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Abstract

Glial dysfunction has been implicated in a number of neurodegenerative diseases. In this study we investigated the
consequences of glial and oligodendrocyte ablation on neuronal integrity and survival in Drosophila and adult mice,
respectively. Targeted genetic ablation of glia was achieved in the adult Drosophila nervous system using the GAL80-GAL4
system. In mice, oligodendrocytes were depleted by the injection of diphtheria toxin in MOGi-Cre/iDTR double transgenic
animals. Acute depletion of oligodendrocytes induced axonal injury, but did not cause neuronal cell death in mice. Ablation
of glia in adult flies triggered neuronal apoptosis and resulted in a marked reduction in motor performance and lifespan.
Our study shows that the targeted depletion of glia triggers secondary neurotoxicity and underscores the central
contribution of glia to neuronal homeostasis. The models used in this study provide valuable systems for the investigation
of therapeutic strategies to prevent axonal or neuronal damage.
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Introduction

All complex nervous systems consist of two main cell types, neurons

and glia. The increasing complexity of the nervous system during

evolution is accompanied by a steady rise in glial cell number.

Whereas only approximately 10% of the 90 000 cells of the central

nervous system (CNS) of Drosophila melanogaster are of glial origin, glia

account for the majority of the cells of the mammalian brain [1]. In

vertebrates central nervous system there are three major classes of

glial cells: oligodendrocytes, astrocytes and microglia. In both the

invertebrate and the vertebrate nervous system, glia participate in an

intimate anatomical relationship with neurons to provide structural

and metabolic support [2,3,4,5,6,7,8,9,10]. There are numerous

examples of how glia engage in neurotransmitter metabolisms, ion

buffering, axon pathfinding, electrical insulation and nutrient

function. These multiple functional interconnections between glia

and neurons, raise the question whether and how the acute loss of glia

affect neuronal integrity. In Drosophila, the glial-specific homeodomain

protein, Repo, is essential for survival of the laminar neurons in the

optic lobe [11]. Moreover, mutations in genes such as drop dead and

swiss cheese, have revealed the importance of glia in the functioning of

the adult Drosophila nervous system [12]. In addition, when glial

function is impaired in the developing nervous system of Drosophila

either by mutations in the gene glial cells missing or by targeted genetic

glial ablation, neuronal death is induced non-autonomously [13]. In

mammalian cell culture, astrocytes are required for long-term

survival of neurons [14]. Furthermore, several oligodendrocyte

mouse mutants result in defects causing axonal degeneration in the

CNS [15,16,17,18,19,20,21,22,23]. Together, these studies unam-

biguously show that glial dysfunction can result in neurodegeneration.

However, none of these studies have addressed whether the acute

depletion of glia in the mature nervous system affects neuronal

survival. This is a relevant question as loss of glia in the adult nervous

system occurs in a number of neurological diseases. For example, in

multiple sclerosis (MS) it is still a matter of debate whether

neurodegeneration is the result of a direct inflammatory attack

against the axon or rather a consequence of oligodendrocyte

dysfunction and demyelination [24,25,26,27]. Especially the latter

scenario is difficult to address in the experimental autoimmune

encephalomyelitis (EAE) model, the most widely used animal model

of MS. To determine whether selective loss of glia in adult brain can

cause acute neurodegeneration, we used an experimental system of

genetic models that allow the ablation of glia in the adult nervous

system of Drosophila or mice.

