Supplementary Material

Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases

and 29 485 controls

Maria N. Timofeeva¹, Rayjean J. Hung², Thorunn Rafnar³, David C. Christiani⁴, John K. Field⁵, Heike Bickeböller⁶, Angela Risch^{7,41}, James D. McKay¹, Yufei Wang⁸, Juncheng Dai⁹, Valerie Gaborieau¹, John McLaughlin², Darren Brenner², Steven A. Narod¹⁰, Neil E. Caporaso¹¹, Demetrius Albanes¹¹, Michael Thun¹², Timothy Eisen¹³, H.-Erich Wichmann^{14,15}, Albert Rosenberger⁶, Younghun Han¹⁶, Wei Chen¹⁶, Dakai Zhu¹⁶, Margaret Spitz¹⁸, Xifeng Wu¹⁷, Mala Pande¹⁷, Yang Zhao⁴, David Zaridze¹⁹, Neonilia Szeszenia-Dabrowska²⁰, Jolanta Lissowska²¹, Peter Rudnai²², Eleonora Fabianova²³, Dana Mates²⁴, Vladimir Bencko²⁵, Lenka Foretova²⁶, Vladimir Janout²⁷, Hans E. Krokan²⁸, Maiken Elvestad Gabrielsen²⁸, Frank Skorpen²⁹, Lars Vatten³⁰, Inger Njølstad³¹, Chu Chen³², Gary Goodman³², Mark Lathrop³³, Simone Benhamou³⁴, Tõnu Vooder³⁵, Kristjan Välk³⁶, Mari Nelis^{37,38}, Andres Metspalu³⁷, Olaide Raji⁵, Ying Chen⁵, John Gosney⁵, Triantafillos Liloglou⁵, Thomas Muley^{39,41}, Hendrik Dienemann^{40,41}, Gudmar Thorleifsson³, Hongbing Shen⁹, Kari Stefansson³, Paul Brennan¹, Christopher I. Amos^{16,42,*†}, Richard Houlston^{8,†}, Maria Teresa Landi^{11,†} and for TRICL Research Team[‡]

Affiliations

¹International Agency for Research on Cancer, Lyon 69008, France, ²Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5, ³DeCODE Genetics, Reykjavik, Iceland, ⁴Harvard University School of Public Health, Boston, MA 02115, USA, ⁵Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, The University of Liverpool Cancer Research Centre, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK, ⁶Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany, ⁷DKFZ - German Cancer Research Center, Translational Lung Research Centre Heidelberg (TLRC-H), Member of the German Center for Lung Research, 69120 Heidelberg, Germany, ⁸Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK, ⁹Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China, ¹⁰Women's College Research Institute, Toronto, Ontario, Canada, ¹¹Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Public Health Service, Bethesda, MD 20892, USA, ¹²American Cancer Society, Epidemiology and Surveillance Research, Atlanta, GA 30301, USA, ¹³Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK, ¹⁴Helmholtz Center Munich, Institute of Epidemiology I, 85764 Neuherberg, Germany, ¹⁵Chair of Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany, ¹⁶Department of Genetics and ¹⁷Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA, ¹⁸Baylor

College of Medicine, Houston, TX 77030, USA, ¹⁹Institute of Carcinogenesis, Russian N.N. Blokhin Cancer Research Centre, 115478 Moscow, Russia, ²⁰Department of Epidemiology, Institute of Occupational Medicine, 91348 Lodz, Poland, ²¹The M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02781, Poland, ²²National Institute of Environmental Health, Budapest 1097, Hungary, ²³Regional Authority of Public Health, Banska Bystrica 97556, Slovak Republic, ²⁴National Institute of Public Health, Bucharest 050463, Romania, ²⁵1st Faculty of Medicine, Institute of Hygiene and Epidemiology, Charles University in Prague, 128 00 Prague 2, Czech Republic, ²⁶Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, ²⁷Palacky University, Olomouc 77515, Czech Republic, ²⁸Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim 7489, Norway, ²⁹Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and ³⁰Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim 7489, Norway, ³¹Department of Community Medicine, University of Tromso, Tromso 9037, Norway, ³²Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, ³³Centre d'Etude du Polymorphisme Humain (CEPH), Paris 75010, France, ³⁴INSERM U946, Paris 75010, France, ³⁵Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia, ³⁶Competence Centre on Reproductive Medicine and Biology, 50410 Tartu, Estonia, ³⁷Estonian Genome Center, Institute of Molecular and Cell Biology, Tartu 51010, Estonia, ³⁸Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland, ³⁹Translational Research Unit and ⁴⁰Department of Thoracic Surgery, Thoraxklinik am Universitätsklinikum Heidelberg, Germany, ⁴¹Translational Lung Research Centre Heidelberg (TLRC-H), Member of the German Center for Lung Research, 69126 Heidelberg, Germany and ⁴²Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03750, USA

[†]These authors contributed equally to this work.

[‡]Transdisciplinary Research in Cancer of the Lung.

Corresponding author:

Christopher I. Amos

Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, 46 Centerra Parkway Suite 330, Lebanon, NH 03766. Tel: +603-653-6696; Email: Christopher.I.Amos@Dartmouth.edu

Participating study descriptions

Studies under NCI umbrella

Detailed characteristic of NCI studies is presented elsewhere (1). Briefly it includes samples from studies:

- 1. The Environment and Genetics in Lung cancer Etiology (EAGLE) is a population-based case-control study including 2,100 lung cancer cases and 2,120 healthy controls enrolled in Italy between 2002 and 2005 (2).
- 2. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC) is a randomized primary prevention trial including 29,133 male smokers enrolled in Finland between 1985 and 1993.
- 3. The Prostate, Lung, Colon, Ovary Screening Trial (PLCO) is a randomized trial including 150,000 individuals enrolled in ten U.S. study centers between 1992 and 2001 (3).
- 4. The Cancer Prevention Study II Nutrition Cohort (CPS-II) is a cohort study including over 183,000 subjects enrolled by the American Cancer Society between 1992 and 2001 across all U.S. states (4).

The lung cancer diagnosis in the NCI GWAS was based on clinical criteria and confirmed by pathology reports from surgery, biopsy or cytology samples in approximately 95% of cases and on clinical history and imaging for the remaining 5%. Tumor histology was coded according to the International Classification of Disease fir Oncology (ICD-O). Overall, between 10% and 50% of all diagnosis from the NCI GWAS were centrally reviewed by expert lung pathologies from NCI. For the histology analysis the following codes were used - non small cell carcinoma: adenocarcinoma (8140, 8251, 8255, 8260, 8310, 8323, 8480, 8481, and 8570), bronchioloalveolar carcinoma (8250, 8252, and 8253), large cell carcinoma (8012 and 8031), squamous cell carcinoma (8052, 8070, 8071, 8072, 8073, and 8074), and other non-small cell carcinoma (ONSCLC) (8010, 8020, 8022, 8032, 8033, 8046, 8050, 8490, 8550, and 8560); small cell carcinoma: (NOS 804 8041/3): 8042/3 oat cell carcinoma, 8043/3 small cell carcinoma, fusiform cell, 8044/3 Small cell carcinoma, intermediate cell, 8045/3, combined small cell carcinoma.

Overall 5,739 cases and 5,848 controls were included after initial quality control as previously described (1). Additionally 10 cases and 107 controls were excluded due to updated diagnoses in cancer cases, controls later identified with lung cancer in follow-up of cohort studies and quality control related issues. The final series used for the current meta-analysis included 5,729 cases and 5,741 controls (Table 1, Table S1). For the imputed data, additional quality control procedures were performed (Table S2), which led to a total of 5,719 cases and 5,735 controls.

Studies under IARC umbrella

The IARC lung cancer GWAS includes individuals from the following studies described previously: (i) Carotene and Retinol Efficacy Trial (CARET) cohort (5), (ii) the Central Europe multicenter hospital-based case-control (6,7), (iii) the hospital-based case-control study from France (8), (iv) the hospital based case-control lung cancer study from Estonia (9,10) and (v) the population-based HUNT2 and Tromsø 4 lung cancer studies (7,11,12). In total the combined

dataset included 3,062 cases and 4,455 controls. The diagnosis of lung cancer for all studies was established based on clinical criteria and confirmed by pathology reports from surgery, biopsy or cytology samples. The International Classification of Diseases for Oncology (ICD-O) was used. No information on histology was available for the case-control lung cancer study from Estonia. Therefore Estonia study did not contribute to the histology subgroup analysis. After applying standardized quality control procedures, 2,894 cases and 4,233 controls entered the data analysis for the TRICL meta-analysis project (Table S1, Table 1).

