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Abstract. We report on the experimental results for heat-transport measure-
ments, in the form of the Nusselt number Nu, by turbulent Rayleigh–Bénard
convection (RBC) in a cylindrical sample of aspect ratio 0 ≡ D/L = 0.50 (D =

1.12 m is the diameter and L = 2.24 m the height). The measurements were
made using sulfur hexafluoride at pressures up to 19 bar as the fluid. They are
for the Rayleigh-number range 3 × 1012 . Ra . 1015 and for Prandtl numbers
Pr between 0.79 and 0.86. For Ra < Ra∗

1 ' 1.4 × 1013 we find Nu = N0 Raγeff

with γeff = 0.312 ± 0.002, which is consistent with classical turbulent RBC in
a system with laminar boundary layers below the top and above the bottom
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plate. For Ra∗

1 < Ra < Ra∗

2 (with Ra∗

2 ' 5 × 1014) γeff gradually increases up
to 0.37 ± 0.01. We argue that above Ra∗

2 the system is in the ultimate state of
convection where the boundary layers, both thermal and kinetic, are also turbu-
lent. Several previous measurements for 0 = 0.50 are re-examined and compared
with our results. Some of them show a transition to a state with γeff in the range
from 0.37 to 0.40, albeit at values of Ra in the range from 9 × 1010 to 7 × 1011

which is much lower than the present Ra∗

1 or Ra∗

2 . The nature of the transition
found by them is relatively sharp and does not reveal the wide transition range
observed in this work. In addition to the results for the genuine Rayleigh–Bénard
system, we present measurements for a sample which was not completely sealed;
the small openings permitted external currents, imposed by density differences
and gravity, to pass through the sample. That system should no longer be re-
garded as genuine RBC because the externally imposed currents modified the
heat transport in a major way. It showed a sudden decrease of γeff from 0.308 for
Ra < Rat ' 4 × 1013 to 0.25 for larger Ra. A number of possible experimental
effects are examined in a sequence of appendices; none of these effects is found
to have a significant influence on the measurements.
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1. Introduction

In this paper we consider turbulent convection in a fluid contained between horizontal parallel
plates and heated from below (Rayleigh–Bénard convection, or RBC; for reviews written for
broad audiences see [1, 2]; for more specialized reviews see [3, 4]). The primary purpose of
the work on which we report was to search for the transition to the ‘ultimate’ state of turbulent
convection first predicted by Kraichnan [5] and Spiegel [6] half a century ago.

We focus on the particular case of a cylindrical sample of aspect ratio 0 ≡ D/L = 0.50
(D = 1.12 m and L = 2.24 m are the diameter and height respectively) because this particular
geometry was used in previous searches for this state [7–17] and thus enables a more direct
comparison with earlier measurements. Experiments searching for the ultimate state using other
values of 0 are of course important as well and some have been carried out [17–22], but they
are beyond the scope of this paper. The work reported here consists of measurements of the heat
transport by the turbulent system. Other aspects will be discussed separately.

We present results that were obtained in the High-Pressure Convection Facility (the HPCF,
a cylindrical sample of 1.12 m diameter) at the Max Planck Institute for Dynamics and Self-
organization in Göttingen, Germany using sulfur hexafluoride (SF6) at pressures up to 19 bar
as the fluid. Early results from this work were presented in [23, 24, 26]. A description of the
apparatus was given in [23]. This paper presents new results obtained after various sample-
chamber modifications to be described in this paper and is a comprehensive report on this work.
A brief report of these recent results was provided in [25].

The HPCF is located inside a pressure vessel known as the Uboot of Göttingen
which gets filled with the gas of choice. Thus there must be some way for the gas
to enter or leave the HPCF. Originally a small gap of average width about 1 mm
was permitted for this purpose to remain between the top and bottom plate and the
side wall of the sample [23]. Erroneously it was assumed that this gap was negligible because
it is small compared to the 1120 mm sample diameter. This sample will be called the ‘open’
sample. It turned out that the results depended on the temperature difference between the fluid
in the sample at a temperature Tm and the fluid in the remainder of the Uboot at TU [26]. For
that reason the HPCF was modified by sealing the bottom plate to the side wall, but leaving
the gap between the top plate (TP) and the side wall open. This system will be called the ‘half-
open’ sample. There still was a major difference between the results for Tm > TU and Tm < TU,
although these results differed from those of the closed sample. Thus, as a final measure, both
the top and the bottom plates were sealed to the side wall, and a 25 mm diameter tube was
installed to permit the gas to enter the HPCF. One end of the tube was flush with the inside of
the side wall, and the other terminated in a remotely controlled valve. The sample could thus be
filled while the valve was open, and then during measurements the valve could be closed. This
sample will be called the ‘closed’ sample. Results for all three versions will be presented in this
paper.

In the next section we shall define the parameters needed to describe this system (section 2).
We shall then, in section 3, outline the main features of turbulent convection as they are now
understood. First, in section 3.1, we describe the classical state of turbulent convection which
exists below the transition to the ultimate state with turbulent boundary layers (BLs). This will
be followed in section 3.2 by a description of what is known or expected for the ultimate state.
This introductory material will be followed in section 4 by a brief discussion of the apparatus
modifications used in this work. A detailed description of the main features was previously
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presented [23]. Section 5 presents a comprehensive discussion of our results and of the results
of others at large Ra for cylindrical samples with 0 = 0.50. It is followed by a summary of our
work in section 6.

In a sequence of six appendices we discuss a number of experimental issues which might
be of lesser interest to the general reader but which are of considerable importance to the
specialist. First, in appendix A we compare measurements for three different angles of tilt of
the sample axis relative to gravity. The effect of a tilt has been studied by several groups, with
varying results [17, 27–31]. A tilt is used at times by experimentalists to give the large-scale
circulation (LSC) in the sample a preferred azimuthal orientation. This was our motivation
as well. We show that it had no discernible effect on Nu. In appendix B we demonstrate
that non-Oberbeck–Boussinesq (NOB) effects [32, 33] have only a very minor effect on Nu
which can be seen only at the largest values of 1T near 20 K. In appendix C we present
values of the parameter ξ introduced recently by Niemela and Sreenivasan [34] to describe
a special NOB effect, which apparently occurs near critical points. We find that for our work
ξ ' 1.3, indicating that the effect discussed in [34] (which occurs for small or negative ξ ) is
not expected to be relevant to our study. In appendix D we provide the results for the horizontal
temperature variations in the top and bottom plate of the sample and demonstrate that they do
not influence the measured values of Nu. In appendix E we show that the ‘closed’ sample really
was completely sealed. In appendix F we present data for the influence of a mismatch between
the temperature of the sample side shield (SS) and the sample mean temperature Tm, and show
that the SS temperature-regulation is good enough for these effects to be negligible. Finally, in
appendix G, we give a complete list of our data in numerical form.

2. The system parameters

For turbulent RBC in cylindrical containers there are two parameters which, in addition to 0, are
expected to determine its state. They are the dimensionless temperature difference, as expressed
by the Rayleigh number

Ra ≡
αg1T L3

κν
, (1)

and the ratio of viscous to thermal dissipation, as given by the Prandtl number

Pr ≡ ν/κ. (2)

Here α is the isobaric thermal expansion coefficient, g the gravitational acceleration, κ the
thermal diffusivity, ν the kinematic viscosity, and 1T ≡ Tb − Tt the applied temperature
difference between the bottom (Tb) and the top (Tt) plate.

In this paper we present measurements of the heat transport. These results are presented in
the form of the scaled effective thermal conductivity, known as the Nusselt number, which is
given by

Nu ≡
QL

A1T λ
. (3)

Here Q is the applied heat current, A = D2π/4 the sample cross-sectional area, and λ the
thermal conductivity. The measurements cover the range 3 × 1012 . Ra . 1015 and are for Pr
ranging from 0.79 at the lowest to 0.86 at the highest Ra.
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All fluid properties needed to calculate Ra, Pr , and Nu were evaluated at the mean
temperature Tm = (Tt + Tb)/2 of the sample. They were obtained from numerous papers in the
literature, as discussed in [35].

3. The characteristics of turbulent Rayleigh–Bénard convection

3.1. The classical state

A ‘classical’ state of RBC exists below a transition range to an ‘ultimate’ state; the transition
range extends over more than a decade, approximately from Ra∗

1 to Ra∗

2 [25]. For simplicity
of discussion we shall characterize this range by Ra∗, taken to lie perhaps somewhere near the
middle of the range, which, for the parameters of our work, is about 1014 [25, 36]. For Ra . Ra∗

the heat transport in this system is controlled by laminar thermal BLs, one just below the top
and the other just above the bottom plate. The value of Ra∗ has been the subject of discussion
for some time, and a major issue at the forefront of the field is the nature of the state above Ra∗.
Estimates of Ra∗ are not very accurate; a reasonable argument [36] yielded Ra∗

' 1014 or so
for Pr ' 1, although another estimate [19] gave a value closer to 1012.

For Ra < Ra∗ nearly half of 1T is found across each BL, and the sample interior
(known as the ‘bulk’) has a highly fluctuating temperature which is nearly uniform in the time
average [37, 38]. At a more detailed level it was recognized long ago that the bulk actually
sustains small temperature gradients, but the total temperature drop across it is much smaller
than that across the BLs (see, for instance, [39–41]). Very recently it was found that these small
temperature variations in the bulk take the form of a logarithmic dependence on the distance
from the plates [42].

For the classical state it is well established both experimentally [18, 43–48] and
theoretically [36, 49–51] that the Nusselt number can be represented by a power law

Nu = N0 Raγeff (4)

with the effective exponent varying from about 0.28 near Ra = 108 to about 0.32 near Ra =

1011, at least when Pr is close to one or larger.
It is also well established that, in cylinders with 0 ' 0.5 containing a fluid with Pr ' 0.7

and for Ra . 1011, there is a LSC in the sample interior that takes the form of a single convection
roll, with up-flow along the side wall at an azimuthal position θ0 and down-flow also along the
wall but at an azimuthal position close to θ0 + π [41, 52]. The LSC is bombarded by the small-
scale fluctuations of the system, and may be regarded as a stochastically driven system that
fluctuates intensely [53, 54]. Even at modest Ra below, say, 1011 and for Pr near 0.7, the LSC
existence is intermittent [52]. It frequently collapses, only to re-form again at a somewhat later
time. Whether the LSC survives at all up to Ra∗ had not been clear heretofore; it was recognized
(see, for instance, [19]) that the LSC becomes less well defined as Ra increases, but concrete
quantitative experimental evidence for its existence or demise has only become available during
this work [25]. We found that, even for Ra = 1015, there is evidence of its existence, but its
average lifetime is short and it may be regarded more appropriately as just one of the continuum
of modes contributing to the fluctuation spectrum of the system. This will be reported in detail
in a subsequent paper.

When the fluctuations are not too vigorous, the LSC due to its horizontal flow with speed
U just adjacent to the top and bottom plate will establish viscous BLs adjacent to the plates.
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The viscous BLs may be imbedded in the thermal ones or vice versa, depending on Pr . These
BLs are laminar, albeit fluctuating [55, 56], in the classical state.

