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A B S T R A C T

In this study, we examine the structural short- and long-run effects of oil supply and demand shocks on
the production of crude oil. Among these, oil supply shocks are the major determinant of oil production.
Furthermore, we adopt local projections to elicit that oil supply and aggregate demand shocks are significant
drivers of CO2 emissions, whereas oil-specific demand shocks have only limited impact on overall emissions
in the short-, mid-, and long-term. These findings underscore the limitations of current demand-side policies
within a selected group of countries, emphasizing the necessity for global support and binding commitments
to effectively reduce emissions from oil production and meet the climate targets set by the Paris Agreement
in 2015.
1. Introduction

Since the ratification of the Kyoto Protocol in 1997, the United
Nations Framework Convention on Climate Change (UNFCCC) has been
striving to mitigate the effects of climate change. The primary objective
of the UNFCCC is to curtail greenhouse gas (GHG) emissions, with a key
focus on promoting the substitution of fossil fuels with renewable en-
ergy sources. Specifically, the reduction of oil demand is crucial, given
that, out of the global CO2 emissions totaling 35.26 billion tonnes in
2021, oil ranked as the second-largest contributor after coal, accounting
for 11.84 billion tonnes of CO2 emissions (Enerdata, 2023). Indeed,
the relationship between oil production and CO2 emissions from fossil
fuels, as depicted in Fig. 1, suggests a close correlation. Major pol-
icy instruments employed to combat global warming include carbon
pricing through taxes or the implementation of jurisdiction-specific
cap-and-trade or emission trading systems (ETS) and the promotion of
green energy usage through subsidies. The underlying hypothesis for
the effectiveness of these policy instruments posits that any reduction
in the demand for fossil energy inevitably leads to a decrease in GHG
emissions. However, the efficacy of policies aimed at reducing CO2
emissions by decreasing oil demand also depends on the response
of oil producers. If oil production exhibits an inelastic response to
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fluctuations in oil prices, this policy may prove ineffective in reduc-
ing GHG emissions globally. In this regard, eyeballing the volatile
variations in the international real price of oil and the consistently
growing path of oil production in Fig. 2 provides a visual indication of
the limited responsiveness of oil production to price changes. Against
this background, gaining a profound understanding of the mechanisms
governing prices and quantities in oil (and other energy) markets
becomes paramount for designing and implementing effective energy
and climate protection policies.

In this study, we analyze the influence of demand and supply
shocks on global crude oil production in the short-, medium-, and long-
term within a structural vector autoregressive (SVAR) model for the
global crude oil market, utilizing monthly data spanning from 1974 to
2022. In the macroeconomic literature, SVAR models have become a
standard tool for understanding the joint evolution of real oil prices
and the level of crude oil production (see Kilian and Zhou, 2023, for
a recent review of this rich literature). In the context of the current
literature, our study makes three substantial contributions. Firstly,
while the major focus of the related literature aims to explain short-
run price fluctuations in the oil market (e.g. Kilian and Murphy, 2012;
Baumeister and Hamilton, 2019), our focus is on the determinants of
mid- and long-term oil production. Secondly, whereas most studies on
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Fig. 1. Oil production and CO2 emission. Upper panel: Reconstructed time series of oil production. The series of oil production is constructed as the sum of cumulative effects of
four shocks displayed in Fig. 5 and has been adjusted for truncation bias. Lower panel: World carbon dioxide emissions from fossil fuels and industry (million tonnes in natural
logarithm). Shaded areas denote recessions dated by the Business Cycle Dating Committee of the National Bureau of Economic Research. Subjecting the bivariate time series of oil
production and CO2 emissions to a formal cointegration analysis yields a Johansen trace statistic of 25.09, which indicates common trending with 5% significance.
Fig. 2. Production of crude oil including lease condensate (blue solid) and real price of crude oil (red dashed) in percentage of the mean. The vertical line indicates the month
of May 2020, which marks the implementation of the OPEC+ decision to reduce oil production by 9.7 MB/D. For further notes see Fig. 1.
the oil market rely on a-priori parametric restrictions, sign restrictions
on directional effects of structural shocks, or upper bounds on model
implied price elasticities (e.g., Kilian, 2009; Kilian and Murphy, 2012;
Baumeister and Hamilton, 2019), we employ a state-of-the-art statisti-
cal identification approach that builds upon concepts of independent
component analysis, and is fully agnostic with respect to both short-
and long-term implications (Hafner et al., 2023). Thirdly, subsequent
to identification of soundly defined structural shocks shaping global
oil market dynamics, we perform local projections of annual growth of
CO2 emissions on structural oil market shocks. This exercise is pivotal
to analyze the extent to which structural oil supply and demand shocks
impact on CO2 emissions, and allow us to obtain insights into the
effectiveness of climate protection policies.

The agnostic approach to identification of the dynamic oil market
system results in four shocks with soundly distinct economic features,
namely an oil supply shock, an aggregate demand shock, an oil-specific
demand shock and an inventory demand shock. Model implications
reveal that demand shocks exert only mild and scarcely significant
short- and long-term effects on oil production. Additionally, the oil
supply curve exhibits inelasticity, leading to oil price fluctuations in
response to demand shifts but with minimal repercussions on actual
production. Furthermore, a historical decomposition of oil production
highlights the limited influence of demand shocks on past trends in oil
2

production. Local projections reveal that oil supply shocks significantly
impact CO2 emissions, especially in the short-run. Oil-specific demand
and inventory demand shocks have minimal effects on CO2 emis-
sions in the short-, mid-, and long-term, while an aggregate demand
shock influences emissions notably in the medium- to longer-term.
These findings elucidate the insufficient impact of current demand-
side policies, endorsed by a limited number of countries, in achieving
the 1.5 ◦C target set by the 2015 Paris Agreement through efforts to
reduce oil demand and promote renewable energy sources. The results
also underscore the imperative need for global backing of demand-side
policies to genuinely curtail CO2 and other GHG emissions stemming
from oil production. This could be accomplished, for example, through
the establishment of a global cap-and-trade system, aligning with the
collaborative endeavors in recent climate summits to ensure universal
adherence to binding commitments on GHG emissions.

The remainder of this study is organized as follows. The next section
outlines the structural VARs and the adopted identification approach.
Section 3 discusses empirical results. Section 4 analyzes the impact of
structural supply and demand shocks on CO2 emissions and addresses
policy implications. Section 5 concludes. An Online Appendix provides
some estimation results in full detail and a collection of robustness

checks.
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2. SVARs and kernel maximum likelihood estimation

A structural analysis of the global oil market faces the core problem
of identifying the underlying (short-run) supply and demand curves, as
unexpected price and quantity changes (see, e.g., Fig. 2) are compatible
with different slopes of these curves (Kilian, 2022). As a promising
means offering such a structural perspective, Kilian (2009) has pio-
neered the SVAR analysis of the global oil market and complements
notions of structural oil supply shocks with different demand shocks
that are traced back to distinct motives for oil consumption. In this sec-
tion, we start by formalizing the VAR model in reduced and structural
form, and outline the identification problem. In addition, we highlight
various advances that have been suggested in the literature to identify
structural shocks by means of SVARs. Among these approaches, we put
particular emphasis on tools of Independent Component Analysis (ICA)
and the recent Kernel Maximum Likelihood (KML) approach of Hafner
et al. (2023), which has been used for the empirical analysis in this
work.

