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Chapter 1

Introduction

The idea of Witten [Wit94] to replace the anti-selfduality equation by the Seiberg-Witten
equations simplified many applications of gauge theory to the geometry of four-dimensional
manifolds, in particular to the study of smooth structures. Similar to the Seiberg-Witten
equations in dimension four, there are also Seiberg-Witten equations in dimension three.
Replacing the Dirac operator by a nonlinear Dirac operator acting on sections in a fibre
bundle, one obtains the generalized Seiberg-Witten equations. To construct such a Dirac
operator, one has to require some properties of the typical fibre of this bundle. The spinor
representation is replaced by a hyperkahler manifold, also called target manifold, with
additional symmetries. Instead of sections in a spinor bundle, or equivalently equivariant
maps from a principal Spin°-bundle into the spinor representation, the spinors are now
equivariant maps from a principal bundle into the target manifold, or equivalently sections
in the associated fibre bundle. The generalized Seiberg-Witten equations in dimension
three were introduced by Taubes in [Tau99]. In dimension four, these were studied by
Pidstrygach in [Pid04].

In this diploma thesis we study the generalized Seiberg-Witten equations in dimensions
three and four and, in particular, the generalized Seiberg-Witten equations on the cylinder
over a three-dimensional manifold. Assuming temporal gauge, these equations reduce to
the flow equations for a vector field on the configuration space of the three-dimensional
manifold. Moreover, we prove that there is a functional on the configuration space whose
gradient is this vector field. Such a functional is called Chern-Simons-Dirac functional.
We study the properties of this functional and give explicit examples under certain
assumptions on the target manifold.

One motivation to study the dimensional reduction and the Chern-Simons-Dirac functional
is that it is essential in the constructions of the Seiberg-Witten Floer homology group for
the usual Seiberg-Witten equations. The important invariants of smooth structures on
four-manifolds can be encoded in Floer homology groups. In the case of Donaldson theory,
this is an observation of Floer [Flo88]. A detailed account is given in [Don02]. The idea
of this theory is to apply Morse theoretic constructions to the Chern-Simons functional
on the infinite dimensional configuration space. There are also Seiberg-Witten Floer
homology groups. In this case, the Chern-Simons-Dirac functional plays the role of the
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Morse function on the infinite dimensional configuration space. A detailed account of the
construction and properties of the Seiberg-Witten-Floer homology is given in [KM07]. Our
Chern-Simons-Dirac functional generalized the one used to construct the Seiberg-Witten
Floer homology groups.

We will first review some notions and constructions from differential geometry and gauge
theory. In Chapter 3, we construct the nonlinear Dirac operator in dimensions three
and four, and then formulate the generalized Seiberg-Witten equations in Chapter 4.
The dimensional reduction of the Seiberg-Witten equations in four dimensions is studied
in Chapter 5 and relates the Seiberg-Witten equations in dimensions three and four.
Finally, in Chapter 6, we prove the existence of a Chern-Simons-Dirac functional for the
generalized Seiberg-Witten equations and provide an example for such a functional for
certain hyperkahler manifolds which permit a hyperkahler potential.

At this point, I would like to thank all those people who supported me during the time of
my studies and the period of work on this diploma thesis. First of all, I am grateful to
my advisor Prof. Pidstrygach for introducing me to many areas of mathematics related
to differential geometry and gauge theory and for his comments and helpful suggestions.
I am also grateful to Prof. Schick for his commitment as co-supervisor. I also want to
thank all participants of the “tea seminar”, where many interesting topics were discussed.
In particular, I am grateful to Vadim Alekseev, Henrik Schumacher, Kirstin Strokorb
and Dr. Ulrich Pennig for a pleasant time and many fruitful discussions. Moreover,
I am grateful to Carsten Thiel proofreading, many KETEX-related hints and numerous
interesting conversations. Last but not least, I would like to thank my parents for their
never ending support.



Chapter 2

Preliminaries and notation

In this chapter we review some basis definitions and notions from differential geometry and
gauge theory which we need later on, in particular fibre bundles, connections, hyperkéhler
manifolds, Clifford algebras and Spin groups.

2.1 Fibre bundles

Throughout this text all manifolds are smooth, paracompact and, if not stated otherwise,
finite-dimensional.

2.1.1 Definition (fibre bundle). Let F' be a manifold. A smooth map 7: £ — M
between two manifolds is said to be a smooth fibre bundle with typical fibre F' if for every
x € M there is an open neighborhood U C M of z (i.e. x € U) and a diffeomorphism
Oy: w1 (U) — U x F satisfying pr;; oy = m. Such a pair (U, Py) is called bundle
chart. A bundle atlas is an open cover {U;};e; of M with bundle charts {(U;, ®;) }ier-
We denote by E, := 7~ !'({z}) the fibre over x € M. In particular, for a bundle chart
(U, ;) the restriction @, , := prp o®;|p, : F, — F is a diffeomorphism. For a bundle atlas
{(Ui, @;) }icr, we have transition functions

These define smooth maps ®;; to the group of diffeomorphisms of the fibre

@iji UiﬂUj — lef(F),

T @i,m @) @;;,

which satisfy the cocycle conditions ®;; 0 Pj, = Dy, and P;; = idp for all 4,5,k € 1. The

family {®;;}: jer is the cocycle for the bundle atlas {(U;, @;) }ier. A smooth map s: M — E

satisfying m o s = id); is said to be a section of E — M. The space of all smooth sections

is denoted by I'(M, E). Let 7: E — M and 7": E' — M be two smooth fibre bundles
over M. A smooth bundle map is a smooth map f: F — E’ such that 7’ o f = 7.
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2.1.2 Definition (general connection). Let 7: E — M be a smooth fibre bundle
and Tw : TE — TM the differential of w. The vertical bundle Y% is the subbundle
ker(T'm) C TE. A general connection on E — M is a smooth subbundle s#C TFE such
that TE = Vg & 9 We denote the projections to g and ¢ by pry: TE — 75 and
pr: TE — 7, respectively. These are homomorphisms of vector bundles over E.

2.1.1 Vector bundles

2.1.3 Definition. A smooth fibre bundle 7: E — M is said to be a (real/complez) vector
bundle if the typical fibre F' is a IK-vector space (K = R or C) and the transition maps
are linear (i.e. @;;(x) € Autg (V) for alli,j € I, x € M).

Covariant derivative and connections

2.1.4 Remark. Let £ — M be a vector bundle and consider the pullback E x,; E. Note
that vlg: E Xy B — Vg, (v,w) = 4 (v + tw)]i—g is an isomorphism of vector bundles
over F. Is is called vertical lift.

2.1.5 Definition. A covariant derivative on a vector bundle £ — M a linear map
V:I'(M,E) - I'(M, T"M ® E)
satisfying the Leibnitz rule
V(fs)=df @ s+ f® Vs forall fe C*(M,R),sec I'(M,FE).

2.1.6 Remark. Given a vector bundle 7: F — M, there are two vector bundle structures
on the total space T'E. One the one hand, 7g: TE — FE is the tangent bundle of E, on
the other hand, T'w: TE — T'M is also a vector bundle.

2.1.7 Definition. Let 7: E — M be a vector bundle. A general connection on FE is said
to be a linear connection, if the composition T'FE Py ¢ ¢ TE is linear with respect to the
vector bundle structure T'w: TE — T M. A connector on E is a smooth map : TE — E
which satisfies K ovlp = pry: E X3y ' — E and is a vector bundle homomorphism for
both vector bundle structures on TE, i.e. the following two diagrams are vector bundle
homomorphisms:

TE-L—E TE-X~>FE
T i
E—"5M TM 225 M

2.1.8 Remark ([KM97, 37.27]). Given a linear connection on a vector bundle E — M,
the composition

T U71 T
TEXS v ey By, EXS B
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is a connector. Conversely, given a connector K, we can reconstruct the vertical projection
pry = vlg o (pry,K): TE — E X E — Y5 and the horizontal subbundle is J# =
ker(pr,) C TE. Therefore, instead of specifying a linear connection, we can equivalently
specify a connector on a vector bundle.

2.1.9 Remark. A connector K: TE — FE on a vector bundle £ — M induces a covariant
derivative on V: I'(M, E) — I'(M,T*M ® E):

Vs :=K(Ts(v)) forve I'(M,TM),s € I'(M, E).
Moreover, given a smooth map f: N — M, the same formula defines a covariant derivative

(N, f*E) —» I'(N,T*N ® f*E).

2.1.2 Group actions

2.1.10 Definition. Let M be a manifold and G a Lie group. A smooth left action of G
on M is a smooth map

GxM—M
(g, 2) =g
such that
1. for all g € G the map L,: M — M, L,(z) := g -z is a diffeomorphism,
2. 1-x =z for all x € M, where 1 € G is the unit element in G, and
3. g-(h-z)=(gh) -xforall gh € G,x € M.

Similarly, for a right action, one has a smooth map M x G — M, (z,g) — = - g and the
maps R, : P — P, R,(x) = x - g are diffecomorphisms. In many situations, we will also
write gx for g - x in the case of a left action and xg for x - g in the case of a right action.

2.1.11 Remark. If a Lie group GG acts smoothly on a manifold M, then we have an
induced action of G on T'M denoted by G x TM > (g,v) — g.v € TM, where g,v :=
T, Ly(v) for v e T, M.

2.1.12 Definition. Let g = Lie(G) be the Lie algebra of G. For & € g, the fundamental
vector field KéM’G € I'(M,TM) for a smooth left action of a Lie group G on a manifold
M is
MG\ ._ d
(K)o i= g exp(t) - zly=o € T, M for § € g, v € M.
Note that for x € M, ¢ € g and g € G we have

Tach(Ké\/LG)x = %g exp(t{) ) x|t:0 = % exp(tAdg(f))g : x|t:0 = (Kﬁjg))gm-
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Here Ad: G — Aut (g) is the adjoint representation of G on its Lie algebra g. More
precisely, we have Ad, := Tic,, where ¢: G — Aut (G) is the conjugation action, i.e.

g+ ¢y Cg(h) :=ghg™*
Similarly, for a smooth right action of G on M, the fundamental vector field KéM G e
(M, TM) is
(Kéw’G)w =Ly exp(t&)|i—o € T, M for £ € g,z € M.
Again, note that for x € M, £ € g and g € G we have
TRy (KX9), = - exp(i€)glio = o - gexp(tAdy () = (KX )y

The fundamental vector field defines a G-equivariant linear map g — I'(M,TM), £ —
K éM % from the Lie algebra g with the adjoint action of G to I'(M, T M) with the induced
action.

2.1.13 Definition. Let V be a vector space (over R). Using the fundamental vector
fields, we have a homomorphism

Lg: 28 (M, V) — QY (M, g @ V),

a e, (o, ) = LpraQ for € € g.

There is also a corresponding Lie derivative

Ly Q"M V) = Q¥(M,g" @ V),
a = Lo, (Lgo, €) = £K§4,ca for € € g.

Note that ¢y and Ly are related by L; := dig + 14d.

2.1.14 Remark. Let p: G — Aut (V) be a G-representation, M a manifold with a
smooth (left) G-action. A k-form v € £2%(M, V') is said to be G-equivariant if Lo = p(g)a
for all g € G. The space of equivariant k-forms is denoted by 2%(M, V)¢,

Let oo € 2%(M, V)¢ be a G-equivariant k-form and wy, - -+ ,wy_1 € T, M for some x € M.
Then
(L (150, ), 1) = a(KYC TLy (1), . TLy(y 1)
= p(g)a(TL _1K§4G, Wi, ...y Wi—1)
= p(9)(tge, Adg—1§)(wr, . . ., wy—1)

((p(g) ® Ady)gar, E) (w1, . .., we—1).

Here Ad*: G — Aut (g*) is the coadjoint representation Ad;(v)(§) = v(Ady-1(§)) for all
g € G, v € g*and £ € g. This proves that (;a € Q¥ 1(M,g* ® V)% and that ¢, maps
G-equivariant forms into G-equivariant forms:

Lg: (M, V)G — QMM g* @ V).
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2.1.3 Principal bundles

2.1.15 Definition (principal bundle). Let G be a Lie group and 7: P — M a smooth
fibre bundle with typical fibre G. We say that 7: P — M is a principal G-bundle if the
transition functions map to G C Diff (G), where G acts on itself by left multiplication (i.e.
there are maps g;; : U; N U; — G such that @;;(z)(h) = g;j(x)h for all h € G). The maps
{9ij}ijer again satisty the cocycle conditions g;j(x)g;r(x) = gi(x) for all z € U; N U; N U,
and g;(z) = 1 for all x € U;, where 1 € GG is the unit element. Note that we have a
right G-action on P, (p, g) — pg := @fl(p)((@m(p) (p))g) for a bundle chart (U;, @;) with

1,7

7(p) € U;, each fibre of P is a G-torsor and P/G = M.

Let A\: G’ — G be a group homomorphism and P — M be a principal G-bundle. A
A-reduction of P is a principal G’-bundle P’ — M and a smooth bundle map f: P' — P
satisfying f(pg) = f(p)A(g) for all p € P and g € G,

Two principal G-bundle 7: P — M, «’: P' — M are said to be isomorphic if there is a
smooth G-equivariant diffeomorphism f: P — P'.

2.1.16 Remark. Let 7: P — M be a principal G-bundle with a bundle atlas {(({Z, D) bier-
The cocycle {g;;}ijer determines an element in the first Cech cohomology set H!(M,G).

We have a bijection between H (M, @) and the isomorphism classes of principal G-bundles
over M (cf. [Hir66, Thm 3.2.1] or [LM89, Appendix A]).

2.1.17 Example (bundle of frames). Let E — M be a real vector bundle of rank n.
For x € M define
P, :={f: R" — E.|f linear isomorphism}.

This defines a bundle P — M, called bundle of linear frames in E. Using the composition

GL,(R)yx P> (A, f)» A"f=fo A€ P,

the bundle of linear frames is a principal G L, (R)-bundle. Given a Riemannian metric g*
on E and an orientation, we can also study the bundle of oriented orthonormal frames
Psony, where (Psom))s = { f € P, | f orientation preserving isometry }. This principal
SO(n)-bundle is a reduction of the bundle of linear frames P. In particular, we will be
interested in the case when the vector bundle is the tangent bundle TM — M.

Equivariant vector bundles and associated vector bundles

2.1.18 Definition. Let G be a Lie group. A vector bundle 7: E — M with a smooth
action of G on F is said to be an equivariant vector bundle if there is a smooth action of
G on the base manifold M such that 7: E — M is G-equivariant and Ly: E, — Ey is
linear. Given a G-equivariant vector bundle £ — M, we denote mFE := E/G.
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2.1.19 Example. Let G be a Lie group.

1. Given a smooth action of G on a manifold M, there is an induced action of G on
the tangent bundle T'M. Equipped with these actions, TM — M is a G-equivariant
vector bundle.

2. Given a smooth action of G on a manifold P and a G-representation V', the trivial
vector bundle P x V' — P with the action (h, (p,v)) — (ph™!, hv) is a G-equivariant
vector bundle. If P — M is a principal G-bundle, then m(P x V) — M is the
associated vector bundle which is denoted by P x4 V.

Associated fibre bundles

The construction in the second part of Example 2.1.19 generalizes to arbitrary fibres:

2.1.20 Definition (associated fibre bundle). Let P — M be a principal G-bundle
and let G act smoothly on a manifold F. Then G acts (from the left) on the product
P x F by (h,(p,f)) = (ph™',hf). The quotient by G is a fibre bundle over M with
typical fibre F' and is denoted by P xg F := (P x F)/G.

2.1.21 Example. Let P — M be a bundle of orthonomal frames in a vector bundle
E — M of rank k. Then £ = P Xo) R*. In particular, this holds for the tangent bundle
TM — M.

2.1.22 Proposition ([Bau09, Satz 2.9]). Let P — M be a principal G-bundle and
F' a manifold with a smooth G-action. Then there is a bijection between the space of
G-equivariant maps from P to F' and the sections of the associated fibre bundle,

C®(P,F)¢ — I'(M,P xq F),
f > sp, where s¢(z) = [z, f(x)] for x € M.

2.1.23 Definition. Let P — M be a principal G-bundle and let V' be a representation
of G. A k-form o € 2%(P,V) on P with values in V is said to be horizontal if ;a0 = 0.
The subspace of horizontal k-forms is denoted by 28(P, V)., C 28(P, V).

The Proposition 2.1.22 generalizes to

2.1.24 Proposition ([Bau09, Satz 3.5]). Let P — M be a principal G-bundle and V/
a G-representation. Then there is a bijection

QNP — QF(M, P xg V).

hor
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2.1.4 Connections

2.1.25 Definition (connection 1-form). A connection 1-form on a principal G-bundle
P — M is a G-equivariant 1-form A € 2'(P, g)%, satisfying 1,4 = id,;. The subbundle
) :=ker(A) C TP is the horizontal bundle or horizontal distribution for A.

The space of all connection 1-forms on P will be denoted by <7 (P).

2.1.26 Remark. The condition ¢;A = id, for a connection 1-form A € 2'(P, g)¢ can be
written as

A(KSY) = ¢ forall € € g.

Being equivariant means that for all ¢ € G we have:
RyA = Ady-1 A

where Ad: G — End (g) is the adjoint representation of G on its Lie algebra g. Here the
inverse g—! appears because we consider a left action of G on g and a right action of G
on P.

2.1.27 Proposition ([Bau09, Folgerung 3.1]). The space of connection 1-forms <7 (P)
is an affine space for the vector space 2 (P, g)$ .
2.1.28 Remark. A connection 1-form A on a principal G-bundle P — M induces a
general connection T'P = 74 © ¥p and we denote the projections to 74 and ¥p by pr
and pry, respectively. Since A is G-equivariant, this decomposition in also G-equivariant,
ie. (Hh)py = TRy (), for all p e P and g € G.

2.1.29 Remark. Let P — M be a principal G-bundle. Consider the adjoint representa-
tion of GG on its Lie algebra g and denote the associated vector bundle by gp := P X g.
Using the isomorphism 2'(P, )¢ = 2'(M, gp) from Proposition 2.1.24, we can also

hor

think of &/ (P) as an affine space for the vector space 2'(M, gp).

2.1.30 Remark. Note that there is a bijection between the set of covariant derivatives
on a vector bundle and the connection 1-forms on its bundle of linear frames. The
metric compatible covariant derivatives correspond to connection 1-forms on the bundle
of orthonomal frames.

2.1.31 Definition. Let V be a G-representation and P a principal G-bundle with con-
nection 1-form A € &7 (P). The covariant exterior derivative for A is

dy = priy, d: 2" (P, V)9 — Q"Y(P, V)]

hor*

2.1.32 Definition (curvature). The curvature F of a connection 1-form A € <7 (P)
on a principal G-bundle P — M is

Fy = daA = dA+ 1A, 4] € OX(P,g)f]

hor*
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Using the isomorphism 2%(P, g)§ == 22(M, gp), we can also interpret the curvature as
an element in 2?(M, gp), which will also be denoted by F4. If P is a bundle of frames in
TM, we have gp C End (T'M) and the image of F4 under £2%(P,g)%  — 2*(M,End (E))

is the curvature tensor RA.

hor

2.1.33 Remark. For a horizontal 1-from o € 2'(P, g)¥
M and a connection 1-form A € o/ (P), we have

Fajoa=dA+a)+35[A+ 0, A+a] =dA+do+ 5[A Al + [A o] + o, o
:FA~|—dAa—|—2[, al.

on a principal G-bundle P —

hor

2.1.34 Definition (canonical 1-form). Let M be an n-dimensional manifold and let
7: P — M the bundle of linear frames in T'M. The canonical 1-form 6 € 2*(P, R”)hGOL,,"(R)
Is

0r(v) == f 1 (Tym(v)) for f € P,v € TyP.

We will also denote the pullback of the canonical 1-form to any other bundle of frames by
0.

2.1.35 Definition (torsion form). Consider a bundle of frames 7: P — M in the
tangent bundle T'M of an n-dimensional manlfold M. Then for a connection 1-form
A € &/ (P) the torsion form O, € 2*(P, R")foLr" is the covariant exterior derivative of
the canonical 1-form 6:

QA = dA9
The image of ©4 under the isomorphism 2%(P, R")E ™) o~ 02(0f, T M) is the torsion
tensor T4.

Induced covariant derivative on associated vector bundles

Let P — M be a principal G-bundle and V' a representation of G. Let £ = P xg V the
associated vector bundle. A connection 1-form A induces a covariant derivative V4 on E:
We define V4 to be the map which makes the following diagram commutative:

(P, V)¢ —5 s 1P, V)G

| |

(M, E) Y2 P(M,T*M ® E)

hor

Here we use Proposition 2.1.24 for the vertical isomorphisms and on the right hand side

additionally Q'(M, E) = I'(M,T*M ® E).

2.1.36 Remark. A section s in an associated bundle F = P XV is said to be parallel or
covariantly constant with respect to A (or V4) if VAs = 0. Usual examples are the tangent
bundle M, cotangent bundle T*M, second symmetric power S?T*M of the cotangent
bundle and the bundle of endomorphisms End (TM) = T*M @ TM of TM. Examples
of corresponding sections are a vector field v € I'(M,TM), a 1-form o € I'(M,T*M), a
metric g € I'(M, S*T*M) and a complex structure I € End (T M).
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2.1.37 Theorem ([Bau09, Satz 3.21, Aufgabe 3.7]). Let P — M be a bundle of
frames in TM. Let A be a connection 1-form on P. Then, in terms of covariant
differentiation, the curvature and torsion tensors can be expressed as follows:

RA(v,w)u = VIViu - VAVIy — Vﬁ,w]u,
T4(v,w) = VAw — Vi — [v,w],
where u,v,w € I'(M, TM) are vector fields on M.

2.1.38 Proposition ([KMS93, §6.12]). Let M be a manifold. There is the unique
smooth map kyr: TTM — TTM such that for all smooth c: R? — M :

diasc(t,8)]s=oli=0 = £ g5 ge(t, 8)li=ols=o-

This map kpyr: TTM — TTM is called the canonical flip on M.

2.1.39 Theorem ([KMS93, Thm 37.15]). Let V be a covariant derivative on T'M
with corresponding connector K. Then the torsion tensor can be written as

TV (v,w) = (K o kpr — K)Twow for all v,w € I'(M, TM).
In particular, a connection is torsion-free iff its connector satisfies K o kpy = K.

2.1.40 Theorem ([KN96, Ch IV, Thm 2.2]). Fvery Riemannian manifold M ad-
mits a unique covariant derivative ¥V on T M which is metric compatible (i.e. Vg =0) and
has vanishing torsion. This covariant derivative as well as the corresponding connection
1-form on the principal bundle of orthonomal frames are called Levi-Civita connection.

2.1.5 Gauge group

2.1.41 Definition. The gauge group 4 (P) of a principal G-bundle P — M is the group
of automorphism of P, i.e. G-equivariant diffeomorphisms P — P:

4(P):={4: P — P diffeomorphism | ¢)(pg) = ¥(p)g Vp € P,g € G }.
Elements of the gauge group are called gauge transformations.

