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signaling pathways. With the highest probability, the VEGF 
signaling pathway (TAGL2, EF1D, and ACTB) and hypoxia 
(CAH1, PSB6, and ACTG) were influenced by MMF in fibrotic 
conditions. Moreover, MMF may modulate antifibrotic and 
apoptotic pathways as well as epithelial-mesenchymal tran-
sition (EMT). Different signaling pathways may be influenced 
by MMF therapy. These results suggest an inhibitory effect of 
MMF on renal EMT in COL4A3-deficient mice. Further studies 
are necessary to validate these findings. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 The process of chronic renal diseases is typically ac-
companied by progressive renal fibrosis, and the inhibi-
tion of fibrogenesis appears to be an attractive therapeu-
tic target. Recently, the antifibrotic role of mycophenolic 
acid (MPA) was shown in different studies  [1–3] . Myco-
phenolate mofetil (MMF) as a prodrug of MPA is one of 
the most frequently used immunosuppressive drugs for 
the prophylaxis of allograft rejection after renal, car-
diac, or liver transplant. It is known that MPA is a po-
tent, selective, noncompetitive, and reversible inhibitor 
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 Abstract 

  Aim:  The aim of this study was to investigate the effect
of mycophenolate mofetil (MMF) using differential kidney 
proteome profiling of COL4A3-deficient mice as a model of 
progressive renal disease.  Methods:  Histological evalua-
tion of kidney sections was performed. Total protein lysate 
from kidneys of placebo- and MMF-treated COL4A3-defi-
cient mice was studied for significant differences in protein 
abundance using 2-dimensional electrophoresis and mass 
spectrometry.  Results:  While tubulointerstitial fibrosis in
COL4A3-deficient mice was inhibited by MMF, 19 proteins
in the kidneys were regulated: 12 with lower (ATPO, TAGL2, 
CAH1, TPD52, VA0D1, SERPH, GNAL, PSB6, EF1D, OTUB1, 
NDUS8, and NAPSA) and 7 with higher (ACADM, ACY3, CK054, 
ACTB/G, ACTB, UBP5, and ACY1) spot intensity. Nine differen-
tially expressed proteins showed interaction potential (ATPO, 
TPD52, PSB6, EF1D, OTUB1, NAPSA, ACTB, ACTG, and UBP5). 
 Conclusions:  The identified proteins take part in different 
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of inosine-5 � -monophosphate dehydrogenase (IMPDH). 
Depleting guanosine and deoxyguanosine nucleotides 
inhibit the proliferation of T and B lymphocytes and, 
hence, immunoglobin production  [4] .

  Epithelial-mesenchymal transition (EMT) is typical of 
embryonic cells (type 1), epithelial cells (type 2), or cells 
which are associated with cancer progression and metas-
tasis (type 3)  [5–9] . One recent study using renal proximal 
tubular epithelial cells demonstrated that MMF displays 
an inhibitory effect on EMT; moreover, it suggested less 
fibrosis and better long-term allograft survival under 
commonly used immunosuppressive regimens in renal 
transplantation  [10] . Mechanisms for the inhibition of 
type 2 EMT upon MMF treatment, however, remain elu-
sive.

  COL4A3-deficient mice are a nonhypertensive animal 
model of progressive renal fibrosis. So far, this animal 
model has been used to study the pathobiology of human 
Alport syndrome. This syndrome is caused by mutations 
in type IV collagen genes (COL4), leading to an abnormal 
composition of the glomerular basement membrane and 
consequently to renal fibrosis  [11] . In our recently pub-
lished study, improved kidney function could be demon-
strated for MMF-treated COL4A3-deficient mice  [12] . In 
contrast to this observation, overall survival was not af-
fected by MMF as compared to placebo treatment. To find 
an explanation for these contradictory findings, we de-
signed a differential proteome profiling study using total 
protein extract from kidneys of MMF- and placebo-treat-
ed COL4A3-deficient mice following the hypothesis that 
MMF may influence type 2 EMT.

  The main aim of this study was to identify differen-
tially expressed proteins and their interacting partners in 
functional networks, as well as to predict signaling path-
ways involved in the pathological/therapeutic process 
within the context of MMF therapy in a murine model of 
renal fibrosis.

  Methods 

 COL4A3-Deficient Mice 
 The COL4A3 gene locus is linked to an autosomal recessive 

form of human Alport syndrome. In this study COL4A3-defi-
cient mice were used as a model of progressive renal disease (Jack-
son Laboratory, Bar Harbor, Me., USA). Animals were randomly 
allocated to a placebo or to 1 of 4 groups of MMF treatment (10, 
50, 100, and 150 mg/kg/day). All animals received MMF or an 
equivalent amount of vehicle until somnolence was observed, as 
described previously  [12] .

