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Abstract
Background Studying root biomass, root system dis-
tribution and belowground interactions is essential for
understanding the composition of plant communities,
the impact of global change, and terrestrial biogeo-
chemistry. Most soil samples and minirhizotron pic-
tures hold roots of more than one species or plant
individual. The identification of taxa by their roots
would allow species-specific questions to be posed;
information about root affiliation to plant individuals
could be used to determine intra-specific competition.
Scope Researchers need to be able to discern plant
taxa by roots as well as to quantify abundances in mixed
root samples. However, roots show less distinctive

features that permit identification than aboveground
organs. This review discusses the primary use of avail-
able methods, outlining applications, shortcomings and
future developments.
Conclusion Methods are either non-destructive, e.g.
visual examination of root morphological criteria in
situ, or require excavated and excised root samples.
Among the destructive methods are anatomical keys,
chemotaxonomic approaches and molecular markers.
While some methods allow for discerning the root
systems of individual plants, others can distinguish
roots on the functional group or plant taxa level;
methods such as IR spectroscopy and qPCR allow
for quantifying the root biomass proportion of species
without manual sorting.

Keywords Anatomy and morphology .

Chemotaxonomy. IR Spectroscopy .Molecular
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Introduction

The location and activity of plant roots play important
ecological roles, affecting processes such as competi-
tion for water and nutrients, direct plant-plant interac-
tions, dynamics of mycorrhizal fungi and rhizosphere
bacteria, and biogeochemistry of soils (de Kroon et al.
2003; Reynolds et al. 2003; Schenk 2006) and may
therefore strongly influence ecosystem responses to
global change.
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The lack of knowledge on rhizosphere processes–
as compared to aboveground organs–is partially
caused by the inaccessibility of root systems, “the
hidden half” of plants (Eshel and Beeckman 2012).
Standard methods for studying the abundance, distri-
bution and dynamics of root systems are either to
collect (a series of) soil samples or to determine root
growth and distribution via picture analyses (e.g., via
minirhizotron systems; Rewald and Ephrath 2012).
Because spatially segregated root systems are fore-
most limited to resource-poor environments such as
arid and semi-arid areas, roots of more than one plant
individual are commonly found in close proximity
(Schenk et al. 1999; Rewald and Leuschner 2009;
Jones et al. 2011).

Plant taxa can be commonly identified from above-
ground criteria, such as flower morphology and, with-
in local communities, usually from leaf shapes;
however, roots show less distinctive features that per-
mit identification. While individual roots are some-
times followed back to the stem for identification
(Murphy et al. 2009) or whole root systems or plots
are excavated by digging (Brisson and Reynolds
1994), most studies addressing rooting patterns or
rhizosphere processes are hampered by the lack of
broadly applicable methods for discerning plant taxa
by their underground parts. Sound abilities to identify
species-specific root distributions in time and space
would strongly facilitate research in belowground
community ecology, including studies on invasive
plants, mixed forests, and agricultural systems (e.g.,
Lopez-Zamora et al. 2004; Rewald and Leuschner
2009). Spatial presence/absence scores, gained by be-
lowground taxa identification, are only part of the
information needed. Because root system functions
are strongly related to (fine) root densities (Barber
1995), the belowground proportions of species have
to be quantified. The quantitative analysis of species’
root distribution will improve our understanding of
plant carbon allocation and competition in general,
and, in addition, has practical implications for irriga-
tion and fertilizer placement in mixed cropping sys-
tems. Affiliating root systems to plant individuals is
even more complex than taxa differentiation; however,
data about root system overlapping in mono-specific
agricultural systems and tree plantations are needed to
quantify intra-specific competition.

To overcome technological limitations in the rela-
tively young scientific discipline of “root research”,

several methods–ranging from anatomical and mor-
phological keys to labelling approaches, from infrared
absorbance spectra and other chemotaxonomic meth-
ods to molecular markers–have been developed. The
techniques to identify plant individuals, functional
groups or taxa by their underground parts and/or to
determine the root proportion of species are summa-
rized in this review to help facilitate their use in future
studies.