Toronto/Samuel Lunenfeld Research Institute (SLRI) study

The Toronto study was conducted in the Great Toronto Area between 1997 and 2002. Cases were recruited at the hospitals in the network of University of Toronto and Samuel Lunenfeld Research Institute. At the time of recruitment in the clinical setting, provisional diagnoses of lung carcinoma were first assigned based on clinical criteria. Diagnoses for all cases included were histologically confirmed by the reference pathologist who is a specialist in pulmonary pathology, based on review of pathology reports from surgery, biopsy or cytology samples in 100% of cases. Diagnostic classification was done initially according to ICD-9, ICD-10, and ICD for oncology-2, and subsequently converted to ICD-O-3. Tumors were grouped into the major categories included in this analysis according to primary cancer type based on the ICD-3 definitions. Controls were randomly selected from individual visiting family medicine clinics and Ministry of Finance Municipal Tax Tapes. All subjects were interviewed using a standard questionnaire and information on lifestyle risk factors, occupational history, medical and family history was collected. Blood samples were collected from more than 85% of the subjects. After applying the standardized quality control procedures and restricting to the study participants with European ancestry, 331 cases and 499 controls were included in the TRICL meta-analysis (7).

deCODE Genetics

The Icelandic lung cancer study population has been described previously (13). Briefly, according to the population-based Icelandic Cancer Registry (www.krabbameinsskra.is), a total of 4,252 lung cancer patients were diagnosed from January 1, 1955, to December 31, 2010. The registry receives information from all pathology and cytology laboratories in Iceland, in addition to hematology laboratories, hospital wards, private medical practitioners and other individual health care workers. Approximately 94.5% of diagnoses in the ICR have histological confirmation. Histological subtype is registered in the Icelandic Cancer Registry using the ICD-03 classification. For the histology analysis the following codes were used - adenocarcinoma: 8140/3, 8250/3, 8260/3, 8310/3, 8480/3 8560/3; large cell carcinoma: 8012/3, 8031/3; squamous cell carcinoma: 8070/3, 8071/3, 8072/3, 8074/3; other non-small cell carcinomas: 8010/3, 8020/3, 8021/3, 8032/3, 8230/3; small cell carcinoma: 8041/3, 8042/3, 8043/3, 8044/3, 8045/3. Recruitment of both prevalent and incident cases was initiated in the year 1998, the recruitment is ongoing and DNA samples from lung cancer cases are subjected to whole-genome genotyping as they are collected.

The controls used in this study consisted of individuals from other ongoing genome-wide association studies at deCODE, age and sex matched to the group of cases. No individual disease group accounts for more than 10% of the total control group.

Quality control for chip genotyping: SNPs were excluded if they had (i) yield lower than 95%, (ii) minor allele frequency less than 1% in the population or (iii) significant deviation from Hardy-Weinberg equilibrium in the controls (P < 0.001), (iv) if they produced an excessive inheritance error rate (*i.e.* >0.001), (v) if there was substantial difference in allele frequency between chip types (from just a single chip if that resolved all differences, but from all chips otherwise). All samples having a call rate <97% were excluded from the analysis.

Genotype data from 830 lung cancer cases and 11,228 controls were included in the present study.

Institute of Cancer Research (ICR) lung cancer study

Cases (1,182 male; mean age at diagnosis 57 years, SD 6) with pathologically confirmed lung cancer were ascertained through the Genetic Lung Cancer Predisposition Study (GELCAPS) (14). Diagnostic classification was done initially according to ICD-9. All cases were British residents and self-reported to be of European Ancestry. Genotype frequencies were compared with publicly accessible genotype data generated by the UK Wellcome Trust Case-Control Consortium 2 (WTCCC2) study of 2,699 individuals from the 1958 British Birth Cohort (58C) (15) that had been genotyped using Illumina Human1.2M-Duo Custom_v1 Array BeadChips. Comprehensive details of on genotyping and quality control have been previously published (16,17).

Ethical approval was obtained from the London Multi-Centre Research Ethics Committee (MREC/98/2/67) in accordance with the tenets of the Declaration of Helsinki. All participants provided written informed consent.

Liverpool Lung Project

Incident cases were ascertained through the Liverpool Lung Project, an ongoing molecular epidemiological study conducted in Liverpool, United Kingdom (18). All cases had histologically or cytologically confirmed lung cancer and were aged 20-80 years at diagnosis. Histological type is recorded according to the classification based on the WHO typing of tumours (World Health Organization. (19) along with the updated classification of adenocarcinomas (20). SNOMED (Systematized Nomenclature of Medicine) classification was used for coding the site and histological diagnosis. The details are outlined in the Royal College of Pathology UK publication; Standards and Datasets for Reporting Cancers Dataset for lung cancer histopathology reports (3rd edition) April 2011,

(http://www.rcpath.org/Resources/RCPath/Migrated%20 Resources/Documents/G/g048 dataset lungapril 11.pdf).

A standardized lifestyle questionnaire was used to collect detailed information on demographic characteristics, medical history, family history of cancer, history of tobacco consumption and lifetime occupational history. Genotype frequencies were compared with publicly accessible genotype data generated by the UK Wellcome Trust Case-Control Consortium 2 (WTCCC2) study of 2,501 individuals from the UK Blood Service collections (UKBS) that had been genotyped using Illumina Human1.2M-Duo Custom_v1 Array BeadChips.

The study protocol was approved by the Liverpool Research Ethic Committee and all research participants provided written, informed consent in accordance with the Declaration of Helsinki.

Harvard Lung Cancer Study

For the Harvard Lung Cancer Susceptibility Study, details of participant recruitment have been described previously (21). The genotyped dataset includes 1,000 cases and 1,000 controls. Cases were patients over the age of 18 years, with newly diagnosed and histologically confirmed primary non-small cell lung cancer; controls were healthy non-blood-related family members and friends of patients with cancer or with cardiothoracic conditions undergoing surgery. The histological classification was done by two staff pulmonary pathologists at the Massachusetts General Hospital according to the International Classification of Diseases for Oncology (ICD-O3). For the histology analysis the following codes were used - adenocarcinoma: 8140/3, 8250/3, 8260/3, 8310/3, 8480/3 8560/3; large cell carcinoma: 8012/3, 8031/3; squamous cell carcinoma: 8070/3, 8071/3, 8072/3, 8074/3; other non-small cell carcinomas: 8010/3, 8020/3, 8021/3, 8032/3, 8230/3; and small cell carcinoma: 8041/3, 8042/3, 8043/3, 8044/3, 8045/3. A general quality control procedure for GWAS data was performed on the genotyped dataset. The procedure included assessing the failure rate per individual and per SNP, identifying individuals with discordant gender information, assessing the degree of the relatedness and identifying population outliers. After all quality control procedures were done, the finalized dataset included 984 cases and 970 controls with 543,697 SNPs.

MDACC

Cases and controls were ascertained from a case-control study that has been ongoing at the U.T. M.D. Anderson Cancer Center since 1997. Cases are newly diagnosed, histologically-confirmed patients presenting at M.D. Anderson Cancer and who had not previously received treatment other than surgery. Histological information about tumors was derived by chart review from medical records. Tumors were histologically classified as adenocarcinoma, squamous cell carcinoma, large cell carcinoma, mixed histologies, or unclassified NSCLC (22). Small cell carcinomas were excluded from the genome-wide association analysis conducted at M.D. Anderson Cancer Center. Controls are healthy individuals seen for routine care at Kelsey-Seybold Clinics; the largest physician group-practice plan in the Houston Metropolitan area. Controls were frequency matched to cases according to their smoking behavior, age in 5 year categories, ethnicity, and sex. Former smoking controls were further frequency matched to former smoking cases according to the number of years since smoking cessation (in 5 year categories).

In addition to quality control procedures previously reported by Amos et al. (2008) (23), 7 samples were removed in EIGENSTRAT analysis. After all quality control procedures were completed, 2284 samples including 1150 cases and 1134 controls were available for genotyping.

