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NSUN3 and ABH1 modify the wobble position of
mt-tRNAMet to expand codon recognition in
mitochondrial translation
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Abstract

Mitochondrial gene expression uses a non-universal genetic code
in mammals. Besides reading the conventional AUG codon, mito-
chondrial (mt-)tRNAMet mediates incorporation of methionine on
AUA and AUU codons during translation initiation and on AUA
codons during elongation. We show that the RNA methyltrans-
ferase NSUN3 localises to mitochondria and interacts with mt-
tRNAMet to methylate cytosine 34 (C34) at the wobble position.
NSUN3 specifically recognises the anticodon stem loop (ASL) of the
tRNA, explaining why a mutation that compromises ASL basepair-
ing leads to disease. We further identify ALKBH1/ABH1 as the
dioxygenase responsible for oxidising m5C34 of mt-tRNAMet to
generate an f5C34 modification. In vitro codon recognition studies
with mitochondrial translation factors reveal preferential utilisa-
tion of m5C34 mt-tRNAMet in initiation. Depletion of either NSUN3
or ABH1 strongly affects mitochondrial translation in human cells,
implying that modifications generated by both enzymes are
necessary for mt-tRNAMet function. Together, our data reveal how
modifications in mt-tRNAMet are generated by the sequential
action of NSUN3 and ABH1, allowing the single mitochondrial
tRNAMet to recognise the different codons encoding methionine.
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Introduction

More than a hundred different chemical modifications of ribonucleo-

sides have been identified in cellular RNAs (Czerwoniec et al, 2009;

Motorin & Helm, 2011). Modifications regulate the biogenesis, struc-

ture and function of the corresponding RNAs and RNA–protein

complexes (RNPs). Many modifications occur in RNAs involved in

translation and are therefore likely to affect protein synthesis.

Several modified ribonucleosides including 6-methyladenosine

(m6A), 5-methylcytidine (m5C), 1-methyladenosine (m1A) and

pseudouridine have recently been shown to occur in messenger (m)

RNAs and to affect their biogenesis, translation and stability (see

e.g. Carlile et al, 2014; Liu & Jia, 2014; Dominissini et al, 2016).

Methylated nucleosides can undergo further modification and

proteins of the AlkB family of alpha-ketoglutarate and Fe(II)-

dependent dioxygenases (ALKBH1-8 and FTO in human cells) can

oxidise or even remove modifications in DNA and RNA (Fedeles

et al, 2015; Ougland et al, 2015), increasing the dynamics and regu-

lation of RNA modifications and their roles in RNA metabolism.

Compared to mRNAs and other cellular RNAs, transfer (t)RNAs and

ribosomal (r)RNAs contain the highest proportion of modified

nucleosides. The large majority of rRNA modifications are already

installed co-transcriptionally by small nucleolar (sno)RNPs, and

only few base modifications require the action of lone-standing

enzymes (Watkins & Bohnsack, 2012; Sharma & Lafontaine, 2015).

tRNAs contain the largest variety of nucleoside modifications, and

many of them are suggested to affect tRNA biogenesis and nuclear

export, tRNA structure, interaction with aminoacyl-tRNA-sythetases

or codon recognition during translation (Agris et al, 2007; Leisegang

et al, 2012; Hori, 2014; Duechler et al, 2016; Ranjan & Rodnina,

2016). Many tRNAs contain base modifications of the nucleoside at
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position 34 of the tRNA anticodon (the “wobble position”). These

modifications modulate codon–anticodon basepairing, often allow-

ing one tRNA to recognise several different nucleosides in the third

position of the codon. Mutations in enzymes responsible for intro-

ducing these “wobble base” modifications or genetic alterations in

tRNA sequences that affect such modifications are often associated

with disease, especially in mitochondrial tRNAs (Lott et al, 2013;

Powell et al, 2015).

One ribonucleoside modification that has been identified in

several tRNAs, in both cytoplasmic and mitochondrial rRNA, in

other non-coding RNAs and in mRNAs is 5-methylcytosine (m5C).

m5C modifications can be installed by any of the seven proteins of

the Nol1/Nop2/SUN domain (NSUN) family and by an enzyme

named DNA methyltransferase 2 (DNMT2). DNMT2 mainly cataly-

ses the m5C modification in position 38 of tRNAAsp in human cells

(Goll et al, 2006), while the so far characterised NSUN proteins

show specificity for tRNAs (NSUN2, NSUN6; Schaefer et al, 2010;

Tuorto et al, 2012; Blanco et al, 2014; Haag et al, 2015a) or rRNA

(NSUN1/NOP2, NSUN5; Sloan et al, 2013; Tafforeau et al, 2013;

Schosserer et al, 2015). NSUN2 can also modify vault RNAs and

mRNAs (Hussain et al, 2013), and NSUN4 was described to localise

to mitochondria where it was shown to methylate the mitochondrial

12S rRNA in mice (Cámara et al, 2011; Metodiev et al, 2014).

NSUN3 was one of the last uncharacterised members of the

family, and we show here that this RNA methyltransferase localises

to the mitochondrial matrix in human cells. Using in vivo UV cross-

linking and analysis of cDNA (CRAC) and 5-azacytidine (5-AzaC)

CRAC, we show that NSUN3 specifically interacts with the mito-

chondrial tRNAMet where it is responsible for introducing a

5-methylcytosine (m5C) modification at the “wobble position”. In

addition, we find that the m5C modification can be further oxidised

by the alpha-ketoglutarate and Fe(II)-dependent dioxygenase

ALKBH1/ABH1, generating a 5-formylcytidine (f5C) at this position.

Analysis of mt-tRNAMet synthesised with the different cytosine

modifications in the wobble position revealed that codon recogni-

tion in an in vitro translation system utilising mitochondrial initia-

tion and elongation factors depends on the modification state of C34

in mt-tRNAMet. In vivo, knock-down of ABH1 abolishes f5C34 forma-

tion, while depletion of NSUN3 leads to a decrease in mt-tRNAMet

modification. Furthermore, reducing the levels of either NSUN3 or

ABH1 leads to a significant decrease in mitochondrial translation

in vivo, suggesting important roles for the modifications installed by

the two enzymes in mt-tRNAMet function. Interestingly, our data

also show that NSUN3 requires the anticodon stem loop for

substrate recognition and a pathogenic mutation in the ASL abol-

ishes C34 methylation, implying that lack of this modification can

lead to disease.

Results

NSUN3 localises to the mitochondrial matrix

More than 10 years ago computational analysis identified NSUN3 as

a member of the Nol1/Nop2/Sun domain (NSUN) family of putative

m5C RNA methyltransferases (Bujnicki et al, 2004). NSUN3 was

suggested to localise to mitochondria (Rhee et al, 2013); however,

the target spectrum and biological function of the protein have

remained unknown. To confirm the mitochondrial localisation of

NSUN3, we generated a HEK293 cell line stably expressing NSUN3-

GFP from a tetracycline-inducible promoter. Confocal fluorescence

microscopy revealed that NSUN3-GFP localises to distinct cytoplas-

mic foci that showed co-localisation with a mitotracker (Fig 1A),

indicating a mitochondrial localisation of NSUN3. To determine

whether NSUN3 is imported into mitochondria, we performed

protease protection assays using a tetracycline-inducible NSUN3-

HisPrcFLAG (Hexahistidine-PreScission protease cleavage site-

2×FLAG tagged NSUN3) cell line. We isolated mitochondria that

were then either left intact, subjected to swelling to rupture the

outer mitochondrial membrane and generate mitoplasts or were

disrupted using sonication before treatment with different concen-

trations of proteinase K. While treatment of intact mitochondria led

to the degradation of the outer membrane protein TOM70, the inter-

membrane space domain of TIM23 was digested in mitoplasts. Simi-

lar to the matrix-localised domain of TIM44, NSUN3 only became

susceptible to proteinase K digestion upon rupture of mitochondria

by sonication (Fig 1B), indicating that NSUN3 is localised in the

mitochondrial matrix in human cells.

