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Abstract

Background: Discovery of biomarkers that are correlated with therapy response and thus with survival is an
important goal of medical research on severe diseases, e.g. cancer. Frequently, microarray studies are performed to
identify genes of which the expression levels in pretherapeutic tissue samples are correlated to survival times of
patients. Typically, such a study can take several years until the full planned sample size is available.
Therefore, interim analyses are desirable, offering the possibility of stopping the study earlier, or of performing
additional laboratory experiments to validate the role of the detected genes. While many methods correcting the
multiple testing bias introduced by interim analyses have been proposed for studies of one single feature, there
are still open questions about interim analyses of multiple features, particularly of high-dimensional microarray
data, where the number of features clearly exceeds the number of samples. Therefore, we examine false discovery
rates and power rates in microarray experiments performed during interim analyses of survival studies. In addition,
the early stopping based on interim results of such studies is evaluated. As stop criterion we employ the achieved
average power rate, i.e. the proportion of detected true positives, for which a new estimator is derived and
compared to existing estimators.

Results: In a simulation study, pre-specified levels of the false discovery rate are maintained in each interim
analysis, where reduced levels as used in classical group sequential designs of one single feature are not necessary.
Average power rates increase with each interim analysis, and many studies can be stopped prior to their planned
end when a certain pre-specified power rate is achieved. The new estimator for the power rate slightly deviates
from the true power rate but is comparable to other estimators.

Conclusions: Interim analyses of microarray experiments can provide evidence for early stopping of long-term
survival studies. The developed simulation framework, which we also offer as a new R package ‘SurvGenesInterim’
available at http://survgenesinter.R-Forge.R-Project.org, can be used for sample size planning of the evaluated study
design.

Background
A frequent objective of cancer related studies is to detect
genes or biomarkers that can predict the outcome of
therapy. The hardest criterion of success for therapies is
the survival of patients. To identify predictive genes, the
expression levels in samples of tumor or normal tissue
are measured by DNA microarrays before the therapy is
applied. Then, expression levels are compared to survival
data of the patients. Usually, tissue samples are only
available at distinguished points in time and it can take
several years until the full planned sample size is available

and follow-up is complete. In such long-lasting studies it
would be beneficial to obtain interim results already
before their planned end. An early detection of survival
related genes within an interim analysis would for exam-
ple allow their further laboratory validation before the
end of the study. In addition, if an interim analysis pro-
vides evidence for the early stopping of the study it
would save time and costs and would spare further
patients to be involved or allow better treatment. Classi-
cally, interim analyses are performed in studies of group
sequential designs. In such designs, interim analyses are
performed when a certain fraction of the full planned
sample size N has been reached, for example when 1/3 ·
N and 2/3 · N samples are available. There are numerous
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articles that deal with group sequential designs in the
case of one single feature, e.g. [1,2]. As the repeated test-
ing of the same hypothesis by interim analyses is one
form of multiple testing and thus inflates the overall type
I error [3], both articles propose reduced significance
levels to solve this problem. DNA microarray data, how-
ever, comprise expression levels for thousands of genes,
meaning that there are more features than available sam-
ples. For this case of high-dimensional data there have
been very few approaches published to date. Marot and
Mayer [4], for example, propose a method for combining
p-values from several independent microarray analyses
and show that the overall false discovery rate is not
inflated when testing repeatedly a large number of
hypothesis. A similar result was obtained by Posch et al.
[5]. We make use of these results and apply them for stu-
dies in which survival data is correlated with gene expres-
sion data in interim analyses. In order to detect the
survival related genes, we use gene-wise Cox-regression
analyses [6].
An important issue in interim analyses of multiple fea-

tures is the choice of a stopping criterion. In the case of
testing one single feature, the study is simply stopped
when a significant result is observed. Similarly, Victor
and Hommel [7] use gene-wise stopping rules in the
case of high-dimensional microarray data. Marot and
Mayer [4] and Posch et al. [5] propose to stop the study
when a certain proportion of true positive genes has
been detected. We pick up the latter idea and derive an
estimator for the proportion of true positive findings
This new estimator is compared to a variant based on
[8] and to an estimator proposed in [4].
The article is structured as follows. The study design,

the detection of survival-related genes, the problem of
performing interim analyses in the case of multiple
hypothesis testing, and the stop criterion are detailed in
the Methods section. Subsequently, a simulation study
evaluates the behavior of the false discovery rate and of
the estimator for the proportion of true positive detec-
tions. The simulation study covers several settings of
survival-focused microarray experiments with interim
analyses. After presenting the results from these simula-
tions, we apply our methods to gene expression data
from a breast cancer study van de Vijver et al. [9]. Para-
meters from this breast cancer study are used one more
simulation presented subsequently. Finally, a discussion
on the results follows, and further ideas are given.

Methods
This section starts with an illustration of the particular
study design we are considering in this article. As survi-
val is a special focus of this work, we detail afterwards
the methods for the detection of survival-related genes.
Next, an overview of common methods for multiple

hypothesis testing and their application in group
sequential interim analyses is given. In this context, we
also describe rules for the early stopping of such studies.
First, let us introduce the basic notation. Let N be the

total number of subjects that would be involved if the
study was not stopped after any interim analysis. For each
of the relating tissue samples the expression levels of d
genes are measured by means of DNA microarrays. We
denote the complete (d × N) data matrix with all genes
and all samples by X. As typical for microarray data, each
row represents one gene and each column represents one
sample. Thus, xij denotes the expression level of gene i in
the tissue sample of subject j (i = 1, ..., d; j = 1, ..., N). An
overview of all notations is given in Table 6.