Anatomical and morphological criteria

Tree species are routinely identified by using the ana-
tomical characteristics of stem wood. Identifying plant
species based on their root anatomy imposes challenges
because knowledge of root anatomy is comparatively
limited, and important anatomical characteristics can
differ between stem and root. For example, wood of
Ulmus glabra is ring-porous in the stem, semi-ring-
porous in roots that are in close proximity to the stem,
and diffuse-porous in more distal roots (Fig. 1;
Trockenbrodt et al. 2001). Thus, root identification
requires specific anatomical keys; however, studies on
the comparative anatomy of (woody) roots are relatively
rare (e.g., Riedel 1937; Prakash 1972). In 1987, Cutler et
al. published a root anatomy key for 280 tree and shrub
species from Northern and Central Europe which has
become the standard reference for woody root anatomy.
To date, a similarly comprehensive anatomical key for
herbaceous roots is missing. However, based on their
study of the root anatomy of trees, shrubs and herba-
ceous plants from an Acer saccharum forest, Brundrett
and Kendrick (1988) observed that “there was no diffi-
culty in determining the identity of roots [by unique
combinations of anatomical features]”.

Commonly used characteristics for anatomical root
keys are based on xylem traits (e.g., conduit types,
xylem vessel distribution, type of perforation plates,
pit types, tyloses), parenchyma and sclerenchyma
anatomy (e.g., septated fibres, type and position of
axial parenchyma, numbers of cells in wood rays),
and the appearance and abundance of specific cell
contents (e.g., crystalline silicic acid, calcium oxalate;
Cutler et al. 1987; Trockenbrodt et al. 2001). For
example, anatomical characteristics relevant for the
identification of Populus tremula are the presence of
secondary phloem fibres and sclereids, and the wedge-
shaped dilatation of phloem rays in root bark (Fig. 2a).
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In contrast, sclereid formation is pronounced, but no
secondary phloem fibres are formed in Betula pendula
root bark (Fig. 2b). While seminal roots of grasses,
fibrous roots of herbs and ephemeral fine roots of
woody species are more difficult to identify because
they show no or minor secondary growth and, thus, less
pronounced tissue differentiation than woody roots, root
anatomy has been found to be a useful tool for species
identification in a range of non-woody species (e.g.,

Wang et al. 2003, abstract; Basconsuelo et al. 2011).
For example, Brundrett and Kendrick (1988) found the
structure of the exodermis and epidermis as well as large
intercellular spaces to be sufficient characteristics for the
identification of small diameter roots (0.1–2 mm) of
herbaceous plants as well as of shrubs and trees in a
diverse forest ecosystem.

Due to the destructive nature and the time consuming
preparation of cross sections (embedding, staining, etc.),
anatomical keys are foremost suitable to determine the
taxa of a limited number of excised root segments (but
see Brundrett and Kendrick 1988). Ideally, anatomical
characteristics used for root species differentiation must
be stable under different environments and during ontog-
eny and are mirrored in the aboveground anatomy for
easy taxa affiliation. However, because anatomical root
traits can change significantly between environments and
within a root system (e.g., Huang and Fry 1998; Rewald
et al. 2011), a comparison of cross sections with known
root samples from the vicinity and establishment of local
keys is required.