  Histological and Immunohistochemical Staining 
 Kidney paraffin-embedded sections were prepared from 1 

representative mouse for each group as described previously for 
the assessment of glomerular damage  [12] . Histological evalua-
tion by light microscopy was performed after staining with hema-
toxylin and eosin. According to intertubular distance and tubular 
atrophy, tubulointerstitial fibrosis was scored semiquantitatively 
by 2 observers blinded to the groups. In accordance with Banff 
criteria  [13]  a score from 0 to 3+ was assigned in 130 areas as fol-
lows: 0, no tubulointerstitial changes; 1+,  ! 25%; 2+, 25–50%, and 
3+,  1 50%.

  For immunohistochemical staining, 5- � m paraffin-embed-
ded sections were prepared for 1 representative placebo- and 1 
MMF-treated animal (150 mg/kg/day). After the washing steps 
with phosphate buffered saline (PBS; PAA Laboratories GmbH, 
Pasching, Austria) and blockage with bovine serum albumin 
(BSA; 5% w/v in PBS) the sections were incubated overnight with 
primary antibody (rabbit anti-EHS-laminin, a gift from M. Pauls-
son, Cologne, Germany). Subsequently, the slides were incubated 
with the secondary antibody labeled with Cy3 fluorescent dye 
(goat anti-rabbit IgG; Jackson ImmunoReagents). A score from 0 
to 3+ was assigned in at least 350 areas independently by 2 observ-
ers blinded to the groups.

  Two-Dimensional Electrophoresis 
 The kidneys from 5 placebo- and 5 MMF-treated mice (150 mg 

MMF/kg/day) were snap frozen in liquid nitrogen immediately 
after preparation of the animal and stored at –80   °   C until protein 
isolation. Halves from sagittal kidney sections were washed with 
cold PBS, and total protein was isolated from the samples by ho-
mogenization (Polytron �  PT 3100; Kinematica AG, Kriens, Swit-
zerland) and sonication (Branson Sonifier 250; Branson, USA) in 
1 ml total cell lysis buffer [7 mol/l urea, 2 mol/l thiourea (Sigma-
Aldrich Chemie GmbH, Steinheim, Germany), 4% (w/v) CHAPS 
(AppliChem GmbH, Darmstadt, Germany), 2% ampholytes (Bio-
Lyte �  3/10; Bio-Rad, Munich, Germany), 1% (w/v) DL-dithioth-
reitol, and 10 mmol/l phenylmethylsulfonyl fluoride (Sigma-Al-
drich Chemie)]. Protein concentrations were determined accord-
ing to the Bradford method  [14]  using a Bio-Rad protein assay kit 
(Bio-Rad) with BSA as the standard (2 mg/ml Albumin Standard; 
Perbio Science Deutschland GmbH, Bonn, Germany).

  Two-dimensional electrophoresis (2-DE) gels with each 125-
 � g protein/immobilized pH gradient (IPG) strip were produced 
according to the protocol of Gorg et al.  [15] . Briefly, 17-cm IPG 
strips with a nonlinear pH range of 3–10 (ReadyStrip TM ; Bio-Rad) 
were passively rehydrated with the samples and consequently the 
proteins were focused in a Protein IEF Cell (Bio-Rad). The strips 
were loaded onto a vertical 12.5% polyacrylamide gel for separa-
tion by molecular weight. After protein fixation and washing 
steps, the gels were stained according to the modified silver stain-
ing method of Blum et al.  [16] . The silver-stained gels were scanned 
and the spot intensity evaluated as a percentage of the total inten-
sity in the gel.

  Protein Identification 
 The protein spots of interest were excised. Tryptic digestion 