HGF Germany

The HGF GWA study was made up of three independent German studies as detailed below: in total 506 incident lung cancer cases (LUCY-study: n=305, Heidelberg lung cancer case-control study: n=201) were compared to 480 population controls (KORA surveys KORA). After

excluding individuals with missing values and potentially related individuals 487 cases and 480 controls entered the data analysis for the TRICL meta-analysis project. LUCY (LUng Cancer in the Young) is a multicenter study with 31 recruiting hospitals in Germany (24,25). The study is conducted by the Institute of Epidemiology, Helmholtz Zentrum Muenchen, and the Department of Genetic Epidemiology, Medical School, University of Göttingen). The LUCY-study provides access to a nationwide, population based family and a case-control sample (control population KORA, described below) of lung cancer patients aged 50 years or younger at diagnosis. Detailed epidemiologic data have been collected including data on medical history, education, family history of cancer and smoking exposure by phase assessment. Blood samples are taken and DNA and lymphoblastoid cell lines are prepared of all cases and controls and of parts of the relatives. Phenotype data of 847 young patients with primary lung cancer and 5524 relatives have been collected. All cases were histologically confirmed and classified by a pathologist as adenocarcinoma, squamous cell carcinoma, large cell carcinoma, small cell carcinoma, other or unclassified histology.

Heidelberg lung cancer case-control study is an ongoing hospital based case-control study (25) (26). The German Cancer Research Center (DKFZ) has recruited over 2000 lung cancer cases at and in collaboration with the Thoraxklinik Heidelberg, including 300 lung cancer cases with onset of disease at the age of \leq 50. The histological classification was done by a pathologist, according to the WHO International Histological Classification of Tumours (ICD-O) current at the time of recruitment. Approximately 750 hospital-based controls have also been recruited. Data on occupational exposure, tobacco smoking, educational status, and for a subgroup also on family history of lung cancer, assessed by a self-administered questionnaire is available. Blood samples have been taken, and DNA has been extracted.

KORA (Cooperative health research in the Region of Augsburg) survey is a population-based KORA platform established by the Helmholtz Center Munich (27). In total, four population based health surveys have been conducted during 1984/85-1999/2001. Overall 18000 participants in the age range between of 25 and 74 years at first interview were recruited. Detailed information on demographic characteristics, medical history, history of tobacco consumption and lifetime occupation together with biological materials were collected for more than 16000 proband

Han Chinese GWAS

Han Chinese GWAS includes 2,338 cases and 3,077 controls from the Nanjing study and Beijing study as described previously (28). All these case-control sample sets were hospital based and the subjects were unrelated ethnic Han Chinese. The case patients were histopathologically or cytologically confirmed lung cancer by at least two local pathologists. Tumors were histologically classified as adenocarcinoma, squamous cell carcinoma, large cell carcinoma, mixed histologies, or unclassified NSCLC. All cancer-free control subjects were selected from those receiving routine physical examinations in local hospitals or those participating in the community screening of non-communicable diseases and frequency-matched for age, gender, and geographic regions to each set of the lung cancer patients. At recruitment, informed consent was obtained from each subject, and this study was approved by the Institutional Review Boards of each participating institution.

Quality control

Samples were excluded if (i) the average call rate was < 90%, (ii) there was sex discordance (threshold of heterozygosity > 10% for males and < 20% for females), (iii) unexpected duplicates and evidence of first-degree relative relationships from identity-by-descent values, (iv) heterozygosity rates for autosomal chromosomes exceeded 6 standard deviation of the mean, (v) based on STRUCTURE analysis (29) subjects were less than 80% European ancestry and (vi) detected as outliers based on principal component analysis (PCA) using EIGENSTRAT (30). SNPs were excluded if (i) genotyped call rate was less than 95%. Test for Hardy-Weinberg equilibrium (HWE) were also performed, but no SNPs were excluded based on this test. However, each study center was requested to report this information together with results of the analysis for the specific study.

Reference List

- 1. Landi,M.T., Chatterjee,N., Yu,K., Goldin,L.R., Goldstein,A.M., Rotunno,M., Mirabello,L., Jacobs,K., Wheeler,W., Yeager,M., *et al.* (2009) A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. *Am. J. Hum. Genet.*, **85**, 679-691.
- 2. Landi,M.T., Consonni,D., Rotunno,M., Bergen,A.W., Goldstein,A.M., Lubin,J.H., Goldin,L., Alavanja,M., Morgan,G., Subar,A.F., *et al.* (2008) Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer. *BMC. Public Health*, **8**, 203.
- 3. Hayes, R.B., Sigurdson, A., Moore, L., Peters, U., Huang, W.Y., Pinsky, P., Reding, D., Gelmann, E.P., Rothman, N., Pfeiffer, R.M., *et al.* (2005) Methods for etiologic and early marker investigations in the PLCO trial. *Mutat. Res.*, **592**, 147-154.
- 4. Calle,E.E., Rodriguez,C., Jacobs,E.J., Almon,M.L., Chao,A., McCullough,M.L., Feigelson,H.S., Thun,M.J. (2002) The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. *Cancer*, **94**, 2490-2501.
- 5. Omenn,G.S., Goodman,G., Thornquist,M., Grizzle,J., Rosenstock,L., Barnhart,S., Balmes,J., Cherniack,M.G., Cullen,M.R., Glass,A., . (1994) The beta-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers. *Cancer Res.*, **54**, 2038s-2043s.
- 6. Scelo,G., Constantinescu,V., Csiki,I., Zaridze,D., Szeszenia-Dabrowska,N., Rudnai,P., Lissowska,J., Fabianova,E., Cassidy,A., Slamova,A., *et al.* (2004) Occupational exposure to vinyl chloride, acrylonitrile and styrene and lung cancer risk (europe). *Cancer Causes Control*, **15**, 445-452.
- 7. Hung,R.J., McKay,J.D., Gaborieau,V., Boffetta,P., Hashibe,M., Zaridze,D., Mukeria,A., Szeszenia-Dabrowska,N., Lissowska,J., Rudnai,P., *et al.* (2008) A susceptibility locus for

lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. *Nature.*, **452**, 633-637.

- Feyler, A., Voho, A., Bouchardy, C., Kuokkanen, K., Dayer, P., Hirvonen, A., Benhamou, S. (2002) Point: myeloperoxidase -463G --> a polymorphism and lung cancer risk. *Cancer Epidemiol. Biomarkers Prev.*, **11**, 1550-1554.
- 9. Nelis, M., Esko, T., Magi, R., Zimprich, F., Zimprich, A., Toncheva, D., Karachanak, S., Piskackova, T., Balascak, I., Peltonen, L., *et al.* (2009) Genetic structure of Europeans: a view from the North-East. *PLoS One.*, **4**, e5472.
- 10. Valk,K., Vooder,T., Kolde,R., Reintam,M.A., Petzold,C., Vilo,J., Metspalu,A. (2010) Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. *Oncology*, **79**, 283-292.
- 11. Holmen, J., Midthjell, K., Krüger, O., Langhammer, A., Holmen, T.L., Bratberg, G.H., Vatten, L., Lund-Larsen, P.G. (2003) The Nord-Trøndelag Health Study 1995-97 (HUNT 2):Objectives, contents, methods and participation. *Norsk Epidemiologi*, **13**, 19-32.
- 12. Jacobsen, B.K., Eggen, A.E., Mathiesen, E.B., Wilsgaard, T., Njolstad, I. (2012) Cohort profile: The Tromso Study. *Int. J. Epidemiol.*, **41**, 961-967.
- Thorgeirsson, T.E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K.P., Manolescu, A., Thorleifsson, G., Stefansson, H., Ingason, A., *et al.* (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. *Nature.*, 452, 638-642.
- Eisen, T., Matakidou, A., Houlston, R. (2008) Identification of low penetrance alleles for lung cancer: the GEnetic Lung CAncer Predisposition Study (GELCAPS). *BMC. Cancer*, 8, 244.
- 15. Power, C., Elliott, J. (2006) Cohort profile: 1958 British birth cohort (National Child Development Study). *Int. J. Epidemiol.*, **35**, 34-41.
- 16. Wang, Y., Broderick, P., Webb, E., Wu, X., Vijayakrishnan, J., Matakidou, A., Qureshi, M., Dong, Q., Gu, X., Chen, W.V., *et al.* (2008) Common 5p15.33 and 6p21.33 variants influence lung cancer risk. *Nat. Genet.*, **40**, 1407-1409.
- 17. Broderick, P., Wang, Y., Vijayakrishnan, J., Matakidou, A., Spitz, M.R., Eisen, T., Amos, C.I., Houlston, R.S. (2009) Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. *Cancer Res.*, **69**, 6633-6641.
- 18. Field, J.K., Smith, D.L., Duffy, S., Cassidy, A. (2005) The Liverpool Lung Project research protocol. *Int. J. Oncol.*, **27**, 1633-1645.
- 19. Travis, W. D., Brambilla, E., Muller-Hermelink, K H, and Harris, C. C.(2004) Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. IARCPress, Lyon.

