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Abstract

The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are
largely unknown. To better understand EGFs’ transforming capacity whole genome scans were applied to a transgenic
mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene
regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we
identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the
level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites
of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore
be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of
differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the
pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription
factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF
receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in
tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and
demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.
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Introduction

Epidermal growth factor is an important mitogen for hepatocytes

for its ability to modulate proto-oncogene as well as liver specific

gene expression. To better understand EGF’s role in malignant

transformation a transgenic mouse model was developed where

EGF was targeted to the liver. Notably, transgenic mice developed

liver cancer around 7–8 months and a tumour stage-dependent

network of EGF-regulated genes was identified, as previously

reported [1]. Encouraged by these findings genes linked to

tumorigenes and progression of disease could be proposed. Here,

we wished to analyze gene expression profiles of pre-tumorous and

highly differentiated hepatocellular carcinomas with a novel

computational method that enabled identification of regulators of

the EGF signalling cascade associated with malignant transforma-

tion. A new method was developed based on promoter sequence

analysis of differentially expressed genes. Specifically, transcription

of a gene is determined to a major part by the activity of

transcription factors, which in turn recognize specific short DNA

segments, i.e. transcription factor binding sites (TFBSs) which are

often situated in the promoter region upstream of the transcription

start site (TSS). Gene expression profiles can thus be used to identify

TFs that potentially influence the expression of genes under certain

cellular conditions by use of various genetic algorithms and matrices

that recognise TFBSs. The complexity of the gene expression data

can then be reduced by identification of common TFs of co-

regulated genes. The here described and newly developed method

focuses on the identification of transcription factor binding sites with

co-occupancy in the promoters of differentially expressed genes in a

statistically significant manner. This enabled hypotheses generation

and an identification of transcription factors acting on such a

promoter set with the ultimate goal to identify ‘‘molecular triggers’’

in gene regulatory networks forcing hepatocytes into malignant

transformation. Based on such analysis transcription factors were

identified as candidate effectors of malignant transformation which

may function in the switch from EGF over expression to the
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malignant state. In order to experimentally validate the computa-

tional predictions Western blotting experiments of nuclear proteins

and EMSA band shift assays were carried out to determine the

DNA binding activity of several transcription factors. Reconstruc-

tion of signalling cascades upstream of these TFs allowed us to

suggest the downstream targets of EGF signalling in these two types

of cellular states, i.e. transgenicity and liver cancer. As a result, we

propose regulatory networks that help to better understand EGF-

induced malignancies. In an effort to search for key molecules in the

signalling network upstream of the identified transcription factors

the insulin-like growth factor pathway was identified that indeed

may represent a molecular switch from the EGF receptor tyrosine

kinase route to the tumour state thereby rendering malignantly

transformed cells independent of EGF receptor activity. Further

evidence for this hypothesis was obtained when the gene expression

of IGF2 and its down stream partners was investigated and

determined to be highly significantly induced in tumour cells as

were many components of this pathway.

Overall this study aims for a better understanding of the EGF

transforming capacity and combines different lines of evidence for

a possible mechanism of disease.

Results

Differential expression in transgenic (pre-tumor) and
tumor tissue: sub classification of known liver cancer
biomarkers by gene expression profiles

ExPlain 2.3 mapped Affymetrix probe sets to 10,262 mouse

genes. Differential expression analysis with Ebarrays detected 303

and 355 up regulated genes as well as 95 and 141 down regulated

genes in transgenic and tumor cells, respectively. Table 1

summarizes information about obtained gene lists and Figure 1

depicts the distribution of known transcription factor binding site

locations according to the TRANSFAC database release 12.1 (see

Material and Methods, calculation of P-values for MATCH

scores, for further details). Table S1 provides all MGI gene

symbols, TRANSPATH molecule names, if available, and highest

or lowest fold changes measured for probe sets of up regulated or

down regulated genes, respectively. A minor manual modification

was introduced to gene set 5 (Table 1), where a probe set mapped

to four closely related paralogs Bcl2a1a–d. We used the MAFFT

alignment software [2] and Jalview [3] to inspect the multiple

alignments of Bcl2a1 promoters (Figure S1). Since promoter

sequences of these genes are very similar, a bias in promoter

analyses performed in this work could be expected and we

therefore removed three Bcl2a genes (b–d) from gene set 5.

Transgenic and tumor states shared 144 up regulated genes and

25 down regulated genes (sets 3 and 8, Table 1). In subsequent

analyses we also considered a potentially larger overlap, when a

probe set was statistically significant in one contrast and achieved a

high fold change in the other (sets 2, 4, 7, and 9). Thus, for 77 of

the 303 up regulated genes in transgenic cells (set 2), a probe set

detected by statistical analysis also had a fold change .2 in tumor

cells, and these 77 genes were added to the 355 genes up regulated

in tumor to obtain an extended set of up regulated genes in tumor

cells. Correspondingly, 103 of the 355 genes up regulated in tumor

were appended to the transgenic set to derive an extended set of

up regulated genes in transgenic cells (set 4). Likewise, gene sets of

the down regulation response were enlarged at a fold change

below 0.5. Remaining subsets (sets 1, 5, 6, and 10) were considered

specifically regulated in the respective progression state.

According to the disease module of the BIOBASE Knowledge

Library (BKL) [4], EGF-induced carcinogenesis caused differential

expression of 39 known biomarker genes associated with liver

carcinoma/neoplasms (Table S1). As shown in Figure 2, these

biomarkers featured different patterns of expression suggesting a

further sub classification with regard to their response in pre-

tumor and tumor state. Three genes, namely Myc, Glul, Oat, were

transiently up- or down regulated during disease onset and may

thus serve as early markers for liver cancer, which discriminate

against the tumor state (Figure 2A). Statistical analysis also

suggested Dnmt3a, Itga6, and Shc1, however high fold changes

were measured for these genes in tumor cells as discussed above.

Expression of 14 biomarker genes changed detectably in both

progression states (Figure 2B) indicating an additional set of

putative early liver cancer markers. Finally, Ccnd1, Gpc3, Mvk,

Pparg, Rbl2, and Robo1 exhibited a tumor-specific response

(Figure 2C), where adverse expression changes were observed for

Pparg, which appeared down regulated in transgenic cells (fold

change ,0.4) and significantly up regulated in tumors. Taken

together, these results suggest a refined interpretation of known

biomarkers for liver cancer/neoplasms. Among respective genes

we could identify several informative signatures that indicate

specific pre-tumor and tumor markers and show that expression

changes of some known biomarkers may in fact serve as early

indicators of disease onset.

Regulation of cell cycle and lipid metabolism changes
progressively in EGF-induced hepatocarcinogenesis

With defined sets of differentially expressed (DE) genes at hand,

we set out to identify functional changes that accompany EGF-

induced hepatocarcinogenesis. For this purpose, we calculated

enrichment P-values for all GO Biological Process categories

associated with at least one gene in transgenic or tumour gene sets

and applied them as a measure of relative importance of a

particular biological function for a given gene set. To limit the

effect of false negative findings during differential expression

analysis, enrichment P-values were calculated for extended gene

sets composed of sets 1–4 (up regulated in transgenic cells), 2–5 (up

regulated in tumor cells), 6–9 (down regulated in transgenic cells),

and 7–10 (down regulated in tumour cells) (Table 1). Results of the

P-value comparison are shown in Figure 3. In the following we

focus on the 15 GO groups with largest differences between log-P-

values as obtained in analyses of either upregulated or downreg-

ulated gene sets. Plots of transgenic versus tumour P-values

(Figure 3, A and C) illustrate that the procedure ordered categories

according to their distance to the diagonal (red line). Points on the

diagonal indicate no difference between P-values. In the selected

top 15 biological processes, P-values varied by about 2–6 orders of

magnitude between transgenic and tumour states. According to

this analysis, upregulation of genes during tumorigenes most

strongly altered cell cycle functions (Figure 3B). Note that legends

of Figures 3B and 3D preserve the ordering by log-P-value

difference. All of the top five GO categories, ‘‘cell division’’, ‘‘cell

cycle’’, ‘‘M phase’’, ‘‘mitosis’’, and ‘‘M phase of mitotic cell cycle’’

allude to changes in cell cycle and were more significantly

enriched in the tumor gene set, whereas upregulation in transgenic

cells was more strongly directed at mechanisms of cell motility as

well as cellular component organization and biogenesis. Besides

alterations of cell cycle, functional comparison points out changes

in regulation of genes taking part in developmental processes, cell

growth, and anatomical structure development (Figure 3B), which

imply potential dedifferentiation events. Analysis of downregula-

tion responses reveals that regulation of lipid metabolism was

strongly modified during tumorigenesis. The next two highest

ranked functions pertain to protein deubiquitination and bile acid

synthesis (Figure 3D). Table S2 provides additional details about

genes matching some selected biological process groups and their

Oncogenic Signalling of EGFR in Liver Cancer
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P-values in either progression state. Cell cycle categories highly

ranked by comparison of upregulated gene sets were significantly

affected in both transgenic and tumor cells, which shows that these

functions undergo progressive alterations. In particular, genes

associated with anatomical structure development were strongly

enriched in transgenic and tumor sets (yellow dot and line,

Figure 3, A and B). Notably, differences manifested not only in

upregulation of additional genes in the tumor cell; e.g. the cell

cycle group of transgenic cells comprises Foxc1, Gadd45a, Hic1,

Hus1, Myc, and Uhmk1, which were not detected in tumor

(despite extension of the gene list). The most dramatic changes

were observed in regulation of lipid metabolic genes. Transgenic

and tumor gene sets involved in this function differed by 21 genes

and enrichment P-values increased by about six orders of

magnitude. Furthermore, protein deubiquitination and bile acid

metabolism exhibit a switch-like regulation, where differential

expression was first detected in the tumor.