and peptide sequence analysis by mass spectrometry were per-
formed as published elsewhere  [17] . Briefly, in-gel digestion was 
carried out according to a modified protocol of Shevchenko et al. 
 [18] . After excision, the target protein spots were destained with 
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potassium ferricyanide and sodium thiosulphate (Merck KGaA, 
Darmstadt, Germany). The proteins/peptides were then digested 
with trypsin (Sigma-Aldrich Chemie). The gel slices were equili-
brated with ammonium bicarbonate (Sigma-Aldrich Chemie) fol-
lowed by incubation with acetonitrile (J.T. Baker, Deventer, The 
Netherlands). The peptides were extracted using triflouroacetic 
acid (Sigma-Aldrich Chemie) and acetonitrile. The solution with 
digested protein/peptide was dried in a speed vacuum system 
(UniEquip GmbH, Munich, Germany) and stored at –20   °   C until 
further analysis. Every sample was diluted in 0.1% formic acid 
(BASF, Ludwigshafen, Germany), and 1  � l was loaded for chro-
matographic separation on a CapLC-System (Waters, Milford, 
Mass., USA). Peptide sequence analysis was done on a Q-TOF Ul-
tima Global mass spectrometer (Micromass, Manchester, UK) 
equipped with a nanoflow ESI Z-spray source in positive ion 
mode. Obtained data were processed and searched against MSDB 
and Swiss-Prot data bases through the Mascot search engine with 
oxidation (M) and carbamidomethyl (C) modification.

  Software and Statistics 
 The densitometric quantification of spot intensity was done 

using the Delta2D software tool, version 3.4, 2006 (DECODON 
GmbH, Greifswald, Germany)  [19] . A Mann-Whitney U test was 
performed using PASW Statistics 18 software for statistical evalu-
ation (SPSS, Inc., Chicago, Ill., USA) to evaluate the differences in 
protein amount between the groups. p  !  0.05 was considered sta-

tistically significant. The data obtained from mass spectrometry 
were processed using MassLynx, version 4.0 (Micromass). The 
Molecular INTeraction database (MINT; http://mint.bio.uniro-
ma2.it/mint/Welcome.do) was used to analyze protein relation-
ships and to predict functional networks  [20] .

  Results 

 Tubulointerstitial Fibrosis 
 Observers, blinded to the treatment groups of 

COL4A3-deficient mice, examined tubular atrophy and 
intertubular distance after staining with hematoxylin 
and eosin and assigned a score from 0 to 3+ ( fig. 1 c). Tu-
bulointerstitial fibrosis was inhibited by MMF.

  The immunohistochemical staining of EHS-laminin 
is directed mainly to laminin 1 in the extracellular ma-
trix. The evaluation of tubulointerstitial fibrosis con-
firmed inhibition by MMF in treated COL4A3-deficient 
mice ( fig. 2 c). All sections also showed intra- and periglo-
merular laminin deposition indicative of the expected 
glomerular damage.
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  Fig. 1.  Tubulointerstitial fibrosis in
COL4A3-deficient mice was inhibited
by MMF according to hematoxylin/eosin 
staining.   Actual microphotograph of the 
histological findings of untreated (0 mg/
kg/day;  a ) versus MMF-treated (150 mg/
kg/day;  b ) kidney. Magnification  ! 10.
 c  Score from 0 to 3+ of the tubular com-
partment (0, no tubulointerstitial changes; 
1+,  ! 25%; 2+, 25–50%, and 3+,  1 50%) in 
130 representative kidney areas of 1 pla-
cebo (0 mg/kg/day) and 1 mouse per group 
(10, 50, 100, and 150 mg/kg/day). 
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  Two-Dimensional Electrophoresis 
 Ten images of silver-stained 2-DE gels were evaluated 

with the software Delta2D, and spots of interest were sub-
jected to in-gel digestion and mass spectrometry ( fig. 3 ). 
The analysis revealed 17 proteins with significant chang-
es in relative intensity (p  !  0.05, Mann-Whitney U test; 
 fig.  4 ) between placebo- and MMF-treated mice (150 
mg/kg/day), while differences for 2 protein spots nar-
rowly missed significance. All 19 proteins were suc-
cessfully identified by mass spectrometry with more 
than 2 peptides (online supplementary table S1, www.
karger.com/doi/10.1159/000324597).

  Twelve proteins out of 19 spots displayed significant-
ly less intense staining after treatment with MMF of 
COL4A3-deficient mice: ATP synthase subunit O, mito-
chondrial (ATPO), transgelin-2 (TAGL2), carbonic anhy-
drase 1 (CAH1), tumor protein D52 (TPD52), V-type pro-
ton ATPase subunit d 1 (VA0D1), serpin H1 (SERPH), 
guanine nucleotide-binding protein G(olf) subunit alpha 
(GNAL), proteasome subunit beta type 6 (PSB6), elonga-
tion factor 1-delta (EF1D), ubiquitin thioesterase OTUB1 
(OTUB1), NADH dehydrogenase (ubiquinone) iron-sul-
fur protein 8, mitochondrial (NDUS8), and napsin-A 
(NAPSA).

