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Abstract

Ectodysplasin A related hypohidrotic ectodermal dysplasia (XLHED) is a well-studied fetal

developmental disorder in mammals that mainly affects ectodermal structures. It has been

identified in a variety of species, including mice, rats, dogs, cattle, and humans. Here, we

report the clinical, histological, and molecular biological analyses of a case of XLHED in Lim-

ousin cattle. An affected Limousin calf showed pathognomonic signs of ectodermal dyspla-

sia, i.e. sparse hair and characteristic dental aplasia. Histopathologic comparison of hairy

and glabrous skin and computed tomography of the mandible confirmed the phenotypic

diagnosis. In addition, a keratoconjunctivitis sicca was noted in one eye, which was also

confirmed histopathologically. To identify the causative variant, we resequenced the bovine

X-chromosomal ectodysplasin A gene (EDA) of the affected calf and compared the

sequences to the bovine reference genome. A single missense variant (rs439722471) at

position X:g.80411716T>C (ARS-UCD1.3) was identified. The variant resulted in an amino

acid substitution from glutamic acid to glycine within the highly conserved TNF-like domain.

To rule out the possibility that the variant was relatively common in the cattle population we

genotyped 2,016 individuals including 40% Limousin cattle by fluorescence resonance

energy transfer analysis. We also tested 5,116 multibreed samples from Run9 of the 1000

Bull Genomes Project for the said variant. The variant was not detected in any of the cattle

tested, confirming the assumption that it was the causative variant. This is the first report of

Ectodysplasin A related hypohidrotic ectodermal dysplasia in Limousin cattle and the

description of a novel causal variant in cattle.

Introduction

Hypohidrotic ectodermal dysplasia (HED) or “Christ-Siemens-Touraine syndrome” is an

embryonic developmental disorder of the skin structures [1]. These developmental disorders
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are usually monogenic and recessively inherited and are most commonly caused by alterations

in the ectodysplasin A pathway [2–7]. This applies to the skin and its appendages, i.e. hair and

nails, as well as all superficial glands that may be missing or maldeveloped [8, 9]. Affected ani-

mals have a sparse, usually lightened coat, malformed or missing teeth, and cannot regulate

their body temperature by sweating (hypohidrosis) [1, 10]. Calves are characterized by bald

patches around the eyes and muzzle and lack teeth with the exception of one malformed cau-

dal molar [11–15]. Mammalian skin is of mesodermal and ectodermal origin and consists of

three layers, with the middle layer, the corium, having the most malformed structures. No

other syndromic malformations have been described in calves and the animals show normal

daily gains. When the causative mutation is located on the X chromosome, the disorder is

termed X-linked hypohidrotic ectodermal dysplasia (XLHED) and is much more commonly

observed in male individuals [6]. HED-related malformations do not result in abortion but

often cause premature death from inefficient thermoregulation or pneumonia due to

decreased pulmonary clearance because the appropriate glands are absent. HED may therefore

be considered an indirect lethal factor in cattle [15, 16].

To date, there have been 11 reports of HED in cattle, i.e. Red or Black Holstein and various

crosses of Red Angus, Charolais, Simmental, Japanese Black or British-blue [3–9, 11–17]. Pen-

etrance of HED appears to be high and the phenotype is easily observed. All reports to date are

due to single genetic variants that do not appear to be common in the rest of the population.

In addition to cattle, HED has been described in humans, dogs, rats, and various strains of

tabby mice [2, 18–20]. Milder forms of HED have been observed in females [21]. In dogs,

HED has been described in various breeds, such as German Shepherds, Dachshunds, Poodles,

and mixed breeds [22–25]. The prevalence of the disease has not been estimated in animals,

but in humans, the disease occurred in 1 of 17,000 children [26].

The bovine Ectodysplasin A gene EDA is located at position X:g.80,405,885–80,803,322

(ARS-UCD1.3), spans approximately 397kb and consists of eight exons. The encoded 391

amino acid harboring Ectodysplasin A protein contains a collagen-like domain that mediates

homotrimerization and a tumor necrosis factor (TNF)-like domain for receptor interaction.