Study Design
Assume, the whole study is not stopped after any
interim analysis. Then, the N patients will have indivi-
dual arrival times a = (a1, ..., aN )’, e.g. months after the
begin of the study. We denote the arrival time of the
last patient to enter the study by l1 = max(a). Thus, the
first part of the study, during which patients are
recruited, will take place in the time frame [0, l1].
Let us consider a second study episode which serves

as a follow-up time of length l2, where no new patients
enter the study but the patients survival data is still
observed and up-dated. Thus, the length of the full
study without any early stopping would be L = l1 + l2,
and the time frame of the second study part would be
[l1, L]. The study design is visualized in Figure 1.
Assume further, that M1 interim analyses are planned

to take place during the first study part. An interim ana-
lysis is always performed when (1/M1) · N new samples
are available. This makes sure, that the sample size in
each analysis is equal. In addition, M2 interim analyses
are planned for the second study part, where an interim
analysis is always performed when a time proportion of
(1/M2) · l2 of the planned follow-up time has passed.
Thus, we chose to perform analyses at equally spaced
time-steps during this second part of the study. We
denote the times at which interim analyses are per-
formed by tm (m = 1, ..., M, where M = M1 + M2).

Detecting Survival-related Genes
Disease specific survival is the hardest control for mea-
suring the success of cancer therapies. Therefore, we
modelled the survival information in dependence on the
gene expression data using Cox proportional hazard
regression as was proposed for example by Simon et al.
[10]. Survival information consists for each patient j of a
pair (sj, zj), where sj is the observed survival time of the
patient, and zj Î {0, 1} specifies whether the patient has
already died or not at the time the analysis takes place.
According to the Cox-regression model, the survival
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information is modelled in terms of the hazard function
at time t in dependence on gene i by

h(t) = h0(t)eβixi , (1)

where h0 is an unspecified function of t, called the
baseline hazard. The hazard function h(t) can be inter-
preted as the patients risk of dying in a short time frame,
[t, t + ε), assuming the patient has survived thus far [11].
More precisely, the hazard function is defined as

h(t) = lim
ε↓0

Pr(t < t∗ ≤ t + ε|t∗ > t)
ε

, (2)

where t* is the patients observed survival time [12].
The influence of gene i on survival can be determined
by testing the hypothesis H0i: bi = 0 in the related Cox
model. The d resulting p-values from the gene-wise sur-
vival analyses can than be adjusted for multiple testing
as described below.
In general, other models than the Cox model can be

considered to detect survival-related genes. Park et al.
[13] for example propose to use partial least squares
regression to account for the presence of covariates.

Interim Analyses of Multiple Endpoints
In each interim analysis one statistical test is performed
per gene in order to detect those genes which correspond
to the studied response variable (e.g. overall survival).

If the d hypotheses were all true and independent,
testing each of them at the same level a, the expected
number of false positive detections would be given by a
· d. In whole genome microarray experiments, where d
is typically about 40.000, the expected number of false
positive detections would be too large to be tolerable. In
multiple testing situations, it is therefore common to
reduce the number of false positive decisions by control-
ling a pre-specified type I error rate. Note that the
notion of type I error rate is not used consistently in the
literature. Following Dudoit et al. [14] we will use the
term type I error rate to name the superordinate con-
cept of different types of such error rates, among which
there are the family-wise error rate (FWER) and the
false discovery rate (FDR).
In microarray experiments the FDR, introduced by

Benjamini and Hochberg [15], is the most commonly
considered type I error rate. The FDR is defined as the
expected proportion of false positives among all positive
test decisions, i.e. FDR = E(FP/R), where R > 0 denotes
the total number of rejected null-hypotheses. The pro-
portion of false positives (FP) among all positives itself
is also known as false discovery proportion (FDP = FP/
R). In the special case that R = 0, i.e. no positive test
decisions were found, the FDP as well as the FDR are
defined to be zero.
The FDR can be controlled by adjusting the raw p-

values resulting from the gene-wise tests. The adjusted
p-values are then compared with a pre-specified level a
of the FDR that is desired to be controlled. We denote
the unadjusted p-value for gene i by pi and the respec-
tive adjusted p-value by p̃i. In our simulation study, we
consider the adjusting procedure proposed by Benjamini
and Hochberg [15]. Other adjusting procedures are
detailed in [14].
Alternatively to comparing the adjusted p-values with

the pre-specified FDR-level a, genes can be selected by
comparing the raw p-values with adjusted a-levels.
According to the procedure in [15], the raw p-values are
ordered by increasing size, i.e. p(1) ≤ p(2) ≤ ... ≤ p(d), and
the largest k (k = 1, ..., d) for which p(k) ≤ (k/d) a has to
be determined. All hypothesis associated with p(1) to p(k)
are then rejected. We denote the adjusted a-level that
corresponds to this largest value of k by aBH.
Similar as in multiple hypothesis testing, the control of

type I error rates is an important issue in group sequen-
tial interim analyses. In clinical trials on one single fea-
ture (for example when only one gene would be tested),
interim analyses have been studied in-depth. As was
shown by Armitage et al. [3], performing interim ana-
lyses increases the probability for making a type I error.
In order to avoid such an increase and to maintain a
pre-specified type I error, the tests at each interim ana-
lysis are performed at lower nominal levels α̃m (m = 1,