2.1.42 Note. Consider the G-action on itself by conjugation. A smooth G-equivariant
map ¢: P — G induces a gauge transformation ¥ € 4(P), ¥(p) := pg(p). Conversely, for
every gauge transformation ¥ € 4(P) there is a smooth G-equivariant map g: P — G
such that ¥(p) = pg(p) for all p € P. This implies that there is an isomorphism

4(P) = C>™(P,G)°.

In particular, we have an isomorphism Lie(4(P)) = C*=(P,g)“, where we consider the
adjoint action of G on its Lie algebra g. Using Proposition 2.1.22, we can also think of
G(P) = O®(P,G)% as of section in the associated bundle P x5 G' — M, where G acts on
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itself by conjugation. The Lie algebra Lie(¢(P)) can also be identified with the sections
in an associated bundle gp = P X g — M for the adjoint representation of G on its Lie
algebra g = Lie(G):

If G is abelian, then the bundle gp is a trivial bundle over M with fibre GG. In this case the
description as equivariant maps reduces to smooth maps from M to G and g, respectively:

G(P)=C*(M,G) and Lie(4(P) = C*>*(M, g).

The group of connected components of the gauge group can be described in terms of
principal bundles:

2.1.43 Lemma ([Don02, 2.5.2]). Let P — M be a principal G-bundle. Then
ro(@(P)) = { Q] € H'(M x S",G) | Qlarxioy = P }.

Proof. First observe that my(¥¢) = ¢/%, where %, is the connected component of the
identity. For a gauge transformation ¢ € ¢(P) we construct a principal G-bundle on
M x S as follows: Take the principal G-bundle P x [0,1]/~ where (p,0) ~ (¥(p), 1) for
all p € P. The map ¥ — H (M x S, G) is invariant under the identity component %, of
the gauge group and induces the isomorphism. U

Action of the gauge group on connections

Let P — M be a principal G-bundle, ¥ € 4(P) an element of the gauge group and
A € &/(P) a connection 1-form. Pulling back the connection 1-form by the gauge
transformation again produces a connection 1-form ¢*A € o/ (P) on P. We obtain a right
action of the gauge group ¢(P) on the space of connections o7 (P).

2.1.44 Proposition ([Bau09, Satz 3.22]). Let A € </ (P) be a connection 1-form,
Y € 9(P) a gauge transformation and g : P — G the corresponding G-equivariant map.
Then

VA = A%, where (A%), = Adg(Ap) + (g"n)p for p € P.

Here n € 2Y(G,9)¢ denotes the left-invariant Maurer-Cartan form on G, which is defined
to be n(v) := Ty Ly-1(v) = h'v for h € G,v € T,G. Furthermore, we have
V' Fy = Fyroa = Fao = Adyg—1(Fa).

2.1.45 Lemma. Given an G-equivariant smooth map &: P — g interpreted as an element
of the Lie algebra Lie(4(P)) of the gauge group, the fundamental vector field for the
action of the gauge group 4 (P) on the space of connections <7 (P) is

(KO ) = dag € QY(P,g)5,, = Tadd (P).

hor



2.2. Hyperkéhler manifolds 13

Proof. For v € T,,P we have:

G exp(tE) n(0)|i=o = § Texp(re(r)) Lexp(—te(p)) (T exp(tE) (v)) 1=
= ditTeXp(tﬁ( ) Lexo(—te () (L) €xP(Tp€(v))) =0
Ty (exp(—t&(p)) exp) (Tp€ () |i=o
= Tpf( )

The last equality holds since

1
T(exp(—t¢(p)) exp) = [ e ds — 1 — Lad(&(p)) + O(F).
0
For a proof of this formula, we refer the reader to [DK00, Thm 1.5.3]. Furthermore,
$ Adep(ae) li=o = T1 Ad(F; exp(t)]i=0) = T1Ad(E) = adg.
Finally, we conclude

G Adesp(—16)(A) + exp(t€) im0 = ad_¢(A) + d§ = d& + [A, €] = da€. O

2.2 Hyperkahler manifolds

2.2.1 Definition (K&hler manifold). An almost complex structure on a manifold M
is an endomorphism I € End (T'M) satisfying I? = —idry. A Kdihler manifold is a
Riemannian manifold (M, g*) with a parallel (with respect to the Levi-Civita connection)
orthogonal almost complex structure I € End (T'M) such that the 2-form w € 2*(M) is
closed, where w(v,w) = g™ (v, I(w)) for all v,w € T, M. The symplectic form w is called
Kahler form.

2.2.2 Definition (hyperkahler manifold). A hyperkdhler manifold is a Riemannian
manifold (M, g™) with three parallel (with respect to the Levi-Civita connection) orthog-
onal almost complex structures Iy, s, I3 € End (T'M) such that I 11513 = —idyy and M
is a Kéahler manifold with respect to each of the three complex structures.

2.2.3 Remark ([Hit87, Lemma 6.8]). It is enough to require the existence of two anti-
commuting orthogonal almost complex structures Iy, Iy € End (T'M) (define I3 := I, 15)
such that the three 2-forms are closed: dw; = dws = dws = 0, where wy(v,w) =
g™ (v, I(w)) for all v,w € T,M and ¢ € {1,2,3}.

2.2.4 Remark (dimensions and holonomy groups). The existence of the complex
structure on a Kéhler manifold M implies that the dimension of M is even. The existence
of the three complex structures on a hyperkahler manifold M implies that the dimension
of M is a multiple of 4. We also allow dim(M) = 0 . In this case, the identity is
the only endomorphism of T'M. However, it is a complex structure and we can take
]1 = _[2 = Ig = ldTM
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The holonomy group of a 2n-dimensional Kéhler manifold is contained in U(n) C SO(2n).
Conversely, every 2n-dimensional manifold with holonomy group contained in U(n) C
SO(2n) is a Kahler manifold.

Let H be the skew field of quaternions. As a vector space we identify H = R*. The
holonomy group of a 4n-dimensional hyperkahler manifold M is contained in Sp(n) C
SO(4n), where Sp(n) is the group of H-linear metric perserving automorphisms of
H". Conversely, every 4n-dimensional manifold with holonomy group contained in

Sp(n) C SO(4n) is a hyperkahler manifold.

The group Sp(1) can be identified with the sphere S?® in the quaternions. We have an
isomorphism H D S* — Sp(1), ¢ — Ry, Rz(h) := hq for h € H. We will from now on use
this isomorphism to identify Sp(1) with the sphere in the quaternions and its Lie algebra
sp(1) with the space of imaginary quaternions Im(H) := { heH } h=—h }

2.2.5 Note (scalar multiplication). The tangent bundle of a hyperkéahler manifold M
is a bundle of H-modules, i.e. we have a ring homomorphism called scalar multiplication

Z:H— End(TM),
hHIh,

where Z), := hgidry +hily 4+ hols + hsls for h = hg 4+ hqi + hoj + hsk. In particular, for
all ¢ € Im(H) with ||¢]|* = 1 we have

I =T1p=—I;=—1 = —idy

This implies that Z maps the sphere S? C Im(H) C H into the space of complex structures
on M. If dim(M) > 0, then 7 is injective and we have a sphere of complex structures

(Een]ga=1)

We define a 2-form w € 2?(M, sp(1)*) as follows:
(w, () :==w for all ¢ € sp(1) = Im(H),
where w¢ (v, w) = g™ (v,Z;w) for all z € M and v,w € T, M. If ¢ € Im(H) = sp(1) is of

norm one, ||¢||* =1, then Z; is an (almost) complex structure and w, the corresponding
symplectic form.

2.2.6 Example. Consider M = H. The tangent bundle is trivial, 7TH = H x H 2L H=
M. For (h,v) € TH =H x H let

Il((h7v)) = (h7“)) ]2((h,1))) = (h,]U) IS((h7U)) = (hv k}U)
This defines three complex structures Iy, I, I3 € End (TTH) which are compatible with the

standard metric g}/ (v,v') = Re(vd’) for all v,v" € H = T, H. The scalar multiplication is
given by Zy/((h,v)) = (h,h'v) for all B’ € H, (h,v) € TH.
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The three symplectic forms w, = g™ (-, I;(+)) for £ € {1,2,3} are

w1 = —dho VAN dhl - dhg N dhg,
Wy = dhl A dh3 - dho VAN dhg,
w3 = —dho A dh3 — dhl N dhg,

where h = hg + thy 4+ jho + khs. Note that 1wy + jws + kws = %dh A dh.

2.2.1 Group actions and moment maps

Consider the coadjoint representation g* = Lie(G)* of a Lie group G.

2.2.7 Definition (moment map). A smooth action of a Lie group G on a symplectic
manifold (M,w) is said to be a symplectic action if it fixes the symplectic form w (i.e.
Liw = w for all h € G). A smooth map p: M — g* is said to be a moment map for the
symplectic G-action on M if

1. dp = tgw (moment map condition),
2. pu(gr) = Ad;(u(x)) for all g € G,z € M (equivariance).

2.2.8 Proposition (existence/uniqueness of moment maps, [CdS01]).
1. Let G be a compact connected Lie group. If a moment map p: M — g* for
a symplectic G-action on a symplectic manifold M exists, then the set of mo-
ment maps is a |g,g|°-torsor, where [g, 9] is the annihilator of the commutator
ideal g, 9] in g*. In particular, if G is abelian, then the set of moment maps is
{p+v:M —g'|veg}.

2. If G is a compact semisimple Lie group, then for any symplectic G-action there is a
unique moment map.

2.2.9 Definition (hyperkahler action). A smooth action of a Lie group G on a hy-
perkéhler manifold (M, g™, I, I, I3) is said to be a hyperkdhler action, if

1. G acts isometrically, i.e. for all h € G : LjgM = g™,

2. G respects the three complex structures, i.e. for all h € G : hyody = I1hy, hyods = Ih,
and ]’L*Ig = ]3h*

The definition of a moment map for a hyperkahler action is analoguous to the definition
for symplectic actions, but now we have to take care of three symplectic structures.

2.2.10 Definition. Let (M, g™, I, I,, I3) be a hyperkihler manifold with a hyperkihler
action of a Lie group G. Consider the form w € 2*(M,sp(1)*). A smooth map pu: M —
g" ®sp(1)* is said to be a hyperkdhler moment map for the G-action on M if

1. dp = tqw (moment map condition),
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2. pu(gr) = Ad;(u(x)) for all g € G,z € M (equivariance).

2.2.11 Remark. If p: M — g* ® sp(1)* is a hyperkdhler moment map, then d(u, () =
tgwe, and therefore (p, ¢): M — g is a moment map for w¢. In particular, let

M1 = (/L,i>, M2 = <:u’j>7 M3 = <N> k>

Then p: M — g* ® sp(1)* is a hyperkdhler moment map iff puq, p1o, 3 are moment maps
for wy, wy, ws, respectively.

2.2.12 Example. Consider the hyperkahler manifold H from Example 2.2.6 and for
fixed ¢ € Z the action S* ~ H, (2, h) — hz‘. The fundamental vector field for this action
is

(KE)n = Lhexp(te)]i—o = (hé € H = T, H.

Consider the map fi: H — Im(H), fi(h) = Lhih and let py, po, s € C%(M, R)%" be
defined by fit = tp1 + juo + kps. Then

idpy + jdps + kdps = dji = (5dhih + £hidh) = Lugidh A dh
= L msl (twy + jwa + kws).
If we use the Ad-invariant scalar product (-,-): iR ® iR — R with (i,7) = 1, and the

) > :
standard metric on Im(H) to identify sp(1)* = Im(H)* = Im(H) = sp(1), then p =i ® i
is a hyperkdhler moment map.

2.2.2 Hyperkadhler potential

2.2.13 Definition (Kihler potential). Let (M, g™, I) be a Kéihler manifold with Kéh-
ler form w. For a 1-form o € 2Y(M) define Ia € 21(M) by Ia(v) := a(l(v)) for all
v e TM. A smooth function p: M — R is said to be a Kdhler potential if dIdp = 2w.

2.2.14 Remark. In terms of complex valued differential forms and Dolbeault operators,
we have

i00p = i(0 + 0)0p = id0p = id3(1 +il)dp = —%dIdp
for all p € C°°(M,R). Therefore, a smooth function p is a Kéhler potential iff —i00p = w.

2.2.15 Definition (hyperkihler potential). A smooth map p: M — R on a hyper-
kahler manifold (M, g™, I, I, I5) is said to be a hyperkdhler potential if p is a Kéahler
potential for each of the three complex structures:

dI,dp = 2w, for all £ € {1,2,3}.
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2.2.16 Example. Consider the hyperkdhler manifold M = H (cf. Example 2.2.6) and
the function p : H — R, p(h) = 3|h||*>. We have

3
dp = Z hzdhz.
=0

For a complex structure /- we have
3
dZCdp = Z dhgzgdhg.
=0

More explicitly,

Iidhg = — dhy, I, dhy =dhy, Iidhy = — dhs, Idhs =dhs,
Itho - — dhg, Ithl :dhg, IthQ :dho, Ithg - — dhl,
Isdhg = — dhs, Isdhy = — dho, Isdhy =dh;, Isdhs =dhy,

and therefore
3
d]ldp = Z dhg[ldhg = —dho A dh1 + dh1 VAN dhg - dhg N dh3 + dhg A dhg = 2&)17
=0

3
d]gdp = Z dhg[gdhg = —dho A dhg + dh1 VAN dhg + dhg VAN dho - dhg A dh1 = 2&)27
=0

3
d]gdp = Z dhg[gdhg = —dho A dh3 - dh1 VAN th + dhg N dh1 + dhg A dho = 2&)3.
=0

This implies that p: H — R, p(h) = 5||h||* is a hyperkéhler potential.

2.3 Clifford algebras and Spin groups

2.3.1 The Clifford algebra

2.3.1 Definition. Let V be a vector space (over R) equipped with a quadratic form g.
The Clifford algebra C1(V,q) is the quotient of the tensor algebra T (V) := @2, V& by
the ideal Z(V, q) which is generated by elements of the form v ® v + ¢(v) for v € V:

Cl(V,q) :==T(V)/Z(V,q).

The equivalence class of an element v ® v, ® -+ - @ v, € T (V) is denoted by vivs - - - vy.
The Clifford algebra CI(V, q) has the universal property that every linear map f: V — A
into an associative algebra A (over R) with unit satisfying f(v)? + ¢(v) =0 for all v € V
extends uniquely to a homomorphism CI(V,q) — A.
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Let a: Cl(V,q) — CI(V,q) be the automorphism which extends —idy: V' — V. The
even part C1%(V,q) and the odd part C1'(V, q) are defined as

Cl14(V,q) = ker(a — (—1)%id) for £ € {0, 1}.

This defines a Z/2Z-grading on the Clifford algebra. Let now C1*(V, q) be the multiplica-
tive group of units in the Clifford algebra C1(V,¢) and define the group Pin(V,q) to be
the subgroup of C1*(V,q) generated by elements v € V' with ¢(v) = £1. The Spin group
for V and ¢ is

Spin(V,q) == Pin(V,q) N CI°(V,q).

If V.= R™ is the m-dimensional Euclidean space and ¢(v) = ||v||?, then we denote the
corresponding Clifford algebra by C1,, := CI(R™, | - ||*). The corresponding Spin group is
denoted by Spin(m) := Spin(R™,|| - ||*) Furthermore, we define

Spin®(m) = (Spin(m) x S*)/{(£1,£1)}.
2.3.2 Note. The map

AR™ = Ol

VI /N ANV — U1V

is an isomorphism of vector spaces. Restricting to A2R™, we obtain an isomorphism
Lie(Spin(m)) = A?R™.

2.3.3 Definition (volume element). The volume element of the Clifford algebra C1,,
is vol,, := ey ---e,. The complex volume element is Uolg = iLmTHJel ceeey, € Cl, ®C.

2.3.4 Examples (Clifford algebras).
1. Cl; 2 C, where 1 +— 1,e; — 1.

2. Cly =2 H, where 1 — 1,e +— 1,69 > 7.
3. Cly=Ha® H, where 1 — (1,1),e; — (—i,i),e2 — (—3,7),e3 — (—k, k).

4. Cly = My(H), where

1 1 0 . 0 -1
0 1)’ “= A1 o)
N s [0 T U
1 —'l 0 ) 2 _j O ) 3 —kf O .

The images of the volume elements vols = ejese3 and voly = egejeses under the iso-

morphisms above are (1,—1) and ( 0 (1) , respectively. For m € {3,4} we have

C _
vol,, = —vol,,.
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2.3.5 Note. The decomposition of C'l3 in the previous example as a sum of two copies of
the quaternions H corresponds to the decomposition Cls = Cl3 @ Cl3: In Cl3, the volume
clement vols = ejeqe; is central and (vols)? = 1. Define two projections 7+ := £(1 + vols)
and 77 = %(1 —wol3), and Cl := 77Cls, Cly := 7~ Clz. In terms of quaternions,
we have 7t = (1,0) and 7= = (0,1), s0 Clf * H® {0} C H® H = Cl3 and Cl; =
{0} H Cc H®H = Cl;. The decomposition Clz = CI3 & CI} into even and odd elements
is given in terms of quaternions as Cl1S = { (h,h) e H&H|he H} C H® H = Cl3 and
Ci={(h,—h)eH®H|heH} C H®H = Cl3. The automorphism a: Cly — Cl3 is
given in this picture by H& H — H @ H, (h, 1) — (I, h).

2.3.6 Proposition ([LM89, Ch I Thm 3.7]). The map R™ —CI>, 1,0 — vep4q in-
duces an isomorphism
Cly, = ClY, L

2.3.7 Remark. We will mostly be interested in the case m = 3, where we use the
convention that R?® = span{ey, es, e3} and R* = span{eg, ey, €2, e3}. In this case we use
the map R® 3 v+ veg € C1Y. Note that vols — —voly and vol§ — —vol§. If we use the
isomorphisms from Examples 2.3.4, the composition H® H = Cl3 — Cly = My(H) reads

HoH> (hH)— (8 2,) € My(H).

2.3.8 Note. For m > 3 the Spin group Spin(m) is the universal covering of SO(m). In
particular, we have a short exact sequence
0 — Z/27 — Spin(m) 2 SO(m) — 1,
where A of is the restriction of
Ad: Cl — Aut(Cl,y,)
i Ady, Ady(y) = ale)ye™

to Spin(m) C CI and R™ C Cl,. The differential T)\: spin(m) — so(m) is an
isomorphism of Lie algebras. Here so(n) = Lie(SO(n)) and spin(n) = Lie(Spin(n)) are
the Lie algebras of SO(n) and Spin(n), respectively.

This map is compatible with the embedding R™ <« R™"! i.e. we have a commuting

diagram
Spin(m)—— Spin(m + 1)

AJ P
SO(m)—— SO(m + 1)
Similarly, we have a short exact sequence
0 — Z/27 — Spin°(m) 25 SO(m) x S' — 1,

where X¢([(¢, 2)]) = (A(p), 2?) for [(¢,2)] € Spin°(m) and the Z/27Z is the subgroup of
Spin®(m) generated by [(1, —1)] = [(—1, 1)]. Here [(p, z)] € Spin°(m) denotes the image
of (¢, z) € Spin(m) x S' under the projection Spin(m) x S* — (Spin(m) x S')/ +1 =
Spint(m).
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2.3.9 Example. We will also use the quaternions to construct the universal covering of
SO(3). Identify R?® with the imaginary quaternions Im(H) and consider the homomor-
phism

Sp(1) = SO(3),
which is mapping H* D Sp(1) 3 ¢ — ¢, € SO(3), where ¢,(v) := qug~! for v € Im(H) =
R3. Since Sp(1) is simply connected and the kernel of this map is {1} C Sp(1), we
obtain an isomorphism

Sp(1) = Spin(3)
from the universal property of Spin(3). The induced isomorphism on the level of Lie
algebras is

sp(1) = Im(H) — A’R?,
1+ es A eg,
J = —ep Nes,
k+— e; Aes.

This is also an isomorphism of Spin(3)-representations. If we again identify R3 = Im(H),
this isomorphism is given by the Hodge star operator x: R? = A2R3.

2.3.10 Remark. Consider the diagonal embedding H < H & H, h + (h, h). Using the
isomorphism from Examples 2.3.4, the group Sp(1) = Spin(3) can be interpreted as the
unit sphere in C1 2 H — H & H = Cl3. Its Lie algebra is sp(1) = Im(H) C H= C13 C
Cls.

2.3.11 Example. There is a similar construction for Spin(4). Identify R* with the
quaternions H and consider the homomorphism

Sp(1) x Sp(1) = SO(4),

which is mapping H* x H* D Sp(1) x Sp(1) 3 (¢+,q-) — cq, 4 € SO(4), where
Cqrq (V) :=grvg='. Again, notice that Sp(1) x Sp(1) is simply connected and the kernel
of this map is {(£1,£1)}, so we obtain an isomorphism

Spin(4) = Sp(1) x Sp(1).

To distinguish the two copies of Sp(1), we will denote the first one by Sp(1); and the
second one by Sp(1)_. The induced isomorphism of Lie algebras is given by

) =
3,0) = 3 (
(k, )H%(€0/\63+€1/\62,
(0, )H%(eg/\eg—eo/\el)
(0,4 )r—>— (eo Neg + €1 Nes),
(0, )H%(el/\eg—eo/\eg)
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This is also an isomorphism of Spin(4)-representations. The Hodge star operator
x: A°R* — A’R* induces a direct sum decomposition A*°R* = ATR* @ A2R* of the
Spin(4)-representation A?R*, where

ALRY = ker(id Fx: A°R* — A*R*Y).
Note that the isomorphism sp(1), @ sp(1)_ = A*R? maps sp(1), isomorphically to

AZR* and sp(1)_ isomorphically to A2R*. In particular, we obtain isomorphisms of
Spin(4)-representations

sp(l); 2 AZR and sp(l). = A2RM

2.3.12 Remark. The product structure of Spin(4) = Sp(1); x Sp(1)_ is induced by
the decomposition C1§ = Cly = Cl§ @ Cl;. The two components Sp(1), and Sp(1)_
are the images of Spin(4) C Cl} = Clz = Clf ® Cl3 2, Clf. Using the isomorphism
Cl; = H & H from Note 2.3.5, we can interpret Sp(1); and Sp(1)_ as the unit spheres in
Cly *Ha{0} C HeH = Clz and Cl; = {0} H C H&H = Cl3 and the corresponding
Lie algebras as sp(1), = Im(H) € H= ClJ and sp(1)_ = Im(H) C H = Cl5.

2.3.13 Example. Using the isomorphisms from Example 2.3.9 and Example 2.3.11, we
have a commuting diagram

Spin(3)——— Spin(4)
{ f
Sp(1)——— Sp(1)+ x Sp(1)-
where the map at the bottom is the diagonal Sp(1) 5 ¢ — (q,q) € Sp(1)4+ x Sp(1)_.

2.3.14 Note. Notice that the composition
Sp(1) = Spin(3) < Spin(4) = Sp(1)4 x Sp(1)- —= Sp(1)4
is the identity. On the level of Lie algebras, the composition
R3 2% A2R® < A?RY U5 A2RY
is an isomorphism mapping
R*2 v (eg Av)y = S(1+x4)(e0 Av) = (eg A v+ #se9 Av) € AZR™

This is an isomorphism of SO(3)-representations. Dually, we also have an isomorphism
100 (R*)* = A2 (R*)* of SO(3)-representations. Here we used x5 and *, for the Hodge
star operators in dimension three and four, respectively.