Cell-cycle dysregulation was previously identified as one causal

mechanism of nongenotoxic carcinogenicity [5]. It is also known

that liver cancer entails lipid metabolic derangements including

cholesterol metabolism [6]. The results presented here show that

disease onset was accompanied by progressive changes in

respective functions. The ubiquitin-proteasome pathway is a

relatively new target for cancer therapy [7]. According to our

gene expression data, hepatocarcinogenesis caused downregula-

tion of three deubiquitination genes, Dub1, Dub2, and Dub2a,

specifically in the tumor state (Table S1). Recently, a deubiqui-

tinating enzyme, BAP1, with a role in cell cycle regulation was

Figure 1. Distribution of known transcription factor binding site locations (blue) according to the TRANSFAC database release 12.1.
The red line indicates the peak of the distribution at –115bp relative to the TSS.
doi:10.1371/journal.pone.0017738.g001

Table 1. Sets of differentially expressed genes in transgenic and tumor cells defined by statistical analysis and fold changes.

Gene set Progression state Fold change in other condition #genes

Upregulation

1 Transgenic Fold change #2 in tumor cells 82

2 Fold change .2 in tumor cells 77

3 Transgenic & Tumor 144

4 Tumor Fold change .2 in transgenic cells 103

5 Fold change #2 in transgenic cells 108

Downregulation

6 Transgenic Fold change $0.5 in tumor cells 47

7 Fold change ,0.5 in tumor cells 23

8 Transgenic & Tumor 25

9 Tumor Fold change ,0.5 in transgenic cells 24

10 Fold change $0.5 in transgenic cells 92

doi:10.1371/journal.pone.0017738.t001

Oncogenic Signalling of EGFR in Liver Cancer
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described as tumor suppressor [8], supporting the relevance of

finding the corresponding GO category among the top 15 altered

functions despite a moderate enrichment P-value in the tumor

gene set (P,0.0001). Downregulation of deubiquitination genes

complies with previous findings, as Ventii and coauthors also

observed deficiency in deubiquitinating activity in cancer-associ-

ated mutants. In summary, progressive changes in regulation of

cell cycle, developmental and lipid metabolic functions chaper-

oned EGF-induced hepatocarcinogenesis, whereas potential

switch-like regulation was observed for small groups of genes

defined by protein deubiquitination and bile acid biosynthesis, a

component of hepatic cholesterol metabolism. These biological

functions may harbor novel biomarkers for disease onset and

tumorigenesis.

Clusters of upregulated signal transduction molecules in
transgenic and tumor cells integrate growth factor, cell
cycle, chemokine and cytokine signals

Networks of interacting proteins exert a large part of cellular

functions. Analysis of differentially expressed molecules in the

context of known signalling pathways enables identification of

molecular networks targeted by observed expression changes. We

applied network cluster analysis to propose functional context for

signaling components encoded by differentially expressed genes of

transgenic and tumor cells along with supporting network topologies

constructed from experimentally proven signaling reactions.

Networks were constructed for extended upregulation and down-

regulation gene sets described above. As a result, we obtained one

cluster each for upregulated genes of transgenic cells and for

upregulated genes of tumor cells. A small network of downregulated

genes was found in tumor cells, in which EGF and beta-c interact

with Shc and a complex comprising EGF, ErbB1, Shc-1, Grb2, and

Sos (not shown). The two networks of upregulated genes were

constituted by 85 and 88 components including 39 and 41

molecules upregulated in transgenic or tumor cells, respectively.

Diagrams of transgenic and tumor network clusters are shown in

Figures 4 and 5. Further information about differentially expressed

molecules and encoding genes is given in Table S3.

Both networks feature a mix of functional categories such as

growth factor signaling, e.g. through ErbB receptors, InsR, or

FGFR-1, cell cycle-regulatory cascades, e.g. involving cyclin B1,

Cdk1, Aurora-A, or p53, as well as cytokine and chemokine

signaling through IL-1RI and CXCR4. The combined list of

upregulated components consists of 48 proteins of which 7 are

specific to the transgenic network and 9 are only part of the tumor

network (Table S3). For 19 of the 32 shared molecules a

quantitative change in expression during tumorigenesis may be

hypothesized as indicated by node coloring on network diagrams

(green and light red nodes, Figures 4 and 5). Notably, this applies

to a compact module of cell cycle regulators, namely survivin,

cyclin B1, Cdk1, Plk1, and Bub1, whose expression increased

about 2-fold in tumor versus transgenic cells according to

measured fold changes. Moreover, network analysis suggests

another, tumor-specific module of cell cycle regulators formed

by p107, p130, p15INK4b, and Wee1 (Figure 5). These results

further support the hypothesis that EGF-induced carcinogenesis is

driven in part by progressive alterations of cell cycle regulation,

which, as the networks show, may also manifest through

quantitative changes of expression.

The presented network clusters reveal potential effects on the

activity of upregulated TFs like c-Fos, c-Jun, c-Myc, PPAR-

gamma1, Smad3, Egr-1, and c-Ets-2. C-Myc and PPAR-gamma1

were restricted to the transgenic and the tumor network,

respectively. Each factor integrates signals from several upstream

molecules with altered expression. Interestingly, well-known

cancer-associated TFs like c-Fos, c-Jun, Smad3, and c-Ets-2

exhibited rather constant levels of upregulation throughout

tumorigenesis. Furthermore, a relatively high number of both

activating and inhibitory reactions target p53, which was void of

detectable differential expression in either progression state.

A cascade involving VCAM-1, alpha4-integrin, and IAP was

found specifically in the transgenic network (Figure 4). Alpha4-

integrin shows progression state-specific regulation with upregula-

tion in transgenic cells and downregulation in tumor cells (Table

S3). Integrins are linked to tissue invasion by hepatocarcinoma

cells [9] and play a role in apoptosis [10]. BMP7, a tumor

network-specific molecule, can act as transcription factor and may

as such contribute to upregulation of c-Myb [11] as well as of c-

Fos, the latter possibly by other means [12]. BMP7 was previously

reported to participate in regulation of apoptosis in vascular

smooth muscle cells [13]. Given their association with apoptosis

and their progression state-specific expression profiles, alpha4-

Figure 2. Expression responses of known liver carcinoma/neoplasia biomarkers in EGF-induced carcinogenicity. The plots show log-
Fold changes of known biomarkers which were differentially expressed in transgenic cells (A), both states (B), or tumors (C). Fold changes of some
genes indicated differential expression in both states, although statistical analysis assigned them to one state only (dashed lines). Several known
biomarkers exhibited progression state-specific responses, which may subserve derivation of pre-tumor and tumor signatures (bold lines).
doi:10.1371/journal.pone.0017738.g002
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integrin and BMP7 may represent constituents of switch

mechanisms of carcinogenesis.

The network clusters reveal regulatory circuitries that might be

explored for novel therapeutic interventions. Indeed, PPAR-

gamma antagonists are being investigated as treatment of various

malignancies including liver cancers. Regulatory cascades target-

ing PPAR-gamma through upstream kinases and phosphatases,

such as M3/6, JNK1, MEKK2, MKP3, MEK2, or ERK2, of

which M3/6, MEKK2, and MFP-3 were induced during

carcinogenesis, suggest additional possibilities for drug develop-

ment. Furthermore, the ligand of insulin and insulin-like receptors,

IGF-2, was strongly upregulated in tumor cells, whereas there

were moderate changes in transgenic cells (not detected by

differential expression analysis). The potential role of this ligand in

autocrine regulation of cancer cell growth was previously discussed

in the literature [14] and further analyzed in our study (see below).

Promoter analysis and identification of regulatory
sequences

Transcription factors are important contributors to coordinated

gene expression changes like those observed in the study data. It is

a standard approach to test for overrepresentation of TF binding

Figure 3. Comparison of Gene Ontology Biological Process enrichment in transgenic and tumor gene sets. (A and B – analysis of
upregulated genes, C and D – analysis of downregulated genes). A and C) Each dot represents a GO category in the space of two P-values. B and D)
Top 15 GO terms with greatest log-P-value difference between transgenic and tumor. Dots corresponding to categories listed in B and D are
highlighted in A and C, respectively.
doi:10.1371/journal.pone.0017738.g003
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sites in promoters of coregulated genes versus a background of

promoters. We quantified binding site enrichment by the 0.01-

quantile of the ratio of two Beta distributions modeling the odds

ratio of predicted binding sites and promoters and foreground and

background gene sets. The 0.01-quantile value, in the following

denoted q-value, estimates the value of the odds ratio, so that the

true ratio is higher with 99% probability (see Methods). For each

of the 578 TRANSFAC PWMs, the algorithm started with a low

PWM score threshold (P-value 0.05) and iteratively adjusted the

cut-off (by incrementing) to maximize the q-value.

Binding sites were predicted by MATCH in promoter regions

covering 21000 to +100 relative to the TSS. We constructed

separate background sets for transgenic and tumor cells by

randomly sampling 1000 genes with fold changes between 0.9 and

1.1 in the respective progression state. The following foreground

sets were analyzed: upregulation (Table 1: sets 1–3 and 3–5),

specific upregulation (Table 1: sets 1 and 5), downregulation

(Table 1: sets 6–8 and 8–10), and specific downregulation (Table 1:

sets 6 and 10). In addition, binding site enrichment was tested in

promoters of upregulated genes associated with cell cycle and of

downregulated genes associated with lipid metabolism.

In Figure 6, q-values of TRANSFAC motifs optimized for

transgenic foreground sets are plotted against q-values of corre-

sponding tumor foreground sets. Furthermore, we extracted the top

PWMs ordered by q-values in Table S4. Identifiers of TRANSFAC

matrices whose dots are highlighted in Figure 6 are bold-typed in

Table S4. Extraction of matrices followed the rule to show the top

15 PWMs, or all with at least 2-fold enrichment in either transgenic

or tumor set, or all PWMs highlighted in Figure 6, whichever

resulted in the largest number of motifs. We also extracted

transcription factor genes (Table S5) according to identified PWMs

(underlined in Table S4) and performed upstream network analysis

with transcription factor sets (see below).

