
ORIGINAL PAPER

Factors affecting patterns of tick parasitism on forest rodents
in tick-borne encephalitis risk areas, Germany

Christian Kiffner & Torsten Vor & Peter Hagedorn &

Matthias Niedrig & Ferdinand Rühe

Received: 16 July 2010 /Accepted: 10 September 2010 /Published online: 28 September 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Identifying factors affecting individual vector
burdens is essential for understanding infectious disease
systems. Drawing upon data of a rodent monitoring
programme conducted in nine different forest patches in
southern Hesse, Germany, we developed models which
predict tick (Ixodes spp. and Dermacentor spp.) burdens on
two rodent species Apodemus flavicollis and Myodes
glareolus. Models for the two rodent species were broadly
similar but differed in some aspects. Patterns of Ixodes spp.
burdens were influenced by extrinsic factors such as season,
unexplained spatial variation (both species), relative hu-
midity and vegetation cover (A. flavicollis). We found
support for the ‘body mass’ (tick burdens increase with
body mass/age) and for the ‘dilution’ hypothesis (tick
burdens decline with increasing rodent densities) and little
support for the ‘sex-bias’ hypothesis (both species).
Surprisingly, roe deer densities were not correlated with
larvae counts on rodents. Factors influencing the mean
burden did not significantly explain the observed dispersion
of tick counts. Co-feeding aggregations, which are essential
for tick-borne disease transmission, were mainly found in
A. flavicollis of high body mass trapped in areas with fast
increase in spring temperatures. Locally, Dermacentor spp.
appears to be an important parasite on A. flavicollis and M.

glareolus. Dermacentor spp. was rather confined to areas
with higher average temperatures during the vegetation
period. Nymphs of Dermacentor spp. mainly fed on M.
glareolus and were seldom found on A. flavicollis. Whereas
Ixodes spp. is the dominant tick genus in woodlands of our
study area, the distribution and epidemiological role of
Dermacentor spp. should be monitored closely.

Introduction

Rodents are important hosts for the immature stages of hard
ticks, and when taking a blood meal, ticks may transmit a
range of tick-borne disease agents of medical and veterinary
significance. In central Europe, ticks of the Ixodes ricinus
complex can be infected with and subsequently transmit
pathogens such as Borrelia burgdorferi spirochaetes, gram-
negative bacteria of the family Anaplasmataceae and
Rickettsiaceae and tick-borne encephalitis virus (Kurtenbach
et al. 2002; Labuda and Nuttall 2004; Parola et al. 2005).
Ticks of the genus Dermacentor, especially D. reticulatus,
appear to expand their range in Germany (Dautel et al.
2006). Ticks of this genus are competent vectors of B.
burgdorferi, rickettsia bacteria and tick-borne encephalitis
virus and may also transmit protozoan piroplasms (Kahl et
al. 1992; Randolph et al. 1996; Jongejan and Uilenberg
2004).

A key element for quantifying transmission rates of these
pathogens is the vector burden on host individuals. Specifi-
cally, not only the mean per capita burden but also the level of
aggregation within the population affects the intrinsic growth
rate R0 of a pathogen (Woolhouse et al. 1997; Hartemink et
al. 2008). Tick-host systems and indeed most host–parasite
systems are characterised by heterogeneities with respect to
the probability of hosts being exposed to parasites and in
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turn to spread these among the population (Shaw et al. 1998;
Lloyd-Smith et al. 2005). Parasite distributions within their
host populations are generally most adequately described by
a negative binomial distribution, characterised by the mean
(μ) and a dispersion parameter (σ) (Shaw et al. 1998). The
level of parasite aggregation is of crucial importance because
the intrinsic growth rate of a pathogen R0 increases with the
degree of parasite aggregation (Woolhouse et al. 1997).
The observed level of aggregation is often in accordance
with the ‘80/20’ rule, where a fraction of approximately
20% of the population is responsible for approximately
80% of the disease transmission (Woolhouse et al. 1997;
Perkins et al. 2003). Identifying characteristics of this
rather small proportion of hosts which are responsible for
the majority of disease spread is a central task for
parasitological research and for designing effective control
mechanisms (Woolhouse et al. 1997; Perkins et al. 2003;
Lloyd-Smith et al. 2005). For the two tick-borne disease
agents of major medical importance, B. burgdorferi, and
especially for tick-borne encephalitis virus, co-feeding
transmission (i.e. the pathogen transmission from infected
nymphs to naïve larvae, all feeding on the same host and
not involving amplification within the host) is of major
importance for the maintenance of the pathogen in the tick
population (Jones et al. 1987; Randolph et al. 1996;
Hartemink et al. 2008). Thus, identification of factors
affecting (1) mean tick burden, (2) level of aggregation and
(3) the simultaneous presence of larval and nymphal ticks on
a single host is central for understanding transmission
dynamics of tick-borne diseases.