NSUN3 associates with mitochondrial tRNAMet

To identify NSUN3 target RNAs, we performed UV cross-linking and

analysis of cDNA (CRAC; Bohnsack et al, 2012; Sloan et al, 2015)

A

B

Figure 1. NSUN3 localises to the mitochondrial matrix.

A The localisation of NSUN3 was analysed in HEK293 cells stably expressing
NSUN3-GFP. NSUN3-GFP (green) and staining with Mitotracker (red) are
shown separately and in an overlay with DAPI to indicate nuclei. The scale
bar represents 5 lm.

B To analyse submitochondrial localisation of NSUN3, human mitochondria
were isolated and either left untreated, swollen in hypotonic buffer
(Mitoplasts) or disrupted by sonication (Sonic.) before treatment with
different amounts of proteinase K (PK) where indicated, followed by SDS–
PAGE and Western blotting using antibodies against human TIM44, TIM23,
TOM70 or FLAG-tagged NSUN3. Note that TIM44 extends into the matrix,
while the N-terminus of TIM23 localises to the intermembrane space and
TOM70 is largely exposed on the mitochondrial surface. The asterisk
indicates a cross-reaction of the TOM70 antibody.
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experiments using the NSUN3-HisPrcFLAG cell line; a HEK293 cell

line expressing only the HisPrcFLAG tag was used as a control. In

addition, cells expressing NSUN3-HisPrcFLAG were treated with

the cytidine derivative 5-azacytidine (5-AzaC) as a cross-linking

reagent, which is incorporated into nascent RNA and specifically

traps m5C RNA methyltransferases on their target nucleotides in a

covalent protein–RNA intermediate during the methylation reaction

(Fig 2A; Khoddami & Cairns, 2013). Without cross-linking or after

UV or 5-AzaC cross-linking in vivo, protein–RNA complexes were

purified followed by RNA trimming, radiolabelling and ligation of

adaptors to the bound RNA. Protein–RNA complexes were separated

by SDS–PAGE, transferred to a membrane and exposed to an X-ray

film. Both UV and 5-AzaC cross-linking of NSUN3-HisPrcFLAG

resulted in a strong specific signal not observed for the controls

(Fig 2B), indicating association of NSUN3 with cellular RNAs. Inter-

acting RNAs were then extracted from the membrane and subjected

to RT–PCR to generate a cDNA library for Illumina deep sequencing.

Mapping of the obtained sequence reads on the human genome

resulted in a strong over-representation of mitochondrial-encoded

RNA (mt-RNA). mt-RNA represented 40% and 62% of total reads

obtained upon UV or 5-AzaC cross-linking of NSUN3, respectively,

compared to only 4% of sequence reads from the HisPrcFLAG

control (Figs 2C–E and EV1A), suggesting a specific association of

NSUN3 with mitochondrial RNA. As sequences from mitochondrial

tRNAs were strongly enriched in the NSUN3-cross-linked fractions

(Fig 2D and E, lower panels) compared to the control (Fig 2C, lower

panel), we analysed the distribution of reads between the 22 mito-

chondrial tRNAs. Strikingly, 50 and 95% of the reads mapped to mt-

tRNAMet in the NSUN3 UV and 5-AzaC cross-linking experiments,

respectively (Fig 2F). In contrast, the data obtained for the HisPrc-

FLAG control contained only 5% sequencing reads that mapped to

mt-tRNAMet, indicating that NSUN3 specifically interacts with this

tRNA (Fig 2F). To confirm the specificity of this interaction, we

performed 5-AzaC cross-linking using cells expressing the HisPrc-

FLAG control, NSUN3-HisPrcFLAG and the catalytically inactive

NSUN3(C265A)-HisPrcFLAG mutant, in which the catalytic cysteine

of the TCT tripeptide that is conserved in motif IV in m5C methyl-

transferases of the NSUN family is replaced by alanine (C265A).

After cross-linking and isolation of complexes via the FLAG-tagged

proteins, interacting RNAs were analysed by Northern blotting using

probes for the detection of the mitochondrial tRNAs mt-tRNAPro,

mt-tRNAGlu and mt-tRNAMet (Fig 2G). While mt-tRNAPro and mt-

tRNAGlu could not be detected in any of the eluates, mt-tRNAMet

was strongly enriched in the eluate from the NSUN3 wild-type

sample, but was not detected in any of the controls, further support-

ing that mt-tRNAMet specifically interacts with NSUN3. The specific

requirement for the conserved catalytic cysteine and the efficient

cross-linking of NSUN3 to 5-AzaC containing mt-tRNAMet strongly

suggest that NSUN3 is an active m5C RNA methyltransferase that

uses the conserved mechanism of the NSUN family to mediate m5C

methylation of its substrate mt-tRNAMet in human mitochondria.

NSUN3 specifically methylates cytosine 34 in mt-tRNAMet

To gain further insight into the catalytic activity of NSUN3, we

prepared recombinant NSUN3 protein and the catalytically inactive

mutant (NSUN3-C265A) and performed in vitro methylation experi-

ments using in vitro T7 RNA-polymerase transcripts of mt-tRNAMet,

mt-tRNAPro and mt-tRNAGlu in the presence of S-[3H-methyl] adenosyl-

methionine (SAM) as a methyl group donor. NSUN3 efficiently

methylated mt-tRNAMet, but not the other transcripts, and the cata-

lytic activity of NSUN3 was abolished by mutation of the catalytic

cysteine (Fig 3A).

Besides the strong enrichment of reads from mt-tRNAMet in the

CRAC data sets, we had observed that reads mapping to the cyto-

plasmic tRNAs that mediate incorporation of methionine during

translation initiation (tRNAi
Met) and elongation (tRNAe

Met) were

over-represented in the NSUN3 cross-linking data (8% of reads

mapped to cytoplasmic tRNA were tRNAMet reads in FLAG control;

18% after UV and 79% after 5-AzaC cross-linking; Fig EV1B). We

therefore tested whether NSUN3 could methylate transcripts of

tRNAi
Met and tRNAe

Met in in vitro methyltransferase assays. While

mt-tRNAMet was methylated very efficiently by NSUN3, only very

weak or no methylation was observed for the tRNAi
Met and

tRNAe
Met transcripts, respectively (Fig EV1C). To analyse possible

interactions between NSUN3 and tRNAi
Met or tRNAe

Met in vivo, we

performed 5-AzaC cross-linking and immunoprecipitation experi-

ments using HEK293 cells expressing the HisPrcFLAG tag alone,

wild-type or mutant (C265A) NSUN3-HisPrcFLAG and analysed the

co-precipitation of tRNAs by Northern blotting. While mt-tRNAMet

was strongly enriched with wild-type NSUN3, no association of the

cytoplasmic tRNAi
Met or tRNAe

Met could be detected (Fig EV1D),

indicating that NSUN3 does not specifically bind cytoplasmic tRNAs

in vivo and that the interactions observed in the 5-AzaC CRAC likely

occurred after cell lysis due to similar sequences of the anticodon

stem loop of tRNAi
Met and mt-tRNAMet (Fig EV1E). Together with

the mitochondrial localisation of NSUN3 (Fig 1), these data indicate

that NSUN3 can weakly recognise the tRNAi
Met as a substrate

in vitro, but that mt-tRNAMet, rather than tRNAi
Met, represents its

genuine methylation substrate in vivo.

