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Regenerative failure in the CNS largely depends on pronounced growth inhibitory signaling
and reduced cellular survival after a lesion stimulus. One key mediator of growth inhibitory
signaling is Rho-associated kinase (ROCK), which has been shown to modulate growth
cone stability by regulation of actin dynamics. Recently, there is accumulating evidence
the ROCK also plays a deleterious role for cellular survival. In this manuscript we illus-
trate that ROCK is involved in a variety of intracellular signaling pathways that comprise
far more than those involved in neurite growth inhibition alone. Although ROCK function is
currently studied in many different disease contexts, our review focuses on neurorestora-
tive approaches in the CNS, especially in models of neurotrauma. Promising strategies to
target ROCK by pharmacological small molecule inhibitors and RNAi approaches are eval-
uated for their outcome on regenerative growth and cellular protection both in preclinical
and in clinical studies.
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INTRODUCTION
Numerous factors are responsible for the failure of neurons to
regenerate in the adult mammalian CNS and to restore function-
ality in traumatic and degenerative diseases of the nervous system.
Axonal degeneration and neuronal death clearly limit the regener-
ative substrate. But even when the structural components are only
partially lesioned, such as in the case of spinal cord injury, where
neuron cell death is negligible, the extracellular environment and
the nearly inexistent regenerative capacity of adult neurons coun-
teract a successful functional restoration (Harel and Strittmatter,
2006; Yiu and He, 2006; Liu et al., 2011). Inhibitory signaling of
myelin components and other repulsive guidance cues converges
upon Rho-associated kinase (ROCK), which propagates this sig-
nal down to the cytoskeleton, influencing neurite growth and
regeneration. This review will focus on ROCK as a promising
molecular target for neurorestorative strategies in the CNS and
highlight recent insights into ROCK-mediated effects on survival
and regeneration.

RHO KINASE (ROCK)
The ROCK proteins are serine/threonine kinases with a large
homology to other AGC kinases, such as myotonic dystrophy
protein kinase (DMPK), DMPK-related CDC42-binding kinase
(MRCK), and citron kinase (Pearce et al., 2010). Structurally
ROCKs have a catalytic kinase domain at the N-terminus, which
is followed by a coiled-coil region, including the Rho-binding site,
and a regulatory pleckstrin homology domain at the C-terminus
with cysteine-rich repeats. The pleckstrin homology domain is
likely to be involved in the stabilization of membrane association
of ROCK. The C-terminus acts in an autoinhibitory manner on
the kinase activity by interaction with the N-terminus (Riento and
Ridley, 2003). This interaction is disrupted by binding of active

Rho and thus increases kinase activity (Amano et al., 1999). Two
highly homologous isoforms are known: ROCK1, which is mostly
expressed in heart, lung, and other non-neuronal tissue, and
ROCK2, which is preferentially found in brain, spinal cord, and
muscle and shows an increased expression with age (Hashimoto
et al., 1999; Komagome et al., 2000; Duffy et al., 2009). In the
bovine brain, ROCK2 is abundantly expressed in neuronal cells in
the gray matter in comparison to the white matter. Here, intense
immunoreactivity for ROCK2 has been demonstrated in cortical,
hippocampal, and cerebellar Purkinje cell neurons (Hashimoto
et al., 1999). Preliminary results of an examination of human
brain autopsies suggest that ROCK2 protein expression is not
exclusively confined to neuronal cells, which, however, express
the protein to a much higher level than non-neuronal cells (own
unpublished data). The sequence homology between ROCK1 and
ROCK2 is ∼65%, and even 92% in the kinase domain whereas
the C-terminus shows a higher divergence (Nakagawa et al., 1996;
Matsui et al., 1998). Despite their structural similarities, ROCK1
and ROCK2 may have distinct roles in tissues where both isoforms
are expressed to a comparable extent. However, an experimental
in-depth dissection of differential roles of ROCK1 and ROCK2
in the same cell type has only been performed in non-neuronal
cell culture models so far (Yoneda et al., 2005). Taking advantage
of gene knockout technologies it has been found that in murine
development ROCK1 is not able to completely compensate for
the loss of the ROCK2 isoform. As a consequence, mice defi-
cient for the ROCK2 gene exhibit severe hypercoagulable states
with increased thrombus formation, placental dysfunction, and
intrauterine growth retardation which commonly leads to fetal or
early postnatal death in the offspring (Thumkeo et al., 2003). In a
different ROCK2 knockout model mice were normal in gross brain
anatomy but were severely altered in synaptic spine morphology,
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basal synaptic transmission, and hippocampal LTP. This was found
to be attributed to dysfunctions of the actin cytoskeleton and
the actin-binding protein cofilin (Zhou et al., 2009). A study that
compared haploinsufficient ROCK1 and ROCK2 mice focused on
vascular biology and examined the extent of neointima formation
in the carotid artery. Here, ROCK1 haploinsufficiency was associ-
ated with reduced neointima formation as well as with decreased
vascular smooth muscle cell proliferation and decreased levels
of proinflammatory adhesion molecule expression (Noma et al.,
2008).