Figure 1 Study Design. The arrival time of each patient is marked
by the left end of each horizontal bar and his death by the right
end. The dashed lines represent the end of the recruitment part of
the study and the end of the follow-up part, respectively. Patients
marked with an ‘x’ have censored survival times at the final analysis.
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..., M). The first authors who proposed a-level adjust-
ments for group sequential interim analyses were
Pocock [1] and O’Brien and Fleming [2].
At first glance, performing interim analyses in micro-

array experiments seems to require two adjustments.
One to account for the interim analyses and one to
account for multiple testing. However, the two recently
published articles by Posch et al. [5] and by Marot and
Mayer [4], show that the adjustment for interim analyses
can be omitted, when d is large, while the FDR remains
controlled. The result in [4] is based on the observation
that the correlation between a single p-value and the
empirical distribution of all p-values approaches zero
when d gets large. The results in [5] are based on the
findings of Storey et al. [16] who proved that, under cer-
tain assumptions,

lim sup
d→∞

(FDP) ≤ α. (3)

This holds for each interim analysis independently. Let
m̃ ∈ {1, ..., M} denote the random interim analysis where
the study is stopped. Posch et al. [5] proved that equa-
tion (3) holds also at this interim analysis m̃, since

FDPm̃ ≤ max
m∈{1,··· ,M}

(FDPm). (4)

With equations (3) and (4) and the Lemma of Fatou it
follows that the FDR is controlled asymptotically when
d gets large.
This argumentation is not valid under the global null

hypothesis (no gene significant), but it is also possible to
extend the argumentation to the case of the global null
hypothesis [5].
When performing interim analyses in experiments

with multiple endpoints, one has to decide which data
to base the interim analysis on. We decided to use all
available accumulated data in each interim analysis.
This approach makes sure, that every analysis uses the

maximal available data. However, one has to be aware
of its drawback: it requires renormalization of the data
in each analysis which leads to inconsistencies across
the interim analyses.

Stopping Rules
One important point in studies with planned interim
analyses is the stop criterion. Each interim analysis pro-
vides the possibility to stop the study prior to its
planned end, entailing the mentioned ethical and finan-
cial benefits. In studies on one single feature the study
is usually stopped if that feature is found to be signifi-
cant. In studies on a large number of features one could
stop the study as soon as a pre-specified fixed number
of features has been found to be significant. In the case

of microarray analyses, this criterion might be useful
when the number of genes that can be further validated
by laboratory experiments is limited by costs or time.
Here, we follow the approach of Marot and Mayer [4]

who consider as stop criterion the achieved proportion
of detected true positives, the so called average power
rate (APR)

APR = E
[

TP
d1

]
, (5)

where d1 is the number of non-true null hypothesis.
At each interim analysis the achieved APR is estimated
and the study is stopped if this estimate exceeds a pre-
defined level, e.g. 80%. In the case of d1 = 0 the APR is
defined to be zero.
We employ a new estimator of the APR, similar to the

FDR-estimator of Storey and Tibshirani [8] which is
based on the following relations:

E
[

TP
d1

]
= E

[
R − FP

d1

]
≈ E[R − FP]

E[d1]

=
E[R] − E[FP]

E[d1]
.

(6)

The three components E[R], E[FP] and E[d1] can be
estimated as in [8] which is shown in the following. The
expectation of R can simply be estimated by the
observed number of rejected hypothesis, i.e.

Ê[R] = R. (7)

The estimation of E[FP] is based on the fact, that p-
values belonging to true null-hypotheses are uniformly
distributed within [0,1]. Thus, the probability that a p-
value which belongs to a true null-hypothesis is smaller
than a threshold t (t Î [0,1]) is exactly t. Therefore, if
the significance level is chosen to be a’ = t and d0 null
hypotheses are true, E[FP] can be estimated by

̂E[FP] = α′ · d0 = α′ · π0 · d, (8)

where π0 is the fraction of true null hypothesis. For a’
one can for example choose aBH as defined in the pre-
vious subsection. The unknown fraction π0 of true null
hypotheses can be estimated by

π̂0 =
#{pi > ϑ}
d · (1 − ϑ)

. (9)

Here, ϑ serves as a tuning parameter that balances
bias versus variance. For a well chosen ϑ, the p-values in
[ϑ, 1] will belong ‘mostly’ to true null-hypotheses, and
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therefore equation (9) estimates the fraction of true
null-hypotheses. Again, the argument is the uniform dis-
tribution of p-values belonging to true null-hypotheses.
See Figure 2 for graphical illustration.
According to our simulations (see below) setting ϑ =