2.1. SVAR model

A 𝐾-dimensional VAR model reads in reduced and structural form,
respectively, as

𝑦𝑡 = 𝜇 + 𝐴1𝑦𝑡−1 +⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡, (1)

and 𝑦𝑡 = 𝜇 + 𝐴1𝑦𝑡−1 +⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝐵𝜉𝑡, 𝑡 = 1,… , 𝑇 . (2)

The models outlined in (1) and (2) are conditional on presample values
𝑦0, 𝑦−1,… , 𝑦1−𝑝, 𝜇 is a vector of intercepts and the 𝐾 × 𝐾 matrices
𝐴1,… , 𝐴𝑝 capture autoregressive dynamics up to order 𝑝. By assump-
tion, the dynamic process is stationary, i.e., det(𝐴(𝑧)) ≠ 0 for all |𝑧| ≤ 1
with 𝐴(𝑧) = 𝐼𝐾 − 𝐴1𝑧 −⋯ − 𝐴𝑝𝑧𝑝. Let 𝐿 denote the backshift operator
such that 𝐿𝑦𝑡 = 𝑦𝑡−1. By implication of the stationarity condition, 𝑦𝑡
has a Wold representation 𝑦𝑡 = 𝜈 +

∑∞
𝑖=0 𝛩𝑖𝜉𝑡−𝑖, where 𝜈 = 𝐴(𝐿)−1𝜇

and 𝛩(𝐿) = 𝐴(𝐿)−1𝐵 and 𝛩𝑖 is a matrix of structural impulse re-
sponses at the 𝑖th horizon. Long-run cumulative responses are given by
𝛩(1) =

∑∞
𝑖=0 𝛩𝑖 = 𝐴(1)−1𝐵. While the structural model in (2) formalizes

the transmission of structural shocks to the observable system, causal
relationships among the model variables are often inferred from the
following representation

𝛱0𝑦𝑡 = 𝑐 +𝛱1𝑦𝑡−1 +⋯ +𝛱𝑝𝑦𝑡−𝑝 + 𝜉𝑡, (3)

where 𝛱0 = 𝐵−1, 𝑐 = 𝐵−1𝜇 and 𝛱𝑙 = 𝐵−1𝐴𝑙 for 𝑙 = 1,… , 𝑝.
Although the reduced form model (1) can be consistently estimated

by means of LS methods, the causal relationship 𝑢𝑡 = 𝐵𝜉𝑡 and the
dynamic transmission of elements in 𝜉𝑡 to observable system variables
in 𝑦𝑡 remains latent. Without loss of generality, unit-variance normal-
ization can be imposed, Cov[𝜉𝑡] = 𝐼𝐾 . Accordingly, the covariance
of the mixed residuals 𝑢𝑡 allows for the decomposition Cov[𝑢𝑡] ≡
𝛴𝑢 = 𝐵𝐵′. However, this moment condition results in 𝐾(𝐾 + 1)∕2
unique equations, which are insufficient to determine 𝐾2 unknown
parameters in 𝐵. Owing to its indeterminacy, alternative choices for the
matrix 𝐵 are observationally equivalent in Gaussian SVARs. A space of
alternative covariance decompositions can be obtained by rotating the
lower triangular Cholesky factor 𝐶 of the reduced form covariance such
that

𝛴𝑢 = 𝐵𝐵⊤ = 𝐶𝑄𝑄⊤𝐶⊤ = 𝐶𝑄(𝐶𝑄)⊤, (4)

where 𝑄 denotes an orthogonal rotation matrix (𝑄𝑄⊤ = 𝐼𝐾 , |det𝑄| =
1). Hence, to describe the causal relationships within a dynamic system,
the selection of an identified model (or a set of identified models) can
be seen as the choice of a specific rotation matrix 𝑄 (or of a set of
rotation matrices) in (4).
3

2.2. Theory-based vs. statistical identification in a nutshell

The SVAR literature yet comprises several approaches to solve
the identification problem that allow for a broad classification into
theory-based and statistical approaches (we refer the reader to Kilian
and Lütkepohl, 2017, for a textbook treatment of diverse identifica-
tion schemes). Typical elements of the structural parameter matrix 𝐵,
denoted 𝑏𝑖𝑗 , quantify the direction and magnitude of the contempora-
neous effects of a (positive) structural unit shock 𝜉𝑗𝑡 on the 𝑖th variable
in the system. Hence, economic theory might offer plausible restrictions
for both characteristics either in the form of strong parametric (exclu-
sion) restrictions (Sims, 1980; Blanchard and Quah, 1989), or as weaker
so-called sign restrictions imposed on effect directions and/or relative
magnitudes (e.g., Faust, 1998; Uhlig, 2005). As an alternative to theory-
guided identification, an analyst might consult statistical identification
approaches that derive from informative statistical properties of the
supposed structural shocks in 𝜉𝑡. On the one hand, non-proportional
changes in the variances of structural shocks have been shown to carry
informational content to solve the identification problem. Lütkepohl
and Netšunajev (2017) review the literature on identification through
heteroskedasticity, which has yet suggested a multitude of informa-
tive second-order moment structures such as variance shifts, smooth
transition models, or conditional heteroskedasticity. Magnusson and
Mavroeidis (2014) have suggested a general family of identification
schemes utilizing stability restrictions. On the other hand, a rich litera-
ture has emerged (see Section 2.3 below for selected references) using
the fact that linear combinations of independent and identically non-
Gaussian distributed shocks 𝜉𝑡 can be uniquely recovered from mixed
reduced form residuals 𝑢𝑡 = 𝐵𝜉𝑡 (Comon, 1994). It is worth pointing
out that statistical identification schemes yield typically a structural
parameter matrix 𝐵 that is only locally identified (i.e., unique up to
column permutation and scaling).

Although the two branches of identification in SVARs can be seen to
establish alternative modeling strategies, several arguments can be put
forth to highlight the scope of viewing theory-based and statistical iden-
tification as promising complements. First, theory-based identification
schemes are typically just-identifying such that the data cannot object
against the identifying assumptions imposed. Hence, theory-based iden-
tification is always at the risk to intermingle modeling assumptions and
conclusions (Uhlig, 2005). In this regard, statistical identification offers
additional information that could enable an explicit testing of otherwise
just-identifying (economic) hypothesis. As an example, Lütkepohl and
Netšunajev (2014) confirm core identifying assumptions of Kilian and
Murphy (2012) based on informative heteroskedasticity for identi-
fication and testing. Second, the literature on set identification by
means of sign restrictions has pointed to the challenges of eliciting
particular models as ‘most reasonable’ . In this regard, Herwartz and
Wang (2023) have argued in favor of the informational content of
independence criteria for the elicitation of a single representative of
a set of identified models that all align with sound economic theory.
Third, while the supposed informative statistical characteristics of the
shocks (i.e., heteroskedasticity or independence & non-Gaussianity) can
be diagnosed straightforwardly, statistically identified shocks may not
inherently exhibit economic interoperability. In other words, once these
shocks are identified, providing meaningful economic labels to them – a
process often referred to as ‘shock labeling’ – becomes a vital aspect of
structural modeling through statistical identification. The inclusion of
theoretical considerations or established narrative features of shocks is
paramount in assisting analysts in appropriately labeling these shocks.
To delve further into this complementary perspective, we proceed to
elaborate on the details of identification by means of ICA.