As a result, promoter analysis revealed TF motifs specifically, or

more articulately overrepresented in transgenic or tumor fore-

ground sets as well as motifs with common enrichment in both

progression states. In 5 of 6 foreground sets, POU motifs were

more strongly associated with the transgenic state than with the

tumor state (Figure 6A–E). This difference was most pronounced

in analyses of downregulated (Figure 6A) and specific downreg-

ulated gene sets (Figure 6B), where dots representing POU

matrices (blue diamonds) are located far away from the mass of

points. Notably, sites of some POU motifs were also more than 2-

fold enriched in promoters of downregulated genes in tumor. Oct1

matrices were the top ranked motifs in downregulated and specific

downregulated genes in tumor (Table S4). However, promoters of

upregulated genes were detectably enriched with POU sites in the

transgenic state only (Figure 6C–E). These results suggest that

Figure 4. Network of upregulated signaling components in transgenic cells. Red nodes: only in transgenic network; Light red: fold change
was at least +2 higher than in tumor; Light green: fold change was at least - 2 lower than in tumor, Blue: upregulated molecule with similar fold
change in transgenic and tumor. Please, see text for further description.
doi:10.1371/journal.pone.0017738.g004
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POU factors contributed to the switch from transgenic to tumor

state. Furthermore, their activity may represent a major cause of

observed downregulation events. Among the POU transcription

factors represented by matrices identified in the analyses, the

expression profile of Pou5f1 (Oct4) resembled well the observed

progression-state specific enrichment of its binding sites (Table S5).

The Pou5f1 gene exhibited a high fold change (2.75) in the

transgenic state, which had decreased in the tumor state (fold

change 1.70). Indeed, the Pou5f1 gene is specifically expressed in

embryonic stem cells and in tumor cells, but not in cells of

differentiated tissues [15]. Transcription factors with a Forkhead

domain also showed association with the transgenic state. This

signal was best observed in upregulation and cell cycle gene sets

(Figure 6Cand E), yet subtle enrichment in transgenic promoters

could also be detected in specific downregulation (Figure 6B) and

specific upregulation, where the FREAC2 motif ranked among the

top 15 PWMs (Table S4). In the upregulation set, Foxd3 binding

sites showed the strongest signal after Oct1 sites (Table S4). This

would support a potential role of Oct4, as corepression through

overlapping binding sites of Oct4 and Foxd3 was previously

reported [16]. According to expression measurements, Foxd3 was

potentially downregulated in both progression states (Table S5),

although measured expression differences were not statistically

significant. Instead, Foxc1 expression parallels the stronger

enrichment of Forkhead binding sites in transgenic promoter sets,

as it is specifically upregulated in the early progression state

(Tables S1 and S5).

Promoters of upregulated genes in tumor were associated with

binding sites of cell cycle regulators such as AP1-like factors,

STAT, and E2f (Figure 6C–E), of which Atf3, Jun, and E2f3 were

significantly upregulated in both transgenic and tumor cells

(Tables S1 and S5). This finding supports the stronger regulation

of cell cycle processes in tumor detected by comparative GO

analysis. The analysis of cell cycle gene promoters suggests E2f

factors as the most important regulators in both states, whereas a

tendency towards higher q-values in the tumor set was observed

for several E2f motifs (Figure 6E). Notably, the Myc-associated

zinc finger protein was detected in the transgenic cell cycle gene

set (Tables S4 and S5), which indirectly suggests that Myc

impacted cell cycle regulation in transgenic cells, but not or to a

lesser extent in tumor cells. This would be supported by the

expression profile of Myc with significant upregulation in the early

state and subtle or absent upregulation in tumor.

Finally, the lipid metabolism gene sets show strong association

of HNF6 (Onecut1) and PPAR-gamma with the tumor state

(Figure 6F). Of these, HNF6 was significantly downregulated in

tumor, whereas PPAR-gamma exhibited a progression state

specific profile with downregulation in the transgenic state and

significant upregulation in tumor.

While many of the aforementioned transcription factors are

well-known proto-oncogenes, such as Jun, Myc, or E2f3, and the

link between HNF6, PPARgamma and lipid metabolism is

comprehensible, other factors revealed by our analysis are novel

with respect to their role in liver carcinogenesis. Binding sites of

Kaiso (Zbtb33) were most strongly overrepresented in downreg-

ulated tumor genes. Kaiso was shown to silence tumor suppressor

genes in colorectal cancer [17], and its role in cancer was

previously reviewed [18]. Furthermore, motifs of HMG box

Figure 5. Network of upregulated signaling components in tumor cells. Red nodes: only in tumor network; Light red: fold change was at
least 2 points higher than in transgenic cells; Light green: fold change was at least 2 points lower than in transgenic cells, Blue: upregulated molecule
with similar fold change in transgenic and tumor. Please, see text for further description.
doi:10.1371/journal.pone.0017738.g005
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Figure 6. Enrichment of TF binding sites in transgenic and tumor DE gene sets. Each dot represents one TRANSFAC binding site
( = sequence motif) positioned by fold enrichment in transgenic (x-axis) and tumor (y-axis) foreground sets. Quantile values greater than 1 indicate
binding site enrichment. Several motifs are highlighted which were shifted away from the diagonal suggesting different importance of
corresponding TFs for regulation in either transgenic or tumor states. Please, see text for further description. A) Analysis of binding site enrichment in

Oncogenic Signalling of EGFR in Liver Cancer
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factors were associated with transgenic gene sets in downregula-

tion (Figure 6A, LEF1 PWMs) and specific upregulation

(Figure 6D, Sry). While the Lef1 gene was moderately upregulated

in transgenic and tumor cells (Table S5), Tcf7 showed significant

upregulation in tumor. Also, Tcf7l2 appeared to be induced in

tumor compared to its expression level in transgenic cells (Table

S1). All in all, Tcf7 and Lef1 factors are known to play a role in

Wnt signaling, which indicates a connection between these TFs

and Kaiso target genes [18]. Moreover, Wnt signaling components

and the HMG box factor Sox2 were previously implicated in

Oct4-dependent transcriptional networks [19]. Hence, these

findings suggest an EGF-induced mechanism of dedifferentiation

and establishment of stem cell-like properties, which may have

been driven by Oct4 on the level of transcription. The

carcinogenetic mechanism may therefore share similarities with

embryonic stem cell signaling pathwaysf, which was further

supported by enrichment of developmental pathways in Gene

Ontology analysis.

Key node network analysis reveals a key role for IGF-2
signaling in carcinogenesis

Given transcription factors whose binding sites were enriched in

transgenic or tumor gene sets, we sought upstream regulators of

these TFs that may contribute to their activation or inhibition

through signal transduction pathways. We extracted TFs linked to

overrepresented TRANSFAC motifs (Table S4, underlined PWM

names) and subjected resulting TF sets to key node analysis.

Network analyses were carried out separately for transgenic and

tumor. Again, we compared transgenic and tumor results. We first

calculated the empirical cumulative probability P(X$x), in the

following denoted ECP, for each key node. For this, key nodes

reported by ExPlain were ranked by their key node score (see

Material and methods). The ECP of a key node was then

computed on the basis of its rank among all key nodes. Figure 7

shows a plot of log-ECP differences (tumor-transgenic) against

differences of log-Fold change values (tumor-transgenic). Dots

representing key nodes with strongest difference in importance for

transgenic or tumor TF sets are located far away from the ordinate

origin. Fold change differences were depicted on the abscissa.

Notably, components of the EGF signaling network, Adam10, a

metallopeptidase that processes EGF, and Grb2, an adaptor

protein that binds directly to the EGF receptor, exhibited a greater

importance for transgenic than for tumor TFs (Figure 7, blue dots).

We also highlighted EGF, which occupied a less extremal position

(Figure 7, light blue dot). Here we find IGF-2 as tumor-associated

key node, whose location reflects both a greater importance for

all down regulated genes B) Analysis of binding site enrichments in specifically down regulated genes of either transgenic or tumor states C) Analysis
of binding site enrichment in all up regulated genes D) Analysis of binding site enrichments in specifically up regulated genes of either transgenic or
tumor states E) Analysis of binding site enrichments in up regulated cell cycle genes F) Analysis of binding site enrichments in down regulated lipid
metabolism genes.
doi:10.1371/journal.pone.0017738.g006

Figure 7. Plot of expression fold changes versus score statistics of key nodes. Each dot represents one key node found upstream of
transcription factors identified by promoter analysis. Coordinates are the difference of log-Fold changes (x-axis) and the difference of log-probabilities
of key node scores (y-axis). Higher values correspond to higher expression or higher rank of the key node score, respectively, in the tumor state.
Components of the EGF pathway were associated with the transgenic state (blue dots), whereas Igf2 is associated with the tumor state with respect
to both expression and key node score difference.
doi:10.1371/journal.pone.0017738.g007
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tumor TFs as well as increased expression in the tumor state

(Figure 7, red dot). IGF-2 is a ligand of the insulin receptor as well

as the insulin-like growth factor 1-receptor (IGF-1R). Notably, the

shift of IGF-1, another IGF1-R ligand, also indicated association

with the tumor state, yet the IGF1 gene was potentially

downregulated in tumor cells (data not shown).