0.5 results in a good estimate π̂0. Other automated ways
to choose ϑ have been proposed in [17] and [8]. In both
cases the estimate of π0 is used to estimate not the APR
but the FDR. Storey [17] calculates the mean squared
error of the FDR estimator for a range of values of ϑ
and takes the one minimizing this MSE. The calculation
of this MSE thereby is in turn based on a plug-in esti-
mate of the FDR. The method presented in [8] does not
need the FDR but is based on π̂0 only. The underlying
observation is, that the bias in the estimator of π0

vanishes in the extreme choice ϑ = 1. Thus, the
approach there is, to set π̂0 = limϑ→1π̂0(ϑ).
A non-parametric estimator of π0 is given by Langaas

et al. [18]. Based on this estimator and on the empirical
distribution of the p-values Marot and Mayer [4] con-
struct an APR estimator analog to the beta uniform
model presented by [19].
In any case, the expectation of d1 can be estimated by

̂E[d1] = (1 − π̂0) · d, (10)

such that the final estimator for the APR is given by

ÂPR =
R − α′ · π̂0 · d
(1 − π̂0) · d

. (11)

We will use ÂPR to denote the estimator that results
from setting ϑ = 0.5 and ÂPR (S) to denote the estima-
tor which is based on the procedure for estimating π0

presented in [8]. The estimator by Marot and Mayer [4]
will be denoted by ÂPR (L).

Results
Simulation Study
Data Generation and Settings
In order to simulate a study of the design proposed in
subsection ‘Study Design’ we set the following para-
meters. At first, we chose the total number of samples
to be N = 50. Furthermore, we set the intended length
of the recruitment part of the study l′1 and the length of
the follow-up part to be 60 months, each, i.e.
l′1 = l2 = 60. We assume that the arrival times a are dis-
tributed uniformly during this first part. Thus, they were
drawn from U(0, l′1). The patients’ survival times were
assumed to follow an exponential distribution Exp(1/l),
where l is the mean survival time. Here, we set l = 60
months.
As we wanted to generate a set of genes which corre-

spond to the simulated survival times, we split the indi-
viduals into two groups. The one group comprises the
subjects with survival smaller than the specified l the
other group the subjects with equal or longer survival
times than l. The gene expression data for the two
groups were then drawn from multivariate normal dis-
tributions Nd(μk, Σ), k = 1, 2. Expression levels were
simulated for d = 10000 genes. The different mean vec-
tors of the two groups represent the differentially
expressed genes between subjects with short or long
survival. For both groups, the same covariance matrix Σ
with an autoregressive structure was generated. This
structure images the fact that some genes are highly
correlated among each other while others behave rather
independent. In detail, we set

� = (σi,j) i = 1, ..., d
j = 1, ..., d

with σi,j =
1
2b

where b =

⌈∣∣i − j
∣∣

4

⌉
, i, j = 1, ..., d.

(12)

The expectation vector μ1 of the one group was set to
be the null-vector, while a fraction of τ = 50% randomly
chosen genes was altered in the other group. The altera-
tions in μ2 were drawn from ‘discretized’ normal distri-
butions. Larger fold changes were simulated via a higher
standard deviation of this normal distribution. The
structure of μ2 is illustrated in Figure 3.
This way we simulate an effect of a fixed size in the

gene expression depending on whether the patient
belongs to the group of long-term survivors or not. Of
course in biology the inverse direction is true, i.e. survi-
val is regulated by gene expression. However, we think
that for our purpose it does not matter in which order

p-value

0.0 0.2 0.4 0.6 0.8 1.0

0
20
00

50
00

ϑαBH

Figure 2 Empirical p-Value Distribution from the Breast Cancer
Data. The tuning parameter ϑ is used within the estimation of the
fraction π0 of true null hypothesis. The multiple testing adjusted a-
level is marked with aBH.
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the survival and expression data are generated. In addi-
tion, it is typical in biology that a gene is either up- or
down-regulated. Hence, only the direction of regulation
but not the strength of regulation influences the out-
come. Therefore we chose to model the relationship
between single genes and survival by a discrete function
and not by some continuous one.
At each interim analysis, a gene-wise Cox regression

was performed to detect the survival correlated genes,
and resulting p-values were adjusted to control the FDR
at a level of 5%. Following the results of Marot and
Mayer [4] and of Posch et al. [5], no additional adjust-
ment for interim analyses was performed. The number
of simulation runs was set to 1000 for each setting. All
simulations were performed with the free software R in
version 2.10 [20].
We simulated two different setups. One, where 2

interim analyses are scheduled for both study parts, i.e.
M1 = M2 = 2, and one where 5 analyses are planned to
take place per part, i.e. M1 = M2 = 5. In each simulation
run, our power estimator described in Section ‘Stopping
Rules’ was applied and the study was stopped when an
estimated APR of 80% was achieved.
As a more extreme setting we additionally simulated

in the second setup (M1 = M2 = 5) the situation of a
smaller fraction τ = 5% of altered genes.
Adherence to False Discovery Rate
As no interim-specific adjustments were applied, the
question arises, whether the pre-specified FDR-level of
5% was maintained at each analysis. Figure 4 displays
the mean simulated FDR at each interim analysis in two
different settings. Figure 4(a) represents the case of M =