In order to identify which region of mt-tRNAMet interacts with

NSUN3, we analysed the distribution of reads obtained by NSUN3

cross-linking to mt-tRNAMet. Analysis of both UV and 5-AzaC cross-

linking experiments showed that the highest read density was

obtained with sequences corresponding to the anticodon stem loop

(ASL) of mt-tRNAMet (Fig 3B) suggesting that the NSUN3 target

residue lies within this region. As NSUN3 is a member of the cyto-

sine methyltransferase family of NSUN proteins, we generated

in vitro transcripts of mt-tRNAMet in which each cytosine present in

the ASL was individually mutated to an adenosine (ASL loop cytosi-

nes) or uracil (cytosines in the stem of the ASL; Fig 3C). Although

mutation of several cytosines affected NSUN3-mediated methylation

in in vitro methylation assays, only mutation of cytosine 34 abol-

ished the modification (Fig 3D), suggesting that the C34 wobble

nucleotide is the NSUN3 target in mt-tRNAMet. This conclusion was

confirmed by a lack of methylation when chemically synthesised

mt-tRNAMet containing an m5C34 was treated with NSUN3 in

methylation assays (Fig 3E), supporting the finding that NSUN3

generates an m5C moiety at position 34 in mt-tRNAMet.

Among the mt-tRNAMet mutants (Fig 3D), the C39U mutant,

which has previously been identified in patients with mitochondrial

dysfunction (Lott et al, 2013; Tang et al, 2013), was a particularly

poor substrate for NSUN3, suggesting that this residue might be crit-

ical for methylation or that a stable stem in the ASL could be

required for NSUN3 recognition. To distinguish between these

possibilities, we generated a series of ASL mutants where individual
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cytosines in the stem were either replaced by uracil allowing for less

stable G:U basepairing or mutants in which guanosine and cytosine

in G:C basepairs were swapped between the strands of the stem,

resulting in identical stability of the stem but a change in the

sequence (Fig 4A). While no reduction in NSUN3 methylation was

observed for the mutants generated by swapping the G:C basepairs

in the stem, mutations to G:U basepairs reduced methylation effi-

ciency and again almost abolished it for the C39U mutant (Fig 4B).

These data indicate that a stable stem in the ASL is required for

NSUN3 substrate recognition and methylation of C34 in mt-tRNAMet.

A D F

C

B

E
G

Figure 2. NSUN3 cross-links to the mitochondrial tRNAMet in vivo.

A Structure of 5-azacytidine and formation of a covalent RNA methyltransferase adduct.
B HEK293 cells expressing NSUN3-HisPrcFLAG (NSUN3) or the HisPrcFLAG tag alone (FLAG) were either not cross-linked (�), UV cross-linked (UV) or treated with

5-azacytidine (5-AzaC). The protein–RNA complexes were affinity purified and the bound RNA was trimmed, end-labelled with 32P phosphate and ligated to linkers.
Protein–RNA complexes were separated by SDS–PAGE, transferred to nitrocellulose and exposed to an X-ray film.

C–E The UV or 5-AzaC cross-linking and analysis of cDNA (CRAC) experiments with NSUN3-HisPrcFLAG (D, E) or the FLAG control (C) samples were treated as described
in (B). The RNA was isolated from the nitrocellulose membrane-bound protein–RNA complexes and converted into cDNA for sequence library production and
Illumina deep sequencing. Pie charts present different RNA classes and the relative distribution of Illumina sequence reads that were obtained after mapping of the
reads on the human genome. Bar graphs below indicate the distribution of mitochondrial (mt-)tRNA, mt-rRNA and mt-mRNA sequence reads among the reads
mapped to the mitochondrial genome. Abbreviations: tRNA, transfer RNA; snRNA, small nuclear RNA; snoRNA, small nucleolar RNA; rRNA, ribosomal RNA; mtRNA,
mitochondrial-encoded RNA; miscRNA, miscellaneous RNA; miRNA, microRNA; lncRNA, long non-coding RNA.

F Relative distribution of mitochondrial tRNA sequence reads obtained from the CRAC experiments using UV or 5-AzaC cross-linking with cells expressing the
NSUN3-HisPrcFLAG (NSUN3) protein or control cells (FLAG). Only mt-tRNAs that were represented by more than 5% of all mt-tRNAs reads are labelled.

G 5-AzaC cross-linking was performed and RNA associated with wild-type NSUN3, the catalytically inactive NSUN3 mutant (C265A) or the FLAG tag alone was
isolated as described in (B). The RNA was analysed by Northern blot using probes against the mt-tRNAMet, mt-tRNAPro and mt-tRNAGlu. Inputs (0.1%) are shown on
the left and eluates (50%) on the right.
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Incubation of synthesised mt-tRNAMet ASL with NSUN3 in a methy-

lation assay further revealed that the ASL is sufficient for recogni-

tion and methylation (Fig 4C).

Taken together, we have identified the mitochondrial tRNAMet as

the methylation substrate of the RNA methyltransferase NSUN3.

NSUN3 recognises the ASL of mt-tRNAMet and requires a stable stem

structure for substrate recognition and generation of m5C34.

Furthermore, a pathogenic mutation in the stem loop abolishes

NSUN3-mediated modification, indicating that lack of modification

of C34 can lead to disease.

ALKBH1/ABH1 localises in mitochondria and specifically interacts
with mt-tRNAMet

Previous reports suggested that mt-tRNAMet can be modified at posi-

tion 34 to contain a 5-formylcytosine (f5C; Moriya et al, 1994;

Suzuki & Suzuki, 2014). We hypothesised that a specific oxygenase

might oxidise the m5C34 moiety established by NSUN3 to generate

an f5C34 modification in mt-tRNAMet. While the Ten-Eleven Trans-

location (TET) protein family of dioxygenases primarily mediates

oxidation of m5C in nuclear DNA and has also been implicated in

A

B

D E

C

Figure 3. NSUN3 modifies the wobble position of mt-tRNAMet.

A In vitro methylation reactions were performed using recombinant His14-
MBP-NSUN3 (NSUN3) or the catalytically inactive mutant His14-MBP-
NSUN3-C265A (C265A), 3H-labelled S-adenosylmethionine as a methyl
group donor and in vitro-transcribed mt-tRNAMet, mt-tRNAPro and mt-
tRNAGlu. The RNA was then separated on a denaturing polyacrylamide gel,
stained with ethidium bromide (EtBr) to indicate inputs and exposed to an
X-ray film to analyse methylation (3H-Me).

B The distribution of Illumina sequence reads along the mt-tRNAMet

sequence obtained from CRAC experiments with NSUN3 after UV (light
grey) or 5-AzaC cross-linking (dark grey) is given as reads per million
mapped reads. The position of the anticodon is indicated by a bar.

C Cloverleaf scheme of the mt-tRNAMet sequence. Nucleosides that were
exchanged in the mutational analysis shown in the following panels are
marked with arrows, and the nucleotide positions in the tRNA are given.

D In vitro methylation assays were performed as described in (A) with His14-
MBP-NSUN3 and in vitro-transcribed wild-type mt-tRNAMet and cytidine
mutants of the anticodon stem and loop region indicated in (C). Two
exposure times of X-ray films are shown 16 h (short) and 3 days (long).

E In vitro methylation assay of in vitro-transcribed mt-tRNAMet and
chemically synthesised mt-tRNAMet containing an m5C modification at the
wobble position. The experiment and analysis were performed as described
in (A).

A

B C

Figure 4. NSUN3 requires a stable anticodon stem loop of mt-tRNAMet

for methylation of cytosine 34.

A Scheme showing the mutations introduced in the anticodon stem loop
(ASL) of mt-tRNAMet for analysing tRNA substrate recognition by NSUN3.
ASL mutants included G:U basepairs (G:U bp) to affect the stability of
basepairing and sequence of the stem or mutants were generated by
swapping G:C basepairs (G/C swap), leading to changes in sequence
without affecting basepairing stability.

B In vitro methylation assays were performed using [3H-methyl]-labelled
S-adenosylmethionine, the in vitro transcripts of the mt-tRNAMet mutants
described in (A) and recombinant His14-MBP-NSUN3. RNA was then
separated on a denaturing polyacrylamide gel, stained with ethidium
bromide (EtBr), dried and exposed to an X-ray film to detect methylated
transcripts (3H-Me).