Results

Oligodendrocyte ablation in MOGi-Cre/iDTR mice
induces axonal damage

For oligodendrocyte ablation, we used the double transgenic

MOGi-Cre/iDTR mice that express the diphtheria toxin receptor

specifically in oligodendrocytes. Previous studies have shown that
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intraperitoneal injection of DT into MOGi-Cre/iDTR mice

results in loss of oligodendrocytes and demyelination after 230

days [28]. However, the effect on axonal and neuronal number

was not investigated in this study. To explore this issue, 10-week-

old MOGi-Cre/iDTR mice received 400 ng of DT via daily

intraperitoneal injections on seven consecutive days. Age- and sex-

matched MOGi-Cre/iDTR mice that received PBS injections and

MOGi-Cre mice (lacking the iDTR allele) that received DT

injections served as controls in these experiments. After 30 days,

when clinical symptoms such as tremor and unbalanced gait were

detected in the treated group, animals were sedated, perfused

transcardially, fixed and processed for immunohistochemistry. To

analyze the extent of demyelination in the corpus callosum caused

by oligodendrocyte ablation, coronal slices were stained with

Luxol fast blue–periodic acid Schiff (LFB-PAS) and demyelination

was evaluated according to a standardized score from 0 (no

demyelination) to 3 (complete demyelination). Consistent demy-

elination was observed in DT-treated MOGi-Cre/iDTR mice, but

was absent in the control animals. In line with this finding, a lower

number of oligodendrocytes were observed in DT-treated MOGi-

Cre/iDTR mice (Fig. 1). In addition, reactive astrogliosis and

activated microglia were detected in DT-treated MOGi-Cre/

iDTR mice (Fig. 2).

Next, sections were stained for neurofilament 200 (NF200) to

evaluate axonal structures. Images of the midsagittal line of the

corpus callosum from coronal sections were obtained under equal

acquisition parameters using a confocal microscope and the signal

intensity was analysed with Image J. We observed substantial

damage of axons in DT-treated MOGi-Cre/iDTR mice as

compared to the controls (Fig. 3). In damaged or transected

axons, transported molecules and organelles accumulate in the

axon and consequently increased amounts of amyloid precursor

protein (APP) are frequently detected [27,29]. We therefore

analyzed the axonal pathology in more detail, by performing

immunostainings for APP. These experiments revealed a substan-

tial accumulation of APP in the axons of DT-treated MOGi-Cre/

iDTR mice, but not in controls (Fig. 3). To determine whether

neuronal loss had occurred, we performed a computer-assisted

analysis of neuronal densities in defined cortical areas: Sections

immunostained with the neuronal marker NeuN were scanned

and neuronal densities were evaluated. We found that oligoden-

drocyte ablation did not result in any significant differences in

neuronal cell number (Fig. 3), nor densities. In addition, we could

not detect apoptotic neuronal cells by fluorescein-12-deoxy-UTP

nick-end labeling (TUNEL) staining (Fig. S1). Together, these

results indicate that acute depletion of oligodendrocytes induced

axonal injury, but does not cause detectable neuronal cell death 30

days post treatment.

Glial ablation triggers neuronal apoptosis in adult
Drosophila

Next, we used Drosophila melanogaster as a model system to

analyze the impact of glia ablation on neurons in an invertebrate

system. Approximately 10% of the cells of the adult Drosophila

melanogaster CNS are of glial origin. To ablate these cells, we used

the UAS/GAL4-system [30]. Glial-specific expression of UAS-

transgenes was mediated using the repo-GAL4 driver [31,32]. The

driver line repo-GAL4 is active already in early fly development. In

order to prevent GAL4 dependent expression of UAS-transgenes

in development, we made use of a temperature-sensitive allele of

the GAL4 repressor GAL80ts [33]. At restrictive temperature

(18uC), GAL80 efficiently suppressed GAL4-dependent activation

of UAS-transgenes. Shifting adult flies to permissive temperature

(29uC), GAL80ts looses its suppressor activity and GAL4 induces

the expression of genes under UAS control. To ablate glia, we

induced apoptosis specifically in glia by expressing the proapopto-

tic gene reaper in the adult fly using the repo-GAL4 driver in

combination with GAL80ts.