Ectodysplasin A is a paracrine cytokine, relevant to cell-cell communication, particularly in tis-

sues of mesodermal and ectodermal origin [2, 27]. The protein is either located on the cell sur-

face or secreted by furin cleavage [28]. Because of an alternative splicing process, there are two

isoforms of Ectodysplasin A A1 and A2, which differ only in residues 308–309. These two resi-

dues are located within the TNF-like domain and therefore affect the receptor specificity of the

two isoforms [27]. This pattern is highly conserved and is found in various mammals, such as

humans and mice [29, 30].

Interestingly, the two isoforms activate different cellular receptors. Isoform A1 activates the

Ectodysplasin A receptor (EDAR), whereas isoform A2 has no effect on this receptor, but acti-

vates only the X-linked ectodysplasin A receptor (XEDAR) [31]. Only isoform A1 appears to

be involved in the pathway relevant to HED, as mutations of EDAR also lead to HED, but with

similar heritability in both sexes, as EDAR is an autosomal gene on chromosome 11 [32]. An

intracellular downstream mediating receptor for EDAR, the EDAR-associated death domain

(EDARADD), also causes autosomal HED when disrupted [33]. Isoform A2 selectively acti-

vates the X-linked EDA-receptor (XEDAR) whose biological functions are still poorly under-

stood but which also appears to be important in skin development and immune responses by

activating various intercellular signaling pathways [34, 35]. XEDAR mutations, cause only a

mild form, if any, of HED [36]. XEDAR knock-out mice are indistinguishable from healthy

mice [30]. Other isoforms of EDA have been shown to be expressed but do not appear to have

biological functions [19]. A similar form of HED, which is affected by the Wnt pathway, has

been described in humans by mutations in the WNT10A gene [37]. As ectodysplasin A, Wnt is
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important for cell-cell communication at the embryonic stage. Eleven reports of HED in cattle

are collected in OMIA, with currently only one report of HED due to mutations in EDAR [32,

38]. The remaining ten reports relate to XLHED due to EDA mutations, four of which describe

small indels [5, 9, 11, 14]. Another six studies describe structural variations [6, 12, 13, 15–17].

To date, XLHED has not been reported in Limousin cattle. In the present study, we describe

the genetic clarification of XLHED in an affected male calf from a family of purebred Limousin

cattle.

Material and methods

Ethical statement

Samples were provided by a Limousin cattle breeder. Samples were taken exclusively by local

veterinarians. The analysis of samples was approved by the Lower Saxony State Office for Con-

sumer Protection and Food Safety (33.19-42502-05-17A196) according to §8a Abs. 1 Nr. 2 of

the German Animal Protection Law.

Sample collection and description

DNA of EDTA blood samples of the calf (46), its mother (44), its father (47), mothers‘mother

(43), and a healthy daughter of this grandmother (45) was extracted using MagNa Pure LC

DNA Isolation Kit I (Roche Diagnostics, Mannheim, Germany). DNA of further unrelated

Limousin cattle (n = 814) and Holstein cattle (n = 1,199) included in the study was obtained

from our DNA depository. The affected calf was slaughtered at six months of age due to overall

poor performance and skin samples of haired and bald areas from the forehead and an

assumed blind eye were taken and fixed in 10% formalin and sent, processed routinely, and

embedded in paraffin wax. Subsequently, 4μm sections were mounted on glass slides and

stained with hematoxylin and eosin (H&E). The lower jaw was sent without fixation and com-

puter tomographic images were taken on a Siemens SOMATOM Spirit 31164 system with

syngo CT 2006C2 software. No clinical investigation of the animal by a veterinarian was con-

ducted before slaughtering.