3.2. The ultimate state

About half a century ago it was predicted by Kraichnan [5] and Spiegel [6] that, in the absence
of BLs, the Nusselt number should be proportional to Raγ with γ = 1/2. This prediction is
consistent with rigorous upper bounds for Nu(Ra) obtained by Howard [57] and by Doering and
Constantin [58]. Although it seems difficult to construct a physical system without boundaries,
the γ = 1/2 prediction was supported by direct numerical simulations (DNS) of RBC with
periodic boundary conditions in the vertical direction and forcing in the bulk [59–61], as well as
by DNS for the Rayleigh–Taylor instability [62], which is expected to reveal similar phenomena
and has no boundaries. Experimentally, it is noteworthy that a local heat-flux measurement in
the center of a Rayleigh–Bénard sample in the classical state (i.e. in the state with laminar BLs)
yielded an exponent of 0.5 [63], even though the global heat flux led to γeff ' 0.3.

In the presence of boundaries, Kraichnan noted that the BLs should become turbulent
when Ra exceeds some characteristic value Ra∗. This event was expected to be induced by
the shear applied to the BLs by the LSC, or if none exists, by the vigorous turbulent fluctuations
in the sample interior. It was expected to occur when a shear Reynolds number Res exceeds
a characteristic value Re∗

s , which is expected to be somewhere in the range from about 200
to 400 [36, 64, 65]. The shear Reynolds number in turn is expected to be related to the bulk
Reynolds number Re by Res = a

√
Re, where a is a constant that was estimated to be close to

0.5 [36]. Significant uncertainty prevails about the appropriate estimate of Re(Ra). At modest
Ra one expects it to be determined primarily by the horizontal component of the LSC velocity
just above the BL. In that case (and for 0 = 1) it is expected to be given, with reasonable
reliability, by the Grossmann–Lohse model [36]. However, at the values of Ra relevant here
the LSC velocity is highly intermittent, its time average is small, and the root-mean-square
fluctuation velocity is an order of magnitude larger [25]. When fluctuations dominate, their root-
mean-square horizontal velocity near the BLs should yield a measure of the applied shear. In that
case the characteristic size of fluctuations will cover a range, roughly from D down to smaller
lengths, and will be intermittent in time. One would then expect the turbulent shear layers to
be more localized laterally in space, as well as in time. In view of the complex phenomena we
have just described, any estimate of Ra∗ can only be expected to hopefully be of the right order
of magnitude. We note that the Grossmann–Lohse model, with parameters determined by fits
to experimental data for 0 = 1 and at much smaller Ra, yields Ra∗

' 1014 when Pr ' 1. It
predicts that Ra∗ increases with Pr (see figure 9 and equation (5) below).

In Kraichnan’s considerations he assumed that the viscous and thermal BLs would undergo
the shear-induced transition at the same value of Ra. Even in the presence of rigid top and
bottom plates the prediction for the large-Ra asymptotic state then was still Nu ∼ Ra1/2.
However, Kraichnan [5] predicted that, due to the turbulent BLs, there would be logarithmic
corrections to this power law. Recently Grossmann and Lohse considered the possibility that the
thermal and viscous BLs may undergo the turbulent shear transition at different values of Ra
or simultaneously, and derived the consequences of transitions in one or the other or both [65].
The ultimate state would then correspond to the case where both the viscous and the thermal
BLs become turbulent (see section 3.3 of [65]; we will reserve the notation Ra∗ for this case).

New Journal of Physics 14 (2012) 103012 (http://www.njp.org/)

http://www.njp.org/


7

In an analogy to the logarithmic velocity profiles in turbulent shear flows first considered
by von Kármán [66] and Prandtl [67] (for a recent review, see [68]), Grossmann and Lohse [65]
predicted that the turbulent BLs would extend throughout the sample, replacing the bulk by
a temperature profile that varies logarithmically with the distance from the plates. For the
Boussinesq system [32, 33] the two profiles, one coming from the top and the other from the
bottom plate, would then meet at the horizontal mid-plane of the cell. Logarithmic temperature
profiles have indeed been observed in recent measurements for the ultimate state [42]; but since
they were found for the classical state as well, it remains unclear to what extent this finding
supports the prediction. In conjunction with the viscous and thermal sublayers near the plates
(which survive above Ra∗ because of the boundary conditions at the solid–fluid interface), the
extended turbulent BLs lead to logarithmic corrections to the asymptotic power law for Nu. The
Grossmann and Lohse prediction for these logarithmic corrections differs from the original form
of the logarithms given by Kraichnan. However, for either prediction the corrections vary only
slowly with Ra, and in experimentally accessible Ra ranges one expects an effective power
law with an effective exponent γeff ' 0.38–0.40. The asymptotic regime where the effective
exponent has essentially reached 1/2 is well out of reach of any conceivable experiment.

A notable recent success in the search for the ultimate state has been achieved with
turbulent Couette–Taylor (CT) flow [69, 70] (it had been shown on the basis of its equations of
motion that it should undergo an ultimate-state transition that is analogous to that of RBC [71]).
In the CT case the shear is applied directly to the fluid by concentric rotating cylinders, and
thus is much more effective in driving the BLs into the turbulent state than is the shear in RBC,
which is generated as a secondary effect by the buoyancy-induced LSC or the fluctuations.
The CT measurements yielded an effective exponent of 0.38 for the corresponding variables,
consistent with 1/2 and the predicted logarithmic corrections [65].

For RBC the situation is less clear. In order to reach exceptionally high Ra, two groups
used fluid helium near its critical point at temperatures of about 5 K and pressures of about
2 bar. One of them [9, 12], at the time located at Grenoble, reported to have found the ultimate
regime, and cited a value Ra∗

' 1011. We shall refer to these results as the ‘Grenoble’ data.
A major puzzle created by these results is that one can estimate that the data imply Re∗

s ' 100
or less; this seems too low for any BL shear instability.

In a second nominally equivalent investigation near the critical point of helium Niemela
et al [10] made measurements of Nu up to Ra ' 1017. They found that Nu ∝ Ra0.32 [72] up
to their largest Ra, without any evidence for a transition. This work was done at the University
of Oregon, and we shall refer to these results as the ‘Oregon’ data. In this case the absence of
a transition does not necessarily contradict expectations because Pr began to increase as Ra
exceeded about 1013, and it is plausible that Ra∗(Pr) was never reached or resolved in that
experiment.

There have been a number of additional low-temperature experiments intended to clarify
the situation; we refer to a recent review [3] for a detailed discussion of these measurements. For
completeness we mention a comprehensive recent article by Roche et al [17] which examines
the influence of the nature of the side walls, of 0, of Pr , and of several other factors which seem
to influence the transition to a state with γeff significantly larger than 0.32. This survey concludes
that a transition to the ultimate regime occurs in several experiments, but again these transitions
occurred at unexpectedly low values of Ra. The survey concludes that the transition occurs at
smaller Ra when Pr is larger, which is opposite to the Pr dependence of Ra∗ expected for the
shear instability. Since no LSC-induced shear instability is likely to have occurred, and since
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Table 1. Versions of the HPCF. The second column gives the material used to
construct the top and bottom plates. The third column indicates whether the top
and/or bottom plate were sealed to the side wall. The fourth column gives the
numbers of the runs performed in each unit.

Version Plates Seals Runs

HPCF-I Aluminum None 080827–090313
HPCF-IIa Copper None 090505–090917
HPCF-IIb Copper None 090905–100125
HPCF-IIc Copper Bottom 100202–100502
HPCF-IId Copper Bottom and top 100612–100818
HPCF-IIe Copper Bottom and top 100918–110919
HPCF-IIf Copper Bottom and top 120224–120429
HPCF-IIg Copper Bottom and top 120713 etc

the ultimate-state predictions are based on the assumption of turbulent BLs, it remains unclear
to us how the states with γeff much larger than 0.32 reported in [17] are related to the Kraichnan
prediction [5] or to the states discussed by Grossmann and Lohse [65].

4. Apparatus

Versions HPCF-I, HPCF-IIa, and HPCF-IIb of the apparatus were described in detail in [23].
A schematic diagram of these units can be found in figure 2 of that reference. HPCF-I had
aluminum top and bottom plates, whereas HPCF-II had copper plates. HPCF-IIa and IIb
differed only in the amount and type of insulation (mostly open-pore foam and aluminum-
coated polyester film, see [23]) provided outside the sample cell, and the data obtained with
them showed no obvious differences. More recently five additional modifications, known as
HPCF-IIc to -IIg, were developed; corresponding schematic diagrams are shown in figure 1.
HPCF-IId and later versions differed from HPCF-IIc by the 2.5 cm diameter side arm and valve
used to fill and empty the sealed samples, and by whether or not the side wall was sealed to the
bottom and/or TP. Further, starting with HPCF-IId, the additional micro-shield BBMS, located
5 mm above BMSt, was in place. Its temperature was servoed at Tm. HPCF-IId failed because
pressurization of the Uboot at too fast a rate had caused a pressure differential between the
Uboot and the sample, which was large enough (over 0.05 bar) to lift the 500 kg bottom-plate
composite and thus destroy the seal to the side wall. The data obtained with it are thus not
useable. HPCF-IIe is a repaired version identical to IId. HPCF-IIf had two additional columns
of thermistors, eight each, installed in its bottom half in the sample interior at a distance of 1 cm
from the side wall. It was used for the work reported in [42]. HPCF-IIg had more additional
vertical columns of thermistors installed at various radial positions and is intended for future
work. Table 1 lists the major differences between the eight versions, as well as the identifications
of the runs8 performed in each.

All samples had an internal height L = 2240 ± 2 mm and diameter D = 1122 ± 2 mm. The
measurements to be discussed here were made in HPCF-IIb to -IIe. All samples had a Plexiglas

8 The run numbers had the structure ‘yymmdd’.
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Figure 1. Left: diagram of HPCF-IIe. Right: detailed diagram of the top and
bottom corners of HPCF-IIc to HPCF-IIe. All parts are shown to scale, except
for the valve in the left part. We refer to figure 2 of [23] for a description of
many features that were common with HPCF-I to HPCF-IIb. The bottom plate
was a composite consisting of a bottom member ‘BPb’, a top member ‘BPt’,
and a Lexan sheet between them. The bottom-plate heater was imbedded in
epoxy inside the heater grooves (‘BP htr grooves’). The bottom shield (‘BS’) was
extended by adding a section (‘BS2’). The bottom bulk microshield (‘BBMS’),
servoed at Tm, is new. The side shield (‘SS’) and top microshield (‘TMS’) are
unchanged. The location and size of the spiral water channels (‘water spirals’) in
the top plate (‘TP’) are indicated.

side wall of 0.95 cm thickness and several thermal shields. The entire sample was immersed in a
high-pressure vessel, known as the Uboot of Göttingen, that could be filled with various gases,
including sulfur hexafluoride (SF6), up to a pressure of P = 19 bar. As shown in figure 1, all
samples had a composite bottom plate consisting of a bottom (BPb) and a top (BPt) member
made of copper (aluminum for HPCF-I) and a 5 mm thick layer of Lexan sandwiched between
them. The composite was glued together with very thin layers of degassed Stycast 1266 epoxy.
The temperature difference across this composite, together with the composite conductance,
was used to infer the heat current Q that entered the sample at the bottom. The underside of
the bottom member of the composite was heated electrically by a heater immersed in epoxy
in grooves (‘BP htr grooves’). The TP was cooled by a water circuit consisting of two pairs
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of double spirals. The pairs were in parallel, and the flows in the two members of a given pair
were anti-parallel. Remaining horizontal thermal gradients in the TP and the BPt are discussed
in appendix D.