UPSTREAM ACTIVATORS AND DOWNSTREAM TARGETS OF
ROCK
The extracellular environment of the CNS is highly repulsive
toward regenerating axons, which is largely attributed to the pres-
ence of inhibitory molecules on oligodendrocytes, myelin, and scar
tissue. Among these we find Nogo, myelin-associated glycoprotein
(MAG), and oligodendrocyte myelin glycoprotein (OMgp) which
are regularly present on the surface of oligodendrocytes (Wang
et al., 2002). Nogo, MAG, and OMgp have been shown to confer
their inhibitory activity via a trimeric receptor complex compris-
ing Nogo receptor 1 (NgR1), LINGO-1, and p75NTR or TROY
(Mi et al., 2004) and also via the paired immunoglobulin-like
receptor B (PirB) as recently reported (Atwal et al., 2008). After
ligand binding the p75NTR receptor component activates the small
GTPase RhoA, which has been identified as a main binding partner
of ROCK (Ishizaki et al., 1996). Additionally, G-protein-coupled
receptor (GPCR) stimulation by lysophosphatidic acid (LPA) or
sphingosine-1 phosphate (S1P) results in the transformation of
GDP-bound RhoA GTPase into the GTP-bound form, which is
the active one. After binding to the rho-binding domain, active
RhoA increases the kinase activity of ROCK by release of its auto-
inhibition. After this activation ROCK translocates to peripheral
membranes (Leung et al., 1995). Following lesion, repulsive guid-
ance molecules, which direct axonal outgrowth during embryoge-
nesis, can be upregulated and act as regeneration inhibitors. This
has been shown for Sema5A (Goldberg et al., 2004) and several
Ephrins/Eph receptors (summarized in Goldshmit et al., 2006).
Although ephrins and semaphorins employ a different receptor,
parts of their downstream signaling similarly converge on the
Rho/ROCK cascade (via ephexin and Rac1, respectively; Liu and
Strittmatter, 2001; Shamah et al., 2001).

In contrast to the reversible action of RhoA, caspases have been
shown to irreversibly activate ROCK by truncation and genera-
tion of a constitutively active form. ROCK activity in this context
was necessary and sufficient for the apoptotic process by forma-
tion of membrane blebs and re-localization of fragmented DNA
(Coleman et al., 2001; Sebbagh et al., 2001). Similar to caspases,
granzyme B is able to proteolytically cleave and activate ROCK
(Sebbagh et al., 2005).

Numerous downstream target proteins have been identified,
which are regulated by ROCK phosphorylation. Many of these are
involved in regulation of cell shape and motility, but others partic-
ipate in cell cycle and survival pathways. Myosin light chain (MLC)
is a substrate of activated ROCK and its phosphorylation results in
actomyosin contraction (Amano et al., 1996). In addition ROCK
can inactivate MLC phosphatase (MLCP), indirectly regulating

MLC phosphorylation, which results in conformational changes of
myosin required for contraction of actin filaments (Kimura et al.,
1996). Being a serine/threonine kinase, ROCK can activate LIM
kinase-1 (LIMK1), which then inactivates cofilin/actin depoly-
merizing factor (ADF) by phosphorylation (Yang et al., 1998).
As a consequence, cofilin is no longer able to severe filamentous
actin (f-actin) and to depolymerize actin from the pointed ends,
which promotes actin polymerization, initiation of growth cone
collapse, and reduced axonal outgrowth or growth arrest (Ng and
Luo, 2004). ROCK2 has also been shown to phosphorylate the
so-called ERM proteins, ezrin, radixin, and moesin (Matsui et al.,
1998). ERM proteins act as molecular bridges between the plasma
membrane and the actin cytoskeleton and therefore play essen-
tial roles in axon growth and regeneration (Arpin et al., 2011).
Phosphorylation by ROCK reduces the head-to-tail association
of ERM proteins, which stabilizes their open and active confor-
mation. Adducin is a protein that binds to f-actin promoting the
association of spectrin and f-actin. ROCK-mediated phosphory-
lation of adducin enhances its f-actin-binding potential and thus
regulates membrane ruffling and cell motility (Fukata et al., 1999).
Elongation factor-1 alpha (EF-1α) is another substrate of ROCK
that has been shown to be phosphorylated in vitro, which results in
decreased f-actin-binding activity of EF-1alpha (Izawa et al., 2000).
Further targets of ROCK phosphorylation are collapsin response
mediator protein 2 (CRMP2), vimentin, glial fibrillary acidic pro-
tein (GFAP), neurofilament, tau, and MAP2 (Kosako et al., 1997;
Goto et al., 1998; Hashimoto et al., 1998; Arimura et al., 2000;
Amano et al., 2003).

