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Abstract. We have solved the one-dimensional stationary two-fluid hydrodynamic equations for post-shock flows
on accreting magnetic white dwarfs simultaneous with the fully frequency and angle-dependent radiative transfer
for cyclotron radiation and bremsstrahlung. Magnetic field strengths B = 10 to 100 MG are considered. At given
B, this theory relates the properties of the emission region to a single physical parameter, the mass flow density
(or accretion rate per unit area) ṁ. We present the normalized temperature profiles and fit formulae for the peak
electron temperature, the geometrical shock height, and the column density of the post-shock flow. The results
apply to pillbox-shaped emission regions. With a first-order temperature correction they can also be used for
narrower columns provided they are not too tall.
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1. Introduction

The thermal structure of the accretion columns on accret-
ing magnetic white dwarfs can be derived analytically for
a single-particle fluid and sufficiently simple assumptions
on the radiative cooling (Aizu 1973; Chevalier & Imamura
1982; Wu et al. 1994). For the more general case of the
optically thick frequency and angle-dependent radiative
transfer in a two-fluid plasma, the coupled hydrodynamic
and radiative transfer equations have to be solved numer-
ically (Woelk & Beuermann 1996, henceforth WB96). In
this paper, we present results which are improved and ex-
panded over those of WB96. We obtain the temperature
and density profiles for plane-parallel post-shock cooling
flows and derive fit formulae for the peak electron tem-
perature Tmax, the column density xs, and the geometrical
shock height hsh as functions of the magnetic field strength
B and the mass flow density (accretion rate per unit area)
ṁ. For low ṁ and high B, we show that the shock solution
merges into the non-hydrodynamic bombardment solution
for an atmosphere which is heated by a stream of fast ions
and cools by cyclotron radiation (Woelk & Beuermann
1992, 1993, henceforth WB92, WB93).
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Our treatment of radiation-hydrodynamics is one-
dimensional and stationary. The one-dimensionality im-
plies that our solutions are strictly applicable only to
pillbox-shaped emision regions with a width D � hsh

and a stand-off distance hsh � Rwd, where Rwd is the
white dwarf radius. The stationarity implies that our solu-
tions describe the mean properties of the shocks and that
aspects like rapid fluctuations in the mass flow density
and the stability against shock oscillations are left aside.
Shock oscillations have been treated by a number of au-
thors (Imamura et al. 1996; Saxton & Wu 1999, and refer-
ences therein) and generally suggest that cyclotron cooling
stabilizes the flow and bremsstrahlung cooling destabilizes
it. Observationally, optical oscillations have been found in
a few polars, while the search for hard X-ray oscillations
has so far yielded only upper limits (Larsson 1992; Wolff
et al. 1999; Imamura et al. 2000, and references therein).

2. Two-fluid radiation hydrodynamics

2.1. General approach

We solve the stationary, one-dimensional, two-fluid hydro-
dynamic equations simultaneous with the frequency and
angle-dependent radiative transfer, closely following the
approach of WB96. We deviate from WB96 in the treat-
ment of the shock itself. Instead of integrating the flow
through the shock with an artificial viscosity, we adopt
the presence of a strong ion shock and start the integration
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with adopted values of the ion and electron temperatures
(see below). Of course, the solution now fails to reproduce
the rapid rise in ion temperature across the shock, but
otherwise the results are practically identical except for
small differences at low velocities where the flow connects
to the atmosphere of the star and large gradients revive
the viscous terms again. The set of differential equations
then reads (compare Eqs. (1) to (4), (7), and (8) of WB96)

ρυ = −ṁ (1)

ρυ
dυ
dx

+
d

dx
(Pi + Pe) = −g (2)

ρυ
dEi
dx
− υ (Pi + Ei)

dρ
dx

= −Λei (3)

ρυ
dEe
dx
− υ (Pe + Ee)

dρ
dx

= Λei − ρ
dFrad

dx
(4)

ρ cosϑ
dIν(ϑ)

dx
= [κν(ϑ) + σ] Iν(ϑ)− κν(ϑ)Bν(Te)−σJν(5)

Frad = 2π

∞∫
0

+1∫
−1

Iν(ϑ) cosϑd(cosϑ) dν (6)

where ρ is the mass density, υ the velocity, ṁ the mass
flow density, Pi and Pe the ion and electron pressures, Ei
and Ee ion and electron internal energy densities, Iν(ϑ) the
specific intensity of the radiation field at frequency ν and
angle ϑ, Jν the angle-averaged intensity, κν(ϑ) the angle-
dependent absorption coefficient, σ the Thomson scatter-
ing coefficient,Bν(Te) the Planck function at electron tem-
perature Te, and Frad the total radial energy flux in the
radiation field. We choose the downstream column den-
sity x as the independent variable rather than the radial
coordinate or the geometrical height h. Following WB96,
we neglect the effects of radiation pressure and thermal
conduction.

The connecting link between the hydrodynamics
(Eqs. (1) to (4)) and the radiative transfer (Eqs. (5)
and (6)) is Frad: the electron gas cools by radiation and is
heated by Coulomb interactions with the ions, described
by the non-relativistic electron ion energy exchange rate
Λei (Spitzer 1956, see also WB96, their Eqs. (5) and (6)).
The fully angle and frequency-dependent radiative trans-
fer accounts for cyclotron absorption, free-free absorption,
and coherent electron scattering. Our emphasis is on the
largely correct treatment of the cyclotron spectra and we
accept inaccuracies of the hard X-ray spectra caused by
the neglect of Compton scattering. This still rather gen-
eral treatment ensures that our results are relevant for a
wide range of ṁ including the low-ṁ regime where ra-
diative losses by optically thick cyclotron radiation dom-
inate.The cyclotron absorption coefficients used here are
the added coefficients for the ordinary and the extraordi-
nary rays (WB92). This limitation is dropped in Sect. 3.1,
below.

We use a Rybicki code for the LTE radiative trans-
fer and integrate the set of equations implicitly, using a

Newton scheme to iterate between hydrodynamics and ra-
diation transport. For more details see WB96. Our solu-
tion is strictly valid only for an infinite plane parallel layer.
A first-order correction to the peak electron temperature
for emission regions of finite lateral extent D (Fig. 1) is
discussed in Sects. 3.2 and 3.3 below.