PCR primer design and Sanger sequencing

PCR and Sanger sequencing were conducted in eight individuals containing the five Limousin

family members (43–47) and three non-Limousin controls. PCR primers and reaction condi-

tions are shown in Table 1. Primers were designed for each of the eight exons of the bovine

EDA gene and transcript (NCBI NC_037357, NM_001081743.2, ARS-UCD1.3) using the Pri-

merQuest web tool (http://eu.idtdna.com/PrimerQuest) [39, 40]. Primers were synthesized by

Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). PCR was optimized and performed

using 30 cycles in a total volume of 20 μL, including 20 ng DNA, 10 μmol forward and reverse

primer each, 1 × PCR reaction buffer (including 20 mM MgCl2), 100 μmol dNTPs and 0.6 U

FastStart Taq DNA Polymerase (5 U/μl; Sigma-Aldrich Chemie GmbH, Taufkirchen, Ger-

many) on a Biometra T gradient thermal cycler (Biometra, Göttingen, Germany). For exons 1,

3, and 4 a volume of 4 μL water was substituted with Q-solution (Qiagen, Hilden, Germany).

Amplicons were analyzed by 1.5% agarose gel electrophoresis at 120 V for 25 minutes and

inspected under UV light after staining with ethidium bromide. 5 μL of PCR products were

enzymatically cleaned using 1 μL Rapid PCR Cleanup Enzyme Set (NEB, Frankfurt Germany)

according to the manufacturers‘protocols. Chain termination synthesis was performed using

1 μL of cleaned product, 1 μL of one associated primer, 1 μL BigDye Terminator v3.1, 1 μL 5 x

Sequencing buffer (Applied Biosystems, Waltham, MA, USA), and 3 μL water according to the
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manufacturer´s protocols. Sequencing reactions were separated on an ABI PRISM 3130XL

Genetic Analyzer system (Applied Biosystems, Waltham, MA, USA). Sequence data were

aligned and analyzed against the NCBI gene reference sequence (GeneID 616179,

ARS-UCD1.3) using DNASTAR Lasergene 17 SeqMan Ultra [39–41]. The Effect of identified

variants was predicted using the PolyPhen2 v2.2.3 r406 web tool by feeding in the protein

sequence, substitution position, and amino acids [42]. The DNA sequence data have deposited

with OSF and can be accessed at https://osf.io/rwjh3/.

FRET genotyping of SNP rs439722471

For SNP rs439722471 probe and anchor were designed using uMelt [43] (Table 1). Oligos

were synthesized by Sigma-Aldrich (Taufkirchen, Germany). Fluorescence resonance energy

transfer (FRET) melting curve genotyping was performed on 2,016 samples in a LightCy-

cler480 system (Roche, Mannheim, Germany). Each 10 μL reaction mix contained 0.6 U Fas-

tStart Taq DNA Polymerase (5 U/μl; Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany),

2 mM dNTP, 4 mM of each primer and probe, PCR reaction buffer (including 15 mM MgCl2),

and approximately 20 ng of DNA. Cycling conditions were 95˚C for 5 minutes, followed by 35

cycles of 95˚C for 10 sec, 60˚C for 15 sec and 72˚C for 15 sec. The final elongation step was

72˚C for 5 min. Melting was done using a 498–660 nm detection system initiated with 98˚C

for 30 sec, 40˚C for 1 sec to 80˚C with continuous acquisition mode (2/˚C), ramp rate 0.29˚C/

sec, followed by cooling to 40˚C for 30 sec. The allele frequency of rs439722471 was deter-

mined from a variant calling format (.vcf) file of the X chromosome from Run9 of the 1000

Bull Genomes Project using bcf-tools [44, 45].

Table 1. PCR primers and probes.

