa).

Therefore, the second Seiberg-Witten equation in three dimensions can be reformulated
as (v ⊗ v∗)0 = c3(Fa) and the Seiberg-Witten equations read DAu = 0

c3(Fa) = (u⊗ u∗)0

In the literature, this is the most common form of the Seiberg-Witten equations in three
dimensions (cf. [KM07]).

Similarly, in four dimensions, we interpret µ : H→ iR⊗ Im(H) ∼= iR⊗ Λ2
+R

4 and obtain

Ψ−1c4(µ̃(u1 + ju2))Ψ = i(u⊗ u∗)0.

Therefore, extending c4 : Λ2
+R

4 → End (C2) complex linearly, we obtain

c4(F+
a )− (u⊗ u∗)0 = c4(F+

a ) + ic4(µ̃(u1 + ju2)) = c4(F+
a ) + c4(µ(u1 + ju2)).

Again, the second Seiberg-Witten equation in four dimensions can be reformulated as
(u⊗ u∗)0 = c4(F+

a ) and the Seiberg-Witten equations are D+
Au = 0

c4(F+
a ) = (u⊗ u)0.

In the literature, this is the most common form of the Seiberg-Witten equations in four
dimensions (cf. [KM07]). These equations were first considered in [Wit94].
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4.2.7 Example. If the hyperkähler manifold is just one point M = {pt}, then the
equations reduce to F+

a = 0 in four dimensions and the equation Fa = 0 in the three-
dimensional case. The solutions are the anti-selfdual connection in four dimensions and
flat connections in three dimensions.

4.2.1 The Seiberg-Witten equations and the gauge group

Note that the gauge group G3 also acts (from the right) on C∞(Q3, TM)Ĝ3 ×Ω1(Q3, g)Ĝ3

by pullback and G4 acts on C∞(Q4, T̂M
1)Ĝ4 ×Ω2

+(Q4, g)Ĝ4
hor by pullback.

4.2.8 Proposition. The Seiberg-Witten sections

F3 : C3 → C∞(Q3, TM)Ĝ3 ×Ω1(Q3, g)Ĝ3
hor

and
F4 : C4 → C∞(Q4, T̂M

1)Ĝ4 ×Ω2
+(Q4, g)Ĝ4

hor

are gauge equivariant.

Proof. We have proven in Lemma 3.6.10 that the first component of the Seiberg-Witten
section is equivariant. Let ψ ∈ Gm and g : Qm → G the corresponding equivariant map. For
(u,A) ∈ Am let a ∈ Ω1(Qm, g)Ĝm be the g-component of A. Applying Proposition 2.1.44,
we obtain

∗Fψ∗a = ∗Fag = ∗Adg−1Fa = Adg−1 ∗ Fa = ψ∗(∗Fa)
for m = 3 and

F+
ψ∗a = F+

ag = Adg−1F+
a = ψ∗F+

a

for m = 4. Furthermore,

Φm(ψ∗u) = Φm(g−1u) = Adg−1Φm(u) = ψ∗(Φm(u)).

This proves that the second component is equivariant. �

4.2.9 Corollary. The Seiberg-Witten sections Fm (m ∈ {3, 4}) are Gm-equivariant sec-
tions in the Gm-equivariant vector bundles Em from Note 4.2.5.

4.2.10 Definition. The moduli space of solutions of the Seiberg-Witten equations is the
quotient of the space of solutions of the Seiberg-Witten equations by the action of the
gauge group. In the three-dimensional case we have:

M3D
SW (Q3) := F−1

3 (0)/G3 = { (u,A) ∈ N3 ×A3 | DAu = 0, ∗Fa + Φ3(u) = 0 } /G3,

and in the four-dimensional case:

M4D
SW (Q4) := F−1

4 (0)/G4 =
{

(u,A) ∈ N4 ×A4

∣∣∣ D+
Au = 0, F+

a + Φ4(u) = 0
}
/G4.

Note that the moduli spaces depend on the SpinGε (m)-structure, although we dropped
the dependence in the notation of the configuration spaces.
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One special property of the Seiberg-Witten equations is the interplay between the two
equations. An example of this is the following lemma:

4.2.11 Lemma. Let Q3 → PSO(3)×Y PG/ε be a SpinGε (3)-structure on a compact oriented
3-dimensional Riemannian manifold Y . Let w ∈ TuN3 = C∞(Q3, TM)Ĝ3

u and α ∈
C∞(Q3, (R3)∗ ⊗ g)Ĝ3 ∼= Ω1(Q3, g)Ĝ3

hor. Then

gM( d
dt
DA+tαu|t=0(p), w(p)) = 〈TuΦ3(w)(q), α(q)〉(R3)∗⊗g

For the right hand side, we identify sp(1) = Im(H) with R3 and use the standard scalar
product on (R3)∗.

Proof. First, note that dA+tαu(p) = dAu(p) + t(KM,G
α(p) )u(p) and therefore,

d
dt
DA+tαu|t=0(p) = d

dt
c3(dA+tαu)(p)|t=0 = c3

(
d
dt
dAu(p) + t(KM,G

α(p) )u(p)|t=0
)

= c3((KM,G
α(p) )u(p)).

Let {e1, e2, e3} be the standard basis for R3 and {e∗1, e∗2, e∗3} the dual basis of (R3)∗.
Decompose α =

3∑
`=1

e∗` ⊗ α` with α` = 〈α, e`〉 ∈ C∞(Q3, g)Ĝ3 . Then

gM( d
dt
DA+tαu|t=0(p), w(p)) = gM(c3(KM,Ĝ

α(p) )u(p), w(p))

= gM(
3∑
`=1

c3(e∗` ⊗ (KM,G
α`(p))u(p)), w(p))

= −
3∑
`=1

gM(I`((KM,G
α`(p))u(p)), w(p))

=
3∑
`=1

gM((KM,G
α`(p))u(p), I`(w(p)))

=
3∑
`=1
〈ιgω`(w(p)), α`(p)〉g

=
3∑
`=1
〈dµ`(w(p)), α`(p)〉g.

Using the identification sp(1) = Im(H) ∼= R3 and the standard scalar product on R3 we
obtain

3∑
`=1
〈dµ`(w(p)), α`(p)〉g =

3∑
`=1
〈dµ(w(p)), e∗` ⊗ α`(p)〉(R3)∗⊗g = 〈dµ(w(p)), α(p)〉(R3)∗⊗g.

Finally, using Lemma 4.1.2 we conclude that

gM(w(p), d
dt
DA+tαu|t=0(p)) = 〈dµ(w(p)), α(p)〉(R3)∗⊗g = 〈TuΦ(w)(p), α(p)〉(R3)∗⊗g. �



Chapter 5

Seiberg-Witten equations on the
cylinder

Consider a 3-dimensional compact oriented Riemannian manifold Y and let X = R× Y
be the cylinder over Y with the product metric. Denote πY : X → Y and πR : X → R

the projections to Y and R. Let PSO(3) → Y be the bundle of oriented orthonormal
frames. Note that the bundle of oriented orthonormal frames PSO(4) → X reduces to
SO(3). In particular, PSO(4) ∼= π∗Y PSO(3) ×SO(3) SO(4). Consider a SpinGε (3)-structure
Q3 → PSO(3) ×Y PG/ε on Y . Then

Q4 := π∗YQ3 ×Ĝ3
Ĝ4 → PSO(4) ×X π∗Y PG/ε

is a SpinGε (4)-structure on X. We have the following commuting diagram of principal
bundles over the cylinder X

π∗YQ3
i //

πSO(3)
��

Q4

πSO(4)
��

π∗Y PSO(3)
i′ //PSO(4)

where the horizontal maps are the inclusions induced by Ĝ3 ↪→ Ĝ4 and SO(3) ↪→ SO(4),
respectively. The vertical maps are quotient maps for the G-actions. There is also a
projection

π3 : Q4 = R× (Q3 ×Ĝ3
Ĝ4)→ Q3 ×Ĝ3

Ĝ4 → Q3 ×Ĝ3
Ĝ4/Sp(1)− ∼= Q3.

Furthermore, π3 ◦ i = πQ3 : π∗YQ3 = R×Q3 → Q3 is the projection to Q3.

5.1 Spinors on the cylinder

We will now reinterpret spinors on the cylinder X = R× Y as smooth paths of spinors
on Y .

63
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5.1.1 Lemma. There is a bijection

C∞(Q4,M)Ĝ4 ∼−→ C∞(R, C∞(Q3,M)Ĝ3),
u 7→ ǔ, where (ǔ(t))(π3(q)) = u(t, q).

