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Abstract
Excessive activation of the nuclear enzyme poly(ADP-ribose)
polymerase (PARP) by free-radical damaged DNA mediates
necrotic cell death in injury models of cerebral ischemia-
reperfusion and excitotoxicity. We recently reported that
secondary retinal ganglion cell (RGC) death following rat optic
nerve (ON) transection is mainly apoptotic and can
significantly but not entirely be blocked by caspase inhibition.
In the present study, we demonstrate transient, RGC-specific
PARP activation and increased retinal PARP expression early
after ON axotomy. In addition, intravitreal injections of 3-
aminobenzamide blocked PARP activation in RGCs and
resulted in an increased number of surviving RGCs when
compared to control animals 14 days after ON transection.
Thesedata indicate thatsecondarydegenerationof asubsetof
axotomized RGCs results from a necrotic-type cell death
mediated by PARP activation and increased PARP expres-
sion. Furthermore, PARP inhibition may constitute a relevant
strategy for clinical treatment of traumatic brain injury. Cell
Death and Differentiation (2001) 8, 801 ± 807.

Keywords: PARP; retinal ganglion cell death; optic nerve
transection; neuroprotection; 3-aminobenzamide; necrosis

Abbreviations:PARP,poly(ADP-ribose)polymerase;RGC,retinal
ganglion cell; ON, optic nerve; GCL, ganglion cell layer; IPL, inner
plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer;
ONL, outernuclear layer;3-ABA, 3-aminobenzamide;FB,FastBlue

Introduction

Poly(ADP-ribose) polymerase (PARP) is a tightly bound
nuclear enzyme found in various organs, including the
brain.14 Under physiological conditions it is thought to play
an important role in the repair of DNA strand breaks, thereby
contributing to maintain the genomic integrity of cells.34 PARP

has also been implicated to participate in cellular differentia-
tion, gene rearrangement and transpositions.13 PARP is
activated by DNA strand breaks which result from DNA
damage mainly mediated by reactive oxygene species (ROS)
and nitric oxide.8,36 PARP activation results in the formation
and transfer of negatively charged ADP-ribose polymers onto
chromatin-associated proteins as well as ADP-ribosylation of
PARP itself, utilizing nicotinamide-adenosine dinucleotide as
its substrate. Poly-ADP-ribosylation of various nuclear
proteins constitutes an important post-translational modifica-
tion necessary for efficient repair of DNA strand breaks.26

However, it has also been demonstrated that excessive
PARP activation by various triggers resulting in depletion of
NAD+ and subsequent cellular ATP depletion ultimately leads
to a necrotic-type cell death.5,32,41,49 There is accumulating
evidence that excessive PARP activation plays a key role in
mediating ischemia-reperfusion-induced cerebral in-
jury10,11,38,42 and that infarct volume can be dramatically
reduced by PARP inhibition and in PARP knock-out
mice.9,37,38 Cerebral ischemia results in massive activation
of N-methyl-D-aspartat (NMDA) receptors via an increase of
extracellular glutamate leading to elevated intracellular
calcium concentrations, activation of neuronal NO synthase
(nNOS), increased NO and ROS formation and ultimately to
PARP-activating DNA damage.4,7

3-Aminobenzamide (3-ABA) has been most frequently
used as a PARP inhibitor because it displays no toxicity in
vivo and is highly selective for PARP compared with
mono(ADP-ribose) transferase, another DNA repair en-
zyme.36 PARP inhibition is achieved by binding of 3-ABA to
the NAD+-binding site of PARP due to its higher binding
affinity compared with NAD+. In contrast to nicotinamide, 3-
ABA does not scavenge NO or peroxynitrite itself, thus not
exerting relevant PARP-independent neuroprotective ef-
fects.36