We performed TUNEL staining and immunofluorescence

analyses using antibodies against neuronal and glial markers to

detect apoptotic cells and observed massive induction of neuronal

apoptosis after triggering cell death in glia (Fig. 4). Quantitative

analysis of brain sections examined 0, 3 and 10 days after

induction of glial apoptosis, revealed a significant increase in

number of TUNEL-positive neurons (Elav-positive cells). Apo-

ptotic neurons were almost absent from control brains. To

examine the consequences of glial cell death on the survival of the

flies, we performed longevity analysis. After the induction of glial

cell death, there was a striking reduction in the lifespan of adult

flies as compared to control flies. In addition, flies display negative

geotaxis, an easy measure of the ability to climb away from gravity.

These experiments revealed dramatic climbing deficits after glia

ablation (Fig. 5). Taken together, our results show that the

induction of apoptosis in glia of adult flies has a dramatic impact

on neuronal survival.

Discussion

We have shown that selective depletion of glia in the adult

vertebrate and invertebrate nervous system results in secondary

severe axonal damage or neuronal loss. Targeted genetic ablation

of glia was achieved in the adult Drosophila nervous system using

the UAS/GAL4 system in combination with the temperature

sensitive suppressor of GAL4, GAL80ts. In mice, oligodendrocytes

were depleted by the injection of DT into MOGi-Cre/iDTR

double transgenic mice. In both experimental systems the acute

depletion of glia induced massive neurotoxicity. These findings are

of relevance for interpretation of neurodegeneration in diseases

with glial pathology. For example, in patients with MS the

neurodegeneration is thought to be the leading cause for

permanent disability, but the mechanisms that trigger neurode-

generation are still under debate [27,34]. Two major – but

mutually not excluding – scenarios could be envisaged. An

inflammatory response consisting of autoreactive CD8+ T cells,

antibodies and complement or activated microglia/macrophages

may directly attack the axons [35]. Alternatively, axonal damage

might be secondary to demyelination. It has been difficult to

distinguish between these different possibilities in EAE. Recently, a

genetic model that enables the ablation of oligodendrocytes in the

mouse nervous system was described. By using an inducible Cre/

loxP recombination system, the A subunit of diphtheria toxin was

specifically expressed in oligodendrocytes [36]. Interestingly and in

contrast to our study, the oligodendrocyte ablation, and the

resulting demyelination, did not induce axonal loss in the optic

nerve or spinal cord. The reason for these different outcomes is

likely to be found in the nature of the different models. The

induction of the A subunit of diphtheria toxin in oligodendrocytes

by tamoxifen treatment of PLP/CreERT; ROSA26-eGFP-DTA mice

may result in a less efficient and less extensive ablation as

compared to the approach used in our study. While our paper was

in revision, Pohl et al. [37] presented another model of

oligodendrocyte depletion using a tamoxifen (TAM)-dependent

PLPCreERT2 allele in combination with a Cre-dependent

diphtheria toxin fragment A (DT-A) transgene in the ubiquitously

expressed ROSA26 locus. In this study, in coherence with our

results, axonal damage was observed as detected by a reduction in

neurofilament staining intensity and an increase in APP accumu-

lation compared to control.

Glial Ablation Triggers Neurotoxicity
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These findings indicate that the nature of the oligodendrocyte

attack has major influence on the response of the axons. It is

possible that the rapid or widespread death of oligodendrocytes

overwhelms the defence mechanisms of the brain. There are a

number of oligodendrocyte mouse mutants that result in axonal

degeneration, but some of them require several months to develop

Figure 1. Oligodendrocyte depletion with Diphtheria Toxin in MOGi-Cre/iDTR mice. MOGi-Cre/iDTR mice were injected with 400 ng
diphtheria toxin (DT) daily, for 7 days. After 30 days, the level of demyelination was assessed by LFB-PAS staining, and the number of mature
oligodendrocytes, by NogoA staining. A decrease of myelination and of mature oligodendrocyte number was observed in MOGi-Cre/iDTR mice
treated with DT (left panel), compared to DT-treated MOGi-Cre animals as control (middle panel) and MOGi-Cre/iDTR animals treated with PBS (right
panel). For quantification one-way ANOVA was performed, followed by pairwise Tukey test. Statistical significance is represented with asterisks (n = 3–
9, **p,0.01, ***p,0.001). Scale bar, 100 mm.
doi:10.1371/journal.pone.0022735.g001
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robust degeneration. For example, mouse mutants that lack some