- 20. Travis, W.D., Brambilla, E., Noguchi, M., Nicholson, A.G., Geisinger, K.R., Yatabe, Y., Beer, D.G., Powell, C.A., Riely, G.J., Van Schil, P.E., *et al.* (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. *J. Thorac. Oncol.*, **6**, 244-285.
- 21. Asomaning,K., Miller,D.P., Liu,G., Wain,J.C., Lynch,T.J., Su,L., Christiani,D.C. (2008) Second hand smoke, age of exposure and lung cancer risk. *Lung Cancer*, **61**, 13-20.
- 22. Bosken, C.H., Wei, Q., Amos, C.I., Spitz, M.R. (2002) An analysis of DNA repair as a determinant of survival in patients with non-small-cell lung cancer. *J. Natl. Cancer Inst.*, **94**, 1091-1099.
- 23. Amos,C.I., Wu,X., Broderick,P., Gorlov,I.P., Gu,J., Eisen,T., Dong,Q., Zhang,Q., Gu,X., Vijayakrishnan,J., *et al.* (2008) Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. *Nat. Genet.*, **40**, 616-622.
- Rosenberger, A., Illig, T., Korb, K., Klopp, N., Zietemann, V., Wolke, G., Meese, E., Sybrecht, G., Kronenberg, F., Cebulla, M., *et al.* (2008) Do genetic factors protect for early onset lung cancer? A case control study before the age of 50 years. *BMC. Cancer.*, 8:60., 60.
- Sauter, W., Rosenberger, A., Beckmann, L., Kropp, S., Mittelstrass, K., Timofeeva, M., Wolke, G., Steinwachs, A., Scheiner, D., Meese, E., *et al.* (2008) Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer. *Cancer Epidemiol. Biomarkers Prev.*, 17, 1127-1135.
- Dally,H., Edler,L., Jager,B., Schmezer,P., Spiegelhalder,B., Dienemann,H., Drings,P., Schulz,V., Kayser,K., Bartsch,H., Risch,A. (2003) The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. *Pharmacogenetics.*, 13, 607-618.
- 27. Wichmann,H.E., Gieger,C., Illig,T. (2005) KORA-gen--resource for population genetics, controls and a broad spectrum of disease phenotypes. *Gesundheitswesen*, **67 Suppl 1**, S26-S30.
- Hu,Z., Wu,C., Shi,Y., Guo,H., Zhao,X., Yin,Z., Yang,L., Dai,J., Hu,L., Tan,W., *et al.* (2011) A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. *Nat. Genet.*, 43, 792-796.
- 29. Falush, D., Stephens, M., Pritchard, J.K. (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. *Genetics*, **164**, 1567-1587.
- 30. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D. (2006) Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet*, **38**, 904-909.

Table S1. Characteristic of the participating studies by subgroups

	uh anoun a	MD	ACC	Liv	erpool	I	CR	S	LRI	IA	ARC	deC	CODE	H	IGF	Ha	rvard	ľ	NCI	Han	Chinese	Ov	verall
5	ubgroups	Cases	Controls	Cases	Controls																		
	ALL	1,150	1,134	543	2,501	1,952	2,699	331	499	2,894	4,233	830	11,228	487	480	984	970	5,729	5,741	2,338	3,077	17,238	32,562
Gender	Men	655	644	314	n/a	1,166	n/a	159	190	2,176	2,843	414	5,721	303	243	507	442	4,476	4,841	1,717	2,084	11,887	17,008
	Women	495	490	229	n/a	786	n/a	172	309	718	1,390	416	5,508	184	237	477	528	1,253	900	621	993	5,351	10,355
Smoking	Never	n/a	n/a	32	2,501	109	2,699	95	217	178	1,401	34	634	35	220	92	161	352	1,376	829	1,266	1,756	10,475
	Former	572	626	239	2,501	762	2,699	95	139	521	993	n/a	n/a	49	122	502	555	1,933	2,006	254	226	5,928	11,226
	Current	578	508	251	2,501	1,065	2,699	90	89	2,073	1,699	n/a	n/a	399	138	390	254	3,423	2,338	1,255	1,585	8,269	10,226
	Ever	1,150	1,134	490	2,501	1,843	2,699	236	272	2,709	2,797	701	7,586	452	260	892	809	5,356	4,344	n/a	n/a	13,829	22,402
Age	≤ 50 (YLC)	193	137	n/a	n/a	n/a	n/a	47	248	381	1,146	67	2,720	487	480	81	214	100	124	399	442	1,755	5,511
	> 50 (OLC)	957	997	n/a	n/a	n/a	n/a	284	251	2,513	3,087	763	8,509	n/a	n/a	903	756	5,628	5,617	1,939	2,635	12,987	21,852
	Adenocarcinoma	619	1,134	169	2,501	465	2,699	90	499	595	3,237	346	11,228	192	480	488	970	1,849	5,741	1,307	3,077	6,120	31,566
	Squamous cell	306	1,134	167	2,501	611	2,699	50	499	1,031	3,382	179	11,228	100	480	215	970	1,451	5,741	825	3,077	4,935	31,711
Histology	Small cell	n/a	n/a	57	2,501	530	2,699	22	499	451	3,382	98	11,228	108	480	n/a	n/a	706	5,741	179	3,077	2,151	29,607
instology	Large cell	n/a	n/a	32	11,228	n/a	n/a	81	970	170	5,741	n/a	n/a	283	17,939								
	Non Small Cell			411	2,501	1,420	2,699															1,831	5,200
	other	224	1,134																			224	1,134
Stage	I/II stage for NSCLC	378	1,134	n/a	n/a	92	2,699	48	499	n/a	n/a	n/a	n/a	n/a	n/a	455	970	1,434	5,741	n/a	n/a	2,407	11,043
	III/IV stage for NSCLC	707	1,134	n/a	n/a	320	2,699	103	499	n/a	n/a	n/a	n/a	n/a	n/a	529	970	2,066	5,741	n/a	n/a	3,725	11,043
	limited stage	n/a	n/a	n/a	n/a	56	2,699	n/a	n/a	56	2,699												
	extended	n/a	n/a	n/a	n/a	104	2,699	n/a	n/a	104	2,699												
Family	Yes	241	167	96	2,501	285	2,699	n/a	n/a	148	113	208	1,410	n/a	n/a	166	110	783	556	n/a	n/a	1,927	7,556
history	No	904	964	427	2,501	1,667	2,699	212	380	1,716	3,153	622	9,818	n/a	n/a	817	860	4,265	4,728	n/a	n/a	10,630	25,103