Rat optic nerve (ON) transection consistently leads to
secondary death of about 85% of the entire retinal ganglion
cell (RGC) population within 14 days after injury.20,43 In
contrast to cell death occurring after ischemia-reperfusion
injury, this secondary RGC death is mainly apoptotic.1,15 It
can partially but not entirely be blocked by intravitreal
application of potent caspase inhibitors.16 However,
features of necrotic RGC death preceding the appearance
of apoptotic RGCs have also been described after ON
crush injury.2 In addition, ON transection has been shown
to induce upregulation of nNOS in RGCs and an increase
of NOS activity in RGC axons.21 To determine whether
PARP plays a role in mediating secondary RGC death, we
examined for the first time PARP expression and PARP
activation following ON transection utilizing PARP and
poly(ADP-ribose) polymer immunohistochemistry, and
Western blot analysis. In addition, we tested the effect of
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3-aminobenzamide, a widely used PARP inhibitor, on
PARP activation and RGC survival 14 days after ON
axotomy.

Results

Retinal PARP expression following ON transection

Immunohistochemistry employing a polyclonal anti-PARP
antiserum showed only moderate PARP expression in the
ganglion cell layer (GCL), the inner nuclear layer (INL), and
the outer nuclear layer (ONL) of sham-operated control
animals (Figure 1). No specific immunoreactivity was
observed in the inner and outer plexiform layer (IPL, OPL).
There were no significant changes in retinal PARP immuno-
reactivity 3 h following ON transection when compared to
control animals (data not shown). In contrast, we observed an
induction of nuclear PARP immunoreactivity in the GCL and
INL beginning at 12 h and peaking at 1 day to 3 days after ON
injury (Figure 1). Seven days after ON transection, however,
PARP expression in the GCL did not differ from that of
controls whereas PARP expression in the INL was still
elevated compared to control animals (Figure 1). Only a slight
increase in PARP immunoreactivity was detected in the ONL
following ON axotomy (Figure 1). Negative controls did not
show any specific staining.

Corresponding to these results, Western blot analysis
using a polyclonal anti-PARP antiserum revealed an
increase in retinal PARP expression after ON transection
when compared to sham-operated control animals.
Changes were detected at a single band of 113 kDa
matching the band detected in lysates of the rat glioma cell
line LN-18 which served as positive control (see Materials
and Methods). Retinal PARP expression markedly in-
creased 1 day and especially 3 days post-injury when
compared to control animals (Figure 2). PARP protein

levels had declined again at 7 days after ON transection
but were still elevated when compared to control animals,
corresponding to the sustained increase in PARP expres-
sion in the INL. Only a slight increase in retinal PARP
expression was observed 3 h after axotomy (Figure 2).

Retinal PARP activation following ON transection

To examine whether ON transection results in retinal PARP
activation, we performed immunohistochemistry employing a
polyclonal antibody against poly(ADP-ribose) polymers,
which are formed dependent on PARP activity. We detected
increased GCL-specific, nuclear immunoreactivity at all time
points following ON transection, indicating an RGC-specific
PARP activation (Figure 3). Poly(ADP-ribose) polymer
immunoreactivity in the GCL was prominent 12 h and 3 days
after ON transection but peaked at 1 day after axotomy
(Figure 3). In contrast, in sham-operated control animals,
specific poly(ADP-ribose) polymer immunoreactivity was
restricted to some scattered cells in the GCL, probably due
to minor mechanical irritations at the surface of the ON during
sham operation (Figure 3). Only a slight increase in poly(ADP-
ribose) polymer immunoreactivity was observed 3 h post-
lesion (data not shown). PARP activation appears to be
transient since GCL-specific poly(ADP-ribose) polymer
immunoreactivity had markedly declined at 7 days after ON
transfection (Figure 4). Specific immunoreactivity was
restricted to the GCL and not observed in any other retinal
layer and in negative controls.