  The spot intensity of 7 proteins was higher after MMF 
treatment; these included medium-chain specific acyl-
CoA dehydrogenase, mitochondrial (ACADM), asparto-
acylase-2 (ACY3), ester hydrolase C11orf54 homolog 
(CK054), actin, cytoplasmic 1 and/or actin, cytoplasmic 

2 (ACTB/G), actin, cytoplasmic 1 (ACTB), ubiquitin car-
boxyl-terminal hydrolase 5 (UBP5), and aminoacylase-1 
(ACY1). As indicated above, the differences for ACY1 and 
ACTB/G were not significant according to the Mann-
Whitney U test. An over 2-fold change in spot intensity 

100 kDa

75 kDa

50 kDa

37 kDa

25 kDa

20 kDa

pH 3–10UBP5

ACTB/G

ACTB

ACY1
GNAL

VA0D1
EF1D

OTUB1

NAPSA

ACY3

CKO54

TPD52

PSB6
NDUS8

ACADM

SERPH

CAH1

TAGL2

ATPO

a b

3+

2+

1+

0

0

20

40

60

80

100

0 150
MMF dose (mg/kg/day)

Tu
bu

lo
in

te
rs

tit
ia

l f
ib

ro
si

s
sc

or
e 

(%
)

c

  Fig. 2.  Tubulointerstitial fibrosis in COL4A3-deficient mice was 
inhibited by MMF according to immunostaining of EHS-lam-
inin. Actual microphotograph of the histological findings of un-
treated (0 mg/kg/day;  a ) versus MMF-treated (150 mg/kg/day;  b ) 

kidney. Magnification  ! 40.  c  Score from 0 to 3+ (0, no tubuloin-
terstitial changes; 1+,  ! 25%; 2+, 25–50%, and 3+,  1 50%) in 350 
representative kidney areas of 1 placebo- (0 mg/kg/day) and 1 
MMF-treated mouse (150 mg/kg/day). 

  Fig. 3.  Representative area of a 2-dimensional gel after silver-
staining using total protein extract from the kidney of a COL4A3-
deficient mouse. Protein spots with a difference upon MMF treat-
ment are in black if upregulated and in grey if downregulated.             
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was shown in 75% of the downregulated proteins under 
MMF treatment (PSB6, VA0D1, GNAL, CAH1, TPD52, 
EF1D, SERPH, TAGL2, and ATPO) ( fig. 4 ). Overall, the 
proteins showed good agreement between the observed 
and calculated values regarding molecular weight as well 
as their isoelectric point ( table 1 ).

  In order to find the interconnectivity of the proteins, 
we performed a data analysis using the MINT software 
tool and found, as expected, 9 out of 19 proteins to be pre-
dicted interacting partners: ATPO, TPD52, PSB6, EF1D, 
OTUB1, NAPSA, ACTB, ACTG, and UBP5 ( fig. 5 ).

  Discussion 

 We investigated the effect of MMF on histological, im-
munohistological, and proteome levels in kidneys from 
COL4A3-deficient mice as a model of progressive renal 
disease. Since sections from COL4A3-deficient mice 
treated with MMF revealed an attenuated peritubular 
and particularly interstitial deposition of EHS-laminin, 
and tubulointerstitial fibrosis was inhibited upon MMF 
( fig. 1 ,  2 ), we suggested that this may be indicative of a 
preserved nephron function. This is in line with a study 
showing reduced interstitial fibrosis and ameliorated 
EMT in a rat model of adenine-induced chronic renal 
failure  [21] . Presuming that MMF influences EMT, we 
undertook differential proteome profiling using total 
protein extract from the kidneys of MMF- and placebo-
treated COL4A3-deficient mice.
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  Fig. 4.  Spot intensity in kidney total protein extract from 
COL4A3-deficient mice treated with MMF (n = 5; black bars) 
compared to the placebo group (n = 5; grey bars). Proteins with 
significant differences in protein amount are asterisked (p          !  0.05, 
Mann-Whitney U test). The mean ratio of MMF/placebo mice is 
given parentheses.   
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  Fig. 5.  Network of interacting proteins using the MINT database. 
Proteins with a higher or lower concentration in MMF-treated 
COL4A3-deficient mice are in black or grey, respectively. The 
small circles are proteins which connect the proteins we have 
identified in our study. The lines illustrate the links between all 
of the proteins in one network.             
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Table 1.  Isoelectric point, molecular weight, and function of regulated proteins in kidney proteome of COL4A3-deficient mice after 
MMF treatment

Protein name Spot
label

pI
obs./calc.