The various shields which prevented parasitic heat losses from the sample cell were
discussed in detail in [23]. Starting with HPCF-IId we added two more shields. The bottom
shield, which is always servoed at the temperature of the bottom member BPb of the composite,
was extended by adding the section BS2 (see figure 1). A more significant addition was the
‘Bottom Bulk Micro Shield’ BBMS. It was servoed at Tm and thus minimized vertical thermal
gradients in the space between the side wall and the SS. Prior to the addition of BBMS there
was a vertical temperature drop from the BPt temperature at BMSt to Tm at TMS, which is
approximately equal to 1T/2 and thus generated a Rayleigh number about equal to half the
sample Ra. Even though the space between the side wall and the SS was filled with foam and
polyester film, convection is believed to have been induced in this space during runs at the larger
values of Ra.

HPCF-IIc was identical to HPCF-IIb, except that a seal consisting of silicone adhesive was
applied to the inside corner between the side wall and the top of the bottom-plate composite
along the entire periphery. It is expected that this seal will prevent any flow through the small
gap, of width about 1 mm, between the side wall and the bottom plate. A similar gap between
the side wall and the TP was left open since fluid had to be allowed to enter or leave the cell as
the temperature or pressure was changed.

HPCF-IId to HPCF-IIg consisted of a completely sealed system, with no gaps between the
top or bottom plates and the side wall. A tube of inside diameter 2.5 cm was installed and entered
the side wall at half height. Its termination was flush with the inside of the side wall, without any
protrusion into the convection chamber. Outside the convection chamber this tube contained a
remotely operated ball valve. A small-diameter ('3 mm) tube led from the sample side of the
2.5 cm diameter tube to a location outside the Uboot where it was connected to the pressure
gauge. Thus, the actual sample pressure could be monitored. At each set point of the experiment
the system was equilibrated with the valve open for about six hours. The valve was then closed,
permitting measurements on a completely sealed system. The fill tube had two side arms with an
additional valve in each. One opened when the pressure difference PU − P between the Uboot
and the sample exceeded 25 mbar; the other opened when this pressure difference was less
than −25 mbar. We note that a pressure difference of 25 mbar leads to a force of about 250 kg
acting on the top and bottom plates. When for instance this force exceeds the weight of the
TP, then this plate will lift up and damage will be done to the instrument. In order to keep
|PU − P| sufficiently small, filling and emptying of the Uboot and sample was done very slowly,
over a period of a day or two depending on the desired pressure. Measurements of the sample
pressure under various conditions showed that the sample was indeed sealed, as discussed in
appendix E.

Nusselt-number measurements were based on temperatures determined with fifteen
thermometers, five each in the two members BPb and BPt of the bottom-plate composite and
five in the TP. Each set of five consisted of one thermometer placed at the plate center and four,
positioned equally spaced azimuthally, at a distance of 0.42D from the center. The thermometers
in the BPt and the TP were located about 1 mm from the fluid–copper interface. The three sets
of five thermometers were used to obtain the averages TBPb, TBPt, and TTP. TBPb and TBPt were
used to calculate the heat current entering the sample. TBPt and TTP were used to obtain 1T and
Ra. In a typical run both TBPb and TTP were regulated at a specified setpoint.
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A small correction to Nu was made for the sidewall conductance [73, 74]. This correction
was about 1.4% for Ra ' 1015 and about 3.5% for Ra ' 5 × 1012. Neglecting this correction
changed the exponent obtained from a power-law fit to the data for Nu(Ra) by about −0.003.
Estimates and a comparison of measurements with copper and aluminum plates [75] showed
that corrections for the finite conductivity of the top and bottom plates [76, 77] were negligible.

5. Results

5.1. Closed sample

5.1.1. The broad overview. In this subsection we present the results for the closed sample
HPCF-IIe which is our best approximation to the idealized RB system. In section 5.2 we
compare these results with previous measurements. Then, in section 5.3, we discuss the
measurements for the open sample where the RB system may be perturbed by an additional
current entering or leaving the sample through the narrow gap between the top and bottom
plates and the side wall because of the chimney effect. Finally, in section 5.4, we consider the
case where only the bottom of the sample is sealed (HPCF-IIc) while a gap remains between
the TP and the side wall (the ‘half-open’ sample).

Results of the Nu measurements for the closed sample (HPCF-IIe) were reported briefly
before [25]. It was found that they depended slightly on Tm − TU, but much less so than the
data for the open or the half-open sample. We have been unable to determine the reason for this
dependence which persisted in spite of the many thermal shields and the foam and foil insulation
that were provided (see [23], and section 4 and figure 1 above).

In figure 2 we show Nu as a function of Ra with both axes on a logarithmic scale. The open
circles are for Tm − TU & 2 K, and the solid black circles represent the data for Tm − TU .−2 K.
Within the resolution of this figure the open and solid circles are seen to agree quite well with
each other and with the Oregon data (red stars), although small differences can be noticed on
close inspection. Both our data sets and the Oregon data differ significantly from the Grenoble
data (open blue circles). A more detailed comparison with those as well as with other [17, 78]
results is given below.

5.1.2. The classical state. First we examine Nu(Ra) in the classical regime in greater detail.
Figure 3 is a high-resolution graph of the data in this parameter range in the form of Nu/Ra0.312

on a linear scale as a function of Ra on a logarithmic scale. One sees that each of the two data
sets covers a range of about a decade in the classical regime where a simple power law describes
them well. A fit of the power law equation (4) to the data points that are indicated by small red
dots in their centers gave the parameter values and standard errors (67% confidence limits) listed
in table 2. On the basis of this analysis we chose γeff = 0.312 as our best estimate of the effective
exponent in the classical regime. As can be seen from the table, the uncertainty of this result
due to the scatter in the data is less than 0.001. We estimate that an additional uncertainty comes
from possible systematic errors of the sidewall correction, and thus the overall uncertainty of
the exponent is about 0.002. This value is consistent with numerous other measurements at
smaller Ra and larger Pr , and agrees quite well with the value 0.323 obtained from a numerical
analysis of the Grossmann–Lohse model, equations (13) and (14) of [50], for 1012

' Ra ' 1013
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Figure 2. The Nusselt number Nu as a function of the Rayleigh number Ra
on logarithmic scales. Solid black circles: this work, Tm − TU < −2 K. Open
black circles: this work, Tm − TU > 2 K. Red stars: the Oregon data [10, 11, 72].
Open blue circles: the Grenoble data [9, 12]. Blue solid line: the power law
Nu = 0.1044Ra0.312.
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Figure 3. The reduced Nusselt number Nu/Ra0.312 on a linear scale as a function
of Ra on a logarithmic scale. Solid (open) black circles: Tm − TU < −2 K
(Tm − TU > 2 K). The points indicated by a red dot in the center were used in
a least-squares fit of a power law to the data.

and Pr = 0.8 (but for 0 = 1.00). Recent measurements for 0 = 1.00 [25] yielded an exponent
γeff = 0.321 ± 0.002, in essentially perfect agreement with the Grossmann–Lohse prediction but
slightly larger than our 0 = 0.50 result.
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Table 2. Results of least-squares fits of the power law equation (3) to the data in
the classical regime.

Data set N0 γeff

Tm − TU .−2 K 0.1040 ± 0.0011 0.3121 ± 0.0004
Tm − TU .−2 K 0.1044 ± 0.00002 0.312 (fixed)
Tm − TU & 2 K 0.1020 ± 0.0037 0.3116 ± 0.0012
Tm − TU & 2 K 0.1006 ± 0.00009 0.312 (fixed)
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Figure 4. (a) The reduced Nusselt number Nu/Ra0.312 on a linear scale as a
function of Ra on a logarithmic scale. Solid (open) black circles: Tm − TU <

−2 K (Tm − TU > 2 K). Solid red squares: Nured = Nu/Ra0.312 at nearly constant
1T ' 10.3 K. (b) Nu/Ra0.312 at nearly constant 1T ' 10.3 K as a function of
Tm − TU on linear scales.

5.1.3. Transition to the ultimate state. In order to explore the dependence of the data on
Tm − TU in more detail we show in figure 4(a) the results for the reduced Nusselt number
Nured = Nu/Ra0.312 on a linear scale as a function of Ra on a logarithmic scale. Here it
becomes apparent that the Tm − TU < −2 K data (solid circles) are higher than the Tm − TU >

2 K data (open circles) by about 6% near Ra = 1014 and about 10% near Ra = 1015. In the
classical regime Ra ' 1013 (see figure 3 and table 2) the difference is 3.8%. In figure 4(a) we
added a third set of data taken at nearly constant 1T ' 10.3 K but at various values of Tm − TU.
During these measurements TU was not controlled and determined by the balance between the
heat input to the Uboot from the HPCF-II and the cooling to the surrounding laboratory. It
varied over the narrow range from 24.3 to 25.5 ◦C. The sample temperature Tm was controlled
by feedback loops and was changed in small steps from 21 to 27 ◦C. Since Tm (and thus the fluid
properties) changed, the data at constant 1T led to a small variation of Ra. One sees that they
cover the Nured range from the upper to the lower branch.
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Figure 5. The reduced Nusselt number Nu/Ra0.312 as a function of Ra for
the ‘closed’ sample. Black solid circles: Tm − TU .−2 K. Black open circles:
Tm − TU & +2 K. Open squares (blue online): Nu values of the open black
circles multiplied by 1.04. Open diamonds (red online): Ra values of the open
squares divided by 3.7. The horizontal lines represent power laws for Nu with
γeff = 0.312 and N0 = 0.1005 and 0.1044. The solid (dotted) line (blue online)
through (near) the data at the largest Ra corresponds to γeff = 0.37. The two
vertical dotted lines represent our estimates of Ra∗

1 and Ra∗

2 .

The same constant 1T results are shown also in figure 4(b), but as a function of Tm − TU.
Here one sees that the data become independent of Tm − TU when |Tm − TU|& 2 K. This is the
reason why the majority of data (the open and solid black circles) were taken as a function of
Ra with |Tm − TU|& 2 K.

In figure 5 we show all the data for the two states with |Tm − TU|& 2 K over the entire Ra
range accessible in the experiment. One sees the classical state with γeff = 0.312 for Ra . 1013.
At larger Ra the two data sets trace out curves with remarkably similar shapes, albeit displaced
both vertically and horizontally. To further explore the similarity between the two sets we
multiplied the open circles by 1.04. This yielded the open blue squares, which now agree with
the solid black circles in the classical range. Further dividing the Ra values of the open blue
squares by 3.7 yielded the open red diamonds. One sees that these two transformations yielded
agreement within the experimental scatter between the data at large and small Tm − TU. This
shows that the shapes of the curves traced out by the two data sets are the same.