Proof. First observe that Q4 = R×Q3 ×Ĝ3
Ĝ4. We use the exponential law (cf. Proposi-

tion A.1.7) to get

C∞(Q4,M)Ĝ4 = C∞(R×Q3 ×Ĝ3
Ĝ4,M)Ĝ4

∼= C∞(R, C∞(Q3 ×Ĝ3
Ĝ4,M)Ĝ4)

= C∞(R, C∞(Q3 ×Ĝ3
Ĝ4/Sp(1)−,M)Ĝ4/Sp(1)−)

= C∞(R, C∞(Q3,M)Ĝ3).

We also used that Sp(1)− ↪→ Ĝ4 acts trivially on M and that Ĝ4/Sp(1)− ∼= Ĝ3. �

5.2 Connections on the cylinder

5.2.1 Definition. Let P → Y be a principal H-bundle and π∗Y P → X = R × Y its
pullback to the cylinder. Since π∗Y P = R× P , we have a vector field ∂

∂t
∈ Γ (π∗Y P, Tπ∗Y P ).

A connection 1-form A on π∗P is said to be in temporal gauge if ∂
∂t

is horizontal, i.e.

A
(
∂
∂t (t,p)

)
= 0 for all t ∈ R, p ∈ P.

The subspace of connection 1-forms in temporal gauge is denoted by A tg(π∗Y P ) ⊂ A (π∗Y P ).
For the principal Ĝ4-bundle Q4 = π∗Y (Q3 ×Ĝ3

Ĝ4), we denote the space of connection
1-forms in temporal gauge with so(4)-component equal to the pullback of the Levi-Civita
connection by A tg

4 := A4 ∩A tg(Q4).

5.2.2 Lemma. Let P → Y be a principal H-bundle and A ∈ A tg(π∗Y P ) a connection
1-form in temporal gauge. Consider a group homomorphism λ : H → H ′. Then the
induced connection 1-form on π∗Y P ×H H ′ is again in temporal gauge.

Proof. The induced connection A′ ∈ A (π∗Y P ×H H ′) satisfies f ∗A′ = λ∗A, where
f : π∗Y P → π∗Y P ×H H ′. Then

A′
(
∂
∂t (t,f(p))

)
= A′

(
Tf

(
∂
∂t (t,p)

))
= f ∗A′

(
∂
∂t (t,p)

)
= λ∗A

(
∂
∂t (t,p)

)
= 0.

For an arbitary element p′ ∈ π∗Y P ×H H ′, there is an element h ∈ H ′ such that p′ = f(p)h
for some p ∈ π∗Y P . The H ′-equivariance of the connection 1-form A′ implies that

A′
(
∂
∂t (t,p′)

)
=A′

(
∂
∂t (t,f(p)h)

)
=A′

(
Tf(p)Rh

(
∂
∂t (t,f(p))

))
=Adh−1A′

(
∂
∂t (t,f(p))

)
=0. �

For a connection 1-form on π∗Y P in temporal gauge we obtain a smooth path of connection
1-forms on P .
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5.2.3 Lemma. Let P → Y be a principal H-bundle and π∗Y P → R× Y the pullback to
the cylinder. Then

A tg(π∗Y P ) ∼= C∞(R,A (P )).

Proof. Let A ∈ A tg(π∗Y P ) be a connection 1-form in temporal gauge. For each (t, p) ∈
π∗Y P = R × P we have a linear map A(t,p) : T(t,p)π

∗P → h. Consider the induced linear
map Ǎ(t)p : TpP → h for each t ∈ R. This can be given explicitly as Ǎ(t)p(v) = A(t,p)(0, v)
for v ∈ TpP, t ∈ R. For each t ∈ R, we have a 1-form Ǎ(t) ∈ Ω1(P, h)H . Combining these,
we obtain a smooth path of H-equivariant 1-forms Ǎ. Furthermore,

Ǎ(t)((KP,H
ξ )p) = A((Kπ∗Y P,H

ξ )(t,p)) = ξ.

Hence, every connection 1-form A ∈ A tg(π∗Y P ) in temporal gauge on π∗Y P induces a
smooth path of connection 1-forms Ǎ : R→ A (P ).

Conversely, given a smooth path Ǎ : R → A (P ), we can define an equivariant 1-form
A ∈ Ω1(π∗Y P, h)H as A := π∗P Ǎ, where πP : π∗Y P → P is the projection. More precisely,

A(t,p)(v) := Ǎ(t)p(T(t,p)πP (v)) for v ∈ T(t,p)π
∗
Y P.

Since
A((Kπ∗Y P,H

ξ )(t,p)) = Ǎ(t)((KP,H
ξ )p) = ξ for all ξ ∈ h,

this is indeed a connection 1-form. By definition, we have

A
(
∂
∂t (t,p)

)
= Ǎ(t)

(
T(t,p)πP

(
∂
∂t (t,p)

))
= Ǎ(t)(0) = 0.

Therefore, we obtain a connection 1-form A ∈ A tg(π∗Y P ) in temporal gauge.

These two constructions are inverses of each other since A is uniquely detemined by A( ∂
∂t

)
and the induced linear map Ǎ(t)p : TpP → h for each t ∈ R. �

5.2.4 Remark. Every connection A ∈ A (π∗Y P ) is gauge equivalent to a connection in
temporal gauge. The reason for this is that there are solutions of the first order ordinary
differential equation

A( ∂
∂t

) = −TRg−1(∂g
∂t

).
If we add the initial conditions g(0, p) = 1 ∈ G for all p ∈ P we obtain a unique
solution g. Then the pullback ψ∗A of A with respect to the gauge transformation
ψ ∈ G (π∗Y P ), ψ(p) = pg(p) is in temporal gauge (cf. [Fre95, Lemma 1.21]). This induces
a bijection

A (π∗Y P )/G ′ ∼−→ A tg(π∗Y P ) ∼= C∞(R,A (P )).
Here G ′ := { ψ ∈ G (π∗Y P ) | ψ(0, p) = (0, p) ∀p ∈ P }. Note that G ′ is the kernel of the
homomorphism G (π∗Y P )→ G (P ) which sends a gauge transformation to its restriction to
π−1
R ({0}). We have a splitting short exact sequence

1 // G ′ // G (π∗Y P ) // G (P )
s

ii

// 1.
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The split s : G (P ) → G (π∗Y P ) is the homomorphism given by s(ψ) := idR×ψ. In
particular, G (π∗Y P ) is isomorphic to the semidirect product G ′ o G (P ) with respect to
γ : G (P )→ Aut (G ′), γ(ψ)(ϕ) := (idR×ψ) ◦ ϕ ◦ (idR×ψ−1).

Moreover, note that the bijection A (π∗Y P )/G ′ ∼−→ C∞(R,A (P )) is G (P )-equivariant,
where the action of G (P ) = G (π∗Y P )/G ′ on A (π∗Y P )/G ′ is the induced action and the
action of G (P ) on C∞(R,A (P )) is induced by the action of G (P ) on A (P ). We obtain
a commutative diagram

A (π∗Y P )/G ′ ∼ //

��

A tg(π∗Y P )

��

∼ // C∞(R,A (P ))

��

A (π∗Y P )/G ∼ // A tg(π∗Y P )/G (P ) ∼ // C∞(R,A (P ))/G (P ),

where the vertical maps are the quotients by the action of G (P ) = G (π∗Y P )/G ′.

Let us now return to the SpinGε (m)-structures.

5.2.5 Note (Levi-Civita connection on the cylinder). The bundle PSO(4) → X =
R × Y of oriented orthonormal frames in TX reduces to a principal SO(3)-bundle:
PSO(4) = π∗Y PSO(3) ×SO(3) SO(4). The Levi-Civita connections ϕY and ϕX on PSO(3) and
PSO(4) are related by j∗π∗Y ϕY = i′∗ϕX , where j∗ : so(3)→ so(4) is the differential of the
inclusion j : SO(3) → SO(4) and i′ : π∗Y PSO(3) → PSO(4) is the reduction. In particular,
this implies that the Levi-Civita connection ϕX on the cylinder with product metric is in
temporal gauge.

5.2.6 Lemma. There is a bijection

A tg
4
∼= C∞(R,A3).

Proof. First, note that Q4 = π∗YQ3 ×Ĝ3
Ĝ4. Using Lemma 5.2.3, a path Ǎ ∈ C∞(R,A3)

defines a connection 1-form Ã ∈ A tg(π∗YQ3). Consider the induced connection A ∈ A (Q4),
which satisfies i∗A = ι∗Ã, where i : π∗YQ3 → Q4 and ι∗ : ĝ3 → ĝ4 is the differential of
the homomorphism ι : Ĝ3 → Ĝ4. This connection 1-form is again in temporal gauge by
Lemma 5.2.2, i.e. A ∈ A tg(Q4). This defines a smooth map

Φ : C∞(R,A3) ↪→ C∞(R,A (Q3)) ∼= A tg(π∗YQ3)→ A tg(Q4), Ǎ 7→ A.