2.3.2 Representations of the Clifford algebras and Spin groups

We will now collect some representations of Cl,,, Spin(m) and Spin®(m) for m € {3,4}.
To write these in terms of quaternions, we will use the isomorphisms Cl3 = H & H
and Cly = My(H) from Examples 2.3.4 and also Spin(3) = Sp(l) and Spin(4) =
Sp(1); x Sp(1)_ from Example 2.3.9 and Example 2.3.11. Furthermore, we also use
Spin©(3) = (Sp(1) x S1)/ £ 1 and Spin¢(4) = (Sp(1), x Sp(1)_ x S1)/ £ 1.



22 Chapter 2. Preliminaries and notation

Representations of C'l3

Consider the two irreducible Cls-representations

Cls=Clf ®Cl; =5 CIF 2 H — Aut (H),
Cls=HeH> (hy,h_) —> hy —> (v +— hyov for v € H).

Here H acts on itself by left multiplication. Since the decomposition of Cl3 as a direct
sum of two copies of the quaternions is the decomposition into the eigenspaces Cl3
and Cl3 of the volume element vols, these two representation can be distinguished
by the action of the volume element. The restrictions of these two representations to
the even part C1y = { (h,h) e H®H | h € H} are isomorphic. Restricting further to
Spin(3) C C1§ C Clz, we obtain the spinor representation S. We will only use the Cl3-
representation in which the volume element acts as the identity, which we also denote by
S. This is the one induced by the projection to the first component Cl; = H ¢ H 22 H.

Here is a list of useful representations of Spin(3) and Spin®(3):

Representations of Spin(3) and Spin‘(3)

’ name \ vector space \ homomorphism ‘

R? | R®*=Im(H) | Sp(1) — SO(3) q-v=quq for v € Im(H) = R?
S H Sp(l) — Aut (H) g-h=qhforveH=S
W H Spin©(3) — Aut (H) [(g,2)]-h=qghz forveH

Here ¢ € Sp(1), z € S* and [(¢, 2)] € (Sp(1) x S')/ £ 1 = Spin®(3).

Representation of Cl,

Consider the tautological irreducible representation of Cly = M,(H) on H?. Restricting
this representation to

C’lZ%{ <g 2,) ‘h,h’e]H} =He H=CCls,
we obtain a direct sum of the two irreducible representations of Clz = C19. As representa-
tions Spin(4) C CIY, these are the spinor representations which are denoted by S and
S~. Note that this notation comes from the direct sum decomposition Cly = Cl§ & CIj
and not from Cl4y. The element voly acts as —idg+ on ST and as idg- on S™.

Here is a list of useful representations of Spin(4) and Spin®(4):
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Representations of Spin(4) and Spin©(4)

’ name \ vector space \ homomorphism ‘

R* R*~H Spin(4)— SO(4) (qr,q_)-h=q. hq_ for he H=R?
St H Spin(4)—Aut (H)  (¢r,q-)-h=q hfor heH

S” H Spin(4)—Aut (H) (¢+,q9-)-h=q_h for he H

R* R*~H Spin(4)—S0(4)  [(q+,q-,2)]-h = q,hq_ for h € H=R*
w+ H Spin©(4) = Aut (H)  [(¢4,q-,2)]-h =q hz for he W =H
W= H Spin®(4) = Aut (H)  [(¢+,q-,2)]-h =q-hz for he W =H

Here ¢+ € Sp(1)4, ¢— € Sp(1)—, z € %, [(¢+,9-,2)] € (Sp(1)+ x Sp(1)- x SY)/ £1 =
Spin©(4).

Clifford multiplication

2.3.15 Definition. Let V' be a Cl,,-representation. Restricting to Spin(m) C Cl,,,
we interpret V' as a Spin(m)-representation. The Clifford multiplication is the map of
Spin(m)-representations

Cm: R"Q@V =V,

which is obtained by restricting the Cl,,-action on V' to R™ C Cl,,. Similarly, a repre-
sentation V' of Cl,, ® C can be interpreted as a Spin®(m)-representation by restriction
to Spin(m) C Cl,, ® C. The Clifford multiplication is again the homomorphism of
Spin®(m)-representations

cm: R"QV =V,
which is obtained by restricting the Cl,, ® C-action on V to R™ c Cl,, C Cl,, ® C.

We will now give the Clifford multiplication for the above Spin(®(m)-representations for
m € {3,4}, which are restrictions of irreducible (complex) C,,-representations, in terms
of quaternions: Consider the representation S of Cl3 = H@® H (cf. Examples 2.3.4) which
is induced by the projection to the first component and left multiplication. If we restrict
to Im(H) = R3 C Cl3, we obtain the Clifford multiplication

RP®S=Im(H) ®S — S,
h®h' — hh.

For the four-dimensional case, we use the isomorphism C19 = Cl3 from Proposition 2.3.6
and the Cly-representation Cly ®¢y, S, where the Cly-action is given by left multiplication.
The tensor product means that Svey ® h = 8 ® vh for 8 € Cly,v € R? = Im(H) and
hels.

2.3.16 Lemma. There is an isomorphism of Cly = My(H)-representations

¥: H? = Cly ®cy, S,
(v,w) = 1®v+ e ®@w,
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where H? is the tautological representation of Cly = My(H) and Cly acts on Cly ®cyy S
by left multiplication. Restricting to Spin(4) C C1Y, this induces an isomorphism of
Spin(4)-representations

Ste S =Cly Rcig S-

Proof. The element ey and C19 generate Cl;. This implies that ¥ is surjective and
using dimension counting, we conclude that ¥ is an isomorphism of vector spaces. For
(v,w) € H?, we have

e (v,w) =e; ®v+eje0 @ W = epereg @V + €169 @ w = —eg Qv — 1 Q iw

= ¥ (—iw, —iv),

(%) ()= ().

The same holds if we replace e; by es or e3 and ¢ by j or k, respectively. Finally,

and note that

eo ¥ (v,w) =€) @V +eeg QW =e Qv — 1w =V¥(—w,v).

) ()= ()

Therefore, ¥: H? — Cl3 ®¢y, S is an isomorphism of Cl -representations. Since the
restriction of the tautological representation to CIJ is a direct sum S+ & S~, we obtain
an isomorphism of Spin(4)-representations ST @ S~ = Cly ®cy, S. d

and

2.3.17 Remark. Note that the Clifford multiplication for the tautological representation
H? is given by

R* = H — Mp(H) C End (H?)

0 —h
h — <ﬁ 0 ) .
In particular, if we identify R* = H then the restriction of the Clifford multiplication to
R*® ST — S~ is given by h @ b/ — hh' .

2.3.18 Remark (Clifford multiplication for Spin®). Let R; be the complex struc-
ture on the Cl3-representation S which is given by multiplication with ¢ from the right.
This induces an action of C'l3 ® C. This representation is denoted by W. Its restriction
to Spin©(3) is the one in the list above. Similarly, we have an action of Cly ® C on
H? in the four-dimensional case. Since the isomorphism from Lemma 2.3.16 is compati-
ble with the complex structures, we obtain an isomorphism of Spin®(4)-representations
W+ e W™ = Cly ®c; W with the same Clifford multiplication as above.



2.3. Clifford algebras and Spin groups 25

2.3.19 Conclusion (Clifford multiplication in terms of quaternions).
In all considered cases, the Clifford multiplication is given by

Ho H— H,
h® h' — hh'.

This can be interpreted as a homomorphism of Spin(m) or Spin®(m)-representations

R®S — S and RE@W — W for m = 3,
R'® ST — S~ and R'@WT = W™ for m = 4,

where in the three-dimensional case, we take the restriction of the above homomorphism
to Im(H) ® H. Note that this reflects our choice of the irreducible Cls-representation S.

2.3.3 Spin-structures and Spin-structures

2.3.20 Definition (Spin-structure). A Spin-structure on an oriented Riemannian
vector bundle £ — M of rank m > 3 is a A-reduction Ps,inim) — Psom), where
Pso(my — M is the bundle of oriented orthonormal frames in £ and A: Spin(m) — SO(m)
is the universal cover from Note 2.3.8. An oriented Riemannian vector bundle £ — M is
said to be Spin if a Spin-structure on F — M exists. A Spin-structure on an oriented
m-dimensional Riemannian manifold M is a Spin-structure on TM — M. An oriented
Riemannian manifold M is said to be a Spin-manifold if a Spin-structure on M exists.

2.3.21 Definition (Spinc-structure). A Spin°-structure on an oriented Riemannian
vector bundle £ — M of rank m > 3 is a principal S'-bundle Psi — M together with a
Aé-reduction Pspine(m) — Psom) Xar Ps1, where Pso(y) — M is the bundle of oriented
orthonormal frames in E and \°: Spin¢(m) — SO(m) x St is the 2-fold covering from
Note 2.3.8. An oriented Riemannian vector bundle £ — M is said to be Spin® if a
Spin‘-structure on £ — M exists. A Spin®-structure on an oriented m-dimensional
Riemannian manifold M is a Spin®-structure on TM — M. An oriented m-dimensional
Riemannian manifold M is said to be a Spin®-manifold if a Spin®-structure exists.

The following theorem answers the question for existence and uniqueness of Spin-structures
and Spin-structures.

2.3.22 Theorem ([LM&89, Ch IT Thm 1.7, App D Thm D.2]).

An oriented Riemannian vector bundle E — M is Spin iff its second Stiefel-Whitney
class wo(E) € H*(M,Z,/2Z.) vanishes. In this case, the collection of isomorphism classes
of Spin-structures is a H*(M,7./]27.)-torsor.

An oriented Riemannian vector bundle E — M is Spin® iff its second Stiefel-Whitney
class wo(E) € H*(M,7./27)) is a mod2 reduction of an integral class. In this case, the
collection of isomorphism classes of Spin-structures is a H*(M,7Z./27) & 2H' (M, Z)-
torsor.
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2.3.23 Corollary.
1. An oriented Riemannian manifold M is a Spin-manifold if and only if its second
Stiefel-Whitney class wy(TM) € H*(M,Z,/2Z.) vanishes.

2. An oriented Riemannian manifold M is a Spin®-manifold if and only if its second
Stiefel-Whitney class wy(TM) € H*(M,Z/2Z) is a mod 2 reduction of an integral
class.

In dimensions three and four, the following two theorems guarantee the existence of
Spin®)-structures.

2.3.24 Theorem (Stiefel, [Sti35]). Every compact orientable three-dimensional mani-
fold is parallelizable, i.e. the tangent bundle is trivial.

2.3.25 Corollary. FEvery compact three-dimensional oriented manifold is a Spin-manifold.

2.3.26 Theorem (Whitney, [HH58]). Every compact oriented four-dimensional Rie-
mannian manifold is a Spin®-manifold.

2.3.4 Spinor bundles

2.3.27 Definition. Consider a Spin-structure Psyinm) — Psomm) on an oriented m-
dimensional Riemannian manifold M. A spinor bundle is an associated vector bundle
E = Pspin(m) X spin(m) V where V' is a Cl,,-module. Here V' is interpreted as a Spin(m)-
representation, using the embedding Spin(m) C Cl,,.

Let Pspine(m) — Psom) Xum Ps1 be Spin‘-structure on an oriented m-dimensional Rie-
mannian manifold M. A complex spinor bundle is an associated vector bundle E =
Pspinc(m)y X spinc(m) V' where V' is a complex Cl,,-module. Here V is interpreted as a
Spin®(m)-representation, using the embedding Spin¢(m) C Cl,, ® C. Sections of a
(complex) spinor bundle are called spinors.

2.3.28 Example. For an irreducible Cl,,-representation S, we denote the spinor bundle
by S. In the Spin®(m) case, if W is the irreducible complex Cl,,,-representation, we denote
the complex spinor bundle by W. For m = 4 we have the direct sum decompositions
S=85T®S and W =W+t @ W~ (cf. subsection 2.3.2). The associated vector bundles
for these representations are denoted by ST, 8™, W*, W™, respectively.

2.3.29 Example (Dirac operator). Let M be an m-dimensional manifold M with a
Spin(m)-structure Pspin(m) — Psom) and let S be an irreducible Cl,,-representation.
The Dirac operator D is defined to be the composition

D: I'(M,8) % I'(M,T*M ® 8) < I'(M, S),

where V is the Levi-Civita connection on M and ¢, is the Clifford multiplication induced
by (R™M)*®@S=ZR™"®S — S.
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For m = 4, any irreducible C'l4-representation S splits into a direct sum of two irreducible
Spin(4)-representations S = ST @ S~ and the Clifford multiplication with an element
v € R™ interchanges S* and S~. In particular, we are interested in the restriction D of
the Dirac operator D:

Dt (M, 8T) % I'(M, T*M @ 8*) % I'(M,87).

2.3.30 Example (Spin(m) Dirac operator). Let Pgye(m) M Pso(m) X m Pst

be a Spin®(m)-structure on an m-dimensional manifold M and let W be an irreducible
complex Cl,, representation. Let ¢y be the Levi-Civita connection, A € &7 (Pspinc(m))
a connection 1-form such that m5opn = prey(,,) A and V4 the corresponding covariant
derivative. The Spin®(m) Dirac operator D4 is defined to be the composition

Da: D(MW) Y5 DM, T*M @ W) <25 1(M, W),
where ¢, is the Clifford multiplication induced by (R™)* @ W =2 R™ @ W — W.

If m is even, then the irreducible complex Cl,,-representation W splits into a direct sum of
two irreducible Spin¢(m)-representations W = W+ @ W~ and the Clifford multiplication
with an element v € R™ interchanges W' and W~ (cf. [LM89, App D]). In particular,
we are intersted in the restriction D} of the Dirac operator D:

+ . + vA * +\ Sm —
DY DMWY 5 DM, T*M @ W) < (M, W~).






Chapter 3

The nonlinear Dirac operator

In this chapter, we construct the nonlinear Dirac operator in dimensions three and four
associated to a hyperkahler manifold with permuting action. This Dirac operator was
introduced by Taubes [Tau99] for three-dimensional manifolds and by Pidstrygach [Pid04]
for four-dimensional manifolds.

3.1 The group Spin%(m)

In order to define the nonlinear generalization of the Dirac operator, we need the Lie group
Sping(m), which will be the replacement of Spin(m) or Spin®(m) in the construction of
the Spin or Spin® Dirac operator.

3.1.1 Definition. Let G be a compact Lie group and € € Z(G) a central element of G
satisfying €2 = 1. The element (—1,¢) € Spin(m) x G generates a normal subgroup of
order 2, which we denote by 1. For m € {3,4} we define the group Spint(m) as

Spinf(m) := (Spin(m) x G)/ + 1.

3.1.2 Examples.
1. If G =7/27 and ¢ = —1, then

Spin”*%(m) = (Spin(m) x Z/27)/ + 1 = Spin(m).

2. If G =S and ¢ = —1, then
Spin®y(m) = (Spin(m) x §Y)/ + 1 = Spin‘(m).
3. If e =1 and G is an arbitrary compact Lie group, then
Spin$(m) = SO(m) x G.

29
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4. In particular, for the trivial group G = 1 we obtain
Spini(m) = Spin(m)/ £ 1 = SO(m).

3.1.3 Note. Denote by ((1,¢)) the (normal) subgroup of Spin&(m) generated by [(1, )] =
[(—1,1)] € Spin&(m) and by G/e the quotient of G by the subgroup generated by .
Then

Spinf(m)/{(1,¢)) = SO(m) x G/e.

We have a short exact sequence
1= ((1,€)) = SpinC(m) 25 SO(m) x GJe — 1, (3.1)

where \9: Spinf(m) — SO(m) x G/¢ is the quotient map. In particular, the Lie algebra
spin®(m) = Lie(Spin(m)) of Spin&(m) is

Y

spin®(m) = so(m) @ g.

3.1.4 Remark. There is a second short exact sequence, which will be useful. We have
an embedding G < Spin%(m) as a normal subgroup. The quotient of Spinf(m) by G is
SO(m). Therefore the following sequence is exact

1 — G — Spin©(m) — SO(m) — 1.

3.1.5 Remark. Using the injection ¢: Spin(m) — Spin(m + 1) we also obtain an injec-
tion

Spinf(m) = (Spin(m) x G)/ £ 1 Lad, (Spin(m +1) x G)/ + 1 = Spin&(m +1).

3.1.6 Note. For m = 3 and m = 4, the isomorphisms Spin(3) = Sp(1) from Exam-
ple 2.3.9 and Spin(4) = Sp(1); x Sp(1)_ from Example 2.3.11 induce isomorphisms
Spin€(3) = (Sp(1) x G)/ £ 1 and Spinf(4) = (Sp(1); x Sp(1)_ x G)/ + 1.

3.1.1 Spin%(m)-structures

Having the group Spin%(m) at hand, we can study principal Spin€(m)-bundles and
Spin&(m)-structures on m-dimensional manifolds. These generalize Spin-structures and
Spint-structures and replace these in the construction of the Dirac operator.

3.1.7 Definition (Spinf(m)-structures). A Spin®(m)-structure on an oriented m-
dimensional Riemannian manifold Z (m > 3) is a principal G/e-bundle Pg/.. — Z
together with a \%-reduction 7: Q,, — Psom) Xz Pg /e, where Pso(y) — Z is the bundle
of orthonormal frames in 77, and \“: Spin®(m) — SO(m) x G/e is the homomorphism
from Note 3.1.3. We will denote the components of 7 by mso: Qm — Psowm) and

reyr Qm — PG/E'
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3.1.8 Examples.
1. A Spinf(m)-structure on Z is the same as a principal G-bundle Pg — Z. In this
case Qm = Psom) Xz Pa.

2. A Spm%{m(m)—structure on Z is the same as a Spin-structure on Z.

3. A Spin®,(m)-structure on Z is the same as a Spin‘-structure on Z.

3.1.9 Remark. The quotient map Spin&(m) — SO(m) = Spin®(m)/G induces an
isomorphism Q,,/G = Psogm). Similarly, Spinf(m)/Spin(m) = G/e implies that
Qm/Spin(m) = Pgy..

3.1.10 Remark. From the short exact sequence (3.1) we obtain an exact sequence in
Cech-cohomology:

H'(Z,{(1,))) = H"(Z, Spinf (m))— H'(Z,S0(m)) & H'(Z,G /=)= H*(Z,((1,¢)))
If £ =1, then the first and the last term vanish, and we obtain a bijection
HY(Z, Spin&(m)) = HY(Z,50(m)) & H(Z,G).

In this case, the principal Spin{(m)-bundle Q,, is isomorphic to the fibre product of the
bundle of oriented orthonormal frames Pso(,) and a principal G-bundle Fg, i.e. we have

Qm = Psom) Xz Pa.

If ¢ # 1, the quotient @,,,/((1,¢)) is a principal SO(m) x G/e-bundle. There is not
necessarily a lift of this principal G /e-bundle to a principal G-bundle. Given a principal
G/e-bundle Pg/., we observe from the exact sequence in Cech cohomology that the
obstruction for the existence of a lift of Pso(n) Xz Pg/e to a principal S pin¢(m)-bundle

is an element in H%(Z,((1,¢))) = H*(Z,7/2Z). This element is
wa(Psogm)) + 6(Peye) € H*(Z,7,/27),

where 6: H'(Z,G /) — H?*(Z,7,/2Z) is the map from the exact sequence in Cech-
cohomology, which is induced by the short exact sequence

1—>7Z/22Z - G— G/ — 1.

For G = 7Z/27., we have Spin%{zz(m) = Spin(m). In this case, G/ = 1 is trivial
and therefore H'(Z,G/e) = 0. We obtain § = 0 and the obstruction is the second
Stiefel-Whitney class wa(Psogm)) € H*(Z, Z/2Z) (cf. Theorem 2.3.22).

For G = S and ¢ = —1, we have Spin®|(m) = Spin¢(m) and §(Pg:) = & (Pg1) is the
mod 2 reduction of the first Chern class ¢;(Ps:) and there is a lift of Psp Xz Peu iff
wa(Psom)) = c1(Ps1) mod 2 (cf. Theorem 2.3.22). For details on Spin-structures and
Spin-structures we refer the reader to [LM89, Ch 2 §1, App A]. For similar computations
for other groups G see [Zen06, Appendix].
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3.1.2 Gauge group

We can now study the automorphism group of a Sping(m)-structure.

3.1.11 Definition. Let Q,, — Psom) Xz Pg/- be a Spin&(m)-structure on Z. The
gauge group of the Spin(m)-equivariant principal G-bundle Q,,, = Pso(m) is denoted by
Y, ie.

gq’m :g(Qm — PSO(m))Spm?(m)
= { VY € 9G(Qm — Psowm)) ‘ Y is Spin®(m)-equivariant } :

We will refer to ¥, as the gauge group.

Consider the action of Spinf(m) on G, which is induced by the conjugation action of G.
We can describe the gauge group in terms of equivariant maps:

3.1.12 Lemma.

el G
g(@m N PSO(m))Sme (m) ~ COO(Qm, G)sznE (m)

Proof. First, note that Q,, — Psom) is a principal G-bundle, and Note 2.1.42 implies
G (Qm — Psom)) = C®°(Qm,G)¢. Let g: Qn — G be Spinf(m)-equivariant and
Y Qm — @y the corresponding automorphims, i.e. 1(p) = pg(p) for all p € Q,,. Then
for all h € Spin(m) and p € Q,,:

b(ph) = phg(ph) = phh™'g(p)h = pg(p)h = »(p)h.
This proves that 1 is Spin(m)-equivariant and therefore also Spin&(m)-equivariant.

Conversely, if ¢: Q,, — Q, is Spin€(m)-equivariant and g: Q,, — G the corresponding
G-equivariant map, then for all p € Q,,, h € Spin(m):

phh™g(p)h = pg(p)h = ¥(p)h = (ph) = phg(ph),

and this implies h=*g(p)h = g(ph), so g: Q,, — G is Spin(m)-equivariant and therefore
also Spinf(m)-equivariant. O

3.1.13 Corollary. The Lie algebra of 4, is
Lie(&,) = C™(Qun, )" ™ = I'(Z, gq,,).

3.1.14 Example. If the group G is abelian, then the action of Spin%(m) on G is trivial,
and we obtain

gm — g(Qm — PSO(m))SpinEG(m) ~ COO(Qm, G)Sping(m) ~ Cvoo(Z7 G)
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3.2 The target manifold

The next step is to replace the fibre of the spinor bundle by a target manifold M. We will
now restrict to the dimensions three and four. In these cases, we can use the isomorphisms
Spin€(3) = (Sp(1) x G) /41 and Spinf(4) = (Sp(1), x Sp(1)_ x G)/ 41 from Note 3.1.6.
To construct a Dirac operator, we have to impose some requirements on M.

3.2.1 Definition. An action of Sp(1) on a hyperkéhler manifold M is said to be permut-
ing if Sp(1) acts by isometries and the induced action on the sphere of complex structures
is the standard action of Sp(1) on S? i.e.

4L, = Ly for all g € Sp(1), ¢ € Im(H), [|¢||* = 1.