Both data sets reveal a departure from the classical effective power law, with Nu increasing
more rapidly with Ra than Ra0.312 when Ra > Ra∗

1 where Ra∗

1 ' 1.5 × 1013 for the solid
circles and ' 5 × 1013 for the open circles. Henceforth we shall concentrate on the results for
Tm − TU < −2 K. They continue to increase beyond the classical-state values, with an effective
exponent that gradually becomes larger until Ra∗

2 ' 5 × 1014 is reached. Beyond Ra∗

2 one has
γeff ' 0.37 ± 0.01 as shown by the blue solid line in the figure. This result is consistent with
the prediction of an asymptotic exponent γ = 1/2 modified by logarithmic corrections in the
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Figure 6. Comparison of the present results (solid black circles) with the Oregon
(stars) [10], the Grenoble [12] (small open symbols), and the direct numerical
simulation [79] (DNS) data. For the Oregon and Grenoble data we used different
colors for different ranges of Pr . Red: Pr < 1. Green: 1 < Pr < 2. Blue: 2 <

Pr < 4. Purple: 4 < Pr < 8. The DNS data are for Pr = 0.7 and are shown as
purple circles with plus signs and error bars. The slanting green and blue lines
are power-law fits to the points with small dots in their centers.

ultimate state with turbulent BLs above the bottom and below the TP. The recent prediction by
Grossmann and Lohse [65] for the form of the logarithmic corrections differs from that given
by Kraichnan [5]; but our data cannot distinguish between these two theoretical results which
both yield values of γeff which are roughly in the range from 0.38 to 0.40.

It is worth noting that the data in the transition range Ra∗

1 < Ra < Ra∗

2 have significantly
greater scatter than the data in the classical regime Ra < Ra∗

1 or those in the ultimate regime
Ra > Ra∗

2 . This indicates the existence of multiple states, presumably with subtly different BL
configurations, during the complex transition from laminar to turbulent BLs.

We call attention to the fact that the transition range between the classical and the ultimate
state can also be found, between about the same values of Ra∗

1 and Ra∗

2 , in results for the
Reynolds number [25] and in measurements of vertical logarithmic temperature profiles that
extend over much of the sample height [42].

5.2. Comparison with previous results

5.2.1. Comparison with the Grenoble, Oregon, and DNS data. Throughout this comparison
we shall focus on our data for Tm − TU .−2 K; they will be shown as black solid circles in
figures 6 and 8. We mention again that, for our results, Pr changed only over the narrow range
from 0.79 near Ra = 3 × 1012 to 0.86 near Ra = 1015. Throughout this comparison we shall
show the data of others in red for Pr < 1.0, green for 1 < Pr < 2, blue for 2 < Pr < 4, and
purple for 4 < Pr < 8.

In figure 6 our measurements are compared with those of Niemela et al [10] (Oregon data)
which are given as stars. For the large range 109 . Ra . 2 × 1012 those results agree well with
the power-law fit to our data in the classical regime which gave Nu = 0.404Ra0.312. One can
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Table 3. Parameters obtained from power-law fits to various data sets.
Ramin, Ramax, Prmin, and Prmax are the limits of the data sets used in the power-
law fits. Nucl

red is the reduced Nusselt number Nu/Ra0.312 used in the classical
regime to determine the transition Rayleigh number Rat, which is taken to be the
intercept with the power-law fit above Rat.

Sample Grenoble Grenoble Flange Vintage Vintage Brass HPCF-IIe
[12] [12] [17] [17] [17] [14] this work

Ramin/1011 1.5 10 20 20 8 2 5000
Ramax/1011 17 60 20 20 18 20 100 00
Prmin 3.4 1.0 1.72 1.31 0.97 1.74 0.8
Prmax 3.7 1.3 1.72 1.73 0.97 1.74 0.8
Nucl

red 0.106 0.106 0.098 0.096 0.094 0.104 0.104
γ eff 0.395 0.382 0.371 0.399 0.404 0.396 0.37 ± 0.01
Rat/1011 0.9 5 7 4 4 2 1100

argue that they rise above this power law as Ra approaches 1013, perhaps signaling the beginning
of a transition to the ultimate state, but in view of the scatter of the data this argument might not
be convincing. It is noteworthy that the rise occurs when Pr is still less that one. However, as
Ra increases beyond 1013, no further increase above the classical power law occurs. It may be
that this saturation is due to an increase of Pr , which begins to occur just in this Ra range and
which is expected to shift Ra∗ to higher values. In summary, the Oregon data show a departure
from the classical power law near Ra = 1013, but the evidence for having entered the ultimate
state in our view remains inconclusive. We note that the original authors of this work believed
that their data could be represented within their scatter and accuracy by a single power law with
γeff = 0.32 over the entire Ra range up to 1017, thus providing no evidence for an ultimate-state
transition.

Also shown in figure 6, as small open symbols, are the Grenoble data [12] that fall in
the range of the figure. One can see that they form distinct groups, depending on Pr . For
1 < Pr < 2 (green symbols) there are data in the classical regime. They yield the effective
exponent of 0.317 ± 0.003, which is consistent with γeff = 0.312 as adopted by us when possible
systematic errors, particularly due to uncertainties in the side-wall corrections [73, 74], are taken
into consideration. The actual values of N0 = Nu/Ra0.312 are also quite close to our result of
0.104. An average of the data for 109 < Ra < 1011 is only 2% higher, as shown by the horizontal
green line in the figure.

For 1 < Pr < 2 there is a sharp transition to a Ra range where the effective exponent is
larger than the classical value of 0.312. In order to determine the Rayleigh number Rat at the
transition and the effective exponent above it objectively, we selected a subset of points which
we deemed to be above Rat and which seemed consistent with an effective power law. These
points are indicated by a small dot in the open symbols. A power-law fit to these data and its
intersection with the green horizontal line in the figure gave the parameters listed in table 3. For
2 < Pr < 4 there also are sufficient data to warrant a power-law fit, but there are no classical-
state data. We carried out the same analysis as for 1 < Pr < 2, and used the result for the
classical state for 1 < Pr < 2 as the baseline to determine Rat. One sees from the table that
the exponents are, within their statistical errors, consistent with 0.38, a value deemed typical
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Figure 7. (a) A higher-resolution graph, on double logarithmic scales, of the
Grenoble data [12] for Pr = 1.1 and 1.3. A power-law fit to the blue circles
(red diamonds) yielded γeff = 0.317 ± 0.003 (γeff = 0.382 ± 0.006). The green
squares were not used in either fit. (b) Our data are plotted with the same
resolution as that used in (a), but with the horizontal axis shifted by two decades.
A power-law fit to the blue circles (red diamonds) yielded γeff = 0.3121 ± 0.0004
(γeff = 0.371 ± 0.01). Our data show a transition region with a width of about 1.5
decades (green squares), whereas the Grenoble data suggest a sharp transition.

of the ultimate state. The values of Rat, however, in our view are too low to correspond to the
shear-induced BL transition to turbulence that is expected to be characteristic of the ultimate-
state transition. Further, as noted in [17], we see that the larger Pr value yielded a lower value
of Rat, which is opposite to expectations for the BL shear instability. However, this trend is
not confirmed by the data for the larger Pr range 4 < Pr < 8 (purple open triangles), which
do not have enough points to warrant an independent power-law fit but which are seen to fall
between the other two data sets. Thus we must conclude that the Grenoble data do not establish
an unambiguous trend of Rat with Pr . An explanation of the different values of Rat for the
different data sets which seems likely to us are systematic errors of the equation of state or the
transport properties near the critical point of helium that were used to calculate Ra and Nu;
these errors could well change as the pressure and Tm (and thus Pr ) are changed.

The Grenoble data for Pr = 1.1 and 1.3 are of sufficiently high precision and sufficiently
detailed and plentiful to warrant a closer examination, as is done in figure 7(a). There they are
compared with our results, which are shown in figure 7(b) on vertical and horizontal scales with
the same resolution as in (a) but with the horizontal axis shifted by two decades. A remarkable
difference between the two data sets is that the Grenoble data reveal a sharp transition suggestive
of a continuous, or supercritical, bifurcation, whereas our data show a transition range of
about 1.5 decades with indications of multi-stability in that range, which is inconsistent with
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a continuous transition. We believe that a transition to a turbulent BL is unlikely to be sharp
and continuous for at least two reasons. First, even for a uniform laminar BL the transition to
turbulence does not occur at a unique value of the applied stress but rather will depend on the
particular prevailing perturbations. In the time average this should lead to some rounding of
the observed transition. Second, in the RB case the laminar BLs are not uniform. Rather, due
to plume emission, they are highly fluctuating systems. In addition, they are non-uniform on
longer length scales in the horizontal plane [38] when a LSC is present. Because of their spatial
inhomogeneity they are unlikely to undergo a simultaneous transition from the laminar to the
turbulent state at all lateral positions. These inhomogeneities are consistent with the existence
of a transition range, as observed by us.

Finally, in figure 6, we show (as purple open circles with plusses and error bars) the
results obtained from a direct numerical simulation by Stevens et al [79]. These data are for
Ra 6 2 × 1012. They do not show a transition for Ra 6 2 × 1012 to a state with a larger effective
exponent, and in that sense differ from the Grenoble data but agree with the Oregon data and
with our results.

5.2.2. Comparison with the Chicago data. The ‘Chicago’ data are the earliest measurements
of Nu at very large Ra. For 0 = 0.5 they were reported by Wu [78]. These results, after a
correction9 which shifted the data upward by an amount that varied smoothly from about 6%
near Ra = 109 to about 10% near Ra = 1014, are shown in figure 8(a) as open black circles.
Their trend with Ra suggests γeff ' 0.29 [73]. However, they had not been corrected for the
finite sample-wall conduction [73, 74]. That correction, based on Model 2 of [73], was applied
in [73] and yielded the open purple squares in the figure. Those corrected data are consistent
with γeff = 0.312, but the pre-factor N0 of a power-law fit is about 10% lower than indicated by
our results.

Just above Ra = 1012 there is a discontinuity in the data, but this apparent ‘transition’ is
not to a state with a larger γeff. We believe that this phenomenon is associated with a change of
the place in the phase diagram near the critical point of helium where the data were taken, and
that it is due to errors in the equation of state rather than a genuine change in the dependence of
Nu on Ra. Thus we conclude that the Chicago data do not reveal any evidence of a transition
to the ultimate state below their largest Ra ' 3 × 1014. Given the increase of Pr with Ra for
these data and the expected dependence of Ra∗ on Pr , we find that the absence of a transition
to the ultimate state in these data is consistent with the Oregon data and with our results.