Let Ǎ ∈ C∞(R,A3). Its image Ã in A tg(π∗YQ3) satisfies Ã := π∗Q3Ǎ. We use the
isomorphisms Am → A (Qm → PSO(m))Spin(m) from Note 3.3.3 and ĝm = so(m) ⊕ g to
decompose the connection 1-forms into a part with values in so(m) and one with values
in g. The so(3)-component of Ǎ(t) is given by the lift of the Levi-Civita connection ϕY ∈
A (PSO(3)), i.e. prso(3) ◦Ǎ(t) = π∗SO(3)ϕY for all t ∈ R. Hence, prso(3) ◦Ǎ = π∗SO(3)π

∗
Y ϕY and

also prso(3) ◦Ã = π∗SO(3)π
∗
Y ϕY Consider the induced connection 1-form A = Φ(Ǎ) on Q4.

Since
i∗π∗SO(4)ϕX = π∗SO(3)i

′∗ϕX = π∗SO(3)j∗π
∗
Y ϕY = j∗π

∗
SO(3)π

∗
Y ϕY ,
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the uniqueness of the induced connection implies prso(4) ◦A = π∗SO(4)ϕX . This proves
that the image of C∞(R,A3) is in A4. Furthermore, we know from Note 5.2.5 that
π∗SO(4)ϕX is in temporal gauge. Therefore, Φ is a well defined map Φ : C∞(R,A4)→ A tg

4 .
To prove that this is a bijection, we only have to check that Φ induces a bijection
on the g-components. Using the isomorphism from Note 3.3.3, we have to consider
C∞(R,A (Q3 → PSO(3))Spin(3)). From Lemma 5.2.6 we know that C∞(R,A (Q3 →
PSO(3))Spin(3)) ∼= A tg(π∗YQ3 → π∗Y PSO(3))Spin(3). The last step is to map a connection 1-
form Ãg ∈ A tg(π∗YQ3 → π∗Y PSO(3))Spin(3) to the unique connection 1-form Ag ∈ A tg(Q4 →
PSO(4))Spin(4) satisfying i∗Ag = Ãg, which is again an isomorphism. Thus, combining the
observations about the two components, we obtain an isomorphism C∞(R,A3) ∼= A tg

4 .�

5.2.7 Remark. Combining Lemma 5.1.1 and Lemma 5.2.6, we obtain a map

C∞(R,C3)→ C4,

which is a bijection onto its image N4 × A tg
4 , the space of spinors and connections in

temporal gauge on the cylinder.

5.3 The Seiberg-Witten equations on the cylinder

We will now study the Seiberg-Witten section and the Seiberg-Witten equations on the
cylinder. One component of the target of the Seiberg-Witten sections are spaces of
differential forms. The following lemma describes these on the cylinder.

5.3.1 Lemma. There is an isomorphism

τ : C∞(R, Ω1(Q3, g)Ĝmhor)
∼−→ Ω2

+(Q4, g)Ĝmhor ,
α 7→ (dt ∧ π∗3α)+.

Proof. We use the isomorphism τ0 : (R3)∗ → Λ2
+(R4)∗ of SO(3)-representations from

Note 2.3.14. This induces an isomorphism

C∞(π∗YQ3, (R3)∗ ⊗ g)Ĝ3 ∼−→ C∞(π∗YQ3, Λ
2
+(R4)∗ ⊗ g)Ĝ3 .

Since

Q4 ×Ĝ4
(Λ2

+(R4)∗ ⊗ g) = π∗YQ3 ×Ĝ3
Ĝ4 ×Ĝ4

(Λ2
+(R4)∗ ⊗ g) = π∗YQ3 ×Ĝ3

(Λ2
+(R4)∗ ⊗ g),

we obtain
C∞(π∗YQ3, Λ

2
+(R4)∗ ⊗ g)Ĝ3 ∼= C∞(Q4, Λ

2
+(R4)∗ ⊗ g)Ĝ4 ,

and finally

C∞(R, Ω1(Q3, g)Ĝ3
hor) ∼= C∞(π∗YQ3, (R3)∗ ⊗ g)Ĝ3 ∼−→ C∞(Q4, Λ

2
+(R4)∗ ⊗ g)Ĝ4

∼= Ω2
+(Q4, g)Ĝ4

hor.

We will denote this isomorphism by τ . Note 2.3.14 implies that this can be written
explicitly as α 7→ (dt ∧ π∗3α)+, where (dt ∧ π∗3α)(t,p) := dt ∧ π∗3α(t)p. �
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5.3.2 Lemma. Let A ∈ A tg
4 be a connection in temporal gauge and u ∈ N4 a spinor.

Then
τ(Φ3(ǔ)) = Φ4(u) and τ(dǎ

dt
+ ∗3Fǎ) = F+

a

where Φ3(ǔ) ∈ C∞(R, Ω1(Q3, g)Ĝ3
hor) is the map t 7→ Φ3(ǔ(t)).

Proof. The equivariant maps corresponding to Φ4(u) and Φ3(ǔ(t)) are

µ ◦ u : Q4 → g∗ ⊗ sp(1)∗ ∼= g⊗ Λ2
+(R4)∗

and
µ ◦ ǔ(t) : Q3 → g∗ ⊗ sp(1)∗ ∼= g⊗ (R3)∗.

The composition of the isomorphism (R3)∗ ∼= (sp(1))∗ ∼= Λ2
+(R4)∗ is τ0, so using

Lemma 5.3.1 we obtain
τ(Φ3(ǔ)) = Φ4(u).

Let πQ3 : π∗YQ3 = R×Q3 → Q3 be the projection to Q3. Since A is in temporal gauge, we
have a( ∂

∂t
) = 0. The corresponding smooth path ǎ : R→ Ω1(Q3, g)Ĝ3 satisfies i∗a = π∗Q3 ǎ,

and ǎ(t) ∈ Ω1(Q3, g)Ĝ3 is the restriction of i∗a to the fibre over t ∈ R. More precisely,

i∗a(t,p)(v) = ǎ(t)p(T(t,p)πQ3(v)) for (t, p) ∈ π∗YQ3, v ∈ T(t,p)π
∗
YQ3.

Observe that [i∗a, i∗a] = π∗Q3 [ǎ, ǎ] and therefore,

i∗Fa = di∗a+ 1
2 [i∗a, i∗a] = dt ∧ π∗Q3(dǎ

dt
) + π∗Q3(dǎ+ 1

2 [ǎ, ǎ]) = dt ∧ π∗Q3(dǎ
dt

) + π∗Q3Fǎ.

Using ∗4π
∗
Q3Fǎ = dt ∧ π∗Q3(∗3Fǎ), we obtain

i∗F+
a = 1

2(i∗Fa + ∗4i
∗Fa) = 1

2(dt ∧ π∗Q3
dǎ
dt

+ π∗Q3Fǎ + π∗Q3(∗3
dǎ
dt

) + dt ∧ π∗Q3(∗3Fǎ)).

Consider π̌3 : Q4 → Q4/Sp(1)− = π∗YQ3. Note that π̌∗3i∗a = a, and therefore, π̌∗3i∗Fa = Fa.
Finally, we use πQ3 ◦ π̌3 = π3 : Q4 → Q3 to compute

τ(dǎ
dt

+ ∗3Fǎ)= (dt ∧ π∗3(dǎ
dt

) + dt ∧ π∗3(∗3Fǎ))+

= 1
2(dt ∧ π∗3(dǎ

dt
) + dt ∧ π∗3(∗3Fǎ) + ∗4(dt ∧ π∗3(dǎ

dt
)) + ∗4(dt ∧ π∗3(∗3Fǎ)))

= 1
2(dt ∧ π∗3(dǎ

dt
) + dt ∧ π∗3(∗3Fǎ) + π∗3(∗3

dǎ
dt

) + π∗3Fǎ)
= 1

2 π̌
∗
3(dt ∧ π∗3(dǎ

dt
) + dt ∧ π∗Q3(∗3Fǎ) + π∗Q3(∗3

dǎ
dt

) + π∗Q3Fǎ)
= π̌∗3i

∗F+
a = F+

a . �

5.3.3 Theorem. Let Q3 → PSO(3) ×Y PG/ε be SpinGε (3)-structure on a 3-dimensional
compact oriented Riemannian manifold Y and X = R × Y the cylinder over Y . Fur-
thermore, let Q4 := π∗YQ3 ×Ĝ3

Ĝ4 → PSO(4) ×X PG/ε the associated SpinGε (4)-structure,
A ∈ A tg

4 a connection in temporal gauge and u ∈ N4 a spinor on the cylinder. Then

c4(e0)−1D+
A(u)(i(t, p)) = dǔ

dt
(t)(p) +DǍ(t)(ǔ(t))(p) for all (t, p) ∈ π∗YQ3
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and
τ(dǎ

dt
+ ∗3Fǎ + Φ3(ǔ)) = F+

a + Φ4(u).