of the major myelin genes such as myelin-associated glycoprotein

(MAG), the 29,39- cyclic nucleotide 39- phoshodiesterase (CNP)

and the proteolipid protein (PLP) have an almost normal live span

and develop late-onset, chronic progressive axonal degeneration

[15,16,38]. Interestingly, the neuronal pathology in MS seems also

to be primarily directed against the axon, as axonal loss is more

frequently found than loss of neuronal cell bodies [27]. However,

Figure 2. Asrocytosis and microglia activation is observed after DT-induced demyelination in MOGi-Cre/iDTR mice. Coronal sections
from MOGi-Cre/iDTR mice treated with DT (left panel), DT-treated MOGi-Cre animals as control (middle panel) and MOGi-Cre/iDTR animals treated
with PBS (right panel) were stained for astrocytes (GFAP) and microglia/macrophages (Mac3) 30 days after injection. Quantification of astrocyte and
microglia/macrophage density in central corpus callosum is shown as mean 6 SEM (n = 3–7). If ANOVA indicated significant differences in the main
effect (p,0.05), Tukey test pairwise comparison was applied. Statistically significant differences are indicated by asterisks (**p,0.01, ***p,0.001).
Scale bar: 50 mm.
doi:10.1371/journal.pone.0022735.g002
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loss of cortical neurons has recently been reported in more

advanced stages of the disease so called secondary progressive MS

[39].

In contrast, the acute depletion of glia in the adult Drosophila

nervous system triggered apoptosis in neurons, motor paralysis and

death within a few days. Even if glia account for only ,10% of the

cells in the adult Drosophila nervous system, it is likely that their

ablation compromise the physiological environment of the CNS to

an extent that can not be compensated by the neurons. However,

when comparing the results between the Drosophila and the mice

models, it is important to note that we used the pan-glial driver repo

in the flies, whereas only oligodendrocytes were ablated in the

mice. It is therefore possible that a more widespread ablation of

glia would also result in apoptosis and an acute loss of neurons in

mice as observed in Drosophila. Such changes in the physiological

milieu of the CNS induced by glial dysfunction might be relevant

for a number of neurological diseases. For example, models of

diverse human neurodegenerative diseases, including amyotrophic

lateral sclerosis (ALS), Huntington’s disease and multiple system

atrophy (MSA) provide evidence that there are non-cell-autono-

mous mechanisms in which neurodegeneration is strongly

influenced by dysfunctional glia [40,41,42,43,44].

Together these studies indicate that glial dysfunction can trigger

neurotoxicity in a number of different ways. Our study shows that

the acute ablation of glia has an immediate impact on neuronal or

axonal viability. The results provide evidence that loss of

oligodendrocytes is sufficient to induce acute axonal damage and

underscores the central contribution of glia to neurodegenerative

diseases. Many previous studies have related demyelination with

an axonal pathology that does not necessarily result in actual

axonal loss. In fact after transection in demyelinating diseases an

axon can degenerate while the neuronal cell body is able to survive

[27,45]. More research into the non-inflammatory mechanisms of

neurodegeneration will open new avenues for the treatment of

diseases such as MS. Importantly, the model used in this study

provides a valuable system for the investigation of therapeutic

strategies to prevent axonal or neuronal damage.

Materials and Methods

Mice and perfusions
Animal experiments were conducted in accordance with animal

protection laws approved by the Government of Lower Saxony,

Germany. 10-week-old MOGi-Cre/iDTR mice [46,47] were

injected intraperitoneally with 400 ng of diphtheria toxin (DT,

Merck) in PBS once a day for seven days. Age- and sex-matched

MOGi-Cre/iDTR mice injected with PBS, and MOGi-Cre mice

(lacking the iDTR allele) injected with DT were used as controls.