To examine the role of IGF-2 signaling as a surrogate for EGF, we

superposed the key node/TF networks of Adam10, Grb2 and EGF

with the IGF-2 network (Figure 8). The merged network shows that

IGF-2 may at least in part substitute for EGF signaling (white nodes

are shared by IGF-2 and EGF pathways). Although in that network

AKT cascades are only connected to EGF-specific pathways, IGF-1R

is also known to activate AKT [20]. Recalling that EGF was

downregulated and IGF-2 was strongly upregulated in tumor cells,

the level of IGF-1R dysregulation may represent a switch that marks

the onset of malignant transformation. This is further supported by

evidence that tumor cells utilize IGF-1R signaling as a survival

mechanism that renders them independent of EGF signals [21].

Notably, our findings suggest an interplay between EGF and IGF-2

pathways already at early stages of carcinogenesis.

Analysis of TF co-occurrences in promoters of
upregulated tumor genes

To further investigate the EGF-induced switch from transgenic

to tumor state, we performed another step of promoter analysis,

where we focused on TFs, whose regulation of activity can be

mechanistically explained by signal transduction cascades down-

stream of an EGF receptor ligand or an EGF receptor. Hence, our

goal was to identify EGF-dependent transcription regulators that

could exert the switch from the transgenic to the tumor state.

Therefore, we sought TFs downstream from EGF whose binding

sites were enriched in promoters of upregulated tumor genes. This

was done using the key node functionality of ExPlain. Co-

occurrence analysis of TF binding sites was chosen to achieve

higher specificity in selecting potentially regulated promoter

regions in foreground and background sets than is possible by

considering individual PWMs only.

We retrieved all TFs that were inferred in the signal

transduction network downstream from the EGF ligands and

receptors: HB-EGF, EGF, ErbB1, ErbB2, or ErbB3. In addition,

we included PWMs of upregulated tumor factors. TRANSFAC

matrices linked to all such TFs were used for further analysis. In

total, we obtained 266 ‘‘tumor-EGF-network’’ PWMs yielding

31,306 pairwise combinations. To avoid pairs of similar matrices,

we considered only combinations of PWMs, which overlapped in

less than 10% of the hits of the PWM with the lower total number

of matches at a score P-value threshold of 0.001. Score P-values

were estimated on the basis of predictions in promoters of the

background subset. As a result, 34 and 45 PWM pairs were

reported at a P-value below 1023 in the tumor complete and

specific gene sets, respectively. Identified pairs grouped by TF

classes are provided in Table S6.

The TF pair analysis results provide evidence for involvement of

several upregulated TFs such as Atf3, E2f3, Egr1, Fos, Hnf1b, Jun,

Maff, Mef2a, Nfe2, Nfe2l3, Nr2f1 or Nr2f2, Pbx3. Pparg, Smad3,

and Tcf7. These factors were found in different combinations in the

pair analysis (Table S7). We additionally found overrepresented

pairs of MEF with the known protooncogene c-Myb. MEF mediates

G1-S mitotic transition, erythrocyte differentiation, and regulation

of myeloid cell differentiation. It is known to be upregulated in

breast cancer as well as several other neoplasms. C-Myb was

previously shown to cooperate with various other transcription

factors such as factors from the Ets family but also with C/EBP and

AML factors [22]. In our analysis we detected co-occurrence of

Myb binding sites and HNF4/COUP bindings sites (Table S6).

Notably, the Myb – COUP-TF pair was predicted in the promoter

of the Igf2 gene, which was significantly upregulated in the tumor

conditions (Figure 9). We think that indeed upregulation of this gene

can be explained by a transactivation effect of c-Myb combined with

the potential competitive substitution of the tumor downregulated

HNF4 factor by COUP-TF1. The COUP-TF1 gene (Nr2f1) was

upregulated in transgenic and tumor in comparison to the normal

tissue according to gene expression measurements (fold changes

6.26 and 2.62 in transgenic and tumor, respectively). The

antagonistic competition of HNF4 with COUP-TF factors for the

same promoter element has been described before, e.g. for human

ApoCII [23] and for human EPO [24].

Analysis of multiple combinations of TF binding sites in
promoters of upregulated and downregulated genes in
tumor

Synergistic binding of multiple transcription factors to certain

combinations of binding sites is an important mechanism of

achieving highly specific regulation of genes in particular cellular

conditions. We can hypothesize, that tumor cells are characterized

by particular pattern of activated transcription factors, which

enabled them to evolve from pre-tumor to tumor state by escaping

multiple checkpoints and by establishing signal independent

uncontrolled proliferation. We sought to identify such patterns of

multiple activated transcription factors, which synergistically bind to

their target genes and may be responsible for the transgenic-tumor

switch. For this, we focused our attention, first of all, on genes

specifically upregulated in tumor compared to transgenic state, that

encode components of the revealed EGF and IGF-2 pathways. Such

genes can provide complex feedback mechanisms in the network

helping to maintain the tumor status of the cells. All highly

upregulated genes (log-Fold change in tumor . 2.0) were mapped

on the TRANSPATH network and signal transduction chains

propagating the activation signal downstream to transcription

factors were constructed using ExPlain tools. Among the compo-

nents of such downstream signal transduction network we identified

12 proteins whose genes switched expression in the transgenic-

tumor transition (transgenic fold change , tumor fold change). We

speculate that the change of expression of these 12 genes in tumor

compared to transgenic contributes to self-maintenance of the

tumor state, and the set of transcription factors regulating activity of

these genes might be the best candidates for understanding the

regulatory mechanism of this switch. In addition, we analyzed 34

genes, that were downregulated in tumors compared to transgenic

state and that were associated with the most significantly

downregulated functional category ‘‘organ development’’ as

revealed by GSEA analysis. We analyzed promoters of these

upregulated and downregulated genes using the ExPlain tool in

order to reconstruct maps of multiple TF binding sites in promoters

of these genes, which could help us to understand the molecular

mechanisms of the switch to the tumor state. TF site maps of

upregulated gene promoters are depicted in Figure 10. It is obvious

that most of the promoters are characterized by similar composition

of TF binding sites, although, their mutual location and position in

the promoters relative to the start of transcription can vary

significantly between different promoters.

Western blotting and DNA binding activity of networked
transcription factors at gene specific promoters

A total of 5 upregulated and 14 downregulated genes were

selected based on highest scores for predicted TF binding sites

while EMSA band shift assays were carried out with specific
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antibodies to fully validate the predicted DNA binding activity. As

shown in Figure 11A Western blotting experiments with nuclear

extracts of tumor tissue revealed highly significant repression of

HNF4alpha, while DNA binding activity of this Zn-finger protein

was evidenced at gene specific promoters of EGF, Foxc1, Nfsf1and

Defrc6. Here, the DNA binding activity varied, when individual

promoters were analyzed but recapitulate the findings from the

Western blotting experiments, i.e. the HNF4alpha binding activity

followed the order . transgenic without tumor . non-transgenic

and tumor extracts, respectively. Likewise, expression of the

Figure 8. Merged key node networks of EGF and IGF-2 cascades with transcription factors revealed by promoter analysis. Blue
nodes: EGF-specific network components, Red: IGF-2-specific network components, Light blue: Key nodes of the EGF pathway, Yellow: IGF-2.
doi:10.1371/journal.pone.0017738.g008
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CAAT enhancer binding protein C/EBPalpha was particularly

repressed with nuclear extracts of tumor tissue (see Figure 12A)

while EMSA band shift (Figure 12B) assays confirmed its binding

at gene specific promoters of Cav1, Foxc1, Defrc6, Itga4, EGF,

Nr3c1,Sprr2i, TH and Zbtb7b, albeit at different levels. Notably,

little to none DNA binding activity was observed with nuclear

extracts of tumor tissue. Furthermore, the DNA binding activity of

c-Myb was studied. As shown in Figure 13A its expression was

significantly reduced in nuclear extracts of tumor tissue of two of

the three individual animals investigated, but its DNA binding

activity appeared to be particularly reduced at gene specific

promoter sequences of BMP7 but less so at predicted TF binding

sites of PPARg and Igf2. Very significant regulation was also

observed for STAT5 with almost none detectable expression levels

in nuclear extracts of tumor tissue even though one non transgenic

control animal also displayed very low levels of this transcription

factor (Figure 14A). Consequently, its DNA binding activity at

gene specific promoter sequences of the transcription factor

PPARg was nearly non detectable (Figure 14B). As observed with

other transcription factors (see above) expression of ETS was

repressed in nuclear extracts of tumor tissues (see Figure 14C)

while its DNA binding activity was hardly measurable at predicted

TF binding sites at gene specific promoter sequences of Igfbp6

(Figure 14D). The expression and DNA binding activity of the

transcription factor Mef2 was also investigated (Figure 15A). Here

Western blotting experiments confirmed strong regulation of this

protein in transgenic but non-tumor bearing mice but in EMSA

band shift assays addition of the antibody resulted in a strong band

in the pocket of the gel particularly with nuclear extracts of

transgenic animals and less so with those of tumor tissue while with

non-transgenic controls no band shift could be observed

(Figure 15B). Similarly, expression of GR was repressed in nuclear

extracts of tumor bearing mice (Figure 15C) while its DNA

binding activity was similar at a gene specific promoter sequence

of the CAV gene (Figure 15D). Regulation of the p53 protein was

also investigated and found to be strongly induced in transgenic

but non-tumor bearing mice where as its expression was similar

with nuclear extracts of control and tumor bearing mice

(Figure 16A). Here, DNA binding activity at gene specific

promoters of Xlr, Nr2f1, Zbtb7b, Sprr2i, Ffg18 and ERBB3 was

observed with nuclear extracts of transgenic and tumor bearing

mice but the overall activity varied considerably (Figure 16b) with

no obvious trend. Finally, expression of the hepatic nuclear

transcription factors and of COUP-TF was studied. Notably,

several of the liver enriched TFs were repressed in nuclear extracts

of tumors as were COUP-TFI and II (see Figure 17).