Equation (2) accounts for post-shock acceleration and
heating of the flow by the constant gravity term g =
GMwd/Rwd

2. Within our one-dimensional approximation
which disregards the convergence of the polar field lines,
considering the variation of gravity with radius would
not be appropriate. Our approach is, therefore, limited
to stand-off distances of the shock hsh�Rwd. Settling so-
lutions with hsh>∼Rwd are not considered.

As in WB96, we assume that the pre-shock flow is fully
ionized, but cold. Soft X-rays will photoionize the infalling
matter and create a Strömgren region with a temperature
typical of planetary nebulae, but for our purposes this is
cold. Heating of the pre-shock electrons by thermal con-
duction may be more important. Equilibrium between dif-
fusion and convection defines an electron precursor with
a radial extent λpre ' 4 × 10−15 T

5/2
e,s /ṁ cm, where Te,s

is the electron temperature at the shock in K (Imamura
et al. 1987) and ṁ is in g cm−2 s−1. Near the one-fluid
limit, electron and ion shock temperatures are similar,
Te,s ' Ti,s, and the precursor extends to λpre ' 0.09hsh.
In a cyclotron-dominated plane-parallel flow, however, two
effects cause the precursor to be less important: (i) the
electrons never reach the peak temperature expected from
one-fluid theory and (ii) the optically thick radiative trans-
fer in the plane-parallel geometry sets up a radial temper-
ature gradient which further depresses the electron tem-
perature at the shock. In this paper, we do not consider
thermal conduction, neglect the presence of the electron
precursor, and opt to set Te,s = 0.

At x = 0, we adopt the Rankine-Hugoniot jump con-
ditions for a gas with adiabatic index 5/3, i.e. we set the
post-shock density to 4 ρo, the bulk velocity to υo/4, and
the pressure to (3/4)ρo υo

2, with ρo and υo the density
and bulk velocity in the pre-shock flow. With Te,s = 0, the
ion shock temperature is

Ti,s = 3µimu/(16 k) υ2
o. (7)

We use υo = (2GMwd/Rwd)1/2 with Nauenberg’s (1972)
relation between mass and radius of the white dwarf. µi is
the molecular weight of the ions, mu the mass unit, and k
the Boltzmann constant.

All numerical calculations are performed for a hydro-
gen plasma with µ = 0.5 and µi = µe = µZ = 1, where µe

is the number of nucleons per electron, µ is the molecular
weight of all particles, and µZ the molecular weight of the
ions weighted with Z2

k . We include the molecular weight
dependence in our equations in order to allow conversion
to other compositions, e.g., a fully ionized plasma of solar
composition with µ = 0.617, µi = 1.297, µe = 1.176, and
µZ = 0.927.
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Fig. 1. Schematics of the emission region. The region is
bounded at the top by the shock front and at the bottom by
the white dwarf.

2.2. Bremsstrahlung and cyclotron emissivities

The frequency-integrated volume emissivity for brems-
strahlung is

εbrems = c2T
1/2ne

∑
k

nkZ
2
k =

c2
(km3

u)1/2

µ1/2

µeµZ
P 1/2ρ3/2(8)

where c2 = 1.43 × 10−27 cgs-units, ne is the number
density of the electrons, nk the number density of the
ions of charge Zke, P is the gas pressure, and ρ the
mass density. The Thomson scattering optical depth of
a bremsstrahlung dominated flow parallel to the flow is
of order unity, implying that bremsstrahlung is essentially
optically thin (Aizu 1973).

We use the cyclotron absorption coefficients for the
ordinary and extraordinary rays given by Chanmugam &
Dulk (1981), Thompson & Cawthorne (1987), and WB92.
The total cyclotron emissivity of non-relativistic electrons
integrated over wavelength and solid angle is

εcyc ∝ ne T B
2 ∝ (µ/µe)B2P. (9)

In the columns considered, cyclotron radiation is optically
thin in the higher harmonics, but is always optically thick
in the first few harmonics, and the temperature distribu-
tion in a cyclotron-dominated emission region can prop-
erly be calculated only by solving the coupled radiation-
hydrodynamic equations.

2.3. Geometry of the emission region

Figure 1 shows the schematic of an emission region with
finite lateral extent D. The shock is located at h =hsh

above the white dwarf surface. The downstream column
density is x = 0 at the shock and and x =xs at the surface
of the star, with x and h being related by dx = −ρ dh. The
gravity vector g and the magnetic field vectorB are taken
parallel to the flow lines. The radiation-hydrodynamic
equations are solved for layers of infinite D to yield the run
of electron temperature and mass density, Te(x) and ρ(x).
These profiles are later employed to calculate the outgoing
spectra for emission regions with finite D by ray tracing,

i.e. by adding the contributions from an appropriate num-
ber of rays (Fig. 1 and Sect. 3.1). This procedure is not
self-consistent if optically thick radiative losses occur from
the sides of the column. An appropriate first-order correc-
tion to the temperature structure derived for the infinite
layer is discussed in Sects. 3.2 and 3.3, below. The treat-
ment of really tall columns requires a different approach
which specifically allows for the emission from the sides of
the column (Wu et al. 1994).

Radiation intercepted by the white dwarf is either re-
flected or absorbed and reemitted by its locally heated
atmosphere. We assume coherent scattering of hard
X-rays using the frequency-dependent reflection albedoAν
of van Teeseling et al. (1994). The fraction 1− Aν of the
energy is re-emitted in the UV and soft X-ray regime and
is not considered in this paper.

2.4. Limiting cases

Here, we consider simple limiting cases which can, in part,
be solved analytically. Below, we shall discuss our numer-
ical results in terms of these limiting solutions. The high
ṁ, low B limit is the bremsstrahlung-dominated one-fluid
solution. In the opposite limit of low ṁ, high B one enters
the non-hydrodynamic regime (Lamb & Masters 1977).
Here, the bombardment solution of a static atmosphere
heated by a stream of fast ions and cooling by cyclotron
emission is an appropriate approximation (Kuijpers &
Pringle 1982, WB92, WB93).