Consider a permuting action of Sp(1) on M and let G be a compact Lie group with a
hyperkéhler action on M which commutes with the Sp(1)-action. Furthermore, assume
that (—1,¢) € Sp(1) x G acts trivially on M. Therefore the action of Sp(1) x G on M
descends to an action of (Sp(1)x G) /41 = Spinf(3). Such an action of Spinf(3) is said to
be permuting. An action of Spinf(4) is said to be permuting if it is induced by a permuting
action of Spinf(3) via the homomorphism Spin¢(4) — Spin&(4)/Sp(1)_ = Spint(3).

3.2.2 Example. The first example of a hyperkéhler manifold with permuting Sp(1)-
action is the quaternionic vector space H" with the standard metric. The tangent bundle is
trivial and the complex structures are given by componentwise multiplication with 7, 7 and
k respectively, I1(v) = iv, Is(v) = jv and I3(v) = kv for all x € H” and v € H" = T,,H".
Consider the Sp(1)-action by multiplication Sp(1) x H" 3 (¢, x) — gx € H". The induced
action on TH" is again given by multiplication, and the action on the sphere of complex
structures is (¢, Z¢) = @ZeGs, GLeqe(v) = qqu = Lo, for all g € Sp(1),¢ € sp(1), [|C]|* =
1,z € H" and v € T,H". This proves that the Sp(1)-action is permuting.

For the hyperkahler action, we can take any Lie subgroup G of Sp(n) acting by H-linear
isometries on H". In particular, this includes the following example: Let n =1, G = S*
and € = —1. Define an action of (Sp(1) x G)/ +1 on M = H:

[(q,2)] - b := qhz for [(q,2)] € (Sp(1) x G)/ £ 1,h € H.

The hyperkéhler structure on H is the same as in Example 2.2.6. The G = S! action
on M = H is a hyperkéhler action and that the Sp(1) action is permuting. This is
the representation W of Spin(3) = (Sp(1) x G)/ £ 1 from subsection 2.3.2. If we
interpret M = H as a hyperkdhler manifold with permuting Spin®(4)-action, we obtain
the Spin®(4)-representation WT.
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Properties of hypkahler manifolds with permuting action

o~

The Hodge star operator *: R3 — A%R? is an isomorphism of representations of Spin(3)
Sp(1). Using the identification R? = sp(1), we obtain a homomorphism

sp(1) = A%sp(1) = sp(1) @ sp(1),
i Ak Rk —k® 7)),
jrkNi— (kQi—iQk),
ke inj— (@) —j®i).
Dually, we have a homomorphism 7g1y-: sp(1)* @ sp(1)* — sp(1)*. We will now recall
some properties of hyperkahler manifolds with permuting actions. These were first studied
by Swann [Swa91]. The third part of the following proposition is due to Boyer, Galicki,

Mann [BGM93, Prop. 2.7] and the fourth part is due to Pidstrygach [Pid04, Section
2.2.1].

3.2.3 Proposition. Let (M,g™, 1,,1,,13) be a hyperkihler manifold with permuting
Spin%(3)-action. Then

1. The 2-form w is SpinC(3)-equivariant, i.e. w € Q22(M, sp(1)*)5nE @)
2. The sp(1) Lie derivative of w is (Lepyw, ¢ ® (') = —(w, [(,{]) for all ¢, (" € sp(1).

3. The 2-form w € 2*(M, 5p(1)*)5pm§(3) is exact, and in particular we have w = dy
for v = —%W5p(1)*L5p(1)u} e Y (M, 5p(1))5pm§(3).

4. The map p = —1yy € C®(M, g* @ sp(1)*)5P7€ @) s o hyperkdihler moment map for
the action of G on M.

Proof.
1. Let ¢ € Sp(1), € sp(1), x € M and v, w € T, M. We use that the action of Sp(1)
is permuting to obtain

(Lyw, ) (v,w) = we(gev, gw) = g™ (g0, T (gew)) = g™ (v, ¢, e (guw))
= g"(v,Zaa,_, 0 (w)) = (W, Ady-1(C)) (v, w)
= (Ad:; ow, () (v, w).

This proves that w is Sp(1)-equivariant. Let ¢ € G, ¢ € sp(l), z € M and
v,w € T, M. Since the action of G is hyperkéhler,

(Liw, ¢)(v,w) = g™ (g0, I (gw)) = g™ (guv, g.Tc(w)) = g™ (v, Ze(w))
= <w7 C)(U’w)'

This proves that w is G-invariant. Together with the Sp(1)-equivariance, this implies
that w € Q2(M, sp(1)*)5in®),
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2. Using the previous assertion, we obtain

(Lapyw, (@) = Logmsmwe = i (Lexp(t0)) Werl1=0 = GWAdespq1ey(@) li=0
0(¢

= < s i Adexp(-1) (¢ )=o) = {w, —ad¢ ()
—(w, [¢,¢'D)

for all ¢, (" € sp(1).

3. The definition of mgy(1)« and the previous assertion imply

(Top)- Lap)w, 1) = 3{Lapyws § @ k — k ® j) = —5(w, 2[4, k]) = —2(w, 9),
(Tap(1)s Lopyw, J) = 5{Lapyw, k@1 —i @ k) = —3{w, 2[k, i]) = —2(w, J),
<7T5p(1)*£5p(1)w7 k) = %(ﬁsp(l)wai ®j—J® Z> %< W, [ ) J ]> = _2<w7 k>7
and hence g1y Lp(yw = —2w. Finally,
dy = =5 dmap(1) Lop() = =5 Tap(1)» dlap(1)@ = = 5Tap(1) Lap(1)w = w.

4. The G-invariance of v implies L4y = 0. Since -y is equivariant and ¢; maps equivariant
forms to equivariant forms, the map p = —y: M — g* ®@ sp(1)* is Spinf(3)-
equivariant. We use the Cartan formula £, = diy + t4d to check the moment map
condition

dp = —digy = —Lgy + 1gdy = tgw.

This proves that p: M — g* ® sp(1)* is a hyperkdhler moment map. U

3.2.4 Remark. The second assertion of the previous proposition implies that a hyper-
kéhler manifold M of dimension dim(M) > 0 with permuting Sp(1)-action cannot be
compact: For ¢ € sp(1), ||(||* = 1, the form w, is a K&hler form and exact. Therefore,
the volume form is also exact, and hence M cannot be compact.

3.2.1 Target manifolds with hyperkahler potential

Among the hyperkihler manifolds with permuting Spin(3)-action, there are those
hyperkéhler manifolds with permuting action, which admit a hyperkahler potential.

3.2.5 Example (Swann’s construction). Let N be a compact quaternionic Kéhler
manifold with positive scalar curvature. Then Swann’s construction [Swa91] produces
a hyperkéhler manifold M = U(N) with permuting Sp(1)-action. This is a fibre bundle
U(N) — N with typical fibre H*/ £ 1. The fundamental vector fields for the permuting
Sp(1)-action on M = U(N) satisfy ICK?/[’SP(D = —x for a vector field y € I'(M,TM)
and all ¢ € sp(1), |[C||* = 1. Moreover, M = U(N) has a hyperkihler potential p =
511+ |12, where || - || is the norm on the fibres of M = U(N). Examples for compact
quaternionic Kahler manifolds with positive scalar curvature are Wolf spaces. These are
compact homogeneous quaternionic Kéahler manifolds. There is a list of these manifolds,
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. .. N Sp(n)
namely quaternionic projective spaces HIP = Sp-D)xSp(D) Some complex Grassmannians
SO(n)

Gry(C") = W, some oriented Grassmannians Gry(R™) = 60 1xsom and

SO(n—4)xSO(4
five quotients of the exotic simply connected compact Lie groups Gs, F3, Fg, £7, Egs. The

corresponding hyperkéahler manifold M = U(N) for a Wolf space N is a certain coadjoint
orbit of the simple complex Lie group (for details cf. [Swa9l]).

Properties of hyperkdhler manifolds with permuting action and potential

Consider the homomorphism of representations of Spin(3) = Sp(1)

mr:sp(1)* ®@sp(1)" - R
a® B 5(ai)Bi) + alf)B() + a(k)B(k)).

In the following proposition, the third assertion is due to Henrik Schumacher and the last
assertion first appeared in [Swa91].

3.2.6 Proposition (Target manifold with potential). Let M be a hyperkdihler man-
ifold with permuting SpinS (m)-action such that ICKéM’Sp(l) € I'(M, TM) is independent

of ¢ € sp(1),||¢||> = 1. Denote x := —ICKéW’Sp(l) and let V be the Levi-Civita connection
on M. Then
1. v= %wa and p = —%Lngw.

2. The function p = —TRlep1)7Y 15 @ Spin€(m)-invariant hyperkdihler potential p: M —
R satisfying x = grad(p).

3. VX = idp(M7TM).
4. dp(x) = 2p.

5. p=1"(x,x).

Proof. We denote the image of 4, j, k € Im(H) under the isomorphism Im(H) = sp(1) by
C1, G2, C3, respectively.
1. We have
(7,8 = =3 (Toptaytapy ) = =3 {tap() J @ ) = =50 000501003 = jixeon,
(7,7) = =5 (Tep(y tap(yw, §) = —3 {Lop(yw, k ® 1) = QLKM SpHW] = FlyW2,
(1, k) = =5 (Tap(y tap(yw, k) = =5 {tspyw, i @ j) = %LKgf SpWa = FlxWs.

These can be combined into v = %wa. Furthermore, this immediately implies that
= —lgy = —ngwa
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2. Consider the function p := —7Rigp)y: M — R. First, note that for each tangent
vector v € T'M:

TRLsp(1)W (V) = %(M(Ké\f’sp(l),v) + wQ(Ké\j’Sp(l), v) + w;),(Ké\,:[’Sp(l), v))
= — LM (LK 0) + gM(LELY ) + g (LKLY )
= g" (x,v).
Since v € 2Y(M, sp(1)*)5Pin€(m) is Sp(1)-equivariant, we have
<£SP(1W7 (®() = %((Lexp(t@)*% M=o = %(Ad;;p(to% ¢ i=o
- %<ry’ AdeXP(—tC)C/Ht:O = _<77 [Cv </]>

for all ¢,¢" € sp(1). In particular, 7rLep1yy = 0. We conlude
dp = —dmRisp(1)Y = —TRALep(1)Y = —TRLsp(1)Y + TRLsp(1)dY = TRLsp(1)W = Ly G-
This implies that grad(p) = x.
Tedp(v) = dp(T (v)) = " (0, Te(v)) = iy (o) for all v € TM

and finally
dZcdp = diwe = 2d(v, () = 2w,
so p is a hyperkahler potential.
3. Swann proves in [Swa91l, Prop 5.6] that f € C*°(M,R) is a hyperkéhler potential

iff V(df) = gar. Therefore, V(dp) = gM. Using y = grad(p), we conclude that for
allz € M and v,w € T, M

9" (Vox,w) = Vi(g" (x,w)) = g™ (x, Vow) = Vo (dp(w)) — dp(Vw)
= V.(dp)(w) = g (v, w),
and therefore V,x = v for all v € T'M.

4. The Sping(3)-invariance of the potential p: M — R implies the invariance of the
1-form dp. The group Spinf(3) acts isometrically on M and hence xy = grad(p)
is Spin%(3)-equivariant, i.e. T,Ly(Xz) = Xne for all h € Spin€(3),z € M. This
implies that for all z € M, v € spin®(3):

<(£ﬁpin§(3)X)I7 V> = %Texp(tl/)acLexp(—tV) (Xexp(tu)ac)|t:0 = %Xm|t:0 =0.

Therefore L,65x = 0 and in particular Leqyx = 0 and Lgx = 0. The Lie
derivatives of the symplectic forms are

Lywy = —512Ké»21,5p(1>w1 = —dLng,sml)M = —dLKévZI,Spu)w?) = —ﬁKé»;,smnw:a,

Exwg = —[,ISKM,Sp(UUJg = —dLISKM,Sp(l)wg = —dLKM,Sp(l)wl = _EKM,Sp(l)COl,
<3 (3 (3 ¢3

ﬁﬂ%zz—ﬁthme3:-ﬂﬂthwmw3:-ﬂﬂKmﬁmwQZZ—ﬁmemwg

€1 S| S| S|
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We use Proposition 3.2.3 to obtain

Exwl = _EKéW,Sp(l)w;} = —<£5p(1)w,j ® k) = 2w,
2

£Xw2 =L M,Sp(1)W1 = —<£5p(1)w, k X Z> = 2002,

K
3
Exwg = _EKé\/I,Sp(l)WQ = —<£5p(1)w,i ® j> = 2ws,
1
and hence £,w = 2w.
For two vector fields v,w € I'(M,TM) we have [Ly,ty] = tpuw = —lr,o and
therefore [Ly, topins3)] = —tc G ()X = 0. In other words, L£ytein6(3) = lepind(3)Lx
and in particular, £,t5 = 4L, and £ lop(1) = Lap(1)Ly-
We use this to compute
Loy = 3L (Tep() Lap)®) = 5Top(1)* LLop(1)
= 3op(1)" bap(1)Lxt = 5Top(1) Lap(1)2W
= 2.
Finally, we obtain
du(x) = Lyp = —Lytgy = —tgLyy = =215y = 241
5. Since Lytsp(1) = tep)Ly and L,y = 2, we get
9" (. x) = d/)( ) = Lyp = =Ly (Trsp(1)7)
—TRLy (Lap(1)7) = —TRLsp(1)LxY = —2TRLsp(1)Y
= 2p. U

3.2.7 Corollary. In the proof of the previous proposition, we also proved the following
useful formulae:

1. Lyw = 2w,
2. Ly =27,
3. LoyincX =0, and in particular Lgayx =0 and Lyx =0,
4. Lyp= 2p.

3.2.8 Example. Consider the hyperkahler manifold M = H" from Example 3.2.2 with
the action of Sp(1) on H" given by left multiplication in each component. The fundamental
vector field for this action is
(K57, = L exp(tQ)a]imo = Cx € H" = T,H" for all z € H",{ € sp(1).
We obtain
T (K™ W), = (Cr = —z € H" = T,H" for all ¢ € sp(1), [|¢]* = 1

The vector field x = —ICKéHn’Sp(l) is independent of ¢ € sp(1), ||¢||*> = 1. This is the
FEuler vector field x, = x € H" = T,H". The hyperkéhler potential is

p(x) = 1M (Xas Xz) = SlIxalI” = 3|z
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3.3 Configuration space

We will now describe the configuration space for the generalized Seiberg-Witten equations
in dimensions three and four, which is a product of an affine space of connections and
the space of spinors. Therefore, we fix a compact Lie group G and a central element
e € Z(Q) satisfying €2 = 1. We also fix a Spinf(m)-structure Q,, — Z on a oriented
Riemannian manifold Z (m = dim(Z) € {3,4}) and a hyperkdhler manifold M with
permuting Spin& (m)-action. To simplify notation, we write G,, for Spin&(m).

3.3.1 Connections

We have seen in Note 3.1.3 that the Lie algebra g, of G = Spin&(m) splits as a direct
sum g,, = so(m) ® g. Let ¢ be the Levi-Civita connection on Pso(m) — Z.

3.3.1 Definition. By .47, we denote the affine space of connections on @,, — Z with
s0(m)-component given by the lift of the Levi-Civita connection ¢z, i.e.

Ly = { A€ W(Qm) ‘ Plso(m) 0A = W;O(m)(ﬂz } ’

3. 3 2 Lemma. The space <, is an affine space for the vector space Ql(Qm,g)

Proof. Let A, A" € 7, be two connections. Then A — A" € Ql(Qm,ﬁm)ém From

hor *

hor —

DPlso(m) A = T50(m P2 = Plepm) ©A'; we obtain that actually A—A € 2 (Qu,g)sm

9) hor -

Conversely, let A € o, be a connectlon and o € 2Y(Qu, 9)5T
connection 1-form on @, and

Then A + « is again a

hor *
Plso(m (A +a)= Pl'so(m) oA = 7"';O(m)(:oz' 0

3.3.3 Note. We obtain an isomorphism
Ay, — A (Qm — Pso(my) 7™, A pryod = A— mhoum ez,
with an inverse
A (Qm — PSO(m))Spm(m) — a = T5o(m)Py T a.

Here o (Qu — Psowm))*P™™ is the space of Spin(m)-invariant connection 1-forms on
the Spin(m)-equivariant principal G-bundle Q,,, = Qmn/G = Psom)-

3.3.4 Notation. If Z is a compact oriented Riemannian manifold, then for a Sping(m)-
invariant smooth function f: @),, — R, we denote by m f the induced function m f: Z — R.

To simplify notation, we define
/ f= / mf*1.
Z

Z



40 Chapter 3. The nonlinear Dirac operator

Here x: 2°(Z,R) — 2™(Z,R) is the Hodge star operator and 1 € C*°(Z,R) is the
constant function with value 1. Therefore, %1 is the volume form on 7.

3.3.5 Remark. Let Z = Q,,/ G be compact. Given an Ad-invariant scalar product
(-,)g: §® g — R, the L?-metric on 2YQm, )57 = 2Y(Qu/Com, 80,,) defines a Rieman-

hor —
nian metric on .2, considered as an (infinite dimensional) manifold:

TA&‘y & TAJZ{ - Ql(vag)hor ® Ql(Qﬂ%g)Gm - R

hor

a®[3»—>/<a/\*6>g
z

Here we implicitly used the isomorphism £2™(Q,,, ) m = ™7, R).

hor —

3.3.2 Spinors

Let Qm — Psowm) Xz Pgje be a Sping (m)-structure on Z.

3.3.6 Definition (spinor). A smooth Gm—equivariant map u: Q,, — M is said to be a
(generalized) spinor. We will denote the space of spinors by

Ny 1= O (Qp, M)

3.3.7 Remark. Using Proposition 2.1.22, we can also interpret spinors as sections of the
associated bundle Q,, Xo M — Z.

3.3.8 Proposition. The space of spinors N;, = COO(Qm, ) ™ 4s a smooth mamfold
The tangent space at u € Ny, is TyNy = Lo(Qun, w* T M)Gm =2 COO(Qm,TM) m where
C‘X’(Qm,TM)Gm = {v € CX(Qm, TM) G"’ ‘ TyMOU = u} - C“(Qm,TM)G’". The pro-
jection of the tangent bundle is given by composition with mwy;:

TNy C C®(Qu, TM)m Z25 7

V> T 0.
If Z is compact, then T N, = C"O(Qm,TZ\/[)Gm and there is a metric

TyMNy X TyMy > v, 0 — g7 /guvw

where gM is the pullback metric on u*T M. The connector KM of the Levi-Civita connection
on M induces a connector TT N, — T N,,:

K2 C%®(Qu, TTM)™ — C°°(Qu, TM)Cm, €5 KMo €.

The corresponding covariant derivative V- is compatible with the metric g and torsion-
free.
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Proof. We discuss this in Appendix A. O

3.3.9 Remark. Proposition 2.1.22 shows that C“(Qm,M)Gm = I'(Z,Qm x¢a, M), so
we can think of spinors as sections in the associated fibre bundle @, X M with typical
fibre M. If Z is compact, then this isomorphism is smooth (cf. Note A.2.7). However,
the description of spinors as equivariant maps will be more suitable for our purposes.

3.3.10 Definition (Configuration space). Let Z be an oriented Riemannian manifold
of dimension m = dim(Z2) € {3,4} and Q,, = Pso(m) Xz Pgje a Spin€(m)-structure on
a Z. The configuration space for the Seiberg- Witten equations is the product of the space
of spinors .4;, and the affine space of connections .27,,:

G = Ny X Gy

Note that the spaces of spinors and connections and the configuration space as well as
the gauge group depend on the Spin&(m)-structure. Since we always consider one fixed
Sping (m)-structure at a time, we use the short notations .44,, #,, 6, and ¥, althought
they do not reflect these dependencies.

3.3.11 Proposition. The configuration space €, = Nm X Sy, is an (infinite dimensional)

smooth manifold. If Z is compact, then 6,, is a Riemannian manifold with a metric

g¢ = pr*y g7 +pr*, g7. Furthermore, the covariant derivative V- on T A and the

tautological covariant derivative on the vector space <, induce a metric compatible
covariant derivative V¢ on TC,, with vanishing torsion.

Proof. We discuss this in Lemma A.2.3, Lemma A.2.10 and Proposition A.2.11. O

3.3.3 The action of the gauge group on connections and spinors

3.3.12 Lemma. The gauge group 9, acts by pullback (from the right) on the space of
connections ,,,.

Proof. Let A € 4, be a connection and ¢ € ¥, a gauge transformation. We have to
prove that *A € 7,. Since ¢ fixes the bundle Pso(n), we get

Pleo(m) 0% A = ¢" Prygm) ©A = YV T50(m)PY = Ts0(m)P2- O
3.3.13 Lemma. The gauge group %, acts by pullback (from the right) on the space of
spinors Ny,. This action can be written as Ny, x C®(Q,G)%™ > (u, g) — g~ u € A},.

Proof. Let ¢ € 9, and g € C*°(Qn, G)Gm be the equivariant map satisfying ¢ (p) = pg(p)
for all p € @Q;,,. Then

Vru(p) = u(v(p)) = ulpg(p)) = (9(p)) " ulp). O
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3.4 Covariant derivative

We will now define the first ingredient to our Dirac operator, the covariant derivative.
Let Q@ — Psowm) Xz Pae be a S pinf(m)—structure on Z and M a hyperkahler manifold
with a permuting Spin&(m)-structure.

3.4.1 Definition. For a connection 1-form A € o7, we define a covariant derivative

s Co(Quy M) = C(Qn, (R™)* @ TM)%
{(d¥w)(p), w) := Tu(w) for w € R™.

Here w € T,Q,, is the horizontal lift of mgo(p)(w) € T, Z-

We will also use the following variation of the concept of covariant derivative: Consider a
Gom -equivariant vector bundle £ — M with a fixed G m-equivariant connection on £ and
the corresponding connector K: TE — E. We define

d i : C%(Qumy, B)S™ — C%(Qmy, (R™)* @ E)S
d% v = (idgm)- ®K) o djv, v e C™(Qn, E)Gm

Here d5: C™®(Qum, E)S™ — C™(Qum, (R™)* @ TE)S is the covariant derivative defined
above for the total space of the vector bundle £ — M.

3.4.2 Remark. For a representation M = V of G,, the map d’ 4 1s the covariant exterior
derivative from Definition 2.1.31 if we identify C*(Q,,, (R")* ® V)Gm ~ OYQum, )hm,
3.4.3 Remark. Notice the difference between d and df .. While d generalizes the
exterior covariant derivative, dfi,c is a combination of df and the connector K: TE — E.
Consider a bundle of frames F© — M in £ — M with structure group G C GLg(R).
Then F x¢ R* = E. Lifting v € C®(Q,n, E)°™ to 9: (7 0 v)*F — (R™)* @ R¥, we can
interpret the lift of d% cv to (my 0 v)*F as the exterior covariant derivative of ¢ with
respect to a connection 1-form on (73, o v)*F induced by the connection 1-form A on @,

and the connection 1-form on F' corresponding to the connector K. This approach is used
in [Pid04].

The other extreme would be to consider the induced covariant derivative VA* on the
vector bundle m(my o v)*E — Z. From this perspective df v is the lift of V4Xs €
I(Z,T*Z@m(myov)* E) to Qum, where s € I'(Z, m(mpov)* E) is the section corresponding
to v € C®(Qy, E)Om.