Discussion

This study aimed at an improved understanding of molecular

events associated with EGF-induced, nongenotoxic hepatocarcin-

ogenicity. We report on results of computational as well as

experimental analyses carried out on gene expression profiles of

successive disease stages, which we described previously [1]. In the

course of this work clinical and biological aspects of observed

expression changes were examined. Pre-tumor and tumor state

expression of 39 known liver cancer biomarkers disclosed

possibilities to refine their application as pre-tumor and tumor

Figure 9. Putative binding sites for c-Myb and HNF4/COUP-TF transcription factors in the promoter of the Igf2 gene. Regulation of
Igf2 gene can be explained in part by the binding of c-Myb to its recognition site in the promoter of this gene.
doi:10.1371/journal.pone.0017738.g009
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markers. The marker genes Myc, Glul and Oat presented pre-

tumor-specific differential expression which was reverted in the

tumor state, whereas Ccnd1, Gpc3, Mvk, Pparg, Rbl2, Robo1

were only upregulated in tumors. The adverse regulation of Pparg

combining pre-tumor downregulation with upregulation in tumor

invites further investigation as a liver cancer biomarker that

supports distinction of three different biological conditions.

Comparison of GO biological enrichment and network
cluster analysis

To further elucidate the biological and molecular functions

targeted by expression responses, we analyzed associations

between GO biological processes and DE genes in transgenic

and tumor cells and constructed network clusters, which

connected signaling molecules in pathways with a minimal

proportion of differentially expressed components. Since we

noticed that genes were often detected in only one progression

state by statistical differential expression analysis while fold

changes indicated a difference to the normal condition in both

states, we constructed so-called extended gene sets to reduce the

effect of false negative findings in the statistical analysis step. This

was done in a careful manner by taking detection of differential

expression in one progression state as evidence for the other and

included a gene in the extended set if the detected microarray

probe set suggested more than 2-fold expression change. By this

process we obtained enlarged up- and downregulated gene sets,

which eliminated some differences seen otherwise and led to a

more stringent definition of specific up- or downregulation. This

was in line with our goals to perform comparative analyses of GO

category enrichment and to compare clusters of differentially

expressed signaling molecules, where we sought to minimize the

possibility of falsely identifying differences.

Comparison of GO biological enrichment pinpointed regulation

of genes involved in cell cycle, developmental pathways, lipid

metabolism, and protein deubiquitination. Other scientific works

supported our findings. In contrast to cell cycle and developmental

categories whose enrichment in both transgenic and tumor gene

sets reflects progressive regulatory alterations during carcinogen-

esis, downregulation of genes associated with protein deubiquiti-

nation, a relatively new target for cancer therapy, was first

observed in tumor cells. Focusing analyses on the identified

cellular functions could thus help to further dissect the causal

mechanisms of switching from pre-tumor to tumor state. A first

step in this direction was undertaken in this work by analyzing and

comparing overrepresentation of transcription factor binding sites

in promoters of cell cycle as well as lipid metabolism gene sets as

further discussed below.

The interplay of differentially expressed signaling molecules

was examined in more detail by network analysis. ExPlain

generated the network clusters in a data driven process, which is

guided by the specified input set of molecules. The resulting

clusters represent context-specific subdistricts of the entire

cellular network, which are densely populated with molecules

targeted by observed expression changes. The network clusters

constructed for upregulated transgenic and tumor molecules

connected components of growth factor signaling, cell cycle

regulation, as well as chemokine and cytokine signaling. We

assume that the interplay of molecules with different canonical

functions provides for a realistic view on cellular control

mechanisms. These are implemented by a cellular network that

connects thousands of molecules, many of which exert a

regulatory role in a multiplicity of biological contexts. Compar-

ison of transgenic and tumor networks supported our hypothesis

of progressive alterations of cell cycle regulation as well as of

lipid metabolism during hepatocarcinogenesis. Moreover, this

analysis yielded testable hypotheses about relevant molecular

cascades involving p107, p130, and p15INK4b as well as

survivin, Cdk1, cyclin B1, Plk1, and Bub1. In the transgenic

Figure 10. Maps of predicted binding sites of selected TRANSFAC weight matrices in promoters of genes up- or downregulated in
tumours versus transgenic cells.
doi:10.1371/journal.pone.0017738.g010
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network we found a cascade of molecules regulating cell

migration and adhesion, which included VCAM-1, alpha4-

integrin, TSP-1, and IAP. This finding complied with decreased

enrichment of cell motility components in tumor revealed by GO

analysis. Hence, the constructed network clusters complemented

the results of our GO analysis by facilitating detailed insight into

the molecular pathways targeted by carcinogenic expression

changes. Taking into account the presence of EGF-receptors

ErbB1-3 in both transgenic and tumor clusters, the networks

reveal in addition how components of biological processes

proposed by GO analysis were tied to EGF-signaling in the

context of hepatocarcinogenesis.

Figure 11. Western blotting and EMSA for HNF4a. A Western blotting of HNF4a with nuclear protein extracts isolated from liver tissue of non-
transgenic, transgenic and tumour tissue B EMSA confirmation experiments at gene specific promoter sites of EGF, Foxc1, Nf2f1 and Defrc1.
doi:10.1371/journal.pone.0017738.g011
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Reconstruction of regulatory causes of EGF-induced
hepatocarcinogenicity

After elaborating on downstream effects of EGF-induced

tumor development, we reconstructed causes of observed

expression changes. First, we analyzed overrepresentation of

transcription factor binding sites in promoters of upregulated and

downregulated transgenic as well as tumor gene sets. For this part

of the work, we developed a novel statistic for binding site

enrichment analysis that compares foreground/background

binding site proportions with promoter proportions and quanti-

fies overrepresentation with the ratio quantile of corresponding

Beta distributions. The statistic was proposed for several reasons.

PWM-based binding site prediction typically requires specifica-

tion of a score threshold that determines true and false positive

rates. In a comparative method, e.g. like F-MATCH, the

threshold at which a weight matrix optimally detects overrepre-

sentation is usually not known a-priori. Therefore, F-MATCH

adopts the strategy of iterating over score thresholds to optimize

the overrepresentation of predicted binding sites for each

specified PWM. However, at low score cut-offs, where high

numbers of binding sites are predicted in foreground and

background promoters, statistical tests like the exact binomial

test can report highly significant P-values for small ‘‘fold’’

differences when these are supported by high counts of binding

site instances. Consequently, one cannot start from arbitrarily low

PWM score thresholds in order to find the best, most likely higher

cut-off. Eventually, one might also like to prioritize binding site

motifs and would naturally assign highest priority to motifs with

strongest enrichment. In this case, simply calculated odds ratios

may result in a different ordering of motifs than corresponding

enrichment P-values. We therefore developed an approach that

focuses on the magnitude of overrepresentation expressed as a

Figure 13. Western blotting and EMSA for cMYB. A Western blotting of cMYB with nuclear protein extracts isolated from liver tissue of non-
transgenic, transgenic and tumour tissue B EMSA confirmation experiments at gene specific promoter sites of BMP7, PPARc and IGF2.
doi:10.1371/journal.pone.0017738.g013

Figure 12. Western blotting and EMSA for CEBPa. A Western blotting of CEBPa with nuclear protein extracts isolated from liver tissue of non-
transgenic, transgenic and tumour tissue B EMSA confirmation experiments at gene specific promoter sites of CAV1, Foxc1, Defrc1, ITGA4, EGF,
Nr3c1, Sprr2i, TH and Zbtb7b.
doi:10.1371/journal.pone.0017738.g0112
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probabilistic estimate of the odds ratio of binding sites and

promoter sequences in foreground and background gene sets.

This quantity cannot be trapped by highly significant P-values

associated with small odds ratios, because it focuses on a

(statistically corrected) estimate of the odds ratio itself. Finally,

we assume that the proposed statistic enables more intuitive

prioritization of motifs by expressing their importance as ’’relative

enrichment’’ in foreground promoters. It may however by

perceived as potential drawback to specify the quantile interval

as a free parameter, which was set here to 1%.

In this study, we applied the new promoter analysis method to

transgenic and tumor promoter sets and subsequently compared

the results of both progression states. Similar to comparison of GO

analyses, this setup enabled us to not only identify highly enriched

binding sites in promoters of DE genes, but also to observe

differences in importance of certain motifs for transgenic and

tumor gene sets. As described in the results section, promoter

analysis supported stronger regulation of cell cycle and of lipid

metabolism in the tumor state by associating motifs of Atf3, Jun,

E2f3, and Pparg with corresponding tumor genes and thus

Figure 14. Western blotting and EMSA for STAT5 and ETS2. A Western blotting of STAT5 with nuclear protein extracts isolated from liver
tissue of non-transgenic, transgenic and tumour tissue B EMSA confirmation experiments at gene specific promoter sites of PPARc C Western
blotting of ETS2 with nuclear protein extracts isolated from liver tissue of non-transgenic, transgenic and tumour tissue D EMSA confirmation
experiments at gene specific promoter sites of Igfbp6.
doi:10.1371/journal.pone.0017738.g014
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supported our previous findings. Importantly, this part of our

study revealed overrepresentation of POU motifs predominantly

in transgenic promoter sets. Expression profiles of POU factors as

well as of HMG and Forkhead factors whose motifs were also

identified through promoter analysis led us to propose Oct4

(Pou5f1), Tcf7, Lef1, and Foxc1 as regulators of a transcriptional

network potentially under control of Wnt signaling. We speculate

that the factors contribute to regulation of developmental

pathways, which were enriched in both up- and downregulation

according to GO analysis. Although network analyses carried out

in this work did not reveal a link between Oct4 and EGF-signaling

on the level of protein-protein interactions, in-vivo binding

fragments for c-Myc, c-Jun, and c-Fos were previously located in

the vicinity of the human POU5F1 gene [25] and provide for a

possible explanation for EGF-induced transcriptional activation of

Oct4. Altogether, overrepresentation of binding sites in promoters

of DE genes detected biologically meaningful transcription

regulators, which further support the results of other parts of this

study. Subsequent analysis of key nodes upstream of transcription

factors predicted for transgenic and tumor promoter sets revealed

a switch from EGF signaling in the pre-tumor state to IGF-2 in the

tumor state. Indeed, EGF expression was significantly downreg-

Figure 15. Western blotting and EMSA for MEF2 and GR. A Western blotting of MEF2 with nuclear protein extracts isolated from liver tissue of
non-transgenic, transgenic and tumour tissue B EMSA confirmation experiments at gene specific promoter sites of TH C Western blotting of GR with
nuclear protein extracts isolated from liver tissue of non-transgenic, transgenic and tumour tissue D EMSA confirmation experiments at gene specific
promoter sites of CAV1.
doi:10.1371/journal.pone.0017738.g015
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ulated in tumors and fold changes of other EGF pathway

components such as BTC and ErbB3 were decreased in tumors

compared to transgenic cells. Furthermore, the overlap of EGF

and IGF-2 pathways, as demonstrated by merging both networks

into a single pathway, could enable IGF-2 to take over the

functional role of EGF and thus render the tumor cell independent

of EGF signaling. By the same mechanism cancer cells may

acquire resistance to EGF pathway inhibitors.