The one-dimensional, one-fluid hydrodynamic equa-
tions with simple terms for optically thin cooling can
be solved analytically (Aizu 1973; Chevalier & Imamura
1982). Integration of Eq. (2) with Eq. (1), P = Pi + Pe,
and g = 0 yields P = ṁ(υo − υ) which allows to ex-
press the emissivities of Sect. 2.2 as εbrems ∝ ṁ2 f(υ) and
εcyc ∝ ṁ g(υ), with f and g being functions of the flow ve-
locity υ and with additional dependencies on the µ’s and
B contained in the proportionality factors. Integration of
the energy equation over υ yields expressions for the col-
umn density xs and the geometrical shock height hsh which
reflect the parameter dependence of ε,

xs ∝
ṁ2

ε

{
xs,brems = constant for ε = εbrems

xs,cyc ∝ ṁ for ε = εcyc,
(10)

hsh ∝
ṁ

ε

{
hsh,brems = 1/ṁ for ε = εbrems

hsh,cyc ∝ constant for ε = εcyc.
(11)

In the flows considered here, bremsstrahlung is close to
optically thin and the analytical solution is quantitatively
corroborated by our numerical results. Cyclotron emis-
sion, on the other hand, is optically thick in the lower har-
monics which reduces the effective emissivity and inflates
the emission region. While the ṁ-dependence of cyclotron-
dominated columns in Eqs. (10) and (11) is recovered in
our numerical calculations, not surprisingly, the numer-
ically derived sizes of xs and hsh are much larger than
those predicted by the (unquoted) proportionality factors
for cyclotron cooling in Eqs. (10) and (11).
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Fig. 2. Temperature profiles for the ions (dashed curves) and electrons (solid curves) as functions of column density x for
Mwd= 0.6 M� and field strengths of 10 MG (left panel), 30 MG (center panel) and 100 MG (right panel). The individual
curves are for mass flow densities ṁ = 100, 10, 1, 10−1 and 10−2 g cm−2 s−1 (from top). In the left panel, the curves for 100
and 10 g cm−2 s−1 are indistinguishable. In the right panel, the bottom curve is for 10−1 g cm−2 s−1. From Eqs. (13) and (16),
xs,brems = 0.783 g cm−2 (log xs,brems = −0.106) and Tmax,brems = Ti,s/2.

2.5. Bremsstrahlung-dominated shock solution

For a strong shock in a one-fluid plasma with adiabatic
index 5/3, the normalized post-shock velocity ω = 4υ/υo

varies between 1 and 0. The column density x measured
from the shock is related to ω by (Aizu 1973; Chevalier &
Imamura 1982)

x = c1υ
2
o

[√
3−π

3
−1+ω

2

√
4ω−ω2+cos−1

(
1−ω

2

)]
. (12)

The total column density and shock height are given by

xs,brems = c1 υ
2
o (
√

3− π/3) g cm−2 (13)

hsh,brems = c1 υ
3
o

(
39
√

3− 20π
)
/(48 ṁ) cm, (14)

where c1 = (k1/2m
3/2
u /4 c2)(µe µZ/µ

1/2) with values of
6.22×10−18 cgs for pure hydrogen and 6.10×10−18 cgs for
solar composition. The temperature profile follows from
pressure equilibrium P = ρυ(υo−υ), the equation of state
for the ideal gas, and Eq. (1) as

T =
1
3
(
4ω − ω2

)
Tmax,brems (15)

with

Tmax,brems = 3µmu/(16 k) υ2
o = (µ/µi)Ti,s. (16)

Our two-fluid calculations for high ṁ, low B reproduce
the temperature profile T (x) given by Eq. (15) with (12)
and (16) to better than 1 % of Tmax,brems, except for the
initial equilibration layer which is infinitely thin in the
analytic calculation and has a finite thickness with rising
electron temperature in our calculations. As an aside, we
note that T/Tmax,brems' (1−x/xs)0.59 with an rms error
of less than 1%.

2.6. Cyclotron-dominated bombardment solution

The bombardment solution involves by nature a two-fluid
approach. WB92 solved this case using a Fokker-Planck
formalism to calculate the stopping length of the ions and
a Feautrier code for the radiative transfer. WB93 (their
Eqs. (8), (9)) provided power law fits to their numerical
results for the column density and the peak electron tem-
perature. Since the ions are slowed down by collisions with
atmospheric electrons, a factor µe appears in xs:

xs,bomb = 3.94× 10−2 µe(ṁB−2.6
7 )0.30M1.72

wd g cm−2 (17)

Tmax,bomb = 1.28× 109 (ṁB−2.6
7 )0.42M0.66

wd K. (18)

Here, ṁ is in g cm−2 s−1, B7 is in units of 107 G, and Mwd

is in solar masses. These fits are very close to the quasi-
analytical expressions of Eqs. (5) and (6) of WB931.

With increasing ṁ, a shock develops which is initially
cyclotron-dominated and ultimately bremsstrahlung-
dominated. Since Tmax,bomb reaches Tmax,brems at some
intermediate ṁ, we expect a smooth transition in peak
temperature between these cases. The situation is quite
different for xs, however. At the ṁ where Tmax,bomb equals
Tmax,brems, xs,bomb and xs,brems differ by more than two
orders of magnitude. The run of xs(ṁ) between these two
limiting cases can be determined only with a radiation-
hydrodynamical approach.

The bombardment solution does not predict the geo-
metrical scale height of the heated atmosphere which we
expect to lie between that of a corona with an external
pressure P = 0 and that of a layer compressed by the ram
pressure P = ρo υo

2.
1 Note the misprint in Eq. (6) of WB93 which should read

B0.85 instead of B1.85.
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Fig. 3. Normalized electron temperature distributions for
Mwd = 0.6 M� and the values of B and ṁ given in the
figure.

2.7. Parameterization of the results

In the bombardment solution (Eqs. (17), (18)), the depen-
dence of xs and Tmax on ṁB−2.6 is obtained from the equi-
librium between the energy gain by accretion, Facc ∝ ṁ,
and the energy loss by optically thick cyclotron radiation,
Fcyc ∝ Tmax ω

3
∗, where ω∗ = m∗ ωc is the high-frequency

cutoff of the cyclotron spectrum and ωc ∝ B the cyclotron
frequency. We determine the limiting harmonic num-
ber m∗ from the cyclotron calculations of Chanmugam
& Langer (1991; their Fig. 5) as m∗ = 4.43 Λa4 T

b
8 with

a ' 0.12 and b ' 0.40. This approximation is valid near
depth parameters Λ4 = Λ/104 ' 1 and temperatures
T8 = Tmax/(108 K) ' 1 and is more adequate for the
cyclotron-dominated emission regions on polars than the
frequently quoted formula of Wada et al. (1980). Replacing
ω∗ with Λ ∝ xs/B in Fcyc and equating the accretion and
radiative energy fluxes yields the result that a power of
Tmax is proportional to ṁB3(a−1) ' ṁB−2.6. The same
holds for xs.