One of the most interesting and recently described downstream
targets of ROCK is the phosphatase and tensin homolog (PTEN),
which is directly activated by phosphorylation through ROCK in
HEK cells and leukocytes (Li et al., 2005). The PTEN gene product
is a phosphatase that acts as a tumor suppressor and is involved in
cell cycle regulation. PTEN negatively regulates Akt/PKB signaling
by antagonizing activated phosphatidylinositol (3,4,5) trisphos-
phate (PIP3), which is a canonical pathway employed by growth
factors to regulate neuronal survival. Suppressing PTEN thus
fosters PIP3 signaling via phosphatidylinositol-dependent kinase
1/2 (PDK1/2) to activate Akt/PKB, which in turn activates Ras
homolog enriched in brain (Rheb) through inhibition of the
tuberous sclerosis complex 1/2 (Tsc1/2). Activated Rheb stimulates
mTOR complex 1 (mTORC1) that finally leads to an enhancement
of general translation with an increase in protein synthesis and
cell growth (Guertin and Sabatini, 2007; Park et al., 2010). How-
ever, there is also a much closer link of ROCK to mTOR that has
been elucidated in fibroblasts. Here, ROCK1 has been identified
as mediator of the cell anchorage signal to the extracellular matrix
by physically interacting with Tsc2. This in turn relays the signal
to Rheb and finally mTOR (Park et al., 2011). A summary of the
most important signaling pathways involving ROCK is presented
in Figure 1.

INHIBITION OF ROCK
SMALL MOLECULE INHIBITORS OF ROCK
A plethora of different pharmacological inhibitors of ROCK have
been synthesized, which structurally belong to different chemi-
cal groups (Mueller et al., 2005). Among the best characterized
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FIGURE 1 |The ROCK signaling pathway with focus on survival and

regeneration. Nogo, MAG, OMgp present on the surface of
oligodendrocytes confer their inhibitory activity via a trimeric receptor
complex comprising NgR1, LINGO-1, and p75NTR to activate RhoA.
Sema5A and several Ephrins can also contribute to RhoA activation via their
plexin or Eph receptors, respectively. Additionally, G protein-coupled receptor
(GPCR) stimulation by lysophosphatidic acid (LPA) or sphingosine-1
phosphate (S1P) results in the activation of the small GTPase RhoA.
GTP-bound RhoA further activates ROCK to phosphorylate several
substrates that are involved in regulation of cell shape and motility but also in
survival pathways. Caspase-3 and granzyme B are able to proteolytically
cleave and thus activate ROCK. Myosin light chain (MLC) is a substrate of
activated ROCK and its phosphorylation results in actomyosin contraction. In

addition ROCK can inactivate MLC phosphatase (MLCP) and thus indirectly
regulate MLC phosphorylation. Being a serine/threonine kinase, ROCK can
activate LIM kinase-1 (LIMK1) that then inactivates cofilin/actin
depolymerizing factor (ADF) by phosphorylation promoting actin filament
stabilization. The phosphorylation of ERM proteins leads to Actin-membrane
linkage. Adducin is a protein that after activation binds to f-actin promoting the
association of spectrin and f-actin and thus assembling the actin network.
Another downstream target of ROCK is PTEN, which negatively regulates
Akt/PKB signaling by antagonizing PIP3. If active, Akt in turn activates Rheb
because of inhibition of Tsc1/2, and subsequently stimulates mTORC1, which
finally leads to an enhancement of general translation with an increase in
protein synthesis and cell. ROCK1 may also physically interact
with Tsc2.

and most frequently used substances is Fasudil, a member of
the isoquinoline series. Its main metabolite is Hydroxyfasudil,
which shows a good bioavailability in various animal models
in vivo even after oral administration (Hattori et al., 2004; Wang
et al., 2005b). Y-27632 is a more specific ROCK inhibitor fre-
quently used in biological and pharmacological experiments and
a member of the 4-aminopyridine series. Over the years, these sub-
stances have been developed further based on indazole-, amide-,
or urea backbones (Mueller et al., 2005; Liao et al., 2007). In order
to optimize kinase selectivity, cell activity, microsomal stability,
and pharmacogenetic properties, new pharmacological variants
of the early ROCK inhibitors or even new pharmacological classes
have been generated. Among them are chroman-3-amides (Chen
et al., 2008), azaindol-based inhibitors (Schirok et al., 2008), and
tetrahydroisoquinoline derivatives (Fang et al., 2010).

DOMINANT-NEGATIVE MUTANTS AND RNAi-BASED APPROACHES
Next to pharmacological inhibitors of ROCK, the expression of
a dominant-negative mutant protein has been shown to act as a
functional ROCK inhibitor both in vitro and in vivo in a spinal cord

lesion model (Wu et al., 2009). Approaches using the RNAi tech-
nology to down regulate ROCK expression have been effectively
applied in vitro and allow for an isoform- and cell type-specific
view on the roles of ROCK1 and ROCK2 (Lock and Hotchin,
2009). Studies in fibroblasts and vascular smooth muscle cells
have shown that both ROCK1 and ROCK2 seem to have dis-
tinct non-redundant functions. One example is the disassembly
of stress fibers that is observed after knock-down of ROCK1 but
not of ROCK2 in fibroblasts. In contrast, this seems to be medi-
ated mainly by ROCK2 in smooth muscle cells (Yoneda et al., 2005;
Wang et al., 2009). Furthermore, ROCK1 is cleaved and thereby
constitutively activated by caspase-3 at a conserved sequence at its
C-terminus that is not found in ROCK2 (Sebbagh et al., 2001).