To further examine the molecular causes of EGF-induced

malignant transformation, we searched promoters of upregulated

tumor genes for pair wise combinations of TF binding sites. Paired

site searches started out from individual site predictions adjusted to

a P-value of 10-4. We used actual promoter sequences to estimate

respective PWM score thresholds corresponding to the chosen

background frequency. However, promoter sequences contain

both functional and non-functional binding sites. Moreover, the

proportion of functional sites among all predicted sites is expected

to increase with higher, more stringent PWM scores, so that the

background frequency of site predictions could be overestimated

by using sequences of regulated genes. Yet, gene expression data

allow for selection of sequences in which binding sites should occur

at a background rate in the context of the particular biological

condition. Thus, we composed background sets of genes with

unaltered expression in the tumor state to adjust score cut-offs. In

order to focus our analysis on TFs whose activity can be

modulated by EGF signaling, we selected motifs of TFs

downstream of EGF according to network analysis and of TFs

upregulated in the tumor state. As a result, we obtained

significantly enriched (P-value ,0.001) pairs of TRANSFAC

motifs representing several upregulated and EGF-associated TFs.

The set of weight matrices selected by co-occurrence analysis was

subsequently used as starting point to derive more complex

promoter models. Although Fisher test P-values indicated

enrichment of several PWM pairs at the chosen significance level,

we noticed that each particular combination was present in only

few promoters. We attribute this to the stringent threshold that

was imposed on individual binding site predictions. Furthermore,

we assume that the foreground sets comprised promoters

controlled by a number of different regulatory processes, so that

higher order TF combinations were more suitable to describe

subsets of coregulated promoters.

Based on more complex TF modules, we selected a small set of

factors for experimental validation. Results of the EMSA analysis are

provided in Table S8. Western blotting and EMSAs demonstrated

that c-Myb was upregulated in EGF-transgenic animals and in

tumors. Notably, c-Myb is well known for its oncogenic potential

and was the subject of targeted therapies in various cancers [26]. We

also investigated DNA-binding activity of c-Myb on novel predicted

gene targets. These included Bmp7, Pparg and Igf2, all of which play

an important role in cancer biology. Indeed, PPAR-gamma

antagonists are clinically evaluated for their anti-tumor growth

activity in liver cancer. It is of considerable importance, that c-Myb

regulates Igf2 (Figure 9), which allows tumor cells to develop an

independent autocrine loop thereby integrating EGF and IGF-2

signaling networks [27,28]. Additionally, IGF proteins are primarily

produced in the liver to act as an important pro-survival factor as

shown in a number of cancer cell lines.

Figure 16. Western blotting and EMSA for p53. A Western
blotting of p53 with nuclear protein extracts isolated from liver tissue of
non-transgenic, transgenic and tumour tissue B EMSA confirmation
experiments at gene specific promoter sites of Xlr, Nr2f1, Zbtb.7b,
Ffg18, Sprr2i and ERBB3.
doi:10.1371/journal.pone.0017738.g016
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We identified Stat5 transcription factor binding site (TFBS)

enrichment in genes regulated in HCCs. Several studies have

demonstrated an important role of STAT5 in liver fibrosis and

cancer development through TGF-beta and STAT3 activation.

We observed loss of STAT5 protein expression in HCC and

demonstrated STAT5 DNA-binding activity in Igfbp6 (Table S8).

Indeed, loss of STAT5 causes liver fibrosis and cancer

development as recently reported by Hosui et al. [29]. Our

computational analyses revealed Igfbp6 to be a target of Stat5 as

evidenced by EMSA band shift assays. Recent evidence suggests

Igfbp6 to induce cell migration of cancer cells that could be

repressed by inhibitors of p38 and ERK1/2 MAPK signaling

[30]. Additionally, early studies demonstrated Ets gene regulation

in cancer and that overexpression of Ets causes cellular

transformation in-vitro as well as in-vivo. The emerging role of

ETS in human cancer has recently been reviewed and ETS

regulated biological pathways will provide novel opportunities for

better diagnosis and staging of disease as well as for the

development of anti-cancer therapies [31]. Note, we show Ets-2

DNA-binding for Igfbp6 (Table S8) and therefore identified two

Figure 17. Western blotting of liver enriched transcription factors with nuclear protein extracts isolated from liver tissue of non-
transgenic, transgenic and tumour tissue.
doi:10.1371/journal.pone.0017738.g017
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TFs (STAT5 and Ets-2) that participate in the regulation of

mitogenic IGF proteins.

Furthermore, we detected regulation of genes by C/EBPalpha.

Overall we examined 9 novel gene candidates targeted by C/

EBPalpha. Strikingly, all TFBS could be confirmed by EMSA

band shift assay and in Western blotting experiments with nuclear

extracts of tumor liver tissue C/EBPalpha was significantly

repressed. This agrees well with its function as a key regulator of

p21. Indeed cell cycle progression is regulated, at least in part by

protein-protein interaction of C/EBPalpha with p21. It is of no

surprise that tumors display less C/EBPalpha expression and we

found all novel gene targets of C/EBPalpha to be repressed in

tumors (Table S8).

Finally, there is a wealth of information on the role of p53 in

liver cancer. Here, we demonstrate p53 binding sites in genes

encoding components downstream EGF/IGF-2. Notably, p53 was

still identified by promoter analysis although its expression level

was similar to normal controls.

In order to summarize the results obtained in this study we have

build a hypothetical model-diagram of the EGF/IGF-2 regulatory

circuit functioning during the transition from transgenic to tumor

state (Figure S2). This model combines two signal transduction

networks of the signal flow from EGF and IGF-2 reaching a

number of transcription factors (identified by combined promoter

and network analysis and validated experimentally), that in turn,

regulate expression of several important genes (validated using

EMSA assays) that encode components of the upstream network.

Thus created feedback loops should play an important role in

emerging as well as in stabilizing the cancer state of the cells, In

this model, we can propose multiple paths of signals initially

coming massively from EGF in the transgenic cells and triggering

activity of several TFs, such as C/EBP-alpha, GR and HNF-

4alpha, that down-regulate expression of their target gene

encoding EGF (Egf) as well as Cav1, thus trying to compensate

the excess of the EGF stimulus in the cell. At the same time,

through parallel signaling cascades and activation of a number of

other TFs, such as c-Ets-1, PPAR-gamma, STAT family factors, c-

Myb and others, upregulation of expression of Igf2 gene as well as

Igfbp6 and Pparg can be achieved. Due, to several feedback loops

on different levels of the network coming from these genes, we can

speculate that a steady signal for upregulation of the Igf2 gene

leads eventually to a sharp elevation of its expression with the

consequence of increase of mitogenic activity of the cells, which

marks the transition to the carcinogenic state. It was reported

previously, that Igf2 gene is located in an imprinted area of

genome and is repressed in most of tissues of the adult organism

[32]. Loss of imprinting of the Igf2 gene is one of the most

common observations in cancers [33]. It was shown that the

imprinting status is maintained by binding of CTCF repressor to

an intergenic area of the Igf2 gene and loss of this binding can lead

to 10-fold elevation of Igf2 expression [34]. We propose a model

where the feedback mechanisms involved in the Igf2 epigenetic

control through multiple transcription factors, activators and

repressors, play the major role in the switching the cells to

malignant transformation.

In conclusion, promoter analysis of the differentially expressed

genes enabled us to identify transcription factor binding sites. Such

integration of sequence information into signal transduction

networks enabled an identification of key nodes upstream of the

identified transcription factors. By searching for pairs of TF sites

and integration of this information into the network analysis robust

information can be retrieved in an unbiased manner that clearly

identifies keynodes and molecules acting in concert in defined

biological conditions. Therefore, we propose a sequence of events

whereby the insulin-like growth factor (IGF) pathway represents

an important molecular switch in malignantly transformed liver

cells. Possibly, an initial upregulation of EGF is followed by a

subsequent and sustained activation of IGF2 signaling cascades.

Overall, we hypothesize a switch in autocrine signaling to foster

tumor growth that was initially triggered by EGF. In this regard c-

Myb is considered to be an important factor of the IGF2 positive

feedback loop. Notably, we identified c-Myb binding sites in the

promoter IGF2 gene and c-Myb to be a downstream partner of

the IGF2 signaling cascade. Therefore our analysis demonstrates

the knowledge gain form promoter analysis combined with

upstream key node identification.

Materials and Methods

Ethics Statement
All animal work followed strictly the Public Health Service

(PHS) Policy on Humane Care and Use of Laboratory Animals.