Several studies have investigated the patterns of tick
parasitism in forests of Europe. Most studies largely
focussed on single or few factors affecting individual mean
tick burden in rodent populations such as seasonality
(Radda 1968; Radda et al. 1969; L’Hostis et al. 1996;
Randolph et al. 1999), extrinsic spatial factors such as
habitat type or structure (Boyard et al. 2008; Paziewska et
al. 2010), microclimate (Randolph and Storey 1999) or
intrinsic features such as rodent species, sex, age and body
mass (Randolph 1975; Nilsson and Lundqvist 1978;
Matuschka et al. 1991; Humair et al. 1993; Perkins et al.
2003; Harrison et al. 2010). Recently, the abundance of
larger ungulates such as roe deer (Capreolus capreolus)
which are key hosts for adult ticks (Vor et al. 2010; Kiffner
et al. 2010) has been hypothesised to contribute to
increased tick densities (Gilbert 2010) and consequently
to increased tick-borne disease incidence in humans (Linard
et al. 2007; Rizzoli et al. 2009). However, effects of
variable deer densities on individual tick burdens of rodents
have rarely been tested (but see Harrison et al. 2010).
Furthermore, high rodent densities might ‘dilute’ individual
burdens since the available ticks might be spread across
many hosts (Schmidt et al. 1999).

Given the wide range of factors potentially affecting
individual tick burden, simultaneous testing of these
variables is needed. Even if sufficient data are available,
conventional statistical approaches are often inappropriate
as they usually assume a constant aggregation level (Shaw
et al. 1998; but see Brunner and Ostfeld 2008). In order to
analyse a data set of tick burdens (Ixodes spp. and
Dermacentor spp.) on yellow-necked mice (Apodemus
flavicollis) and bank vole (Myodes glareolus), the two
dominant rodent species in central European woodlands, we
adopted a flexible modelling approach, general linear models
for location, scale and shape (GAMLSS, Stasinopoulos and
Rigby 2007). This statistical framework allows modelling of
the mean and the dispersion parameter of a negative
binomial distribution as a function of explanatory variables.
In this framework, we test whether (1) external abiotic (e.g.
season) factors influenced individual tick burdens; (2)
external biotic factors, such as relative humidity, tempera-
ture, vegetation cover, roe deer and rodent density affected
individual tick loads; and (3) intrinsic factors such as sex,
age or body mass were correlated with tick burdens.
Additionally, we tested whether the dispersion parameter
varied with those parameters that influenced mean burdens.

In order to identify variables of categories (1)–(3)
which might predict co-feeding, we used a statistical
framework with binomial structure following Perkins et
al. (2003). Additionally, we tested whether co-feeding of
larvae and nymphs were correlated with the increase in
spring temperature relative to the mean temperature of
January. Fast temperature increase in spring time is
thought to be the main driver for the seasonal synchrony
of larvae and nymphs and thus for co-feeding aggregations
(Randolph and Sumilo 2007).

Materials and methods

Study sites

We selected nine different forest patches (mean size 1,150 ha,
range: 520–1,710 ha) in three forest districts (Beerfelden,
Dieburg, Lampertheim) in the southern part of Hesse,
Germany. The forest districts were located in counties
(Bergstraße and Odenwaldkreis, Darmstadt-Dieburg and
Bergstraße, respectively) defined as risk areas for TBEV
(Robert Koch-Institute 2007).

Small mammal trapping

We conducted repeated rodent trapping in the first weeks of
September 2007; May, July and August 2008; and May,
July and August 2009. In each forest patch, we established
two trapping grids on randomly selected intersections of a
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superimposed 1 km×1 km grid. Each of the 18 trapping
grids consisted of 36 Sherman live traps placed systemat-
ically in a 50 m×50 m square (10-m inter-trap distance).
We used fresh apple parts to bait rodents and placed hay
into the traps to provide nesting material. We operated
trapping grids for four consecutive nights and controlled the
traps every morning. We transferred caught rodents in a
plastic bag and identified them to species level based on
morphological traits. We released non-target animals (e.g.
Soricidae) immediately and euthanized rodents with CO2.
The trapping and euthanizing protocol was authorised by
the responsible authority. Overall, we caught 270 rodents,
whereas bank voles M. glareolus (143 individuals) and
yellow-necked mice A. flavicollis (106 individuals) com-
bined represented 92% of all captures. Other species [A.
sylvaticus (n=15), Microtus agrestis (n=4), M. arvalis (n=
1), and Mus musculus (n=1)] were captured infrequently
and were not considered for the statistical analyses. For
each rodent, we assessed basic biometric characteristics
such as sex (male/female), age (sub-adult, adult) and body
mass. We carefully screened each rodent for ticks by
combing the fur and by intensively searching the ears, head,
throat, toes and tail. All detected ticks were removed using
forceps and transferred in sterile tubes and stored at −80°C.
Ticks were determined to genus (Dermacentor spp. (Koch
1844) and Ixodes spp. (Latreille 1795)) and stage (larvae
and nymphs, no adults were found on rodents). Sample
individuals determined to species level belonged to I.
ricinus (Linneaus 1758) and Dermacentor reticulatus
(Fabricius 1794). Since a rodent removal protocol was
necessary for further virus screening (TBEV and Hantavi-
rus) of the rodents (see, e.g. Ulrich et al. 2009), we
approximated rodent density as number of individuals per
100 corrected trap nights (rodents per 100CTN). Trapping
effort was corrected for closed traps without captures or
captures of non-target animals. We calculated three differ-
ent density indices: a mice density index (A. flavicollis,
Apodemus sylvaticus and M. musculus captures per
100CTN), a vole density index (M. glareolus, M. agrestis
and Microtus arvalis captures per 100CTN) and a rodent
density index (all rodent species combined per 100CTN).
During each trapping session, we visually estimated the
percentage of vegetation cover in the herb layer in four
categories: 0–24%, 25–49%, 50–74% and 75–100%.