5.2.3. Comparison with data from Roche et al. Finally, in figures 8(b)–(e), we display several
data sets obtained in different sample cells, all with 0 = 0.5, by Roche et al [14, 17]. Many
of them show a transition at Rat from the classical state to a state with a larger γeff. Whenever
there are adequate classical-state data, these sets are consistent with the exponent 0.312, but
the pre-factor of the corresponding power law varied between different sets and generally was
somewhat lower than our result N0 = 0.104. We analyzed the sets with sufficient data both above
and below Rat as described above for the Grenoble data. The results are given in table 3. The
effective exponent varies from 0.371 to 0.404. A reason for this variation is not obvious to us.
The value of Rat varied significantly as well, from 0.9 × 1011 to 7 × 1011, again for non-obvious
reasons.
9 The data of Wu [78] were re-evaluated on the basis of new fluid properties by Niemela et al [80].
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Figure 8. Comparison of the present results (solid black circles) with (a)
the Chicago data [78], (b) data from [14], and (c)–(e) data from [17]. We
used different symbols for different ranges of Pr . Red open circles: Pr < 1.
Green open squares: 1 < Pr < 2. Blue open diamonds: 2 < Pr < 4. Purple open
triangles: 4 < Pr < 8. The horizontal black dashed line is our best estimate
for the classical state. The other lines are fits described in the text. In (a) the
open circles (purple open squares) are data without (with) a correction for the
conductance by the side wall.
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Figure 9. The transition Rayleigh number Rat as a function of Pr . The data are
from table 3. Blue diamond: HPCF-IIe. Red circles: the remaining points in the
table. The solid line is a fit of the theoretically expected dependence Rat ∝ Pr 1.65

(equation (5)) to the HPCF-IIe point.

In figure 9 we show Rat as a function or Pr as red solid circles. A trend with Pr is,
in our view, not firmly established, although the point at the largest Pr suggests a decrease
with increasing Pr . Such a decrease would be contrary to the theoretical expectation for a
shear-driven BL transition to turbulence [36]. The theoretically expected result is obtained by
assuming that the transition to the ultimate state occurs at a Rayleigh number Ra∗ at which
the bulk Reynolds number (and thus also the shear Reynolds number Re∗

s ∝
√

Re∗)) attains a
certain constant value Re∗. Taking Re ∝ Ra0.423/Pr 0.70, one finds

Ra∗
= 1.6 × 1014 Pr 1.65. (5)

Here the constant coefficient was adjusted so that the relation passes through the point Ra∗
=

1.1 × 1014 for Pr = 0.8 shown as the blue diamond in the figure, which is the result from this
work. The line through that point corresponds to equation (5). One sees that the red circles do
not reproduce the predicted increase of Ra∗ with Pr , as already noted by Roche et al [17].
However, we do not find convincing evidence in these data that larger values of Pr favor the
transition to the state with the larger exponent.

5.3. Open sample

As discussed in section 4, initially (for HPCF-I, IIa, and IIb) gaps with an average width of
about 1 mm were left between the top and bottom plates and the side wall in order to permit
the SF6 to pass from the Uboot into the sample. These samples are referred to as the ‘open’
samples. Although the gap widths were negligible compared to the sample dimensions, it was
appreciated later that they could significantly modify the system, depending on the temperature
difference Tm − TU between the sample (Tm) and the Uboot (TU). When Tm < TU (Tm > TU), then
the sample density is larger (smaller) than the density of the fluid in the Uboot. In the presence
of gravity this density difference will lead to flow through the gaps, in the upward (downward)
direction when Tm − TU > 0 (< 0). In the presence of such externally imposed flows the system
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Figure 10. The reduced Nusselt number Nu/Ra0.3 as a function of the Rayleigh
number Ra on a logarithmic scale. The purple solid circles, black solid
squares, and red solid diamonds are from HPCF-I, HPCF-IIa, and HPCF-IIb
respectively, using SF6 at various pressures. The open red circles are from
HPCF-I using N2. All of those data were shown before in [23]. The open
black and solid green circles are new data from HPCF-IIb using SF6 at 12.2 bar
(Pr = 0.823) and 18.8 bar (Pr = 0.863) respectively. The small black dots are
our results for HPCF-IIe (the closed sample). The lines correspond to power
laws Nu = N0 Raγeff with N0 = 0.111, γeff = 0.308 (dashed black line), N0 =

0.674, γeff = 0.25 (red solid line), N0 = 12.3, γeff = 0.16 (black dotted line),
N0 = 0.0277, γeff = 0.36 (black solid line), and N0 = 0.104, γeff = 0.312 (dotted
blue line). The labels U, L1, and L2 identify the ‘upper branch’, ‘lower branch
1’, and ‘lower branch 2’.

can no longer be regarded as a genuine RBC. Instead, it has features in common with examples
of indoor ventilation problems that have been discussed, for instance, by Linden [81].

Previously [23, 52, 75] we presented some measurements of Nu for the open system. These
measurements were made with Tm = 25 ◦C. During those early stages of this investigation TU

was not actually measured, but more recent experience suggests that it was between 23 and
24 ◦C. Thus the data are for Tm − TU > 0. The results are shown again in figure 10 in the form
of Nu/Ra0.3 as a function of Ra. The purple solid circles, black solid squares, and red solid
diamonds are from HPCF-I, HPCF-IIa, and HPCF-IIb respectively and were obtained with SF6.
The open red circles were measured using nitrogen in HPCF-I. For comparison the closed-
sample data are shown as small black dots, with the power-law fit in the classical range (see
figure 3) with γeff = 0.312 shown as a dotted blue line. For Ra . 4 × 1013 the open-sample
data are described well by a power law with γeff = 0.308 (the dashed black line), reasonably
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consistent with the classical state; however, they are somewhat lower than the closed-sample
data.

With increasing Ra the measurements from HPCF-I (purple solid circles in figure 10)
revealed a transition to a new state beyond Rat1 ' 4 × 1013. Within our resolution Nu was
continuous at that transition, and the transition was sharp. In those respects the transition
differed from the ultimate-state transition seen for the closed sample but was similar to the
transitions at Rat =O(1011) found by Chavanne et al [12] (see figures 6 and 7(a)) and Roche
et al [17]. However, the present case is very different from the previous ones in that γeff

decreased whereas for the prior work it increases. Above Rat1 the data could be described well
by a power law with γeff = 0.25, as shown by the solid red line in the figure. We shall refer to
this state as the ‘L1’ state or branch.

In a recent paper [65] Grossmann and Lohse pointed out that, with increasing Ra, the
transition away from the classical state can take several possible forms. Whereas previously
[5, 6] the ultimate-state transition was assumed to involve a simultaneous shear-induced
transition to turbulence in both the viscous and the thermal BL, this need not be the actual
sequence of events. They proposed three possibilities that may prevail when the viscous
BL becomes turbulent. One of these is that the thermal BL remains laminar (i.e. of the
Prandtl–Blasius type in the time average) and that the heat transport is background dominated
(see section 3.2 of [65]). For that case they derived Nu ∼ Ra1/5, with logarithmic corrections
which yield γeff ' 0.22–0.23. Within experimental and theoretical uncertainties this is consistent
with our result γeff ' 0.25 for the L1 branch.

Further measurements, with HPCF-IIa (black solid squares in figure 10) and HPCF-IIb (red
solid diamonds in figure 10), revealed the existence of yet another branch, which we labeled
as L2. The transition to this branch occurred at Rat2 ' 2.5 × 1014. The new branch co-existed
with L1. The precise conditions that determined which branch was chosen by the system were
not explored in detail, but they involved Tm − TU and thus the strength of the presumed external
current entering or leaving the sample. A power-law fit to the L2 data yielded γeff ' 0.16. This
result is consistent with the theoretical value (see section 3.1 of [65]) γ = 1/8 which logarithmic
corrections for a state with a turbulent viscous BL and a laminar thermal BL, with the heat
transport dominated by the emission of plumes. For this state the logarithms modify γ so that
γeff ' 0.14, not very different from the experimental value.

When it was realized that Tm − TU played an important role in the choice of the state of the
system, new measurements were made with HPCF-IIb and with Tm − TU .−2 K. Those data
are shown as open black and solid green circles in figure 10. They fall somewhat above the
closed-sample data (small black dots), but seem reasonably consistent with a perhaps slightly
modified transition to the ultimate state. This upper branch is labeled ‘U’. A power-law fit to
these data yielded γeff = 0.36 and is represented by the solid black line in the figure.

5.4. Half-open sample

As a first attempt to prevent the external currents through the sample due to the difference
between Tm and TU, we sealed the bottom plate to the side wall but left the gap between the
TP and the side wall so that the gas could still enter the sample. We refer to this case, which
is HPCF-IIc, as the half-open sample. The results for Nu are shown in figure 11 as solid red
squares for Tm − TU < −2 K and as open red squares for Tm − TU > 2 K. As might be expected,
the data for Tm − TU < −2 K agree well with the results from the closed sample (small solid
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Figure 11. The reduced Nusselt number Nu/Ra0.3 as a function of the Rayleigh
number Ra on a logarithmic scale. Small purple symbols: open sample (see
figure 10). Small black circles: closed sample, Tm − TU < −2 K (see figure 5).
The larger red symbols are for the half-open sample. Solid squares: Tm − TU <

−2 K. Open squares: Tm − TU > 2 K.

black dots). This is so because the relatively dense gas, which in the open sample escapes
through the gap at the bottom plate, cannot do so in this case. However, the case where the
sample gas is less dense than the gas in the Uboot (Tm − TU > 2 K, open squares) seems to be
influenced by external currents near the TP and the corresponding data are close to those for the
open sample (purple solid circles). Indeed they even reveal the transition at Rat1 to the L1 state.

6. Summary

In this paper we reported results for the Nusselt number Nu over the range of the Rayleigh
number Ra from 3 × 1012 to 1015. Data were presented for three different sample cells, all
of cylindrical shape and of aspect ratio 0 = 0.50. The cells, known as the High-Pressure
Convection Facilities (HPCFs), were located in a pressure vessel referred to as the ‘Uboot’
of Göttingen. The Uboot and the HPCF were filled with the gas sulfur hexafluoride (SF6) at
various pressures up to 19 bar. This fluid had a Prandtl number Pr which varied over the narrow
range from 0.79 to 0.86 as the pressure (and thus Ra) changed from its smallest to its largest
value.

One of the samples was completely sealed. In that case a 2.5 cm diameter tube penetrated
the side wall at mid height and allowed the SF6 to enter the HPCF from the Uboot; that tube
was then closed off by a remotely operated valve after an equilibration time of several hours
and before measurements were made. This version of the HPCF is known as the ‘closed’
sample. Another version was allowed to have a small gap, of width approximately equal to
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1 mm, between the side wall and the top and bottom plate to allow the sample gas to enter the
HPCF. This version is known as the ‘open’ sample. A third version, known as the ‘half-open’
sample, had the side wall sealed to the bottom plate while the gap was allowed to persist at
the TP.