C In vitro methylation assay using chemically synthesised ASL. The
experiment and analysis were performed as described in (B).
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histone modification, most of the members of the AlkB-like Fe(II)/

alpha-ketoglutarate-dependent dioxygenases (ALKBH) have been

shown to act on RNA (reviewed in Shen et al, 2014; Fedeles et al,

2015; Li et al, 2015; Ougland et al, 2015). These include FTO

(ALKBH9) that is implicated together with ALKBH5 in the oxidative

removal of several modifications including 6-methyladenosine

(m6A) from RNA and ALKBH8 that is involved in the generation of

5-methoxycarbonylmethyluridine (mcm5U) in cytoplasmic tRNAs

(Fu et al, 2010a,b; Songe-Møller et al, 2010; Jia et al, 2011;

Thalhammer et al, 2011; Berulava et al, 2013; Zheng et al, 2013).

So far, only ALKBH7, which was suggested to act on protein

substrates during necrosis (Fu et al, 2013; Solberg et al, 2013; Wang

et al, 2014), and ALKBH1/ABH1 have been reported to localise to

mitochondria; however, the cellular localisation of ABH1 has been a

matter of debate (Pan et al, 2008; Westbye et al, 2008; Ougland

et al, 2012). We therefore analysed the cellular localisation of ABH1

in HEK293 cells by immunofluorescence analysis and co-staining

with a mitotracker (Fig 5A). The ABH1 antibody showed a cytoplas-

mic localisation with enrichment in foci that were also stained by

the mitotracker, indicating that ABH1 is largely present in mitochon-

dria in HEK293 cells, which could allow it to act on mt-tRNAMet.

Partial localisation of ABH1 to the mitochondrial matrix was further

supported by proteinase K protection assays, in which ABH1

remained intact in mitoplasts and was only degraded upon

mitochondrial lysis that allowed access of the protease to the

matrix (Fig EV2). To test whether ABH1 specifically interacts

with mt-tRNAMet, we generated a HEK293 cell line expressing

ABH1-HisPrcFLAG and performed UV cross-linking and pull-down

experiments followed by Northern blotting to analyse for ABH1-

associated RNAs. mt-tRNAMet (and not mt-tRNAGlu) was retrieved

with ABH1-HisPrcFlag, but not with the HisPrcFLAG control

(Fig 5B), indicating that ABH1 interacts specifically and directly

with mt-tRNAMet in mitochondria.

ABH1 mediates oxidation of m5C34 in mt-tRNAMet

The interaction of ABH1 with mt-tRNAMet suggests that it might

mediate oxidation of m5C34 in mt-tRNAMet. We therefore radio-

actively methylated mt-tRNAMet using [3H-methyl]-labelled S-adenosyl-

methionine and recombinant NSUN3 and generated recombinant

ABH1 and FTO for in vitro oxidation assays. The oxidation assays

were performed in the presence of alpha-ketoglutarate and Fe2+

either without enzyme, with maltose binding protein (MBP), wild-

type ABH1, the ABH1 alpha-ketoglutarate/Fe2+-binding mutants

R338A or D233A (Westbye et al, 2008), or FTO, and oxidation was

monitored by measuring tritium release from the methyl group.

Only wild-type ABH1 could oxidise m5C34 in mt-tRNAMet and the

reaction required the presence of alpha-ketoglutarate and Fe2+

(Fig 6A), which further supports the notion that mt-tRNAMet is a

genuine substrate of ABH1 and that ABH1 utilises the conserved

mechanism of the ALKBH family.

We next analysed whether the mt-tRNAMet ASL alone is sufficient

for in vitro recognition by ABH1 and oxidation of m5C34. Indeed,

m5C34-containing mt-tRNAMet ASL was efficiently oxidised by

ABH1 (Fig 6B), allowing further characterisation of the oxidation

product by HPLC. Treatment of chemically synthesised m5C34-

containing ASL with ABH1 resulted in almost quantitative oxidation

of m5C to 5-formylcytosine (f5C). The presence of f5C was confirmed

by mass spectrometry and by the efficient conversion in a 5-formyl-

pyrimidine-specific reaction with the trimethylindol derivative TMI

(Fig 6C; Samanta et al, 2016). Upon treatment of the oxidation

product with NaBH4, f5C was chemically reduced to 5-hydroxy-

methyl-cytosine (hm5C), which did not react with TMI (Fig 6C). Co-

injection of mt-tRNAMet ASL derivatives further confirmed that the

different oxidation states can be distinguished by HPLC (Fig 6D).

Together, these data show that ABH1 is present in mitochondria

of HEK293 cells where the enzyme can mediate oxidation of the

m5C34-containing mt-tRNAMet generated by NSUN3 to provide

f5C-containing mt-tRNAMet for mitochondrial translation.

Modifications of C34 modulate codon recognition by mt-tRNAMet

To understand how the modification state of C34 in mt-tRNAMet

affects its function in translation, we studied codon recognition by

mt-tRNAMet variants on the ribosome. As a reconstituted mitochon-

drial in vitro translation system is not readily available, we tested

binding of different modification states of mt-tRNAMet in the pres-

ence of purified recombinant human mitochondrial translation

factors on ribosomes from Escherichia coli. Even though the struc-

ture of bacterial and mitochondrial ribosomes is significantly dif-

ferent, the structure of the decoding centre of the ribosome is highly

conserved (reviewed in Greber & Ban, 2016), allowing mitochon-

drial translation factors to bind at the conserved sites of bacterial

ribosomes. To mimic codon recognition during translation initia-

tion, we used recombinant human mitochondrial initiation factor 2

A

B

Figure 5. ABH1 localises to mitochondria in HEK293 cells and specifically
interacts with mt-tRNAMet.

A The localisation of ABH1 was analysed by immunofluorescence in HEK293
cells. ABH1 (green) localisation and mitochondria stained with Mitotracker
(red) are shown separately and in an overlay with DAPI to indicate nuclei.
The scale bar represents 5 lm.

B HEK293 cells expressing ABH1-HisPrcFLAG (ABH1) or the HisPrcFLAG tag
alone (FLAG) were UV cross-linked (UV), and protein–RNA complexes were
affinity purified. Co-precipitated RNA was isolated and analysed by
Northern blot using probes against mt-tRNAMet and mt-tRNAGlu. Inputs
(0.1%) are shown on the left and eluates (50%) on the right.
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(MTIF2), which recruits mt-tRNAMet to the P site of the ribosome.

Codon recognition during the elongation phase was studied with the

human mitochondrial translation elongation factor TUFM, which

delivers the tRNA to the A site. We used chemically synthesised mt-

tRNAMet containing either unmodified C34, m5C34, hm5C34 or f5C34

aminoacylated with [14C]Met. Ribosomes programmed with mRNAs

presenting AUG, AUA or AUU codons in the P or A site were mixed

with MTIF2–GTP or TUFM–GTP and one of the mt-tRNAMet vari-

ants. mt-tRNAMet–ribosome complexes were retrieved by nitrocellu-

lose filtration and quantified by scintillation counting. The universal

AUG codon or the AUA codon in the P site was preferentially recog-

nised by the m5C34-modified mt-tRNAMet (Fig 7A). Binding to the

ribosomes containing an AUU codon in the P site was generally

lower and less specific with respect to mt-tRNAMet modification.

A

C

B D

Figure 6. ABH1 can oxidise m5C34 in mt-tRNAMet in vitro.