Climatic data

At each trapping grid, we placed a weather data logger
(Thermo/Hygro Button 23, Maxim Integrated Products,
Inc., Sunnyvale, USA) at a tree trunk near the forest
floor and with minimal exposition to solar radiation to
record relative humidity and temperature. Since data
loggers were not operated for the entire study period and

frequently failed to store data, it was not possible to
relate relative humidity and temperature to the grid- and
time-specific individual tick burden. Hence, we calculated
average temperature and relative humidity for the vegetation
period 2009 (1 March–30 September) for each trapping grid.
According to Randolph and Sumilo (2007), we estimated the
spring temperature increase from February to April 2009
corrected by the mean temperature of January 2009.

Roe deer density estimation

We estimated densities of roe deer using line transect
methodology (Buckland et al. 2001) and analysed the data
with the software package Distance 5 Release 2 (Thomas et
al. 2010). In early March 2008 and 2009, we drove a fixed
circuit (mean length ± SD 18.3±3.3 km) in each forest area.
We repeated each circuit in one of the following nights. We
counted roe deer with three persons; one person driving the
car slowly (6–12 km h−1) and screening for animals on the
transect line and two persons scanning both sides of the
transect line with handheld spotlights. We measured
sighting distances with a laser rangefinder and sighting
angles with a compass. Considering that we used forest
roads and hence that transects were not distributed
randomly, our estimates should be regarded as density
indices. However, these indices allow comparisons of roe
deer densities among different forest areas and years.
Because the numbers of roe deer sightings forest per area
per year were low (mean 15.8±6.4 SD), we pooled roe deer
sightings according to the predominant terrain of the forest
area. Based on Akaike’s information criterion (AIC) values,
these pooled detection functions indicated a better fit than
forest-area-specific detection functions. We discarded the
largest 5% of the distances and used half-normal key
function with cosine series expansion to fit the detection
functions. Using these stratum-specific detection functions
and the size-bias regression method to estimate cluster size,
we estimated area- and year-specific roe deer densities.
Because mean roe deer densities in the nine forest patches
remained remarkably stable between 2008 and 2009
(Kendalls tau 0.93, p<0.001, n=9), we used the 2008
estimate also for the year 2007.

Modelling approach

For predicting host-species- and tick-genus-specific models
of individual larval burdens, we ran several general additive
models for location, scale and shape, defining the distribu-
tion as negative binomial (NBD type I) (Shaw et al. 1998).
The modelling procedure was performed with the ‘gamlss’
package (Stasinopoulos and Rigby 2007) implemented in R
(R Development Core Team 2005). Similar to Brunner and
Ostfeld (2008), we used a stepwise forward model selection
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procedure. We started with the most basic extrinsic factors
(seasonality, forest district) potentially influencing mean (μ)
larval tick burdens. Then, always selecting the model with
the lowest Akaike’s information criterion corrected for
sample size (AICc), we tested whether inclusion of further
extrinsic variables (climatic variables, vegetation cover in
the shrub layer, roe deer density and rodent density)
improved the models (Burnham and Anderson 2002). Further
on, we tested whether intrinsic individual characteristics of
rodents (sex, age and body mass) improved the model fit.
Based on the selected model explaining the mean larval
burden, we tested whether addition of a variable dispersion
parameter (σ) enhanced the model fit. Since the level of
aggregation is likely to be correlated with μ (Shaw et al.
1998), we tested whether σ was affected by those variables
explaining μ. We used logistic regression, to test which
factors affected presence of nymphal ticks on rodent
individuals. Analogous to the larval models, we used a
stepwise forward model selection procedure.

Results

Larval burden

Larval Ixodes spp. burdens on A. flavicollis (mean=19,
range=0–129, SD=22) were on average higher (Mann–
Whitney U test, z=−8.96, p<0.001) than on M. glareolus
(mean=6, range=0–86, SD=14). Almost all (98%, 104/
106) A. flavicollis individuals were parasitized with at least
one Ixodes spp. larvae while the larval Ixodes spp.
prevalence in M. glareolus was 68% (98/144). Larval ticks
were highly aggregated. In A. flavicollis, 20% of the most
infested individuals harboured 56% of the entire larval
Ixodes spp., and in M. glareolus the same proportion fed
81% Ixodes spp. larvae.

For predicting larval Ixodes spp. burdens on A.
flavicollis, the model selection procedure provided most
support for model K (Table 1). This model suggested that
larval burdens were influenced by sampling month, with
mean larval burdens being highest in July and lower in
May and September (Fig. 1). Mean larval burdens were
higher in the forest district Beerfelden compared to the
forest districts of Dieburg and Lampertheim and slightly
declined with increasing relative humidity during the
vegetation period. Individual burdens were also associated
with vegetation cover in the shrub layer whereas stands
with ≥25% vegetation cover were associated with higher
tick burdens compared to stands with <25% vegetation
cover. There was statistical support that mean larval
burden of A. flavicollis decreased with increasing rodent
density. Further on, adult A. flavicollis showed higher
larval burdens than sub-adult conspecifics. There was no

support for including a variable dispersion parameter.
Models which included dispersion parameters either as a
function of month, forest district, relative humidity,
vegetation cover, indexed rodent density or host age had
poorer fits (based on AICC, models not shown) compared
to model K without a variable dispersion parameter. Model
K suggested the use of a constant dispersion parameter
(−0.67, SE±0.14).

