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1. The Fresnel scaling theorem

In this work propagation of wave fields is computed using the Fresnel near-field

propagator

D∆1,2 [ψ1] = F−1
[
F [ψ1] · exp

{
−i∆1,2

2k
· (q2

x + q2
y)
}]

, (1)

where F and F−1 are the Fourier transform and the inverse Fourier transform; qx, qy
are reciprocal coordinates; x, y are real space coordinates; k = 2π

λ
is the wave number

with wavelength λ, ∆1,2 is the distance between two points 1 and 2 along the optical

axis; ψ1 is an arbitrary wave field in plane 1. In case that ψ1 represents a cone beam at

distance ∆f,1 behind the focus, it can be written in paraxial approximation as

ψconebeam
1 = exp (ik∆f,1) exp

[
ik

2∆f,1

(
x2

1 + y2
1

)]
. (2)

To account for cone beam geometry, i.e. point source illumination of the object at

distance ∆f,1 with respect to the focal plane, the usual variable transformation according

to the Fresnel scaling theorem is used [1], resulting in the geometric magnification

M =
∆f,1 + ∆1,det

∆f,1

, (3)

and effective propagation distance

zeff =
∆1,det

M
, (4)

where ∆1,det is the distance from plane 1 to the detector. Up to this transformation, the

two geometries (plane wave and cone beam) depicted in figure 1(a) are thus equivalent.
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Figure 1. (a) The Fresnel scaling theorem allows to propagate a cone beam

as a parallel beam, considering an effective geometry. (b) Effective geometry for

propagating the exit wave. (c) Effective geometry for propagating the probe.

2. Cone beam propagation between multiple defocus planes

Generalizing ptychography with lateral and longitudinal shifts to cone beam geometry

requires two different effective geometries: The propagation of the exit wave is performed

using a coordinate system which is different from that used for the propagation of the

probe between the different defocus planes. Figure 1(b-c) illustrates the effective propa-

gation of (b) the exit wave, and (c) the probe. The magnification of the object M (n)
o

depends on its distance relative to the focus

M (n)
o =

∆f,1 + ∆1,det

∆f,1 + ∆1,n

. (5)

Effective pixel sizes and effective propagation distances for the exit wave are

d
(n)
eff,o =

d

M
(n)
o

and z
(n)
eff,o =

∆1,det −∆1,n

M
(n)
o

. (6)

Here d is the pixel size of the detector. For the propagation of the probe between defocus

planes, the corresponding magnification M (n)
p according to figure 1(c) is

M (n)
p =

∆f,1 + ∆1,n

∆f,1

. (7)

Effective pixel sizes and propagation distances are

d
(n)
eff,p =

d

M
(n)
p

and z
(n)
eff,p =

∆1,n

M
(n)
p

. (8)

Note that the product

M (n)
p ·M (n)

o = max
[
M (n)

o

]
= const. (9)

This illustrates that a step wise effective propagation from one plane to the next and

then to the detector results in the same magnification as a one-step propagation directly

to the detector.

Two more statements can be made: First, the effective field of view (colored in green

in figure 2) is the same for each defocus plane. As the detector is not moved closer to

the focus, the information content in the gray shaded regions cannot be deduced from

any measurements at detector distance ∆f,det with respect to the focus. Second, since

the effective pixel size of the probe d
(n)
eff,p decreases for defocus positions closer to the
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propagation with Figure 2. Effective propagation

of the probe from plane 1 to plane

n requires a larger pixel size and

hence a coarser sampling than

effective propagation from plane

1 to the detector. However the

effective field of view (green) is

constant for each plane. In order

to avoid decreasing the resolution,

a scaling factor s(n) is used to

always propagate the probe with

highest resolution d
(1)
eff,o while at

the same time keeping the number

of pixels and the effective field of

view constant.

detector, the number of pixels, carrying information has to increase to keep the effective

field of view constant (illustrated in the lower part of figure 2).