It turned out that the three samples produced qualitatively different dependences of Nu
on Ra. Only the closed sample can be regarded as corresponding well to the idealized closed-
system Rayleigh–Bénard problem. For the open and half-open samples gas currents were able
to enter and leave the sample through the gaps at the plates, driven by the small density
differences that existed between the sample fluid at a mean temperature Tm and the fluid
in the Uboot at a temperature TU. The results for Nu(Ra) were then qualitatively different
depending on whether Tm was larger or smaller than TU. Nonetheless the open and half-open
samples produced interesting effects. Under certain conditions there was a sharp but continuous
transition from a state below Rat ' 4 × 1013 where Nu ∼ Raγeff with γeff ' 0.31 to a state above
it with γeff ' 0.25. Another state with γeff ' 0.16 was found as well. Possible explanations of
these findings in terms of different laminar or turbulent conditions in the thermal and viscous
BLs adjacent to the top and bottom plates were offered by Grossmann and Lohse [65]. We refer
the reader to sections 5.3 and 5.4 as well as to [65] for a more detailed discussion of these
interesting phenomena.

The primary focus of this paper has been on the closed sample. Even for this case the
results for Nu(Ra) depended somewhat on Tm − TU, but in contradistinction to the open and
half-open samples the dependence was simply a shift of the curve without any change in shape.
This dependence persisted in spite of the extensive shielding of the sample that was provided,
and we do not know its origin. However, for Ra . 1013 we found that the effective exponent
of Nu was 0.312 ± 0.002, regardless of Tm and TU. This exponent value is consistent with, but
more accurate than, many other measurements at smaller Ra. It also agrees quite well with the
value 0.323, which follows from a power-law fit to data generated from the Grossmann–Lohse
model [50] for Pr ' 0.8 (albeit for 0 = 1.00) in the range 1012 . Ra . 1013. We note that very
recent measurements [22] for 0 = 1.00 yielded an exponent of 0.321 ± 0.002, in near-perfect
agreement with the Grossmann–Lohse value but slightly larger than our result for 0 = 0.50.
Thus we believe that the state of the system with Ra . 1013 is the classical state of RBC with
laminar BLs below the top and above the bottom plate.

In the range Ra∗

1 6 Ra 6 Ra∗

2 , with Ra∗

1 ' 1.5 × 1013 and Ra∗

2 ' 5 × 1014, the system
gradually underwent a transition and γeff increased from 0.32 to 0.37 as Ra changed by about
one and a half decades. We believe that this phenomenon reflects the transition to the ultimate
state predicted by Kraichnan [5] and re-examined recently by Grossmann and Lohse [65].
In the ultimate state, which we found for Ra > Ra∗

2 , the effective exponent was 0.37 ± 0.01.
This is reasonably consistent with the predicted asymptotic exponent γ = 1/2 and the expected
logarithmic corrections [65]. Our conclusion that the state above Ra∗

2 is the ultimate state is
supported by the transitions and exponent-values found in simultaneous measurements of the
Reynolds number Re [25] (a detailed discussion of those results is beyond the scope of this
paper). Evidence for the transition range, with about the same values of Ra∗

1,2, can be found
also in recent measurements of logarithmic vertical temperature profiles that extend throughout
most of the sample [42].

It is worth emphasizing that the transition from the classical to the ultimate state is
not a continuous transition where Nu(Ra) is continuous but its effective exponent changes
discontinuously, such as was found at Rat ' 4 × 1013 in the open sample (see figure 10) as well
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as in the work of [12] (see figures 6 and 7). Instead there was a transition range spanning a
factor of 30 or so in Ra over which the transition occurred. In this transition range the results
for Nu(Ra) scattered more than below or above it and were often irreproducible at the level of
our resolution from one point to another, suggesting the existence of many states which differed
in detail.

The observed transition range (as opposed to a unique value of Ra∗) is not surprising for
two reasons. First, transitions involving shear-flow instabilities are known to depend on the size
of prevailing local perturbations and thus will occur at different values of the Re (or in our case
Ra) number. In addition, in the present case the basic state, i.e. classical RBC, is known to have
laminar BLs which are non-uniform in the horizontal plane [38]. Since the BLs and the shear
applied to them by the turbulent bulk are known to be spatially inhomogeneous, one should not
expect a sharp transition.

In this paper we also provide a re-examination of earlier measurements. Some of these
indicated a transitions to a state where γeff assumes a value near 0.38, but the transitions occurred
at the rather low values of Rat between 1011 and 1012. All of these data involved a range of Pr .
We separated them into subsets corresponding to a unique value, or spanning only a small range,
of Pr . Within each subset one sees that the scatter of these data is much less than it is when
all Pr values are considered jointly. Some of the subsets reveal a well defined transition. These
transitions differ qualitatively from the one observed by us in that they are sharp and continuous,
without any resolved transition range. Estimates of the shear Reynolds number for them are in
the range near 100 or less, which to us seems too low for a turbulent BL shear transition. Based
on our measurements of Re, and on recent calculations by DNS of the shear Reynolds number
Res [82], as well as on earlier estimates [36], indicate that the BL shear transition at Ra∗ to the
ultimate state should not occur until Ra =O(1014) is reached. Thus, in our view, the transitions
observed near Ra = 1011–1012 are unrelated to the ultimate-state transition, but we cannot offer
an alternative explanation for their existence.

This paper concludes with a number of appendices which examine the possible effect of
several experimental factors on our results. None of them is found to have a significant influence.
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Appendix A. Effect of tilting the sample

All data for this study were taken with HPCF-IIe (the closed sample). Measurements were
made with a leveled sample (a tilt angle β < 0.1 mrad, runs 100918–110102), and with the
same sample tilted relative to gravity. The tilt was used to localize the azimuthal orientation of
the LSC plane. Based on measurements with smaller samples of aspect ratio 0 = 1.00 [31] and
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Figure A.1. The reduced Nusselt number Nu/Ra0.312 as a function of the
Rayleigh number Ra for Tm − TU < −2 K as a function of the Rayleigh
number for three different tilt angles β of the sample relative to gravity. Blue
circles: ‘level’, β < 10−4 rad. Green diamonds: β ' 0.003 rad. Red squares:
β ' 0.014 rad.

0.50 [83], both with Pr ' 4, we do not expect a measurable influence of the tilt on the heat
transport for our case of 0 = 0.50 and Pr ' 0.8. This is indeed borne out by the data.

In one case the tilt angle was β = 3 mrad (runs 110115–110610). The tilt direction was
at an angle θβ = 3π/2 rad relative to the azimuthal origin of the sidewall thermometers that
were used to monitor any LSC. In the other case we had β = 14 mrad and θβ = 0.0 rad (runs
110618–110919). The results for the Nusselt number for the data with Tm − TU < −2 K are
shown in figure A.1 as blue circles (no tilt), green diamonds (β = 3 mrad) and red squares
(β = 14 mrad). There is no significant difference between the three data sets, showing that the
effect of the tilt on Nu is well below 1 per cent.

Appendix B. Non-Boussinesq effects

Non-Oberbeck–Boussinesq NOB effects [32, 33] on Nu in a gas have been studied
quantitatively using ethane gas as the fluid [84, 85]. Although variations of all fluid properties
contribute in principle, for gases the primary contribution comes from the temperature
dependence of the density and can be described approximately by the parameter α1T (see
figure 4 of [84]). All our measurements were made with 1T . 21 K where we expect the NOB
effects to be small. For a perfect gas one has α1T = 1T/T with T in K, which for 1T ' 20 K
and at a mean temperature of 21 ◦C or 294 K is close to 0.07. However, the properties of SF6 in
our pressure range up to 19 bar show large deviations from those of a perfect gas. Figure B.1(a)
shows α1T as a function of Ra for the data with Tm − TU < −2 K. The different-colored circles
are, from left to right, for different isobars with pressures of approximately 4, 5, 8, 12, 15, and
19 bar. For the points shown as red squares we had 19 < 1T < 21 K, which were the largest
temperature differences employed in this work. The dotted line is the approximate perfect gas
result. One sees that α1T was mostly below 0.1 and always below 0.14.
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Figure B.1. (a) The parameter α1T as a function of Ra. The circles of various
colors are, from left to right, for approximately 4, 5, 8, 12, 15, and 19 bar.
The red squares are points for which 19 < 1T < 21 K. The dotted horizontal
line indicates the perfect-gas value 0.071 for 1T = 21.0 K and Tm = 294.2 K.
(b) The reduced Nusselt number for Tm − TU < −2 K as a function of the
Rayleigh number. Black circles: 1T < 19 K. The red squares are points for
which 19 < 1T < 21 K and correspond to the red squares in (a).

In figure B.1(b) we show the reduced Nusselt number for the data with Tm − TU < −2 K.
All data are shown as solid black circles, except for the ones with 19 < 1T < 21 K which are
given as red squares. One sees that the points with large 1T are systematically lower than
the remaining results, but only by about 1.4% at the highest pressure where α1T is largest
and by about 0.7% at the lowest pressure where α1T is about a factor of two smaller. It is
surprising that NOB effects reduce Nu in the present case because in the case of ethane [84, 85]
they enhanced Nu, albeit only by a small amount. A reduction of Nu due to NOB effects was
observed, however, in the case of a liquid, namely water [86], but again only by a per cent or so
for 1T ' 20 K. In any case, what matters for this work is that NOB effects are negligible for
nearly all of our data.

Appendix C. The parameter ξ of Niemela and Sreenivasan

Recently Niemela and Sreenivasan [34] introduced the parameter

ξ =
η

λ

1λ

1η
, (C.1)
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Figure C.1. The parameter ξ introduced by Niemela and Sreenivasan [34] (see
text). The data are for the following approximate pressures: blue diamonds: 4 bar;
red diamonds: 5 bar; green circles: 8 bar; green triangles: 10 bar; red squares:
12 bar; red triangles: 14 bar; yellow circles: 15 bar; green squares: 16 bar; black
circles: 18 and 19 bar.

where λ is the fluid conductivity, η is the shear viscosity and 1 indicates the difference of the
value of the property following it at the bottom and at the top of the sample. Thus, ξ is a measure
of the relative sizes of the contributions to the NOB conditions from λ and η. The authors state
that their data for a cell with 0 = 1.0 [19, 34] and 0 = 4.0 [20] make a transition from a state
of lower to one of higher Nu as ξ changes in their experiments from positive values of order 1
to negative values of −1 or less, both states having a common scaling exponent with a value
slightly above 0.3. The authors assert that the transition between the two states, where roughly
Nu ∼ Ra0.5, should not be interpreted as the ultimate state; rather, the data correlate well with
the material parameter ξ .

The values of ξ for our data are plotted in figure C.1. We see that at a given pressure ξ

is essentially independent of Ra, and thus of 1T . The value of ξ depends slightly upon the
pressure, varying over the range 1.6& ξ & 1.3 as the pressure changes from about 4 to about
19 bar. Thus, for all of our data ξ remains positive and slightly above 1 and the transition seen
in the data of [19, 20, 34], which were taken near the critical point of helium, is not expected to
occur in our fluid-property range.

Appendix D. Effect of horizontal temperature variations in the top and bottom plate

Maintaining the top and bottom plates at a uniform temperature, even in the presence of the
large vertical heat currents up to 1 kW or so, is a significant experimental challenge, especially
when the plates become very large as in our experiment where the diameter was well over a
meter and the mass of the plates was of order 200 kg.