If a cell specific regulation of ROCK isoform expression in
animal models in vivo is required, viral vector mediated transfer
methods of shRNA expressing plasmids leading to RNAi-mediated
knock-down of the target gene are a valuable option. Important
considerations for viral vector design include size of the transgene,
route of delivery, tropism, duration and regulation of gene expres-
sion, and side effects (for a review see Davidson and Breakefield,
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2003). Studying the role of ROCK2 in cell survival paradigms after
optic nerve (ON) lesion, we were able to almost selectively infect
retinal ganglion cells by AAV vectors. This enabled us to cell specif-
ically regulate ROCK2 expression. Whereas the vector delivery via
intravitreal injection was easy to handle, vector dosage in vivo was
much more difficult and required an elaborate dose finding study
(unpublished personal observation).

TARGETING THE ROCK PATHWAY BY MODULATION OF UPSTREAM
ACTIVATORS AND DOWNSTREAM TARGETS
As described in the previous section, a plethora of upstream acti-
vators and downstream effectors of ROCK are known. Therefore,
ROCK can also be regulated in an indirect manner. However,under
these circumstances, significant off-target effects have to be consid-
ered. An obvious possibility to disrupt ROCK inhibitory signaling
is provided by the use of the exoenzyme C3 transferase, which is
an ADP ribosyl transferase that selectively ribosylates RhoA, RhoB,
and RhoC proteins on asparagine residue 41, rendering them inac-
tive. It is available as a cell permeable recombinant protein and has
been successfully applied in regeneration models of the ON and
the spinal cord (Dergham et al., 2002; Bertrand et al., 2005; Lord-
Fontaine et al., 2008). Recently, this compound has been studied
in a human clinical trial of patients with acute spinal cord injury,
where its local application to the injury site in the first 7 days
after injury led to an improvement in the ASIA motor score after
1 year in patients with cervical spinal cord lesions. If the patients
encountered a thoracic spinal cord lesion the same treatment was
not effective most probably because this patient group very often
suffered from accompanying severe trauma to surrounding tissues
creating an environment that allows for more systemic absorp-
tion of the locally applied C3 transferase (Fehlings et al., 2011).
Looking even more upstream in the inhibitory cascade therapeu-
tic approaches blocking Nogo function are most advanced. The
Nogo-A extracellular peptide residues 1-40 (NEP1-40) can be used
to antagonize Nogo receptor signaling. Alternatively, Nogo recep-
tor fragments that bind Nogo-A or antibodies that block the Nogo
receptor are available (for an overview see Schwab, 2010). A mono-
clonal antibody directed against Nogo-A is currently under clinical
investigation in spinal cord injury patients (NCT00406016).

Closely related downstream targets of ROCK are LIM kinase
(LIMK) and cofilin. Apart from RNA interference approaches,
which can be applied to knock-down a target on the mRNA level,
pharmacological inhibitors of LIMK have recently been gener-
ated (Ross-Macdonald et al., 2008; Harrison et al., 2009). They
can effectively activate cofilin by lowering its phosphorylation and
thereby enable it to severe filamentous actin again (Scott et al.,
2010). However, their characterization is still incomplete and an
application in neuronal tissue has not been demonstrated so far.

EFFECTS OF ROCK INHIBITION
NEURITE GROWTH AND REGENERATION
Because ROCK is involved in the regulation of the cytoskeleton
through downstream regulation of actin, myosin, and associated
proteins, its effects on cellular functions such as motility and
changes of cellular shape have been intensively studied.

Rho-associated kinase inhibition was shown to enhance neu-
rite outgrowth in PC-12 or Ntera-2 cells in vitro (Zhang et al.,

2006; Lingor et al., 2007). The situation is more complex in pri-
mary neuronal cells, where the effect of ROCK inhibitor treatment
seems to depend on the age of the cultures: neurite outgrowth was
promoted best if the cultures were of embryonic or early postnatal
age (Lehmann et al., 1999; Borisoff et al., 2003; Monnier et al.,
2003). In contrast, adult retinal ganglion cells (RGC) grown on
CNS myelin required the addition of a growth promoting factor,
such as CNTF, or elevation of cAMP to promote neurite outgrowth
through ROCK inhibition (Ahmed et al., 2009). This supports the
hypothesis that the low intrinsic growth capacity of adult neurons
is an important limiting factor for neurite regeneration, which
cannot be overcome through regulation of the inhibitory cas-
cade alone. Although there seems to be an intrinsic cellular ROCK
activity that is present even if cells are cultured on a growth permis-
sive substrate (Lingor et al., 2008), ROCK activity is considerably
increased and outgrowth is inhibited when upstream activators
of the ROCK signaling pathway such as CNS myelin components
(e.g., Nogo-66, MAG, OMgp) are present (Alabed et al., 2006).