To quantify GCL-specific retinal PARP activation after
ON transection we performed counts of poly(ADP-ribose)
polymer positive cells in the GCL at different time points
after axotomy (Figure 4). In sham-operated control animals
we detected 24+7 poly(ADP-ribose) polymer positive cells
per retinal section. While there was only a slight, not
significant increase to 34+6 cells per section 3 h post-
lesion, the number of poly(ADP-ribose) polymer positive
RGCs increased to 86+20 cells per section 1 day after

Figure 1 PARP immunohistochemistry on retinal sections. Note moderate
PARP expression in the GCL, INL, and ONL of control animals (A). Increased
nuclear PARP immunoreactivity in the GCL and INL 1 day (B) and 3 days (C)
after ON transection. PARP expression returns to control levels in the GCL but
is still elevated in the INL 7 days after ON injury (D). Only slight increase in
PARP immunoreactivity in the ONL after ON axotomy (A ± D). GCL, ganglion
cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ONL, outer nuclear layer

Figure 2 Western blot analysis of retinal PARP expression. (A) Positive
control (see Materials and Methods). Note marked increase in retinal PARP
protein 3 days (E) and less prominent, 1 day (D) and 7 days (F) after ON
transection compared to control animals (B). Only a slight increase in retinal
PARP expression was observed 3 h (C) after axotomy
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axotomy. Three and 7 days following ON transection the
number of immunpositive cells declined to 64+8 and
42+10, respectively, indicating a decrease in PARP
activity (Figure 4).

Inhibition of PARP activation by intravitreal 3-ABA
application

To examine whether intravitreal 3-ABA application can block
retinal PARP activation induced by ON transection we
performed poly(ADP-ribose) polymer immunohistochemistry
on retinal sections of axotomized/3-ABA-treated animals. One
day as well as 3 days after ON transection and 3-ABA
treatment (injections either 2 and 20 h or 2 h, 20 h and 2 days
post-lesion) we observed a marked decrease in the number of
poly(ADP-ribose) polymer positive RGCs when compared to
untreated animals 1 and 3 days after lesion. Immunoreactivity
was only observed in some scattered cells in the GCL,
indicating an effective inhibition of PARP activation by
intravitreal 3-ABA application (Figure 3). Counts of
poly(ADP-ribose) polymer positive cells in retinal sections of
these animals revealed 26+5 and 22+5 cells per section 1
day and 3 days after ON transection and 3-ABA application
(Figure 4). This indicates that intravitreal 3-ABA injections can
efficiently block axotomy-induced PARP activation in RGCs.

Rescue of axotomized RGCs by PARP inhibition

The mean RGC density in unlesioned retinae was 2084+59
Di-I-labeled cells per mm2. Retrograde labeling of RGCs from
the ON stump using FB revealed RGC densities in treated and
control animals 2 weeks after ON transection. In untreated
animals, mean RGC density declined to 348+61, i.e. to
16.7% of control values within 14 days after ON transection
(Figure 5). PARP-inhibition by intravitreal 3-ABA-injections at
2 h, 1, 2 and 4 days post-lesion significantly enhanced RGC
survival 14 days after ON transection by 76% compared to
vehicle-injected, axotomized control animals (P50.05). The
mean RGC density in retinae of 3-ABA-treated animals was
673+36 FB-labeled cells per mm2 compared to 383+40 cells
per mm2 in vehicle-injected, axotomized control animals
(Figure 5). This corresponds to an effective RGC rescue
(ERR) of 17.0%, the percentage of RGCs which are protected
from secondary cell death due to the treatment (see Materials
and Methods). The difference in RGC density between
vehicle-injected (PBS with 40% DMSO) and untreated
animals (383+40 vs 348+61 cells per mm2) was not
statistically significant. In addition to labeled RGCs, we also
observed labeling of endothelial cells of retinal vessels and
microglial cells, which could easily be distinguished from
RGCs by their different shape and diameter (see Materials
and Methods).