4 analyses (i.e., 3 interim and one final), while Figure 4
(b) represents the case of M = 10 analyses. Table 1 and
Table 2 contain the mean and standard deviation of the
FDR for these cases. Both results were obtained with the
fold changes for the genes between long and short time
survivors being generated as shown in Figure 3(b). The
pre-specified FDR-level of 5%, indicated by the dashed
line, is maintained at nearly each analysis.
One can observe, that with only a small number of

patients available the problem is harder, such that only
a small number of genes is detected. In such cases each
false positive gets more weight in the calculation of the
FDR and one has to expect higher FDR levels. In later
interim analyses, the simulated FDR stabilizes at a more
conservative level. In the setting of M = 10 interim ana-
lyses, the FDR is considerably small in the very first
interim analysis. This observation can be explained by
the fact that the FDR is defined to be zero when no
genes are found at all.
In the more extreme setting with only τ = 5% survival

related genes, the overall course of the FDR over the
interim analyses - as shown in Figure 6(a) and Table 3 -
stays the same, but the peak in the early analyses
becomes more prominent, and the specified FDR-level is
not strictly maintained also during the later interim
analyses.
Average Power Rate and Early Stopping
In Figure 5, the estimated and true APR at each interim
analysis is shown. The corresponding descriptive values
can be found in Tables 1 and 2. Again, the cases of M =
4 and M = 10 analyses are displayed, where half of the
analyses took place during the recruitment part of the
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Figure 3 Simulated Log Fold Changes. Both plots display a distribution of log fold changes of the genes between short and long time
survivors in the setting where 50% of all genes were not altered between both groups. Fold changes were drawn from a ‘discretized’ normal
distribution (dashed line). (a) small fold changes, (b) large fold changes.
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study and the other half during the follow-up part. In
both cases, the estimated and the true APR increases
with each interim analysis. In addition, true and esti-
mated power do not diverge dramatically, however our
estimation (ÂPR) appears to be slightly liberal. Compar-
able performs the estimator ÂPR (S), where we plug in
the π0 estimation procedure of Storey and Tibshirani
[8]. The power estimation by Marot and Mayer [4] (ÂPR
(L)) overestimates the real power.
The pre-specified stopping criterion, an estimated APR

of 80%, is represented by the dashed line. At average,
this criterion is achieved at the 3rd analysis in the case
of M = 4 planned interim analyses, and at the 7th analy-
sis in the case of M = 10 planned interim analyses. In
addition, true and estimated APR become not much

higher than the desired level of 80%. In particular, the
power increases when new samples are included during
the recruitment part, but nearly stagnates in the follow-
up part, where survival data is up-dated only.
One main interest of our simulation was to find out

whether interim analyses can provide an early stopping
in such survival studies. Figure 7 shows for each interim
analysis the fraction of simulation runs which could be
stopped at this point. Both figures show the simulations
with M = 10 analyses. The fold changes in these two
settings were generated either with small effects (fold
changes) or with large effects (compare Figure 3). In the
case of small effects (Figure 7(a)), only 60% of all simu-
lated studies reached the last planned final analysis
while 40% were stopped at an interim analysis. In the
case of large effects (Figure 7(b)), even more than 80%
of the simulated studies were stopped before the final
analysis.
The average power rate and its estimations in the

harder setting with only τ = 5% survival related genes is
shown in Figure 6(b). In this setting neither the true
APR nor its estimates reach the 80% level, such that no
study was stopped at earlier analyses. While the APR (L)
again overestimates the true APR, the other estimators
become conservative.

Application to Breast Cancer Data
In order to evaluate our method on real data, we ana-
lyzed gene expression levels from 295 patients suffer-
ing from breast cancer [9]. The data contain
expression levels of 24496 genes. In this study, patients
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(b) Ten Analyses

Figure 4 Simulated FDR (τ = 50%). The simulated FDR is plotted at each interim analysis in the setting where 50% of all genes were altered
between both groups. (a) M = 4 analyses (3 interim and 1 final), (b) M = 10 analyses. The dashed line marks the pre-specified FDR-level of 5%.

Table 1 Simulated FDR and Power Rate (4 Analyses)

Analysis

1 2 3 4

mean sd mean sd mean sd mean sd

#found
genes

38 180 2422 896 4079 379 4232 290

FDR 0.051 0.158 0.028 0.006 0.027 0.003 0.027 0.003

APR 0.007 0.035 0.471 0.174 0.793 0.074 0.823 0.056

ÂPR 0.017 0.071 0.515 0.170 0.803 0.054 0.829 0.033

ÂPR(S) 0.014 0.053 0.491 0.168 0.788 0.073 0.816 0.057

ÂPR(L) 0.351 0.133 0.707 0.077 0.865 0.038 0.882 0.025

The descriptive values for each interim analysis including the number
detected genes, the simulated FDR, the real APR, and the APR estimates, all in
the setting of τ = 50% altered genes and four interim analyses. These values
correspond to Figure 4 (a) and Figure 5 (a).
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were recruited between 1984 and 1995. Thus, the
recruitment part of the study was l1 = 11 years. Exact
arrival times were not given in the public available
data set, thus, we drew these times randomly from a
uniform distribution U(0, l1). To account for random
effects, which might have been introduced by drawing
the arrival times, we repeated the simulated study
based on this data 1000 times with newly drawn arrival
times and took the average of the resulting error and
power estimations.