Along with their strong outgrowth promoting potential for
RGC in vitro, intravitreally applied Y-27632 and Dimethylfasudil
were shown to facilitate axon regeneration after ON crush in vivo
(Lingor et al., 2007, 2008). However, the therapeutic window in
both models was narrow and an attenuation of beneficial effects
occurred at higher concentrations. Although the lower K i value
for p160ROCK of more potent ROCK inhibitors like Dimethyl-
fasudil is preferred from a pharmacological point of view, the
probability to observe off-target effects on other kinases seems
to be higher, too (Davies et al., 2000). Consequently, treatment
with very high concentrations of Fasudil or high concentrations
of Dimethylfasudil resulted even in shorter neurite lengths in vitro.
In vivo, application of an intermediate concentration of Dimethyl-
fasudil was most effective for axonal regeneration (Lingor et al.,
2007).

If a peripheral nerve graft is transplanted onto the stump of
the CNS ON, a PNS environment can be created, which is semi-
permissive for regeneration. While a peripheral nerve does not
express Nogo-A, it still shows expression of other inhibitory mol-
ecules that can activate the ROCK signaling cascade (e.g., MAG,
Sema-III; Pasterkamp et al., 1998; Gupta et al., 2006). However,
in this regeneration paradigm treatment with Y-27632 failed to
significantly promote regeneration of ON axons. Although a com-
bination treatment with CNTF resulted in an improved regen-
erative effect, the overall outcome was limited (Lingor et al.,
2008). This may be due to an already robust basal regenerative
response in the peripheral environment. In a sciatic nerve crush
lesion model RhoA and its downstream target ROCK are activated
in corresponding motoneurons. Interestingly, here the systemic
application of Fasudil increased the regeneration of large diame-
ter axons that led to a significantly faster increase of amplitudes of
distally evoked compound muscle action potentials (Hiraga et al.,
2006). The expression of RhoA in adult dorsal root ganglia sensory
neurons rises dramatically after lesion. But it is even more impor-
tant, that activated GTP-bound RhoA, which is undetectable in
intact ganglia, is strongly upregulated in both DRG neurons and
axons after injury. Consequently, application of Fasudil promoted
axonal regeneration of transected DRG axons into the distal stump
ex vivo (Cheng et al., 2008).
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Crystallins have been shown to promote regeneration of retinal
ganglion cells in vivo and are likely to represent one of the medi-
ators of lens injury-induced regenerative response in the lesioned
ON (Fischer et al., 2008). Interestingly, application of α-crystallin
to the vitreous resulted in a decreased RhoA and ROCK activity,
and a reduction of p-cofilin and p-MLC, which was associated
with increased axonal regeneration in vivo. Thus, pro-regenerative
effects of crystallins may, at least partially, be attributed to the reg-
ulation of the RhoA/ROCK/cofilin pathway (Wang et al., 2011).
Because α-crystallin interacts with α6-integrin membrane recep-
tor complexes and alters their cellular signaling (Menko and And-
ley, 2010) a speculative link to RhoA consists in the prevention
of the GDP to GTP exchange of RhoA through integrin mem-
brane complex binding of guanine nucleotide exchange factors
(Wettschureck and Offermanns, 2002).

In the spinal cord lesion model a mutant Rho-binding/
pleckstrin homology protein was expressed in the rubrospinal
tract using a lentiviral vector that leads to an abolishment of the
Rho-binding activity of ROCK and thus functionally serves as
a dominant-negative mutant of ROCK. This resulted in a better
functional recovery of lesioned animals and in an increased axonal
sprouting of rubrospinal tract axons (Wu et al., 2009). Comparing
treatment effects of Fasudil, Y-27632, and C3 exoenzyme (a RhoA
inhibitor), Fasudil was most efficient in improving the locomotor
BBB score after moderate spinal cord injury at the T9/T10 region
(Sung et al., 2003). However, if Fasudil was not applied directly
after spinal cord lesion but only in a delayed treatment paradigm
4 weeks later it could not stimulate axonal sprouting or recover
hind limb function anymore (Nishio et al., 2006). This was most
probably due to the strong scarring activity after lesion that forms
a rigid obstacle at 4 weeks after lesion and cannot be surpassed by
axonal fibers even if they are disinhibited by Fasudil. As the trans-
plantation of bone marrow stromal cells (BMSC) has been shown
to promote functional recovery after spinal cord injury if trans-
planted into the lesion site, Fasudil was additionally applied in
order to augment the BMSC effects on regeneration. Here, BMSC
co-treatment with Fasudil significantly increased the number of
sprouting spinal cord axons but was not able to improve the thera-
peutic effects of BMSC alone on locomotor function (Chiba et al.,
2010). In a similar study on spinal cord injury assessing open field
locomotor activity both Fasudil and BMSC treatment alone were
not able to improve the outcome compared with sham treated
control animals. However, the combination treatment showed a
significantly enhanced locomotion at 8 and 9 weeks after lesion
(Furuya et al., 2009).