In particular, (u,A) ∈ C4 with A in temporal gauge satisfy the Seiberg-Witten equations
on the cylinder iff γ ∈ C∞(R,C3), γ(t) := (ǔ(t), Ǎ(t)) is a solution of the downward flow
equations for the Seiberg-Witten section

dγ
dt

(t) = −F3(ǔ(t), Ǎ(t)).

These equations can also be written as
dǔ
dt

= −DǍ(ǔ),
dǍ
dt

= − ∗3 Fǎ − Φ3(ǔ).

Proof. Let u ∈ N4 = C∞(Q4,M)Ĝ4 and ǔ ∈ C∞(R,N3) the corresponding path of spinors
satisfying u(t, p) = ǔ(t)(π3(p)) for all (t, p) ∈ Q4 (cf. Lemma 5.1.1). For (t, p) ∈ π∗YQ3
and i(t, p) ∈ Q4, we obtain πSO(4)(i(t, p))(e0) = ∂

∂t
∈ TπX(i(t,p))X. Since A is in temporal

gauge, the horizontal lift of ∂
∂t
∈ TπX(i(t,p))X is ∂

∂t
∈ Ti(t,p)Q4.

Then
〈dMA u(i(t, p)), e0〉 = Ti(t,p)u( ∂

∂t
) = dǔ

dt
(t)(p).

For v ∈ R3 ⊂ R4 we have

〈dMA u(i(t, p)), v〉 =Ti(t,p)u(ṽA) = Tpǔ(t)(ṽǍ(t)) = 〈dM
Ǎ(t)ǔ(t)(p), v〉.

Here, ṽA ∈ Ti(t,p)π∗YQ3 and ṽǍ(t) ∈ TpQ3 are the horizontal lifts of πSO(3)(p)(v) ∈ TπY (p)Y ⊂
T(t,p)X with respect to the connection 1-forms i∗A ∈ A (π∗YQ3)tg and Ǎ(t) ∈ A (Q3),
respectively. Finally,

c4(e0)−1D+
Au(i(t, p))=c4(e0)−1c4(dMA u)(i(t, p))

=
3∑
`=0

c4(e0)−1c4(e` ⊗ 〈dMA u(i(t, p)), e`〉)

=c4(e0)−1c4(e0 ⊗ dǔ
dt

(t)(p))+
3∑
`=0

c4(e0)−1c4(e` ⊗〈dMǍ(t)ǔ(t)(p), e`〉)

= dǔ
dt

(t)(p) +
3∑
`=0

c3(e` ⊗ 〈dMǍ(t)ǔ(t)(p), e`〉)

= dǔ
dt

(t)(p) +DǍ(t)ǔ(t)(p).

Therefore
c4(e0)−1D+

A(u)(i(t, p)) = dǔ
dt

(t)(p) +DǍ(t)(ǔ(t))(p).

The second statement is a direct consequence of Lemma 5.3.2. �
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5.3.4 Corollary. Interpreting equivariant maps as sections in the corresponding associ-
ated bundles and using c4(dt) : π!u

∗TM
∼−→ π!u

∗T̂M1 to identify the even and odd part of
π!u
∗T̂M , we obtain

D+
Au = dǔ

dt
+DǍǔ

for a connection A ∈ A tg
4 , Ǎ ∈ C∞(R,A3) the corresponding path of connections,

u ∈ Γ (X,Q4 ×Ĝ4
M) and ǔ ∈ C∞(R, Γ (Y,Q3 ×Ĝ3

M)) the corresponding path of spinors.



Chapter 6

The Chern-Simons-Dirac functional

In this chapter, we will prove the existence of a functional, whose critical points coincide
with the solutions of the three-dimensional Seiberg-Witten equations. For this purpose,
we need the manifold structure, Riemannian metric and covariant derivative on the
configuration space from Proposition 3.3.11. As we focus on the three-dimensional case,
we will drop the index 3 and write Q,A ,N ,G for Q3,A3,N3,G3. Again, we fix a
SpinGε (3)-structure Q→ PSO(3)×Y PG/ε on a 3-dimensional compact oriented Riemannian
manifold Y and an Ad-invariant scalar product on g. We will also make extensive use of
Notation 3.3.4.

6.1 Existence of the Chern-Simons-Dirac functional

We have seen in Note 4.2.5 that the Seiberg-Witten equations determine a vector field
F : C → TC on the configuration space C = N ×A :

F(u,A) = (DAu, ∗Fa + Φ3(u)) ∈ C∞(Q3, TM)Ĝ3
u ×Ω1(Q3, g)Ĝ3

hor = T(u,A)C .

Using the metric on the configuration space (cf. Proposition 3.3.11), this induces the
following 1-form on the configuration space C :

F[(v, α) := gC ((DA(u), ∗Fa + Φ3(u)), (v, α)) = gN (DA(u), v) + gA (∗Fa + Φ3(u), α).

6.1.1 Lemma. The Seiberg-Witten 1-form is closed, i.e. dF[ = 0.

Proof. Let V,W ∈ Γ (C , TC ) two vector fields on C . Using the metric and the metric com-
patible, torsion-free covariant derivative ∇ (cf. Proposition A.2.11) on the configuration

71
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space, we get

dF[(V,W ) = V (F[(W ))−W (F[(V ))− F[([V,W ])
=V (gC (F,W ))−W (gC (F, V ))− gC (F, [V,W ])
=gC (∇V F,W ) + gC (F,∇VW )
− gC (∇W F, V )− gC (F,∇WV )
− gC (F, [V,W ])

=gC (∇V F,W )− gC (∇W F, V ) + gC (F, T∇(V,W ))
=gC (∇V F,W )− gC (∇W F, V ).

We have to compute gC (∇V F,W ). Let γ = (γ1, γ2) : I → C be a smooth curve with
γ(0) = (u,A) und d

dt
γ(t)|t=0 = V . We can choose γ2(t) = A+ tα for V = (v, α). We have

d
dt
FA+tα|t=0 = dα + [A,α] = dAα and therefore

prTA ∇V F = d
dt

prA (F(γ(t)))|t=0 = d
dt
∗ Fa+tα + Φ3(γ1(t))|t=0,

= ∗dAα + TΦ3(v).

Furthermore,

prTN ∇V F = prTN ∇(0,v) F+ prTN ∇(α,0) F

= Dlin,uA (v) + d
dt
DA+tαu|t=0

Finally, let V = (α, v),W = (β, w) ∈ TuC = Ω1(Q, g)Ĝhor × C∞(Q, TM)Ĝu . Using
Lemma 3.6.8 and Lemma 4.2.11, we obtain:

gC (∇V F,W ) =gC (prTN ∇V F,W ) + gC (prTA ∇V F,W )

=
∫
Y

gM(Dlin,uA (v), w) +
∫
Y

gM( d
dt
DA+tαu|t=0, w)

+
∫
Y

〈∗dAα ∧ ∗β〉g +
∫
Y

〈TΦ3(v), β〉R3⊗g

=
∫
Y

gM(v,DAu(w)) +
∫
Y

〈TΦ3(v), α〉R3⊗g

+
∫
Y

〈∗dAβ ∧ ∗α〉g +
∫
Y

gM(v, d
dt
DA+tβu|t=0)

=gC (V, prTN ∇W F) + gC (V, prTA ∇W F)
=gC (∇W F, V ),

and thus
dF[(V,W ) = g(∇V F,W )− g(∇W F, V ) = 0. �

6.1.2 Theorem. There is a functional LCSD on the universal cover C̃ of the configuration
space C such that images in C of the critical points of LCSD are the solutions of the
Seiberg-Witten equations. Such a functional is called Chern-Simons-Dirac functional.
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Proof. Let C̃
π−→ C be the universal covering of the configuration space C (for existence cf.

[KM97, 27.14]). Since π1(C̃ ) = 0, we also have H1(C̃ ,R) = 0 and using Proposition A.2.5
also H1

dR(C̃ ,R) = 0. This implies that all closed 1-forms on C̃ are exact. In particular,
there exists a functional LCSD : C̃ → R satisfying dLCSD = F̃

[, where F̃[ is the pullback of
F[ to C̃ . The gradient of LCSD is the lift F̃ ∈ Γ (C̃ , T C̃ ) of F ∈ Γ (C , TC ), grad(LCSD) = F̃.
In particular, let (u,A) ∈ C̃ . Then

F(π(u,A)) = 0⇔ F̃(u,A) = 0⇔ grad(LCSD)(u,A) = 0.