After 30 days, when clinical symptoms such as tremor and

unbalanced gait were detected in the treated group, animals were

sedated with a 14% chloral hydrate intraperitoneal injection,

perfused transcardially and fixed with 4% paraformaldehyde

(PFA). Tissue was processed as described previously [48,49]. After

paraffin embedding 3 mm thick sections of the brain, spinal cord,

spleen and liver were obtained.

Histological analysis
The extent of demyelination induced by DT injection was

assessed by scoring the animals from 0 (no demyelination) to 3

(complete demyelination) in sections stained with Luxol fast blue–

periodic acid Schiff (LFB–PAS) [50] by a double-blinded observer.

Immunohistochemistry was performed using antibodies against

neuronal nuclei (NeuN Chemicon, Temecula, CA, USA) and

against the amyloid precursor protein (APP, clone 22C11;

Chemicon, CA, USA) followed by labelling with biotinylated

secondary antibodies. Avidin-biotin technique with 3,3-diamino-

benzidine was used for visualization. Fluorescence immunohisto-

chemistry was performed for neurofilament 200 (NF200, clone

N52, Sigma) with Alexa488-conjugated chicken anti-mouse IgG

secondary antibodies (Invitrogen). To assess axonal preservation,

images of each side of the midsagittal line of the corpus callosum

from coronal sections stained with NF200 were obtained under

equal acquisition parameters with a confocal microscope (LSM

510, Carl Zeiss MicroImaging, Inc). At each side of the midsagittal

line, the NF200-positive area (which allows the demarcation of the

corpus callosum and its distinction from the ventricular and

cortical areas), was taken as ROI and analyzed with imageJ. The

signal density is given by the average gray value per square

micrometer of the ROI, which is independent of surface area.

Histological sections stained with anti-APP counterstained with

Haemalaun, and with NeuN antibody were scanned using the

Mirax Midi System (Carl Zeiss Micro Imaging GmbH).

Neuronal numbers semi-automated analysis
Sections stained for neuronal nuclei with NeuN antibodies were

scanned as described above. Neuronal numbers were automati-

cally counted using a script in Cognition Network Language based

upon the Definiens Cognition Network TechnologyH platform

(Definiens Developer XD software, Munich, Germany). Briefly,

the cortical region of interest was drawn manually and NeuN

positive cells were detected based on color criteria. After finer

segmentation to discriminate between nucleus and cytoplasm, the

object was classified as a NeuN-positive cell if the soma was below

a certain size and had 0 or 1 nucleus. If more than one nucleus was

detected within one soma, the object was split using each nucleus

as seed to grow into the surrounding cytoplasm, stopping if

growing borders converged or the cytoplasmic border was

reached. Finally, the total number and density of NeuN-positive

cells was calculated.

Drosophila stocks and genetics
The following fly stocks were used: w[1118];

P{w[+m*] = GAL4}repo/TM3 referred to as repo–GAL4 in text,

w[*]; P{w[+mC] = tubP-GAL80[ts]}, referred to as tub-GAL80ts,

in text, w[1118]; P{w[+mC] = UAS-rpr.C}, referred to as UAS-

Figure 3. Oligodendrocyte depletion with DT results in axonal damage but does not affect cortical neuronal density. (A) A decrease
of neurofilament signal density (NF200), and an increase in axonal damage (evidenced by APP accumulation) was observed in MOGi-Cre/iDTR mice
treated with DT (left panel), compared to DT-treated MOGi-Cre animals as control (middle panel) and MOGi-Cre/iDTR animals treated with PBS (right
panel). Quantifications are shown as mean and SEM (n = 3–10). One way ANOVA was performed, followed by pairwise Tukey test. Significance is
represented with asterisks (**p,0.01, ***p,0.001). Scale bar, 100 mm. (B) Coronal sections were stained for neuronal nuclei with NeuN antibodies,
scanned with Mirax Midi System and automatically counted using Definiens Developer XD software in the indicated region of interest (ROI). One way
ANOVA was performed, no statistically significant difference in neuronal density was observed between the groups. Also, no significant difference
was found in cortical volume between the groups (p.0.05). An average of 10104 NeuN+ were counted per animal. Quantifications represent mean
and SEM (n = 8 MOGi-Cre/iDTR mice treated with DT, 5 DT-treated MOGi-Cre animals as control (middle panel) and 3 MOGi-Cre/iDTR animals treated
with PBS, ns: not significant).
doi:10.1371/journal.pone.0022735.g003
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reaper in text. OregonR served as wild-type control. All stocks