Optimal ROCK inhibitor dosage is also important in spinal
cord lesion models. Comparing two different dosages of intrathe-
cally applied Y-27632 in a cervical 4/5 dorsal column transection
model only the high dose of Y-27632 was able to stimulate sprout-
ing of the dorsal ascending axons whereas low dose-treated animals
did not benefit from treatment. The low dose-treated group even
suffered from deficits in a functional footprint analysis in com-
parison to controls and showed less corticospinal tract axonal
sprouting (Chan et al., 2005). One possible reason for this could
be that the low dosage did not provide enough outgrowth disin-
hibition to overcome the inhibitory milieu or perhaps did not
even reach the site of the growing axonal cones. Additionally,

a relatively higher local concentration close to the scar could
have elicited disproportionate undesirable effects of scar tissue
including astroglia.

In view of all these data on neurite outgrowth and axonal regen-
eration it becomes obvious that the regenerative effect in vitro is
usually more pronounced than in vivo. This can be due to the fact
that frequently only one substrate is used to inhibit neurite regen-
eration of cultured neuronal cells in vitro. Even if preparations of
whole CNS myelin are applied its integrity is disrupted and a tight
physical contact is not maintained. The abundance of CNS myelin
components, extracellular matrix scar tissue, and infiltration of
inflammatory cells in combination with enhanced mechanical
repression due to reactive edematous swelling and physical dis-
placement of axonal tracts as seen in acute trauma models is only
present in animal models in vivo (Sandvig et al., 2004; Yiu and He,
2006; Busch and Silver, 2007). As a consequence, many encourag-
ing findings in vitro have not been successfully transferred to the
in vivo setting. Therefore it is clear that ROCK inhibition by itself
will not be sufficient to target all pathophysiological obstacles in
regenerative approaches and thus will have to be complemented
by combination treatments.

CELL SURVIVAL
The role of ROCK in cell death and survival has been addressed
only recently as several ROCK substrates have been shown to be
involved in the regulation of these processes (for review see Shi
and Wei, 2007).

ROCK inhibition by Y-27632, HA-1077, HA-1004, and H-8
strongly promotes survival in Ntera-2 cells, a pluripotent human
embryonic carcinoma cell line (Barbaric et al., 2011) and appli-
cation of Dimethylfasudil leads to protection from apoptotic cell
death in serum-deprived organotypic retinal cell cultures (Tura
et al., 2009). Purkinje cell survival in organotypic cultures of
mouse cerebella can be increased by both Dimethylfasudil and
Y-27632 (Julien et al., 2008). In addition to improved cell sur-
vival of oxygen–glucose deprived PC-12 cells Fasudil applica-
tion also triggered neurogenesis in the subventricular zone in a
hypoxia/reoxygenation injury model (Yamashita et al., 2007; Ding
et al., 2010b). We have evaluated the effects of ROCK inhibition on
RGC. In a paradigm of primary RGC cell death in vitro, the appli-
cation of Y-27632 is able to robustly increase survival and neurite
outgrowth. These effects can be additively increased by the com-
bination treatment with CNTF or, regarding cell survival, through
co-treatment with the CDK5-inhibitor Indolinone A (Lingor et al.,
2008; Bermel et al., 2009).

Other intracellular signaling cascades employed by ROCK in
survival signaling have been described only recently. An important
finding came from dissociated prostate stem cells, which undergo
apoptosis upon dissociation lacking extracellular matrix contact.
This has been shown to be associated with RhoA/ROCK activa-
tion, increased PTEN, and reduced Akt activities. Treatment with
Y-27632 reduced PTEN activation and improved stem cell survival,
even though PTEN activity alone was not sufficient to mediate cell
death in this paradigm (Zhang et al., 2011). The distinguished role
of PTEN for neuronal cell survival was underlined in studies where
a conditional deletion of PTEN or Tsc1 was used to increase mTOR
activity in RGC after ON lesion (Park et al., 2008). This resulted
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in a strong increase of surviving RGC and at the same time was
associated with an enhanced regenerative response of ON axons.

Apart from the experimental evidence linking inhibition of
ROCK and cell survival, there are complementary findings that
demonstrate increased apoptosis upon ROCK activation. For
example, increased phosphorylation of the ROCK effector MLC
and actomyosin contraction in apoptotic cells regulate apoptotic
membrane blebbing (Mills et al., 1998). ROCK may also pro-
mote apoptosis through increased ezrin phosphorylation that
leads to activation and clustering of Fas, a component of the
receptor-associated death-inducing signaling complex (Piazzolla
et al., 2005). This signaling cascade can be inhibited by treatment
with Y-27632 as shown in Jurkat cells (Hebert et al., 2008).