		Position	Allel	e	Number of	Ν	Ν	MAF		Heterogeneity		Fixed effect model		Random effect model	
rs number	Chr	(NCBI Build36)	Reference	Effect	studies	cases	controls	cases	controls	P ¹	$I^{2}(\%)$	OR	Р	OR	Р
rs1051730	15	76681394	G	А	9	14879	29427	0.40	0.34	0.99	0	1.32	2.2E-63	1.32	2.2E-63
rs8034191	15	76593078	Т	С	9	14887	29446	0.40	0.35	0.98	0	1.31	9.5E-59	1.31	9.5E-59
rs6495309	15	76702300	С	Т	9	14893	29465	0.18	0.22	0.73	0	0.79	1.1E-32	0.79	1.1E-32
rs6495314	15	76747584	А	С	9	14879	29433	0.44	0.40	0.85	0	1.21	2.2E-32	1.21	2.2E-32
rs11638372	15	76770614	С	Т	9	14887	29435	0.44	0.40	0.84	0	1.21	5.0E-31	1.21	5.0E-31
rs1394371	15	76511524	С	Т	9	14889	29442	0.33	0.29	0.85	0	1.21	1.2E-28	1.21	1.2E-28
rs12914385	15	76685778	С	Т	3	7186	7166	0.46	0.40	0.74	0	1.32	2.8E-28	1.32	2.8E-28
rs2036534	15	76614003	Т	С	7	12369	24213	0.19	0.22	0.72	0	0.80	3.3E-25	0.80	3.3E-25
rs13180	15	76576543	Т	С	9	14872	29409	0.35	0.39	0.35	10.3	0.85	6.2E-23	0.85	9.3E-20
rs4887053	15	76499754	С	А	9	14895	29458	0.18	0.21	0.59	0	0.83	2.6E-20	0.83	2.6E-20
rs4887077	15	76765419	С	Т	7	8180	22616	0.44	0.40	0.81	0	1.20	2.4E-17	1.20	2.4E-17
rs3813565	15	76806665	С	А	3	7110	7124	0.44	0.39	0.66	0	1.24	3.4E-17	1.24	3.4E-17
rs938682	15	76683602	Т	С	3	7197	7178	0.20	0.23	0.77	0	0.78	1.0E-16	0.78	1.0E-16
rs12910984	15	76678682	А	G	3	7190	7176	0.20	0.24	0.68	0	0.78	1.1E-16	0.78	1.1E-16
rs8042374	15	76695087	А	G	3	7186	7161	0.20	0.24	0.64	0	0.78	1.1E-16	0.78	1.1E-16
rs578776	15	76675455	С	Т	3	7193	7182	0.23	0.28	0.27	22.9	0.79	1.1E-16	0.78	1.9E-09
rs401681	5	1375087	С	Т	9	14872	29433	0.40	0.44	0.02	55.0	0.88	7.2E-16	0.87	1.7E-07
rs31489	5	1395714	С	А	9	14883	29440	0.37	0.41	0.01	59.7	0.88	1.7E-15	0.87	1.1E-06
rs12441998	15	76716427	А	G	3	7194	7181	0.19	0.22	0.79	0	0.79	2.6E-15	0.79	2.6E-15
rs12594247	15	76733688	С	Т	9	14895	29457	0.14	0.16	0.94	0	0.84	1.8E-14	0.84	1.8E-14
rs1316971	15	76717565	G	А	3	7184	7172	0.19	0.22	0.68	0	0.79	1.9E-14	0.79	1.9E-14
rs3117582	6	31728499	Т	G	9	14845	29389	0.13	0.10	0.49	0	1.22	2.3E-14	1.22	2.3E-14
rs3130350	6	30435818	G	Т	9	14853	29414	0.12	0.10	0.64	0	1.22	2.7E-14	1.22	2.7E-14
rs8321	6	30140501	А	С	9	14871	29434	0.12	0.10	0.44	0	1.23	3.9E-14	1.23	3.9E-14
rs558702	6	31978305	G	А	9	14888	29468	0.13	0.10	0.38	6.3	1.22	5.8E-14	1.22	9.9E-13
rs3094054	6	30441484	G	Т	9	14847	29341	0.13	0.11	0.91	0	1.22	7.7E-14	1.22	7.7E-14
rs2736100	5	1339516	А	С	9	14870	29386	0.47	0.49	0.08	42.6	1.13	7.9E-14	1.14	5.0E-08
rs9261290	6	30146626	Т	С	9	14887	29409	0.12	0.10	0.36	9.0	1.22	9.6E-14	1.23	2.4E-12
rs3885951	15	76612972	А	G	9	14878	29376	0.11	0.10	0.01	59.0	1.22	1.1E-13	1.22	2.2E-05
rs3130380	6	30387109	G	А	9	14869	29458	0.12	0.10	0.67	0	1.22	1.2E-13	1.22	1.2E-13
rs3132610	6	30652380	А	G	9	14890	29429	0.14	0.11	0.76	0	1.21	1.2E-13	1.21	1.2E-13
rs389884	6	32048876	А	G	9	14884	29405	0.13	0.10	0.44	0	1.21	1.3E-13	1.21	1.3E-13
rs1270942	6	32026839	А	G	9	14872	29420	0.13	0.10	0.45	0	1.21	1.4E-13	1.21	1.4E-13

Table S2 Genome-Wide Significant Result (p<5 x 10⁻⁸) for the Overall Meta-Analysis

		Position	Allel	e	Number of	Ν	Ν	N	IAF	Hete	rogeneity	Fixed	effect model	Randor	n effect model
rs number	Chr	(NCBI Build36)	Reference	Effect	studies	cases	controls	cases	controls	P ¹	$I^{2}(\%)$	OR	Р	OR	Р
rs3131379	6	31829012	G	А	9	14871	29423	0.13	0.10	0.36	8.5	1.21	1.5E-13	1.21	6.8E-12
rs1235162	6	29645203	А	G	9	14869	29408	0.12	0.09	0.58	0	1.22	2.3E-13	1.22	2.3E-13
rs2187668	6	32713862	С	Т	9	14863	29378	0.14	0.12	0.56	0	1.19	2.7E-13	1.19	2.7E-13
rs7775397	6	32369230	Т	G	9	14856	29389	0.12	0.10	0.25	22.1	1.21	6.6E-13	1.21	3.1E-09
rs1794282	6	32774504	С	Т	9	14889	29471	0.12	0.10	0.54	0	1.21	7.1E-13	1.21	7.1E-13
rs9262143	6	30760760	С	Т	9	14875	29424	0.13	0.11	0.88	0	1.20	1.0E-12	1.20	1.0E-12
rs4635969	5	1361552	G	А	9	14810	29318	0.17	0.20	0.07	44.3	0.86	1.3E-12	0.86	4.9E-07
rs2734986	6	29926547	Т	С	9	14887	29451	0.19	0.16	0.30	15.7	1.17	1.5E-12	1.17	2.2E-10
rs3130544	6	31166319	С	А	9	14883	29450	0.14	0.12	0.68	0	1.19	2.1E-12	1.19	2.1E-12
rs8038920	15	76761600	G	А	9	14873	29402	0.33	0.35	0.54	0	0.89	4.0E-12	0.89	4.0E-12
rs2746150	6	29550680	С	Т	9	14893	29422	0.11	0.09	0.27	19.8	1.21	6.5E-12	1.22	3.6E-09
rs1996371	15	76743861	Т	С	5	5672	17543	0.43	0.39	0.62	0	1.19	1.1E-11	1.19	1.1E-11
rs3132685	6	30053928	G	А	9	14832	29372	0.13	0.11	0.63	0	1.19	1.6E-11	1.19	1.6E-11
rs7750641	6	31237289	С	Т	9	14858	29385	0.14	0.12	0.66	0	1.18	2.4E-11	1.18	2.4E-11
rs3132580	6	31028103	G	А	9	14897	29467	0.16	0.13	0.41	3.3	1.17	4.3E-11	1.17	1.4E-10
rs886424	6	30889981	С	Т	9	14866	29434	0.15	0.12	0.73	0	1.18	6.6E-11	1.18	6.6E-11
rs3099844	6	31556955	С	А	9	14869	29439	0.14	0.12	0.42	1.8	1.17	1.0E-10	1.18	1.8E-10
rs3129763	6	32698903	G	А	9	14893	29441	0.26	0.24	0.30	16.0	1.13	1.2E-10	1.13	1.5E-08
rs1551821	18	41120468	А	С	6	7317	11489	0.11	0.14	0.00	85.1	0.81	1.4E-10	0.81	3.0E-02
rs17487514	15	76740840	С	Т	3	7186	7168	0.32	0.29	0.83	0.0	1.19	1.9E-10	1.19	1.9E-10
rs11072793	15	76793497	А	G	9	14867	29406	0.24	0.26	0.33	12.6	0.89	2.3E-10	0.89	7.8E-09
rs259919	6	30133482	G	А	9	14884	29404	0.34	0.32	0.59	0	1.11	6.2E-10	1.11	6.2E-10
rs3129791	6	29062272	G	А	9	14896	29452	0.11	0.09	0.28	18.0	1.19	7.0E-10	1.19	7.1E-08
rs680244	15	76658343	С	Т	9	14876	29452	0.40	0.42	0.83	0	0.90	7.2E-10	0.90	7.2E-10
rs3094694	6	30559883	Т	С	9	14840	29400	0.20	0.18	0.33	12.7	1.14	9.6E-10	1.13	9.2E-08
rs3131093	6	28945416	С	Т	9	14892	29457	0.11	0.09	0.40	3.6	1.19	1.1E-09	1.19	3.1E-09
rs3130893	6	29088686	А	G	9	14887	29393	0.11	0.09	0.31	14.9	1.19	1.5E-09	1.19	5.8E-08
rs3749971	6	29450754	G	А	9	14884	29440	0.11	0.10	0.27	19.6	1.18	1.5E-09	1.19	1.4E-07
rs2844773	6	30315474	С	А	9	14894	29470	0.17	0.15	0.87	0	1.15	1.5E-09	1.15	1.5E-09
rs2523987	6	30187972	А	С	9	14875	29407	0.15	0.13	0.20	27.1	1.15	1.7E-09	1.16	5.4E-07
rs4324798	6	28884096	G	А	9	14832	29386	0.10	0.09	0.28	18.6	1.19	1.7E-09	1.19	1.6E-07
rs4539564	15	76915554	А	G	9	14860	29397	0.49	0.49	0.45	0	1.10	1.8E-09	1.10	1.8E-09
rs6495306	15	76652948	А	G	9	14885	29443	0.40	0.42	0.86	0	0.91	1.8E-09	0.91	1.8E-09
rs2524005	6	30007656	G	A	9	14883	29454	0.22	0.20	0.17	31.1	1.13	2.0E-09	1.14	1.3E-06