The solutions of the Seiberg-Witten equations are the images in C of the critical point of
the Chern-Simons-Dirac functional LCSD. �

6.1.3 Remark. We can construct the Chern-Simons-Dirac functional using the Poincaré
lemma. For the part which is only dealing with the connection, we will do this explicitly.
This functional is called Chern-Simons functional. Since the space of connections A is an
affine space and hence contractible, there is a functional LCS : A → R satisfying

d

dt
LCS(A+ tα)|t=0 =

∫
Y

〈α ∧ Fa〉g,

where a = prg ◦A = A − π∗SO(3)ϕY is the g-component of A ∈ A . One can construct
such a functional as follows. Fix a reference connection A0 ∈ A with g-component
a0 = A0 − π∗SO(3)ϕY and define

LCS(A) :=
1∫

0

∫
Y

〈(a− a0) ∧ Fa0+t(a−a0)〉gdt.

Note that
Fa0+t(a−a0) = Fa0 + tda0(a− a0) + t2

2 [a− a0, a− a0],

and
1
2da0(a− a0) = 1

2(Fa − Fa0)− 1
4 [a− a0, a− a0].

Therefore,

LCS(A) =
1∫

0

∫
Y

〈(a− a0) ∧ (Fa0 + tda0(a− a0) + t2

2 [a− a0, a− a0])〉gdt

=
∫
Y

〈(a− a0) ∧ (Fa0 + 1
2da0(a− a0) + 1

6 [a− a0, a− a0])〉g

= 1
2

∫
Y

〈(a− a0) ∧ (Fa0 + Fa − 1
6 [a− a0, a− a0])〉g.

By construction, the functional LCS satisfies the desired condition. However, we will also
proof this explicitly in Theorem 6.2.4.
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6.1.4 Remark. Another way to look at the Chern-Simons functional is to observe that
the Ad-invariant scalar product 〈·, ·〉g is an invariant polynomial on the Lie algebra g. With
the help of the Chern-Weil homomorphism, this defines a cohomology class in H4(Y,R).
The manifold Y is three-dimensional, so H4(Y,R) = 0 and the cohomology class vanishes.
In this situation, Chern and Simons [CS74] constructed secondary characteristic classes,
which depend on a connection A ∈ A (P ) on a principal G-bundle P → Y . These are
3-forms on the total space P . However, there is also a Chern-Simons form depending on
two connections A0, A ∈ A (P ). This is a closed 3-form on Y and represents a cohomology
class in H3(Y,R). The pairing of this class with the fundamental class [Y ] ∈ H3(Y ) is
the Chern-Simons functional (for details cf. [Fre95], [Fre02]).

6.2 Hyperkähler potential and Chern-Simons-Dirac
functional

Let us now assume that the fundamental vector fields for the permuting Sp(1)-action
satisfy IζKM,Sp(1)

ζ = −χ for a vector field χ ∈ Γ (M,TM) and all ζ ∈ sp(1), ‖ζ‖2 = 1. We
use the hyperkähler potential ρ on M from Proposition 3.2.6 with grad(ρ) = χ. On the
Lie algebra g = Lie(G) of the compact Lie group G we fix an Ad-invariant scalar product
〈·, ·〉g : g × g → R. We also fix a connection A0 ∈ A . The g-component of A0 will be
denoted a0 = A0 − π∗SO(3)ϕY .

6.2.1 Definition. The Chern-Simons functional LCS : A → R is

LCS(A) := 1
2

∫
Y

〈(a− a0) ∧ (Fa0 + Fa − 1
6 [a− a0, a− a0])〉g,

where a = A− π∗SO(3)ϕY is the g-component of A ∈ A .

The Dirac functional LD : A ×N → R is

LD(u,A) := 1
2

∫
Y

dρ(DA(u)).

The Chern-Simons-Dirac functional LCSD : A ×N → R is

LCSD(u,A) := LCS(A) + LD(u,A).

Since grad(ρ) = χ, we can alternatively write

LD(u,A) = 1
2

∫
Y

gM(χ ◦ u,DA(u)).

Note that the Chern-Simons functional and the Chern-Simons-Dirac functional depend
on the fixed connection A0.
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6.2.2 Example. If the group G is abelian, we obtain

LCS(A) := 1
2

∫
Y
〈(a− a0) ∧ (Fa0 + Fa)〉g

For G = S1, the Chern-Simons functional is

LCS(A) = −1
2

∫
Y

(a− a0) ∧ (Fa + Fa0)

Here, we interpret the imaginary valued differential forms as complex valued forms
and use the multiplication in C. This Chern-Simons functional and the corresponding
Chern-Simons-Dirac functional for M = H has been studied in detail in [KM07].

6.2.3 Example (Chern-Simons on trivial bundles). Consider the case when Q→
Q/Spin(3) ∼= PSO(3) is a trivial G-bundle. Fix a trivialization Q ∼= PSO(3) × G. Then
the Maurer-Cartan form η ∈ Ω1(G, g)G induces a Spin(3)-invariant connection 1-form
a0 := pr∗G η on Q→ PSO(3). We can take A0 := π∗SO(3)ϕY + a0 as the fixed connection for
the Chern-Simons functional. In particular, the Maurer-Cartan equation η + 1

2 [η, η] = 0
implies that a0 is flat:

Fa0 = d pr∗G η + 1
2 [pr∗G η, pr∗G η] = pr∗G(dη + 1

2 [η, η]) = 0.

For a connection A ∈ A :

Fa = Fa0 + da0(a− a0) + 1
2 [a− a0, a− a0] = dpr∗G η(a− a0) + 1

2 [a− a0, a− a0].

Denote the image of a − a0 under the isomorphism Ω1(Q, g)Ĝhor ∼= Ω1(Y, g) by b. Then
dpr∗G η(a− a0) corresponds to db ∈ Ω1(Y, g). Therefore, we can write the Chern-Simons
functional as

LCS(A) = 1
2

∫
Y

〈(a− a0) ∧ (Fa + Fa0 − 1
6 [a− a0, a− a0]〉g

= 1
2

∫
Y

〈(a− a0) ∧ (dpr∗G η(a− a0) + 1
2 [a− a0, a− a0]− 1

6 [a− a0, a− a0])〉g

= 1
2

∫
Y

〈b ∧ (db+ 1
3 [b, b])〉g.

For G = SU(2) and 〈x, y〉su(2) = −Bsu(2)(x, y) = −4 tr(xy), this is the form of the
Chern-Simons functional, which is usually presented in the literature.

6.2.4 Theorem. The gradient of the Chern-Simons-Dirac functional LCSD : C → R

from Definition 6.2.1 is the Seiberg-Witten vector field F3 : C → TC , i.e.

grad(LCSD)(u,A) = (∗Fa + Φ3(u),DA(u)) = F3(u,A) for all (u,A) ∈ C .



76 Chapter 6. The Chern-Simons-Dirac functional

Proof. First, observe that for two connections A,A0 ∈ A with g-components a, a0,
respectively:

Fa = da+ 1
2 [a, a]

= 1
2 [a0, a0] + da+ [a, a− a0]− 1

2 [a, a] + [a, a0]− 1
2 [a0, a0]

= Fa0 + da(a− a0)− 1
2 [a− a0, a− a0].

For A ∈ A , α ∈ Ω1(Q, g)Ĝhor, we use Stokes’ theorem and the Ad-invariance of the scalar
product to obtain

d
dt
LCS(A+ tα)|t=0 = d

dt
1
2

∫
Y

〈(a+ tα− a0) ∧ (Fa0 + Fa+tα)〉g|t=0

− d
dt

1
12

∫
Y

〈(a+ tα− a0) ∧ [a+ tα− a0, a+ tα− a0]〉g|t=0

=1
2

∫
Y

〈α ∧ (Fa0 + Fa − 1
6 [a− a0, a− a0]〉g

+ 1
2

∫
Y

〈(a− a0) ∧ (daα− 1
3 [α, a− a0])〉g

=1
2

∫
Y

〈α ∧ (Fa0 + Fa + da(a− a0))

− 1
2

∫
Y

〈α ∧ 1
3 [a− a0, a− a0]− 1

6 [a− a0, a− a0])〉g

=
∫
Y

〈α ∧ Fa〉g = gA (α, ∗Fa).