Discussion

Excessive activation of poly(ADP-ribose) polymerase has
been implicated to mediate cell death in different models of
ischemia-reperfusion injury10,40,42 as well as streptozotocin-
induced diabetes,32 glutamate-induced neurotoxicity5,49 and
Alzheimer's disease.27 The common feature in the pathogen-

Figure 3 Poly(ADP-ribose) polymer immunohistochemistry on retinal
sections to monitor PARP activation after ON transection with or without 3-
ABA treatment. Note GCL-specific, nuclear immunoreactivity 1 day (B) and,
less prominent, 3 days (C) after ON axotomy without a specific therapy,
indicative for RGC-specific PARP activation. In contrast, only a small number
of poly(ADP-ribose) polymer positive cells (see also Figure 4) was observed in
retinae of sham control animals (A). Note that intravitreal 3-ABA application
markedly reduced the number of poly(ADP-ribose) positive RGCs 1 day after
ON transection (D). In these animals immunoreactivity is restricted to a small
number of RGCs. Some immuno-reactive RGCs are marked with arrows. GCL,
ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL,
outer plexiform layer; ONL, outer nuclear layer

Figure 4 Counts of poly(ADP-ribose) polymer positive RGCs in retinal
sections to assess PARP activation at different time points after ON
transection with or without intravitreal 3-ABA application. Note marked
increase in the number of immunopositive RGCs 1 day and 3 days post-lesion
without therapy, which can be blocked by 3-ABA application. Data are given as
mean+standard error of the mean (S.E.M.). *, P50.05 vs control (see
Materials and Methods); control, sham-operated animals; 3-ABA, 3-
aminobenzamide
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esis of these clinically relevant conditions leading to PARP
activation is oxidative DNA damage via increased production
of nitric oxide and the formation of reactive oxygen species.
Downstream events of massive PARP activation are NAD+

depletion resulting in depletion of cellular ATP and subse-
quent necrotic-type cell death.41 Inhibition of PARP activity
using benzamide analogs, nicotinamide, benzopyrones or
isoquinoline derivatives36 has been demonstrated to attenu-
ate ischemia-reperfusion injury in various models of transient
cerebral,10,37,38 heart,40 renal,3 and retinal ischemia.24 In
addition, PARP inhibition has been shown to protect from
glutamate- and MPTP-induced neurotoxicity.5,6 It has also
been suggested, however, that the neuroprotective effect of
PARP inhibition may require conditions of cellular NAD+

depletion and that PARP inhibition may be neurotoxic after
mild, sublethal ischemia without NAD+ depletion.29

In multiple studies, transection of the rat ON has been
used as a model to characterize secondary cell death
following diffuse axonal injury.1,15,18,43 Within 2 weeks after
axotomy about 85% of all RGCs undergo secondary cell
death which has been demonstrated to display hallmarks of
apoptosis like caspase activation18 and upregulation of Bax
protein expression.15 However, caspase inhibition employ-
ing different caspase inhibitors only partially blocks
secondary death of axotomized RGCs and neuroprotective
effects observed are transient.16,17 In addition, neuropro-
tective effects of several neurotrophic factors on axoto-
mized RGCs seem to be partially due to mechanisms other

than inhibition of intracellular caspase activity.20,47 In the
present study, we therefore examined the role of PARP,
which has been identified as an important mediator of a
necrotic-type cell death, in axotomy-induced RGC death.
Following ON transection, we observed an RGC-specific,
transient increase in PARP activity as shown by GCL-
specific enhancement of poly(ADP-ribose) polymer forma-
tion. In addition, we demonstrate a transient increase in
retinal PARP expression localized in the GCL and the INL.
Furthermore, intravitreal application of the PARP inhibitor 3-
aminobenzamide significantly enhanced RGC survival 14
days after ON transection, indicating that PARP activation
in axotomized RGCs is accompanied with NAD+ deple-
tion.29

Anti-apoptotic strategies using multiple injections of
different caspase inhibitors resulted in survival of 20 to
34% of the RGCs which, without a specific therapy, would
have undergone secondary cell death within 2 weeks after
lesion (ERR), indicating that apoptosis constitutes the
predominant mode of RGC death after ON transection.16