A In vitro-transcribed mt-tRNAMet was methylated at C34 using recombinant NSUN3 and 3H-labelled S-adenosylmethionine as a methyl group donor. Radiolabelled mt-
tRNAMet was re-extracted and then subjected to oxidation assays without protein (�), with maltose binding protein (MBP), with the dioxygenase FTO or using wild-
type (ABH1) or mutant (R338A, D233A) His14-MBP-ABH1. Besides ABH1 controls lacking a-ketoglutarate (aKG) or Fe2+ ions, all samples contained a-ketoglutarate and
Fe2+ ions. After oxidation, RNA was precipitated and the tritium released upon oxidation of radiolabelled mt-tRNAMet was quantified in the supernatant. Counts per
minute (CPM) are shown for experiments performed in triplicate with error bars indicating � SD (upper panel). Pelleted RNA was separated on a denaturing
polyacrylamide gel and exposed to an X-ray film to analyse the tritium retained (3H-Me).

B Synthetic anticodon stem loop (ASL) was radioactively labelled and subjected to oxidation assays that were performed and analysed as described in (A) using no
protein (�), MBP or wild-type His14-MBP-ABH1 (ABH1). Experiments were performed in triplicate with error bars indicating � SD.

C Anion exchange HPLC analysis was performed on synthetic m5C-containing ASL (20 nt) before and after oxidation by ABH1. The small shift in retention time indicates
formation of f5C-modified RNA. The ABH1 oxidation product was then treated with NaBH4 to generate hm5C-modified RNA. All three samples were analysed by ESI-
MS, and the molecular weight (m.w.) is indicated on the HPLC trace. Only the f5C-containing RNA was labelled efficiently with 1-ethyl-2,3,3-trimethylindoleninium-5-
sulphonate (TMI).

D The different retention times of m5C-, hm5C- and f5C-modified ASL RNA were confirmed by co-injection of samples shown in (C). HPLC was performed as in (C).
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Controls showed only weak binding of mt-tRNAMet in the absence of

ribosomes or mRNA independent of the modification status of the

tRNA, indicating that the observed differences in the P site binding

are due to specific recognition of these codons by mt-tRNAMet in

complex with MTIF2. Also the TUFM-dependent decoding in the A

site was generally more efficient on AUG than on AUA codons

(Fig 7B). The modified and unmodified mt-tRNAMet variants were

capable of reading the AUG codon. Notably the m5C-modified mt-

tRNAMet was less efficient than other variants in AUG decoding,

while AUA was read with similar efficiencies by all variants of mt-

tRNAMet. Together these data indicate that the modification state of

C34 in mt-tRNAMet influences codon recognition by the tRNA in the

P and A site, with m5C acting as a predominant decoder during initi-

ation at AUG and all tRNAs capable of decoding during elongation.

We note that the kinetics of decoding may be different depending

on the modification and thus some mt-tRNAMet variants may be

kinetically preferred over the others. However, a kinetic analysis of

decoding upon initiation and elongation is beyond the scope of the

present work.

Different modification states of cytosine 34 occur in
mt-tRNAMet in vivo

The cross-linking and in vitro modification data show that cytosine

34 in mt-tRNAMet can be methylated by NSUN3 to generate m5C and

then further oxidised by the dioxygenase ABH1 to f5C. In addition,

these different modifications in mt-tRNAMet may influence codon

recognition. To gain insight into the occurrence of the mt-tRNAMet

modification states in vivo, we first established RNAi-mediated

depletion of NSUN3 and ABH1 (Fig 8A). After siRNA treatment,

analysis of mRNA levels showed an �80% decrease in NSUN3 or

ABH1 mRNA levels. Equal amounts of RNA extracted from knock-

down cells were then treated with the 5-formylpyrimidine-specific

TMI to convert f5C into a hemicyanine derivative, which blocks

primer extension by reverse transcriptase at the site of modification,

thereby allowing to analyse the presence of f5C in the RNA

(Samanta et al, 2016). Primer extension analysis revealed that the

fraction of f5C34-containing mt-tRNAMet decreased by more than

three-fold (NSUN3) and more than four-fold (ABH1) when NSUN3

and ABH1 were depleted (Fig 8B and C), confirming the roles of

these enzymes in establishing the modification in vivo. To identify

the presence of other modification states at C34, RNA from

wild-type cells or cells transfected with non-target siRNAs or those

targeting NSUN3 or ABH1 was first subjected to DNase digest and

then treated with bisulphite. Alternatively, the DNase digest was

followed by chemical reduction of the RNA with NaBH4 to convert

f5C to hm5C and bisulphite treatment. In both cases, after deamina-

tion and desulphonation, mt-tRNAMet was specifically amplified by

reverse transcription and PCR and then cloned. Analysis of

sequences derived from wild-type RNA after reduction indicated

that mt-tRNAMet is fully modified at position C34. Comparison to

the non-reduced sample suggested that although the majority of

these modifications are f5C, a portion of cytosines at this position

are not converted by the bisulphite treatment, indicating that they

carry the m5C34 modification installed by NSUN3 (Fig 8D). Consis-

tent with these data, depletion of NSUN3 resulted in a decrease in

the mt-tRNAMet fraction carrying a modification on C34 and a

decrease in the portion of m5C, while upon depletion of ABH1,

A B

Figure 7. Modification of cytosine 34 modulates codon recognition by mt-tRNAMet in vitro.

A MTIF2-dependent reading of initiation codons AUG, AUA or AUU in the P site of the ribosome by unmodified (unmod.) or C34-modified [14C]Met-tRNAMet. Binding was
determined by nitrocellulose filtration, and [14C]Met-tRNAMet retrieved on the membrane was quantified by scintillation counting. Binding in the absence of
ribosomes (no 70S) or mRNA (no mRNA) served as controls. Data from three independent experiments are presented with error bars indicating � SEM. The statistical
significance of the results was analysed by t-test and is indicated by the asterisks in the graph (*P < 0.05).

B TUFM-dependent recognition of A site codons during elongation. Data from three independent experiments are presented with error bars indicating � SEM and
statistical analysis as in (A) (*P < 0.05, **P < 0.01).
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position 34 was almost exclusively read as cytosine independent of

whether the RNA had been reduced. These results confirm methyla-

tion of C34 by NSUN3 and further show that the ABH1 knock-down

abolishes the formation of f5C34 in mt-tRNAMet in vivo. We note that

the bisulphite data do not rule out the presence of hm5C, which is

also resistant to bisulphite conversion. Oxidative bisulphite

sequencing, which can distinguish m5C and hm5C in DNA (Booth

et al, 2013), resulted in degradation of the RNA. However, hm5C

was not observed upon ABH1 oxidation in vitro and had no

beneficial effect in ribosome binding assays, suggesting that this

modification might not play a major role for mt-tRNAMet.

Modifications of cytosine 34 in mt-tRNAMet are required for
mitochondrial translation in vivo

Our finding that the mt-tRNAMet C39U mutation, which has previ-

ously been identified in patients with mitochondrial dysfunction

(Lott et al, 2013; Tang et al, 2013), largely abolishes m5C34 forma-

tion by NSUN3, suggests that the C34 modification is required for

mt-tRNAMet function in vivo and that mt-tRNAMet malfunction might

cause the disease in these patients. To analyse the requirement for

the modifications installed by NSUN3 and ABH1 for translation in

mitochondria, we measured the amount of 35S-methionine incorpo-

rated into proteins during mitochondrial translation in vivo after

depletion of NSUN3 or ABH1. Indeed, depletion of either NSUN3 or

ABH1 resulted in reduced 35S-incorporation, suggesting that the

modifications installed by these proteins are required for mt-

tRNAMet function. Close inspection of the individual synthesis rates

of the mitochondrial proteins revealed that the translation of all

mitochondrial proteins was affected by NSUN3 or ABH1 depletion,

which is in line with the presence of both AUG and non-canonical

codons encoding methionine (AUA, AUU) in all of these mRNAs.

Moreover, we observed that cell growth was affected by knock-

down of either NSUN3 or ABH1 (Fig EV3), further supporting the

important roles of the modifications installed by these enzymes for

mitochondrial function and the cellular metabolism.

Discussion

Expression of the mitochondrial genome is fundamental in eukary-

otes for maintaining the cellular energy metabolism and various

A

C

B D

Figure 8. Knock-down of NSUN3 or ABH1 leads to a reduction in the modification of cytosine 34 in mt-tRNAMet in vivo.