MW (kDa)
obs./calc.

Function

>25% downregulated proteins under MMF
ATP synthase subunit O, 
mitochondrial

ATPO 9.75/10.0 24/23.349 Mitochondrial membrane ATP synthase

Transgelin-2 TAGL2 8.5/8.39 20/22.381 Homolog of the protein transgelin, one of the 
earliest markers of differentiated smooth
muscle

Carbonic anhydrase 1 CAH1 7.0/6.44 26/28.303 Metalloenzyme catalyzing the rapid conversion 
of carbon dioxide to bicarbonate and protons

Tumor protein D52 TPD52 3.5/4.69 25/24.298 Regulator of membrane trafficking events 
within exocytic pathways

V-type proton ATPase subunit d 1 VA0D1 3.5/4.89 36/40.275 Component of vacuolar ATPase mediating 
acidification necessary for intracellular
processes

Serpin H1 SERPH 9.0/8.9 45/46.560 Cell proliferation-inducing and
collagen-binding heat shock protein

Guanine nucleotide-binding protein 
G(olf) subunit alpha

GNAL 4.25/6.23 40/44.280 Modulator/transducer in transmembrane
signaling systems

Proteasome subunit beta type-6 PSB6 4.0/4.97 24/25.362 Subunit of a multicatalytic proteinase complex 
cleaving peptide bonds with very broad
specificity

Elongation factor 1-delta EF1D 4.0/4.91 30/31.274 Subunit of complex responsible for the
enzymatic delivery of aminoacyl tRNAs to
the ribosome

Ubiquitin thioesterase OTUB1 OTUB1 3.5/4.85 30/31.250 High specific ubiquitin isopeptidase cleaving 
ubiquitin from branched polyubiquitin chains 

NADH dehydrogenase 
(ubiquinone) iron-sulfur 
protein 8, mitochondrial

NDUS8 4.25/5.86 24/24.023 Mitochondrial membrane enzyme catalyzing 
the transfer of electrons from NADH to
coenzyme Q

Napsin-A NAPSA 5.0/7.14 36/45.516 Aspartic proteinase from the endopeptidase 
class

>25% upregulated proteins under MMF
Medium-chain specific 
acyl-CoA dehydrogenase, 
mitochondrial

ACADM 8.0/8.6 42/46.452 Flavoenzyme involved in fatty acid and 
branched-chain amino acid metabolism

Aspartoacylase-2 ACY3 4.5/5.3 30/35.264 Protein important in deacetylating
mercapturic acids in kidney proximal tubules

Ester hydrolase C11orf54 
homolog

CK054 5.75/5.86 35/34.973 Zinc ion binding hydrolase acting on ester 
bonds in the nucleus

Actin, cytoplasmic 1 and/or 
actin, cytoplasmic 2

ACTB and/
or ACTG

4.5/5.29 and/
or 5.31

42/41.710 and/
or 41.766

Conserved proteins of the contractile
apparatus and cytoskeleton, mediators of
internal cell motility

Actin, cytoplasmic 1 ACTB 5.5/5.29 42/41.710 See above
Ubiquitin carboxyl-terminal 
hydrolase 5

UBP5 4.0/4.89 100/95.772 Protein involved in the processing of
polyubiquitin precursors and ubiquinated
proteins

Aminoacylase-1 ACY1 5.75/5.89 42/45.752 Zinc ion binding peptidase in amino acid
metabolic process/proteolysis

pI = Isoelectric point; obs. = observed; calc. = calculated.
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  The protein profile was obtained from whole kidney 
extracts and supported robust changes in tubular cells, 
mesangial cells, and glomerular structures, among oth-
ers. Since approximately 90% of the kidney’s volume is 
tubulointerstitial space  [22]  and only the fibrosis in the 
tubulointerstitial ( fig. 1 ), and not in the glomerular  [12] , 
compartment was inhibited by MMF, the regulated pro-
teins reflected changes predominantly in that space. To 
find the interconnectivity of the proteins, we performed 
a data analysis using the MINT software tool and found 
ATPO, TPD52, PSB6, EF1D, OTUB1, NAPSA, ACTB, 
ACTG, and UBP5 to be predicted interacting partners 
( fig. 5 ). Since this database is broader for human data, we 
provided accession numbers for human proteins, respec-
tively, to analyze the relationship between the identified 
proteins using the MINT database. However, it should be 
noted that expression and regulation of these proteins 
can be very different between mice and humans in a nor-
mal or disease state.