Formal approval to carry out animal studies was granted by the

ethical review board of Hannover/Lower Saxony, Germany

(‘‘Niedersächsische Landesamt für Verbraucherschutz und Le-

bensmittelsicherheit (LAVES)’’, http://www.laves.niedersachsen.

de). The approval ID is Az: 33.9-42502-04-06/1204.

Gene expression profiles of IgEGF-overexpressing murine
hepatocytes in transgenic and tumor state

We analyzed gene expression data from murine primary

hepatocytes in normal cells as well as different states of disease

progression, which were measured on Affymetrix MG_U74Av2

chips. These data were previously described in [1]. For the

purpose of studying mechanisms of tumor onset we focused on a

subset of hybridizations comprising normal (four replicates),

transgenic (three replicates), and small (one replicate from pooled

samples) as well as medium-size (four replicates) tumor states. In

the transgenic condition hepatocytes overexpressed IgEGF, yet

livers presented no detectable tumor, so that respective expression

profiles were considered to present a pre-tumor state. The

Bioconductor method EBarrays [35,36] inferred differential

expression based on MAS 5 processed expression data, separately

comparing transgenic and tumor measurements to the normal

condition. Differential expression was assumed for probe sets if the

respective posterior probability was greater than 0.5 according to

the Lognormal-Normal and the Gamma-Gamma model.

Analysis of gene expression data with ExPlain
Computational analyses used version 2.3 of the BIOBASE

ExPlain system [37,38]. ExPlain integrates genomic information

with biological knowledge bases and computational analysis

methods. As described below, transcription factor binding sites

(TFBSs) were predicted by positional weight matrices (PWMs)

from the TRANSFAC database [39] in murine promoters

specified in the TRANSPro database [40]. The latter resource

provided 61,113 transcription start sites (TSSs) and surrounding

genomic sequences for 24,353 murine genes. TRANSPro defines a

set of reference TSSs for each gene by a weighted combination of

annotations from EPD, DBTSS, Ensembl, and Fantom [41–44].

Information from manually curated databases is given higher

weight than computationally predicted TSS locations. A score is

assigned to each reference TSS according to spatial density and

weights of relevant primary TSS annotations and the reference

TSS with the highest score among several alternative TSSs of a

particular gene is denoted ‘‘best supported’’. Furthermore,

topological analyses of signal transduction networks were per-

formed using molecular reactions collected in the TRANSPATH
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database [45], covering more than 130,000 reactions and

interactions between about 27,000 genes and 86,000 proteins

(enzymes, transcription factors, receptors, adaptor proteins), their

complexes, modified forms, small molecular ligands, and endog-

enous metabolites.

Functional analysis of differentially expressed genes
The Gene Ontology (GO) [46] provides an extensive ontolog-

ical description of cellular components, molecular functions and

biological processes. It is routinely applied in studies to test for

enrichment of categories in sets of genes or proteins. Statistical

significance of enrichment is typically quantified by the one-tailed

Fisher test. The one-tailed Fisher test calculates the probability P(X

$ x) of finding purely by chance at least x out of K genes associated

with a category comprising M genes given a total database size of

N genes (1).

P(X§x)~
Xarg min (K ,M)

k~x

M

k

� �
N{M

K{k

� �

N

K

� � ð1Þ

To gain insight into functional changes accompanying tumor

development in non-genotoxic hepatocarcinogenesis we compared

enrichment P-values of GO biological process terms calculated for

differentially expressed genes of transgenic and tumor states.

Fisher test P-values were calculated for all GO terms linked to at

least one gene in either gene set or otherwise assigned a value of

1.0. Functional categories were then attributed to the gene set

(transgenic or tumor) achieving the highest significance of

enrichment and ranked by the difference of log10-P-values in

order to guide towards cellular functions most strongly affected by

disease progression.

Identification of key nodes and clusters in signal
transduction network using a graph-topological
algorithm

Signal transduction through a network of molecules is an

important part of the cellular regulatory system. We applied

network analysis methods to elucidate the molecular context of

differentially expressed signaling molecules (network clusters) and

to reconstruct pathways between transcription factors and

upstream regulators of their activity (key nodes). Network

construction in ExPlain implements the Dijkstra algorithm as

core to find the shortest path (minimal cost) tree whose reaction

cascades are weighted by the sum of the involved edge costs. We

initialized the edge costs using three different values. Cost 0 was

used to represent hierarchical classification links between mole-

cules in the database. For direct reactions and indirect reactions

we used cost 1 and 3, resp. A path cost is implicitly defined as the

sum of the costs of its edges.

The network cluster algorithm constructs cascades of maximally

three reactions to connect each pair of input vertices (molecules).

As a result, input molecules are joined into clusters of one or more

proteins linked by corresponding pathways.

In key node analysis, we searched for signaling molecules (key

nodes) and corresponding networks that can transmit a signal to or

receive a signal from several of input molecules within a certain

path cost limit [41]. A key node search starts from each molecule

of an input set Vx and constructs the shortest path to all nodes of

the complete network V within a given maximal path cost dmax (i.e,

the sum of the costs of all edges in the shortest path from a vertex

in Vx to a vertex in V should be smaller than or equal to dmax). The

search can be conducted in reverse direction of the edges leading

to input molecules (upstream) or in the same direction (down-

stream). For each node i of V, the algorithm counts Ni, the number

of nodes of Vx (number of true positives) that can be reached by a

path satisfying dmax. The list of all possible key nodes that can reach

at least one input molecule is sorted according to the specificity

score si.

si~
Ni

1za:Mi

ð2Þ

In equation (2), Mi is the number of molecules in the whole

network, which are reachable from node i within dmax steps, yet are

not part of the input set of molecules (false positives). The

parameter a is a penalty (0,a,1) that adjusts the balance

between true positives and false positives. As described earlier [41],

we empowered the key node analysis by the so-called ‘‘pathway

persistence’’. This extension integrates information about known

canonical pathways and chains of consecutive reactions that were

proven experimentally in order to improve the accuracy of key

node prediction, especially to diminish the false positive error.

Briefly, the modified algorithm gives preference to inclusion of

verified reaction cascades (canonical pathways) into shortest paths

by on-the-fly insertion of additional edges, which represent short-

cuts within verified reaction cascades. The desired effect is that the

key node algorithm not only prefers reactions from the verified

cascades, but at the same time, it is pushed to stay (‘‘to persist’’)

within one cascade as much as possible. The strength of this effect

is adjusted by a parameter h (h [0,1]).

In details, the application of verified cascades (pathways) to the

key node search is done as follows: A pathway P is defined as a

graph GP = (VP, EP, C), which is a sub-graph of the complete

signaling graph G = (V, E, C). Let SPij be the graph of the shortest

paths between i,j VP within pathway P. Further, let CPij be the cost

of the shortest paths, where CPij = ‘ if SPij = Ø. We combine GP

and G yielding the final graph G’ = (V,E’,C’) by introducing

additional edges E’ = E U {(i, j) | SPij ? Ø} and by extending the

cost function for them by C’ = {f(CPij)| f(CPij) # Cij} U {Cij| f(CPij)

. Cij}. As function f we use f(x) = xh, with h [0,1]. The aim of f is

to make the cost function of any new edge (i, j) sublinearly

dependent from the cost of the corresponding original shortest

path SPij. The effect is that the costs of paths within a known

pathway have decreased due to the cheaper short-cuts. This

algorithm prioritizes the selection of the paths persisting inside

known pathways during the search of the key nodes. The effect is

maximal when h = 0 and absent when h = 1. Therefore we call h

‘‘rigidity parameter’’ which the balance between rigidity and

sensitivity during the search. As demonstrated earlier, the pathway

persistence has an advantageous effect with regard to sensitivity

and specificity of identifying correct pathway components in a key

node network [41].

Due to the strong connectivity in signaling networks, a key node

search is prone to yield many false-positive key nodes. In this

study, we therefore calculated an empirical cumulative probability

(ECP value) for each key node identified, based on the score rank

of the key node. The ECP value of a key node is calculated as

ECP = RK*1/NK, where, RK is the rank of the key node and NK

is the total number of the key nodes found in the analysis. ECP

estimates a cumulative probability of a given key node to be found

at the rank RK and higher by random chance. We then contrasted

ECP values of key nodes obtained for the transgenic state with

ECP values of key nodes of the tumor state. This was done to
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highlight those key nodes with strongest differences regarding their

importance for transgenic and tumor TFs as well as expression

changes and thereby rely less on selection of key nodes based on

statistical error rates. A framework to automatize handling of the

various free parameters required by the key node analysis

algorithm and to estimate false discovery rate using random

shuffling of the input nodes shall be described elsewhere

(manuscript in preparation).

Promoter analysis
Overrepresentation of TF binding sites. We analyzed

overrepresentation of transcription factor binding sites in

promoters of differentially expressed genes and compared the

importance of transcription factors for transgenic and tumor

gene sets. It is well known that promoters of co-regulated genes

are enriched with binding sites of relevant transcription factors

[47]. Several algorithms have been developed that test for the

significance of enrichment of binding sites in promoters of a

gene set of interest (foreground set) compared to a background,

where the background set is often compiled from genes which

are not differentially expressed in the same biological condition

or from randomly sampled genes. For this type of analysis,

ExPlain provides the F-MATCH program described in [41].

The algorithm starts with PWM score thresholds employed in an

initial site search conducted with MATCH [48] and iteratively

increases the threshold of each individual PWM to find a

parameter that produces the most significant enrichment of sites

in foreground promoters. Significance of enrichment is

quantified by the binomial exact test calculated according to

equation (3).