		Position	Allel	e	Number of	Ν	Ν	N	ЛАГ	Hete	rogeneity	Fixed o	effect model	Randor	n effect mod
rs number	Chr	(NCBI Build36)	Reference	Effect	studies	cases	controls	cases	controls	P ¹	$I^{2}(\%)$	OR	Р	OR	Р
s13194504	6	28738670	G	А	9	14894	29471	0.10	0.09	0.14	35.3	1.19	2.2E-09	1.20	3.6E-06
rs2535238	6	29753017	С	А	9	14849	29388	0.24	0.22	0.62	0	1.12	2.7E-09	1.12	2.7E-09
rs13211507	6	28365356	Т	С	9	14894	29456	0.10	0.09	0.20	27.3	1.19	3.3E-09	1.19	8.2E-07
rs3094073	6	30339203	G	А	9	14885	29438	0.17	0.15	0.80	0	1.14	3.9E-09	1.14	3.9E-09
rs1233579	6	28820642	А	G	9	14838	29402	0.10	0.09	0.37	7.6	1.18	4.1E-09	1.19	2.7E-08
rs2747457	6	29764396	Т	G	9	14873	29432	0.25	0.23	0.78	0	1.12	5.5E-09	1.12	5.5E-09
rs259940	6	30119913	А	G	9	14876	29439	0.30	0.28	0.31	14.9	1.11	5.9E-09	1.11	2.2E-07
s4380028	15	76898148	С	Т	9	14874	29418	0.42	0.39	0.43	0.1	1.10	6.0E-09	1.10	6.2E-09
s3134942	6	32276749	G	Т	9	14814	29334	0.15	0.13	0.32	13.5	1.15	6.9E-09	1.15	3.0E-07
rs950776	15	76713073	Т	С	7	12342	24124	0.32	0.34	0.43	0	0.90	7.0E-09	0.90	7.0E-09
rs4975616	5	1368660	А	G	7	12352	24144	0.39	0.41	0.15	36.9	0.90	7.1E-09	0.90	3.2E-05
rs3094127	6	30805426	А	G	9	14878	29437	0.23	0.20	0.50	0	1.12	8.0E-09	1.12	8.0E-09
rs7762279	6	32863268	Т	С	9	14855	29429	0.11	0.10	0.66	0	1.17	1.0E-08	1.17	1.0E-08
rs2517598	6	30188253	G	А	9	14893	29460	0.17	0.15	0.43	1.0	1.13	1.2E-08	1.14	1.5E-08
rs1245371	6	30146331	А	G	8	14045	18195	0.30	0.28	0.38	6.5	1.11	1.2E-08	1.11	6.0E-08
rs2523989	6	30186254	С	Т	9	14882	29414	0.17	0.14	0.27	19.8	1.14	1.2E-08	1.14	8.6E-07
rs3129073	6	29723801	А	G	9	14880	29455	0.22	0.20	0.54	0	1.12	1.9E-08	1.12	1.9E-08
rs2656069	15	76532762	А	G	3	7192	7180	0.20	0.22	0.72	0	0.84	2.0E-08	0.84	2.0E-08
rs1062980	15	76579582	Т	С	3	7185	7174	0.36	0.38	0.22	33.9	0.87	2.2E-08	0.85	2.5E-04
rs2233956	6	31189184	Т	С	8	14029	18188	0.20	0.18	0.89	0	1.13	2.4E-08	1.13	2.4E-08
rs2508049	6	29931862	А	G	4	4653	6123	0.19	0.17	0.62	0	1.22	2.5E-08	1.22	2.5E-08
rs10519198	15	76529809	С	А	9	14850	29335	0.42	0.44	0.67	0	0.91	2.6E-08	0.91	2.6E-08
rs4678	6	31001920	G	А	8	13600	28045	0.22	0.20	0.12	39.2	1.12	2.8E-08	1.13	4.5E-05
rs3117143	6	29139121	С	А	9	14768	29276	0.10	0.09	0.10	40.8	1.17	2.9E-08	1.18	6.9E-05
rs3130564	6	31209653	С	Т	9	14882	29445	0.22	0.19	0.44	0	1.12	3.0E-08	1.12	3.0E-08
rs10484399	6	27642507	А	G	9	14850	29381	0.10	0.09	0.76	0	1.17	3.1E-08	1.17	3.1E-08
rs2256543	6	30045812	С	Т	9	14884	29442	0.45	0.43	0.05	48.7	1.09	3.4E-08	1.10	2.7E-04
rs2517861	6	29929961	С	Т	9	14869	29381	0.26	0.23	0.29	17.4	1.11	3.5E-08	1.11	1.8E-06
rs1150735	6	30153178	G	А	9	14870	29406	0.39	0.37	0.62	0	1.09	3.8E-08	1.09	3.8E-08
rs2844573	6	31443433	А	С	8	13773	16810	0.31	0.29	0.76	0	1.11	3.8E-08	1.11	3.8E-08
rs2844659	6	30932511	С	Т	9	14785	29339	0.22	0.19	0.35	10.0	1.12	3.8E-08	1.12	4.4E-07
rs6904596	6	27599278	G	А	9	14867	29411	0.11	0.10	0.97	0	1.16	4.7E-08	1.16	4.7E-08

MAF - minor allele frequency; P - p value; OR - Odds Ratio; Chr - chromosome; ¹ P value for heterogeneity was assessed using Cochran Q-statistic