Exon Primer Name Sequence (5‘->3‘) Amplicon Size Substitute Ta (˚C)

1 ED1_Exon1.1_for GAAGGGCTGAGGCAGAC 252 bp 4μL Q-Solution 60

1 ED1_Exon1.1_rev CAGTTCTAGGTAGCAGCACAA

1 ED1_Exon1.2_for TGGGTTTCTTTGGCCTCTC 310 bp 4μL Q-Solution 60

1 ED1_Exon1.2_rev CTGCGCACATGGTGAGG

2 ED1_Exon2_for GTTGTTAGATGCCTTGCCAATAA 328 bp 60

2 ED1_Exon2_rev CCTGGAAGCTATAGTACTCAAGAAG

3 ED1_Exon3_for CCAAGTTCCTTGAGGGTCATTA 506 bp 4μL Q-Solution 60

3 ED1_Exon3_rev TCACCTGCTCCTGTTCTACTA

4 ED1_Exon4.1_for TTGACTGGGTCAACCTTTAACT 286 bp 4μL Q-Solution 57

4 ED1_Exon4.1_rev TAGGTAGGTTAGGCTGGGAAA

5 ED1_Exon5_for GCTGCCTAGATGAAGAGGAAAG 183 bp 60

5 ED1_Exon5_rev CTTAGCAGGGAGCAAACTCAA

6 ED1_Exon6_for AATGAGGCTCAGAGGCATTAC 351 bp 60

6 ED1_Exon6_rev GGAACTAGGCTGGGTGATTATT

7 ED1_Exon7_for CCCAGATGATTCTGACATGTACT 234 bp 60

7 ED1_Exon7_rev CAAAGGATCTGCATTCTGGATATAAG

8 ED1_Exon8_for ATGAGTGGGTCCTGTCTACT 545 bp 60

8 ED1_Exon8_rev CCTGTTCACTCCAGGTCAATC

7 bEDA_Ex7_P GGGGAGTTGGAGGTACTGGT[6FAM] 65

7 bEDA_Ex7_A [ROX]CGGCACCTACTTCATCTATAGTCAGG[PHOS] 68

https://doi.org/10.1371/journal.pone.0291411.t001
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Multispecies alignment of EDA protein sequences

Amino acid sequence alignment of the 391-residue EDA-A1 protein from 13 mammalian spe-

cies was conducted with the ClustalW algorithm. Protein sequences of bobcats, cattle, chee-

tahs, Eurasian otters, fishing cats, golden spiny mice, house mice, humans, Jamaican fruit-

eating bats, macaque, reed vole, slow loris, and warthog were downloaded from the NCBI pro-

tein database [39, 40]. Analysis and visualization were done with DNASTAR Lasergene 17

MegAlign pro [41]. A cartoon model of the bovine EDA-A1 (Q9BEG5) protein was sketched

and colorized with UCSF ChimeraX version 1.6.dev202302220544 [46].

Results

Clinical examination and histopathology

Photographs of the affected calf after birth (A) and 5 months later at slaughter (B-C) are

shown in Fig 1. The calf was the second case with this clinical presentation within the Limou-

sin cattle family. A previous case that had occurred two years earlier involved an uncle that

died at 3 months of age. The affected calf showed overall sparse and dry coat. In particular, the

areas around the eyes and muzzle were almost hairless. Fig 1 also shows histopathological

images from sparsely hairy (D-E) and bald areas (F-G) of the forehead. The sparsely hairy skin

showed mild irregular acanthosis and moderate orthokeratotic lamellar hyperkeratosis, mini-

mal multifocal lymphoplasmacytic inflammatory cell infiltrates and there was evidence of

sebaceous glands, hair follicles (including anagen), and dilated apocrine glands. The glabrous

skin showed no evidence of sebaceous glands, hair follicles, or apocrine glands with mild peri-

vascular fibrosis and discreet arrector pili muscle. There were also minor multifocal lympho-

plasmacytic inflammatory cell infiltrates. Another sign of the affected calf was left-sided

blepharospasm, which was visible at birth (Fig 1C). Histopathologic examination of the left

eyeball (Fig 2E–2G) revealed focally extensive, eosinophilic, severe superficial keratitis, charac-

terized by hyperplasia of the corneal epithelium (rete ridge formation), infiltration of inflam-

matory cells (plasma cells, lymphocytes, macrophages, many eosinophils, low numbers of

neutrophils). In addition, neovascularization, erosion of the corneal epithelium with epithelial

detachment and adherent cell debris (containing foreign material), exocytosis of inflammatory

cells, and corneal edema were noted The present clinical and histopathologic findings were

suggestive of keratoconjunctivitis sicca. Inspection of the oral cavity revealed no tooth erup-

tion through the gingiva except for a malformed last molar. A computed tomography scan of

the mandible showed complete aplasia of all other teeth (Fig 2A–2C). The complete video of

the scan can be seen in S1 Fig.