were obtained from the Bloomington Stock Center (Indiana

University, Bloomington, IN USA). Flies were maintained on

normal commensal-yeast-agar medium.

By combining glial specific driver repo-GAL4 [31] with

ubiquitously expressed temperature-sensitive allele of GAL80ts

we generated a fly line (w; tub-GAL80ts; repo-GAL4/TM3, Sb)

referred to as tub-GAL80ts; repo-GAL4 [33], allowing expression

of reaper [51] specifically in adult glia. Crossings of UAS-reaper

with tub-GAL80ts; repo-GAL4 flies were set at 18uC to minimize

the expression of reaper. At 18uC the ubiquitously expressed

GAL80ts blocks repo-GAL4-dependent activation UAS-reaper.

Figure 4. Glial ablation in adult Drosophila results in neuronal apoptosis. (A) Glial cell death was induced in transgenic flies by expressing
Reaper for 10 days in adult flies (UAS–reaper/tub–GAL80ts;repo–GAL4/+. Double-label immunofluorescence and TUNEL staining on brain sections.
Colocalization of the glial-specific protein repo and the neuronal-specific protein elav (red) with TUNEL-positive nuclei (green) reveals the presence of
apoptotic glial and neuronal nuclei (arrows). (B) Double-label immunofluorescence and TUNEL on brain of control flies (genotype: tub–GAL80ts/+;
repo–GAL4/+). Scale bar, 20 mm. (C) Quantitative analysis of TUNEL-positive neurons. Statistical analysis was performed with an unpaired t test
(***p,0.001, Error bar is 6 SEM).
doi:10.1371/journal.pone.0022735.g004

Figure 5. Glial ablation in adult Drosophila reduces lifespan and impairs locomotion. (A) Glial cell death was induced in transgenic flies by
expressing reaper for 10 days in adult flies (UAS–reaper/tub–GAL80ts;repo–GAL4/+). UAS-reaper and tub–GAL80ts/+;repo–GAL4/+ were used as negative
control. (B) Median survival of respective survival curve. (C) Summary of statistical significance (Log-rank-Mantel-Cox Test) by cross-comparing the
survival curves. (D) Locomotion defect of flies was analyzed with negative geotaxis and was quantified 10 days after shifting the flies from 18uC to
29uC in a countercurrent apparatus. Experimental flies (UAS–reaper/tub–GAL80ts; repo–GAL4/+) were compared to control flies (tub–GAL80ts/+; repo–
GAL4/+) in group1 and group3 to have better assessment of motor defect. One-way ANOVA followed by Bonferroni post hoc test was used for
statistical significance (*p,0.05, **p,0.001, ***p,0.0001, ns not significant).
doi:10.1371/journal.pone.0022735.g005

Glial Ablation Triggers Neurotoxicity

PLoS ONE | www.plosone.org 8 July 2011 | Volume 6 | Issue 7 | e22735



From the F1 generation adult flies genotype of the following

genotypes UAS-reaper/tub-GAL80ts;repo-GAL4/+ and tub-

GAL80ts/+;repo-GAL4/+ (control) were switched to 29uC to

inactivate the temperature-sensitive GAL80, thereby allowing the

expression reaper in glia. We used this system to ablate adult glia in

Drosophila.