(6.1)

Applying Lemma 4.2.11 and Proposition 3.2.6, we get

d
dt
LD(u,A+ tα)|t=0 = d

dt
1
2

∫
Y

gM(χ ◦ u,DA+tα(u))|t=0

= 1
2

∫
Y

〈α, dµ(χ ◦ u)〉(R3)∗⊗g

=
∫
Y

〈α, µ ◦ u〉(R3)∗⊗g

= gA (α, Φ3(u)).

(6.2)

We can now use the metric compatibility of the covariant derivate (cf. Proposition A.2.11),
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as well as Lemma 3.6.8 and Proposition 3.2.6 to get

2∂LD
∂u

(v) = ∇N
v (gN (χ ◦ u,DA(u)))

=
∫
Y

gM(χ ◦ u,∇M
v DA(u)) +

∫
Y

gM(∇M
v (χ ◦ u),DA(u))

=
∫
Y

gM(χ ◦ u,Dlin,uA (v)) +
∫
Y

gM(v,DA(u))

=
∫
Y

gM(Dlin,uA (χ ◦ u), v) +
∫
Y

gM(v,DA(u))

= 2
∫
Y

gM(DA(u), v).

(6.3)

Combining equation (6.1), equation (6.2) and equation (6.3), we obtain

grad(LCSD)(u,A) = (∗Fa + Φ3(u),DAu) = F(u,A) for all (u,A) ∈ C . �

6.2.5 Corollary. The critical points of the Chern-Simons-Dirac functional are the solu-
tions of the 3-dimensional Seiberg-Witten equations.

6.2.6 Corollary. Let Q3 → PSO(3)×Y PG/ε be a SpinGε (3)-structure on a compact oriented
3-dimensional manifold Y and Q4 → PSO(4) ×X π∗Y PG/ε the associated SpinGε (4)-structure
on the cylinder X = R × Y . Then (u,A) ∈ C4 with A in temporal gauge satisfy the
Seiberg-Witten equations on the cylinder iff the path γ ∈ C∞(R,C3), γ(t) := (ǔ(t), Ǎ(t)) is
a solution of the downward gradient flow equation for the Chern-Simons-Dirac functional

dγ
dt

(t) = − grad(LCSD)(ǔ(t), Ǎ(t)).

Proof. This follows immediately from Theorem 5.3.3 and grad(LCSD) = F3. �

6.2.7 Example. For G = S1 and M = H as in Example 4.2.6, the Chern-Simons-Dirac
functional is

LCSD(u,A) =1
2

∫
Y

〈(a− a0) ∧ (Fa0 + Fa − 1
6 [a− a0, a− a0])〉g

+ 1
2

∫
Y

gM(χ ◦ u,DA(u))

=− 1
2

∫
Y

(a− a0) ∧ (Fa + Fa0) + 1
2

∫
Y

〈u,DA(u)〉.

This is the Chern-Simons-Dirac functional used in [KM07] to define the Seiberg-Witten
Floer homology groups.
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6.2.1 The Chern-Simons-Dirac functional and the gauge group

6.2.8 Lemma. The functional LD : C → R in gauge invariant.

Proof. Let u ∈ N a spinor, A ∈ A a connection 1-form and ψ ∈ G a gauge transformation.
We know from Lemma 3.6.10 that Dψ∗A(ψ∗u) = (g−1)∗DA(u), where g : Q→ G is defined
by the equation ψ(p) = pg(p) for all p ∈ Q. Since ρ : M → R is G-invariant by
Proposition 3.2.6, the map dρ : TM → R is also G-invariant and we obtain

LD(ψ∗u, ψ∗A) = 1
2

∫
Y

dρ(Dψ∗A(ψ∗u)) = 1
2

∫
Y

dρ(g−1
∗ DA(u)) = 1

2

∫
Y

dρ(DA(u))

= LD(u,A). �

6.2.9 Lemma. The functional LCS : A → R is G0-invariant, where G0 is the identity
component of the gauge group G .

Proof. Let ξ ∈ C∞(Q, g)Ĝ ∼= Lie(G ). Using Stokes’ theorem and the Bianci identity, we
obtain

dLCS((KG ,A
ξ )A) =

∫
Y

〈daξ ∧ Fa〉g =
∫
Y

〈ξ, daFa〉g = 0.

For ψt(p) := p exp(tξ(p)), t ∈ R we have

d
dt
LCS(ψ∗s+tA)|t=0 = dLCS( d

dt
ψ∗s+tA|t=0) = dLCS

(
d
dt

(Aexp(sξ))exp(tξ)|t=0
)

= dLCS
(
(KA ,G

ξ )Aexp(tξ)

)
= 0,

and therefore LCS(ψ∗tA) = LCS(ψ∗0A) = LCS(A) for all t ∈ R. This proves that the
functional LCS is invariant under the image of the exponential map. The exponential
map for infinite dimensional Lie groups is not necessarily a surjection onto the identity
component. However, the gauge group is locally exponential (cf. [Woc06, Thm 3.1.11]).
This means that image of the exponential map at least generates the identity component.
Replacing A by ϕ∗A in the equation above for a gauge transformation ϕ ∈ G , we obtain

LCS(ϕ∗A) = LCS(ψ∗tϕ∗A) for all t ∈ R

Therefore, if LCS is invariant under ϕ, then it is also invariant under ϕ ◦ ψ. Us-
ing induction for N ∈ N, this proves that LCS is invariant under exp(Lie(G ))N ={ ∏N

`=0 exp(ξ`)
∣∣∣ ξl ∈ Lie(G )

}
for all N ∈ N. Since the gauge group is locally exponential,

we can now conclude that LCS is G0 = ⋃∞
N=0 exp(Lie(G ))N -invariance. �

Combining Lemma 6.2.8 and Lemma 6.2.9, we obtain:

6.2.10 Theorem. The Chern-Simons-Dirac functional LCSD : C → R is invariant under
the connected component G0 of the identity in the gauge group.
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6.2.11 Remark. The Chern-Simons functional depends on the fixed connection A0 ∈ A .
Writing LA0

CS : A → R for the Chern-Simons functional for fixed connection A0, we find
that

Lψ
∗A0

CS (ψ∗A) = LA0
CS(A) for ψ ∈ G .

In particular,
Lψ
∗A0

CS (A) = LA0
CS((ψ−1)∗A) = LA0

CS(A) for all ψ ∈ G0.

Therefore, the Chern-Simons functional only depends on the choice of the class of A0 in
A /G0. Notice that the Chern-Simons functional is not in general G -invariant. In other
words, the Chern-Simons functional does in general depend on the class of A0 in A /G0,
not only on the class of A0 in A /G .

For G = S1 and G = SU(2), this dependence can be described in terms of topological data.
For G = S1 the gauge transformation determines a map g : Y → S1, which represents a
class [g] ∈ H1(Y,Z) = [Y,K(Z, 1)] = [Y, S1] and

LCS(A)− LCS(Ag) = 2π2([g] ^ c1(PS1))[Y ].

Here c1(PS1) is the first Chern class of the principal S1-bundle PS1 = Q/Spin(3),
^ : H1(Y,Z)×H2(Y,Z)→ H3(Y,Z) is the cup product and [Y ] ∈ H3(Y,Z) denotes the
fundamental class of Y (cf. [KM07, Lemma 4.1.3]).

In the case of G = SU(2), note that every principal SU(2)-bundle over Y is trivial.
Given a trivialization, a gauge transformation determines a map g : Y → SU(2), and
LCS(A)−LCS(Ag) is given (up to a constant factor) by the degree deg(g) of g : Y → SU(2)
(cf. [Flo88]).
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Conclusion

The dimensional reduction of the generalized Seiberg-Witten equations is similar to
the dimensional reduction of the usual Seiberg-Witten equations. As we have seen in
Theorem 5.3.3, the generalized Seiberg-Witten equations on a cylinder over a three-
dimensional manifold can be rewritten as downward flow equations for the vector field
F3 ∈ Γ (C3, TC3) on the configuration space which is given by the generalized Seiberg-
Witten equations. Moreover, there is also a Chern-Simons-Dirac functional for the
generalized Seiberg-Witten equations (Theorem 6.1.2). The gradient of the Chern-Simons-
Dirac functional is the vector field F3. Therefore, the generalized Seiberg-Witten equations
on the cylinder are equivalent to the downward gradient flow equations of the Chern-
Simons-Dirac functional (Corollary 6.2.6).