		Position	Allel	e	Number of	Ν	Ν	N	/IAF	Hete	rogeneity	Fixed	effect model	Random	effect model
rs number	Chr	(NCBI Build36)	Reference	Effect	studies	cases	controls	cases	controls	\mathbf{P}^2	I2 (%)	OR	Р	OR	Р
rs1051730	15	76681394	G	А	7	12243	24073	0.41	0.35	0.78	0	1.32	1.4E-45	1.32	1.4E-45
rs8034191	15	76593078	Т	С	7	12253	24089	0.41	0.35	0.85	0	1.29	2.3E-40	1.29	2.3E-40
rs12914385	15	76685778	С	Т	3	7165	7145	0.46	0.40	0.10	56.5	1.31	2.5E-24	1.25	1.2E-04
rs6495309	15	76702300	С	Т	7	12257	24108	0.18	0.22	0.56	0	0.80	9.6E-22	0.80	9.6E-22
rs2036534	15	76614003	Т	С	7	12230	24053	0.19	0.22	0.59	0	0.81	4.7E-21	0.81	4.7E-21
rs6495314	15	76747584	А	С	7	12249	24073	0.44	0.40	0.73	0	1.19	4.7E-21	1.19	4.7E-21
rs11638372	15	76770614	С	Т	7	12249	24076	0.43	0.39	0.52	0	1.19	8.3E-20	1.19	8.3E-20
rs1394371	15	76511524	С	Т	7	12252	24084	0.33	0.29	0.67	0	1.18	4.2E-17	1.18	4.2E-17
rs578776	15	76675455	С	Т	3	7172	7161	0.23	0.28	0.31	14.0	0.79	1.7E-15	0.79	3.2E-10
rs8042374	15	76695087	А	G	3	7165	7140	0.20	0.24	0.63	0	0.78	1.7E-15	0.78	1.7E-15
rs12910984	15	76678682	А	G	3	7169	7155	0.20	0.24	0.55	0	0.78	1.9E-15	0.78	1.9E-15
rs938682	15	76683602	Т	С	3	7176	7157	0.20	0.24	0.60	0	0.78	2.2E-15	0.78	2.2E-15
rs3813565	15	76806665	С	А	3	7089	7104	0.44	0.39	0.15	47.6	1.23	8.1E-15	1.21	3.1E-04
rs12441998	15	76716427	А	G	3	7173	7160	0.19	0.22	0.76	0	0.79	1.5E-13	0.79	1.5E-13
rs13180	15	76576543	Т	С	7	12241	24053	0.35	0.39	0.61	0	0.87	2.0E-13	0.87	2.0E-13
rs1316971	15	76717565	G	А	3	7165	7151	0.19	0.22	0.65	0	0.80	6.7E-13	0.80	6.7E-13
rs2736100	5	1339516	А	С	7	12235	24032	0.46	0.49	0.26	22.3	1.14	1.2E-12	1.15	1.6E-09
rs3130350	6	30435818	G	Т	7	12226	24056	0.11	0.09	0.47	0	1.24	7.8E-11	1.24	7.8E-11
rs3130380	6	30387109	G	А	7	12233	24100	0.11	0.09	0.54	0	1.23	1.4E-10	1.23	1.4E-10
rs12594247	15	76733688	С	Т	7	12257	24096	0.14	0.16	0.98	0	0.85	1.8E-10	0.85	1.8E-10
rs8321	6	30140501	А	С	7	12236	24074	0.11	0.09	0.39	4.1	1.24	2.1E-10	1.24	8.0E-10
rs4887053	15	76499754	С	А	7	12257	24101	0.18	0.21	0.95	0	0.87	3.8E-10	0.87	3.8E-10
rs9261290	6	30146626	Т	С	7	12250	24049	0.11	0.09	0.31	15.6	1.23	5.2E-10	1.24	3.2E-08
rs31489	5	1395714	С	А	7	12246	24088	0.37	0.41	0.02	58.7	0.89	5.3E-10	0.88	1.8E-04
rs401681	5	1375087	С	Т	7	12244	24074	0.41	0.44	0.03	57.3	0.89	5.4E-10	0.88	1.2E-04
rs3094054	6	30441484	G	Т	7	12212	23980	0.11	0.09	0.89	0	1.22	9.7E-10	1.22	9.7E-10
rs1235162	6	29645203	А	G	7	12238	24047	0.10	0.08	0.55	0	1.23	1.0E-09	1.23	1.0E-09
rs3117582	6	31728499	Т	G	7	12226	24029	0.11	0.09	0.42	0.2	1.21	1.3E-09	1.21	1.4E-09
rs7775397	6	32369230	Т	G	7	12234	24033	0.11	0.09	0.09	45.0	1.21	1.7E-09	1.22	4.0E-05
rs1794282	6	32774504	С	Т	7	12252	24112	0.11	0.09	0.25	23.1	1.21	2.6E-09	1.21	1.6E-06
rs3131379	6	31829012	G	А	7	12243	24067	0.11	0.09	0.35	10.8	1.20	3.0E-09	1.21	7.3E-08

Table S3. Genome-Wide Significant Result (p<5 x 10⁻⁸) for the Overall Meta-Analysis adjusted for smoking status¹

		Position	Allel	e	Number of	Ν	Ν	Ν	1AF	Hete	erogeneity	Fixed	effect model	Random	effect model
rs number	Chr	(NCBI Build36)	Reference	Effect	studies	cases	controls	cases	controls	\mathbf{P}^2	I2 (%)	OR	Р	OR	Р
rs2734986	6	29926547	Т	С	7	12252	24090	0.17	0.15	0.61	0	1.17	3.4E-09	1.17	3.4E-09
rs3885951	15	76612972	А	G	7	12243	24018	0.11	0.10	0.00	68.4	1.20	3.4E-09	1.16	0.02
rs9262143	6	30760760	С	Т	7	12245	24064	0.12	0.10	0.79	0	1.20	3.8E-09	1.20	3.8E-09
rs3132610	6	30652380	А	G	7	12257	24070	0.12	0.10	0.69	0	1.20	3.9E-09	1.20	3.9E-09
rs680244	15	76658343	С	Т	7	12245	24092	0.39	0.42	0.83	0	0.89	4.6E-09	0.89	4.6E-09
rs8038920	15	76761600	G	А	7	12241	24042	0.33	0.35	0.28	20.0	0.89	5.5E-09	0.90	6.9E-06
rs558702	6	31978305	G	А	7	12253	24107	0.11	0.09	0.28	19.7	1.20	6.2E-09	1.21	7.8E-07
rs17487514	15	76740840	С	Т	3	7165	7147	0.32	0.29	0.97	0	1.18	8.0E-09	1.18	8.0E-09
rs389884	6	32048876	А	G	7	12253	24045	0.11	0.09	0.33	12.5	1.20	8.9E-09	1.20	2.5E-07
rs1270942	6	32026839	А	G	7	12247	24059	0.11	0.09	0.34	11.7	1.20	1.1E-08	1.20	2.3E-07
rs3132685	6	30053928	G	А	7	12212	24012	0.11	0.10	0.45	0	1.20	1.4E-08	1.20	1.4E-08
rs6495306	15	76652948	А	G	7	12249	24083	0.39	0.42	0.74	0	0.90	1.4E-08	0.90	1.4E-08
rs1996371	15	76743861	Т	С	5	5551	17411	0.43	0.39	0.89	0	1.16	1.7E-08	1.16	1.7E-08
rs2746150	6	29550680	С	Т	7	12256	24062	0.09	0.08	0.24	24.9	1.22	1.8E-08	1.22	5.1E-06
rs3130544	6	31166319	С	А	7	12250	24096	0.12	0.10	0.43	0	1.19	2.2E-08	1.19	2.2E-08
rs2187668	6	32713862	С	Т	7	12228	24021	0.13	0.11	0.31	15.5	1.17	4.1E-08	1.18	1.4E-06

MAF - minor allele frequency; P - p value; OR - Odds Ratio; Chr - chromosome; ¹ Neither of the UK studies contributed to the analysis adjusted for smoking because this information was lacking on the controls. ² value for heterogeneity was assessed using Cochran Q-statistic

SNP	Position	Distance from 1051720	\mathbb{R}^2	D'
	(NCBI Build36)	Distance from rs1051730		
rs938682	76683602	2208	0.179	1
rs12910984	76678682	2712	0.179	1
rs12914385	76685778	4384	0.844	1
rs578776	76675455	5939	0.228	1
rs8042374	76695087	13693	0.179	1
rs6495309	76702300	20906	0.152	1
rs680244	76658343	23051	0.46	1
rs6495306	76652948	28446	0.46	1
rs950776	76713073	31679	0.331	1
rs12441998	76716427	35033	0.134	1
rs1316971	76717565	36171	0.134	1
rs12594247	76733688	52294	0.102	1
rs17487514	76740840	59446	0.377	0.748
rs1996371	76743861	62467	0.562	0.803
rs6495314	76747584	66190	0.562	0.803
rs2036534	76614003	67391	0.169	1
rs3885951	76612972	68422	0.185	1
rs8038920	76761600	80206	0.344	1
rs4887077	76765419	84025	0.507	0.762
rs8034191	76593078	88316	0.934	1
rs11638372	76770614	89220	0.507	0.762
rs1062980	76579582	101812	0.276	0.788
rs13180	76576543	104851	0.263	0.783
rs11072793	76793497	112103	0.014	0.263
rs3813565	76806665	125271	0.557	0.772
rs2656069	76532762	148632	0.109	0.78
rs10519198	76529809	151585	0.353	0.876
rs1394371	76511524	169870	0.624	0.91
rs4887053	76499754	181640	0.045	0.504
rs4887053	76499754	181640	0.045	0.504
rs4380028	76898148	216754	0.224	0.498
rs4539564	76915554	234160	0.097	0.381

Table S4.Pairwise Linkage Disequilibrium between rs1051730 and top 15q25 SNPs ¹

 $\frac{132 \text{ SNPs at the 15q25 locus reached genome-wide significance (P<5 x 10^8)}{132 \text{ SNPs at the 15q25 locus reached genome-wide significance (P<5 x 10^8)}$. The Linkage disequilibrium between variables was based on the 1000Genome project data, CEU population and retrieved using SNAP software (1897417).