P(X§x)~
XN

n~x

N

n

� �
:pn:(1{p)N{n ð3Þ

Here n denotes the number of predicted sites in the foreground

and N is the total number of sites. The relative proportion of

foreground sequences among both foreground and background

sequences gives the parameter p. Hence, the F-MATCH

algorithm compares the proportion of foreground sites among

all predicted binding sites to the proportion of foreground

promoters among all promoters.

We adopted this strategy to juxtapose the relative importance of

transcription factors (represented by their PWM) for correspond-

ing transgenic and tumor gene sets. Instead of using P-values to

quantify enrichment of binding sites in a foreground promoter set,

we expressed the relative importance of a TF by a probabilistic

estimate of the odds ratio of site and promoter proportions. As in

the F-MATCH algorithm, PWM score thresholds were optimized

to yield a maximal odds ratio. Given counts of predicted binding

sites as well as counts of promoters, we assumed independent Beta

distributions (4) for the foreground proportions.

Beta(x; a,b)~
xa{1:(1{x)b{1

B(a,b)
;

a,bw0; 0vxv1; B(a,b)~
C(a):C(b)

C(azb)

ð4Þ

Regularizing observations with a uniform prior, Beta(a = 1,b = 1),

promoters were assumed to come from the distribution Beta-

p(ap = pf+1,bp = pb+1), where pf and pb denote the number of

promoters in foreground and background, respectively. Likewise,

the site distribution (at a certain PWM score threshold) was set to

Betas(as = nf+1,bs = nb+1), with nf and nb denoting counts of

predicted binding sites in foreground and background. These

two Beta distributions were used to assess the uncertainty about

true proportions of sites as well as promoters.

For two independent distributions the probability P(w = xs/xp),

with xp , Betap and xs , Betas, can be computed from the joint

density. An exact expression for P(w = x/y) was derived by Pham-

Gia [49] and is recapitulated in (5).

P(w)~

B(axzay,by)

B(ax,bx):B(ay,by)
:wax{1:

2F1(axzay,1{bx; axzayzby; w),0vwƒ1

B(axzay,bx)

B(ax,bx):B(ay,by)
:w{(1zay ):

2F1(axzay,1{by; axzayzbx; w),w§1

8>>><
>>>:

ð5Þ

To avoid numerical difficulties with evaluating the Gauss

hypergeometric function 2F1 near w = 1, we calculated P(w) by

numerical integration of equation (6).

P(w)~

ðt

0

(w:y)ax{1:(1{wy)bx{1:yay :(1{y)by{1dy

B(ax,bx):B(ay,by)
ð6Þ

where

t~
1,wƒ1

w{1,w§1

�

Equation 6 can be evaluated in log-space before exponentiation,

which can be beneficial for large a’s and b’s. Eventually, we used

equation (6) to compute quantile (F21) estimates of the ratio of

site and promoter proportions by numerical integration. The

p-quantile yields the value for which the cumulative probability is

at most p. In this work, we chose p = 0.01, so that the ratio of

corresponding Beta distributions was assumed to be at least as high

with 99% probability. The computer program sought a PWM

score threshold to maximize this quantile value. Hence, a value

F21(0.01) = 2 for a certain PWM means that the proportion of

foreground sites among all predicted sites (foreground +
background) was at least two times higher than the proportion

of foreground promoters among all promoters with 99%

probability which indicates enrichment of sites in foreground

promoters.

Calculation of P-values for MATCH scores
PWM score thresholds for initial MATCH searches were

adjusted to a common background frequency as baseline. Single

binding site analyses used initial theoretically calculated cut-offs

corresponding to a P-value of 0.05. P-values for PWM scores were

computed with the standard method [50], which was extended to

consider searches over both sequence orientations and to adopt a

dinucleotide model for random sequences as described in the

following.

Let Q = (qik) be the W x 4 score matrix with i = 1. .W vectors, in

following called site positions, each with k = 1. .4 scores for residues

R = (rk) = (A,C,G,T). This matrix is used to score an alignment of

the TFBS profile with a sequence segment of length W. The score

function is additive, so that the score S of a sequence segment is

evaluated by summing up residue scores of all site positions. Further,

let p = (pk) be a mononucleotide background model. Usually, one

considers both orientations of the sequence or equivalently both

PWM orientations. A method for P-value calculation should take

this into account and determine the probability that either score

(5)
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(forward or reverse orientation) satisfies a given threshold. The

reverse PWM Q’ is defined in (7) and (8).

Q’~(q’ik); i~1::W ; k~1::4 ð7Þ

q’ik~q(wz1{i)(5{k) ð8Þ

Given forward and reverse orientations, there is a pair of scores

(qik,q’ik) for each position of an alignment and subsequently a pair of

scores (s,s’) for the sequence segment. As previously shown, the

probability distribution of PWM scores can be efficiently calculated

by convolution [50]. The latter can be extended to calculate the

joint probability density f(s,s’) by the convolution defined in (9).

Equation 9 gives the joint probability density of scores si and s’i up to

site position i by convolution of g(qik,q’ik) and h(si-qik,s’i-q’ik), where g is

the function of score pairs at site position i of Q and Q’ and h is the

joint probability density of score pairs up to position i-1.

f (si,s’i)~ g � h½ �(si,s’i)~
X

k~1::4

g(qik,q’ik) � h(si{qik,s’i{q’ik) ð9Þ

When a mononucleotide background model is used to calculate the

false positive rates of PWM scores, g(qik,q’ik) is just the mapping g:

qik,q’ik R pk. The cumulative probability P(S§t)|P(Sn§t) that

determines selection of score threshold t is derived from the joint

probability density of scores.

We further extended the standard method to apply a dinucleotide

background model. By conditioning score functions on the terminal

residue j associated with a score pair (si,s’i), the convolution also

accommodates higher-order background models (10).

fj(si,s’i)~ gj � hk

� �
(si,s’i)

~
X

k~1::4

g(qij ,q’ij) � hk(si{qij,s’i{q’ij); j~1::4
ð10Þ

In this study, we employed a dinucleotide model that was estimated

from the first 1000 residues upstream of all murine TSSs in

TRANSPro. We selected this particular region for several reasons.

First, start positions of 74.4% of the genomic TFBS entries in

TRANSFAC 12.1 map to this sequence range. The distribution of

TSS-relative locations of known binding sites is shown in Figure 1.

While it is well known that transcription factors can exert an effect

on promoters that are located thousands of base pairs away,

TRANSFAC data suggest that functional binding sites are

predominantly located in the proximal upstream region of the

TSS. The distribution shown in Figure 1 has a peak at position –115

(red line). Also, locations of binding sites identified by ChIP-chip or

ChIP-seq are often overrepresented in the TSS vicinity (data not

shown). Second, we did not include downstream residues to avoid

inclusion of coding regions.

Co-occupancy of TF binding sites
An analysis of individual TFBS with a test for pair wise co-

occurrences of binding sites was performed. The approach

represents a variant of the F-MATCH algorithm for binding site

pairs and quantifies overrepresentation of promoter sequences

with sites of both PWMs in the foreground set using the Fisher test.

Like F-MATCH, the site co-occurrence method starts with

externally defined score thresholds that can be further optimized

using minimization of the Fisher test P-value as objective. While

sequences containing a certain binding site pair can be

significantly overrepresented in the foreground set, the association

of the two sites might not be significant per se, e.g. enrichment

may be determined by only one type of sites. Therefore, the signal

conveyed by the event of co-occurrence itself was controlled using

a stringent site score cut-off (P-value 10-4). Furthermore, the

frequency of sequences with both site types was compared with the

expected frequency in the foreground, given the numbers of

promoters with either TFBS, and calculated a coefficient of

independence (11), which is similar to the mutual information of

two random variables.

CI i,kð Þ~ f i,kð Þ
f ’ ið Þ:f kð Þ ð11Þ

In (11), f(i,k), f(i) and f(k) denote proportions of promoters with the

TFBS pair, site i, and site k, respectively. To further consider a pair,

it was required for this value to be at least 1.3. Finally, dependence

of PWMs with similar sequence specificity was eliminated, because

this property would inevitably produce high co-occurrence rates.

This problem was addressed by considering only pairs of PWMs

showing overlap in less than 10% of predicted sites. This approach

was fully data-driven since admissible PWM combinations, baseline

thresholds, and final score cut-offs, for individual PWMs and for the

pair, were estimated on the basis of a background promoter set that

was defined by the gene expression data.

Supporting Information

Table S1 Differentially expressed genes detected by Ebarrays in

transgenic and tumor cells.

(XLS)

Table S2 Biological processes selected by comparison of their

enrichment P-values in transgenic and tumor state.

(XLS)

Table S3 Upregulated molecules connected in network clusters

shown in Figures 4 and 5.

(XLS)

Table S4 TRANSFAC weight matrices with highest q-values in

transgenic and tumor gene sets.

(XLS)

Table S5 Transcription factors represented by enriched

TRANSFAC motifs.

(XLS)

Table S6 TRANSFAC PWM pairs enriched in upregulated

tumor genes (P , 0.001).

(XLS)

Table S7 Transcription factors identified by PWM co-occur-

rence analysis.

(XLS)

Table S8 Experimental validation of predicted binding sites in

promoters of up- and downregulated genes.

(XLS)

Figure S1 Multiple alignment of TRANSPro promoters (-1000

to +500) of murine Bcl2a1a-d.

(TIF)
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Figure S2 Representation of EGF/IGF-2 regulatory circuit in

SBGN notation. This diagram was constructed using the

geneXplain platform for systems biology (www.genexplain.com)

and adapted with the Inkscape SVG editor (inkscape.org). The

SBGN diagram illustrates the feedback loops triggered by EGF

and IGF-2 signaling. The endpoints of regulation – multiple

transcription factors (shown in light blue) that are activated

through upstream signaling events, regulate expression of their

target genes (shown in light blue) whose products are the key

components of the signaling network (shown in red) upstream of

the transcription factors.

(PNG)
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