However, for our purposes it is more convenient to work with ém—equivariant maps from
Q. to M or the G’m—equivariant vector bundles. Moreover, this approach makes it easier to
understand the generalized Dirac operator as a generalization of the usual Dirac operator,
where the spinor representation is replaces by the hyperkahler manifold M.
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3.4.4 Lemma. Let A € o, and K the connector of a connection on TM — M with
vanishing torsion. Then the covariant derivative

dM 2 C(Quy M)T™ — C°(Qum, (R™)* @ TM)Cm
1s smooth and we have

1. d¥u € C®(Qp, (R")* @ TM)S™ for u € C®(Qum, M) and therefore defines an
element VA € I'(Z,T*Z @ mu*TM),

4. Tu(pr y, (v)) = Tu(v) + (K%’gm)u(p) € TupyM foru € Ny, v € T,Qn,.

Proof.
1. Let w e R™, p € @, and @ € T,(Q)y, the horizontal lift of mgo(p)(w) € TZ. Then

(@4 u)(p), w)) = mar(Tu(w)) = u(mq,, (¥)) = u(p)

and therefore diu € C®(Qn, (R")* @ TM)Sm Gm_ The image of d)u under the
isomorphism C*(Qu, (R")* © TM)Sm 22 T(Q,, (R)* @ w*TM)om = [(Z,T*Z ®
mu*TM) is denoted by VAu.

2. Let v € C"X’(Qm,TM)fm and v: R — C®(Qpm, M)Gm a smooth path representing
v =25(t)|=0. Let w € R™ and p € Q,,. Denote the horizontal lift of 750 (p)(w) €
Try)Z by @ € T,Qp,. Let 0: R — @, be a smooth path representing Lo (t)[;—o =
W € T,Qp,. Then

(Tudy (v)(p), w> < ( A (YO (0)le=0, w) = F{(dX (1)) (p), w0
Ty(t)(@)l=0 = G a57(t)(0(3))]s=o0le=o0
= fﬁM@a’Y £)(0(s))lt=ols=0 = Kar v (0 (s))]s=0 = s Tv()
= ((id(rm)- ®kar) 0 di™ (v) (p), w).

3. Since the torsion of the connection on T'"M — M with connector K vanishes, we
can use Theorem 2.1.39 to prove the third assertion:

4. For £ € G,,, let K?’"G’” € I'(Qm, TQ,,) be the fundamental vector field for the
right Go-action on Q,,. Then, for all p € Q,,:

Tu((K&™™),) = Su(pexp(te) o = & exp(—t&)u(p)limo = —(KL" ™))

_ KMCE@ ) .
< AEST) ) i)
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Since A(v) = 0 for horizontal v € T'Q,,, this equation can be written as

Tu(pry, (v)) = —(K%;G;m)u(p) for all v € TQ,,.
Finally, we obtain

Tu(pr ., (v)) =Tu(v) — Tu(pry, (v)) = Tu(v) + (K%;)C;m)u(p) for all v € T,Qp,.
U

3.4.5 Remark. Under the isomorphism C*(Q,,, (R™)* ® TM)GAm = Ql(Qm,TM)ém

hor>
the covariant exterior derivative d}'u corresponds to pri,, Tu. The last assertion in

Lemma 3.4.4 gives an explicit formula for pr?,, Tu.

3.4.6 Example. For G = S' and M = H as in Example 3.2.2 we have
Ny = C®(Qs, H)P™®) = P(Y, W)  and A = C®(Q,, H)P™™W = 1(X, WH).

In this case the generalized spinors are exactly the usual spinors. The covariant derivative
is the usual covariant derivative.

3.5 Clifford multiplication and hyperkahler manifolds

We will now study the Clifford multiplication, which is the second ingedient for a Dirac
operator. Let (M, g™, I, I, I3) be a hyperkihler manifold with a permuting Spin¢ (3)-
action. We also have an induced action of Spinf(3) on TM.

3.5.1 Clifford multiplication in three dimensions

The first observation is that we can use the scalar multiplication to construct an action of
Clg on T'M.

3.5.1 Lemma. The tangent bundle TM — M is a bundle of Clz-modules. The corre-
sponding homomorphism cz: R* @ TM — TM is Spinf(3)-equivariant.

Proof. Let {ey,ea,e3} be the standard basis of R3. Since (—I;)* = —idryy, the map

R? — End (TM),
eg— —1I, for £ € {1,2,3}

induces a homomorphism c3: Cl3 — End (TM). Identifying R? with Im(H), we have

cs(h) =Zp: TM — TM for all h € Im(H).
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We will also denote the restriction R* @ TM — TM, h®v +— c3(h)(v) = Z;(v) by c3. Let
[(q,9)] € Spinf(3). Since the Spin¥(3)-action is permuting, we have

9+qxc3(h ® v) = 9. 0,15, (v) = ¢ T3 (94v) = 015, (4 gx) :Iqﬁq<Q*g*U) =c3(qhq @ q.g.v)
for all h € R®* = Im(H) and v € TM. Therefore, c3: R* @ TM — TM is Spin¢(3)-

equivariant. O

3.5.2 Note. We use the action of Cl3 on T'M induced by e, — —I, and not e, — I,.
Therefore,
c3(volg) = c3(ereses) = cs(er)cs(es)es(es) = (—11)(—1o)(—13) = idrpy -

This choice is the analogue of the choise of the Cls-representation S in Section 2.3.2,
where the volume element also acts as the identity. It is also possible to use the other
Cl3-module structure to define a Dirac operator. However this choice will be useful in
Chapter 5, where we study the Seiberg-Witten equations on the cylinder.

3.5.3 Remark. With the help of the isomorphism g¢*: (R*)* & R? induced by the
standard metric on R?® we can also interpret the Clifford multiplication as a Spin&(3)-
equivariant homomorphism

(R*)*®@TM — TM,
TRV 03(gﬁ(a:))(v).

We also have the corresponding map c3: I'(M, (R3)* @ TM) — ['(M,TM) and for a
Spin€ (3)-structure Q3 — Pso)y Xy Pgye, this induces a smooth map

C(Qa, (BY)* © TM) Py Co°(Qa, TSSO,

which we also denote by c3. This will be the Clifford multiplication used in the definition
of the Dirac operator on three-dimensional manifolds.

3.5.4 Lemma. Let K: TTM — TM be the connector for the Levi-Civita connection on
M.

1. The Clifford multiplication c3: I'(M,(R*)* @ TM) — I'(M,TM) is parallel with
respect to the Levi-Civita connection, i.e. V(c3) = 0.

2. lCT(Cg) —= (30 (id(Rs)* ®’C>

Proof. Let s € I'(M, (R3)* @ TM) and v € TM. Let {e1, ez, €3} be the standard basis of
R? and {e}, e3, e} the dual basis of (R*)*. Then s = Yi_, ef ® s for s, = (s,¢,). The
complex structures are parallel (VI, = 0) and hence

Vi(es(s)) = D Vules(e; @ s0) = =D Vo(li(se))

/=1 /=1
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This implies that the Clifford multiplication c3: I'(M, (R?®)* @ TM) — I'(M,TM) is par-
allel. Let us now consider the connector K: TTM — T M for the Levi-Civita connection.
For a vertical v € (R*)* @ TTM, i.e. v = (id(gsy- @ulrar)(v1, va) for vy, vs € (R®)* @ T, M,
we have (idgs) @K)(v) = (idgs)- @) ((idms)» @ulpar)(v1,v2)) = pry(ve,v2) = v, and
therefore
’C(TCg(U)) IC(diC (Ul + tU2)|t 0) ’C(%Cg(vl) + tC(’Ug)’t:())
= K(vlra(es(v1), c3(v2))) = c3(v2)
= C3((1d(]R3 ®]C>((ld(]33)* ®UZTM)(U1, UQ)))
= c3((id(rs)- K((v))

On the other hand, if v € (R*)*®@TTM is not vertical, then 0 # (id(gs) @T'mar)(v) € TM.
Since w = Ty (v) # 0, we can find a section s € I'(M, (R?*)* ® TM) such that
v="Ts(w) € (R*)*®@TTM. Then
KTes(v) = KT(cs 0 s)(w) = Vi(cs(s ) Vau(es)(s) + c3(Vu(s))
= c3((id(rs)- ®K)(T's(w))) = c3 0 (idgs)- 9L)(v)

for all v € (R*)* ® TTM with (idgs)- ®T'mar)(v) # 0. Combining the results for vertical
and non-vertical vectors, we can conclude that

ICoTeg = cg0 (idgsy ®K). O

We will now give a different description of the spinor bundles. Note that the permuting
action implies that

T:0:.T¢ = 134.T:3:qx = TiLycqqs = L Zyq. for all ¢ € Sp(1) and ¢ € sp(1),]|¢|* = 1.

Therefore the diffeomorphism Zzq.: TM — T'M commutes with the complex structures
and thus also with the scalar multiplication. We can define an action of Sp(1) x G on
TM by

(Sp(1) x G) x TM > ((q,9),v) — g.q:Zqv € TM. (3.2)

The element (—1,¢) acts as —idpy. The bundle TM with this action is denoted by
E to distinguish the action from the induced one of Gs. Let S = H be the standard
Cls-representation from Section 2.3.2. The element —1 € Sp(1) = Spin(3) also acts as
—id on S. Therefore the action of group G5 on S @ E is well-defined. Here we think of S
as the trivial vector bundle with fibre S and use the complex structures R; € End () and
I, € End (F) to form the tensor product (i.e. hi®v =h® [;(v) forallh € S = H,v € F).

3.5.5 Lemma ([Hay06, Prop 3.1.1]). For the two complex vector bundles TM & C =
(TM ® C,id®i) and E = (T'M, I1) and the complex vector space S = (H, R;) we have an
isomorphism of Gs-equivariant vector bundles over M :
UV:TM®C = S®cF,
VR 2z 200 — jz® Ih(v).

Furthermore, ¥ o (I, ® id¢) = (I, ® idg) o ¥ for all h € H.
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Proof. From

V() ®z2)=2 L (v)+jz @ L (v)=iz@v—ijz ® Iy(v)=(L; ® idg)¥ (v ® z),
D(I(0) ® 2)=2 ® L(v)+jz ® v=—jjz ® Iy(v) +jz ® v=(L; ® idp)¥(v ® 2),
U(I3(0) @ 2)=2@ I3(v)—jz @ [1(v)=—kjz @ L(v)+kz @ v= (L} @ idg)¥ (v ® 2),

we can conclude that ¥ o (Z), ® id¢) = (Z;, ® idg) o ¥ for all h € H.
For all g € G, v € TM, z € C we have

V(g ®2)=2® g — jz ® [5(gs0) =2 ® g0 — J2 @ gulo(v) = (ids ®g.) (¥ (v ® 2)).
This proves that ¥ is G-equivariant. For ¢ € Sp(1), v € TM and z € C we have

U(gw ® 2) = ¥(q:Lglyv ® 2) = 2 @ uLglqv — jz @ 1o (q.LgZqv)
=2 ® L7 — jz ® ¢ Lzla(Zyv) = (ids ®¢.Z5) (¥ (Zyv @ 2))
= (Lg @ ¢.Zg) (¥ (v ® 2)),

and therefore, ¥ is Sp(1)-equivariant and thus Sping(3)-equivariant. O

3.5.6 Corollary. For the Clifford multiplication we have
¥ o (c3(v) ®ide) = (c3(v) ®idg) o ¥ for all v € RP.

3.5.7 Remark. The real structure on 7'M ® C given by complex conjugation corresponds
to the real structure on S ®¢ E given by r := —R; ® I:

V(0 ®2) =200 — 20 Lv) = 2 © Bv) — 2) © L(v) = (<R, ® L) (F(v ® 2))

for all v € TM,z € C. The restriction of ¥: TM ® C — S ®¢ F to the real parts is
a Sping(3)-equivariant isomorphism ¥: TM — [S ®¢ EJ,, and we have a commuting

diagram
c3

(R*)* @ TM TM

| |

(R} ® [S ®¢ E|, 22 [S 0 E,

where the map at the bottom is induced by the usual Clifford multiplication (R?)*®S — S.

3.5.2 Clifford multiplication in four dimensions

To define the nonlinear Dirac operator in four dimensions, we need to replace the Clifford
multiplication R* ® ST — S~. In particular, we need a replacement for S* and S~ and
the Cly-module ST @ S~. In Lemma 2.3.16, we have seen that ST @& S~ = Cly R S. At
this point, the following proposition is useful.
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3.5.8 Proposition ([LM89, Ch I Prop 5.20]). There is a natural equivalence between
the category of (ungraded) CIS-modules and the category of Z./2Z.-graded Cly-modules.
The functors are given as follows: A Cl3-module V is mapped to Cl, ®Rciy V- with the
left multiplication as Cly-module structure and the grading induced by the grading of Cly.
A 7,/27-graded module W = W° & W1 is mapped to its even part W°. Since the even
elements preserve the grading, this is a Cl13-module.

We can apply the same construction to T'M, which replaces the Cl3-module S. Since
T'M is a bundle of left Cl3-modules, we obtain a bundle of Z/2Z-graded Cls-modules
TM. Since we also have to take care of the action of Spin€(4) on M and TM, we again
consider the bundle E. This is the bundle TM with the Sp(1), x G-action from (3.2).
We define -

TM:=Cly®cp E,

with the grading induced by the Z/2Z-grading of Cly, i.c. TM = TM° & TM?, TMO
Clj ®cyg E and TM! = Cl} ®c E. We also consider the action of Spin€ (3 ) on TM,

which is induced by the action of Spin(4) on Cly by left multiplication and the action of
Sp(1), x G on E:

SpinS(4) x THM 3 ([(2,9)}, 8 ® v) =+ 28 ® Tegz(m1.2). 900 € TM

Here w2z is the image of z € Spin(4) — Sp(1);. This is a well-defined action since
(—1,—1,¢) acts as —idg on E and as —id¢y, on Cly, and

zBereq @ Liz(142)4g:v = =208 @ LTz (1112)4 950 = —28 @ Tiz(m4.2) 4 Lygiv
= —z2f ®ITI'+72(7T+Z)*9*[€/U

for all z € Spin(4), € Cly, g€ Gand v € E.

Restricting the Cly-action by multiplication from the left to R* C Cl4, we obtain a Clifford
multiplication c,: R* — End (TM ) which interchanges the even and odd part of TM.

To describe the action of Spinf(4) on TM?*, we have to consider yet another action of
Spin&(4) on TM:

Sping (4) x TM > ([(z, 9)], ) = Ln_Trzz(T52)sgew € TM,
where z € Spin(4) and (7, z,7m_z) € Sp(1)4 x Sp(1)_ its image under the isomorphism
Spin(4) = Sp(1); x Sp(1)—. We denote T'M with this action by TM. The following

lemma is the analogue of Lemma 2.3.16:

3.5.9 Lemma. There is an equivariant isomorphism of SpinS(4)-equivariant vector
bundles

W:TMe&TM = TM
(v,w) = (1®v+ e @w)

In particular, TM° = TM and TM* = TM as Spin€ (4)-equivariant vector bundles.
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Under the isomorphism End (T/J\\/[> = End (TM &) w), the Clifford multiplication on
™ corresponds to the map

0 —idpy 0 03(60
eo > ( . 0 ) and er — ( csler) 0 for £ €{1,2,3}.

ldTM

Proof. The same argument as in Lemma 2.3.16 applied fibrewise shows that ¥ is an
isomorphism of vector bundles. Furthermore,

ca(eg)¥ (v, w) = cylep) (1@ v+ ep@w) = -1 w+ ey @v =¥ (—w,v)
and

cale))(1@v+e@w) =e,®@v+eeg @w =18 cs(er @ w) + €9 ® c3(ep @ v)
=U(cs(er @ w), c3(ep @ v))

forall z € M, v,w € T,M and ¢ € {1,2,3}. This proves the asserted formula for the
Clifford multiplication.

Next, we prove that ¥ is G-equivariant. For g € G and (v,w) € TM @& T M we have

U(g.v, gsw) = 1 ® guv + €9 ® gow = (1 ® g,.) (¥ (v, w)). (3.3)

We now consider the Spin(4)-actions. Note that Spin(4) C CI = Cly = Cl3 @ Clj; .
The image of e; € Cl3 under the isomorphism Cl3 = H ¢ H from Examples 2.3.4 is
(—i,1) €e H® H and ny(—i,7) = —i, m_(—14,4) = i. Therefore,

(Leye, @ idp) (¥ (v,w)) =e1e0 @ v + e1€0€) @ w=
=1®7Z ;(v) + e ®@Z;(w)
:w(z';u(—i,i)( ) m_(—i,3) (

—1® Li(v) + e @ Li(w)
=1® Iﬂ+(_i7i) (U) +e90® Iﬂf(_m) (w)
)

for all (v,w) € TM @ TM. The same formula holds if we replace e; by es or ez and i by
jJ or k, respectively. Since the elements eseq (¢ € {1,2,3}) generate C1), we obtain

(L. @idg)(¥(v,w)) =2(1@v+e@w) =10 L v+ e @Iy sw

3.4
=V (Tr v, Iy w) (34)

for all z € Cl§ = Cl3 and (v,w) € TM & TM. In particular, this holds for all elements of
the group Spin(4) C C1Y.

Furthermore,

(ider, @Zrz(m42) ) (¥ (v,w)) =1 @ Tz (m4:2).0 + €0 @ Tz(m42)w

= VU (Taz(m42)00, Tz (142)w) (35)

for all z € Spin(4) and (v,w) € TM & TM.
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Finally, combining the equations (3.3), (3.4) and (3.5), we obtain

(L: ® Trpz(m1:2)2g.) (¥ (v, w)) = (L: @ Trz(m2).) (P (920, g2w))
= (L. ® idg) (¥ (Trr=(m12) 040, Tz (4 2) guw))
= U (Ln, Tz (14 2)0 90, Ln Tz (T4 2) e gsw)
=V ((742)+950, In_ . Trz(T4 2) 1 gsw)

for all z € Spin(4), g € G and (v,w) € TM&TM. This proves that W: TM&TM — TM
is Sping (4)-equivariant. O

3.5.10 Corollary. c4(eg) teq(er) = c3(eg) € End (TM) = End (mo) for ¢ € {1,2,3}.
3.5.11 Corollary (4D Clifford multiplication). We have
TM=[(S*®S7) ¢ El,

with TM® 2 [S* ®¢ E|, and TM" =[S~ @¢ E), and the j4-dimensional Clifford multipli-
cation can be interpreted as a Spin (4)-equivariant homomorphism

ci: R*®@TM — [S™ ®¢ E),.

In particular, we have a commuting diagram

R* @ TM° = TM'

c3®idg

R*® [ST ®¢ El, [S™ ®¢ E];

Proof. Using TM = [S ®¢ E|,, we obtain an isomorphism of Cls-modules
TM = Cly ®cig TM 2 Cly @cyo [S ®c El, = [Cly ®cp S @¢ Bl = [(ST & 57) @c El,

where the even and odd parts are TM° 2 [ST @¢ E], and TM* =[S~ ®¢ E],. The real
structure on S* ®¢ F is again r = —R; ® Is. U

3.5.12 Remark. Our convention from Note 3.5.2 implies that the restriction of ¢, (voly)
to TM =TM?° is

ca(voly) = cq(epereges) = —ca(erepesepesey) = —cg(ereses) = —idrpy -
3.5.13 Remark. Using the isomorphism g¢*: (R*)* = R* induced by the standard

scalar product on R?, we can also understand the Clifford multiplication as a Spin¢ (4)-
equivariant homomorphism

RY* @ TM — TM' = [S” ® E|, 2 TM,
TRV 04(gﬁ(x))(v).
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For a Spin(4)-structure Q4 — Pso) Xy Pg/e, this induces a smooth map
C*(Q4, (R ® TM)SPMEGM) s O%(Qu, ml)Spinf(@’

which we also denote by c¢;. This will be the Clifford multiplication used in the definition
of the Dirac operator on four-dimensional manifolds.

3.6 Dirac operator

We define the Dirac operator as the composition of the covariant derivative and Clifford
multiplication.

3.6.1 Definition (Dirac operator). The (three-dimensional) Dirac operator D, for a
connection A € 73 is defined to be the composition

C(Qs, M) s 0%0(Qs, (RP) © TM)O5 5 0°°(Qy, TM)%

Dau = c3(di u).

The (four-dimensional) Dirac operator D for a connection A € &7, is defined to be the
composition
. M N .
C™(Qu, M)% L5 C(Qu, (RY)" @ TM)O 25 °(Qu, TM")%,
Dihu = cy(d ).

3.6.2 Remark. Using the isomorphism TM! =[S~ ®¢ E], from Corollary 3.5.11, we can
also interpret the Dirac operator as a map D} : O%(Q4, M )%t — C®(Qy, [S™ ®¢ E],)¢.

3.6.3 Note. Notice that

Fy 1= C®(Qs, TM)% — C®(Qy, M)% = A4

V> T OV
and

Ty = C®(Qq, TM"C* = C™(Qq, M)%* = N,

V> T 0V

are vector bundles F,, — .#,. The fibres of these bundles are C*(Q3, TM)% =
LY, mu*TM) and C=(Qu, TM")% = (X, muTM") = I'(X,m[S~ ® u*E],), respec-
tively. The first part of Lemma 3.4.4 implies that the Dirac operators D4 and D} are
sections of these bundles.
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3.6.4 Example (Spin¢ Dirac operator). For M = H, G = S' as in Example 3.2.2,
the tangent bundle TM = H x H 2% H = M is the trivial bundle with fibre H.

Interpreting M as a hyperkéihler manifold with permuting Spin® 11(3) = Spin‘(3)-action,
this is the trivial bundle with fibre W. The equivariant map d¥u € C*(Qs, (R3)*®@T M)
corresponds to the section VA(u) € I'(Y, T*Y ® S). Furthermore, c3(h ® v) = Z; (v) for
heIm(H) 2R z € M and v € T,M = W. This is the usual Clifford multiplication
and therefore D4 is the usual Spin®(3) Dirac operator.

If we interpret the action as a permuting Spmfll (4)-action, this is the trivial bundle
with fibre W*. The equivariant map d¥u € C*°(Qy, (R*)* @ TM)% corresponds to the
section VA(u) € I'(X, T*X @ WT). Again, c,(h®@v) = I;(v) for h € H= R* 2 € M and
v € T,M = W is the usual Clifford multiplication and D} is the usual Spin®(4)-Dirac
operator D} : I'(X,WT) — I'(X,W~).

3.6.5 Example (twisted Dirac operator). Let Y be an oriented 3-dimensional Rie-
mannian manifold Y with a Spin(3)-structure Pgpinis) — Psogs) and let £ — Y be a
Riemannian vector bundle of rank & with a metric compatible covariant derivative V.
Consider a bundle P of orthonormal frames in £, so { = P X o) R*. The covariant deriva-
tive V¢ corresponds to a connection @ on P. Take Q3 = Pspinzy Xy P, G =7./27 x O(k)
and e = (—1,1). Then Spinf(3) = Spin(3) x O(k). Let M = S®@RF with the hyperkihler
structure induced from S. Using the connection A = a + T50(m)PY € /3, we recover the
twisted Dirac operator

DTS VS rrzeSe) 28% S we).