The clinical and histopathological examinations unequivocally allowed the diagnosis of

HED. In connection with the pedigree shown in Fig 3, an X-linked inheritance was obvious,

because up to now only one other male animal with the same signs had been reported. There-

fore, the X-linked EDA gene was comparatively sequenced and the sequences were aligned

with the reference genome.

Molecular study

A single missense variant (rs439722471) was identified located in exon 7 at position X:

g.80411716T>C (ARS-UCD1.3). The resulting amino acid exchange was predicted to be dele-

terious according to PolyPhen2 with a score of 0.982 (sensitivity: 0.75; specificity: 0.96) [42].

To test whether this variant was indeed causative of XLHED in the Limousin cattle, a total of

2,013 bovine DNA, including 814 samples from Limousin cattle (40.38%), were genotyped

using FRET, and no exchange was detectable in the TNF-like domain, indicating that this
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Fig 1. Phenotypical appearance and histopathological examinations of the affected Limousin calf. (A) Photo of the

calf at day 1 of age with overall sparse fur. (B-C) Photos of the calf aged six months with overall sparse fur and bald

areas around muzzle and eyes. (D-E) Histopathological images of haired area of the affected Calf’s forehead with

dilated apocrine glands (*), sebaceous glands (+) and hair follicles (~) after HE staining. (F-G) Histopathological

images of bald areas of the forehead showing severe irregular acanthosis (#), hyperkeratosis (O) and lack of any

glandular appendices.

https://doi.org/10.1371/journal.pone.0291411.g001
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region is highly conserved across species (S2 Fig). To further expand the experimental data set,

5,116 multibreed samples from Run9 of the 1000 Bull Genomes Project were also analyzed for

the variant. However, the causative C allele could not be detected in these samples either.

Because the variant was localized in a functionally important region of the protein, we

aimed to determine its functional significance by comparative protein analysis in silico. Com-

parison of the protein sequences of EDA-A1 revealed a total of only 64 exchanges when 13 dif-

ferent mammals were compared, with no exchange detectable in the TNF-like domain. Fig 4

shows a 42-residue window of a multispecies alignment flanking the variant and a cartoon

model of EDA-A1.

Discussion

Hypohidrotic ectodermal dysplasia is accompanied by a characteristic pathology of the coat

and teeth. In the present case, these changes were noted in the clinical as well as histopatholog-

ical and imaging examinations. Similar clinical signs have also been reported in another male

individual from this family, although no further investigations were performed. A sign not pre-

viously described in cattle HED was observed in the present case in the form of a keratocon-

junctivitis sicca. However, this may be due to the fact that cattle with this disorder rarely reach

Fig 2. Clinical examinations of the affected Limousin calf. (A-C) Total dental aplasia of teeth except of third molar.

M3 is characteristically malformed as described for HED in cattle. (D-G) Keratitis sicca of the left eye showing

permanent squint, severe superficial keratitis with corneal hyperplasia indicated by rete ridge formation (*) and

invasion of different inflammatory cell populations (#).

https://doi.org/10.1371/journal.pone.0291411.g002
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Fig 3. Pedigree of the HED affected Limousin family according to the standardized human pedigree nomenclature [50].

https://doi.org/10.1371/journal.pone.0291411.g003
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an age at which the disease is expressed. In contrast, in humans and dogs, the occurrence of

conjunctivitis sicca associated with HED has been described previously [23]. Because wound

healing and also corneal epithelial homeostasis are affected by EDA signaling, the development

of conjunctivitis sicca in association with HED is certainly to be expected [47]. These changes

are likely exacerbated by decreased or absent tear production due to absent or malformed