2.3. KML estimation of the structural parameters

If the elements of 𝜉𝑡 are mutually independent and at most one
of them is Gaussian, the full 𝐵 matrix can be uniquely recovered
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from reduced form residuals 𝑢𝑡 = 𝐵𝜉𝑡 (Comon, 1994). Several tech-
iques have been proposed to identify 𝐵 under the independence
ssumption: The minimization of non-parametric dependence diag-
ostics (Herwartz, 2018; Herwartz and Plödt, 2016), pseudo maxi-
um likelihood (PML) based on non-Gaussian fixed densities (Lanne

t al., 2017; Gouriéroux et al., 2017), generalized methods of moments
GMM) relying on higher-order moment conditions (Lanne and Luoto,
021; Keweloh, 2021), ML based on kernel density estimates (KML,
afner et al., 2023) and discrete location-scale-mixed normal dis-

ributions (DLSMN Fiorentini and Sentana, 2023). While PML using
ixed densities may suffer from density misspecifications and GMM
ay be sensitive to heavy-tailed distributions, both DSLMN and KML

pproaches are consistent for estimating key structural quantities, re-
ardless of the true shock distributions. Through comprehensive Monte
arlo studies, Hafner et al. (2023) demonstrate that the KML ap-
roach exhibits superior finite-sample performance compared with a
ide range of competing approaches under various data-generating
rocesses. In particular, KML estimation is remarkably robust in the
resence of heteroskedastic and co-heteroskedastic components, which
s especially crucial for the oil market model given the substantial time
pan covered by our empirical analysis. Therefore, we consider KML as
promising approach to detect structural innovations underlying the

lobal oil market. We proceed by briefly describing this approach.
Given the decomposition in (4), it is easy to verify that structural

hocks can be interpreted as rotated orthogonalized residuals, i.e., 𝜉𝑡 =
⊤𝜉𝑡 with 𝜉𝑡 = 𝐶−1𝑢𝑡 = 𝐶−1𝐴(𝐿)𝑦𝑡, 𝜉𝑡 ∼ (𝟎, 𝐼𝐾 ). With 𝑓𝑖 denoting

the probability density function (pdf) of the 𝑖th component of 𝜉𝑡, the
og-likelihood and gradient are given by

𝑇
∑

𝑡=1

𝐾
∑

𝑖=1
log 𝑓𝑖

(

𝑒𝑖
⊤𝑄⊤𝜉𝑡

)

+ 𝑇 log | det𝑄⊤
| and

𝑇
∑

𝑡=1
𝑆(𝑄⊤𝜉𝑡)𝜉𝑡⊤ + 𝑇𝑄−1.

(5)

In (5), 𝑒𝑖 is the 𝑖th column of an identity matrix with conformable
dimension, 𝑆 ∶ R𝐾 ↦ R𝐾 is the component-wise mapping with 𝑆(𝒙) =
(𝑠1(𝑥1), … , 𝑠𝐾 (𝑥𝐾 ))⊤ and 𝑠𝑖 = 𝑓 ′

𝑖 ∕𝑓𝑖 is the density score. Given that
the true densities of the shocks are unknown, Hafner et al. (2023)
recently proposed a non-parametric maximum likelihood approach of
utilizing kernel density estimates. Let the orthonormal matrix 𝑄 be
parameterized by a vector of rotation angles 𝜃 ∈ 𝜣, where 𝜣 is a
compact subspace of R(𝐾(𝐾−1)∕2).1 Moreover, ℎ denotes a bandwidth
parameter that converges to zero but 𝑇ℎ∕ log(𝑇 ) → ∞ as 𝑇 → ∞. Then,
the kernel density estimator for the 𝑖th component 𝜉𝑖𝑡 = 𝑒𝑖⊤𝑄⊤𝜉𝑡, with
𝑄 = 𝑄(𝜃) is

𝑓𝑖ℎ𝜃(𝜉𝑖𝑡) =
1
𝑇ℎ

𝑇
∑

𝑠=1
𝐾

(

𝜉𝑖𝑡(𝜃) − 𝜉𝑖𝑠(𝜃)
ℎ

)

, 𝑖 = 1,… , 𝐾,

here 𝐾(𝑥) ∶ R ↦ R+
0 is a uniformly bounded, integrable univariate

ernel function with bounded first derivative such that ∫ 𝐾(𝑢)𝑑𝑢 = 1,

1 More specifically, 𝑄 is given in the form of a sequence of Givens rotation
atrices (see Gouriéroux et al., 2017; Hafner and Herwartz, 2023) of the form

(𝜃) =

(𝐾−1
∏

𝑖=1

𝐾
∏

𝑗=𝑖+1
𝑖,𝑗 (𝜃𝑛)

)

⊤.

he rotation angles 𝜃𝑛 are defined on the interval (0, 𝜋] with 𝑛 = 1,… , 𝐾(𝐾 −
1)∕2 and 𝑖,𝑗 (𝜃𝑛) is the Givens matrix that rotates the subspace spanned by axes
𝑖 and 𝑗 while holding other axes fixed. For instance, in the case of 𝐾 = 3, one
has

𝑄(𝜃) =
(

1,2(𝜃3)1,3(𝜃2)2,3(𝜃1)
) ⊤

=
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝜃1 − sin 𝜃1
0 sin 𝜃1 cos 𝜃1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝜃2 0 − sin 𝜃2
0 1 0

sin 𝜃2 0 cos 𝜃2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝜃3 − sin 𝜃3 0
sin 𝜃3 cos 𝜃3 0
0 0 1

⎤

⎥

⎥

⎦

.

(6)
4

|𝑢|𝐾(𝑢) → 0 as |𝑢| → ∞ and 𝐾(0) ≥ 𝛿 > 0. In this work, we chose a
Gaussian kernel 𝐾(𝑥) = (2𝜋)−1∕2 exp(−𝑥2∕2), such that for a given 𝜃, the
𝑟th derivative of the density can be estimated as

𝑑𝑟

𝑑𝜉𝑟𝑖𝑡
𝑓𝑖ℎ = 1

𝑇ℎ𝑟+1

𝑇
∑

𝑠=1
(−1)𝑟𝑟

(

𝜉𝑖𝑡 − 𝜉𝑖𝑠
ℎ

)

𝐾
(

𝜉𝑖𝑡 − 𝜉𝑖𝑠
ℎ

)

,

where 𝑟(𝑥) is the 𝑟th Hermite polynomial (Bhattacharya, 1967). Based
on the estimated densities and scores, the KML estimator of the struc-
tural orthogonal mixing matrix is obtained by maximizing the non-
parametric pseudo log-likelihood function

�̂� ≡ 𝑄(�̂�) = arg max
𝜃∈𝛩

𝑇
∑

𝑡=1

𝐾
∑

𝑖=1
log 𝑓𝑖ℎ𝜃(𝜉𝑖𝑡(𝜃)). (7)

Hafner et al. (2023) show that under regularity conditions of the true
densities 𝑓𝑖, 𝑖 = 1, 2,… , 𝐾, wherein they are uniformly continuous with
bounded derivatives almost surely and bounded away from zero, along
with relatively mild conditions on the kernel functions 𝐾ℎ(⋅) and the
bandwidth parameter ℎ, the KML estimator converges in probability to
the true parameter value as the sample size increases.

3. A structural analysis of the global oil market

In this section we first introduce the analyzed system of global
oil market time series variables, and motivate the use of an ICA-
based identification scheme for the global oil market. Subsequently,
we discuss the key implications of the structural global oil market
model identified through statistical independence. We first examine the
structural IRFs and demonstrate solid economic foundations of the iden-
tified components that allow us to interpret them as shocks in a strict
structural sense. Next, we investigate the short- and – more importantly
– long-term sensitivities of oil supply and demand to oil prices. Unlike
previous studies that mainly focus on short-term price fluctuations,
our study aims to understand the structural drivers of oil production
over the short-, medium-, and long-term. We present evidence on
the structural composition of forecast error variances that are specific
to oil production. Additionally, we examine the historical evolution
of actual oil production by decomposing it into underlying shocks
originating from the supply and demand sides of the global crude oil
market. Throughout, we complement point estimates with bootstrap-
based inferential results. We follow Brüggemann et al. (2016), who
suggest a moving block bootstrap for inference on structural model
parameters. As suggested by these authors, the block length is set to
25 being the closest integer to 5.03𝑇 1∕4, 𝑇 = 563. Inferential results
rely on 𝑀 = 1000 bootstrap replications.