In order to explain variation in larval Ixodes spp.
burdens on M. glareolus, we found most support for model
N (Table 1). Similar to the A. flavicollis–Ixodes spp. larvae
model, this model suggested including the sampling month
and the forest district as explanatory variables (Fig. 2).
Individual burden declined with increasing indexed vole
densities. Among the intrinsic factors, host age (adult >
sub-adult) and body mass were positively correlated with
mean larval burdens. Again, models with variable disper-
sion parameters performed worse than model N with a
constant (0.21, SE±0.17) dispersion parameter.

Larval Dermacentor spp. burdens were not statistically
different (Mann–Whitney U, z=−0.97, p=0.333) between
A. flavicollis (mean=3, range=0–88, SD=12) and M.
glareolus (mean=3, range=0–100, SD=13). Prevalence of
larval Dermacentor spp. was slightly higher in A. flavicollis
(20%, 21/106) than in M. glareolus (15%, 21/144). The
larval Dermacentor spp. was highly aggregated whereas the
20% of the most infested A. flavicollis and M. glareolus
individuals fed 100% of the counted Dermacentor spp.
larvae.

Models for explaining larval Dermacentor spp. burden
on A. flavicollis indicated no significant effect of sampling
month, and thus models did not include this variable. Mean
larval Dermacentor spp. burden on A. flavicollis was best
explained by model M (Table 2). Once more, this model
indicated an effect of forest district (Fig. 3). Further on, the
model suggested that Dermacentor spp. burden were
positively correlated with the average temperature during
the vegetation period and that individual burdens were
higher in male A. flavicollis compared to female conspe-
cifics. Models incorporating a variable dispersion parameter
(either modelled as a function of forest district, temperature
or host sex) had higher AICC values, and we thus favoured
the model with a constant dispersion parameter (2.30e+00,
SE±2.80e–01).

For predicting larval Dermacentor spp. burdens on M.
glareolus, model D was selected (Table 2). Several model
combinations were not possible due to redundant factor
combinations. The selected model suggested similar effects
(forest district and average temperature) as the larval
Dermacentor spp. model for A. flavicollis, except that it
did not include host sex as an explanatory variable (Fig. 4).
Also, for this model, a constant dispersion parameter was
considered (1.92, SE±0.29).
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Nymphal burden

Ixodes spp. nymphs were found on 16% (17/106) of
captured A. flavicollis with a maximum of eight nymphs
on one individual. Prevalence of nymphs on M. glareolus
was 10% (15/144) whereas one individual was infested by
25 nymphs.

A. flavicollis individuals parasitized by Ixodes spp.
nymphs had higher average larval Ixodes spp. burdens
(mean=47±SE 9) compared to individuals without nymphs

(13±1). Individuals with an Ixodes spp. nymph also fed
more Dermacentor spp. larvae (12±6) than individuals
without a nymph (1±5).

We observed similar patterns in M. glareolus: Indi-
viduals parasitized by an Ixodes spp. nymph fed on
average more Ixodes spp. larvae (22±6) than conspecifics
not feeding nymphs (4±1). The same individuals, how-
ever, fed similar numbers of Dermacentor spp. larvae (2±
1) compared to individuals without Ixodes spp. nymphs
(3±1).

Table 1 Support for models explaining mean larval tick burdens (Ixodes spp.) on yellow-necked mice (A. flavicollis) and bank vole
(M. glareolus)

Model Apodemus flavicollis Myodes glareolus

Model letter P AICC Δi wi Model letter P AICC Δi wi

Individual characteristics

μ is a function of age, sex and body mass Q 15 804.72 3.11 0.09 Q 11 677.17 1.05 0.16

μ is a function of sex and body mass P 14 808.59 6.97 0.01 P 10 678.43 2.31 0.08

μ is a function of sex and age O 14 804.06 2.44 0.12 O 10 677.27 1.15 0.15

μ is a function of age and body mass N 14 802.08 0.46 0.32 N 10 676.12 0.00 0.27

μ is a function of sex M 13 815.93 14.32 0.00 M 9 689.77 13.65 0.00

μ is a function of body mass L 13 805.94 4.33 0.05 L 9 677.71 1.59 0.12

μ is a function of age K 13 801.61 0.00 0.41 K 9 676.55 0.43 0.22

Best model from below J 12 813.60 11.99 0.00 I 8 691.02 14.90 0.00

Rodent density

μ is a function of rodent density J 12 813.60 11.99 0.00 J 8 696.27 20.15 0.00

μ is a function of vole density I 12 815.00 13.39 0.00 I 8 691.02 14.90 0.00

μ is a function of mice density H 12 813.77 12.16 0.00 H 8 699.34 23.22 0.00

Best model from below F 11 813.68 12.07 0.00 B 7 697.12 21.00 0.00

Roe deer density

μ is a function of roe deer density G 12 814.51 12.90 0.00 G 8 698.11 21.99 0.00

Best model from below F 11 813.68 12.07 0.00 B 7 697.12 21.00 0.00

Vegetation

μ is a function of vegetation cover F 11 813.68 12.07 0.00 F 10 700.33 24.21 0.00

