Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes

Gökhan Yücel^{1,2*}, Zhihan Zhao^{1,2*}, Ibrahim El-Battrawy^{1,2}, Huan Lan^{1,6}, Siegfried Lang^{1,2}, Xin Li¹, Fanis Buljubasic^{1,2}, Wolfram-Hubertus Zimmermann^{3,2}, Lukas Cyganek^{2,7}, Jochen Utikal^{4,2}, Ursula Ravens⁸, Thomas Wieland^{5,2}, Martin Borggrefe^{1,2}, Xiao-Bo Zhou^{1,2,6}, Ibrahim Akin^{1,2}

¹First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany

²DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Germany

³Institute of Pharmacology and Toxicology, University of Göttingen, Göttingen, Germany

⁴Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany;

⁵Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany

⁶Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China

⁷ Stem Cell Unit, Heart Research Center Göttingen, Göttingen, Germany

⁸ Institute of Experimental Cardiovascular Medicine, University Heart Centre Freiburg•Bad Krozingen, Freiburg, Germany

*equally contributed

Address for correspondence:

Xiao-Bo Zhou, MD First Department of Medicine University Medical Centre Mannheim Theodor-Kutzer-Ufer 1-3 68167 Mannheim Germany

E-mail: Xiaobo.zhou@medma.uni-heidelberg.de

Legends for supplemental data

Table S1. List of genes, RefSeq numbers and primers for qPCR.

Figure S1. Effects of LPS on IL-6 signaling. A, IL-6 concentration in supernatants of hiPSC-CM, which was significantly increased after LPS-treatment in different concentrations for 6h (white bar) or 48h (gray bar) (one-way ANOVA: 6h, p<0.0001; 48h, p<0.0001). **B**, Representative recordings of cardiac TNNT (Tnnt2) and CD126 from FACS-analysis of hiPSC-CM. The positive signal for cardiac Tnnt2 was detected (P2 gate). But there was no specific antibody binding leading to fluorescence signal for CD126 (P3 gate), either with or without LPS-treatment, suggesting that there was no expression of CD 126 in hiPS-CMs. **C**, sCD130 (gylcoprotein 130) concentration in supernatants of hiPSC-CM after LPS treatment in different concentrations for 6h (white bar) or 48h (gray bar). Although 6h-treatment had no influence on sCD130 concentration, 48h-treatment with LPS in high concentrations raised sCD130 concentrations (one-way ANOVA: 6h, p=0,51; 48h, p=0,019).

Figure S2. Immunostaining of hiPSC-CM for cardiac structure proteins and NFκb. Nuclear staining was induced with DAPI (blue). **A-B**, FITC-conjugated cTNNT2 antibody at day 30 after differentiation (green). **C**, FITC-conjugated cTNNT2 antibody (green) plus cy5-conjugated titin antibody (red). **D**, FITC-conjugated NFκb-p65 subunit antibody (green) after cardiomyocyte treatment with 10µg/ml LPS for 6 hours, showing the nuclear-near signal.

Figure S3. Effect of LPS on apamin-sensitive currents. Membrane currents were recorded in cells treated by either vehicle (A-C) or 1 μg/ml LPS (D-F) for 48h. **A** and **D**, Representative traces of membrane currents from -80 to +80 mV in absence of apamin. **B** and **E**, Representative traces of membrane currents from -80 to +80 mV in presence of 100 nM apamin. **C** and **F**, Representative traces of apamin-sensitive currents.

Figure S4. Effect of LPS on NS8593-sensitive currents. Membrane currents were recorded in cells treated by either vehicle (A-C) or 1 μg/ml LPS (D-F) for 48h. **A** and **D**, Representative traces of membrane currents in absence of NS8593. **B** and **E**, Representative traces of membrane currents in presence of 10 μM NS8593. **C** and **F**, Representative traces of NS8593-sensitive currents.