3.1. Data and agnostic identification of oil market shocks

3.1.1. Time series variables
The data are measured at monthly frequency and, following the

recent literature, the sample period starts in 1974M1. Adding to avail-
able empirical evidence, our sample includes recent observations and
ends in 2022M12. In line with leading studies in the related litera-
ture (e.g. Kilian and Murphy, 2012, 2014; Baumeister and Hamilton,
2019), our dynamic system consists of quotes of oil production and
prices, a measure of (global) economic activity and information on
oil inventories. Specifically, for oil production 𝑄𝑡, we use the (loga-
rithmized) crude oil including lease condensate (MB/D) published by
the U.S. Energy Information Administration (EIA). The index of global
real economic activity 𝐸𝐴𝑡 is constructed by Kilian (2009) based on
dry cargo bulk freight rates. This index has several advantages as a
measure of current global economic activities (see Kilian and Zhou,
2018). Firstly, it gives proper weight to emerging economies whose real
economic activity is often underestimated in official GDP figures and
incorporates changes in output composition, import propensity, and
country weights. Secondly, it responds quickly to changes in aggregate
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demand and can be constructed in real-time. Finally, it recognizes
that fluctuations in the volume of commodity shipping may be higher
than in global GDP or industrial production as it responds to shifts in
expectations about future levels of industrial production. The (logarith-
mized) real oil price series 𝑃𝑡 is obtained on the basis of the refiner
cquisition cost of imported crude oil provided by the US Department
f Energy, and deflated by the US consumer price index. The US
onsumer price index is collected from FRED, Federal Reserve Bank
f St. Louis (code: CPIAUCSL). The data were downloaded in April
023. Following Kilian and Murphy (2014), we use OECD data as a
roxy for global oil inventories. Specifically, we denote with 𝑆𝑡 the
ECD petroleum stocks that include crude oil and lease condensates

with strategic reserves) provided by the EIA.2 Since consistent time
eries data for OECD petroleum stocks are only available since 1989,
e use data from Kilian and Murphy (2014) to extrapolate the changes

n OECD inventories prior to 1989 on the basis of the growth rates of
S petroleum stocks. Except for EA, all time series enter our analysis

n the form of (rescaled) changes of natural logarithms. With 𝛥 = 1−𝐿
enoting the first difference operator, the four-dimensional vector of
ointly endogenous variables is 𝑦𝑡 = (𝛥𝑄𝑡 × 100, 𝐸𝐴𝑡, 𝛥𝑃𝑡 × 100, 𝛥𝑆𝑡).
efore being subjected to model estimation and structural analysis, the
ata are seasonally adjusted using dummy variables for the monthly
easonal pattern.

.1.2. Identification of global oil market shocks
To identify the structural model (2) within the global oil market

odel, various approaches have been suggested, including, e.g., the as-
umption of a triangular 𝐵 matrix (i.e., setting 𝑄 = 𝐼 , Kilian, 2009), or
he imposition of weak sign restrictions, with a refinement of admissible
odels achieved by means of (i) bounds on price elasticities (Kilian

nd Murphy, 2012), or (ii) narrative information on the relatively
inor contribution of aggregated demand shocks to oil price changes in

eptember and October 1980 (outbreak of Iran–Iraq War) and August
990 (the outbreak of the Persian Gulf War) (Antolín-Díaz and Rubio-
amírez, 2018). With a focus on identifying the causal relations in (3)
irectly, Baumeister and Hamilton (2019) have suggested a Bayesian
pproach that combines sign and exclusion restrictions with informa-
ive priors on core marginal effect parameters. Further studies on crude
il markets in this vein are, for instance, Braun (2021) and Valenti
t al. (2023). While these informed approaches to the identification of
il market shocks have provided valuable insights into causal relations
overning the interdependence, for instance, among oil production and
il prices, it is worth noting that Herwartz and Plödt (2016) have
roadly confirmed central findings of Kilian and Murphy (2012, 2014)
elying on a purely agnostic and ICA-based identification approach.

Witnessing the informational content of independent components
or identification in oil market models, we utilize the non-parametric
ML estimator to estimate the structural model. This approach is
hosen for its robustness in handling unknown source distributions and
ts favorable performance in small samples, as demonstrated by Hafner
t al. (2023). In particular, the estimates remain consistent in the
resence of potential heteroskedasticity of the structural shocks. The
mplementation of the KML estimator in (7) requires the analyst to opt
or a particular bandwidth for density estimation. For this purpose, we
tilize the rule-of-thumb suggested by Silverman (1998), and set ℎ =
.06𝑇 1∕5. This choice accounts for the fact that (orthogonalized) compo-
ents 𝜉𝑡 and their rotations have an identity unconditional covariance
y construction.

2 The monthly time series data for crude oil including lease condensate
roduction, U.S. crude oil composite acquisition cost by refiners and OECD
etroleum stocks are downloaded from the https://www.eia.gov website of the
.S. Energy Information Administration. Kilian and Murphy (2014) argue that,
nlike inventory growth rates, simple inventory changes can be considered
5

ovariance stationary.
3.2. KML estimation and identifying assumptions

The KML-approach to the identification of 𝐵 (and hence 𝜉𝑡) is fully
agnostic, and it is unclear if the unique independent components allow
for an interpretation as economically meaningful shocks in a structural
sense. Explicit representations of the structural parameter estimates in
�̂� and 𝐵 (i.e., impact effects) are documented in Online Appendix A
joint with bootstrap means and 𝑡-ratios.

The identification of the structural model in (2) relies upon the
assumptions that the marginal distribution of at most one element in
𝜉𝑡 is Gaussian and elements in 𝜉𝑡 are mutually independent. Testing
he null hypothesis of Gaussianity by means of Jarque–Bera tests for
ach identified component 𝜉𝑖𝑡, 𝑖 = 1, 2, 3, 4 results in highly significant
ejections for almost all component estimates with 𝑝-values below
.001, with estimates of 𝜉4𝑡 being the only exception (𝑝-value 10.4%).

Furthermore, we test the null hypothesis of mutual independence by
means of two non-parametric tests that have been shown in the litera-
ture to have power against unspecified forms of dependence. To assess
significance of particular independence statistics, both approaches rely
on 1000 permutations. On the one hand, the test based on the so-
called distance covariance statistic of Székely et al. (2007) results in
an insignificant diagnostic of 7.88E−05 (with 𝑝-value of 0.441). On the
other hand, the Cramér–von Mises statistic of Genest et al. (2007) takes
a value of 0.021 which results in a 𝑝-value of 67.38%.3

3.3. Shock labeling

3.3.1. Impulse response analysis
We next discuss structural estimation results and address, in particu-

lar, the so-called shock labeling problem. For this purpose, Fig. 3 shows
impulse response estimates for the estimated independent components
in {𝜉𝑡 = 𝐵−1�̂�𝑡}𝑇𝑡=1, where �̂�𝑡 are the LS estimates retrieved from the
educed form model in (1).