Best model from below C 8 814.94 13.33 0.00 B 7 697.12 21.00 0.00

Climatic factors

μ is a function of relative humidity and
temperature

E 9 817.33 15.71 0.00 E 9 701.68 24.56 0.00

μ is a function of temperature D 8 817.42 15.81 0.00 D 8 698.66 22.54 0.00

μ is a function of relative humidity C 8 814.94 13.33 0.00 C 8 699.36 23.24 0.00

Best model from below B 7 815.67 14.06 0.00 B 7 697.12 21.00 0.00

Spatial factors

μ is a function of forest district B 7 815.67 14.06 0.00 B 7 697.12 21.00 0.00

Best model from below A 5 819.54 17.93 0.00 A 5 714.21 38.09 0.00

Seasonal dynamics

μ is a function of season A 5 819.54 17.93 0.00 A 5 714.37 37.62 0.00

Models are grouped from bottom (simple models) to top (more complex). We first addressed the fundamental extrinsic factors season and forest
district and then included further extrinsic factors (climatic factors, vegetation, roe deer density and rodent density) and intrinsic factors (age, body
mass and sex). In each case, the best model from the set below was chosen based on minimum AICc values. P indicates the number of parameters
used for fitting each model, Δi is the difference in AICc and wi is the AICc weight based on all models (Burnham and Anderson 2002). The
models with most support are in italics
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The model selection approach suggested that model P
(Table 3) best explained prevalence of Ixodes spp. nymphs
on A. flavicollis. The logistic regression model provided
support that presence of Ixodes spp. nymphs on A.
flavicollis was associated with sampling month (July >
May, p=0.025, September > May, p=0.71) and forest
district (Lampertheim < Beerfelden, p=0.0048; Dieburg <
Beerfelden, p=0.18) and that it was positively correlated
with spring warming rate (coefficient=1.33, p=0.031) and
body mass (coefficient=0.14, p=0.04) of individual
yellow-necked mice.

Presence of Ixodes spp. nymphs on M. glareolus was best
explained by model M (Table 3). This model suggested that
forest district (Dieburg < Beerfelden, p=0.39, Lampertheim
< Beerfelden, p=0.46), temperature during the vegetation
period (coefficient=9.56, p=0.43) and indexed vole density
(coefficient=−0.18, p=0.14) affected the probability that a
nymphal Ixodes spp. was present on a bank vole. Yet all
model parameters were insignificant (p values > 0.05),
suggesting cautious treatment of this model.

Prevalence of nymphal Dermacentor spp. was very low.
Since only 2% (2/106) of the captured A. flavicollis was
parasitized by Dermacentor spp. nymphs, we did not
analyse this host-tick system statistically. The two infested

yellow-necked mice infested with a Dermacentor spp.
nymph tended to have higher Ixodes spp. larvae burdens
(57±45 vs. 18±2) and Dermacentor spp. burdens (39±1
vs. 2±1) than conspecifics without a Dermacentor spp.
nymph. Six percent (9/144) of the captured M. glareolus
individuals showed a prevalence of Dermacentor spp.
nymphs, whereas the maximum per capita count was three
nymphs. Individuals parasitized by Dermacentor spp.
nymphs fed similar numbers of Ixodes spp. ticks (7±6 vs.
6±1) but on average higher numbers of Dermacentor spp.
larvae (40±10 vs. 1±1) compared to conspecifics not feeding
a nymph. The selected model N (Table 4) explaining presence
of nymphal Dermacentor spp. on M. glareolus should be
regarded conservatively. In this model, only one variable,
indexed mice density (showing a positive correlation),
reached statistical significance (p=0.01). Other variables in
the model (forest district, relative humidity, host age and host
body mass) were insignificant (p>0.05).

Discussion

After controlling for season and unexplained spatial
variation (forest district entered as factor), we found that
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several extrinsic and intrinsic factors influence the investi-
gated rodent hard-tick systems.

Factors affecting mean Ixodes spp. larvae burdens

It was expected that larval Ixodes spp. burdens were
higher in A. flavicollis than in M. glareolus (cf. Matuschka
et al. 1991; Humair et al. 1993; Boyard et al. 2008;
Paziewska et al. 2010) because M. glareolus may acquire
resistance against I. ricinus, the dominant tick species in
central Europe (Dizij and Kurtenbach 1995). Highest
mean larval burdens were observed in July, whereas we
cannot exclude that larval activity might have peaked in
June (cf. Randolph 2004). Mean infestation levels of A.
flavicollis were also influenced by relative humidity during
the vegetation period and by vegetation cover. The effect
of relative humidity appears inconclusive: On the one
hand, Ixodes ticks require high relative humidity [e.g. they
are inactive at relative humidity <70% (Aeschlimann
1972)]; on the other hand, we observed that larval tick
burden slightly declined with increasing relative humidity.
This finding is in contrast to tick feeding experiments
(Randolph and Storey 1999) but in accordance with results
from a field study where the numbers of larval Ixodes spp.