Our TP was cooled by water passing through a pair of double spiral channels [23]. The
two members of the pair were in parallel, and each pair consisted of anti-parallel (i.e. an inward
and an outward flowing) spirals. The distance between the centers of adjacent channels was
2.54 cm, and the channels had a depth d = 1.26 and a width w = 1.27 cm (cross sectional area
of 1.60 cm2). These dimensions were kept small to minimize lateral temperature variations on
small length scales of the order of the plate thickness. However, as will be seen below, the small
channel cross section did lead to a significant flow resistance, and a somewhat larger channel
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Figure D.1. (a) The normalized radial temperature variation (Ti − T0)/1T as
a function of the temperature difference Tm − TU between the mean sample
temperature and the Uboot temperature (for details, see text). Red symbols: TP
data for the weaker water circulation driven by a Nelab RTE7 circulator. Blue
symbols: data for the TP with the stronger water circulation driven by a Wilo
pump. Black symbols: data for the top member of the bottom-plate composite.
Open circles, solid circles, open squares, and solid squares are for T0 − Ti with
i = 1, 2, 3, and 4 respectively. (b) The azimuthal temperature variation for two
examples. The solid lines are a fit of a sine function with an adjustable phase and
amplitude to the data.

cross section might have been optimal. There is a constraint on the channel depth provided by
the plate thickness; a much greater thickness would lead to excessive weight and cost of the
plate.

The plate temperatures were determined by five thermometers in both the TP (between
the water channels) and the top of the bottom-plate composite [52]. All ten thermometers were
placed in small holes in the plates, with their tips within 1 mm or so of the copper–fluid interface.
One thermometer (T0) was located at the plate center. The other four Ti , i = 1, . . . , 4, were
equally spaced azimuthally at angular intervals of π/2 rad and were positioned radially at a
distance of 0.42D from the center. The plate temperatures Tb and Tt used to calculate 1T (and
thus Nu and Ra) were the averages of the five readings in a given plate.

Here we report on the results obtained with HPCF-IIe. Initially (runs 110918–110410) the
water flow was generated directly by a Neslab RTE7 circulator capable of generating a pump
head corresponding to approximately 0.5 bar, which yielded a relatively small flow rate near
15 cm3 s−1 (0.05 m3 h−1) in each of the two double spirals, corresponding to a mean velocity
v of about 10 cm s−1 or a Reynolds number Re = vd/ν =O(103). Judged by the value of
Re, the flow probably was laminar. In figure D.1(a) we show (Ti − T0)/1T , i = 1, . . . , 4 as
a function of Tm − TU as red symbols. Those data were taken at a pressure of 18.8 bar and with
1T ' 10 K (run 110311–110326) corresponding to Ra ' 8 × 1014, but similar measurements
over a range of 1T and at other pressures gave similar results. The dependence on Tm − TU is
weak. The azimuthally averaged radial temperature variation (〈Ti〉i=1,...,4 − T0)/1T is a little
over 2%, which was judged larger than desirable. The azimuthal variation of (Ti − T0)/1T for
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Figure D.2. The reduced Nusselt number as a function of the Rayleigh number
for Tm − TU < −2 K. Open red (solid blue) circles: data taken with low (high)
water flow rate in the TP cooling channel.

Tm − TU = −3.2 K (run 110311) is shown in figure D.1(b) as red symbols. It can be fitted well
by a sine curve, suggesting that its origin is the LSC in the bulk fluid [28, 87, 88].

In order to increase the flow rate of the water in the top plate, we modified the top-
plate water cooling circuit (starting with run 110426). We drove a primary circuit by a Wilo
model MHI 205-1 pump, which could generate a pressure differential across the top-plate
water channel of 4.2 bar and yielded a flow rate 170 cm3 s−1 (0.6 m3 h−1) in each double
spiral, corresponding to a mean flow velocity v ' 100 cm s−1 or Re =O(104). This flow almost
certainly was turbulent. The primary water circuit was thermally coupled by a heat exchanger
to a secondary cooling circuit driven and temperature-controlled by the Neslab RTE7 circulator.
This circulator was servoed so as to maintain Tt at its desired value. The results for (Ti − T0)/1T
are shown in figure D.1(a) as blue symbols and for two values of Tm − TU. There was a
significant improvement, with (〈Ti〉i=1,...,4 − T0)/1T as small as 0.8%. The remaining azimuthal
variation for Tm − TU = −2.2 K is shown as blue symbols in figure D.1(b).

In order to judge whether one or the other of the top-plate cooling circuits is adequate to
yield valid results for Nu, we show in figure D.2 results for Nu(Ra) obtained by the first method
as red open circles. Data obtained with the improved top-plate cooling method are represented
by the solid blue circles. The two sets agree with each other very well and essentially within
their scatter, indicating that there is no systematic dependence on the cooling method and that
either method was indeed adequate for Nusselt number measurements.

The bottom plate was a composite of two copper plates with a thin Lexan layer between
them. The heat current passing through this composite was generated by Joule heating with
a heater wire imbedded in grooves milled into the underside of the bottom member of the
composite and was uniformly distributed over the entire sample area [23]. The current had
to pass through the Lexan thermal barrier before passing through the top copper member and
then entering the fluid. Results for (Ti − T0)/1T obtained for runs 110918–110410 are shown
as black symbols in figure D.1(a). Their average values are close to zero, showing that the radial
temperature variation in the bottom plate was remarkably small and indeed negligible.
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Figure E.1. (a) The sample pressure as a function of time. The data were taken
on 14 September 2010, during a time interval when the Uboot temperature and
pressure had not yet fully equilibrated. The sharp increase at the time indicated
by the first arrow occurred when the valve was closed, and the sudden decrease at
the second arrow was caused by opening the valve again. (b) The sample pressure
as a function of time since the beginning of run 100918. Initially, the valve was
open and the sample pressure could equilibrate with the Uboot pressure. When
the valve was closed at t = 40 200 s (the location of the arrow), the pressure
could no longer equilibrate with the Uboot pressure and the fluctuations due
to the turbulent convection became noticeable. This run is for Tm = 20.69 ◦C,
18.4 bar, and 1T = 11.37 K, corresponding to Ra = 9.25 × 1014.

Appendix E. Evidence for a closed sample

HPCF-IIe was supposed to be completely sealed, except for a 2.5 cm diameter pipe entering it at
half-height through the side wall. This pipe terminated outside the sample in a remotely operable
valve which was to be open during an equilibration period to allow pressure equilibration
between the Uboot and the sample, but closed when the system had reached a steady state after
a new set point of the top- and bottom-plate temperatures had been established. In figure E.1(a)
we show the pressure inside the sample during this equilibration period. With the valve open,
the pressure of the Uboot and sample still drifted at a significant rate. In this case, however,
the valve was closed prematurely. One can see that the sample pressure rose. When the valve
was opened again, the pressure returned back to the Uboot pressure which all along had been
drifting downward, albeit at a lesser rate. We regard this measurement as evidence that sealing
the sample was indeed successful.

Figure E.1(b) shows the pressure with higher resolution after a steady state had been
reached. With the valve open the noise level of the readings, reflecting the instrumental noise, is
quite small but noticeable. After closing the valve, the noise level increases because the genuine
noise in the pressure due to the turbulent convection in the sample becomes noticeable because
it can no longer be smoothed out by an exchange of fluid with the Uboot. This phenomenon also
indicates that sealing the sample was successful.
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Table F.1. Effect of an SS temperature-deviation from the mean temperature
for run 120415. 〈TSS〉 is the set-point of the shield temperature. TSS(i L/4),
i = 1, 2, 3, are the measured shield temperatures at the three vertical positions
i L/4 as measured from the sample bottom.

Quantity 〈TSS〉 = Tm 〈TSS〉 = Tm + 1 K

Tm 21.587 21.599
Tc 21.398 21.441
1T 10.163 10.191
TSS(L/4) 21.629 22.621
TSS(2L/4) 21.602 22.602
TSS(3L/4) 21.550 22.571
Q (W) 320.6 319.6
Ra 6.70 × 1014 6.76 × 1014

Nu 4779 4747

10–2 10–1 100

–0.02

–0.01

0.00

0.01

z/L

Θ

Figure F.1. The fluid temperature at a radial distance of 1 cm from the side wall
as a function of the height z/L above the bottom of the sample. The red circles
(black squares) are for 〈TSS〉 = Tm (〈TSS〉 = Tm + 1 K).

Appendix F. Effect of side-shield mismatch with the sample temperature

As shown in figure 1, the side wall of the sample is surrounded by a side shield (‘SS’ in the
figure) which is intended to prevent heat loss or input through the side wall. The temperature
of this shield was controlled at the mean temperature Tm. Since the sample center temperature
Tc will differ slightly from Tm due to non-Boussinesq effects, it is important to ask whether
the heat input to the side wall due to the temperature difference Tm − Tc is significant. Further,
in view of the large size and mass of the shield, it is appropriate to ask how successful its
temperature control was at a specified setpoint. Thus, a run was conducted in which the shield
temperature was deliberately servoed at a displacement from Tm, which is much larger than
Tm − Tc or any deviations from perfect temperature regulation, namely at Tm + 1.0 K. Various
measured quantities with both setpoints are shown in table F.1. This example is for a nominal
1T = 10.1 K.

First we call attention to the shield temperatures TSS at the three vertical positions
L/4, L/2, 3L/4 (the sample height L was 2.2 m) measured from the bottom plate. They span a
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vertical distance of over 1 m. One sees that the temperature gradient in the shield was typically
about 0.05 K/m, which suggests that the shield temperature was uniform throughout within
about 0.1 K.

A small shift of Tm and 1T can be seen to have occurred due to the shift of the shield
temperature by 1 K. This could happen because the bottom plate is a composite with a lower
(BPb) and an upper (BPt) member (see figure F.1), with the temperature of BPb controlled.
Thus the temperature of the BPt could adjust itself to prevailing heat currents and influence Tm

as well as 1T . The effect of a 1 K change in the shield temperature caused a change of 28 mK,
or 0.3%, of 1T and a shift of Tm by 12 mK. The effect of imperfect shield regulation on these
quantities can be regarded as negligible.

The Rayleigh number was shifted by about 0.9%. This is due in part to the change of 1T
and in part due to a change of the fluid properties associated with the shift of Tm. Since actual
temperature offsets are much less than 1 K, this effect is not serious. Similarly Nu is affected,
by about 0.67%. This shift is due both to the change of 1T and to a small change of the heat
current needed to maintain the temperature of the bottom member of the bottom-plate composite
(BPb) at the specified set-point. Again this is not a serious shift.

For completeness we also discuss the influence of the shield temperature on the sample
temperature near the side wall. Although not directly relevant to this paper, it is important
for other related investigations of temperature profiles in the bulk of the sample [42]. For that
purpose, eight thermometers were mounted in the sample at a radial position 1 cm from the side
wall and at eight vertical positions z j . The eight temperatures 2(z j) ≡ [〈T (z j)〉 − Tm]/(Tb − Tt)

(we denote the time average by 〈. . .〉) are shown in figure F.1 as a function of z/L . One sees
that there is no change in the shape of the vertical temperature profile, but there is a small shift
as had already been indicated by the shift of Tc shown in the table.