The first row of Fig. 3 shows impulse responses of the first element
f 𝜉𝑡 on the system variables. It emerges that the estimated dynamic
ffects of 𝜉1𝑡 are unique in the sense that the short- and medium-
erm relationship between the responses of produced oil quantities
nd real oil prices are inverse. Such a sign pattern is not observed
or any other component in 𝜉𝑡. Therefore, 𝜉1𝑡 is the only component
stimate that qualifies as a potential candidate to subsume properties
f an oil supply shock. An oil supply shock refers to a sudden and
nexpected disruption in the supply of oil to the global market. Such
hocks are often caused by geopolitical events, natural disasters, or
ther unforeseen circumstances that disrupt the production, refining,
r transportation of oil (Kilian and Murphy, 2014). With this in mind,
n exogenous increase of oil production is not unlikely to result in a
uild up of oil inventories as signified by IRFs in the top right panel
f Fig. 3. Put differently, in the argumentation of Kilian and Murphy
2014), the build-up of oil inventories signifies that the direct effects
f an enhanced oil production exceed the indirect inventory effects
hat are channeled through the negative price effect of additional oil
upply. Although the estimated positive impact response of economic
ctivity to an oil supply shock aligns with sign restrictions suggested
or identification in Kilian and Murphy (2012), the economic impact of
upply shocks on longer-term activity is mild and lacks significance (see
econd panel in the first row of Fig. 3). Throughout, estimated dynamic
ffects on economic activity are insignificant at a 5% level, which also
olds for the respective IRFs in Baumeister and Hamilton (2019).

3 While the distance covariance statistic is determined from the components
𝑖𝑡, 𝑖 = 1, 2, 3, 4, in their metric form, the Cramér–von Mises statistic is derived

from (joint) rank statistics. Accordingly, the distance covariance statistic
promises some power advantages, whereas the Cramér–von Mises test can be
considered more robust in case that particular higher-order (co)moments do

not exist.

https://www.eia.gov


Energy Economics 132 (2024) 107488H. Herwartz et al.
Fig. 3. Structural IRFs to unit shocks 𝜉𝑖𝑡. Panels show medians (solid curves) and confidence bonds with 68% (dashed) and 90% pointwise coverage (dotted) from 1000 replications
of a moving block bootstrap resampling scheme. Except for the second column (Economic activity) all panels show accumulated effects.
As noted before, all remaining components 𝜉𝑖𝑡, 𝑖 = 2, 3, 4, are
characterized by moving oil production and real oil prices in the same
direction in the short- to medium-term. Accordingly, these components
align with stylized properties of demand shocks. Hence, it appears
conducive to outline heterogeneous motives to demand oil and, if
possible, label identified components 𝜉𝑖𝑡, 𝑖 = 2, 3, 4, as corresponding
structural demand shocks.

The second row of Fig. 3 shows the effects of 𝜉2𝑡, which predict
a marked improvement of economic activity over all horizons and
persistent positive effects on the real price of oil. In the literature
such a shock has been interpreted as an aggregate demand shock (or,
alternatively, as a flow oil demand or income shock, see, for example,
Kilian and Murphy, 2012; Baumeister and Hamilton, 2019). This shock
captures surprise information originating in the global business cycle.
Pointing to the informational content of the adopted ICA approach
to identification, it is worth highlighting that – despite a very slight
violation of the theoretical sign pattern of Kilian and Murphy (2012)
on impact – the response profiles generated by 𝜉2𝑡 clearly align with
both the theoretical sign pattern of Kilian and Murphy (2012) and
related empirical evidence documented in Baumeister and Hamilton
(2019). While oil producers increase quantities in response to this shock
in the medium-term, their initial responses lack significance. Aligning
with its ambiguous effects on stored oil (Kilian and Murphy, 2014),
the aggregate demand shock results in a reduction of oil inventories in
6

the medium-term but lacks clear directional effects on inventories upon
impact.

The third row of Fig. 3 shows the dynamic effects of 𝜉3𝑡. This shock
exerts the strongest effect on oil prices among all identified demand
components 𝜉𝑖𝑡, 𝑖 = 2, 3, 4. Moreover, it reduces economic activity on
impact significantly and invokes an enhancement of oil production in
the medium- to longer-term. Owing to its marked (and direct) effect
on oil prices, it is intuitive to refer to this shock as an oil-specific
demand shock. Speculative (or precautionary) motives have been put
forth to explicitly characterize this demand shock (e.g., Kilian and
Murphy, 2012, 2014). While such an interpretation is widespread in
the literature, the work of Baumeister and Hamilton (2019) points more
to purely consumptive motives to materialize this shock economically.
As an effective way to differentiate between both demand motives,
it is promising to consult the evolution of oil inventories in response
to 𝜉3𝑡. While theoretical arguments would predict a positive response
of oil inventories to exogenous shocks to precautionary oil demand,
the estimated impulse responses are negative. As a specific demand
for consuming oil could also be covered by reducing oil inventory, it
is plausible to observe that oil inventories shrink in response to an
oil-specific consumption demand shock. Unlike the aggregate demand
shock, this shock exerts a contractionary, mildly significant impact

effect on economic activity. While this impact effect seems at odds
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with theoretical considerations in Baumeister and Hamilton (2019), dy-
namic IRFs lack significance throughout, similar to posterior credibility
intervals shown in Baumeister and Hamilton (2019).

The dynamic effects of the fourth independent component 𝜉4𝑡 are
displayed in the fourth row of Fig. 3. With considering 𝜉3𝑡 to capture ex-
ogenous shocks in the consumption of oil, the inventory demand shock
𝜉4𝑡 is best understood to characterize a precautionary (or speculative)
demand for oil inventories. As Kilian and Murphy (2012) point out,
various kinds of surprise information or upcoming expectations can be
associated with such inventory demand shocks, including the potential
of political unrest in oil-producing countries, discussions about the
depletion of oil reserves (or peak oil effects), or the discovery of new
oil fields and wells. According to the estimated model, the build up of
inventory has only mild positive price effects during the first quarter
after an inventory demand shock occurs. Subsequently the price effects
turn (insignificantly) negative. While Baumeister and Hamilton (2019)
have documented positive price effects of such a shock, it is worth
noticing that a precautionary motive of holding oil might emerge under
states of economic uncertainty and pessimistic views about business
opportunities. In this case such inventory shocks would relax the crude
oil market from price pressures.

3.3.2. Further discussion of the identified shocks
In summary and similar to results of Herwartz and Plödt (2016),

the ICA-based identification approach yields unique shocks with sound
economic underpinnings. The structural outcomes are fairly compa-
rable with insights offered by several benchmark studies relying on
more restrictive identification techniques such as recursive schemes,
sign restrictions combined with elasticity bounds or informative pri-
ors (e.g., Kilian, 2009; Kilian and Murphy, 2012, 2014; Baumeister and
Hamilton, 2019). Providing further justification for the credibility of
the agnostically identified shocks, a few additional points are worth
remarking.

First, all shocks identified in this study exhibit strong positive
and significant correlations with their counterparts obtained from the
Bayesian approach of Baumeister and Hamilton (2019), which relies
on several informative priors and a shorter sample period ending in
2021M2. Specifically, exogenous shocks affecting oil supply, economic
activity (or income), oil consumption and oil inventory as identified in
this study exhibit linear correlations of 0.775, 0.176, 0.665 and 0.385,
respectively, with posterior median shocks in Baumeister and Hamilton
(2019).4

Second, structural outcomes comply with consensual narratives
that have been suggested for the refinement of identified sets of
oil market models that fulfill (weak) sign restrictions. Antolín-Díaz
and Rubio-Ramírez (2018) have convincingly argued that aggregate
demand shocks should be considered the weakest contributors to oil
price movements during September and October 1980 (outbreak of
the Iran–Iraq war) and August 1990 (Persian Gulf crisis). Based on
historical decompositions for the real price of oil, we find that price
surges during the outbreak of the Iran–Iraq war have been muted by
a relaxation of oil inventories, while all shocks contributed positively