A HeLa cells were transfected with two different siRNAs against NSUN3 (siNSUN3_1, siNSUN3_2), ABH1 (siABH1_1, siABH1_2) or with non-target (siNT) siRNA, and the
knock-down efficiency was analysed by quantitative PCR. The relative abundance of the NSUN3 or ABH1 mRNA was normalised to GAPDH levels. Data are presented
as mean � SD.

B Chemically synthesised f5C modified mt-tRNAMet and total RNA from wild-type (WT) cells or those transfected with siRNAs as in (A) were treated with TMI to
specifically label f5C residues. Primer extension, using a radiolabelled antisense primer, was performed under limited dNTP conditions. Products were separated on a
denaturing polyacrylamide gel alongside a sequencing ladder, and RNAs were detected using a phosphorimager.

C Primer extension reactions were performed on total RNA from cells transfected with siRNAs as described in (B). Stops corresponding to position C34 in mt-tRNAMet

were quantified in three independent experiments, and results are shown graphically as mean � SD.
D RNA from wild-type HeLa cells and cells treated with siRNAs against NSUN3 or ABH1 (as in A) was either first reduced with NaBH4 or directly treated with bisulphite.

After deamination and desulphonation, mt-tRNAMet RNAs were reverse transcribed, amplified, cloned and sequenced. The proportions of thymine (grey) generated by
bisulphite conversion or non-converted cytosine (black) at position 34 of mt-tRNAMet are shown. Note that for sequences from non-reduced samples, thymine can
also originate from unmodified or f5C-containing mt-tRNAMet, while in reduced samples, it originates from unmodified cytosine.
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metabolic pathways. The human mitochondrial DNA encodes 13

mRNAs that are translated on mitochondrial ribosomes to generate

proteins of the respiratory chain complexes, which are essential for

oxidative phosphorylation. The mitochondrial protein synthesis

machinery employs a minimalistic set of 22 mitochondrial tRNAs

and, even though they contain a reduced number of modified resi-

dues compared to their cytoplasmic counterparts, mitochondrial

tRNAs possess multiple RNA modifications that require import of

the corresponding modification enzymes from the cytoplasm

(Watanabe & Yokobori, 2011; Suzuki & Suzuki, 2014; Powell et al,

2015). The largest diversity of modifications in these tRNAs occurs

in and around the anticodon, especially at the wobble position. This

coincides with the extreme reduction in isoacceptors, requiring most

tRNAs to act in decoding of several different codons, and with speci-

fic mitochondrial changes in the universal genetic code. Despite the

importance of the tRNA modifications for mitochondrial translation

and physiology, many of the modification pathways, the enzymes

involved and the roles of these modifications in mitochondrial trans-

lation have remained unknown so far.

Here, we describe the biosynthetic pathway that introduces

modifications at the wobble position of the mitochondrial tRNAMet.

We show that the RNA methyltransferase NSUN3 efficiently methy-

lates C34 of mt-tRNAMet to produce m5C, which can then be

oxidised by the alpha-ketoglutarate and Fe(II)-dependent dioxyge-

nase ALKBH1/ABH1. Mammalian mt-tRNAMet can be modified to

f5C at the wobble position, and our data demonstrate that this modi-

fication is introduced in vivo by the consecutive action of NSUN3

and ABH1 (Fig 9C). Interestingly, the bisulphite sequencing data

further suggest that after methylation by NSUN3 only a part of the

mitochondrial pool of mt-tRNAMet is oxidised by ABH1, indicating

the presence of m5C34-containing mt-tRNAMet in vivo.

The ability of ABH1 to oxidise m5C to f5C is striking with

respect to the previously described substrate specificity of this

oxygenase enzyme. ABH1 can demethylate single-stranded DNA

and RNA in vitro with low efficiency, with a preference for oxida-

tion of N3-methylcytosine (m3C) (Westbye et al, 2008), and has

been suggested to act as histone demethylase and abasic site lyase

(Müller et al, 2010; Ougland et al, 2012). While the homologous

E. coli AlkB cannot oxidise m5C in vitro (Li et al, 2010) and

human ALKBH2 and ALKBH3 preferentially repair alkylation at

nucleobase heteroatoms such as m3C and 1-methyladenosine

(m1A) (Aas et al, 2003; Falnes et al, 2004), the oxidation of m5C

involves transformation of a pseudobenzylic methyl group. In

DNA, this reaction is catalysed by related Fe(II)/a-ketoglutarate-
dependent oxygenases of the TET enzyme family, and the oxida-

tion products play a significant role in epigenetic regulation in

mammals (Tahiliani et al, 2009; Breiling & Lyko, 2015; Li et al,

2015). The TET enzymes produce hm5C as primary stable oxida-

tion product, which can be further oxidised to f5C and 5-carboxy-

cytosine (ca5C), although these higher oxidation products are

10- to 100-fold less abundant than hm5C in DNA and are mainly

linked to active demethylation (Ito et al, 2011; Pfaffeneder et al,

2011; Wagner et al, 2015). In RNA, the analogous oxidation of

m5C to hm5C has been reported by catalytic domains of mamma-

lian TET enzymes (Fu et al, 2014) and the homologous Drosophila

protein dTET (Delatte et al, 2016). f5C was detected as minor

oxidation product in total cellular RNA by mass spectrometry-

based isotope tracing (Huber et al, 2015), but the enzymes

generating this modification have remained unknown. The obser-

vation that oxidation products of m5C have been detected in RNA

from all domains of life, including organisms that do not contain

homologous TET enzymes, suggests that m5C can be metabolically

oxidised by enzymes other than those of the TET family. We have

identified ABH1 as the first such enzyme that produces f5C in

human mitochondria. Under the conditions tested, f5C was the

only oxidation product detected in vitro; hm5C did not accumulate

as intermediate and no further oxidation to ca5C was detected. In

the absence of a three-dimensional structure of ABH1, the molecu-

lar reasons for the apparent specificity of ABH1 for the biosynthe-

sis of f5C remain unknown. With the broad target spectrum

reported for ABH1, it will also be interesting to understand on the

structural level how this enzyme can accommodate interactions

with diverse protein and RNA substrates and modulate their modi-

fication state.

In mitochondria, NSUN3 and ABH1 act on mt-tRNAMet, which

represents the only tRNAMet that acts both in translation initiation

and elongation, in contrast to bacterial and eukaryotic cytoplasmic

translation systems. Besides reading the universal AUG codons,

mt-tRNAMet is employed for decoding of AUA codons during initi-

ation and elongation, as well as an AUU initiation codon in the

case of the NADH dehydrogenase 2 (ND2) mRNA. Our data

obtained with synthetic aminoacylated mt-tRNAMet containing

unmodified C34, m5C34, hm5C34 or f5C34 and the human mito-

chondrial translation initiation factor MTIF2 reveal that the pres-

ence of the m5C modification in the wobble position enhances

codon reading of the AUG and, to a lesser extent, AUA initiation

codons in the P site of the ribosome, suggesting a specific role of

m5C34 modification during translation initiation. The AUU initia-

tion codon, which is only present in the ND2 mRNA, is recog-

nised, albeit poorly, by non-modified or f5C-modified mt-tRNAMet.