					Asian popula	tion		Meta-analysis								
]	R2 with the	e						
				effect					proxy				MAF			
Locus	Genes	SNP	Study	allele	MAF controls	OR	Р	proxy in CEU	(D'=1)	N Cases	N Controls	Allele	controls	OR	Р	
3q28	<i>TP63</i>	rs4488809	Hu et al., 2011; Miki et al., 2010	С	0.33 - 0.47	1.26 (1.21–1.32)	7.2 × 10–26	rs1920235	0.76	1,461	1,432	Т	0.40	1.02 (0.92- 1.14)	0.69	
		rs10937405	Miki et al., 2010	Т	0.33	1.31 (1.22–1.42)	7.26×10^{-12}	rs10937405	n/a	7,194	7,179	Т	0.42	0.99 (0.94-1.04)	0.58	
3q29	C3orf21	rs2131877	Yoon et al., 2010	G	0.199	1.30 (1.19–1.42)	2.4×10^{-8}	rs1874104	0.83	14,881	29,385	Т	0.15	1.00 (0.96-1.05)	0.84	
13q12.12	MIPEP- TNFRSF19	rs753955	Hu et al., 2011	G	0.29	1.18 (1.13–1.24)	1.5×10^{-12}	rs745068	0.96	12,201	24,095	Т	0.37	1.01 (0.97-1.04)	0.70	
22q12.2	MTMR3-	rs17728461	Hu et al., 2011	G	0.19	1.20 (1.14–1.27)	1.1×10^{-11}	rs9614158	0.91	7,197	7,181	G	0.31	1.07 (1.01-1.12)	0.01	
	HORMAD2-LIF	rs36600	Hu et al., 2011	Т	0.09	1.29 (1.20–1.38)	6.2×10^{-13}	rs3788423	0.92	14,888	29,438	Т	0.26	1.02 (0.99-1.06)	0.25	

Table S5. Association of Genetic Variants Identified in Asian Population with the Rsk of Lung Cancer in the Meta-Analysis on Populations of European Descendants

	MDACC	Liverpool	ICR	SLRI	IARC	deCODE	HGF	Harvard	NCI	Han Chinese
Quality Control exclusion criteria	See Study description*					See study description*	n/a			
Missing rate per person	-	>5%	>5%	>10%	>5%			>5%	>5%	>5%
X chromosome heterozygosity rate		>20% for men and < 20% for women	>20% for men and < 20% for women	>10% for men and < 20% for women	>10% for men and < 20% for women			>20% for men and < 20% for women	>5% for men and < 20% for women	>10% for men and < 20% for women
Unexpected duplicates and first degree relatives		duplicate ID, genome-wide IBD proportion > 0.185	duplicate ID, genome-wide IBD proportion > 0.185		duplicate ID, genome-wide IBD proportion > 0.20			duplicate ID, genome-wide IBD proportion > 0.185	duplicate ID	duplicate ID, genome wide IBD proportion 2 0.20
Autosomal heterozygosity rate		>6 SD of the mean	>6 SD of the mean	>6 SD of the mean	>6 SD of the mean			>6 SD of the mean	>34%	>6 SD of the mean
Non European ancestry		Non CEU	Non CEU	<80% CEU	<70% CEU			Non CEU	<80% CEU	<80% CEU
Test of missingness by case- control status					<1x10 ⁻⁶					<1x10 ⁻⁶
Genotyped call rate		<0.95	< 0.95	<0.95	<0.95			<0.95	<0.95	<0.99
MAF		n/a	n/a	<1x10 ⁻¹⁰	n/a			<1%	n/a	<1%
HWE		<1x10 ⁻⁶	<1x10 ⁻⁶	<1x10 ⁻⁶	<1x10 ⁻⁷			<1x10 ⁻⁶	<1x10 ⁻⁷	<1x10 ⁻⁶
Imputation Methods	mach1.0	Impute II	Impute II	Impute II	minimac	Impute	n/a	mach1.0	Impute II	minimac
Reference Panel	1000Genome	HapMap 3 + 1000Genome	HapMap 3 + 1000Genome	HapMap 3 + 1000Genome	1000Genome	HapMap 2 (r22)	n/a	1000Genome (release 2010-06)	HapMap 3 + 1000Genome	1000Genome(release 2010-06)
Method used for association analysis	ProbABEL	SNPTEST	SNPTEST	SNPTEST	mach2dat	SNPTEST	n/a	PLINK (dosage function)	R (glm function)	mach2dat

Table S6. Characteristics of imputation methods and platforms used by the participating studies

IBD - identical by descent

* - No additional quality control before imputation was performed. The quality control before imputation was similar to the standard quality control applied for directly genotyped SNPs.

	rs401681	rs2736100	rs3117582	rs1333040	rs10849605	rs6495309	rs1051730
	CLPTM1L	TERT	BAG6/BAT3	CDKN2B-AS	RAD52	CHRNA3-CHRNB4	CHRNA3
Study	Т	С	G	С	Т	Т	А
MDACC ^a	0.41/0.44	0.54/0.50	0.12/0.11	0.43/0.41	0.48/0.49	0.18/0.21	0.40/0.33
Liverpool Lung Project	0.38/0.44	0.52/0.51	0.17/0.14	0.43/0.41	0.43/0.48	0.19/0.22	0.37/0.32
ICR-GWA study ^b	0.41/0.44	0.53/0.51	0.16/0.13	0.43/0.42	0.46/0.47	0.17/0.21	0.40/0.34
SLRI ^c /Toronto	0.43/0.44	0.56/0.53	0.11/0.09	0.40/0.38	0.51/0.51	0.18/0.20	0.40/0.34
IARC ^d GWAS:	0.39/0.43	0.52/0.47	0.12/0.09	0.45/0.45	0.45/0.49	0.19/0.22	0.41/0.34
DeCODE Genetics	0.42/0.45	0.53/0.50	0.09/0.08	0.52/0.50	0.48/0.50	0.18/0.21	0.40/0.35
HGF Germany ^g	0.41/0.42	0.56/0.50	0.11/0.09	0.45/0.42	0.48/0.46	0.17/0.22	0.42/0.38
Harvard	0.38/0.45	0.44/0.50	0.11/0.09	0.41/0.38	0.50/0.49	0.19/0.22	0.43/0.36
NCI GWAS:	0.44/0.46	0.54/0.52	0.10/0.09	0.44/0.42	0.51/0.49	0.19/0.23	0.42/0.35

Table S7. Effect Allele Frequencies for Top Most Significant SNPs by Study and Case-Control Status (in cases/in controls)

MD Anderson Cancer Center

а

b Institute of Cancer Research

с Samuel Lunenfeld Research Institute

International Agency for Research on Cancer d

- Carotene and Retinol Efficacy Trial cohort. e
- \mathbf{f} North Trondelag Health Study 2 / Tromsø IV.
- Helmholtz-Gemeinschaft Deutscher Forschungszentren Lung Cancer GWAS. g
- Environment And Genetics in Lung cancer Etiology study. h

Alpha-Tocopherol, Beta-Carotene Cancer Prevention study. i

j Prostate, Lung, Colon, Ovary screening trial.

Cancer Prevention Study II nutrition cohort. k

Wellcome Trust Case Control Consortium 1