Root morphology

A less time consuming technique, allowing for manual
sorting of larger root biomass samples, uses general
morphological root traits (“gross morphology”) to de-
termine the taxa. Because larger root fragments usually
hold more referable criteria than small segments, exces-
sive fragmentation of roots (e.g. by using overly small
augers or an abrasive rinsing procedure) needs to be
avoided. Finér et al. (1997) identified tree species by
comparing key criteria such as root colour, odour,

Fig. 1 Anatomical differences between stem and root woodmake
specific root identification keys necessary. In Ulmus glabra, the
xylem vessel distribution changes from ring-porous to diffuse-
porous. a ring-porous stem; b semi-ring-porous root at 0.8 m

distance to stem; c diffuse-porous root at 7.60 m distance to stem
(Trockenbrodt et al. 2001; images reproduced with friendly per-
mission by Patzer Verlag, Berlin)

Fig. 2 The anatomical characteristics of young root barks rele-
vant for species identification. Populus tremula a – formation of
secondary phloem fibres and sclereids (yellow), wedge-shaped
dilatation of phloem rays (blue); Betula pendula b – pronounced
sclereid formation (whitish-pink), no secondary phloem fibres
formed (Trockenbrodt et al. 2001; images reproduced with
friendly permission by Patzer Verlag, Berlin)
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resilience (to breakage), type of mycorrhiza, existence
of root hairs or resin, and/or woody structure. Meinen
(2008) compiled a root identification key for ten decid-
uous Central European tree species based on colour and
gross morphological criteria. The core of this identifica-
tion technique is the examination of the root surface
structure under a dissecting microscope (4–40×), taking
the exodermal cell structure and peridermis character-
istics (e.g., furrows or dead periderm layers) into special
consideration. For example, the rhizodermis of Larix
decidua and Prunus avium fine roots (≤2 mm in diam-
eter) can be reliably used for taxa differentiation (Fig. 3).
The roots of Larix decidua are dark brown to reddish,
and the surface features thin longitudinal furrows; in
contrast, Prunus avium roots are dark brown to beige
with rectangular-shaped cells visible in the beige-
coloured areas. Furthermore, the gross morphology of
root branches, including the root diameter, branching
pattern, root tip density and the morphotype of mycor-
rhizal root tips, is known to differ between species
(Agerer 1988; Yanai et al. 2008; Leva et al. 2009;

Meinen et al. 2009a). However, although gross
morphology-based criteria have been widely used on
diverse root mixtures–for example, Meinen et al.
(2009b) discerned up to eight tree species and herba-
ceous roots in a deciduous old-growth forest in
Thuringia, Germany–species-specific criteria have yet
to be documented in a comprehensive key. An example
for a gross morphological key allowing the discernment
of Fagus sylvatica and Quercus petraea fine roots can
be found in Table 1 (Hölscher et al. 2002, modified).

Gross morphological criteria cannot only be used to
distinguish the roots of woody species. Wardle and
Peltzer (2003) used general appearance and colour
criteria to distinguish Lolium perenne roots from those
of dicotyledonous species, “enabling separation of
roots into those of component species with a reason-
able level of accuracy”. Roots of Triticum spp., Zea
mays, and Vicia faba were distinguished by colour,
texture and rooting pattern by Li et al. (2006); for
example, the roots of Triticum spp. (C3 plant) were
described as yellowish and hairy as compared with
those of Zea mays (C4 plant), which had smooth
surfaces and were of a white colour. Most previous
studies comparing root biomass and distribution of
non-woody plants used grass/herb or C3 grass/C4 grass
mixtures, possibly leveraging the larger differences in
root morphology between more distantly related plant
species. However, Vandenkoornhuyse et al. (2003)
“identified, [and] separated” roots of Agrostis capilla-
ris, Festuca rubra, and Poa pratensis from semi-
natural grassland by morphological criteria (see
Ridgway et al. 2003); sorting was confirmed by
TrnL intron amplification (see below). Leva et al.
(2009) used root colour, hair abundance, diameter,
branching pattern and tensile strength to distinguish
roots of eight grasses from the Patagonian steppe.
Thus, morphological keys can be reliably used to
discern even seminal roots in diverse swards; howev-
er, many experimental set-ups are limited to a species
number of two (e.g., Huber-Sannwald et al. 1998),
possibly allowing for more unambiguous discrimina-
tion of roots and reducing the time required for
training.