We find that the cyclotron-dominated shocks at low ṁ
behave similarly to bombarded atmospheres in that their
thermal properties, too, depend on ṁB−2.6. The individ-
ual temperature profiles Te(x) for different ṁ,B with the
same ṁB−2.6 coincide only in an approximate way, but
the dependency on ṁB−2.6 holds quite well for the two
characteristic values of each profile, Tmax and xs. If we
leave the exponent α in ṁBα as a fit variable, the small-
est scatter in Tmax and xs as functions of ṁBα is, in fact,
obtained for α = −2.6± 0.2.

Our model calculations cover magnetic field strengths
B = 10−100 MG and mass flow densities ṁ =
10−2−102 g cm−2 s−1. In what follows, we present first
the temperature and density profiles along the flow
lines. From these, we obtain Tmax, xs, and hsh as the

0.0 0.2 0.4 0.6 0.8 1.0
x / xs

0.0

0.2

0.4

0.6

0.8

1.0

4v
 / 

v 0

  30 MG,  100 g cm
-2
 s

-1

  30 MG,    10 g cm
-2
 s

-1

  30 MG,      1 g cm
-2
 s

-1

  30 MG,   0.1 g cm
-2
 s

-1

  30 MG, 0.01 g cm
-2
 s

-1

100 MG,   0.1 g cm
-2
 s

-1

Fig. 4. Normalized velocity w = 4 v/υo for Mwd = 0.6 M�
and the same values of field strength and mass flow density ṁ
as in Fig. 3.

characteristic parameters of the post-shock flow which are
presented in an appropriate way as functions of ṁB−2.6.

2.8. Electron temperature profiles for an infinite layer

Figure 2 shows the temperature profiles Ti(x) and Te(x)
forMwd = 0.6M� and several ṁ-B combinations on a log-
arithmic depth scale which emphasizes the initial rise of
the profiles. These profiles display a substantial spread in
xs and in Tmax, reflecting the influence of cyclotron cool-
ing. At 10−2 g cm−2 s−1, 100 MG, cyclotron cooling has re-
duced Tmax to 6% and xs to 0.3% of the respective values
for the pure bremsstrahlung solution. We have confidence
in our numerical results because they accurately reproduce
the analytic bremsstrahlung solution (see above).

Figure 3 displays the normalized profiles of the elec-
tron temperature, Te/Tmax vs. x/xs, for different ṁ,B
combinations, covering the range from a bremsstrahlung-
dominated flow with 100 g cm−2 s−1, 30 MG (fat solid
curve) to 10−2 g cm−2 s−1, 100 MG near the non-
hydrodynamic limit (dotted curce). They represent an ap-
proximate sequence in ṁB−2.6, but not surprisingly, the
shapes differ somewhat for different ṁ and B combina-
tions with the same value of ṁB−2.6 (not shown in Fig. 3).

Equilibration between electron and ion temperatures is
reached at column densities of ∼10−3 . . . 10−1 g cm−2 s−1

depending on ṁ and B (Fig. 2). At 100 g cm−2 s−1, 10 MG,
electrons and ions equilibrate as early as ∼ 0.03xs, while
at 10−2 g cm−2 s−1, 100 MG, equilibration length and xs

are of the same order, indicating the approach to the
non-hydrodynamic regime. A peculiar feature of the latter
profile is the extended low-temperature tail which was not
adequately resolved by WB96. This tail appears when
equilibration occurs near the temperature at which cy-
clotron cooling becomes ineffective and the density is
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Table 1. (a) Top: temperature profiles Te/Tmax(x/xs) for a white dwarf mass of 0.6 M�, field strengths of 10, 30, and 100 MG,
and mass flow densities between 100 and 0.01 g cm−2 s−1. First line: analytical solution of Eqs. (12) and (15). Subsequent
lines: profiles for parameter combinations B, ṁ in MG and g cm−2 s−1, with B7 in units of 107 G. All profiles start at
(x/xs,Te/Tmax) = (0, 0), end at (1, 0), and are normalized to a peak value of unity. (b) Bottom: same for the normalized
velocity w = 4 v/υo. These profiles start at (x/xs,w) = (0, 1) and end at (1, 0).

ṁ B ṁB−2.6
7 T/Tmax vs. x/xs

x/xs = 10−4 10−3 0.01 0.02 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.98 0.99

∞ 1.000 0.999 0.995 0.989 0.973 0.945 0.886 0.821 0.751 0.674 0.589 0.494 0.382 0.245 0.156 0.085 0.054

100 10 100 0.230 0.515 0.916 0.984 0.995 0.967 0.905 0.840 0.770 0.691 0.603 0.505 0.392 0.250 0.158 0.085 0.053

10 10 10 0.230 0.515 0.915 0.984 0.996 0.968 0.906 0.842 0.770 0.692 0.604 0.506 0.393 0.250 0.159 0.082 0.048

1 10 1 0.219 0.499 0.898 0.977 0.998 0.973 0.914 0.850 0.782 0.710 0.629 0.536 0.426 0.281 0.176 0.085 0.047

0.1 10 0.1 0.191 0.434 0.822 0.927 0.999 0.980 0.916 0.849 0.779 0.706 0.622 0.522 0.400 0.239 0.127 0.047 0.022

0.01 10 0.01 0.175 0.395 0.743 0.861 0.981 0.991 0.860 0.743 0.650 0.565 0.476 0.384 0.285 0.165 0.092 0.039 0.021

100 30 5.75 0.228 0.512 0.914 0.984 0.994 0.966 0.903 0.836 0.766 0.686 0.598 0.499 0.388 0.247 0.153 0.080 0.046

10 30 0.58 0.224 0.504 0.909 0.981 0.994 0.958 0.888 0.813 0.738 0.657 0.569 0.473 0.361 0.225 0.134 0.065 0.035

1 30 0.058 0.209 0.468 0.865 0.958 0.997 0.937 0.815 0.717 0.629 0.546 0.460 0.372 0.272 0.162 0.091 0.042 0.025

0.1 30 0.0058 0.185 0.408 0.738 0.849 0.971 0.997 0.833 0.657 0.548 0.468 0.401 0.336 0.274 0.197 0.145 0.085 0.045

0.01 30 0.00058 0.178 0.390 0.710 0.802 0.922 0.994 0.878 0.652 0.484 0.362 0.292 0.245 0.196 0.119 0.074 0.038 0.022