were also higher under drier conditions (82–89% vs.
91–98% relative humidity) (Boyard et al. 2008). To compli-
cate this issue, vegetation cover (which is usually positively
correlated with relative humidity on the forest floor) affected
the mean number of larval Ixodes spp. The underlying
factors causing these apparently contradictory findings need
further experimental clarification. Unambiguously, our
findings lend support to the ‘dilution hypothesis’ (Schmidt
et al. 1999; Brunner and Ostfeld 2008), i.e. with increasing
rodent densities, the mean per capita larval burden of A.
flavicollis declines. Further on, adult individuals had higher
levels of infestations than sub-adults, which is in line with
other studies of tick–rodent systems (Brunner and Ostfeld
2008; Harrison et al. 2010), given the probable correlation
between age and body mass (cf. Brunner and Ostfeld 2008).

Mean infestation levels of M. glareolus with Ixodes spp.
larvae were affected by similar variables also affecting
infestation levels of A. flavicollis. The ‘dilution effect’ was,
however, related to indexed vole density (vs. combined
rodent density index in A. flavicollis). Further on, adult
bank voles and heavier bank voles fed on average more
larval Ixodes spp. than younger and lighter conspecifics
which largely supports the ‘body size’ hypothesis (Harrison
et al. 2010).
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In both rodent species, we found no support for the
‘sex-bias’ hypothesis, which is in contrast to similar
tick–rodent systems in Europe (Harrison et al. 2010;
Boyard et al. 2008) or in the USA (e.g. Brunner and
Ostfeld 2008). Further on, it was unexpected that roe deer
densities were not correlated with Ixodes spp. larval counts
on forest rodents (cf. Gilbert 2010). Potentially, the failure

to detect a significant effect of roe deer density was due to
the different scales at which roe deer density estimation
and rodent trapping were conducted. Moreover, the range
of roe deer density indices (2.0–9.9 deer per square
kilometre) might not be wide enough to detect a
significant relationship between roe deer density and
Ixodes larvae density.

Table 2 Support for models explaining mean larval tick burdens (Dermacentor spp.) on yellow-necked mice (A. flavicollis) and bank vole
(M. glareolus)

Model Apodemus flavicollis Myodes glareolus

Model letter P AICC Δi wi Model letter P AICC Δi wi

Individual characteristics

Μ is a function of age, sex and body mass Q 8 242.49 3.93 0.05 –b

Μ is a function of sex and body mass P 8 240.86 2.30 0.10 –b

Μ is a function of sex and age O 8 240.27 1.71 0.14 –b

Μ is a function of age and body mass N 8 246.00 7.44 0.01 –b

Μ is a function of sex M 7 238.56 0.00 0.32 –b

Μ is a function of body mass L 7 243.94 5.38 0.02 F 7 245.52 2.15 0.19

Μ is a function of age K 7 243.70 5.14 0.02 E 7 245.21 1.84 0.22

Best model from below D 6 242.33 3.77 0.05 D 6 243.37 0.00 0.56

Rodent density

Μ is a function of rodent density J 7 244.51 5.95 0.02 –b

Μ is a function of vole density I 7 243.47 4.91 0.03 –b

Μ is a function of mice density H 7 242.42 3.86 0.05

Best model from below D 6 242.33 3.77 0.05 D 6 243.37 0.00 0.56

Roe deer density

Μ is a function of roe deer density G 7 243.97 5.41 0.02

Best model from below D 6 242.33 3.77 0.05 D 6 243.37 0.00 0.56

Vegetation

Μ is a function of vegetation cover F 9 242.59 4.03 0.04

Best model from below D 6 242.33 3.77 0.05 D 6 243.37 0.00 0.56

Climatic factors

Μ is a function of relative humidity and
temperature

E 7 244.40 5.84 0.02 –b

Μ is a function of temperature D 6 242.33 3.77 0.05 D 6 243.37 0.00 0.56

Μ is a function of relative humidity C 6 243.43 4.87 0.03 C 6 252.23 8.86 0.01

Best model from below B 5 242.45 3.89 0.05 B 5 250.36 6.99 0.02

Spatial factors

Μ is a function of forest district B 5 242.45 3.89 0.05 B 5 250.36 6.99 0.02

Best model from below –/–a –/–a

Seasonal dynamics

Μ is a function of season A 5 242.35 3.79 0.05 A 5 256.98 13.61 0.00

Models are grouped from bottom (simple models) to top (more complex). We first addressed the fundamental extrinsic factors season and forest
district and then included further extrinsic factors (climatic factors, vegetation, roe deer density and rodent density) and intrinsic factors (age, body
mass and sex). In each case, the best model from the set below was chosen based on minimum AICc values. P indicates the number of parameters
used for fitting each model, Δi is the difference in AICc and wi is the AICc weight based on all models (Burnham and Anderson 2002). The
models with most support are in italics
a The effect of season was not significant (p>0.10) and hence was not included in further models
b Redundant combination of variables
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Factors affecting mean Dermacentor spp. larvae burdens

Dermacentor spp. ticks were found in all forest districts but
in one rodent trapping grid in the Rhine valley, this tick
species was very abundant, supporting the hypothesis that
Dermacentor spp. is associated with and/or expands along
rivers (Bullová et al. 2009; Zygner et al. 2009). The relative
abundance of Dermacentor spp. varied considerably at
small scale whereas ticks of this genus appear to prefer
areas with higher average temperatures; this might be
important for potential further expansion of Dermacentor
species and associated diseases with respect to climate
change scenarios. In contrast to other studies which
identified M. glareolus as the main host species (e.g.
Randolph et al. 1999; Paziewska et al. 2010), we did not
detect an apparent preference for a certain rodent species.
Male A. flavicollis, which usually have a relative large
home range (Schwarzenberger and Klingel 1994), were
disproportionally infested with larval Dermacentor spp.