4 We have used updated shocks provided by Christiane Baumeister for
he period from 1976M2 until 2021M2 covering 553 observations, which
ere downloaded from https://sites.google.com/site/cjsbaumeister/datasets in

une 2023. Very similar results are obtained for the original sample pe-
iod of Baumeister and Hamilton (2019) ending in 2016M12. The smaller
orrelations documented for aggregate demand shocks are partly due to
he fact that Baumeister and Hamilton (2019) condition their analysis on
orld industrial production as an alternative indicator of economic activity

see Online Appendix B for the respective robustness analysis). While the
ocumented significant correlations point to the relevance of the insinuated
pproximation, cross correlations among distinct shocks identified by means
f ICA and their Bayesian counterparts of Baumeister and Hamilton (2019)
ack significance throughout.
7

to price changes associated with the second Gulf crisis. Among those
shocks that contributed positively to oil price increases, the historical
effects of aggregate demand shocks are the smallest throughout.5

Third, while KML estimation of structural parameters and shocks
offers economically plausible insights into the functioning of oil mar-
kets, it is fair to say that – as discussed above – these insights are not
necessarily novel. What renders statistical identification approaches es-
pecially useful in the present context is the provision of over-identifying
information, such that otherwise just-identifying restrictions can be
subjected to testing. For instance, with 10% significance, bootstrap-
based Wald tests provided in Online Appendix A cast doubt on the
imposition of a recursive structural model as suggested for a three-
dimensional system by Kilian (2009).

Fourth, to address the robustness of core model implications, On-
line Appendix B documents complementary analysis that consist of
four variants of the benchmark specification. Specifically, we consider
(i) a model conditioned on pre-COVID data, (ii) a model utilizing
the full sample data but adjusted for extreme realizations during the
pandemic periods (Lenza and Primiceri, 2022), (iii) a model using
the world industrial production index constructed by Baumeister and
Hamilton (2019) as an alternative proxy for the global business cy-
cle, and (iv) a model using the oil futures-spot spread as a financial
forward-looking variable to replace inventory changes. Throughout,
model-implied structural impulse response functions, and the structural
decompositions of oil production confirm the key insights derived from
the benchmark specifications.

Finally, the suggested approach fully identifies the four-dimensional
system. Using high-frequency data on changes in oil price futures sur-
rounding OPEC announcements, Känzig (2021) identifies an oil supply
news shock that attributes the need for oil inventories to expected
future oil shortfall. While the partially identified shock in Känzig
(2021) naturally relates to expectations of future oil supply (and, con-
sequently, the inventory demand shock), the oil supply shock examined
in our fully identified system pertains to innovations in the supply
curve, i.e., shocks to current oil production. Unreported results indicate
that all identified shocks show significant impacts on oil futures-spot
spreads, pointing to the fact that partially identified oil supply news
shocks could be understood to capture mixed source signals which
complicates their interpretation in a structural sense. Interestingly, all
demand shocks identified by means of KML (and the lagged oil supply)
show a moderate but significant correlation (501 observations) with
the partially identified oil supply news shock. Positive correlations
are between 0.099 and 0.1330, while the correlation with the lagged
supply shock is −0.0837.

3.4. Oil supply and demand price responsiveness

The literature on the responsiveness of oil production with regard
to changes in oil demand or supply comprises both micro- and macroe-
conomic approaches. Based on the recent review by Kilian (2022),
one might conclude that the majority of structural assessments agrees
on the limited responsiveness of the actual oil supply to oil price
changes (see, e.g., Kilian and Murphy, 2014; Hafner et al., 2023;
Herwartz and Plödt, 2016; Herrera and Rangaraju, 2020; Braun, 2021,

5 Historical decompositions of real oil prices yield the following
ontributions:

Sep. 1980 Oct. 1980 Aug. 1990
𝜉1𝑡 𝜉2𝑡 𝜉3𝑡 𝜉4𝑡 𝜉1𝑡 𝜉2𝑡 𝜉3𝑡 𝜉4𝑡 𝜉1𝑡 𝜉2𝑡 𝜉3𝑡 𝜉4𝑡

1.54 0.86 1.02 −3.91 5.81 1.47 −1.37 −4.81 5.43 2.89 24.42 3.64

.

https://sites.google.com/site/cjsbaumeister/datasets
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as exemplary studies concluding in favor of minor oil supply elastic-
ities).6 Contrary to the prevailing notion of, at most, a mild impact
esponsiveness of oil supply to exogenous price changes, Baumeister
nd Hamilton (2019) argue in favor of a considerably stronger sen-
itivity summarized in a posterior median price elasticity estimate of
.15. Similarly, the weekly model of Valenti et al. (2023) points to a
otable impact sensitivity of US producers to changes in the West Texas
ntermediate crude oil price. Although Baumeister and Hamilton (2019)
onduct numerous robustness exercises to support their key conclusion
n the price sensitivity of oil supply, their Bayesian analysis throughout
elies on the assumption of a Gaussian likelihood. In this regard, the
nalysis in Braun (2021) provides an insightful additional robustness
nalysis. While the benchmark results of Baumeister and Hamilton
2019) hold under the assumption of a Gaussian likelihood, substituting
he Gaussian density with a flexible non-Gaussian model yields price
lasticities of oil supply close to zero. To elucidate this outcome, Braun
2021) highlights that the specification of informative priors strongly
hapes posterior outcomes, when sample information indicates only
weak correlation between changes in oil prices and oil production

which can also be implicitly inferred from time series displayed in
ig. 2). Given strong indications of non-Gaussian structural shocks that
as been documented in the literature (e.g., Herwartz and Plödt, 2016;
afner et al., 2023) and detected in the present sample, we recall that

he majority of empirical evidence points to a minor price sensitivity of
il supply. Moreover, we view the ongoing debate in the literature as a
rucial motivation to consider outcomes of fully agnostic identification
chemes as valuable complements to more informed approaches in
lobal oil market studies.

Among alternative representations, the structural model in (3) holds
articular merit, especially when the focus is on understanding causal
elationships among the observed variables. In Online Appendix A, we
rovide detailed estimates for the matrix 𝛱0, along with bootstrap

means and 𝑡-ratios. Notably, the first and third equation of the system
in (3) represent the oil supply and oil demand equations, respectively,
from which short- and long-run price elasticities can be calculated (see,
e.g., Baumeister and Hamilton, 2019). With 𝜋(𝑙)

𝑖𝑗 denoting the 𝑖𝑗th ele-
ment of 𝛱𝑙, the short-run price elasticity of oil supply and oil demand
can be computed as −𝜋(0)

13 ∕𝜋
(0)
11 and −𝜋(0)

33 ∕𝜋
(0)
31 , respectively.7 Due to the

stationarity condition, the structural VAR model enables us to estimate
not only the short-run (one-month) demand and supply curves, but
also the slopes of the long-run stationary distribution. As a result, the
unconditional mean of 𝑦𝑡 exists and can be considered as the long-run
predictor with minimum mean-squared error loss, i.e., limℎ→∞ 𝑦𝑇 ,ℎ ≡
limℎ→∞ E[𝑦𝑇+ℎ|𝛺𝑇 ], where 𝛺𝑇 denotes the filtration associated with 𝑦𝑡.
The first equation of the system in (3) allows us to derive the long-run
price elasticity of oil supply as the limit limℎ→∞

𝜕E[𝑄𝑇+ℎ−𝑄𝑇 |𝛺𝑇 ]
𝜕E[𝑃𝑇+ℎ−𝑃𝑇 |𝛺𝑇 ]

, with
he changes in quantity and price being caused by a unit oil supply
hock. Corresponding arrangements of the third equation allow for the
onstruction of the long-run price elasticity of oil demand. To derive
xplicit representations of these long-run elasticities, it is useful to
onsult the so-called autoregressive distributed lag model implied by
he system in (3) and replace all variables by their unconditional mean.
hen, the long-run price elasticities of oil supply and oil demand are
iven by (−𝜋(0)

13 +
∑𝑝

𝑙=1 𝜋
(𝑙)
13 )∕(𝜋

(0)
11 −

∑𝑝
𝑙=1 𝜋

(𝑙)
11 ) and (−𝜋(0)

33 +
∑𝑝

𝑙=1 𝜋
(𝑙)
33 )∕(𝜋

(0)
31 −

∑𝑝
𝑙=1 𝜋

(𝑙)
31 ), respectively.