A similar construction can be done for m = 4, where we recover

+ cy®i
D (ST eo) YN N ze st o) 22N NS ee).

This construction can also be modified to work if only a Spin®(m)-structure is given. One
has to replace S by W (or S* by W#) and take G = S* x O(k) with e = (—1,1) and
Qm = Pspinc(m) Xz P. In this case, one has to choose an additional connection on Pg: for
the Spin®(m)-structure.

3.6.1 The linearized Dirac operator

We will now linearize the Dirac operator in three dimensions. Let Q3 — Pso3) Xy FPg/e
be a Spinf(3)-structure on a compact oriented Riemannian manifold Y.

3.6.6 Definition. Using the connector K: TT'M — T'M for the Levi-Civita connection
on M, we define the linearized Dirac operator D'y (at u € C*(Qs, M)%*) to be

Dy 0(Qa, TM)E = C(Qu. TM)S,
V= IC o TuDA(U)
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3.6.7 Remark. Note that the linearized Dirac operator Dﬁn’u is the covariant derivative
V" Dy at u € A5, where V¥ is the metric compatible covariant derivative corresponding
to the connector K" in Proposition 3.3.8.

3.6.8 Lemma. We have

linyu TM
DA — (30 dA,]C’

where IC: TTM — TM is the connector for the Levi-Civita connection on M.

Furthermore, for each v,w € C*(Qs, T]W)ué3 :

g (D50, w) = g (0, D).

Proof. From Lemma 3.5.4 we obtain

DZ"’“(U) =K oT,Ds(v) = K oT(c3)T(d)(v) =c50 (id(gsy ®K) o T(d3)(v)
=30 di% (U)

Consider the covariant derivative V¥ ™™ on w*T'M — 3, which is the pullback of the
Levi-Civita connection on M. For Z € T(Q)3 and v € C’OO(Q37TM)G3’ = I(Qs, *TM)G3
we obtain

VETMy = KTw(Z).

Since the Levi-Civita connection is compatible with the metric on M, the pullback V* 7™

is compatible with the pullback metric on w*T'M:
MwwT™My w) + g™ (v, V" ™w) = d(g™ (v, w)) for all v,w € C’OO(Q;;,TM)SS.

Note that if we insert a horizontal lift X € T'Q (with respect to A) of X € TY, the right
hand side is

d(g" (v,w))(X) = da(g" (v,w))(X) = dm(g" (v, w))(X),

where m(gM(v,w)) € C®(Y,R) is induced by ¢™(v,w): Q3 — R, and its exterior
derivative on Y is dm (g™ (v,w)) € 2'(Y,R).

Fix a point p € @3, y := 7y (p) and let X, := ms0(p)(ee) € T,Y for ¢ € {1,2,3}. Extend
X¢ € T,Y to (locally) parallel vector fields X, € I'(Y,TY"). This means that V.X, = 0 for
the Levi-Civita connection V on Y. Since T'Y is the associated bundle TY = Q3 X ¢4, R?3,

these correspond to Gs-equivariant maps fe: Q3 — R3. In particular, X, = 7s50(p)(er)
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implies that fy(p) = e,. With these choices, we obtain
g™ (DL (0)(p), w(p)) =g (csd}Ev(p), w(p))

9" (es(er © V™) (p), w(p))

Mw

14

e

g" (V] Mu(p), es(ec @ w)(p))

~
Il
i

(3.6)

|
|
ij

MM u(p), es(folp) @ w(p)))

~
Il

1

d(g™ (v, es(fe @ w)))(Xe)

|
|
Mw

~
Il
—

NE

+> 9" (v(p), VM (ea(fe @ w)).

~
Il
-

Define a vector field U,,, € I'(Y,TY) by ¢ (va,Z) = m(g™ (v, c3(fz @w))) for Z €
(Y, TY) and fz: Q3 — R? the corresponding Gs-equivariant map. Then the first
summand on the right hand side of equation (3.6) is

—> " d(gM (v, e3(fr @ w))) de (v, e3(fr @ w)))(X)

(=1

=— Zd (Usaw; X2))(X)

3
= - Zgy(ngUv,un Xﬁ)) - ZgY(Uv,un VXZXE))
/=1

(=1

3
= - Zgy(ngUv,un Xﬁ))
/=1

= —div(Uy ).

Since the Clifford multiplication c3 as well as the vector fields X, (¢ € {1,2,3}) are parallel
(Lemma 3.5.4), the second summand on the right hand side of equation (3.6) is

3 0 (00, T ey ) zg (e ® VEw) ()
= gM(v(p), Dfi”“(w)(p))-

We obtain
MDY (v)(p), w(p)) = g" (v(p), DY (w)(p)) — div(Us,w) ().

In particular, integrating over the compact manifold Y, the integral of the divergence
div(U, ) vanishes and we obtain

H(D v w) = g (0, D). 0
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Under the assumptions of Proposition 3.2.6, the nonlinear Dirac operator D4 is determined
by its linearization:

3.6.9 Lemma. Assume that the fundamental vector fields for the permuting action satisfy
ICK?/[’SP(D = —x for a vector field x € I'(M,TM) and all ¢ € sp(1),||¢||*> = 1. Then

D" (x ou) = Da(u).
Proof. Let p: M — R be the hyperkahler potential from Proposition 3.2.6. Then

x = grad(p) and KTy = VXY = idr(ar,rary, where K is the connector for the Levi-Civita
connection on M. Using Lemma 3.4.4 we obtain

((dhk (x 0ow)(p), w) = KTxTu(w) = Tu(@) = ((dy'u)(p), w)

for all w € R?, p € Q3 and where @ € T,Q3 is the horizontal lift of mgo(p)(w) € Ty ()Y -
Therefore, d}% (x o u) = d}'u and with the help of Lemma 3.6.8, we conclude that

DT’U(X ou) = 03(d£% (x ou)) = cs(d} u) = Dau. .

3.6.2 The Dirac operator and the gauge group

3.6.10 Lemma. Let u € A, be a spinor, A € o, a connection and ) € 9, a gauge
transformation. Let g: Q,, — G be the map satisfying 1 (p) = pg(p) for all p € Q3. Then

Dy-a(¥*u) = g, ' Da(u) = ¢*(Da(u)) for m =3
and
D (W u) = ;' D (u) = " (Df(u)) for m = 4.
Proof. For a connection 1-form A and a gauge transformation ¢ € ¢,,,, we have
Hes = ker(V*A) = Ty ).

The horizontal projection pr Ay, CANL also be expressed in terms of pr,, and 1:

Py, = Ty~ pry, Top.

In particular, the horizontal lift @* € Ty, Qm of Ts0((p))(w) € Ty (Y With respect to
Ais given by @ = T, (w¥™?), where @¥" 4 € T,Q,, is the horizontal lift of 750(p)(w) €
Ty (nY with respect to 1*A. We obtain

((dy-a(¥*w))(p), w) = Tyu(Tp (@) = Tygu(@?) = (dau)(¥(p)), w),
and thus dy-4(¢*u) = ¢*(dau). Finally, for m = 3:
Dy-a(¥™u)(p) = e3(dy=a(¥™u)(p)) = c3(di u(y(p)))
= ¢*(Dau)(p).
The map Dy (u) is G-equivariant by construction, hence for p € Q3:
Dy-a(¥*u)(p) = ¢ (Da(u)) = Da(u)(¥(p)) = Da(u)(pg(p)) = g~ (p)-Da(u) (p)-

The same arguments holds for m = 4 if we substitute DX for D4 and ¢4 for cs. O






Chapter 4

The Seiberg-Witten equations

In this chapter, we will study the Seiberg-Witten equations associated to a hyperkéahler
manifold with permuting Spin&(m)-action for m € {3,4}. For this purpose, we fix a
compact Lie group G, an central element e € Z (M) satisfying 2 = 1, a Spin&(3)-structure
Q3 — Pso(3) Xy Pg/. on a 3-dimensional compact oriented Riemannian manifold ¥ and a
S pinf (4)-structure Q4 — Pso(a) X x P/ on a 4-dimensional compact oriented Riemannian
manifold X. To write the Seiberg-Witten equations, we also fix an Ad-invariant scalar
product (-,-), on the Lie algebra g. We use this to identify g = g*. For a compact Lie
group G with semisimple Lie algebra g we can take (z,y); = —B(x,y), where B is the
Killing form B(x,y) := tr(ad(z)ad(y)) for z,y € g.

4.1 The moment map

Let M be a hyperkihler manifold with permuting Spin®(m)-action and let u: M —
g* ®@sp(1)* be the Spin%(m)-equivariant hyperkihler moment map for the G-action from
Proposition 3.2.3.

4.1.1 Definition.
1. Composing a spinor v € A3 with the moment map g we obtain a smooth Gs-
equivariant map

Qs = M = g" @sp(1)" = g (R*)".

This composition is a map in C*(Qs, g ® (R*)*)% and defines an element @4(u) €
2'(Qs,9)52 = 2'(Y,gq,). Here we used the isomorphism of Gy-representations
sp(1)* = (R®)*, which is induced by the isomorphism Sp(1) = Spin(3) from
Example 2.3.9.

2. Composing a spinor u € .4 with the moment map p we obtain a smooth G-
equivariant map
Qi 5 M5 g @sp(1)" =g A2 (RY)".

d7
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This composition is a map in C®(Q4, g ® /I?F(IPCL)*)é and therefore defines an el-
ement @4(u) € 22(Q4,9)5, = 22(X,gg,). Here 22(Q4,9)5,, denotes the image

hor hor

of 22(X,gg,) under the isomorphism 2%(X,gq,) = (22(Q4,g)é4 For the com-

hor*
position, we use the isomorphism of Gj-representations sp(1)* = A% (R*)* from
Example 2.3.11.

4.1.2 Lemma. Let Z be compact. Then the maps P3: N5 — 21(Qs3, g)%’r and Dy: Ny —
22 (Qu,9)5,, are smooth and

hor

Proof. The map u — p o u is smooth, as it is defined by composing with the moment
map g (cf. [KM97, Ch IX Thm 42.13]). We now compute the derivative: Let u € A;, be
a spinor, v € T,.4;, a tangent vector represented by the smooth curve o: R — .4;, and
p € Q. Then

Tu® (0)(p) = (0 (8)(P)li=0 = dpt (o (D) (P)i=0) = dps(v(p)). O

4.2 Seiberg-Witten section and equations

We have now collected all the necessary ingrediants to write the generalized Seiberg-Witten
equations in dimensions three and four.

4.2.1 Definition. Consider the map

Fs: G = N x s — C(Qs, TM)P x 2Y(Qs, )52,
(u, A) = (Dau, *F, + P3(u)),

where a = A—m 4 ¢y is the g-component of A € o and *: 2%(Qs, 9)58 = 2Y(Qs,9)52
is the Hodge star operator induced by *: A%(R3)* — (R3)*. This map is called Seiberg-
Witten section in three dimensions. The system of equations F3(u, A) = 0 was introduced

by Taubes in [Tau99]:

DA(U) =0
«F, + ®y(u) = 0

These are the generalized Seiberg- Witten equations in three dimensions.

In the first equation, the zero on the right hand side is the composition of the spinor u
and the zero section 0 € I'(M,TM).

4.2.2 Remark. Using the isomorphism 2'(Qs, g)é3 =~ 1Y, gg,), we can also think of

hor
the Seiberg-Witten section as a map A3 X @ — C>®(Q3, TM)* x 2'(Y, gg,) and of the
second equation as an equation in 2'(Y, gg,)-
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4.2.3 Definition. As in the three-dimensional case, consider the map

Fu: Ch= Ny x aty — C(Qu, TMY) x 22(Qy, 9)54,
(u, A) = (Dau, Ef + &4(u)).
a

where a = A — T554)px is the g-component of A € @ and Ff € 2% (Qu,9)2. is the

selfdual part of the curvature F, of a. This map is called Seiberg- Witten section in four
dimensions. The system of equations §4(u, A) = 0 was introduced by Pidstrygach in
[Pid04]:

DA(U) =0

F;_ + @4(u) =0

These are the generalized Seiberg-Witten equations in four dimensions.

In the first equation, the zero on the right hand side is the composition of the spinor u
and the zero section 0 € I'(M, TM?").

4.2.4 Remark. Using the isomorphism (22 (Qq, g)é4 >~ 27(X,9¢q,), we can also think

hor

of the Seiberg-Witten section as a map A; x 2% — C(Qq, TM")% x 2%(X, go,) and
of the second equation as an equation in 2% (X, g, ).

4.2.5 Note. We will now explain why the maps §,, are called Seiberg-Witten sections.
In Note 3.6.3, we have seen that the Dirac operator is a section in the F,, — 4;,.
Interpreting the second component of the Seiberg-Witten section as a section in a trivial
vector bundle, we can think of the map §,, as a section in a vector bundle &,, — %,
(m € {3,4}). These vector bundles are

s = C™(Qs, TM)®* x 15, Tty — €5 = C(Q3, M)* x o,
Ex = C™(Qu, TMY)% x (y x 22(Qu, 0)54) — €1 = C=(Qu, M) x 4.

The fibres of these bundles are

(Es)un) = C(Qs, TM)S® & 24(Qs,0)52,
~ (Y, mu*TM) @ 2'(Y, g0,) for (u, A) € 63,

(E)way = C™(Qu, TMY)S* & 22(Qu, 9)52
~ P(X, mu*TM") & 2Y(X, g0,) for (u, A) € 6.

Furthermore, note that the vector bundles &,, are ¥,,-equivariant vector bundles. If the
three-dimensional base manifold Y is compact, then & = T63.

4.2.6 Example (usual Seiberg-Witten equations). Consider M = H as in Exam-
ple 3.2.2, G = S' and ¢ = —1. In this case, a Spin®|(m)-structure is the same as a
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Spin®(m)-structure and the Dirac operator is the usual Spin®(m) Dirac operator (cf.
Example 3.6.4). Consider the following isomorphism of complex vector spaces

v (C%4) — (H, Ry),
(Ul, UQ) = Uq +]U2
The moment map p: H — /R ® Im(HH) from Example 2.2.12 (¢ = 1), = i ® fi, where
fi: H— Im(H), i(h) = Lhih can be written as
Alun + jug) = §(un + jus)i(un —tiaf) = §((Jur]” = ual*) + 2jiuziny).
We obtain
S| — Jual®) ‘ ig@ul ,
iUty 3 (2] — fu

g]_lzﬁ(ulJrjuz)Lp = ( )) € su(2).

Note that this is i(u ® u*)o, where u = (uy,uz) € C* and (u ® u*)g is the endomorphism
(u®u*)y € End (C?),w — (w,u)u — §||ul|*w and (-,-) is the standard hermitian product
on C?. We use the convention, that (-,-) is linear in the first component and antilinear
in the second. Therefore, also writing c3: R® — End (C?) for the Clifford multiplication
induced by ¥: C? = H,

cs(fi(ur + jug)) = = Ty 4 jun)¥ = —i(u @ u*)o.
Extending c3 complex linearly and using c3(xF,) = —c3(F,), we obtain
(u@u)o — c3(Fo) = ics(fi(ur + juz)) — c(Fa) = es(p(ur + juz)) + cs(xFa).

Therefore, the second Seiberg-Witten equation in three dimensions can be reformulated
as (v ®v*)y = c3(F,) and the Seiberg-Witten equations read

DAU =0
c3(Fy) = (u®@u*)g
In the literature, this is the most common form of the Seiberg-Witten equations in three
dimensions (cf. [KMO7]).
Similarly, in four dimensions, we interpret : H — iR ® Im(H) = /R ® A3 R* and obtain
T ley(fi(ur + jug))W = i(u @ u*)o.
Therefore, extending ¢s: A2 R* — End (C?) complex linearly, we obtain
ca(F)) = (u@u ) = ca(F) +ica(fi(ur + jus)) = ca(Fy) + ealp(ur + juz)).

Again, the second Seiberg-Witten equation in four dimensions can be reformulated as
(u®u*)g = c4(F;") and the Seiberg-Witten equations are

{ Diu=0
ca(FF) = (u ® u)o.

In the literature, this is the most common form of the Seiberg-Witten equations in four
dimensions (cf. [KMO7]). These equations were first considered in [Wit94].
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4.2.7 Example. If the hyperkédhler manifold is just one point M = {pt}, then the
equations reduce to F,” = 0 in four dimensions and the equation F, = 0 in the three-
dimensional case. The solutions are the anti-selfdual connection in four dimensions and
flat connections in three dimensions.

4.2.1 The Seiberg-Witten equations and the gauge group

Note that the gauge group ¥ also acts (from the right) on C*(Qs, TM)G% x 21(Qs, g)éi”
by pullback and ¥, acts on C™(Qy, TM')%* x 22 (Q4,9)$: by pullback.

hor

4.2.8 Proposition. The Seiberg-Witten sections

§a: G — O(Qa. TM) x 2'(Qu, 05

hor

and

Fa: Gy — C(Qu, TMM% x 22(Q4,9)5

hor

are gauge equivariant.

Proof. We have proven in Lemma 3.6.10 that the first component of the Seiberg-Witten
section is equivariant. Let ¢ € ¢, and g: @,,, — G the corresponding equivariant map. For
(u, A) € @, let a € 2Y(Q,n, )™ be the g-component of A. Applying Proposition 2.1.44,
we obtain

kFyrq = *Fp9 = %¥Ady1 F, = Ady1 % F, = " (xF,)

for m = 3 and
FJ*CL = F;; = Adg_le = z/;*FaJr

for m = 4. Furthermore,
D, (W u) = Dy (g u) = Ady-1P,, (1) = (P (u)).

This proves that the second component is equivariant. 0

4.2.9 Corollary. The Seiberg-Witten sections §,, (m € {3,4}) are %,,-equivariant sec-
tions in the 9,,-equivariant vector bundles &, from Note 4.2.5.

4.2.10 Definition. The moduli space of solutions of the Seiberg-Witten equations is the
quotient of the space of solutions of the Seiberg-Witten equations by the action of the
gauge group. In the three-dimensional case we have:

MEDAQ3) = F51(0) /% = { (u, A) € N5 x oy | Dau = 0,%F, + P3(u) =0} /%,
and in the four-dimensional case:

ME(Qa) =510/ = { (u, A) € N x oty | Diu =0, F + Dy(u) =0} /%,.

Note that the moduli spaces depend on the Spin&(m)-structure, although we dropped
the dependence in the notation of the configuration spaces.
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One special property of the Seiberg-Witten equations is the interplay between the two
equations. An example of this is the following lemma:

4.2.11 Lemma. Let Q3 — Pso) Xy Pgje be a Spin&(3)-structure on a compact oriented
3-dimensional Riemannian manifold Y. Let w € T, A3 = C’OO(Q;),,TM)§3 and o €
C>(Qs, (R*)" @ 9)% = 2Y(Qs,0)5.- Then

hor*

9" (G Dartattl=o(p), w(p)) = (TuPs(w)(q), 2(q)) (r2)-sg

For the right hand side, we identify sp(1) = Im(H) with R and use the standard scalar
product on (R3?)*.

Proof. First, note that daqu(p) = dau(p) + t(K%’D)G)u(p) and therefore,

D astatilizo(p) = Hes(dariatt)(p)li=o = c5 (Fdau(p) + KA uwi=o)
M,G
= 03((Ka(p) >U(p))

Let {e1,eq,e3} be the standard basis for R*® and {e}, e}, e5} the dual basis of (R?)*.
3

Decompose a = 3. e} ® a, with ay = (o, e) € C®(Qs5,g)%. Then
=1

IV (4D assatlio(p)s w(p)) = g™ (ea( K2, w(p))
= g™ (X eslef @ (Koo uw)> w(p))

/=1
3

—_ ; g (LK ) w(p))

9" (K3 utw)s Le(w(p)))

Il
NS

)
X

Il
N

(tgwe(w(p)), ae(p))g

)
X

Il
NE

(dpe(w(p)), au(p))g-

)
X

Using the identification sp(1) = Im(H) = R? and the standard scalar product on R? we
obtain

;(due(w(p)), ar(p))g = ;(du(w(p)), e © ar(p))@s)eq = (du(w(p)), a(p)) ®s)-oq-

Finally, using Lemma 4.1.2 we conclude that

9" (w(p), §Dastauli=o(p)) = {dp(w(p)), a(p)) o) eg = (TuP(w)(D), A(P)) Ry g O



Chapter 5

Seiberg-Witten equations on the
cylinder

Consider a 3-dimensional compact oriented Riemannian manifold Y and let X = R x Y
be the cylinder over Y with the product metric. Denote my: X — Y and mg: X — R
the projections to Y and R. Let Psoi3) — Y be the bundle of oriented orthonormal
frames. Note that the bundle of oriented orthonormal frames Psou) — X reduces to
SO(3). In particular, Psowu) = 7 Pso) Xso@) SO(4). Consider a Spinf(3)-structure
Qg — Pso(g) Xy PG/E on Y. Then

Qq:=7yQ3 Xg, Gy — Pso) Xx 5 Poye

is a SpinC(4)-structure on X. We have the following commuting diagram of principal
bundles over the cylinder X

T Qs————Q4

7rSO(s)J JWSO(AL)
/

7% Pso(3)—— Pso)

where the horizontal maps are the inclusions induced by G5 < G4 and SO(3) — SO(4),
respectively. The vertical maps are quotient maps for the G-actions. There is also a
projection

m3: Qs =R X (Qg X G é4) — Q3 X G G4 — (3 X Gy é4/5p(1)_ = Qs.

Furthermore, m3 0 ¢ = mg, : m3Q3 = R X Q3 — (3 is the projection to Q3.

5.1 Spinors on the cylinder

We will now reinterpret spinors on the cylinder X = R X Y as smooth paths of spinors
onY.

63
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5.1.1 Lemma. There is a bijection
C™(Qa, M)™ = C(R, C(Qs, M)P),
u +— u, where (u(t))(m3(q)) = ul(t, q).

Proof. First observe that Q4 = R X Q3 X4, G,. We use the exponential law (cf. Proposi-
tion A.1.7) to get

C™(Qa, M)% = C®(R x Qs %, Ga, M)
= C*(R,C™(Qs X iy CA?4, ]\/[)é‘*)
= C*(R,C*(Q3 X G4/Sp(1)7’ M)é4/5p(1)—)
= C™(R, C*(Qs, M)®).

We also used that Sp(1)_ < G4 acts trivially on M and that G,/Sp(1)_ = Gs. O

5.2 Connections on the cylinder

5.2.1 Definition. Let P — Y be a principal H-bundle and 73§ P —> X =R XY its
pullback to the cylinder. Since 73 P = R x P, we have a vector ﬁeld - € ['(my P, T'my P).

A connection 1-form A on 7* P is said to be in temporal gauge if 2 5 1s horlzontal ie.

o) _
A (m,p)) =0forallteR,peP.

The subspace of connection 1-forms in temporal gauge is denoted by 7" (73 P) C o (73 P).
For the principal G,-bundle Qs = 75 (Q3 X & G4), we denote the space of connection
1-forms in temporal gauge with so(4)-component equal to the pullback of the Levi-Civita

connection by 77 := o7, N /*(Q,).