In the data, minimum and maximum survival was 0.5
and 18 years, respectively. Median survival was 7 years.
We analyzed the data set with M1 = 5 interim analyses
during the recruitment part of the study and M2 = 5
analyses within the follow-up part. We intended to con-
trol the FDR at a level of 5% and to stop the study
when the estimated APR exceeds 50%.
The raw p-values from the final analysis are displayed

in Figure 2. From this figure it can be seen, that the
suggested [8] choice of ϑ = 0.5 is indeed a good choice

Table 2 Simulated FDR and Power Rate (10 Analyses)

Analysis

1 2 3 4 5

mean sd mean sd mean sd mean sd mean sd

#found genes 0 0 10 85 164 437 1033 928 2404 915

FDR 0.003 0.055 0.029 0.119 0.048 0.145 0.034 0.061 0.028 0.006

APR 0.000 0.000 0.002 0.016 0.032 0.085 0.200 0.180 0.467 0.178

ÂPR 0.043 0.060 0.038 0.120 0.049 0.134 0.241 0.208 0.518 0.174

ÂPR(S) 0.055 0.122 0.025 0.085 0.037 0.092 0.220 0.188 0.488 0.172

ÂPR(L) 0.283 0.401 0.382 0.228 0.410 0.132 0.581 0.113 0.708 0.079

6 7 8 9 10

mean sd mean sd mean sd mean sd mean sd

#found genes 3414 637 3894 520 4092 471 4155 451 4167 446

FDR 0.027 0.004 0.027 0.004 0.027 0.004 0.027 0.004 0.027 0.004

APR 0.664 0.124 0.757 0.101 0.796 0.092 0.808 0.088 0.811 0.087

ÂPR 0.698 0.096 0.778 0.062 0.812 0.043 0.823 0.034 0.825 0.031

ÂPR(S) 0.671 0.117 0.756 0.098 0.790 0.091 0.802 0.087 0.804 0.086

ÂPR(L) 0.797 0.056 0.847 0.042 0.870 0.031 0.877 0.025 0.878 0.023

The descriptive values for each interim analysis including the number detected genes, the simulated FDR, the real APR, and the APR estimates, all in the setting
of τ = 50% altered genes with large fold changes and ten interim analyses. These values correspond to Figure 4 (b) and Figure 5 (b).
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Figure 5 Simulated Power Rate (τ = 50%). True (solid line) and estimated (broken lines) average power rates (APR) at each interim analysis in
the setting where 50% of all genes were altered between both groups. (a) M = 4 analyses, (b) M = 10 analyses. The dashed line marks the pre-
specified stopping criterion, i.e. an estimated APR of 80%.
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for this data, as the histogram resembles a uniform dis-
tribution very well in the range [0.5, 1].
Figure 8 shows the estimated FDR and estimated APR

at each interim analysis. The pre-specified FDR-level of
5% is not exceeded, and the estimated APR increases
with each interim analysis. As in the simulation study,
the estimator ÂPR (L) seems to overestimate the real
APR. The estimators ÂPR and ÂPR (S) again perform
comparably. In the first interim analysis, no significant
genes are detected. Thus, F̂DR and ÂPR are equal zero.

Interestingly, the stopping of an estimated 50%-APR is
not achieved in any interim analysis when the more reli-
able APR estimators are used. In detail, the maximum
achieved ÂPR was only 27% (with 1900 detected genes).
Therefore, the study could not be stopped early with
this criterion.
Figure 8(b) illustrates the different character of

recruitment and follow-up part of the study. The
increase of power is much stronger in the recruitment
part than during the follow-up part, meaning that in
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Figure 6 Simulated FDR and Power Rate (τ = 5%). The simulated FDR (a) and the real APR (solid line) with the APR estimates (broken lines)
(b) at each interim analysis in the setting where 5% of all genes were altered between both groups.

Table 3 Simulated FDR and Power Rate (10 Analyses τ = 5%)

Analysis

1 2 3 4 5

mean sd mean sd mean sd mean sd mean sd

#found genes 0 0 0 1 2 10 18 38 99 78

FDR 0.015 0.119 0.049 0.210 0.104 0.292 0.063 0.170 0.062 0.091

APR 0.000 0.000 0.000 0.001 0.003 0.019 0.033 0.070 0.185 0.146

ÂPR 0.036 0.038 0.032 0.067 0.004 0.022 0.030 0.063 0.168 0.142

ÂPR(S) 0.038 0.047 0.034 0.090 0.005 0.030 0.032 0.082 0.177 0.182

ÂPR(L) 0.292 0.403 0.441 0.221 0.409 0.115 0.511 0.125 0.623 0.123

6 7 8 9 10

mean sd mean sd mean sd mean sd mean sd

#found genes 215 70 284 49 318 38 333 31 332 27

FDR 0.056 0.030 0.056 0.017 0.055 0.015 0.055 0.014 0.055 0.014

APR 0.406 0.132 0.537 0.092 0.601 0.070 0.629 0.058 0.627 0.049

ÂPR 0.362 0.152 0.471 0.139 0.526 0.142 0.549 0.147 0.551 0.153

ÂPR(S) 0.373 0.220 0.486 0.224 0.522 0.215 0.539 0.217 0.543 0.221

ÂPR(L) 0.702 0.119 0.746 0.114 0.765 0.109 0.774 0.113 0.772 0.113

The descriptive values for each interim analysis including the number detected genes, the simulated FDR, the real APR, and the APR estimates, all in the setting
of τ = 5% altered genes and ten interim analyses.
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this study not the available survival data but the sample
size was the more restraining factor.