Longevity assay
To deplete the mature glial cells tub-GAL80ts; repo-GAL4 flies

were crossed with UAS-reaper, and OregonR (negative control).

3–4 days post-hatching adult males with the respective combina-

tion of GAL4-driver, UAS-transgene and GAL80ts were shifted to

29uC (10–15 flies per vial). Numbers of dead flies were counted

daily. Fresh fly food was provided every 2–3 days. At least 50 flies

per genotype were used for the assay. Log Rank Test (Mantel-Cox)

was used to test for statistical significance.

Climbing Assay
30–40 male flies per genotype were shifted to 29uC (3–4 days

post-hatching). 10 days after shifting to 29uC negative geotaxis

assay was performed to asses locomotion. In this assay, flies were

partitioned up into six tubes by giving them the choice five times to

stay or to climb up the side of the tube. After the assay, flies were

distributed into six tubes depending on how many times (between

0 and 5 times) they climbed up. To represent the distribution of

the flies, the number of the flies in the 1st and 2nd (group 1), 3rd

and 4th (group 2), and 5th and 6th (group 3) tubes were summed

up and displayed in a bar graph [51].

TUNEL Assay
To detect apoptotic cells, in situ cell death detection kit from

Roche was used and performed according to manufacturer

protocol. To stop the terminal deoxynucleotidyl transferase-

mediated biotinylated UTP nick end labelling (TUNEL) reaction

saline-sodium citrate buffer (Promega) was used.

Immunohistochemistry
Adult Drosophila brains were dissected in 16PBS +0.1% Triton

X-100 (PBT) and fixed with 4% PFA for 30 min at room

temperature. Primary antibodies (both obtained from Develop-

mental Studies Hybridoma Bank) anti-Repo (1:100) and anti-Elav

(1:200) were diluted in PBT with 2% horse serum and incubated at

4uC overnight. For primary antibody detection, Cy3-coupled

antibodies anti mouse or rat (Dianova) were used in a 1:200

dilution, respectively. After extensive washing, brains were

mounted with Vectashield (Vectorlab)+ DAPI and images were

taken with a confocal microscope (Leica LSM/SP2). Central brain

region was imaged and analyzed for quantification. Image

processing was performed with ImageJ.

Statistical analysis
For the histological analysis of the diphtheria toxin assay, a one-

way ANOVA was performed, followed by a Tukey test for

pairwise comparisons, if applicable. For Drosophila glia ablation,

unpaired t-test was performed for the histological analysis of

TUNEL-positive neurons, as well as a Log-rank-Mantel-Cox Test

for the cross-comparison of survival curves and one-way ANOVA

followed by Bonferroni post hoc test for motor defect time course

analysis. A p-level of ,0.05 was considered significant in all tests.

Statistics were calculated using GraphPad prism and SigmaPlot

software (Systat software, Inc.).

Ethics Statement
All animal treatments were approved in advance by the Lower

Saxony state authorities (‘‘Niedersächsisches Landesamt für

Verbraucherschutz und Lebensmittelsicherheit’’; Postfach 39 49;

26029 Oldenburg) for animal experimentation and conducted in

accordance with animal protection laws approved by the

Government of Lower Saxony, Germany. The Approval ID is:

33.14-42502-04-068/09) and the project name ‘‘Mechanismen der

chronischen Progredienz bei Multipler Sklerose’’).

Supporting Information

Figure S1 Coronal sections of cortex from MOGi-Cre/
iDTR mice treated with DT (left panel), DT-treated
MOGi-Cre animals as control (middle panel) and MOGi-
Cre/iDTR animals treated with PBS (right panel) were
stained for TUNEL and NeuN 30 days after injection.
Sections of the spleen of the respective groups were used as

positive control for the TUNEL stainings. Colocalisation of DAPI

and TUNEL-positive cells is shown as an inset for each group.

Scale bar: 50 mm, for inset 10 mm.

(DOC)

Acknowledgments

We are grateful to A. Waisman for the MOGi-Cre/iDTR double
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