SIMULTANEOUS MODULATION OF NEURITE OUTGROWTH AND CELL
SURVIVAL – PROS AND CONS
Whereas the blocking of ROCK as a central target in neurite out-
growth inhibitory signaling is a rather straightforward approach, a
similarly powerful handle is more difficult to find in regard of cell
survival regulation. As described before, cell survival responses
after ROCK inhibition are most probably indirectly mediated
and have been shown to involve MAPK and Akt signaling path-
ways (Lingor et al., 2008). However, there has been no study in
neuronal cells so far which has identified such an intermediate
signaling partner. The lack of knowledge concerning these inter-
mediate signaling partners in cell protective signaling renders the
precalculation of combinatorial treatments a difficult task. In the
case of the co-application of Y-27632 and CNTF in the ON crush
lesion paradigm, we noted a differential impact of CNTF and
Y-27632 on mitogen-activated protein kinase (MAPK), Akt and
signal transducer and activator of transcription 3 (STAT3). The
MAPK pathway was activated in an additive manner by both com-
pounds. To a lesser extent this held true also for the Akt-pathway
as demonstrated by Akt phosphorylation. However, the applica-
tion of Y-27632 markedly reduced the CNTF-evoked activation of
STAT3. Thus, inhibition of ROCK in RGC attenuates some of the
CNTF-mediated effects (via STAT3) while the MAPK- and Akt-
pathway are triggered in an additive manner. These data suggest
that the opposing actions of CNTF and Y-27632 on the phospho-
rylation of STAT3 could be responsible for the lack of an additive
effect on RGC survival in the corresponding ON axotomy model
in vivo (Lingor et al., 2008). Also, axonal regeneration after ON
crush was less pronounced than expected in this combinatorial
treatment paradigm. Here, the attenuation of STAT3 activation
caused by ROCK inhibition could be responsible because STAT3
signaling has been associated with axon regeneration in RGC
(Kretz et al., 2005) and other neuronal cells in the CNS and PNS
(Qiu et al., 2005; Bareyre et al., 2011). In view of these data on
axonal regeneration and cell survival it is important to point out,
that it would be highly preferable to modulate both parameters by
targeting only one substrate. In the case of combination therapies,
however, the selection of a suitable combination partner has to be
done carefully.

ROCK INHIBITION IN GLIAL AND INFLAMMATORY CELLS IN THE CNS
After systemic application of pharmacological substances a cell
specific targeting is less predictable. Thus, inhibition of ROCK will

likely also modulate glial and inflammatory cell responses which
in turn may affect the regenerative and cell survival response.

Concerning glial cells, it has been shown that Fasudil upreg-
ulates glutamate transport via EAAT1/2 subsequent to actin
remodeling in murine cultured astrocytes (Lau et al., 2011a) and
Dimethylfasudil reduced reactive astrocytic gliosis in the rodent
retina after ON crush (Tura et al., 2009). Furthermore, a tran-
scriptomic profiling of astrocytes treated with Fasudil did not
only reveal an upregulation of genes involved in cellular shape
and motility but also of genes involved in cell survival such as
BDNF (Lau et al., 2011b). Enhanced neurogenesis in the sub-
ventricular zone upon treatment with Fasudil was attributed to
an increased production of granulocyte colony-stimulating factor
(G-CSF) from astrocytes (Ding et al., 2010b). Microglial inflam-
matory responses seem to be suppressed by ROCK inhibition as
has been shown in various experimental paradigms. The injection
of lysophosphatidylcholine (LPC), a major phospholipid com-
ponent of the atherogenic oxidized LDL, is known to increase
astrocyte and microglia accumulation in neuronal tissue and also
elevates iNOS expression. If Fasudil is systemically applied, it is
able to attenuate these LPC induced responses in the rat stria-
tum and also protects from neuronal cell loss (Sheikh et al.,
2009). In addition, Fasudil protection of hippocampal neurons
against hypoxia–reoxygenation injury was shown to be mainly due
to the suppression of microglial inflammatory responses (Ding
et al., 2010a). However, if C3 transferase is used to inactivate Rho
GTPases being upstream of ROCK, this causes a transformation
of microglial cells rather toward an activated phenotype in culture
and triggers the release of nitric oxide and various proinflamma-
tory cyto- and chemokines – an effect that is not observed with
the ROCK inhibitors Y-27632 or Fasudil (Hoffmann et al., 2008).

The role of ROCK inhibition has also been studied in clas-
sical animal models of inflammatory CNS disease. For example,
both a parenteral and an oral administration of Fasudil prevented
the development of experimental autoimmune encephalomyelitis
(EAE) in mice. Together with a down-regulation of interleukin-
17 and a decrease in the interferon-gamma/interleukin-4 ratio
Fasudil significantly reduced the specific proliferation of lympho-
cytes. Overall, the infiltration of inflammatory cells was markedly
decreased and acute axonal transections were attenuated as shown
by immunohistochemical analysis (Sun et al., 2006). The Fasudil-
mediated attenuation of EAE development was confirmed in a
more recent study using a different induction model of the disease.
Here, the T-cell proliferation was markedly reduced in addition to
a down-regulation of interleukin-17 (Yu et al., 2010). This could
be due to a decreased phosphorylation of interferon regulatory
factor 4 (IRF4) which is known to regulate the synthesis of IL-
17 and IL-21 and implicates ROCK in the development of other
autoimmune diseases like rheumatoid arthritis and systemic lupus
erythematosus (Biswas et al., 2010). Hints for a possible influ-
ence of ROCK on T-cell migration comes from a recent study in
which microtubules were disrupted with nocodazole preventing
the formation of lamellipodia. As a consequence the migratory
behavior is reduced because cells can migrate only by membrane
blebbing. It was found that the nocodazole-induced microtubule
depolymerization was associated with a stimulation of RhoA
activity and that the resulting defect in cell migration could be
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rescued by ROCK inhibition with Y-27632 leading to an increased
microtubule stability (Takesono et al., 2010).