100 100 0.25 0.222 0.497 0.898 0.979 0.992 0.942 0.849 0.766 0.685 0.603 0.517 0.424 0.317 0.188 0.104 0.044 0.020

10 100 0.025 0.206 0.468 0.839 0.940 0.999 0.927 0.756 0.639 0.541 0.450 0.367 0.289 0.201 0.103 0.043 0.011 0.006

1 100 0.0025 0.199 0.440 0.795 0.903 0.997 0.921 0.564 0.458 0.375 0.302 0.237 0.193 0.129 0.058 0.027 0.013 0.007

0.1 100 0.00025 0.180 0.354 0.626 0.727 0.880 0.976 0.966 0.600 0.131 0.097 0.084 0.077 0.063 0.047 0.038 0.030 0.022

ṁ B ṁB−2.6
7 w = 4v/υo vs. x/xs

x/xs = 10−4 10−3 0.01 0.02 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.98 0.99

∞ 1.000 0.999 0.992 0.984 0.960 0.921 0.841 0.761 0.678 0.594 0.506 0.413 0.311 0.193 0.121 0.065 0.041

100 10 100 1.000 0.999 0.992 0.985 0.961 0.920 0.840 0.760 0.676 0.593 0.504 0.411 0.310 0.191 0.119 0.064 0.039

10 10 10 1.000 0.999 0.991 0.983 0.958 0.915 0.834 0.755 0.670 0.586 0.496 0.405 0.304 0.187 0.115 0.060 0.035

1 10 1 1.000 0.998 0.983 0.969 0.932 0.882 0.788 0.700 0.618 0.538 0.459 0.376 0.289 0.182 0.112 0.053 0.029

0.1 10 0.1 1.000 0.993 0.934 0.888 0.794 0.696 0.571 0.480 0.404 0.336 0.279 0.218 0.158 0.089 0.046 0.017 0.008

0.01 10 0.01 1.000 0.989 0.892 0.811 0.635 0.440 0.266 0.193 0.150 0.116 0.090 0.066 0.045 0.024 0.013 0.005 0.003

100 30 5.75 1.000 0.999 0.990 0.981 0.953 0.913 0.831 0.751 0.667 0.584 0.497 0.402 0.303 0.186 0.115 0.059 0.033

10 30 0.58 1.000 0.996 0.972 0.948 0.902 0.947 0.758 0.676 0.597 0.517 0.437 0.352 0.264 0.159 0.094 0.044 0.022

1 30 0.058 1.000 0.990 0.914 0.852 0.726 0.614 0.499 0.425 0.363 0.307 0.254 0.199 0.144 0.084 0.047 0.019 0.009

0.1 30 0.0058 1.000 0.990 0.902 0.829 0.664 0.480 0.286 0.206 0.167 0.140 0.117 0.097 0.078 0.055 0.040 0.021 0.011

0.01 30 0.00058 0.999 0.982 0.895 0.824 0.653 0.435 0.148 0.087 0.062 0.045 0.036 0.029 0.023 0.013 0.008 0.004 0.003

100 100 0.25 1.000 0.995 0.948 0.909 0.835 0.760 0.660 0.579 0.506 0.437 0.367 0.294 0.215 0.124 0.068 0.029 0.013

10 100 0.025 1.000 0.989 0.886 0.807 0.643 0.494 0.367 0.302 0.251 0.206 0.167 0.128 0.089 0.045 0.019 0.005 0.002

1 100 0.0025 1.000 0.982 0.860 0.758 0.535 0.282 0.124 0.099 0.081 0.065 0.051 0.040 0.028 0.013 0.006 0.002 0.001

0.1 100 0.00025 0.999 0.985 0.885 0.827 0.707 0.552 0.293 0.069 0.012 0.009 0.008 0.007 0.006 0.004 0.003 0.003 0.002

sufficiently high for bremsstrahlung to take over. It is
hydrodynamic in origin. Apart from the tail, the tem-
perature profile at 10−2 g cm−2 s−1, 100 MG is very close
to that obtained by the non-hydrodynamic approach of
WB92, WB93. The low-temperature tail is responsible
for a low-temperature thermal emission component with
kT <∼ 1 keV.

The initial rise of the individual temperature pro-
files is similar and is very rapid following approximately
Te∝ x0.35 (Fig. 2). One half of Tmax is reached at 0.001xs

in the bremsstrahlung-dominated case and at 0.006xs near

the non-hydrodynamic limit. Further downstream the
profiles differ substantially. In the bremsstrahlung-
dominated case, the peak electron temperature is reached
quickly, while in the cyclotron-dominated flow it occurs
at the same x at which half of the accretion energy has
been radiated away. The reason is that a temperature gra-
dient is needed to drive about one half of the radiative
flux across the shock front, while the other half enters the
white dwarf atmosphere. In the plane-parallel geometry,
the optically thick radiative transfer requires the electron
temperature at the shock front to stay below the peak
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Fig. 5. Maximum electron temperature Tmax as a func-
tion of ṁB−2.6

7 for Mwd = 0.6 M� and B = 10−100 MG
(B7 = B/107 G). The solid curve is the fit from Eq. (19), the
solid straight line represents the bombardment solution from
Eq. (18). The dotted curve and straight line represent the cor-
responding fit to the data for 1 M� (data not shown).

electron temperature : Te,s < Tmax ≤ Tbrems,max ∼ 0.5Ti,s.
This is why we opted to start the integration with the ini-
tial values Te,s = 0 and Ti,s as given by Eq. (7). Because of
the rapid initial rise in T (x), our results would have been
practically the same had we set Te,s = 0.5Tmax.

To facilitate the modeling of specific geometries, we
provide the normalized temperature and density profiles
for a sequence of ṁ,B combinations in Table 1. We
also provide best fits to Tmax/Ti,s and xs as functions of
ṁB−2.6.

2.9. Velocity profiles for an infinite layer

For calculations of the bremsstrahlung emission, we need
the profiles of the mass density which varies as ρ ∝ υ−1.
Figure 4 shows the normalized velocity profiles for Mwd =
0.6 M� and the same ṁ,B combinations as in Fig. 3.
In the limit of pure bremsstrahlung cooling, the velocity
profile is indistinguishable from that given by the inversion
of Eq. (12). Increased cyclotron cooling causes a similar
depression at intermediate x as seen in the temperature
profiles. Table 1 (bottom) provides the velocity profiles in
numerical form for the same parameters as above.