Dispersion of larval ticks

Larval ticks were highly aggregated on their rodent hosts,
and in the case of Ixodes spp. the observed patterns broadly
confirmed the ‘20/80’ rule (Woolhouse et al. 1997). In
Dermacentor spp., the level of aggregation was even more
pronounced, possibly due to the spatial clumping of these

ticks. Whereas we found several factors affecting the
variation in mean infestation levels, we failed to detect
variables affecting the level of aggregation. This was rather
disappointing since the level of aggregation is as important
as the mean infestation level. Our approach suggests that
other undocumented variables might influence the disper-
sion of larval ticks in rodent populations. Recent findings
suggest that individual space use, which is not necessarily
correlated with attributes such as sex, age or host density,
affects the distribution of ticks among their hosts (Boyer et
al. 2010). This would offer a mechanistic explanation for
differences in mean tick loads but also for different
aggregation levels. Incorporating individual space use of
hosts as an explanatory variable is, however, not feasible in
a removal study and would necessitate a capture–recapture
design.

Factors affecting co-feeding

Overall, we found very few nymphs infesting forest rodents.
The typical rodent individual infested with an Ixodes spp.
nymph was an A. flavicollis of high body mass, captured in
July. Co-feeding of Ixodes spp. ticks in M. glareolus
appeared to be a rather erratic event. We found empirical
evidence that the spring warming rate was positively
correlated with co-feeding presence. A fast increase
in spring temperatures relative to January temperatures
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promotes seasonal synchrony of larval and nymphal activity
peaks (Randolph and Sumilo 2007). Rodents that fed at least
one nymph were also disproportionally infested with larval
ticks, being in accordance with Perkins et al. (2003). In

contrast to Perkins et al. (2003), our data do not suggest that
“sexually mature males of high body mass” were mainly
feeding nymphs. With our data (which only contain few co-
feeding aggregations), we only revealed an effect of body

Table 3 Support for models explaining the presence (¤) of nymphal ticks (Ixodes spp.) on yellow-necked mice (A. flavicollis) and bank vole
(M. glareolus)

Model Apodemus flavicollis Myodes glareolus

Model
letter

P AICC Δi wi Model
letter

P AICC Δi wi

Individual characteristics

¤ is a function of age, sex and body mass U 9 83.18 2.86 0.06 U 8 92.96 4.38 0.01

¤ is a function of sex and body mass T 8 80.85 0.53 0.18 T 7 91.31 2.73 0.03

¤ is a function of sex and age S 8 83.44 3.12 0.05 S 7 90.85 2.27 0.03

¤ is a function of age and body mass R 8 82.55 2.23 0.08 R 7 90.76 2.18 0.03

¤ is a function of sex Q 7 82.70 2.38 0.07 Q 6 90.46 1.88 0.04

¤ is a function of body mass P 7 80.32 0.00 0.24 P 6 89.20 0.62 0.08

¤ is a function of age O 7 83.23 2.91 0.06 O 6 88.69 0.11 0.10

Best model from below C 6 83.12 2.80 0.06 M 5 88.58 0.00 0.10

Rodent density

¤ is a function of rodent density N 7 85.09 4.77 0.02 N 5 89.23 0.65 0.07

¤ is a function of vole density M 7 85.17 4.85 0.02 M 5 88.58 0.00 0.10

¤ is a function of mice density L 7 85.22 4.90 0.02 L 5 90.66 2.08 0.04

Best model from below C 6 83.12 2.80 0.06 E 4 88.81 0.22 0.09

Roe deer density

¤ is a function of roe deer density K 7 85.30 4.98 0.02 K 5 90.82 2.24 0.03

Best model from below C 6 83.12 2.80 0.06 E 4 88.81 0.22 0.09

Vegetation

¤ is a function of vegetation cover J 9 89.53 9.21 0.00 J 7 92.23 3.65 0.02

Best model from below C 6 83.12 2.80 0.06 E 4 88.81 0.22 0.09

Climatic factors

¤ is a function of spring warming rate, relative
humidity and temperature

I 8 85.77 5.45 0.02 I 6 92.07 3.49 0.02

¤ is a function of humidity and temperature H 7 89.32 9.00 0.00 H 5 89.97 1.39 0.05