Simulation with Parameters from Breast Cancer Data
In order to perform the simulation also with different
distributional assumptions, we performed an additional
simulation, where parameters were taken from the breast
cancer data described in the previous section. To this
end we simulated the patient data and the gene expres-
sion data for 295 patients. Because the recruitment time

of the real study was 11 years, the arrival times were
again drawn randomly from a uniform distribution U(0,
11). A weibull, a gamma, and a log-normal distribution
were fitted to the survival times of the real data using the
fitdistcens function from the fitdistrplus R
package [21]. We employed the Akaike Information Cri-
terion (AIC) to select the fitted log-normal distribution,
from which, thus, the survival times were drawn.
We wanted to set the proportion of survival related

genes according to the real data set. We, therefore, used
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Figure 7 Simulated Stopped Studies (τ = 50%). Fractions of studies that could be stopped at each interim or at the final analysis in the
setting where 50% of all genes were altered between both groups. (a) Case of small fold changes, (b) case of large fold changes between the
genes of short and long time survivors.
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the results from the previous section where in the last
analysis 1900 genes were found and the APR was esti-
mated to be 27%. Thus, the total number of survival
related genes in this data set was estimated to be 7037.
To generate the gene expression data, we divided the

patients - as before - into two groups along their med-
ian survival time. The gene expression data was again
multivariate normally distributed in both groups. The
mean vector was set to 0 in one group. For the other
group we used a discretization of the difference between
the empirical mean vectors in both groups of the real
data set. We chose the discretization grid to consist of
steps with a width of 0.04, which resulted in 8542 survi-
val related genes.
The distribution of the resulting mean vector of the

second group is given in Table 4.
We estimated the covariance matrix as proposed by

Schäfer and Strimmer [22] using the implementation in
the R package corpcor, but that resulted in a maxi-
mum power of 2.6% in the final analysis.
Therefore, we employed again a covariance matrix

based on equation (12) as it was used in the other simu-
lations. Because the effects in this simulation (see Table
4) were rather small, we reduced the simulated variance
by a factor of 10 compared to the previous simulations.
The results are shown in Figure 9 and Table 5. As in

the simulation setting with τ = 5% survival related
genes, the FDR peaks at the 3rd interim analysis, where
only 14 genes were found on average. The APR estima-
tors are comparable to the APR estimators in the real
data, but show an erroneous aberration in the second
analysis, even though there are no genes detected in
that analysis. This aberration is corrected, though, in the
third analysis as soon as there are some genes found.

Discussion
Typically, survival studies require long time spans from
recruitment of the first patients until the availability of
first results. Therefore, there is a strong desire to obtain
results prior to the planned end of the study, not only for
financial aspects but also for ethical ones. Classical group
sequential designs exhibit a methodology for interim ana-
lyses including the potential for an early stopping of a
trial. Whereas these classical methods concentrate on
studies with one single feature, there has little been done
for the case of multiple features, particularly the high-

dimensional case. However, many survival studies now
concentrate on correlating observed survival times with
high-throughput data from genomics or proteomics
experiments which yield expression levels for thousands
of features measured in a small number of samples.
Based on the findings of Marot and Mayer [4] and

Posch et al. [5] we simulated the possibility of early
stopping in interim analyses of survival data in microar-
ray experiments. Likewise to these prior findings we
observed that a pre-specified false discovery rate is
maintained during interim analyses without particular
adjustments. I.e., adjustment appears only to be neces-
sary for multiple testing but not additionally for interim
analysis. While it was shown in the two mentioned arti-
cles that this principle holds asymptotically when the
number of tested hypothesis is large, we have seen in
further simulations beyond those presented in the sec-
tion on the simulation that it also works for rather
small numbers of hypotheses (e.g. testing 500 genes).
We used the Benjamini-Hochberg procedure to do the

multiple testing adjustment, even though the Benjamini-
Hochberg procedure does not control the FDR under
arbitrary dependency structures. However, in our simu-
lations and in the real data example it could be seen
that this procedure mostly controlled the FDR. We
believe, that in microarray studies a strict control of the
FDR is of minor importance, as microarray studies are
mainly used for hypothesis generation and, thus, need
further validation anyway. In cases where a stricter con-
trol of the FDR is required, the more conservative pro-
cedure of Benjamini and Yekutieli [23] might be more
appropriate.
An important issue in interim analyses of high-dimen-

sional data is the choice of an adequate stopping criter-
ion. Here, we chose the achieved average power rate as
stopping criterion which is defined as the proportion of
detected false null hypothesis. We derived a new estima-
tor for the average power rate that comes close to the
true proportion of true positive findings. However, this
estimator behaved slightly liberal when the data con-
tained many survival related genes and conservative
when the data contained few survival related genes. We
also tried other methods like the more sophisticated ϑ
estimator given in [8] and the APR estimation method
proposed in [4] which resulted in comparable and worse
approximations, respectively. Improvements remain