Fig 4. Effect of variant rs439722471. (A) The missense SNP is within exon 7 of EDA transcript NM_001081743.2. Mind the homozygous G-Allele in the

calf (46). Numbering 43–47 is equivalent to lab numbers: 43 = grandmother, 44 = mother, 45 = unaffected aunt, 46 = affected Calf, 47 = father. (B) The

cartoon model demonstrates in blue the predicted amino acid exchange in the Ectodysplasin A protein from Glutamic acid to Glycine at residue 294. The

TNF-like domain is highlighted in grey. (C) Multispecies-42-residues alignment of the EDA protein sequence. Position of the variant rs439722471 (arrow)

is within the highly conserved TNF-like domain.

https://doi.org/10.1371/journal.pone.0291411.g004
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lacrimal glands. Because lacrimal fluid also has an antimicrobial effect, inflammation and

increased risk of infection are also common [48]. In summary, however, the diagnosis of HED

can be made without doubt from the overall findings.

Evidence for a sex-linked mode of inheritance came from the available pedigree data and

the fact that only males have been affected by the disease to date. Although a dominant form of

XLHED due to X inactivation has also been described in humans and cattle in female individu-

als, a recessive disease was present here because no cows were affected [17, 49]. Based on the

overall findings, it was clear that the cause of the disease in the present case could only be

linked to the X-linked EDA gene. Comparative sequencing of the coding region of the EDA
gene in the Limousin family revealed a single missense variant. This variant was predicted to

result in an amino acid exchange of residue 294 of the EDA-A1 protein from glutamic acid to

glycin. The exchange occurs within the TNF-like domain and activation of the ectodysplasin A

receptor was predicted to fail because of insufficient ligand-receptor interaction. Of all the

bovine HED-causing variants described to date, four are in this region [15–17]. In addition,

this variant also likely prevents activation of XEDAR, because EDA-A2 arises from the same

gene and also contains the TNF-like domain encoded by the mutant sequence, however, this

effect is not observed phenotypically [34, 36]. To prove that the variant was unique and not

present in the rest of the population, we genotyped an additional 2,013 bovine DNA samples

including 814 Limousin DNA, and screened 5,116 sequence data from the 1000 Bull Genomes

Project [44]. The missense variant was not detected in any of the 7,129 samples.

Conclusions

In conclusion, we were able to confirm the presence of XLHED in a Limousin calf and eluci-

dated a relevant mutation in the EDA gene associated with the defect. Knowledge of this previ-

ously undescribed causative variant in cattle now allows the use of a direct genetic test to

screen carriers in Limousin breeding.

Supporting information

S1 Fig. Computed tomography scan of the mandible showing complete aplasia of all other

teeth.

(MOV)

S2 Fig. Melting curves of genotypes using FRET assay. Animals carrying the missense vari-

ant show a peak at approximately 57˚C and the wild type allele is detected with a peak at 65˚C.

The black line indicates the hemizygous genotype of the affected male calf (46) with only one

peak at 57˚C. The conductors (mother 44, grandmother 43) are depicted with red colored

lines showing two peaks indicating the presence of a heterozygous genotype. The magenta and

green colored lines showing a peak at 65˚C correspond to the wild type alleles of the homozy-

gous sister (45) and hemizygous father (47). All control samples (blue lines) show only the

wild type allele. The cyan colored line corresponds to the non-template control. Numbering

according to Fig 3.

(TIF)
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4. Drögemüller C, Kuiper H, Peters M, Guionaud S, Distl O, Leeb T. Congenital hypotrichosis with anodon-

tia in cattle: a genetic, clinical and histological analysis. Vet Dermatol. 2002; 13(6):307–13. Epub 2002/

12/05. https://doi.org/10.1046/j.1365-3164.2002.00313.x PMID: 12464063.
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