¤ is a function of spring warming rate and
temperature

G 7 83.52 3.20 0.05 G 5 90.00 1.42 0.05

¤ is a function of spring warming rate
and relative humidity

F 7 85.40 5.08 0.02 F 5 91.27 2.69 0.03

¤ is a function of temperature E 6 87.30 6.98 0.01 E 4 88.81 0.22 0.09

¤ is a function of relative humidity D 6 87.84 7.52 0.01 D 4 89.15 0.56 0.08

¤ is a function of spring warming rate C 6 83.12 2.80 0.06 C 4 91.07 2.48 0.03

Best model from below B 5 85.65 5.33 0.02 B 3 89.20 0.62 0.08

Spatial factors

¤ is a function of forest district B 5 85.65 5.33 0.02 B 3 89.20 0.62 0.08

Best model from below A 3 88.64 8.32 0.00 –/–a

Seasonal dynamics

¤ is a function of season A 3 88.64 8.32 0.00 A 3 98.91 10.33 0.00

Models are grouped from bottom (simple models) to top (more complex). We first addressed the fundamental extrinsic factors season and forest district and
then included further extrinsic factors (climatic factors, vegetation, roe deer density and rodent density) and intrinsic factors (age, bodymass and sex). In each
case, the best model from the set below was chosen based on minimumAICc values. P indicates the number of parameters used for fitting each model, Δi

is the difference in AICc and wi is the AICc weight based on all models (Burnham and Anderson 2002). The models with most support are in italics
a The effect of season was not significant (p>0.10) and hence was not included in further models
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mass. Potentially, drawing upon a larger sample size would
identify also further intrinsic variables such as host sex.
Given a longer time horizon and a larger sample size of tick-
infested rodents, it would be interesting to test the effect of
time lags and to test explicitly whether high rodent densities
in a given year translate into high nymph densities in the
following year (Ostfeld et al. 2006; Rosa et al. 2007).

Presence of Dermacentor spp. nymphs was also rather
inconsistent. Nymphs of this genus were predominantly
found on M. glareolus, being in accordance with Paziewska
et al. (2010). Only one variable (indexed mice density)
was statistically associated with nymphal presence. Given
the fast life cycle of D. reticulatus (and D. marginatus)
(Hillyard 1996) and the strong association between larvae
and rodents, high rodent densities during spring time
might boost nymphal Dermacentor spp. densities in early

summer. As an analogue to the Ixodes spp. system, an
advanced study drawing upon a larger sample size of
rodents infested with Dermacentor spp. nymphs should
explicitly test the effect of spring rodent density on the
prevalence/abundance of nymphs at a later stage (i.e.
during early summer).

Conclusion

Multiple factors appear to influence tick burdens on forest
rodent species. We provide evidence for the ‘dilution’ and
for the ‘body size’ hypotheses but find little support for the
‘sex-bias’ hypothesis. Co-feeding aggregations which are
essential for tick-borne disease transmission (especially
tick-borne encephalitis virus) were mainly found in yellow-

Model Myodes glareolus

Model letter P AICC Δi wi

Individual characteristics

¤ is a function of age, sex and body mass Q 8 34.30 2.23 0.12

¤ is a function of sex and body mass P 7 36.02 3.95 0.05

¤ is a function of sex and age O 7 38.23 6.16 0.02

¤ is a function of age and body mass N 7 32.07 0.00 0.36

¤ is a function of sex M 6 36.26 4.19 0.04

¤ is a function of body mass L 6 34.31 2.24 0.12

¤ is a function of age K 6 36.02 3.95 0.05

Best model from below H 5 34.14 2.07 0.13

Rodent host density

¤ is a function of rodent density J 5 35.40 3.33 0.07

¤ is a function of vole density I 5 36.34 4.27 0.04

¤ is a function of mice density H 5 34.14 2.07 0.13

Best model from below C 4 41.08 9.01 0.00

Roe deer density

¤ is a function of roe deer density G 5 43.18 11.11 0.00

Best model from below C 4 41.08 9.01 0.00

Vegetation

¤ is a function of vegetation cover F 7 42.15 10.08 0.00

Best model from below C 4 41.08 9.01 0.00

Climatic factors

¤ is a function of relative humidity and temperature E 5 43.18 11.11 0.00

¤ is a function of temperature D 4 41.36 9.29 0.00

¤ is a function of relative humidity C 4 41.08 9.01 0.00

Best model from below B 3 44.84 12.77 0.00

Spatial factors

¤ is a function of forest district B 3 44.84 12.77 0.00

Best model from below –/–a

Seasonal dynamics

¤ is a function of season A 3 58.91 26.84 0.00

Table 4 Support for models
explaining the presence (¤) of
nymphal ticks (Dermacentor
spp.) on bank vole
(M. glareolus)

Models are grouped from
bottom (simple models) to top
(more complex). We first
addressed the fundamental
extrinsic factors season and
forest district and then included
further extrinsic factors (climatic
factors, vegetation, roe deer
density and rodent density) and
intrinsic factors (age, body mass
and sex). In each case, the best
model from the set below was
chosen based on minimum AICc

values. P indicates the number
of parameters used for fitting
each model, Δi is the difference
in AICc and wi is the AICc

weight based on all models
(Burnham and Anderson 2002).
The models with most support
are in italics
a The effect of season was not
significant (p>0.10) and hence
was not included in further models
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necked mice of high body mass trapped in areas showing
a fast increase in spring temperatures. Whereas Ixodes
spp. is the dominant tick genus in woodlands of our study
area, Dermacentor spp. is locally very abundant. Its
occurrence and its epidemiological role should be moni-
tored closely.
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