THERAPEUTIC STRATEGIES USING ROCK INHIBITION
From a therapeutic point of view, the experimental use of small
molecule inhibitors of ROCK is well established. Many experi-
mental studies in animals focus on their vasodilator effect in the
vascular system which results from the inhibition of ROCK in vas-
cular smooth cells. As one example, ROCK inhibition is able to
increase cerebral blood flow via endothelial mechanisms and is
protective in stroke (Rikitake et al., 2005; Shin et al., 2007). How-
ever, ROCK inhibition also ameliorates post myocardial infarct
heart failure by suppressing left ventricular remodeling (Hattori
et al., 2004), reduces cardiac hypertrophy in apolipoprotein E defi-
cient mice (Wang et al., 2005a), improves monocrotaline-induced
fatal pulmonary hypertension in rats (Abe et al., 2004), and is
preventive for ischemia/reperfusion-induced acute renal failure
(Teraishi et al., 2004). In regard to neuroprotection, Y-27632 has
been applied to animal models of Huntington’s disease and spinal
muscular atrophy where it improved rotarod performance and
prolonged survival, respectively (Li et al., 2009; Bowerman et al.,
2010). Recently, ROCK inhibitors were also tested in preclinical
models of neuropathic and nociceptive pain (Boyce-Rustay et al.,
2010), spinal cord lesion (Furuya et al., 2009), sexual dysfunction
(Li et al., 2011), and multiple sclerosis (Sun et al., 2006), all with
encouraging results in regard of disease modulation.

Because of these strong preclinical data ROCK inhibition has
already been tested in human studies almost exclusively using
Fasudil. Taking advantage of the strong vasodilator effect it was
possible to successfully suppress both coronary artery vasospasm
and cerebral vasospasm that often appears after aneurysmal sub-
arachnoid hemorrhage (SAH; Masumoto et al., 2002; Zhao et al.,
2006). Furthermore, Fasudil significantly improved the patient’s
clinical outcome if applied in the first 48 h after acute ischemic
stroke (Shibuya et al., 2005). Overall, Fasudil showed a safe clin-
ical profile without the occurrence of serious adverse effects and
has been approved for the treatment of cerebral vasospasm after
SAH in Japan (Suzuki et al., 2008; Iwabuchi et al., 2011). Cur-
rently, a phase II clinical trial is ongoing that evaluates the effect
of ROCK inhibition with Fasudil for the prevention of carotid
stenosis (NCT00670202). Other clinical phase I/II trials investigate
the treatment of glaucoma (NCT00846989) or spinal cord injury
(NCT00500812). An already terminated phase I clinical study for
glaucoma treatment with SNJ-1656 confirmed the Japanese safety
data obtained for SAH, did not show any systemic adverse effects
and reported only minor side effects in a 7-day repeated instillation
trial (Tanihara et al., 2008). However, it has to be considered that

systemic adverse or off-target effects after ocular application are
less likely to occur because the substance remains rather in a con-
fined local compartment and does not reach comparable systemic
concentrations.

The use of isoform specific targeting with siRNA as a ther-
apeutic tool is still limited because of the difficult delivery and
only moderate stability of the molecules in a therapeutic setting
in vivo. Therefore, the development of small molecule inhibitors
for isoform specific inhibition of ROCK is greatly awaited. As
one example, SLx-2119 represents one of the first isoform specific
pharmacological inhibitors of ROCK targeting selectively ROCK2
(Schueller et al., 2006).

SUMMARY AND CONCLUSION
Rho-associated kinase signaling is a major obstacle for successful
regeneration in the CNS. Once this deleterious cascade is acti-
vated after acute traumatic lesion or in chronic neurodegenerative
diseases the outcome of axonal outgrowth/regeneration and of
cellular survival is limited. However, if pathological ROCK acti-
vation can be effectively prevented, neurological sequelae may be
mitigated, too. Whereas the regeneration disinhibiting potential
of ROCK inhibition is well known and has been experimentally
characterized in detail, cell protective responses have emerged as
a new focus. After first successful applications of ROCK inhibi-
tion in cell death paradigms in culture models in vitro it has
later successfully been transferred to neurologic disease models
such as ON lesion and spinal cord trauma but also to neurode-
generative diseases models like Huntington’s disease and spinal
muscular atrophy. Now, first hints on the underlying neuropro-
tective mechanisms emerge. Some of these seem to be linked to
the modulation of the recently discovered ROCK targets involving
PTEN/Akt or Tsc1/2 but may also be associated with modulatory
effects on glial and inflammatory cells in the CNS. The develop-
ment of new pharmacological inhibitors with enhanced specificity
and less off-target effects, improved bioavailability and compound
stability in addition to selective targeting of ROCK isoforms now
enables us to better counteract deregulated ROCK. Due to the
good clinical safety profile of Fasudil in humans, this compound
is currently under investigation in various clinical trials that focus
on the compromised cardiovascular system. However, based on the
many promising findings in CNS disease models, it has potential
to also enter this area of clinical research.
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