Finally we note that there are several other thermal shields in the system (see section 4),
but we believe that their influence on the system performance is smaller than that of the SS.

Appendix G. Data tables

Table G.1. SF6, HPCF-IIe, level sample (tilt angle β < 0.0001 rad).

Run no. P (bar) Tm (◦C) TU (◦C) 1T (K) Ra Pr Nu

100918 18.419 20.691 23.777 11.370 9.25II × 1014 0.861 5507.45
100924 18.466 20.788 24.286 11.564 9.477 × 1014 0.862 5579.63
100925 18.502 21.844 24.446 11.679 9.167 × 1014 0.862 5447.81
101004 8.011 20.896 24.343 11.786 6.086 × 1013 0.799 2145.55
101025 8.000 20.973 23.993 2.947 1.514 × 1013 0.799 1371.90
101027 8.003 20.950 24.101 4.896 2.519 × 1013 0.799 1616.40
101029 7.998 20.925 23.947 7.846 4.03II × 1013 0.799 1879.88
101031 8.005 20.895 24.160 11.786 6.075 × 1013 0.799 2146.16
101102 8.016 20.870 24.549 17.732 9.179 × 1013 0.799 2449.66
101114 11.751 20.977 24.611 13.447 2.063 × 1014 0.820 3224.14
101116 11.762 21.021 24.849 20.030 3.079 × 1014 0.821 3675.61
101108 14.891 20.920 25.015 17.826 6.060 × 1014 0.842 4659.07
101109 14.894 21.247 25.008 18.479 6.21II × 1014 0.842 4694.89
101120 14.894 21.382 24.994 18.749 6.27II × 1014 0.842 4710.51
101122 14.843 21.498 24.246 11.988 3.945 × 1014 0.841 4045.17
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Table G.1. Continued.

Run no. P (bar) Tm (
◦

C) TU (
◦

C) 1T (K) Ra Pr Nu

101124 14.810 21.272 23.786 7.938 2.61II × 1014 0.841 3526.58
101126 14.792 21.282 23.526 4.960 1.624 × 1014 0.841 2995.86
101130 14.802 20.970 23.740 9.934 3.298 × 1014 0.841 3814.08
101202 14.839 21.011 24.271 15.011 5.021 × 1014 0.841 4382.99
101204 14.898 21.517 25.061 19.021 6.339 × 1014 0.842 4724.05
101207 14.873 20.978 24.757 17.942 6.059 × 1014 0.842 4661.48
101214 18.739 20.933 23.730 11.523 1.004 × 1015 0.863 6154.13
101215 18.769 20.971 23.918 9.934 8.699 × 1014 0.863 5410.40
101217 18.755 20.973 23.781 7.945 6.93II × 1014 0.863 4975.08
101218 18.814 21.644 24.306 12.274 1.051 × 1015 0.863 5871.83
101219 18.817 21.612 24.295 11.214 9.620 × 1014 0.863 5599.07
101221 18.812 21.536 24.246 10.065 8.657 × 1014 0.863 5375.00
101223 18.785 21.566 23.998 9.125 7.785 × 1014 0.863 5183.77
101225 18.781 21.583 23.960 8.160 6.949 × 1014 0.863 4981.14
101227 18.751 21.490 23.682 6.975 5.924 × 1014 0.863 4710.15
101229 18.709 21.432 23.289 0.861 7.258 × 1013 0.863 1754.60
101231 18.740 21.483 23.570 5.961 5.051 × 1014 0.863 4448.59
110102 18.735 21.487 23.522 4.971 4.205 × 1014 0.863 4160.20

Table G.2. SF6, HPCF-IIe, First tilted sample, tilt angle β = 0.003 rad.

Run no. P (bar) Tm (◦C) TU (◦C) 1T (K) Ra Pr Nu

110115 4.181 20.950 23.734 4.896 5.176 × 1012 0.787 966.79
110117 4.187 20.931 24.142 19.859 2.107 × 1013 0.787 1497.77
110129 4.180 21.083 23.621 3.164 3.334 × 1012 0.787 843.02
110131 4.187 20.930 24.159 19.858 2.107 × 1013 0.787 1498.53
110202 4.184 20.855 23.987 13.708 1.455 × 1013 0.787 1335.73
110204 4.184 20.895 23.947 9.791 1.038 × 1013 0.787 1201.21
110206 4.185 20.938 24.046 5.875 6.228 × 1012 0.787 1024.77
110221 18.565 21.040 24.198 12.067 1.001 × 1015 0.862 5707.16
110227 18.574 21.034 24.286 12.057 1.00II × 1015 0.862 5716.32
110311 18.574 21.034 24.260 10.059 8.364 × 1014 0.862 5302.69
110417 18.603 21.036 24.563 7.070 5.921 × 1014 0.862 4694.05
110418 18.572 21.035 24.259 5.068 4.211 × 1014 0.862 4133.38
110419 18.554 20.996 24.093 3.990 3.307 × 1014 0.862 3758.72
110420 18.573 20.994 24.283 5.990 4.990 × 1014 0.862 4412.69
110421 18.620 22.003 24.600 6.004 4.813 × 1014 0.863 4374.31
110524 11.837 24.996 28.197 13.985 1.956 × 1014 0.820 3157.24
110525 11.827 23.264 28.250 15.655 2.294 × 1014 0.821 3336.36
110526 11.828 23.974 28.184 15.941 2.289 × 1014 0.821 3331.77
110526 11.820 23.959 28.025 11.912 1.708 × 1014 0.820 3023.89
110527 11.809 23.961 27.803 7.918 1.13II × 1014 0.820 2633.26

New Journal of Physics 14 (2012) 103012 (http://www.njp.org/)

http://www.njp.org/


35

Table G.3. SF6, HPCF-IIe, second tilted sample, tilt angle β = 0.014 rad.

Run No. P (bar) Tm (◦C) TU (◦C) 1T (K) Ra Pr Nu

110625 4.971 24.017 27.841 1.033 1.533 × 1012 0.789 661.28
110629 6.953 23.855 28.251 19.704 6.607 × 1013 0.795 2178.61
110630 6.946 23.908 27.964 9.814 3.279 × 1013 0.795 1744.85
110701 6.943 23.953 27.841 4.904 1.635 × 1013 0.795 1395.79
110716 18.237 20.992 23.753 4.981 3.817 × 1014 0.861 4011.57
110717 18.275 20.998 24.135 9.990 7.725 × 1014 0.861 5162.00
110718 18.282 20.997 24.244 12.980 1.006 × 1015 0.861 5707.97
110718 18.303 21.524 24.363 13.033 9.894 × 1014 0.861 5629.48
110720 18.383 21.531 25.210 13.647 1.056 × 1015 0.862 5790.57
110722 18.379 21.530 25.156 13.046 1.009 × 1015 0.862 5673.03
110723 18.379 21.531 25.135 12.050 9.316 × 1014 0.862 5496.51
110724 18.384 21.523 25.183 11.037 8.548 × 1014 0.862 5323.81
110725 18.381 21.515 25.144 10.023 7.759 × 1014 0.862 5144.72
110726 18.370 21.512 25.037 9.019 6.965 × 1014 0.861 4950.18
110727 18.357 21.507 24.906 8.007 6.166 × 1014 0.861 4741.89
110728 18.332 21.500 24.654 6.000 4.59II × 104 0.861 4264.08
110731 18.340 21.498 24.760 4.993 3.830 × 1014 0.861 3973.54
110801 18.323 21.004 24.672 5.004 3.916 × 1014 0.861 3980.43
110802 18.341 21.001 24.848 6.997 5.501 × 1014 0.861 4531.63
110803 18.339 21.261 24.791 5.520 4.281 × 1014 0.861 4140.67
110803 16.166 21.475 24.995 5.945 2.696 × 1014 0.850 3521.90
110804 16.168 21.475 25.014 5.946 2.697 × 1014 0.850 3521.17
110805 16.173 21.467 25.078 8.431 3.831 × 1014 0.850 3996.65
110806 16.182 21.473 25.197 11.937 5.435 × 1014 0.850 4512.01
110807 14.105 21.649 24.915 6.295 1.720 × 1014 0.836 3035.56
110808 14.105 21.650 24.909 6.291 1.719 × 1014 0.836 3039.94
110809 14.113 21.742 25.037 8.982 2.45II × 1014 0.836 3431.72
110810 14.136 21.899 25.354 12.790 3.49II × 1014 0.836 3863.76
110811 12.061 21.453 25.045 5.906 9.694 × 1013 0.822 2503.66
110812 12.060 21.454 25.034 5.908 9.695 × 1013 0.822 2500.66
110813 12.065 21.442 25.135 8.380 1.378 × 1014 0.822 2822.21
110814 12.067 21.434 25.177 11.861 1.951 × 1014 0.822 3171.61
110815 12.078 21.445 25.383 16.879 2.784 × 1014 0.823 3564.35
110816 12.101 21.673 25.806 21.336 3.515 × 1014 0.823 3839.08
110817 12.077 21.437 25.356 6.872 1.133 × 1014 0.823 2631.68
110824 10.068 21.454 25.455 5.404 5.161 × 1013 0.810 2021.40
110625 10.068 21.440 25.457 6.877 6.570 × 1013 0.810 2196.23
110626 10.063 21.425 25.319 8.846 8.440 × 1013 0.810 2395.76
110827 8.013 21.510 25.143 9.017 4.593 × 1013 0.799 1950.67
110828 8.010 21.444 25.047 5.885 2.999 × 1013 0.799 1695.53
110829 8.013 21.454 25.137 4.908 2.503 × 1013 0.799 1597.10
110911 5.025 21.422 25.492 6.604 1.060 × 1013 0.789 1209.78
110912 5.023 21.390 25.369 9.779 1.568 × 1013 0.789 1369.93
110913 5.023 21.372 25.387 12.240 1.964 × 1013 0.789 1471.19
110914 5.020 21.407 25.206 8.205 1.314 × 1013 0.789 1295.76
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convection with gaseous helium at low temperature J. Low Temp. Phys. 104 109
[9] Chavanne X, Chilla F, Castaing B, Hebral B, Chabaud B and Chaussy J 1997 Observation of the ultimate

regime in Rayleigh–Bénard convection Phys. Rev. Lett. 79 3648
[10] Niemela J J, Skrbek L, Sreenivasan K R and Donnelly R 2000 Turbulent convection at very high Rayleigh

numbers Nature 404 837
[11] Niemela J J, Skrbek L, Sreenivasan K R and Donnelly R 2000 Turbulent convection at very high Rayleigh

numbers Nature 406 439 (erratum)
[12] Chavanne X, Chilla F, Chabaud B, Castaing B and Hebral B 2001 Turbulent Rayleigh–Bénard convection in

gaseous and liquid He Phys. Fluids 13 1300
[13] Roche P E, Castaing B, Chabaud B and Hebral B 2001 Observation of the 1/2 power law in Rayleigh–Bénard

convection Phys. Rev. E 63 045303
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