If effective propagation from plane 1 to plane n is to be performed, there are two

possibilities: Starting from plane 1 with a complex valued field of highest resolution (as

it resulted from an effective propagation of distance z
(1)
eff,o with pixel size d

(1)
eff,o), one has

to decrease the resolution to the pixel size d
(n)
eff,p before propagating to plane n. Once

arrived at plane n and wanting to propagate to the detector, the resolution has to be

increased again. This decreasing and increasing of resolution causes a loss of information

and a lot of time for calculation.

The second and more efficient possibility is to keep the number of pixels with information

content constant. For this reason the effective pixel size d
(n)
eff,p is scaled

d̃
(n)
eff,p = d

(n)
eff,p · s(n) (10)

by the factor s(n)

s(n) =
M (n)

p

max
[
M

(n)
o

] , (11)

which keeps the effective pixel size and hence the number of pixels carrying information

constant for each defocus position.

3. An examination of near-field ptychography with respect to the twin

image problem

As most phase retrieval algorithms are based on image propagation of the recorded

intensities, the reconstructed object suffers from the well known twin image problem, see

figure 3. Quantitative reconstructions therefore need additional constraints or additional

diversity in the data, for example by recording multiple holograms. Here we investigate

the suitability of lateral and longitudinal shifts to create this diversity, by further analysis
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Figure 3. Illustration of the twin image problem. As it is well known, a hologram can

be described by a superposition of the zeroth order diffraction, the first order diffraction

and the minus first order diffraction, which results in the twin image (for example see

[2, 3]). Numerical back propagation of the recorded intensities to the position of the

object plane therefore results in the superposition of the sharp real image (first order,

pink) and the out-of-focus contribution (minus first order, gray), while the opposite is

true for the conjugate plane behind the detector.

of the data presented in the main manuscript. In particular, we show in figure 4 that

both lateral and longitudinal shifts are required to remove twin image artifacts in object

and probe.

To this end, we have taken the data as presented in figure 2(c) of the main manuscript,

and have reconstructed it with either (figure 4(b)) only lateral shifts (compare to [4])

or (figure 4(c)) only longitudinal shifts, as compared to (figure 4(d)) the use of both,

which was already shown in figure1(c) of the main manuscript.

Only in the latter case, a satisfactory reconstruction of o and p can be achieved.

Interestingly, case (b) yields a slightly better quality in the reconstruction of the probe

aberrated by a beam modulating object than (c), while - even more clearly - the quality

of the reconstructed object is better in (c) than in (b). However, none is as convincing

as (d), which yields superior quality both for o and for p. Next, we propagate the

reconstructed exit wave for each of the above cases (b, c, d) to two particular planes

behind the detector (see sketch in figure 4(a)), namely the conjugated planes to the

planes of the beam modulator and the object, i.e. the planes where the respective twin

images would appear as sharp. Indeed, the twin images become visible for (b, c),

while only defocused images are observed in (d), in line with the expectation for a high

quality reconstruction without twin image artifacts. Note that the twin of the object

is stronger in (b) than in (c). Only exploiting lateral diversity, a severely aberrated

probe is needed for phase retrieval [4]. For nearly perfect probes, the collected (laterally

shifted) holograms contain only redundant information and the reconstructions would

show similar twin image features as a holographic reconstruction by back propagation.

Contrarily, longitudinal shifts provide enough diversity for phase reconstruction of the

object (overcoming the corresponding twin images), which has already been the base

for many published multi-plane approaches [5, 6, 7], but fails with respect to probe
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Figure 4. (a) Setup and location of the twin image planes with respect to the detector.

(b) Reconstruction using holograms generated by only laterally shifting an object

(left). Propagation of object and probe to their respective twin planes (right). (c)

Reconstruction using holograms generated by only longitudinally shifting an object

(left). Propagation of object and probe to their respective twin planes (right). (d)

Reconstruction using holograms generated by laterally and longitudinally shifting an

object (left). Propagation of object and probe to their respective twin planes (right).

Scalebars denote 0.5 mm (probe) and 0.2 mm (object).

reconstruction. For this reason, additional empty beam recordings were necessary in

[8], while the extended algorithm presented here is capable to reconstruct both o and p

without any empty beam images, and without any further a priori information (support,

weak object etc.).
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