2.10. Maximum electron temperature Tmax

In what follows, each model is represented by one
“data point”. Figure 5 shows Tmax/Ti,s vs. ṁB−2.6

7 for
Mwd = 0.6 M� and B = 10–100MG. The dependence of
Tmax on ṁB−2.6

7 is equally well documented for Mwd = 0.8

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

•m B7

-2.6
 (g cm

-2
 s

-1
)

10
-4

10
-3

10
-2

10
-1

10
0

x s (
g 

cm
-2
)

B =   10MG
B =   15MG
B =   20MG
B =   25MG
B =   30MG
B =   35MG
B =   40MG
B =   45MG
B =   50MG
B =   55MG
B =   60MG
B =   65MG
B =   70MG
B = 100MG

Fig. 6. Column density xs of the post-shock cooling region as
a function of ṁB−2.6

7 for the same parameters as in Fig. 5. The
solid curve is the best fit from Eq. (20). The dotted curve indi-
cates the corresponding fit to the data for 1M�. The straight
lines in the lower left denote the bombardment solutions from
Eq. (17) for 0.6 M� and 1.0 M�.
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Fig. 7. Same as Fig. 6 but for geometrical shock height hsh

contained in the quantity hshB
2.6
7 . The fits refer to 0.6 M�

(solid curve) and 1 M� (dashed curve). The straight lines rep-
resent the corresponding bremsstrahlung solutions of Eq. (14).

and 1.0 M�, but for clarity we do not show these data.
The 0.6 M� results can be fitted by

1
Tmax

=
[(

1
a0 Tmax,bomb

)α
+
(

1
a1 Tmax,brems

)α ]1/α

(19)

with Tmax,bomb from Eq. (18) and Tmax,brems from
Eq. (16). The exponent α measures the smoothness of
the transition between cyclotron and bremsstrahlung so-
lutions. The fits for 0.6 and 1 M� are included in Fig. 5
as the solid and dotted curves, respectively. The fit
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Fig. 8. Overall spectral energy distributions for an emission
region on an 0.6 M� white dwarf at d = 10 pc with B =
30 MG, D = 108 cm, and ṁ = 100, 10, 1, and 10−1 g cm−2 s−1

(from top). The dashed sections indicate the emission directed
away from the white dwarf at ϑ = 5◦ without the reflection
albedo, the solid curves include the latter. The dotted curve
for ṁ = 1 g cm−2 s−1, B = 100 MG indicates the increased
cyclotron radiation and the reduced bremsstrahlung flux and
temperature for this field strength.

Table 2. Fit parameters of Eqs. (19)–(21) for three values of
the white dwarf mass Mwd.

M a0 a1 α b0 β c0 γ
(M�) (s) (108 cm)

0.6 0.91 0.968 1.67 6.5 0.70 0.95 1.0
0.8 0.86 0.954 1.54 7.5 0.54 1.30 0.7
1.0 0.90 0.934 1.25 8.0 0.45 1.75 0.5

parameters a0, a1, and α are listed in Table 2 for all three
white dwarf masses. The fact that a1 falls slightly short
of 1.0 indicates that the limiting value Tmax = (µ/µi)Ti,s

for large ṁ is not yet reached at 100 g cm−2 s−1. Even
at this high ṁ, radiative energy losses remove some en-
ergy prior to equipartition. The maximum temperatures
at low ṁ remain about 10% below the temperatures pre-
dicted by the bombardment solution of WB92,93 (straight
lines, a0 ' 0.9). A difference as small as this is actually
remarkable considering the substantially different theoret-
ical and numerical approaches (radiation hydrodynamics
vs. radiative transfer in a static atmosphere).

2.11. Column density xs

The transition of xs between the bombardment and
the bremsstrahlung solutions (Eqs. (17) and (13)) is
more complicated than that of Tmax. Figure 6 shows
xs as a function of ṁB−2.6

7 for Mwd = 0.6 M� and
B = 10−100 MG. Again, the data points for 0.8 and
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Fig. 9. Cyclotron section of the spectral energy distributions
for the same set of parameters as in Fig. 8, except ϑ = 80◦,
and for mass flow densities ṁ = 1, 10−1, and 10−2 g cm−2 s−1

(from top).

1.0 M� are not shown for clarity. We fit xs by

1
xs

=

[(
µ

b0 µe ṁB
−2.6
7

)β
+
(

1
xs,brems

)β]1/β

(20)

with xs,brems from Eq. (13). The fit parameters b0 and β
are given in Table 2 for the three values of Mwd. Again,
the fits are shown for 0.6 and 1.0 M� (solid and dotted
curve), with the corresponding bombardment solutions
added as straight lines. Note that, contrary to what we
found for Tmax, the first term in Eq. (20) does not repre-
sent the bombardment solution, but rather the cyclotron-
dominated shock heated plasma. It connects to the
bombardment solution as the non-hydrodynamic regime is
approached and bridges a gap of two orders of magnitude
in xs between the bombardment and bremsstrahlung solu-
tions. Clearly, the quantitative determination of xs(ṁ,B)
requires radiation-hydrodynamical calculations. The ṁ-
dependence of Eq. (20) reproduces that of Eq. (10), the
molecular weight dependence is added here and taken from
Eq. (9).

2.12. Geometrical shock height hsh

Figure 7 shows the quantity hshB
2.6
7 for Mwd = 0.6 M�

and for field strengths between 10 and 100 MG. We fit the
data by

1
hshB2.6

7

=

[(
µ

c0 µe

)γ
+
(

B−2.6
7

hsh,brems

)γ ]1/γ

(21)

where ṁ as independent variable enters via hsh,brems

from Eq. (14) and the fit parameters c0 and γ are
listed in Table 2. The fits for 0.6 M� and 1.0 M� are
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shown (solid and dotted curve). The limiting dependen-
cies for large and small ṁB−2.6, respectively, are hsh =
hsh,brems ∝ ṁ−1 and hsh= c0B

−2.6
7 = const., as pre-

dicted by Eq. (11). The shock height is related to xs

by the mean post-shock density ρ = xs/hsh which is
ρ = 6.97 ρ0 for the bremsstrahlung-dominated shock solu-
tion (see Eqs. (13) and (14)). For the cyclotron-dominated
shock-heated flow, the mean post-shock density increases
to ρ = (b0/c0) ρ0 υo ' 30 ρ0, a result which cannot be
obtained from simple theory.