However, retinal PARP inhibition by intravitreal 3-ABA
injections after ON transection also led to significantly
enhanced RGC survival (ERR of 17%), demonstrating that
at least for a subset of axotomized RGCs secondary
degeneration seems to be mediated by a necrotic-type cell
death. Multiple injections of neurotrophic factors like BDNF,
CNTF and GDNF, which are thought to interfere with
multiple, intracellular pathways, resulted in ERRs of 27, 22
and 21%, respectively.19,20,22,28

Our results indicate that early secondary RGC death
following ON transection involves non-apoptotic mechan-
isms like necrosis, which is mediated by post lesional
PARP activation and increased PARP expression in RGCs.
This hypothesis is further supported by a study demonstrat-
ing an upregulation of nNOS in RGCs as well as an
increase of NOS activity in RGC axons after ON
transection,21 since PARP activation is strongly related to
NO and peroxynitrite formation by nNOS.11,36 It has been
shown that nNOS can be regulated post-translationally by
increased intracellular calcium concentrations.30 Elevation
of intracellular calcium, however, can result from activation
of ionotropoic glutamate receptors, and a member of this
family, NMDAR 1b, has been demonstrated to be
upregulated early after ON crush.23 Furthermore, intravi-
treal glutamate levels were found to be elevated as early as
3 days after ON crush injury48 and intravitreal application of
the NMDA receptor antagonist MK-801 increased RGC
survival following crush-axotomy.33 Moreover, appearance
of necrotic cell death preceding apoptotic cell death has
been reported as early as 2 days after ON crush injury.2

PARP has been identified as a substrate for activated
caspase-3, which is a crucial mediator of apoptotic cell
death.31,39 However, both the precise role of PARP in
apoptosis and the purpose of PARP cleavage by apoptotic
proteases remain unclear. It has been demonstrated that
caspase-3-mediated cleavage of PARP blocks DNA repair
and prevents depletion of intracellular NAD+ stores due to
increased PARP activity suggesting that PARP cleavage
secures intracellular energy levels necessary for the
apoptotic process.31,41,45 In addition, several studies

Figure 5 Survival-promoting effect of retinal PARP inhibition on axotomized
RGCs 14 days after ON transection by intravitreal 3-ABA injections. Data are
given as mean+standard error of the mean (S.E.M.). Intravitreal injections of
3-aminobenzamide in vehicle (3-ABA), 40% DMSO in PBS (vehicle) or ON
transection only (control). *, P50.05 vs vehicle and control (see Materials and
Methods); RGCs, retinal ganglion cells
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indicate that under certain experimental conditions apopto-
tic cell death may be PARP independent.25,46 However,
transient ribosylation of nuclear proteins by PARP has been
reported necessary for Fas-induced apoptosis35 and
another study noted abnormal apoptosis in PARP knock-
out mice.8 In our model of ON transection, caspase-3
activity was shown to peak at day 4 to 6 post-lesion.18

Therefore, it is plausible that the level of activated caspase-
3 during days 1 to 3 post-injury is not sufficient for relevant
PARP cleavage, especially since the increase of caspase-3
in axotomized RGCs does not seem to occur simulta-
neously in the entire RGC population, but rather constitutes
a process lasting several days.15,18,43 In turn, this may
provide a time window for activated PARP to induce
secondary cell death following ON transection.

Taken together, these data indicate that secondary
death of axotomized RGCs, even though mainly induced
by caspase activation, may in part be mediated by PARP
activation and increased PARP expression. PARP activa-
tion and increased PARP expression in RGCs occur at day
1 to 3 after ON transection and are almost back to control
levels 7 days post-injury, thus preceding caspase-3
activation in our model of ON injury. In accordance with
these results, intravitreal application of the PARP inhibitor
3-ABA increases survival of axotomized RGCs in vivo by
blocking post lesional PARP activation suggesting that
PARP inhibition may also constitute a relevant therapeutic
strategy for traumatic brain injury. Future studies will have
to elucidate the therapeutic potential of combining caspase
and PARP inhibition for limiting axotomy-induced RGC
death.