Figure S5. Effect of LPS on transient outward currents (I_{to}) and L-type Ca²⁺ channel currents (I_{ca-L}). I_{to} and I_{Ca-L} were evoked by the indicated protocol (B and D) in absence (control) and presence

of LPS. 4-aminopyridine (4-AP, 5mM) was used to isolate I_{to} from other currents. **A**, Mean values of I_{to} at +80 mV. **B**, Representative I_{to} . **C**, Mean values of I_{Ca-L} at 5 mV. **D**, Representative I_{Ca-L} , Values given are mean ± SEM. n, number of cells. **p*<0.05

Figure S6. Effect of LPS on rapidly delayed rectifier currents (I_{Kr}) and slowly delayed rectifier currents (I_{Ks}). I_{Kr} and I_{Ks} were evoked by the indicated protocol (B) in absence (control) and presence of LPS. E-4031 (1µM) was used to isolate I_{Kr} and chromanol 293B (10µM) was used to isolate I_{Ks} from other currents. **A**, Mean values of I_{Kr} at +40 mV. **B**, Representative traces of I_{Kr} at 40 mV. **C**, Mean values of I_{Ks} at 40 mV. **D**, Representative I_{Ks} at 40 mV. Values given are mean ± SEM. n, number of cells.

Figure S7. Effect of LPS on pH- and ATP-sensitive currents (I_{KATP}). **A**, I-V curves of alkaline (pH-8) inhibited currents in absence (control) and presence of LPS. **B**, I-V curves of acidosis (pH-6) inhibited currents in absence (control) and presence of LPS. **C**, Mean values of the pH-sensitive currents at 40 mV. **D**, I-V curves in absence and presence of either glybenclamide or nicorandil in control cells. **E**, I-V curves in absence and presence of either glybenclamide or nicorandil in LPS-treated cells. **F**, Mean values of the currents at -70 mV. Values given are mean \pm SEM. n, number of cells.

Figure S8. Effects of LPS on intracellular Ca²⁺-concentration. A and B, Representative traces of Ca²⁺-transients in control and LPS-treated cells. C and D, Mean values of diastolic and systolic Ca²⁺-concentration in control and LPS-treated cells. Values given are mean \pm SEM. n, number of cells.

Gene symbol	RefSeq No.	Cat. No. Primers
ABCC8 (KATP, beta-subunit SUR1)	NM_000352	PPH00038F
CACNA1C (L-type Ca2+ channel)	NM_000719	PPH01378G
CCL5	NM_002985	PPH00703B
CD-14	NM_000591	PPH05723A
GAPDH	NM_002046	PPH00150F
IL1B (IL-1 beta)	NM_000576	PPH00171C
IL6	NM_000600	PPH00560C
IL8	NM_000584	PPH00568A
IL10	NM_000572	PPH00572C
KCND3 (Ito, Kv4.3)	NM_004980	PPH06923A
KCNH2 (IKr, Kv11.1)	NM_000238	PPH01660A
KCNJ11 (K _{ATP} , alpha-subunit)	NM_000525	PPH01409B
KCNK3 (TASK-1)	NM_002246	PPH08513A
KCNN2 (SK2)	NM_021614	PPH01665A
KCNN4 (SK4)	NM_002250	PPH01418C
KCNQ1 (I _{Ks} , Kv7.1)	NM_000218	PPH01419A
LBP	NM_004139	PPH01424F
Ly96 (MD2)	NM_015364	PPH06052A
MCP-1	NM_002982	PPH00192F
NfkappaB1	NM_003998	PPH00204F
RelA	NM_021975	PPH01812B
SCN10A (Na+ channel, Nav1.8)	NM_006514	PPH15064A
SCN5A (Na+ channel, Nav1.5)	NM_000335	PPH01671F
SLC8A1 (NCX1)	NM_021097	PPH12509B
TIRAP	NM_001039661	PPH06246B
TLR4	NM_138554	PPH01795F
TNF-alpha	NM_000594	PPH00341F

Table S1. List of genes, RefSeq numbers and primers for qPCR.

RefSeq No. : GenBank NCBI Reference Sequences Cat. No. Primers: Qiagen RT^2 qPCR Primer Assays

Figure S1

cTNNT2/titin/DAPI С 50µm

cTNNT2/DAPI

В

Figure S8