In the case of a target manifoldM with permuting action and a vector field χ ∈ Γ (M,TM)
such that χ = −IζKM,Sp(1)

ζ for all ζ ∈ Im(H) with ‖ζ‖2 = 1, we explicitly constructed
such a functional (Theorem 6.2.4). In this case, the Chern-Simons-Dirac functional is
also invariant under the identity component of the gauge group (Theorem 6.2.10). For
the usual Seiberg-Witten equations, one can use this functional to construct the Seiberg-
Witten Floer homology groups (cf. [KM07]). These constructions are infinite-dimensional
analogues of the construction of the Morse homology groups, where the Chern-Simons-
Dirac functional plays the role of the Morse function. In particular, the critical points
and the gradient flow equations (Theorem 5.3.3) are important ingredients. It might be
interesting to construct Floer homology groups for the Chern-Simons-Dirac functional
for the generalized Seiberg-Witten equations. However, there are several obstacles to
overcome. In particular, one has to carefully analyse the moduli spaces of generalized
Seiberg-Witten equations in three and four dimensions. Again, the moduli spaces of
solutions of the gradient flow equations are of particular interest since these are used to
construct the boundary operator of the Floer complex. In particular, a suitable class
of pertubations is needed to obtain non-degeneracy of the critical points of the Chern-
Simons-Dirac functional and a smooth structure on the moduli spaces using Fredholm
theory and the Sard-Smale theorem. Another challenge is to deal with reducible solutions.

When we do not assume the existence of a vector field χ as above, less is know about the
Chern-Simons-Dirac functional and its properties. In particular, it might only exist on a
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cover C̃ of the configuration space C . To understand this phenomenon, one has to study
the space of periods

{ ∫
γ F

[
3(γ̇)

∣∣∣ γ ∈ π1(C )
}
of the Seiberg-Witten 1-form F[3.

However, the existence of the Chern-Simons-Dirac functional and its properties, in
particular in the case when the target manifold admits a vector field χ as above, give rise
to some hope that it might be possible to define Seiberg-Witten Floer homology groups
for the generalized Seiberg-Witten equations.



Appendix A

Infinite dimensional manifolds

In this appendix, we collect some statements about infinite dimensional manifolds which
have been used in the previous chapters. For a detailed and exhaustive treatment of the
convenient calculus, which is used to describe these infinite-dimensional manifolds, we
refer the reader to [KM97].

A.1 Manifolds of mappings

A.1.1 Proposition ([KM97, Thm 42.1]). Let Q and M be finite dimensional smooth
manifolds. Then the space C∞(Q,M) of all smooth maps from Q to M is a smooth
manifold modeled on the topological vector spaces

Γc(Q, f ∗TM) = lim−→
K

ΓK(Q, f ∗TM)

of smooth compactly supported sections of the pullback bundles along f : Q→M . Here
ΓK(Q, f ∗TM) is the space of smooth sections with support in a compact subset K ⊂ Q and
Γc(Q, f ∗TM) is the inductive limit of ΓK(Q, f ∗TM), where K run through the compact
subsets of Q.

A.1.2 Remark. If Q is compact, then Γc(Q, f ∗TM) = Γ (Q, f ∗TM) is a Fréchet space
with the usual compact-open C∞-topology.

A.1.3 Remark. Note that Γc(Q, f ∗TM) ⊂ C∞(Q, TM) for all f : Q→M and therefore,
we can interpret TC∞(Q,M) ⊂ C∞(Q, TM) and the projection in the tangent bundle
TC∞(Q,M) → C∞(Q,M) is the restriction of C∞(Q, TM) → C∞(Q,M), v 7→ πM ◦ v.
If Qm is compact, then TC∞(Q,M) ∼= C∞(Q, TM).

A.1.4 Remark ([KM97, Thm 42.3]). The manifold C∞(Q,M) has separable con-
nected components and is smoothly paracompact (i.e. it admits a smooth partition of
unity) and Lindelöf. Furthermore, C∞(Q,M) is metrizable if Q is compact.
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A.1.5 Lemma. Let H be a compact Lie group, P a principal H-bundle and M a Rie-
mannian manifold with a smooth isometric H-action (all finite dimensional). Then the
space C∞(Q,M)H of all smooth H-equivariant maps from Q to M is a closed submanifold
of C∞(Q,M), modeled on the vector spaces Γc(Q, f ∗TM)H of smooth compactly supported
sections of the pullback bundles along f ∈ C∞(Q,M)H . Furthermore, C∞(Q,M)H is
smoothly paracompact.

Proof. For f ∈ C∞(Q,M)H , consider the closed subspace of H-equivariant sections
Γc(Q, f ∗TM)H ⊂ Γc(Q, f ∗TM). The charts in [KM97, Thm 42.1] use the exponential
map for the Riemannian metric onM . Since theH-action is isometric, this isH-equivariant
and we obtain the required submanifold charts.

Since C∞(Q,M)H ⊂ C∞(Q,M) is closed and C∞(Q,M) is smoothly paracompact,
C∞(Q,M)H is also smoothly paracompact (cf. [KM97, 27.11]). �

A.1.6 Remark. Another way to construct the smooth structure on C∞(Q,M)H is to
use Proposition 2.1.22 and interpret it as the space of sections of the associated bundle
Q×H M (cf. [KM97, Thm 42.20]).

A.1.7 Proposition (exponential law, [KM97, Thm 42.14]). Let M and N be two
(finite dimensional) manifolds and X a compact (finite dimensional) manifold. Then
there is a canonical bijection

C∞(N,C∞(X,M)) ∼−→ C∞(N ×X,M).

A.2 The configuration space

A.2.1 Configuration space as an infinite dimensional manifold

We will now study the configuration space Cm = Nm × Am for the Seiberg-Witten
equations. We denote by prN : Nm × A → Nm and prA : Nm × Am → Am the two
projections from the configurations space Cm to its factors. The following lemma is a
consequence of Lemma A.1.5:

A.2.1 Lemma. The space of spinors Nm = C∞(Qm,M)Ĝm is a smooth manifold with
tangent spaces TuNm = Γc(Qm, u

∗TM)Ĝm ∼= C∞c (Qm, TM)Ĝmu , where Γc(Qm, TM)Ĝmu :={
v ∈ C∞c (Qm, TM)Ĝm

∣∣∣ πM ◦ v = u
}
. The projection of the tangent bundle is given by

composition with πM :

TNm ⊂ C∞(Qm, TM)Ĝm πNm−−−→ Nm,

v 7→ πM ◦ v.

Furthermore, Nm is smoothly paracompact.
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A.2.2 Remark. If Q is compact, then Nm is a Fréchet manifold and the total space of
the tangent bundle is TNm

∼= C∞(Q, TM)Ĝm .

A.2.3 Lemma. The configuration space Cm is a smooth (infinite dimensional) manifold
which is smoothly paracompact. If Z is compact, then Cm is a Fréchet manifold and

T(u,A)Cm = C∞(Qm, TM)Ĝmu ⊕Ω1(Qm, g)Ĝmhor ,

where C∞(Qm, TM)Ĝmu :=
{
v ∈ C∞(Qm, TM)Ĝm

∣∣∣ πM ◦ v = u
}
.

Proof. We already know that the space of spinors is a smooth manifold. Since Am is
an affine space for the vector space Ω1(Qm, g)Ĝmhor ∼= C∞(Qm, g⊗ (Rm)∗)Ĝm , the space of
connections Am is a smooth manifold modeled on C∞c (Qm, g⊗ (Rm)∗)Ĝm . If Z is compact,
then TAAm = Ω1(Qm, g)Ĝmhor for all A ∈ Am. �

A.2.4 Remark. We will not give any more details concerning the manifold structure
here, as it is only important here, that we can use the usual calculus [KM97, Ch VII] and
differential geometry [KM97, Ch VIII] for the configuration space Cm. This is described
in detail in [KM97, Ch VI-IX]. Note however, that one has to be quite careful generalizing
from finite-dimensional to infinite-dimensional manifolds, even more if one considers
manifolds modeled on topological vector spaces more general than Hilbert spaces or
Banach spaces. Some notions which are equivalent in finite dimensions generalize to
non-equivalent notions in the case of infinite-dimensional manifolds. For example, we
understand tangent vectors as equivalence classes of smooth curves in the manifold and
not as derivations, since this is the convenient notion in the infinite-dimensional setting.
Another difference is that in many cases in infinite dimensions, the tangent bundle and
the cotangent bundle are not isomorphic. In particular, a Riemannian metric will no
longer identify tangent and cotangent bundle, but will only provide a homomorphism
from the tangent to the cotangent bundle, which usually fails to be surjective.

A.2.5 Proposition ([KM97, Thm 34.7]). Let M be a smooth, smoothly paracompact
manifold. Then the de Rham cohomology of M and the singular cohomology with coeffi-
cients in R are canonically isomorphic.

A.2.6 Corollary. The de Rham cohomology and the singular cohomology with coefficients
in R of the manifold Nm are canonically isomorphic. The same holds for the configuration
space Cm.