  The identified proteins take part in different signaling 
pathways supporting a complex picture of EMT events 
modulated through small GTPases, p53, phosphoinosi-
tide 3-kinases (PI3Ks), mitogen-activated protein kinases 
(MAPKs), and other molecules presented by Kalluri and 
Neilson  [5] , as well as cross talk between the 3 distinct 
EMT types. Some of the proteins from our set are in-
volved in the vascular endothelial growth factor (VEGF) 
signaling pathway (TAGL2, EF1D, and ACTB) and in hy-
poxia (CAH1, PSB6, and ACTG); this seems to be in 
accordance with the literature since the collagenous ma-
trix of fibrogenesis inhibits vascular supply and the pe-
rimeter of viability for fibroblasts regresses to the point 
where scars become acellular  [22] , and hypoxia as envi-
ronmental stress was thought to be one of the factors in 
the peritubular microenvironment that induce/promote 
EMT  [9] .

  TAGL2 shows GTPase activity. This protein is signifi-
cantly downregulated in the current experimental mod-
el. It crosses the p53 pathway and is related to apoptosis 
together with ATPO, TPD52, and OTUB, which are also 
downregulated upon MMF therapy and thereby possibly 
reflect a reduced proapoptotic effect. It was reported that 
TPD52 expression, either in human or in mouse fibro-
blasts, correlates with the acquisition of epithelial char-
acteristics by these cells  [23] . Given that TPD52 is ex-
pressed at higher levels by kidney epithelial cells  [23]  and 
that EMT generates cells with properties of stem cells 
 [24] , it was not surprising that we found 2 proteins rele-
vant to stem cells, i.e. SERPH and UBP5. In the current 
mouse model for renal fibrosis these proteins probably 

influenced different cellular events during the cell cycle, 
cell proliferation, differentiation, motility, self-renewing, 
or migration. The heat shock protein SERPH is supposed 
to interact with different proteins, including TGF- � , and 
thus induces cell proliferation. SERPH binds to collagen 
fibrils and could be involved as a chaperone in the bio-
synthetic pathway of collagen. In the present in vivo study 
this protein was present in a significantly lower amount 
upon MMF. This could explain the significant inhibition 
of cell proliferation, contractile activity, and wound clo-
sure upon MPA treatment of fibroblast cell line COS-7 in 
our previous in vitro study  [3] .

  The MAPK signaling pathway appears to be involved 
in tubulointerstitial fibrosis in COL4A3-deficient mice 
since EF1D and ACTG join this pathway, and the PI3K/
AKT signaling pathway also might be involved when dis-
cussing the EF1D interactions. This is in line with recent 
reviews describing that Ras-MAPK and PI3K/AKT sig-
naling pathways, as well as type I collagen, induce EMT 
 [7, 9, 25] .

  It was suggested that modulation of epithelial cell plas-
ticity has therapeutic advantages since it offers a novel 
therapeutic target to potentially inhibit renal fibrogenesis 
 [6] . Interestingly, it was shown that the immunosuppres-
sive drug MMF displays an inhibitory effect on EMT, 
suggesting less renal fibrosis  [10] . Herein, we confirmed 
an antifibrotic effect of MMF in vivo and revealed pro-
teome changes under fibrotic conditions. Considering all 
proteins from our screening relating to EMT, we conclud-
ed that there were 7 proteins with a potential association 
to EMT, i.e. 2 upregulated (ACTG and UBP5) and 5 
downregulated proteins (CAH1, PSB6, TPD52, SERPH, 
and EF1D). Moreover, 5 of these 7 proteins belong to the 
network of predicted interacting proteins using the 
MINT database (ACTG, UBP5, PSB6, TPD52, and EF1D) 
( fig. 5 ).

  ATPO is downregulated upon MMF treatment. ATPO 
constitutes a subunit of the ATP synthase producing ATP 
in the presence of a proton gradient across the mitochon-
drial membrane. ATP and GTP are used for short-term 
energy storage and for synthesis of DNA and RNA. These 
molecules are synthesized de novo by interconversion, 
salvage, or catabolism. These pathways are well regulated 
and are of major clinical interest since through them nu-
cleotide analog antiviral and antitumor drugs were taken 
up, activated, and catabolized. Guanine nucleotide-bind-
ing proteins (G proteins) are involved as modulators, or 
transducers, in various transmembrane signaling sys-
tems. GNAL is a G protein which is associated with in-
flammatory responses and autoimmunity. GNAL is sig-
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