Table 4 The Mean Gene Expression Vector in the Group of Long Time Survivors

value

-0.24 -0.2 -0.16 -0.12 -0.08 -0.04 0.00 0.04 0.08 0.12 0.16

# genes 2 5 6 44 249 3336 15954 4507 335 50 8

In the simulation based on the parameters from the breast cancer data the mean vector of the gene expressions of the long time survivors is set to this
discretized version of the difference of the empirical mean of the two groups in the real data.
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therefore necessary. With this criterion we observed that
early stopping can be achieved in certain studies, based
on the actual proportion of false null hypothesis and the
effect sizes (size of fold changes).
We applied the methods onto gene expression data

from a microarray study on breast cancer. In this analysis
we obtained an estimated average power of 20% at the
fifth interim analysis (i.e. roughly five years after begin of
the study) and of 27% at the eighth interim analysis (i.e.,

roughly after eight years). These estimated proportions
seem to be rather small. However, the estimated APR of
27% in the final analysis corresponds to about 1900 genes
detected by Cox regression (see Figure 10). This set
might provide a signature which enables to build a survi-
val predictor of sufficient quality. Predictor quality and
classification accuracy are other interesting stopping cri-
teria for interim analyses of high-dimensional data. The
prognostic value of survival models based on gene
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Figure 9 Simulated FDR and Power Rate (Parameters from the Breast Cancer Data). The simulated FDR (a) and the real APR (solid line)
with the APR estimates (broken lines) (b) at each interim analysis in the simulation setting where parameters were taken from the breast cancer
data.

Table 5 Simulated FDR and Power Rates (Parameters from the Breast Cancer Data)

Analysis

1 2 3 4 5

mean sd mean sd mean sd mean sd mean sd

#found genes 0 0 0 0 14 34 701 227 1650 396

FDR 0.000 0.000 0.000 0.000 0.074 0.179 0.035 0.008 0.034 0.005

APR 0.000 0.000 0.000 0.000 0.002 0.004 0.079 0.026 0.186 0.045

ÂPR 0.000 0.000 0.100 0.160 0.004 0.008 0.117 0.031 0.234 0.044

ÂPR(S) 0.000 0.000 0.118 0.238 0.003 0.007 0.107 0.029 0.217 0.043

ÂPR(L) 0.000 0.000 0.443 0.374 0.371 0.032 0.514 0.030 0.591 0.029

6 7 8 9 10

mean sd mean sd mean sd mean sd mean sd

#found genes 2005 413 2318 457 2614 442 2906 447 3107 439

FDR 0.034 0.005 0.033 0.005 0.033 0.005 0.034 0.004 0.033 0.004

APR 0.227 0.046 0.262 0.051 0.296 0.050 0.329 0.050 0.352 0.050

ÂPR 0.275 0.046 0.308 0.050 0.341 0.048 0.371 0.048 0.392 0.046

ÂPR(S) 0.259 0.046 0.289 0.051 0.324 0.049 0.354 0.050 0.375 0.051

ÂPR(L) 0.617 0.029 0.631 0.029 0.648 0.029 0.664 0.030 0.675 0.032

The descriptive values for each interim analysis including the number detected genes, the simulated FDR, the real APR, and the APR estimates, all in the setting
where parameters were taken from the breast cancer data.
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expression signatures was for example studied by
Hielscher et al. [24]. Evaluation of such alternative stop-
ping criteria remains an open point which we are going
to study in our further research.
The necessary sample size another important point

in planning microarray studies in combination with
survival data. Our simulation study provides the basis
for such sample size considerations. With certain
information from pilot studies, including expected dis-
tributions of fold changes and expected survival times,
our simulation approach can be used to study the
development of the APR in interim analyses. Therefore,
we made our R-code available as package on the R-
CRAN repository http://cran.r-project.org within the
package survGenesInterim.
Several extensions of our simulation framework can be

considered. In the analysis of microarray experiments
normalization is an important pre-processing step to

make the single arrays comparable. We therefore intent
as methodological improvement to add different nor-
malization approaches to our simulation framework.
When making interim analyses, one can for example
consider a re-normalization with each set of new array
data or use the normalization parameters obtained in a
previous interim analysis. Another improvement can be
considered with regard to the survival analysis. While
we have used the proportional hazard model, here, this
assumptions may not always be true and other models
with time variant effects seem to be more reliable.

Conclusions
Group sequential interim analyses of microarray
experiments in survival studies are frequently per-
formed without considering the adherence of the over-
all error rate. Our simulation framework helps to
evaluate the behaviour of error rates and power rates

Table 6 Mathematical Notation

1. Patient Data

N samples

l′1 anticipated length of the recruitment part of the study

a = (a1, ..., aN) arrival times

where ai ~ U(0, l1), i = 1, ..., N

l1 = max(a) length of the recruitment part

l2 length of the follow-up part

L = l1 + l2 study length

M1 number of analyses within l1
M2 number of analyses within l2
M = M1 + M2 number of analyses

t = (t1, ..., tN) analysis times

l mean survival time

s = (s1, ..., sN) survival times

where si ~ Exp(l), i = 1, ..., N

z(m) =
(
z(m)

1 , ..., z(m)
N

)
censor variable

where z(m)
i =

{
1, ai + si ≤ ti
0, ai + si > ti

2. Gene Expression Data

d genes

d0 genes not associated with survival

d1 genes associated with survival

R number of positive test decisions

FN false negative test decisions

TN true negative test decisions

FP false positive test decisions

TP true positive test decisions

τ fraction of differentially expressed genes

X(m) = (xi,j)i=1,...,nm
j=1,...,d

gene expression data

ϑ tuning parameter within the estimation of the proportion of true null hypotheses

aBH the level for the type I error that is adjusted according to the BH- procedure
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in such experiments. The framework also enables to
study the developing of results when survival data is
up-dated at subsequent times during studies that take
several years.
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