The recognition efficiency of the AUA and AUU initiation codons

is low, consistent with the previous results obtained with mt-

tRNAMet anticodon stem loop (Bilbille et al, 2011). However,

given that translation in mitochondria is generally slow and the

mRNA recruitment for translation often relies on protein factors

specific for each mRNA (Kuzmenko et al, 2014), it is conceivable

that even weak codon–anticodon interaction with mt-tRNAMet

may be sufficient to start translation. While m5C-modified mt-

tRNAMet preferentially acts in translation initiation, results from A

site binding studies in the presence of the mitochondrial elonga-

tion factor TUFM suggest that mt-tRNAMet variants other than

m5C34 are more efficient in decoding of the internal AUG codons

during translation elongation. In combination with the generally

lower efficiency of the alternative codons in the in vitro binding

assays, only small differences between the binding of the unmodi-

fied, m5C- or f5C-modified mt-tRNAMet to AUA codons in

the ribosomal A site were observed, while the binding of

hm5C-containing mt-tRNAMet was less efficient. Previous reports

with the unmodified or f5C34-containing ASL of mt-tRNAMet

suggested that the formyl group might stabilise the non-

conventional basepairing of f5C34 with an adenosine in the third

position of an AUA codon (Bilbille et al, 2011; Cantara et al,

2013). These studies also observed that binding of mt-tRNAMet to

alternative codons was weaker than to AUG and it is likely that

ribosome interactions with mt-tRNAMet outside of the ASL, that is

with the tRNA body, further influence mt-tRNAMet binding.
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Together, our data indicate that the different modification states

of cytosine 34 in mt-tRNAMet can expand the ability of the single

tRNAMet to read the different codons encoding methionine in

mitochondrial translation initiation and elongation.

The modification state of C34 in mt-tRNAMet is controversially

discussed in the literature and two reports that were published

while this manuscript was under consideration find different

levels of NSUN3-dependent m5C34 and f5C34 in human mt-

tRNAMet (Nakano et al, 2016; Van Haute et al, 2016). Our findings

imply that in vivo a large fraction of the m5C34-containing mt-

tRNAMet is oxidised by ABH1, which is in line with previous

reports that found the f5C34 modification in mt-tRNAMet (Moriya

et al, 1994; Takemoto et al, 2009; Suzuki & Suzuki, 2014).

However, we also observed that mt-tRNAMet carrying m5C34 is

present in vivo, which is supported by findings of Van Haute et al

(2016), and that this modification state of mt-tRNAMet is efficiently

recruited to the P site of the ribosome in vitro. Importantly, muta-

tions in mt-tRNAMet itself have been shown to cause severe mito-

chondrial disorders (Lott et al, 2013; Tang et al, 2013) and we

found that one such mutation (C39U), which leads to destabilisa-

tion of the anticodon stem structure, largely abolishes mt-tRNAMet

methylation by NSUN3. These results indicate that NSUN3

malfunction and a lack in mt-tRNAMet modification might repre-

sent the molecular cause of such diseases. An important role of

the modifications installed in mt-tRNAMet by NSUN3 and ABH1 is

further supported by our findings that knock-down of either

NSUN3 or ABH1 affects mitochondrial translation and leads to

reduced cell survival. While mt-tRNAMet likely represents the only

substrate of NSUN3, ABH1 has a broader target spectrum and its

depletion might also influence other molecules affecting mitochon-

drial translation. Interestingly, previous reports have suggested a

differential localisation of ABH1 in different cell types. While the

dioxygenase is mainly localised in mitochondria and the cyto-

plasm in HEK293 and HeLa cells (Fig 5; Westbye et al, 2008), it

has been reported to be nuclear in embryonic stem cells (Ougland

et al, 2012, 2016). Together, these findings suggest that the

methylation of cytosine 34 in mt-tRNAMet by NSUN3 represents

an important modification present in many, if not all cell types,

while the different localisation of ABH1 might result in differential

modification of mt-tRNAMet on cytosine 34 in different cell types,

tissues and developmental stages and might thereby fine tune

mitochondrial translation in vivo.

A

C

B

Figure 9. NSUN3 and ABH1 are both required for efficient mitochondrial translation in vivo.

A HeLa cells were treated with non-target siRNAs (siNT) or those targeting NSUN3 (siNSUN3_1 or siNSUN3_2) or ABH1 (siABH1_1 or siABH1_2) for 72 h before labelling
of mitochondrial translation products with [35S]methionine. Protein samples were separated by SDS–PAGE then transferred to a membrane. Labelled proteins were
detected using a phosphorimager, and the levels of tubulin were determined by Western blotting using an antibody against the endogenous protein for
normalisation.

B Mitochondrially translated proteins that could be clearly detected were quantified in three independent experiments, and the results are shown graphically as
mean � SD.

C Overview of the modification pathway of C34 in mt-tRNAMet. NSUN3 introduces an m5C methylation on C34 using S-adenosylmethionine (SAM) as methyl group
donor, and this can be further oxidised by ABH1 in the presence of O2, Fe(II) (Fe

2+) and alpha-ketoglutarate (aKG) to produce f5C34.
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Materials and Methods

Human cell culture, stable cell lines and in vivo cross-linking

HeLa CCL2 and HEK293 Flp-In T-Rex cells (Life Technologies)

were cultured with 5% CO2 at 37°C in DMEM supplemented with

10% FCS and 2 mM glutamine. For generation of tetracycline-

inducible stable cell lines the NSUN3 or ABH1 CDS were cloned

into the pcDNA5 vector with C-terminal GFP or His-PreScission

protease cleavage site-2×FLAG (HisPrcFlag) tag. The catalytically

inactive NSUN3 C265A mutant was generated by site-directed

mutagenesis (Haag et al, 2015b). The constructs were transfected

into HEK293 Flp-In T-Rex cells according to the manufacturer’s

instructions and as described (Sloan et al, 2015). UV and 5-AzaC

cross-linking and analysis of cDNA (CRAC) experiments were

carried out as previously described (Bohnsack et al, 2012; Haag

et al, 2015a; see also Appendix Supplementary Methods). Detec-

tion of co-immunoprecipitated tRNA by Northern blot was

performed as previously described (Haag et al, 2015a). In brief,

after cross-linking and immunoprecipitation of protein–RNA

complexes the RNA was eluted by proteinase K digestion for 16 h,

precipitated and resuspended in loading dye (95% formamide,

5 mM EDTA, bromophenol blue). The RNA was separated on a

denaturing 12% polyacrylamide gel (7M urea), transferred to a

nylon membrane and selected tRNAs were detected by Northern

blotting using specific 32P-50 end-labelled probes (anti-mt-tRNAMet,

anti-mt-tRNAGlu, anti-mt-tRNAPro, anti-tRNAi
Met, anti-tRNAe

Met;

Appendix Table S1) on a phosphorimager.

Microscopy, isolation of mitochondria and protease
protection assays

HEK293 cells expressing NSUN3-GFP under the control of a tetracy-

cline-inducible promoter were selected and NSUN3-GFP expression

was induced by 1 lg/mL doxycycline treatment for 24 h. Cells were

treated with MitoTracker� Orange CMTMRos (Life Technologies) in

PBS for 20 min at 37°C, washed in PBS and fixed with 4% formalde-

hyde in PBS for 10 min at room temperature. After washing with

PBS, cells were mounted on coverslips using Vectashield� (Vector

labs) for confocal microscopy and localisation analysis. Alterna-

tively, immunofluorescence using an antibody against ABH1 (see

Appendix Table S2) was performed as previously described (Haag

et al, 2015a). Isolation of mitochondria, analysis of submitochon-

drial localisation and protease protection assays were performed

as described using the antibodies listed in Appendix Table S2

(Dennerlein et al, 2015).

RNA interference, RNA isolation and qRT–PCR

HeLa CCL2 cells were transfected with siRNAs (40 nM) targeting

NSUN3 (siNSUN3_1, siNSUN3_2) or ABH1 (siABH1_1, siABH1_2)

or a non-target siRNA (siNT) using Lipofectamine RNAiMax (Life

Technologies) according to the manufacturer’s instructions. Cells

were harvested 96 h after siRNA transfection and total RNA was

isolated using TRI reagent (Sigma-Aldrich). The knock-down effi-

ciency was determined by qRT–PCR and relative quantification was

performed using primers for NSUN3 (NSUN3_qPCR_fwd,

NSUN3_qPCR_rev), ABH1 (ABH1_qPCR_fwd, ABH1_qPCR_rev) and

GAPDH (GAPDH_qPCR_fwd, GAPDH_qPCR_rev; for siRNA and

primer sequences see Appendix Table S1 and S3).