6 Kilian (2022) concludes that ‘the one-month oil supply elasticity is low,
hich implies that oil demand shocks are the dominant driver of the real price
f oil’, while ‘recent findings of rather large one-month oil supply elasticities
re misleading’ . In fact, many studies document oil supply elasticity estimates
hat are well in line with the upper bound suggested in Kilian and Murphy
2014) of 0.0258.

7 Unlike stylized regressions, the set of equations in (3) lacks normalization,
.e., there is no (left-hand-side) variable with a coefficient of unity. In Online
ppendix A, we also document a normalized version of the matrix 𝛱0 that
8

llows for a more direct recovery of the defined short-run elasticities.
With regard to the marginal responsiveness of oil production to
emand and supply shifts caused by the aforementioned shocks, the
VAR model yields the following conclusions. In response to a 10%
ecrease in oil prices, oil producers will cut oil production by 0.2%
n impact. In the long-run, we do not observe an increase in the
upply elasticity as our estimate remains approximately the same. In
ontrast, in response to the same 10% price drop, oil demand will
ncrease by 13.6% on impact and by 4.7% in the long-term. According
o corresponding confidence intervals with 90% coverage, all these
lasticity estimates are characterized by sufficient precision.8

Our findings align with the existing literature, which suggests that
il supply is relatively inelastic in the short-run, while oil demand is
uch more elastic (Kilian, 2022). As a result, aggregate and oil-specific
emand shocks play a dominant role in driving the real price of oil,
hereas oil supply shocks are crucial in determining the level of oil
roduction.

.5. Forecast error variance decompositions

As a complement to structural IRFs, forecast error variance decom-
ositions (FEVDs) have become a common tool to assess the relative
mportance of structural shocks in explaining system variation for a
pecific variable. In the context of the global oil market model, Fig. 4
hows implied decompositions of the uncertainty associated with ℎ-
tep ahead forecasts of changes in oil production. The alternative
orecast horizons considered include impact effects, as well as mid-
erm (6 months to 1 year) and long-term (5 to 10 years) perspectives.
he results show that oil supply shocks are the major determinant of
roduction, explaining up to 96% and about 80% of model-implied
orecast uncertainty in the short- and long-run, respectively. Other
hocks contribute only marginally to predictive uncertainty, with the
ggregate demand shock having the weakest contribution at all hori-
ons. These FEVDs suggest that oil supply shocks are the main causal
actor driving oil production.

.6. Historical decompositions of oil production

The structural implications of the model discussed so far, including
RFs, elasticity estimates, and FEVDs, provide a characterization of
he structural model in an unconditional manner, allowing for stylized
nsights to be considered to hold ‘on average’ . However, to describe
he structural model implications with finer time resolution, histor-
cal decompositions can be used to trace actual data quotes back
o the underlying structural shocks. While historical decompositions
ave been very beneficial in the literature on global oil markets to
nderstand time-varying structural patterns of oil pricing, to the best of
ur knowledge, historical decompositions of crude oil production have
ot been discussed yet.

Fig. 5 presents historical decompositions of the stochastic compo-
ent of global oil production. Overall, the results suggest that the
bserved oil production can be largely attributed to the procession of
nderlying supply shocks. In particular, we observe that the contribu-
ion of aggregate demand shocks to shaping oil production patterns is
ery limited throughout. Starting after the early millennium economic
lowdown until the outbreak of the Great Financial Crisis, there were
ild positive contributions of aggregate demand shocks to oil produc-

ion. Subsequent to the European sovereign debt crisis and from 2013
o 2017 mildly negative effects imply that aggregate demand effects
ave muted oil production to a minor degree. For an extended period

8 Specifically, the marginal price elasticities of oil supply and demand are
ith 90% probability covered by the interval estimates of [0.0179; 0.0218]

(short-run oil supply elasticity), [−1.9721; −1.0614] (short-run oil demand),
[0.0217; 0.0284] (long-run oil supply) and [−0.8727; −0.2708] (long-run oil
demand).
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Fig. 4. FEDVs for changes in oil production on impact and at short, medium and long horizons.
Fig. 5. Historical decompositions of oil production. Vertical lines indicate major events in the global oil market, including the outbreak of the Iranian Revolution (1978M9), the
Iran–Iraq War (1980M9), the agreement of OPEC in Geneva to restrict production (1986M8), the Persian Gulf War (1990M8), the 9/11 terrorist attack (2001M9), the Venezuelan
crisis (2002M12), the collapse of Lehman Brothers (2008M9), the unexpected block of OPEC’s agreement on production cut by Saudi Arabia (2014M11), and the unprecedented
production cut by OPEC+ (2020M5). For further notes see Fig. 1.
starting after the Geneva agreement of OPEC and ending in 2012, oil-
specific demand shocks have slightly but consistently contributed to
a moderation of oil production. Similarly, oil-specific demand shocks
have contributed to the reduction of oil production in the context of the
measures taken to counter the outbreak of the SARS-CoV-2 virus early
in 2020. A noteworthy finding is that the contribution of inventory
demand shocks to oil production has been negative throughout the
sample period.

4. Structural oil market shocks, CO2 emissions and climate policy
implications

The previous analysis indicates that: (i) aggregate, oil-specific, or
inventory demand shocks have only mild (long-run) effects on oil
production; (ii) the short- and long-run oil supply curve is rather
inelastic such that demand-shifts cause oil price fluctuations but hardly
impact on oil production; and (iii) the historical decomposition of oil
9

production reveals a limited role of aggregate demand shocks for oil
production in the past. These findings suggest that current policies
aiming to address climate change by a reduction in the demand of
fossil fuel-based energy might only have a limited impact on fossil fuel
production and, thus, ultimately on climate change. To further assess
this issue in the context of the global oil market, it is necessary to un-
ravel the relationship between GHG emissions and oil production, and,
finally, the effects of the shocks identified above on GHG emissions.

From eyeballing the time series of oil production and CO2 emis-
sions as displayed in Fig. 1, it is evident – and confirmed by explicit
cointegration testing (see notes to Fig. 1) – that the former can be
considered a key determinant of the latter. However, it is important
to notice that oil production is actually the result of underlying shocks,
which are specific to the supply side of the oil market on the one hand,
and heterogeneous motives for demanding oil on the other hand. With
this in mind and to enable more focused policy strategies to achieve
reductions in GHG emissions, it is instructive to trace CO2 emissions,
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Fig. 6. Local projection results. Responses of world CO2 emissions (in percent, i.e. cumulated estimates 𝛽𝑙 from (8)) to structural shocks. Panels show medians (solid curves) and
confidence bonds with 68% (dashed) and 90% pointwise coverage (dotted) from 1000 replications of a moving block bootstrap scheme.
as displayed in Fig. 1, back to exogenous shocks hitting the crude oil
market.