Spinors and sections of associated bundles

A.2.7 Note. Using Proposition 2.1.22, we can also understand the space of spinors as
the space of sections Γ (Z,Qm×ĜmM). This is again a submanifold of C∞(Z,Qm×ĜmM).
When Qm is compact, the bijection in Proposition 2.1.22 is even a diffeomorphism. This
can be seen as follows: First notice that a map between two manifolds is smooth iff the
composition with every smooth curve in the source manifold is a smooth curve in the



86 Appendix A. Infinite dimensional manifolds

target manifold. The space of smooth curves in Γ (Z,Qm×ĜmM) is C∞(R, Γ (Z,Qm×Ĝm
M)) = Γ (R × Z,Qm ×Ĝm M) and the space of smooth curves in C∞(Qm,M)Ĝm is
C∞(R, C∞(Qm,M)Ĝm) = C∞(R×Qm,M)Ĝm . The map between these spaces of curves
is again the one in Proposition 2.1.22, in particular a bijection, and we conclude that the
bijection from Proposition 2.1.22 as well as its inverse are smooth.

A.2.2 A metric on the configuration space

Let nowQm → PSO(m)×ZPG/ε be a SpinGε (m)-structure on a compact oriented Riemannian
manifold Z (dim(Z) = m ∈ {3, 4}).

A.2.8 Lemma. For u ∈ Nm let gMu : u∗TM ⊗ u∗TM → R be the pullback metric defined
by

gMu ((p, v), (p, w)) := gMu(p)(v, w) for (p, v), (p, w) ∈ u∗TM ⊂ Qm × TM.

For v, w ∈ C∞(Qm, TM)Ĝmu ∼= Γ (Qm, u
∗TM)Ĝm define

gN (v, w) :=
∫
Z

gMu (v, w),

where we use Notation 3.3.4 for the Ĝm-invariant map gMu (v, w) : Qm → R. This defines
a Riemannian metric on the space of spinors Nm.

Proof. Let v, w ∈ TuNm. Then

gN
u (v, w) =

∫
Z

gMu (v, w) =
∫
Z

gMu (w, v) = gN
u (w, v)

and
gN
u (v, v) =

∫
Z

gMu (v, v) = ‖v‖2
L2 ≥ 0

Furthermore, gN
u (v, v) = 0 iff v = 0. The linearity of gN is a direct consequence of the

linearity of gM . �

A.2.9 Remark. The pullback metric is often denoted by u∗gM . However, unlike the
pullback of differential forms, the definition of the pullback metric does not involve the
differential of u.

Next, we define a metric on the configuration space Cm. For (u,A) ∈ Cm and V =
(v, α),W = (w, β) ∈ T(u,A)Cm = C∞(Qm, TM)Ĝmu ⊕Ω1(Qm, g)Ĝmhor define

gC
(u,A)(V,W ) := gN (v, w) + gA (α, β).

Here
gA (α, β) :=

∫
Z

〈α ∧ ∗β〉g

is the L2-metric on Ωm(Qm, g)Ĝmhor induced by the Ad-invariant scalar product. Note that
we implicitly use the isomorphism Ωm(Qm,R)Ĝmhor ∼= Ωm(Z,R).



A.2. The configuration space 87

A.2.10 Lemma. This defines a Riemannian metric gC on the configuration space Cm.

A.2.3 The covariant derivative on the configuration space

The next step is to define a covariant derivative on the configuration space Cm, which is
both compatible with the metric gC and torsion-free.

The bundle pr∗A TA → Cm is trivial with fibre Ω1(Qm, g)Ĝmhor . We can interpret a section
s of this bundle as a map s̃ : Cm → Ω1(Qm, g)Ĝmhor . With this understood, we have a
tautological covariant derivative:

∇ : Γ (Cm, pr∗A TA ⊗ TCm)→ Γ (Cm, pr∗A TA )
(∇(v,α)s) =

(
γ(0), d

dt
s̃(γ(t))|t=0

)
for (v, α) = d

dt
(γ(t))|t=0.

Recall that TC∞(Qm,M)Ĝm = C∞(Qm, TM)Ĝm and

πN : C∞(Qm, TM)Ĝm → C∞(Qm,M)Ĝm

is v 7→ πM ◦ v, where πM : TM → M is the tangent bundle of M . Similarly, TTNm =
C∞(Qm, TTM)Ĝm . We define a horizontal bundle HTNm ⊂ TTNm and a vertical bundle
VTNm ⊂ TTNm as follows: Let TTM = HTM ⊕ VTM be the decomposition induced
by the Levi-Civita on M . Since Ĝm acts isometrically on M , this decomposition is
Ĝm-equivariant. Define

HTNm := C∞(Qm,HTM)Ĝm and VTNm := C∞(Qm,VTM)Ĝm .

The corresponding connector KN , v 7→ Km ◦ v is given by composition with KM . This
induces a covariant derivative

∇N : Γ (Nm, TNm)× Γ (Nm, TNm)→ Γ (Nm, TNm),
(V,W ) 7→ ∇VW, (∇VW )u := KN (TuW (Vu))

We get
(∇VW )u = KN (TuW (Vu)) = KM ◦ TuW (Vu).

A.2.11 Proposition. This covariant derivative ∇N is compatible with the metric gN

and torsion-free, i.e.

1. U(gN (V,W )) = gN (∇UV,W ) + gN (V,∇UW ) for all U, V,W ∈ Γ (Nm, TNm),

2. ∇VW −∇WV − [V,W ] = 0 for all vector fields V,W ∈ Γ (Nm, TNm).
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Proof. For p ∈ Qm, consider the evaluation map evp : C∞(Qm,M)Ĝm →M, evp(u) := u(p).
Similarly, we have an evaluation map evp : C∞(Qm, TM)Ĝm → TM . Let γ : I → Nm be
a smooth curve of spinors satifying γ(0) = u and d

dt
γ(t)|t=0 = Uu ∈ C∞(Qm, TM)Ĝmu . We

denote γp := evp ◦γ.

For V ∈ Γ (Nm, TNm), the following diagram commutes:

γ∗pTM

��

%%

TNm

πN

��

evp
// TM

πM

��

I
γ

//

γp

44

V p

HH

evp(Vγ(·))
++

Nm

evp
//

V

II

M

Here V p is the section of γ∗pTM given by evp ◦V ◦ γ. In particular,

(V p)0 = evp(Vu)

The Levi-Civita connection on M and the corresponding covariant derivative ∇M induce
a covariant derivative γ∗p∇M on γ∗pTM which is compatible with the metric gMγp on I.
Furthermore,

(γ∗p∇1V
p)0 = prVTM

( d
dt

(V p)t|t=0) = prVTM
( d
dt

evp(Vγ(t))|t=0)
= prVTM

(evp(TuV (U))) = evp((∇UV )u),

and

evp
(
d
dt
gMγ(t)(Vγ(t),Wγ(t))|t=0

)
= d

dt
evp

(
gMγ(t)(Vγ(t),Wγ(t))

)
|t=0

= d
dt

(
(gMγ )t(evp(Vγ(t)), evp(Wγ(t)))

)
|t=0

= d
dt

(
(gMγp )t((V p)t, (W p)t)

)
|t=0

= gMu ((γ∗p∇1V
p)0, (W p)0) + gMu ((V p)0, (γ∗p∇1W

p)0)
= gMu (evp((∇UV )u), evp(Wu)) + gMu (evp(Vu), evp((∇UW )u)).

We can now compute

U(gN (V,W )) = d
dt
gN
γ(t)(Vγ(t),Wγ(t))|t=0 = d

dt

∫
Z

gMγ(t)(Vγ(t),Wγ(t))|t=0

=
∫
Z

d
dt
gMγ(t)(Vγ(t),Wγ(t))|t=0 =

∫
Z

(gMu ((∇UV )u,Wu) + gMu (Vu, (∇UW )u))

=gN (∇UV,W ) + gN (V,∇UW ).

This proves that the covariant derivative ∇N is compatible with the metric gN . For the
second part of the statement, we use the formula for the torsion from Theorem 2.1.39.
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Since evp ◦κN = κM ◦ evp for p ∈ Qm and the torsion of the Levi-Civita connection on M
vanishes, we have

T∇(V,W ) = (KN ◦ κN −KN ) ◦ TV ◦W = (KM ◦ κM −KM) ◦ TuV ◦W = 0. �

A.2.12 Corollary. The tautological covariant derivative ∇A and the metric compatible,
torsion-free covariant derivative ∇N determine a metric compatible, torsion-free covariant
derivative ∇C on the tangent bundle TC → C .
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