NaBH4 treatment and bisulphite reaction

To analyse the cytosine modification status of mt-tRNAMet, DNase I

treated total RNA from wild-type, NSUN3 or ABH1 knock-down

cells was either directly subjected to bisulphite sequencing (Schaefer

et al, 2009) or treated with 0.25 M NaBH4 in 200 mM Tris–HCl pH

7.5, 20 mM MgCl2, 200 mM KCl for 30 min on ice and precipitated

prior to the bisulphite reaction. Reduced or untreated RNA was

bisulphite treated using the Qiagen bisulphite kit according to the

manufacturer’s instructions. The deamination reaction was carried

out in a thermocycler with 5 min at 70°C, 60 min at 60°C (3 times).

Samples were desalted using 6×SSC Micro bio spin chromatography

columns and subsequently desulphonated by incubation in Tris pH

9 for 30 min at 37°C. The RNA was precipitated and reverse tran-

scribed using the mt-tRNAMet_RT primer and Superscript III reverse

transcriptase (Thermo) according to the manufacturer’s instruc-

tions. PCR products were then cloned using a TOPO-TA kit

(Thermo) and sequenced. At least 50 sequences were analysed per

sample and only sequences in which all other cytosines besides C34

in mt-tRNAMet were converted were used for the analysis presented.

Cloning and recombinant expression of proteins and in vitro
transcription of tRNAs

The coding sequences of human NSUN3, ABH1 or FTO were cloned

into a pQE80 derivative encoding an N-terminal His14-MBP-tag

(Weis et al, 2014) and the CDS of MTIF2 or TUFM into a pQE80

derivative encoding a C-terminal His10-tag (Mingot et al, 2004). The

ABH1 D233A and R233A, and NSUN3 C265A mutants were gener-

ated by site-directed mutagenesis (Haag et al, 2015b). Recombinant

proteins were expressed in Escherichia coli (DE3) Rosetta pLysS

(NSUN3, ABH1) or (BL21) Codon Plus (MTIF2, TUFM) cells and

details of protein purification are given in the Appendix Supplemen-

tary Methods. Mt-tRNAMet, mt-tRNAGlu, mt-tRNAPro, tRNAi
Met and

tRNAe
Met sequences were generated by recursive PCR as described

(Müller et al, 2013) using four overlapping oligonucleotides each

and cloned into a pQE vector derivative lacking an internal T7

promoter. The CCA tail and a BsaI restriction site were added at the

30 end of the tRNA gene and the forward primer contained the

sequence of the T7 promoter. Point mutations were introduced by

site-directed mutagenesis. For in vitro transcription, 500 ng of BsaI-

linearised plasmid were incubated with 1 mM NTPs, T7-RNA poly-

merase, 1× transcription buffer (Thermo) and RiboLock (Thermo)

for 1 h at 37°C. After transcription, samples were treated with

DNase I for 15 min and purified over a Sephadex G-25 spin column

(Roche).

Preparation of synthetic tRNAs and ribosome binding assays

RNA oligonucleotides were prepared by solid-phase synthesis using

20-O-TOM-protected ribonucleotide phosphoramidites, chemically

phosphorylated on solid support, deprotected in two steps with

methylamine in water/ethanol, followed by 1 M tetrabutylammo-

nium fluoride in tetrahydrofuran, purified by denaturing PAGE, and

analysed by analytical anion exchange chromatography under
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denaturing conditions (6M urea, 80°C) and ESI-MS. Synthetic tRNAs

were prepared by enzymatic ligation of chemically synthesised RNA

fragments using T4 DNA ligase and DNA splint oligonucleotides

(2–5 nmol scale, incubation at 30°C for 12 h), analogous to previ-

ously reported procedures (Rieder et al, 2009). The full-length

tRNAs were isolated by denaturing PAGE, extracted into Tris–NaCl

buffer, precipitated with ethanol and re-dissolved in water. To

generate f5C34 or hm5C-containing mt-tRNAMet, ligation was

performed with m5C34-ASL RNA oligonucleotides that were treated

with recombinant ABH1 on preparative scale (5–10 nmol) (see

oxidation assays for conditions), or treated with ABH1 and then

reduced with NaBH4 (see NaBH4 treatment). The modified ASLs

were PAGE purified and their homogeneity and identity were con-

firmed by anion exchange HPLC and ESI-MS. Labelling of f5C-RNA

with 1-ethyl-2,3,3-trimethylindoleninium-5-sulphonate (TMI) and

analysis of primer extension stops on sequencing gels were

performed as described (van Nues et al, 2011; Samanta et al, 2016).

Ribosome binding assays were performed as described (Rezgui

et al, 2013; see also Appendix Supplementary Methods).

In vitro methylation and oxidation assays

Methylation of RNAs was carried out essentially as described

(Jurkowski et al, 2008; Müller et al, 2013). Reactions containing

1 lM recombinant NSUN3 and 1 lM of tRNA or 10 lg of total

RNA in 1× methylation buffer (50 mM Tris–HCl pH 7.0, 50 mM

NaCl, 5 mM MgCl2, 1 mM DTT) and 1.7 lM [3H]-SAM (Hart-

mann), 1 unit/ml RiboLock (Thermo) were incubated at 22°C for

2 h. After addition of proteinase K for 30 min to stop the reaction,

RNAs were separated on a 12% denaturing (7 M urea) polyacryl-

amide gel, stained with ethidium bromide, fixed and immersed in

amplify solution (Amersham) for 1 h. After drying, the gel was

exposed to a X-ray film for 16 h to 2 weeks at �80°C. For in vitro

oxidation reactions mt-tRNAMet or mt-tRNAMet ASL were labelled

with a [3H]-containing methyl group by in vitro methylation with

NSUN3. The methylated RNA was precipitated and incubated with

1 lM recombinant wild-type or mutant His14-MBP-ABH1, MBP or

His14-MBP-FTO in the presence of 50 mM HEPES pH 6.9, 5 mM

MgCl2, 4 mM ascorbic acid and 100 lM Fe(NH4)2(SO4)2 and

100 lM a-ketoglutarate for 1 h at 22°C. The reaction was stopped

by addition of proteinase K and the RNA was precipitated. The

supernatant containing released [3H] was analysed by scintillation

counting, and the corresponding RNA pellets were separated by

denaturing gel electrophoresis and analysed as described for the

methylation assay. Preparative scale oxidation of synthetic m5C34

ASL for preparation of mt-tRNAMet by ligation was performed

under analogous conditions, followed by PCI extraction and PAGE

purification.

In vivo analysis of mitochondrial translation

In vivo labelling was performed as previously described (Chomyn,

1996). HeLa cells were transfected with siRNAs (non-target, NSUN3

or ABH1) and cultivated for 72 h. Before labelling, cells were

starved in medium lacking serum and methionine. Cytosolic transla-

tion was inhibited by treating cells with 100 lg/ml emetine (Sigma-

Aldrich) for 10 min. Translation of mitochondrial proteins was

pulsed with 0.2 mCi/ml 35S methionine for 30 min. Cells were

harvested, and proteins were separated on a 10–18% Tricin–SDS–

PAGE followed by transfer onto a PVDF membrane and exposure to

a phosphor screen. Autoradiography signals were measured by a

phosphorimager (Typhoon FLA 9500) and quantified by Imagequant

TL software (GE Healthcare). Equivalent amounts of samples

were run on SDS–PAGE for fluorescent Western blot analysis for

normalisation.

Data availability

The primary high-throughput sequencing data of the UV and

5-azacytidine cross-linking and analysis of cDNA (CRAC) experi-

ments have been submitted to the GEO SRA database and assigned

the identifier GSE84664.

Expanded View for this article is available online.
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