3. Emission regions of finite lateral width

In our radiation-hydrodynamical calculations, energy con-
servation is enforced and the radiative luminosity of the
infinite layer per unit area equals the accretion energy
ṁυo. Any real emision region, however, has a finite lateral
width and looses energy not only from its top and bottom
surfaces but also from its sides (Fig. 1). Two-dimensional
radiation hydrodynamics would then be needed to calcu-
late the temperature structure. In this section we discuss
to what extent our one-dimensional results are still appli-
cable to regions of finite extent.

3.1. Emitted spectra

We consider an emission region as depicted in Fig. 1, with
finite width D, cross section D2, and field strength B. In a
first step, we adopt the temperature and velocity profiles
along the flow lines, T (x) and υ(x), calculated for infinite
D also for the case of finite D.

In the Rybicki code the radiation transport equation
was solved with a mean cyclotron absorption coefficient
and electron scattering was included. For the emission re-
gion of finite extent, we calculate the outgoing flux at
angle ϑ by ray tracing using the temperature profiles
along slanted paths as shown schematically in Fig. 1. For
rays starting or ending on the side surfaces, the tem-
perature and density profiles were truncated appropri-
ately. We account separately for the cyclotron emissivi-
ties in the ordinary ray (index o) and the extraordinary
ray (index e), and add 50% of the free-free emissivity with
Gaunt factor to both. We neglect electron scattering in the
emission region, but include the atmospheric albedo Aν
(van Teeseling et al. 1994). Each ray yields a contribution
∆Iν to the integrated intensity Iν (in erg s−1 Hz−1 sr−1)
in that direction and the summation is extended over n
rays,

Iν(ϑ)=
n∑
i=1

∆Iν(ϑ)=
n∑
i=1

∆σ(i)

s(i)max∫
0

ε(i)ν,o(ϑ, s) e−τ
(i)
ν,o(ϑ,s) ds

+

s(i)max∫
0

ε(i)ν,e(ϑ, s) e−τ
(i)
ν,e(ϑ,s) ds

 , (22)

where τ
(i)
ν,o(ϑ, s) and τ

(i)
ν,e(ϑ, s) are the optical depths of

the ordinary and extraordinary rays along path i at an-
gle ϑ, s(i)

max is the pathlength along that ray and ∆σ(i) the

effective projected area associated with it. The albedo con-
tribution at ϑ is calculated as Aν Iν(π−ϑ) and is not yet
included in Eq. (22). Reprocessing of the flux absorbed in
the white dwarf atmosphere is not considered in this pa-
per and the corresponding flux is, therefore, missing from
our spectra. The spectral luminosity Lν is obtained by in-
tegrating Eq. (22) over 4π and the total luminosity L by
integration over all frequencies.

Figure 8 shows the spectral flux at ϑ = 5◦ against
the field direction emitted by an emission region with
B = 30 MG and an area of 1016 cm2 (D = 108 cm) on
an 0.6 M� white dwarf at a distance of 10 pc. Cyclotron
emission dominates for low ṁ and bremsstrahlung for high
ṁ. Free-free absorption becomes important near 1015 Hz
at the highest ṁ, but in reality this spectral region is
dominated by the quasi-blackbody component produced
by reprocessing of the incident flux in the white dwarf
atmosphere. The results of WB96 on the ratio of the cy-
clotron vs. bremsstrahlung luminosities as a function of ṁ
and B remain basically valid, but will be modified if the
shock is buried in the atmosphere and X-ray absorption
is accounted for.

Figure 9 illustrates the optical depth dependence of
the cyclotron spectra at ϑ = 80◦. Cyclotron emission lines
at low ṁ change into absorption features at high ṁ. Since
in real emission regions the fractional area of the high-ṁ
section is small (Rousseau et al. 1996) observed spectra
show emission lines.

3.2. Specific luminosity

An isolated emission region of lateral width D, shock
height hsh, and the temperature profile T (x) of the in-
finite layer appropriate for the mass flow density ṁ will
have L = ṁυo for optically thin and L ≥ ṁυo for opti-
cally thick emission. The overestimate in the latter case
results from radiation emerging from the sides of the re-
gion without a compensating influx. For the optical depths
considered here, bremsstrahlung is practically free of such
overestimate, cyclotron radiation is not.

Let us assume for the infinite layer that ṁυo feeds two
components of L, namely Lthin and Lthick = ṁυo −Lthin.
For finite D, we then have

L ' Lthin + (ṁυo −Lthin)
(

1 +
2hsh

D

)
≥ ṁυo, (23)

where the second term in brackets is the ratio of the total
surface area of the emission region over the sum of top
and bottom areas. For simplicity, we have neglected the
temperature variation over the surface of the emission re-
gion and taken the energy loss per unit area as constant.
We rearrange the terms in Eq. (23) to form a quantity A
which relates L/ṁυo to the aspect ratio of the emission
region, hsh/D,

A =
( L
ṁυo

− 1
)

D

2hsh
' 1− Lthin

ṁυo
· (24)
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Fig. 10. Quantity A from Eq. (24) measuring the excess lu-
minosity L/ṁυo as function of the aspect ratio of the emission
region, hsh/D. The symbols refer to narrow and pillbox-shaped
emission regions with D/hsh= 0.1 ( ),D/hsh= 1( ),D/hsh=
10 ( ), the overplotted + and × refer to field strengths of
10 and 100 MG, respectively, the uncrossed symbols to B =
30 MG.

Figure 10 shows A as a function of ṁB−2.6
7 , calculated

for model columns with hsh/D = 0.1, 1 and 10 in the way
described in the previous section. To a first approxima-
tion, A is independent of hsh/D and the relative luminos-
ity error (L − ṁ)/ṁυo increases proportional to hsh/D
for a given ṁB−2.6

7 . The quantity A is negligibly small
for large ṁB−2.6

7 where bremsstrahlung dominates and
reaches A ' 0.4 for low ṁB−2.6

7 where cyclotron radia-
tion dominates. Note that A never reaches the optically
thick limit of unity because bremsstrahlung and optically
thin cyclotron emission always contribute. To give an ex-
ample, hsh/D = 0.5 and A ' 0.4 imply L/ṁυo ' 1.4, i.e.
an overestimate of the luminosity by 40%.