To unravel the role of the identified structural oil market shocks for
the actual GHG emissions, it appears straightforward to augment the
four-dimensional VAR system with time series information on changes
of (log) CO2 emissions. Unfortunately, global emission data are only
available at the annual frequency. As a feasible alternative to a full-
information VAR system, we employ local projection IRFs in the vein
of Jorda (2005) to unravel structural sources of GHG emissions. In
comparison with a full-information analysis utilizing a five-dimensional
SVAR model, limited-information methods like LPs have been shown
robust to misspecification. Specifically, define 𝑥𝜏 = (𝑔𝜏 , 𝑦∗

′
𝜏 )′, where 𝑔𝜏

is the annual log change of the world CO2 emissions (×100) in year 𝜏
and 𝑦∗𝜏 is the vector consisting of VAR variables, which are aggregated
to annual data by averaging realizations over all months during year
𝜏. Similarly, let 𝜉∗𝑖𝜏 denote averaged structural shocks of year 𝜏. Then,
local projection impulse responses of 𝑔𝜏 to shocks 𝜉∗𝑖𝜏 after 𝑙 years with
𝑙 ∈ N and 𝑖 ∈ {1,… , 𝐾} are estimated from the model

𝑔𝜏+𝑙 = 𝛽0 + 𝛽𝑙𝜉
∗
𝑖𝜏 +

𝑝∗
∑

𝑗=1
𝛤 ′
𝑗 𝑥𝜏−𝑗 + 𝜁𝜏 , (8)

where the lag order is chosen in accordance with the monthly VAR,
i.e., 𝑝∗ = 2 (years). We consider in total eleven such regressions with
𝑙 = 0, 1,… , 10. The resulting local projection IRFs of CO2 emissions are
displayed in Fig. 6.

LPs reveal that in comparison with all other structural determinants
of oil production, oil supply shocks have a predominant impact on CO2
emissions, particularly in the short-run (i.e., within the first two years
after their occurrence). Among the demand shocks, the oil-specific and
inventory demand shocks lack significant impacts on CO2 emissions, in
the short-, mid- and long-run. Instead, an aggregate demand shock man-
ifests in CO2 emissions, exhibiting particular strength in the medium-
to longer-term (i.e, from five to ten years).

Regarding climate policy implications, these results emphasize the
critical significance of the scope of demand-based policies as exem-
plified in Fig. 7. For instance, if a cap on emissions implemented
through an Emissions Trading System (ETS) in a group of countries is
understood as a negative oil-specific demand shock, this policy would
have only negligible impacts on oil production and CO2 emissions (see
Fig. 7(b)). In contrast, a global cap on emissions, corresponding to
an aggregate demand shock, would prove effective in reducing CO2
emissions in the mid- and long-run (see Fig. 7(c)). With these arguments
in mind, it becomes evident why the European Union’s considerable
endeavors to transition from fossil fuels to cleaner energy sources have
resulted in a mere 1% decrease in oil consumption from 2011 to
2021 (BP, 2021).

To investigate how far-reaching climate demand-side policies must
be in order to be effective in the global oil market is beyond the
scope of this study, and will depend on the extent to which oil supply
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remains inelastic (for an exemplary case of eventually changing trans-
mission patterns of oil market shocks to the US economy see Bruns
and Lütkepohl, 2023). In particular, it could be argued that the oil
supply will be more elastic in the case of a demand shift that exceeds
the current reduction invoked by the substitution of fossil fuels with
renewable energy sources in developed economies. However, recent
evidence puts this argument into question. According to Masnadi et al.
(2021), the national volume-weighted average marginal production
costs for crude oil per barrel ranged from as low as US$2.8 in Iraq to
as high as US$21.5 in Colombia. Even during the COVID-19 pandemic
demand shock in April 2020, when the oil price dropped to around
US$40 per barrel, it still remained significantly above the marginal
cost of production. Therefore, it seems unlikely that demand-driven
reductions in the oil price will make crude oil production unprofitable
on a large scale in the near future. Moreover, it is also unlikely that a
reduction in oil supply will occur in the near future for two reasons.
First, the world’s total proven oil reserves at the end of 2020 were
1732.4 thousand million barrels, which, at current production rates,
would last for 53.5 years (BP, 2021). Second, proven oil reserves have
been rising by 33.4% over the last 20 years, making it unlikely to
achieve the climate goals set by the UNFCCC for 2030 and 2050 as
a result of the exhaustion of oil resources.

In summary, our results provide an explanation for why current
policies, which aim to reduce oil demand by promoting the substitu-
tion of fossil fuels with renewable energy sources, have been largely
ineffective in reducing global oil production and, consequently, GHG
(in particular CO2) emissions. Specifically, demand-side policies, sup-
ported by only a limited number of countries, may not be sufficient
to achieve the 1.5 ◦C objective set for 2050 by the Paris Agreement of
2015. Indeed, it was recognized soon after its ratification that all major
industrialized countries were failing to meet the pledges to cut GHG
emissions made in the Paris Agreement (Victor et al., 2017). In the same
vein, Boehm et al. (2022) point out that in 2021 ‘global GHG emissions
are higher than they were when more than 190 parties adopted the
Paris Agreement in 2015’. Accordingly, these authors conclude that
‘much greater ambition and action is urgently needed’ to meet the
agreement’s objective of limiting global warming to 1.5 ◦C for 2050.
This failure can be attributed to the inherent limitations of unilateral
demand-based policies in fossil fuel markets due to their demand and
supply characteristics. In this context, the adoption of a global cap-
and-trade system appears to be the most viable policy alternative for
reducing oil production and GHG emissions worldwide.

5. Conclusions

This study is the first to present an explicit view of the structural
determinants of oil production across the short-, medium-, and long-
term. The analysis relies on a structural vector autoregressive model
utilizing a purely agnostic and ICA-based identification approach. The
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Fig. 7. The effect of jurisdiction-specific and global caps on consumption with an inelastic supply curve. Panel (a) Market equilibrium with aggregated demand from two jurisdictions
displays the market equilibrium quantity (𝑞0) resulting from the interaction between the supply (𝑆) and aggregated demand (𝐷) from two jurisdictions (𝑑1 and 𝑑2). Panel (b)
Market equilibrium with a jurisdiction-specific cap on consumption indicates how the market equilibrium values change after imposing a strict consumption cap in jurisdiction 1,
shifting aggregated demand from 𝐷 to 𝐷′. Panel (c) Market equilibrium with a global cap on consumption shows the change in equilibrium quantity after imposing a cap in both
jurisdictions.
results, obtained from impulse response functions, estimated oil supply
and demand elasticities, the decomposition of forecast error variances,
and the historical decomposition of oil production, all indicate that,
over the past five decades, changes in crude oil demand have had only
minor impacts on the actual level of oil production. Local projections of
global CO2 emissions on annualized oil market shocks reveal that only
supply and aggregate demand shocks have impacted on CO2 emissions,
while oil-specific demand shocks did not exert any significant influence.

An important implication of this result is that unilateral demand-
side strategies in energy and climate protection policies will experience
limited effectiveness, as observed in past policies adopted by a limited
number of countries. This underscores the need for a global approach,
involving the implementation of a worldwide cap on GHG emissions,
as outlined in international climate summits such as the 2015 Paris
Agreement or the COP28 UN Climate Change Conference in Dubai.
The necessity of establishing a global cap is further underscored by
the fact that other alternatives may take too much time to be effective
in reaching the climate goals for 2050. One such alternative involves
focusing on technological innovation to make alternative green fuels
more cost-competitive than oil in the global market. However, this ap-
proach requires considerable investments in research and development,
and the process may take time. Another promising alternative consists
of implementing carbon capture technology, which involves capturing
CO2 emissions from power plants and other sources and storing them
underground. Nonetheless, this technology requires further research
and development to be scaled up and become cost-effective (Hepburn
et al., 2019).

While the focus of this study has been on the crude oil market,
for future research it would be interesting to determine whether these
insights also apply to other fossil fuel markets, such as coal and natural
gas.
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