5.2.2 Lemma. Let P — Y be a principal H-bundle and A € «/*(7§P) a connection
1-form in temporal gauge. Consider a group homomorphism A\: H — H'. Then the
induced connection 1-form on 73, P Xy H' is again in temporal gauge.

Proof. The induced connection A" € & (ny P xy H') satisfies f*A" = M. A, where
f:my P — 7y P xyg H'. Then

A (Gwson) =4 (T Gian)) = 14 Gien) = 24 (i) =0

For an arbitary element p’ € 73 P x i H', there is an element h € H’ such that p’ = f(p)h
for some p € 7§ P. The H'-equivariance of the connection 1-form A’ implies that

A (G0) =4 Gasom) =4 Tro B (G son)) = Ad A (5 40)) =0 O

For a connection 1-form on 73 P in temporal gauge we obtain a smooth path of connection
1-forms on P.
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5.2.3 Lemma. Let P =Y be a principal H-bundle and 75, P — R X Y the pullback to
the cylinder. Then
(13 P) = C™(R, o (P)).

Proof. Let A € &/"9(ni P) be a connection 1-form in temporal gauge. For each (¢, p) €
7y P = R x P we have a linear map A p): T )7 P — h. Consider the induced linear
map A(t), : T,P — b for each t € R. This can be given explicitly as A(t),(v) = Awp(0,v)
for v € T,P,t € R. For each t € R, we have a 1-form A(t) € 2'(P,§)". Combining these,
we obtain a smooth path of H-equivariant 1-forms A. Furthermore,

ADKE™),) = AT ™) = €

Hence, every connection 1-form A € &% (7} P) in temporal gauge on 73 P induces a
smooth path of connection 1-forms A : R — &7 (P).

Conversely, given a smooth path A:R— o (P), we can define an equivariant 1-form
Ae QY P ) as A=A, where mp: 5 P — P is the projection. More precisely,

Appy(v) := A(t)p<T(t’p)7Tp(U>> for v € Ty pmy P.

Since on 5
A(KS D) = AD((KST),) = € for all € € b,

this is indeed a connection 1-form. By definition, we have
o) 1 9 X .
A () = A0 (Tunme (5,)) = ADO =0

Therefore, we obtain a connection 1-form A € &/ (7} P) in temporal gauge.

These two constructions are inverses of each other since A is uniquely detemined by A(%)
and the induced linear map A(t), : T,P — b for each t € R. O

5.2.4 Remark. Every connection A € &/ (7} P) is gauge equivalent to a connection in
temporal gauge. The reason for this is that there are solutions of the first order ordinary
differential equation

A(2) = -TR,(%).

If we add the initial conditions ¢g(0,p) = 1 € G for all p € P we obtain a unique
solution g. Then the pullback ¢*A of A with respect to the gauge transformation
Y €9 (nyP),¢Y(p) = pg(p) is in temporal gauge (cf. [Fre95, Lemma 1.21]). This induces
a bijection

o (my P) |9 = /" (n5 P) =2 C®(R, o (P)).
Here ' := {¢ € 9 (7} P) | ¥(0,p) = (0,p) Vp € P }. Note that ¢’ is the kernel of the

homomorphism ¥ (73 P) — ¢(P) which sends a gauge transformation to its restriction to
7' ({0}). We have a splitting short exact sequence

1 — 9 — Y (my P) — 9 (P) — 1.
&;/
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The split s: 4(P) — ¥(nyP) is the homomorphism given by s(¢) = idg x%. In
particular, ¢ (7} P) is isomorphic to the semidirect product ¢’ x ¢ (P) with respect to

v: G (P) = Aut (Z), 7(¥) () = (idr x¢) 0 p o (idr xv7").

Moreover, note that the bijection o (7 P)/9 = C*®(R, < (P)) is 4 (P)-equivariant,
where the action of 4(P) = 9 (7} P)/9’ on of (7} P)/¥" is the induced action and the
action of 4(P) on C*(R, </ (P)) is induced by the action of ¢(P) on <7 (P). We obtain

a commutative diagram

A (ny P) |9 ———— (7} P) ————— C=(R, o (P))

| | |

A (my P) |G —— " (my P)[9(P) —— C*(R, &/ (P))/9(P),
where the vertical maps are the quotients by the action of ¥4 (P) = 4(n} P)/¥'.

Let us now return to the Spin®(m)-structures.

5.2.5 Note (Levi-Civita connection on the cylinder). The bundle Psouy — X =
R x Y of oriented orthonormal frames in 7T'X reduces to a principal SO(3)-bundle:
Psowy = 7y Pso)y Xso) SO(4). The Levi-Civita connections ¢y and ¢x on Pgos) and
Pso( are related by j.my-py = 1" px, where j, : s0(3) — so(4) is the differential of the
inclusion j : SO(3) = SO(4) and 7': 7§ Psos) = Pso(a) is the reduction. In particular,
this implies that the Levi-Civita connection ¢y on the cylinder with product metric is in
temporal gauge.

5.2.6 Lemma. There is a bijection
JZletg ~ COO(]R,JZZ@).

Proof. First, note that Q4 = my.Q3 x ¢, G,. Using Lemma 5.2.3, a path A € C*(R, o)
defines a connection 1-form A € .o7*(m%.Q3). Consider the induced connection A € o7 (Q,),
which satisfies *A = L*A where i: 73.Q3 — Q4 and t,: g3 — @4 is the differential of

the homomorphism ¢: (5 — G4. This connection 1-form is again in temporal gauge by
Lemma 5.2.2, i.e. A € &/"(Q4). This defines a smooth map

@ : C®(R, o) — CF(R, & (Q3)) = 9 (15Qs) — (Q,), A A.

Let A € C®(R, o). Its image A in &/9(13Q;) satisfies A := 7@321. We use the
isomorphisms ,, = & (Qm — Psoam))**™™ from Note 3.3.3 and §,, = so(m) & g to
decompose the connection 1-forms into a part with values in so(m) and one with values
in g. The s0(3)-component of A(t) is given by the lift of the Levi-Civita connection oy €
A (Pso(3)), 1-e. Preg(s) oA(t) = TS0 Py forallt € R. Hence, pryy s oA = TS0(3 )7ryg0y and
also pre, oA = Tso(3)Ty Py Consider the induced connection 1-form A = ¢(A i) on Q.
Since

/%

UTSowPx = Tso@)! PX = Teo@)IxTy PY = JxTso3) Ty PYs
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the uniqueness of the induced connection implies prg, ) 0A = T504)PX- This proves
that the image of C*°(R, %) is in 7. Furthermore, we know from Note 5.2.5 that
TSo()$x is in temporal gauge. Therefore, @ is a well defined map @: C>(R, o)) — )’
To prove that this is a bijection, we only have to check that & induces a bijection
on the g-components. Using the isomorphism from Note 3.3.3, we have to consider
C=(R, (Q3 — Pso)P®). From Lemma 5.2.6 we know that C*(R, #/(Qs —
Pso)) 7)) & o749 (15.Qs — 5 Pso))°P3). The last step is to map a connection 1-
form Ay € o/ (75Qs — 73 Pso)) "™ to the unique connection 1-form A, € &7*(Q, —
PSO(4))SW”(4) satisfying i* Ay = flg, which is again an isomorphism. Thus, combining the
observations about the two components, we obtain an isomorphism C™(R, e%) = o7,.0]

5.2.7 Remark. Combining Lemma 5.1.1 and Lemma 5.2.6, we obtain a map
C*(R, €3) — €.,

which is a bijection onto its image .45 x @77, the space of spinors and connections in
temporal gauge on the cylinder.

5.3 The Seiberg-Witten equations on the cylinder

We will now study the Seiberg-Witten section and the Seiberg-Witten equations on the
cylinder. One component of the target of the Seiberg-Witten sections are spaces of
differential forms. The following lemma describes these on the cylinder.

5.3.1 Lemma. There is an isomorphism

T: Coo(Ra QI(Q&Q)g;;) 1> 03—(@479)5077;’
a— (dt ANTia)y.

Proof. We use the isomorphism 7 : (R*)* — A2 (R*)* of SO(3)-representations from
Note 2.3.14. This induces an isomorphism

C>(75.Qs, (R?)* @ 6)% = O (m3:Qs, A2 (RY)* @ ).
Since
Qi x¢, (LR @ g) = 15Qs xg, Ca X, (AR @ g) = 15Qs x¢, (A2(RY)* @ g),
we obtain ) )
O (73.Qs, A2 (RY)* @ 9)%* 22 C(Qu, A2 (RY)* @ g)%,
and finally
C=(R, 2'(Q3,8)52) = C=(13Qs, (R?)* @ g)% = C(Qu, A%(RY)* ® g)°*
= Q—Qf—(QZl?g)gér'

We will denote this isomorphism by 7. Note 2.3.14 implies that this can be written
explicitly as o = (dt A m5a0)4, where (dt A T500) ) = dt A m5a(t),,. O
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5.3.2 Lemma. Let A € /)9 be a connection in temporal gauge and u € N, a spinor.
Then
T(P3(1)) = P4(u) and T(% +#3Fy) = Ff

where @3(1) € C(R, 2'(Qs, )hor) is the map t — ®3(u(t)).
Proof. The equivariant maps corresponding to @4(u) and P3(u(t)) are
pou: Qi " @sp(1) = g @ A (RY)”

and
poi(t): Qs — " @ sp(1) = g ® (RY)".
p(1

The composition of the isomorphism (R*)* = (sp(1))* = A2(R*)* is 79, so using

Lemma 5.3.1 we obtain
T(P3(11)) = Pu(u).

Let mg,: my Q3 = R x Q3 — @3 be the projection to (3. Since A is in temporal gauge, we
have a(Z) = 0. The corresponding smooth path d: R — 2'(Qs, g )G satisfies i*a = LR
and a(t) € 24(Qs,g)% is the restriction of i*a to the fibre over ¢ € R. More precisely,

agp) (V) = a(t)p(Tiep o, (v)) for (t,p) € T3Qs3,v € Tipp Ty Qs
Observe that [i*a,i*a] = 75, [d, @] and therefore,
*F, = di*a+ §[i*a,i*a] = dt A6, (%) + 7py, (da + §[a, a)) = dt A7y, (%) + 7p), Fy.
Using #4775, Fy = dt A\ mjy, (+3F5), we obtain

FES =L Fy 4 x4i" F,) = §(dt Ay, %+ ), Fy + 5, (%3%2) + dt A 7y, (#3F5)).

Consider 73: Q4 — Q4/Sp(1)_ = 73 Q3. Note that 75i*a = a, and therefore, 75i*F, = F,.
Finally, we use mg, o T3 = m3: Q4 — (3 to compute

T(%—l—*gF) (dt/\7T3(d )+ dt Ay(x3F5))+
= 2(dt ALY + dt A (ks F) 4 xa(dt AT5(90)) + #4(dt A T3 (x3E5)))
- f(dt/\ﬂg(d )+th7T3(*3F)+7T3(*3dt)+7T§F)
= 275 (dt A (%) + dt Ay, (x3F5) + 7, (x3%2) + 7y, Fy)
= 13 Ff = F. O

5.3.3 Theorem. Let Q3 — Pso@) Xy Pgje be Sping(3)-structure on a 3-dimensional
compact oriented Riemannian manifold Y and X = R x Y the cylinder over Y. Fur-
thermore, let Q4 1= Ty (3 X g, G, — Psowuy Xx Pgje the associated Spin€ (4)-structure,
A€ o)’ a connection in temporal gauge and u € N, a spinor on the cylinder. Then

ca(eo) " D (u)(i(t, p)) = G() (D) + Dy (@) (p) for all (t,p) € 73Qs



5.3. The Seiberg-Witten equations on the cylinder 69

and
T(% 4 sy Fy + P3(0) = F,F + Da(u).

In particular, (u, A) € €, with A in temporal gauge satisfy the Seiberg-Witten equations
on the cylinder iff v € C* (R, %3),v(t) := (u(t), A(t)) is a solution of the downward flow

equations for the Seiberg- Witten section

B(t) = = Fs(u(t), A(t).
These equations can also be written as

dt =Dy ( )
(fij? = — %3 Fa —@3(11)

Proof. Letu € A; = C*(Qy, M)% and & € C*(R, .4#3) the corresponding path of spinors
satisfying u(t, p) = u(t)(m3(p)) for all (¢,p) € Q4 (cf. Lemma 5.1.1). For (¢,p) € 73Qs3
and i(t,p) € Q4, we obtain WSO(4)('(t p))(eo) = 57 € Try(i(tp))X. Since A is in temporal
gauge, the horizontal lift of ;€ Ty (iep)X is E Tt p)Qa-

Then
(di u(i(t,p)), e0) = Tiwpu() = % (1)(p)-
For v € R?> C R* we have

(Y u(i(t, p)), v) =Tupu(@®) = Ta)(510) = (d, i) (p), v).

Here, 04 € Ty, )73 Q3 and 540 € T,Qs are the horizontal lifts of T503)(P) (V) € Try (Y C
Ty X with respect to the connection 1-forms i*A € o (13Q3)" and A(t) € 7(Q3),
respectively. Finally,

64(60)*117@(@’@19))204(60)*1 1(diu)(i(t, p))

—264 60 ~le 64@ <dA U,( (t,p)),@g»

=ca(eo) " caleo @ G (1) (p))Jr; ca(eo) " ea(er @ (d, u(t) (p), er))

Therefore
ca(eo) " DE () (i(t, p)) = G (1) (P) + D i (U(t)) (p)-

The second statement is a direct consequence of Lemma 5.3.2. U
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5.3.4 Corollary. Interpreting equivariant maps as sections in the corresponding associ-
ated bundles and using ca(dt): mu*TM = mu*TM?" to identify the even and odd part of
mu*T' M, we obtain

+,, _ di o
Dju= %+ Dy

for a connection A € 9, A € C>®(R, o) the corresponding path of connections,
u€ I'(X,Q4x¢g, M) and i € C(R, I'(Y,Q3 X, M)) the corresponding path of spinors.



Chapter 6

The Chern-Simons-Dirac functional

In this chapter, we will prove the existence of a functional, whose critical points coincide
with the solutions of the three-dimensional Seiberg-Witten equations. For this purpose,
we need the manifold structure, Riemannian metric and covariant derivative on the
configuration space from Proposition 3.3.11. As we focus on the three-dimensional case,
we will drop the index 3 and write Q, <, 4,9 for Qs, 9%, N3,%;. Again, we fix a
Sping (3)-structure Q — Pso3) Xy Pg /e on a 3-dimensional compact oriented Riemannian
manifold Y and an Ad-invariant scalar product on g. We will also make extensive use of
Notation 3.3.4.

6.1 Existence of the Chern-Simons-Dirac functional

We have seen in Note 4.2.5 that the Seiberg-Witten equations determine a vector field
§: € — TE on the configuration space € = A x o:

S(u, A) = (Dau, *F, + ®3(u)) € COO(Q&TM)SB X QI(QS,Q)GS = Tu,n€.

hor

Using the metric on the configuration space (cf. Proposition 3.3.11), this induces the
following 1-form on the configuration space %"

%’b(,v’ Oé) = g%((IDA<u)7 *Fa + @3(’&)), (Ua Oé)) = gJV<DA(u)7 U) + g%(*Fa + @3(U), Oé).
6.1.1 Lemma. The Seiberg- Witten 1-form is closed, i.e. dF = 0.

Proof. Let VW € I'(¢,T%) two vector fields on €. Using the metric and the metric com-
patible, torsion-free covariant derivative V (cf. Proposition A.2.11) on the configuration
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space, we get

dF (VW) =V(FW)) -W(EF V) -F(V.W])
=V(g“ (W) = W(g*F.V)) —g° & [V,W])
9 (Vv W)+ g% (3. Vv W)
9" (Vw3 V) —9°(F, VwV)
—g( [V, W)
=g“ (Vv 8. W) =g (Vw3 V) +g° (3. TV(V,IV))
=9 (Vv 3. W) —g*(Vw 3. V).

We have to compute g% (Vy §, W). Let v = (71,72): I — € be a smooth curve with
7(0) = (u, A) und L~(t)|;=o = V. We can choose 72(t) = A + ta for V = (v, ). We have
%FAHahzo =da + [A, a] = daa and therefore

prry Vv § = % pr, (S(v(1))) =0 = % * Fopia + P3(71(t)) =0,

= *dACY + T@g(v)
Furthermore,
Pty Vv S =Drry Vo) §+Prry Vieo §
= DZ"’“(U) + %DAthaU’t:o
Finally, let V = (a,0),W = (B,w) € T,% = 2Q,9)%, x C=(Q,TM)¢. Using

Lemma 3.6.8 and Lemma 4.2.11, we obtain:
9% (Vv & W) =% (prry Vv &, W) + g7 (brr, Vv §, W)

/ ,Dﬁnu ’w +/g (%DAthauh:O?w)
Y

+/ (rdacr A %), +/ (TD4(v), B)roeg
Y

/g (v, Dgu(w +/ TP3(v), a)R3gg

Y

+/ *daf N *xar)g +/9 ,dtDAHBU\t 0)

( prry Vi 8) + 97 (V. proy Vir 3)
9" (Vw T, V),
and thus
dF (VW) =g(Vv§ W) —g(Vw3,V) =0 O

6.1.2 Theorem. There is a functional Losp on the universal cover Cgof the configuration
space € such that images in € of the critical points of Losp are the solutions of the
Seiberg- Witten equations. Such a functional is called Chern-Simons-Dirac functional.
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Proof. Let % = € be the universal covering of the configuration space € (for existence cf.
[KM97, 27.14]). Since 71 (%) = 0, we also have H'(%,R) = 0 and using Proposition A.2.5
also H},(% . R) = 0. This implies that all closed 1-forms on € are exact In particular,
there exists a functional Logp: ¢ — R satistying dLgsp = S where 5 is the pullback of
3 to €. The gradient of Legp is the lift § € F(‘K T‘K) of § € I'(¢,T%), grad(Lcsp) = 3.
In particular, let (u, A) € %. Then

F(r(u, A) =0 < F(u, A) = 0 < grad(Legp) (u, A) = 0.

The solutions of the Seiberg-Witten equations are the images in % of the critical point of
the Chern-Simons-Dirac functional Lgogp. O

6.1.3 Remark. We can construct the Chern-Simons-Dirac functional using the Poincaré
lemma. For the part which is only dealing with the connection, we will do this explicitly.
This functional is called Chern-Simons functional. Since the space of connections &7 is an
affine space and hence contractible, there is a functional Log: o7 — R satisfying

d
rLos(A+1a)imo = / (@ A Fq,
Y

where a = pryoA = A — T3y Is the g-component of A € /. One can construct
such a functional as follows. Fix a reference connection Ay € &/ with g-component
ag = Ag — T50(3)PY and define

1
Los(A) = / / (@ — ao) A Fayst(a—ag) gt
0Y

Note that
Foott(a—ao) = Fao + tda,(a — ag) + %[a — ag, @ — a),
and
5dao(a — ag) = 5(F, — Foy) — 3la — ao, a — ag).
Therefore,
Les(A) = / a—ag) A (Fyy + tdg,(a — 0)+§[a—a0,a—a0])>gdt

Y

(a —ag) A (Fuy + 5dag(a — ao) + gla — ao, a — ag)))q

=

Il
I %\ O Y—— _

((a = ag) A (Foy + Fo — $la — ao,a — ag)))g.

By construction, the functional L¢og satisfies the desired condition. However, we will also
proof this explicitly in Theorem 6.2.4.
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6.1.4 Remark. Another way to look at the Chern-Simons functional is to observe that
the Ad-invariant scalar product (-, ) is an invariant polynomial on the Lie algebra g. With
the help of the Chern-Weil homomorphism, this defines a cohomology class in H*(Y, R).
The manifold Y is three-dimensional, so H*(Y,R) = 0 and the cohomology class vanishes.
In this situation, Chern and Simons [CS74] constructed secondary characteristic classes,
which depend on a connection A € &/ (P) on a principal G-bundle P — Y. These are
3-forms on the total space P. However, there is also a Chern-Simons form depending on
two connections Ay, A € o7 (P). This is a closed 3-form on Y and represents a cohomology
class in H3(Y,R). The pairing of this class with the fundamental class [Y] € H3(Y) is
the Chern-Simons functional (for details cf. [Fre95], [Fre02]).

6.2 Hyperkadhler potential and Chern-Simons-Dirac
functional

Let us now assume that the fundamental vector fields for the permuting Sp(1)-action
satisfy ICKéW’Sp(l) = —x for a vector field x € I'(M,TM) and all ¢ € sp(1),||C]]* =1. We
use the hyperkéhler potential p on M from Proposition 3.2.6 with grad(p) = x. On the
Lie algebra g = Lie(G) of the compact Lie group G we fix an Ad-invariant scalar product
(,-)g: 8 x g = R. We also fix a connection Ay € /. The g-component of Ay will be
denoted ag = Ay — Wgo(g)gﬁy.

6.2.1 Definition. The Chern-Simons functional Lcs: o/ — R is

Les(A) = § [{(a = a0) A (Fay + Fu = §la = ag,a = ao)e,

where a = A — T5 5,y is the g-component of A € &

The Dirac functional Lp: o/ x A — R is

Lp(u, A) =1 / dp(Da(1)).

Y

The Chern-Simons-Dirac functional Losp: o X A — R is
LCSD(ua A) = Los(A) + LD(U, A)

Since grad(p) = x, we can alternatively write
Lp(u, A) = %/QM(X ou, Da(u)).
e

Note that the Chern-Simons functional and the Chern-Simons-Dirac functional depend
on the fixed connection Ag.



6.2. Hyperkahler potential and Chern-Simons-Dirac functional 75

6.2.2 Example. If the group G is abelian, we obtain

Los(4) = § [ ((a = ao) A (Fuy + ),

For G = S', the Chern-Simons functional is

Les(A) = =4 [(a—ao) A (Fu+ Fuy)

Y

Here, we interpret the imaginary valued differential forms as complex valued forms
and use the multiplication in C. This Chern-Simons functional and the corresponding
Chern-Simons-Dirac functional for A/ = H has been studied in detail in [KMO7].

6.2.3 Example (Chern-Simons on trivial bundles). Consider the case when Q) —
Q/Spin(3) = Pso) is a trivial G-bundle. Fix a trivialization @ = Pso(s) x G. Then
the Maurer-Cartan form n € 2'(G, g)¢ induces a Spin(3)-invariant connection 1-form
ag = prgn on Q — Psoey. We can take Aj := 7TSO(3)(,OY + ag as the fixed connection for

the Chern-Simons functlonal In particular, the Maurer-Cartan equation 1 + 5 [77 n =0
implies that ag is flat:

Foy = dprén + 5[prgm, pré;n) = pre(dn + 5[, 1)) = 0.
For a connection A € &
Fy = Fuy + day(a — ao) + 3la — ag,a — ag] = dz y(a — ao) + 3[a — ao, a — ag).

Denote the image of a — ag under the isomorphism 2(Q, g)¢ = 2'(Y,g) by b. Then

hor —

dper, (@ — ag) corresponds to db € 2'(Y,g). Therefore, we can write the Chern-Simons
functional as

Les(A) = 4 [((@ = a) A (Fu+ Fay = Ha = as,a = g,

((a —ap) pr n(a_ao)_"%[a_aﬁaa_ao]_%[a_ama_aﬁ]))g

I
N |
~<\ ~

:%/bA(%+ b, 0)),.