Materials and Methods

Animal surgery and intravitreal injections

Adult female Sprague Dawley rats (200 ± 250 g) were anesthetized by
intraperitoneal injection of chloral hydrate (7% in PBS; 420 mg/kg
body weight). The optic nerve (ON) was exposed and transected as
described previously leaving the retinal blood supply intact.20,47 To
determine RGC densities in lesioned animals, cells were retrogradely
labeled with Fast Blue (FB; Dr Illing Chemie, Gross-Umstadt,
Germany). For FB staining, a small piece of gel foam soaked in a
2% aqueous FB solution was placed at the ocular nerve stump after
ON axotomy. To determine RGC numbers in unoperated control
animals using retrograd labeling, 1,1'-dioctadecyl-3,3,3',3'-tetramethy-
lindocarbocyanine perchlorate (Di-I; 5% in dimethyl-formamide;
Molecular Probes Inc., Oregon, USA) was applied to both superior
colliculi on postnatal day 5 employing a micropipette. Double-staining
protocols with Di-I applied to the superior colliculi and FB applied to the
transected ON revealed similar label efficiencies of the two tracers,
thus allowing comparison of Di-I and FB data.12

3-aminobenzamide (3-ABA; Sigma, Munich, Germany) was
dissolved in 10 mM PBS containing 40% dimethyl-sulfoxide
(DMSO). Animals were anesthetized by inhalation of diethylether
and intravitreally injected with either 0.6 mmol of 3-ABA (n=6) or
vehicle only (n=4). Injection volume was 2 ml. Intravitreal injections
were performed 2 h, 1, 2 and 4 days following ON transection
employing a glass micro-electrode according to a protocol described in
more detail elsewhere.20

Assessment of RGC survival: cell densities and
statistical analysis

Rats were sacrificed by an overdose of chloral hydrate 14 days after
ON transection. Operated eyes were removed, retinae dissected, fixed
in 4% paraformaldehyde (PFA) in PBS for 20 min and flat-mounted
onto glass slides. Retinae were examined by fluorescent microscopy
(Axiophot 2; Zeiss, GoÈ ttingen, Germany) using a rhodamine (546/
590 nm) or a DAPI filter (365/397 nm) for Di-I or FB fluorescence,
respectively. RGC densities were determined by counting tracer-
labeled cells in 12 distinct areas (three areas per retinal quadrant) of
62 500 mm2 each.12,20 Labeled endothelial cells of retinal vessels
(fusiform shape) and microglial cells (rod-shaped, ramifications,
smaller diameter than RGCs) were excluded from cell counts. Cell
counts were performed in duplicate by two independent and blinded
investigators.

Data are given as mean+standard error of the mean (S.E.M.).
Statistical significance was determined using the Mann ± Whitney U-
test. For exact evaluation of survival-promoting effects due to the
specific treatment, we defined an effective RGC rescue (ERR):
ERR=(Nther-Ncon)/(Ntot-Ncon)6100 (Ntot: RGC number in unlesioned
retinae, Ncon: RGC number surviving axotomy without therapy, Nther:
RGC number surviving after a given therapy.47)

Poly(ADP-ribose) polymer and PARP
immunohistochemistry

Rats were anesthetized and perfused transcardially with saline,
followed by 4% paraformaldehyde (PFA) in PBS at different time
points after ON transection (3, 12, 24 and 72 h, 7 days; n=3 for
each time point). Sham-operated animals served as controls. For
poly(ADP-ribose) polymer immunohistochemistry additional animals
were sacrificed 1 and 3 days following ON transection (n=3 for
each time point), which had been intravitreally injected with 3-ABA
at either 2 h and 20 h or 2 h, 20 h and 2 days after axotomy (for
injection procedure see above). Retinal cryostat sections (16 mm,
cryoprotected by sucrose incubation, 4% PFA-fixed) were prepared
as described earlier.20 For poly(ADP-ribose) polymer immunohis-
tochemistry, sections were incubated with 2% Triton-X in PBS for
15 min at room temperature (RT) followed by treatment with 2%
H2O2 (30 min at RT), incubation with blocking solution (2% BSA,
0.1% Triton-X, 10% NGS in PBS; 1 h at RT) and incubation with a
polyclonal guinea-pig anti-poly(ADP-ribose) antibody (1 : 60 in PBS
with 2% BSA and 0.1% Triton-X; 48 h at 48C; Trevigen, MD, USA),
which is specific for poly(ADP-ribose) polymers 2 ± 50 units long. A
biotin-conjugated goat anti-guinea-pig IgG was utilized as
secondary antibody (1 : 100, 1 h at RT; Vector Laboratories, CA,
USA) followed by signal amplification using an immunoperoxidase
avidin-biotin complex kit according to the manufacturer's instruc-
tions (Vectastain elite; Vector Laboratories, MD, USA) and
incubation with diminobenzidine as a chromogen (0.05% in PBS;
Sigma, Munich, Germany).