In order to assess the size of the possible error for
AM Her stars, we estimate hsh/D for a typical accretion
rate of Ṁ = 1016 g s−1 as a function of ṁ. The linear width
of the emission region is D ' (Ṁ/ṁ)1/2 ' 108/ṁ1/2 cm
with ṁ in g cm−2 s−1. For a bremsstrahlung-dominated
flow, Eq. (14) yields hsh,brems/D ' 0.48/ṁ1/2 (for Mwd =
0.6 M�) which is less than unity since in this case ṁ >∼
1 g cm−2 s−1. For a cyclotron-dominated flow, Eq. (21)
correspondingly yields hsh,cyc/D ' 2ṁ1/2/B2.6

7 which is
again less than unity since now ṁ <∼ 1 g cm−2 s−1 and
typically B7 > 1. Hence, L is seriously overestimated only
for isolated narrow subcolumns which are not radiatively
shielded by neighboring fluxtubes.

3.3. Temperature correction

Let the application of the unmodified one-dimensional
temperature profile T (x) yield a specific luminosity

L = r . ṁυo with r > 1. We can then take then either:
(i) identify the parameters of this emission region with
those appropriate for the increased mass flow rate ṁ′ =
r . ṁ; or (ii) recalculate the emission for a reduced mass
flow rate ṁ′′ = ṁ/r and identify temperature and emis-
sion of that region as appropriate for the initial ṁ. In case
(ii), Tmax and xs are reduced to Tmax(ṁ′′) and xs(ṁ′′).
This approach demonstrates that the rising sections of
the relations displayed in Fig. 5 (Eq. (19)) and Fig. 6
(Eq. (20)) are further depressed for narrow columns, while
the horizontal parts, where optically thin bremsstrahlung
dominates, are not affected. Both approaches secure en-
ergy conservation but cannot replace a proper treatment
of the problem. They are not recommended for isolated
tall columns.

4. Discussion

We have solved the equations of one-dimensional, two-
fluid stationary radiation hydrodynamics for the shock-
heated plasma in the emission regions on accreting mag-
netic white dwarfs for a wide range of mass flow densities
ṁ = ρ0υo and field strengths B. For given B and Mwd,
the peak electron temperature Tmax and the column den-
sity xs of the emission region are physically related to
ṁ as the independent variable of the theory. They are
no longer independent variables as in the frequently em-
ployed “constant-Λ models”. It is possible, therefore, to
interpret the observed spectral energy distributions of ac-
creting magnetic white dwarfs in terms of the distribution
of mass flow densities present in their accretion spots.

We now discuss to what extent the application of these
results is limited by the simplifications made in our calcu-
lations. One major simplification is the assumption of sta-
tionarity which implies that we neglect the possible occur-
rence of shock oscillations (Imamura et al. 1996; Saxton &
Wu 1999, and references therein) and that we can not treat
rapid time variability of ṁ. Since our approach can ac-
commodate a range of ṁ to occur in neighboring columns,
the emitted spectrum will still approximate the true time-
averaged spectrum if ṁ varies only on time scales exceed-
ing the post-shock cooling time τcool ' 4hsh/υo ∼ 1 s.
In the presence of shock oscillations which have periods
of order τcool, our results yield a mean temperature and
column density which need not agree with the true time-
averaged value if the oscillation is nonlinear (Imamura &
Wolff 1990).

The assumption of a one-dimensional flow implies that
we neglect the convergence of the polar field lines of
the white dwarf. In the spirit of this approximation, we
have included the acceleration of the post-shock flow by
a constant gravity g = GMwd/Rwd

2 and neglected the r-
dependence of g.

The assumption of an infinite layer implies that there
is no temperature gradient perpendicular to the flow. This
is no restriction for bremsstrahlung-dominated flows, but
in such gradient is always established in columns of fi-
nite width D by optically thick radiation components and
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lowers the mean electron temperature averaged across the
column at any position x. We have suggested a simple
first-order correction for the implied overestimate in T (x)
which ensures conservation of energy and provides some
remedy for narrow columns with hsh ∼ D. For very nar-
row columns with hsh � D or absolutely tall columns with
hsh > 0.1Rwd, the main radiative energy flow may be side-
ways and the approach of Wu et al. (1994) becomes more
appropriate. In summary, our results are valid whenever
hsh � Rwd and hsh <∼ D.

On the positive side, we consider our largely correct
treatment of the two-fluid nature of the post-shock flow.
One-fluid treatments (e.g. Chevalier & Imamura 1982;
Wu et al. 1994) can account for cooling by cyclotron ra-
diation in addition to bremsstrahlung, but are limited,
by definition, to mass flow densities sufficiently high to
ensure quick equilibration of electron and ion tempera-
tures. They can not describe the substantial reduction of
the peak electron temperature below the one-fluid value
which we show to be present at low mass-flow density
ṁ and/or high magnetic field strength B. As a result,
our description catches the essential properties of such
columns: (i) dominant cyclotron cooling causes the peak
electron temperature to stay far below the peak tempera-
ture of the one-fluid approach; (ii) cyclotron cooling causes
a drastic reduction in the column density and the geomet-
rical shock height of the post-shock flow compared with
pure bremsstrahlung cooling; and (iii) peak temperature
and column density vary smoothly between the two limit-
ing cases, the bremsstrahlung-dominated high-ṁ regime
(Aizu 1973) and the cyclotron-dominated low-ṁ bom-
bardment solution (WB92, WB93). The latter denotes the
transition to the non-hydrodynamic regime and, gratify-
ingly, our calculations recover the bombardment solution
at the lowest mass flow densities accessible. Compared
with WB96, we obtained numerically more accurate re-
sults and have cast these into simple-to-use fit formulae
which facilitate the modeling of emission regions within
the geometrical limitations noted above. No other two-
fluid calculations with the full optically thick radiative
transfer are available.

The remaining, mainly geometrical limitations of our
approach are inherently connected to the one-dimensional
radiative transfer. Extension of the calculation to two
dimensions encounters two problems: (i) a substan-
tial increase in complexity and (ii) the introduction
of an additional free parameter in form of the lateral
width of the emission region. Therefore, we consider our
one-dimensional approach with the correction explained
in Sect. 3 as a reasonable compromise, with the noted ex-
ception of tall columns.

The present results can be used to quantitatively
model the emission regions on accreting magnetic white
dwarfs. The discussion of the overall spectral energy distri-
bution of such objects requires to account for shocks being
buried in the photosphere of the white dwarf. Such model
allows to obtain the ṁ−distribution in the accretion spot
from observational data and is presented in Paper II of this
series. The emission properties of AM Herculis binaries de-
pend not only on ṁ but vary also systematically with field
strength: this dependence is described in Paper III.
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