For G = SU(2) and (z,Y)su2) = —Bsu)(®,y) = —4tr(zy), this is the form of the
Chern-Simons functional, which is usually presented in the literature.

6.2.4 Theorem. The gradient of the Chern-Simons-Dirac functional Losp: € — R
from Definition 6.2.1 is the Seiberg- Witten vector field §z3: € — TC, i.e.

grad(Leogsp)(u, A) = (xF, + P3(u), Da(u)) = F3(u, A) for all (u, A) € ¥.
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Proof. First, observe that for two connections A, Ay € &/ with g-components a, ay,
respectively:

F, =da+ ila,q]

= 2lao, ao) + da + [a, a — ag] — 3[a, a] + [a, ag] — 3[ao, ao)

=F,, +d.(a—ap) — %[a — ag, a — ag).

For A e o, a € 2Y(Q, g)fw, we use Stokes’ theorem and the Ad-invariance of the scalar
product to obtain

%Lcs(A + ta)|t:0 :%% /<((1 +ta — ao) A (Fao + Fa+ta)>g‘t=0
y
_ %% /((a +ta —ap) A [a+ta — ag, a + ta — ag))gli=o
Y
:% /(a A (Foy + Fo — %[a — ag, a — agl)q

+%/((a—ao)/\(daa—%[Oz,a—aomg (6.1)
/(a/\ %[a — ag,a — agp) — %[a — ao,a — ao)))g

Applying Lemma 4.2.11 and Proposition 3.2.6, we get

Lol A+ 1)l = &5 [ 9" (x 0w Dasia(w)) g
Y

— %/(a, dp(x o u)) (r3)-eg
/ (6.2)

We can now use the metric compatibility of the covariant derivate (cf. Proposition A.2.11),
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as well as Lemma 3.6.8 and Proposition 3.2.6 to get

222 (v) = V;/ (g (x 0 w, Da(u)))

Combining equation (6.1), equation (6.2) and equation (6.3), we obtain

grad(Lesp)(u, A) = (xF, + @3(u), Dau) = §(u, A) for all (u, A) € €. O

6.2.5 Corollary. The critical points of the Chern-Simons-Dirac functional are the solu-
tions of the 3-dimensional Seiberg- Witten equations.

6.2.6 Corollary. Let Q3 — Pso) Xy Pgje be a sz'n?(i%)—structure on a compact oriented
3-dimensional manifold Y and Q4 — Psow) X x 7y Pg /e the associated Sping(él)—structure
on the cylinder X = R x Y. Then (u,A) € €, with A in temporal gauge satisfy the
Seiberg- Witten equations on the cylinder iff the path v € C®(R, €3),v(t) := (u(t), fvl(t)) is
a solution of the downward gradient flow equation for the Chern-Simons-Dirac functional

B (1) = —grad(Lesp) (ilt), A(t)).
Proof. This follows immediately from Theorem 5.3.3 and grad(Lcsp) = §3- O

6.2.7 Example. For G = S and M = H as in Example 4.2.6, the Chern-Simons-Dirac
functional is

Losp(u, A) =3 [ ((a = a0) A (Fug + Fy = Hla = a0,a = ag)))y

+3 [ 9" (cou Daw))

=~} [(a=a0) A (Fu+ Fug) + 3 [{u, Da(u))

This is the Chern-Simons-Dirac functional used in [KMO7] to define the Seiberg-Witten
Floer homology groups.
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6.2.1 The Chern-Simons-Dirac functional and the gauge group

6.2.8 Lemma. The functional Lp: € — R in gauge invariant.

Proof. Let u € 4 aspinor, A € & a connection 1-form and ¢ € ¢4 a gauge transformation.
We know from Lemma 3.6.10 that Dy«a(¢*u) = (¢7*)sDa(u), where g: Q — G is defined
by the equation 1 (p) = pg(p) for all p € Q. Since p: M — R is G-invariant by
Proposition 3.2.6, the map dp: TM — R is also G-invariant and we obtain

Lp('u, 0" 4) =} [ dp(Dyra(@'w) = § [ dpl9:'Da(w) = § [ dp(Da(w)

= LD(U7A) U

6.2.9 Lemma. The functional Les: &/ — R is Gy-invariant, where %, is the identity
component of the gauge group 9.

Proof. Let & € C™(Q, g)é = Lie(¢). Using Stokes’ theorem and the Bianci identity, we
obtain

ALos((KE)0) = [(dag A Fa)y = [(€ duFa)y =0.

Y Y

For ¢y (p) := pexp(t&{(p)),t € R we have

%LCS(w:-i-tA)‘t:O — dLCS(%¢:+tA’t:0) = dLcg (%(AeXP(SE))exp(tf)‘t:())
=dLcg ((Kg’g)Acxp(té)) =0,

and therefore Log(;A) = Los(Y§A) = Les(A) for all t € R. This proves that the
functional Lgg is invariant under the image of the exponential map. The exponential
map for infinite dimensional Lie groups is not necessarily a surjection onto the identity
component. However, the gauge group is locally exponential (cf. [Woc06, Thm 3.1.11]).
This means that image of the exponential map at least generates the identity component.
Replacing A by ¢*A in the equation above for a gauge transformation ¢ € ¢, we obtain

Los(p*A) = Les(fp*A) for all t € R

Therefore, if Log is invariant under ¢, then it is also invariant under ¢ o t. Us-
ing induction for N € IN, this proves that Log is invariant under exp(Lie(¥4))Y =

{ [T, exp(&) ’ & € Lie(9) } for all N € IN. Since the gauge group is locally exponential,

N_invariance. O

we can now conclude that Leg is 9 = U, exp(Lie(9))
Combining Lemma 6.2.8 and Lemma 6.2.9, we obtain:

6.2.10 Theorem. The Chern-Simons-Dirac functional Lcsp: € — R is invariant under
the connected component 4y of the identity in the gauge group.
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6.2.11 Remark. The Chern-Simons functional depends on the fixed connection Ag € 7.
Writing L&Y : @/ — R for the Chern-Simons functional for fixed connection Ao, we find
that

Lig (V" A) = Lgy(A) for v € 4.

In particular,

LEG0(A) = LE (1) A) = LEY(A) for all ¢ € %,

Therefore, the Chern-Simons functional only depends on the choice of the class of Ag in
</ /%4,. Notice that the Chern-Simons functional is not in general ¢-invariant. In other
words, the Chern-Simons functional does in general depend on the class of Ay in &7 /%,
not only on the class of Ay in &7/9.

For G = S' and G = SU(2), this dependence can be described in terms of topological data.
For G = S! the gauge transformation determines a map ¢: Y — S*, which represents a
class [g] € H\(Y,Z) = Y, K(Z,1)] = [V, S*] and

Les(A) — Les(A?7) = 27 ([g] — e1(Psn))[Y]-

Here c¢;(Pg1) is the first Chern class of the principal S'-bundle Psi = Q/Spin(3),
—: HYY,Z) x H*(Y,Z) — H3(Y,Z) is the cup product and [Y] € H3(Y,Z) denotes the
fundamental class of Y (cf. [KMO07, Lemma 4.1.3]).

In the case of G = SU(2), note that every principal SU(2)-bundle over Y is trivial.
Given a trivialization, a gauge transformation determines a map g: Y — SU(2), and
Leos(A)— Leg(A9) is given (up to a constant factor) by the degree deg(g) of g: Y — SU(2)
(cf. [Flo88]).
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Conclusion

The dimensional reduction of the generalized Seiberg-Witten equations is similar to
the dimensional reduction of the usual Seiberg-Witten equations. As we have seen in
Theorem 5.3.3, the generalized Seiberg-Witten equations on a cylinder over a three-
dimensional manifold can be rewritten as downward flow equations for the vector field
§3 € I'(63,T%5) on the configuration space which is given by the generalized Seiberg-
Witten equations. Moreover, there is also a Chern-Simons-Dirac functional for the
generalized Seiberg-Witten equations (Theorem 6.1.2). The gradient of the Chern-Simons-
Dirac functional is the vector field §5. Therefore, the generalized Seiberg-Witten equations
on the cylinder are equivalent to the downward gradient flow equations of the Chern-
Simons-Dirac functional (Corollary 6.2.6).

In the case of a target manifold M with permuting action and a vector field x € I'(M,TM)
such that y = —ICKéW’Sp(l) for all ¢ € Im(H) with ||C||?> = 1, we explicitly constructed
such a functional (Theorem 6.2.4). In this case, the Chern-Simons-Dirac functional is
also invariant under the identity component of the gauge group (Theorem 6.2.10). For
the usual Seiberg-Witten equations, one can use this functional to construct the Seiberg-
Witten Floer homology groups (cf. [KMOT7]). These constructions are infinite-dimensional
analogues of the construction of the Morse homology groups, where the Chern-Simons-
Dirac functional plays the role of the Morse function. In particular, the critical points
and the gradient flow equations (Theorem 5.3.3) are important ingredients. It might be
interesting to construct Floer homology groups for the Chern-Simons-Dirac functional
for the generalized Seiberg-Witten equations. However, there are several obstacles to
overcome. In particular, one has to carefully analyse the moduli spaces of generalized
Seiberg-Witten equations in three and four dimensions. Again, the moduli spaces of
solutions of the gradient flow equations are of particular interest since these are used to
construct the boundary operator of the Floer complex. In particular, a suitable class
of pertubations is needed to obtain non-degeneracy of the critical points of the Chern-
Simons-Dirac functional and a smooth structure on the moduli spaces using Fredholm
theory and the Sard-Smale theorem. Another challenge is to deal with reducible solutions.

When we do not assume the existence of a vector field y as above, less is know about the
Chern-Simons-Dirac functional and its properties. In particular, it might only exist on a

81



82 Chapter 7. Conclusion

cover € of the configuration space %. To understand this phenomenon, one has to study
the space of periods { I, 5(5) ‘ v € m (%) } of the Seiberg-Witten 1-form §5.

However, the existence of the Chern-Simons-Dirac functional and its properties, in
particular in the case when the target manifold admits a vector field x as above, give rise
to some hope that it might be possible to define Seiberg-Witten Floer homology groups
for the generalized Seiberg-Witten equations.



Appendix A

Infinite dimensional manifolds

In this appendix, we collect some statements about infinite dimensional manifolds which
have been used in the previous chapters. For a detailed and exhaustive treatment of the
convenient calculus, which is used to describe these infinite-dimensional manifolds, we
refer the reader to [KM97].

A.1 Manifolds of mappings

A.1.1 Proposition ([KM97, Thm 42.1]). Let Q) and M be finite dimensional smooth
manifolds. Then the space C*(Q, M) of all smooth maps from Q to M is a smooth
manifold modeled on the topological vector spaces

K

of smooth compactly supported sections of the pullback bundles along f: (Q — M. Here
I'k(Q, f*T M) is the space of smooth sections with support in a compact subset K C @ and
I.(Q, f*TM) is the inductive limit of I'x(Q, f*T'M), where K run through the compact
subsets of Q).

A.1.2 Remark. If @) is compact, then I.(Q, f*TM) = I'(Q, f*T'M) is a Fréchet space
with the usual compact-open C'*°-topology.

A.1.3 Remark. Note that I'.(Q, f*TM) C C*(Q,TM) for all f: Q — M and therefore,
we can interpret TC*(Q, M) C C*(Q,TM) and the projection in the tangent bundle
TC®(Q,M) — C>®(Q, M) is the restriction of C*(Q,TM) — C®(Q,M),v — mps o v.
If @, is compact, then TC*(Q, M) = C>®(Q,TM).

A.1.4 Remark ([KM97, Thm 42.3]). The manifold C*(Q, M) has separable con-

nected components and is smoothly paracompact (i.e. it admits a smooth partition of
unity) and Lindeléf. Furthermore, C*°(Q, M) is metrizable if @) is compact.
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A.1.5 Lemma. Let H be a compact Lie group, P a principal H-bundle and M a Rie-
mannian manifold with a smooth isometric H-action (all finite dimensional). Then the
space C=(Q, M)H of all smooth H -equivariant maps from Q to M is a closed submanifold
of C°°(Q, M), modeled on the vector spaces I.(Q, f*TM)H of smooth compactly supported
sections of the pullback bundles along f € C®(Q, M)H. Furthermore, C>(Q, M )" is
smoothly paracompact.

Proof. For f € C>®(Q,M)™, consider the closed subspace of H-equivariant sections
r.(Q,f*TM) c I.(Q,f*TM). The charts in [KM97, Thm 42.1] use the exponential
map for the Riemannian metric on M. Since the H-action is isometric, this is H-equivariant
and we obtain the required submanifold charts.

Since C*°(Q, M)? c C>*(Q, M) is closed and C*(Q, M) is smoothly paracompact,
C>(Q, M) is also smoothly paracompact (cf. [KM97, 27.11]). O

A.1.6 Remark. Another way to construct the smooth structure on C*(Q, M)# is to

use Proposition 2.1.22 and interpret it as the space of sections of the associated bundle
Q x i M (cf. [KM97, Thm 42.20]).

A.1.7 Proposition (exponential law, [KM97, Thm 42.14]). Let M and N be two
(finite dimensional) manifolds and X a compact (finite dimensional) manifold. Then
there is a canonical bijection

C™(N,C®(X, M)) = C®(N x X, M).

A.2 The configuration space

A.2.1 Configuration space as an infinite dimensional manifold

We will now study the configuration space 6,, = N, X <, for the Seiberg-Witten
equations. We denote by pr ,: A, x &/ — A, and pr,: A, X %, — %, the two
projections from the configurations space %, to its factors. The following lemma is a
consequence of Lemma A.1.5:

A.2.1 Lemma. The space of spinors Ny, = C®(Qm, M)Gm is a smooth manifold with
tangent spaces TyNpy = To(Qpy 0" TM)Cm 22 C(Qp, TM)C™, where T(Qp, TM)Cm :=
{v € Cgo(Qm,TM)Gm ‘ Ty OV =1 } The projection of the tangent bundle is given by
composition with 7y :

T Ay C CP(Quy, TM)Gm T2y g7

V> T 0.

Furthermore, Ay, is smoothly paracompact.
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A.2.2 Remark. If Q) is compact, then .47, is a Fréchet manifold and the total space of
the tangent bundle is T4}, = C=(Q, T M )%,

A.2.3 Lemma. The configuration space €y, is a smooth (infinite dimensional) manifold
which is smoothly paracompact. If Z is compact, then 6,, is a Fréchet manifold and

T(u,A)(gm = COO(Qm> TM)qu S Ql(@m; g)fo??
where C(Qp, TM)Cm = {v € C°°(Qu, TM)Crm ‘ TMOU =1 }

Proof. We already know that the space of spinors is a smooth manifold. Since 47, is
an affine space for the vector space 2 (Qm, g)5™ 22 C®(Qmm, g @ (R™)*)%™, the space of

hor K
connections .47, is a smooth manifold modeled on C>(Q,,, g® (R™)*)¥m. If Z is compact,
then Tyelp, = 2Y(Qum, 9)5m for all A € 7, O

A.2.4 Remark. We will not give any more details concerning the manifold structure
here, as it is only important here, that we can use the usual calculus [KM97, Ch VII] and
differential geometry [KM97, Ch VIII] for the configuration space %,,. This is described
in detail in [KM97, Ch VI-IX]. Note however, that one has to be quite careful generalizing
from finite-dimensional to infinite-dimensional manifolds, even more if one considers
manifolds modeled on topological vector spaces more general than Hilbert spaces or
Banach spaces. Some notions which are equivalent in finite dimensions generalize to
non-equivalent notions in the case of infinite-dimensional manifolds. For example, we
understand tangent vectors as equivalence classes of smooth curves in the manifold and
not as derivations, since this is the convenient notion in the infinite-dimensional setting.
Another difference is that in many cases in infinite dimensions, the tangent bundle and
the cotangent bundle are not isomorphic. In particular, a Riemannian metric will no
longer identify tangent and cotangent bundle, but will only provide a homomorphism
from the tangent to the cotangent bundle, which usually fails to be surjective.

A.2.5 Proposition ([KM97, Thm 34.7]). Let M be a smooth, smoothly paracompact
manifold. Then the de Rham cohomology of M and the singular cohomology with coeffi-
cients in R are canonically isomorphic.

A.2.6 Corollary. The de Rham cohomology and the singular cohomology with coefficients
in R of the manifold Ny, are canonically isomorphic. The same holds for the configuration
space G, .

Spinors and sections of associated bundles

A.2.7 Note. Using Proposition 2.1.22, we can also understand the space of spinors as
the space of sections I'(Z, @, X M). This is again a submanifold of C*(Z, Q,,, X ¢ M).
When @), is compact, the bijection in Proposition 2.1.22 is even a diffeomorphism. This
can be seen as follows: First notice that a map between two manifolds is smooth iff the
composition with every smooth curve in the source manifold is a smooth curve in the
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target manifold. The space of smooth curves in I'(Z, Qm x ¢ M) is C°(R, I'(Z, QX ¢, |
M)) = I'R X Z,Qu X M) and the space of smooth curves in C®(Q,, M)®™ is

C®(R,C®(Qp, M)¢m) = C®(R x Qp, M)Gm. The map between these spaces of curves
is again the one in Proposition 2.1.22, in particular a bijection, and we conclude that the
bijection from Proposition 2.1.22 as well as its inverse are smooth.

A.2.2 A metric on the configuration space

Let now @, — Pso(m) Xz P/ be a Spinf(m)—structure on a compact oriented Riemannian
manifold Z (dim(Z) = m € {3,4}).

A.2.8 Lemma. Foru e A, let gM: w*TM @u*TM — R be the pullback metric defined
by
gu' ((,0), (p,w)) == gy (v,w) for (p,v), (p,w) € w*TM C Qy x TM.

For v,w € C®(Qu, TM)S™ = I'(Qyn, w*TM)%m define

g” (v,w) = /gi\/[(v,w),

where we use Notation 3.5.4 for the G -invariant map g™ (v,w): Q. — R. This defines
a Riemannian metric on the space of spinors Ny,.

Proof. Let v,w € T, A;,. Then
g (w.w) = [ g2 w,w) = [ g (w,v) = g, (w,0)
z Z

and
g (,0) = [ g4 (w,0) = JvlE: 2 0
Z

Furthermore, g;" (v,v) = 0 iff v = 0. The linearity of g is a direct consequence of the

linearity of g™. U

A.2.9 Remark. The pullback metric is often denoted by u*¢™. However, unlike the
pullback of differential forms, the definition of the pullback metric does not involve the
differential of u.

Next, we define a metric on the configuration space ¢;,. For (u, A) € €, and V =
(v,0), W = (w, B) € Ta)Cm = C®(Qu, TM)S™ @ QY (Qun, 8)5 define

9y (VW) =g (v,w) + g7 (av, B).

Here
9”0, 8) = [(an By
Z
is the L?*-metric on 2™(Q,, g)fggf induced by the Ad-invariant scalar product. Note that

we implicitly use the isomorphism 27(Q,,, R)S™ 2 0™ (Z, R).

hor
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A.2.10 Lemma. This defines a Riemannian metric g¢ on the configuration space 6,,.

A.2.3 The covariant derivative on the configuration space

The next step is to define a covariant derivative on the configuration space %,,, which is
both compatible with the metric g% and torsion-free.

The bundle pr*, T.«/ — %, is trivial with fibre 2'(Q,,, g)ém We can interpret a section

hor *
s of this bundle as a map §: %, — Ql(Qm,g)ijﬁ. With this understood, we have a
tautological covariant derivative:

Vi DGty T @ TC) — T (o1, TA)
(Viways) = ((0), 25(3(t))]=0)
for (v, &) = 5 (¥(t))]i=o-
Recall that TC®(Q,, M)™ = C°(Qp, TM)S™ and
Tyt C%(Quny TM)E™ — C(Qum, M)

is v = myr o v, where my 0 T'M — M is the tangent bundle of M. Similarly, TT'.A47, =
C®(Qu, TTM)%". We define a horizontal bundle % 4, C TT.#;, and a vertical bundle
Yroa, C TT Ay, as follows: Let TTM = 54y & Yy be the decomposition induced
by the Levi-Civita on M. Since (,, acts isometrically on M, this decomposition is
ém—equivariant. Define

g, = C(Qum, Hpag) O and Vg = C(Quy Virar) ™.

The corresponding connector K, v — K™ o v is given by composition with K. This
induces a covariant derivative

VY D( N, T A % T( Ny, TH) — T( N, TNy,
(VW) = VW, (VyW), = K" (T,W(V,,))

We get
(VyW)y = K" (TWV (VL)) = KM o T,W (V).

A.2.11 Proposition. This covariant derivative V- is compatible with the metric g”"
and torsion-free, i.e.

L U(g" (VW) = g" (VuV,W) + g" (V,VuW) for all U, V,W € I'(Np, TNpn),

2. VyW =V V — [V,W] =0 for all vector fields V,W € I'(Np, T Np).
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Proof. Forp € Q,,, consider the evaluation map evy: C®(Qnm, M)Gm — M, evy,(u) = u(p).
Similarly, we have an evaluation map ev,: C*(Q,,, TM )Gm —TM. Let v: I — A, be
a smooth curve of spinors satifying ¥(0) = u and %7(t)|;—o = U, € C**(Qm, TM)fm. We
denote 77 := ev, 0.

For V € I'(M,, T Ay,), the following diagram commutes:
VT M

/\ evp(Vy ()

ve | ﬁpﬂw
\ 7
\ ol
il N =g
Tp

[———

Here V? is the section of v, T'M given by ev, oV o~. In particular,
(VP)o = evp(Va)

The Levi-Civita connection on M and the corresponding covariant derivative VM induce
a covariant derivative 'y*VM on v, T'M which is compatible with the metric gw on [.
Furthermore,

(pV1VP)o =pry,,, (S (VP)ilim0) = Pry,,, (% evy(Vy)li=o)
:pr“//TI\/I (evp<TUV(U>>) = eVp((VUV)u I

and
€Vp (%9% Vs, |t:o>
= G eV (g,%)( W) ) =0
zﬁaﬁ%wwvmew<wmwﬁ
= 4 (&8N ((VP)e, (WP)1)) li=o
= gu (1 V1VP)o, (WP)o) + g3 (VP)o, (V1 WP)o)
= 0 (v, (VU V), evp (W) + g (evp(Va), ev, (Vi TV)a)).

We can now compute
Ulg™" (V,W)) =5t (Ve Wt le=o = 3 [ 938 (Vo W) li=o
Z

:/%g%t)(vv(t% W)= :/(gu (VoV)u, Wa) + g (Vi (VoW )a))
Z Z

=g (VyV, W) + g”" (V,VyW).

This proves that the covariant derivative V- is compatible with the metric ¢*". For the
second part of the statement, we use the formula for the torsion from Theorem 2.1.39.
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Since ev, ok 4 = K 0 ev, for p € (), and the torsion of the Levi-Civita connection on M
vanishes, we have

TVWVW)= (K" ok y —K")oTVoW =(KMoky —KM)oT,2VoW =0. O

A.2.12 Corollary. The tautological covariant derivative V< and the metric compatible,
torsion-free covariant derivative V¥ determine a metric compatible, torsion-free covariant
derivative V¢ on the tangent bundle T¢ — €.
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