For PARP immunohistochemistry, sections were incubated with
blocking solution (2% BSA, 0.1% Triton-X, 10% NGS in PBS; 1.5 h at
RT) followed by incubation with a polyclonal rabbit anti-PARP antibody
(1 : 400 in PBS with 2% BSA and 0.1% Triton-X; overnight at 48C;
Santa Cruz Biotechnology, Inc., CA, USA). After application of a
secondary, Cy-3-coupled, goat anti-rabbit antibody (1 : 600; 1 h at RT;
Dianova, Hamburg, Germany), sections were examined under
fluorescence microscopy using a rhodamine filter. For both
poly(ADP-ribose) polymer and PARP immunohistochemistry negative
controls were performed by omission of the primary antibody. All
sections were counterstained with DAPI.
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Cell counts of poly(ADP-ribose) polymer positive
cells

To assess the number of poly(ADP-ribose) polymer positive RGCs at
different time points after ON transection (control, 3 h, 1, 3 and 7 days)
as a marker for PARP activation cell counts were carried out in the
GCL of 12 corresponding retinal sections (+1.5 mm from the ON
head) of three animals per time point stained for poly(ADP-ribose)
polymer formation. To assess the efficacy of retinal PARP inhibition by
3-ABA identical cell counts were done in additional animals 1 and 3
days following ON transection (n=3 for each time point), which had
been intravitreally injected at either 2 h and 20 h or 2 h, 20 h and 2
days after axotomy. Cell counts were performed by two independent
and blinded investigators. Data are given as mean of immunopositive
RGCs per section+standard error of the mean (S.E.M.). Statistical
significance was determined using the Mann ± Whitney U-test.

Western blot analysis of retinal PARP expression

For Western blot analysis, retinae were dissected at different time
points after ON transection (3, 12, 24, 72 h, 7 days; n=4 for each time
point). Retinae of sham-operated animals served as controls. Retinae
were complemented with lysis buffer (10 mM Tris pH 7.4, 150 mM
NaCl, 1% Triton X-100, 1% desoxycholate, 0.1% SDS, 5 mM EDTA,
protease inhibitors), homogenized, centrifuged and supernatants used
for SDS ± PAGE. Equal amounts of protein were diluted in 66 sample
buffer, boiled for 5 min and loaded onto 8% polyacrylamide gels. To
test for antibody specificity, 2 ml of a rat glioma cell line (LN-18) lysate,
in which PARP protein had successfully been detected using Western
blot analysis,44 were loaded onto a separate lane as positive control.
Proteins were transferred onto nitrocellulose membranes, immersed in
blocking solution (5% milk, 0.1% Tween 20 in PBS; 12 ± 15 h at 48C)
and incubated with a polyclonal rabbit anti-PARP antibody (1 : 2500 in
PBS with 1% milk, 0.1% Tween 20; 2 h at RT; Boehringer-Mannheim,
Germany). Subsequently, membranes were incubated with a
peroxidase-coupled, goat ant i - rabbi t secondary ant ibody
(1 : 200.000; Dianova, Hamburg, Germany), washed several times,
immersed in ECL solution and exposed to ECL-Hyperfilm (Amersham,
Braunschweig, Germany).
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