The use of colour as a distinction criterion was
found to be a valuable method to study belowground
interactions in natural habitats and mixed cropping
systems (e.g., Tosti and Thorup-Kristensen 2010);
however, root colour might be subject to change under
different environmental conditions, requiring caution

Fig. 3 Larix decidua a and Prunus avium b fine roots, illustrating
how the differences among root surface structures can be used for
the identification of fine root tree taxa. The fine roots of Larix
decidua have a dark-brown to reddish colour and a surface featur-
ing thin longitudinal furrows and a rather filamentary structure. In
contrast, Prunus avium fine roots are pied-coloured (i.e. dark
reddish-brown to beige) with cell shapes clearly visible in beige-
coloured areas (C. Meinen and B. Rewald, unpublished results)
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in using colour as a sole criterion. The use of colour
tables and the three variables of hue, brightness and
saturation have been suggested to make colour esti-
mation less arbitrary (Leva et al. 2009).

A main drawback of gross morphological keys is
the plasticity of root morphology under changing envi-
ronments and with mycorrhization status (e.g., Taylor
et al. 2008); thus, keys often need local adjustment.
Furthermore, broad usage of gross morphological keys
is limited by the time consuming hand sorting process
of root segments and the extensive operator training
required, making high throughput root identification
and biomass sorting by morphological criteria labour
intensive. However, morphological keys are envi-
sioned to continue to be used in future studies because
the method compels by its very low set-up costs and
the possibilities to discern roots in situ (e.g. for manip-
ulation of competitive neighbourhoods) or to use ex-
cised root segments for further analyses (e.g., specific
root area, chemical composition, mycorrhization etc.;
Rewald and Leuschner 2009).

Staining

When natural colour differences or morphological
parameters are not sufficiently pronounced or rooting of
individual plants should be mapped, root staining was
suggested (Böhm 1979). In 2003, Holzapfel and Alpert
used dyes to relate root segments harvested by soil coring
to either one of two Fragaria chiloensis plants. The dyes
were fed through cut leaf petioles; the plants had to be
sufficiently dry, and all leaves were cut prior to the dye
application. Similarly, Murakami et al. (2006) developed
a technique to stain the root systems of several herba-
ceous crop species via injecting a dye solution into the

clipped shoot. Using this technique, the root systems of
two pot-grown Lycopersicon spp. plants have been clear-
ly identified by using either red or blue dye (Fig. 4). As
reported by Holzapfel and Alpert (2003) and Murakami
et al. (2006), a highly desiccated soil is necessary prior to
staining, in order to induce sufficient downward flux of
the dye. The direct staining of root systems is thought to
be most useful to distinguish the root systems of neigh-
bouring plants in detail (Cahill et al. 2010); root biomass

Table 1 Gross morphological criteria for distinguishing fine roots of Fagus sylvatica and Quercus petraea trees from habitats in
Northern and Central Germany (after Hölscher et al. 2002, modified)

Criteria Fagus sylvatica Quercus petraea

Colour Reddish brown to orange brown Light brown to beige (rarely yellow)

Root surface structure Rough surface with longitudinal
furrows; dead, flaky periderm

First order roots with lateral furrows, partly with visible cell
structure; roots partly coated with shiny, transparent, dead
periderm layers

Branching structure Evenly ramified with numerous
clustered root tips

Long, winding and less ramified first order branches.

Root slightly thickened at branching points

Mycorrhizal status Ectomycorrhizal fungi Ectomycorrhizal fungi

Fig. 4 The root systems of two Lycopersicon spp. plants,
stained 53 days after sowing with either red or blue dye. a
shows the distinguishably stained root systems after pot re-
moval; b provides a close-up view of the stained roots in
parallel adhesion (Murakami et al. 2006; images courtesy of
T. Murakami, National Agriculture Research Center for
Tohoku Region, Fukushima, Japan)
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can be quantified by manual sorting or colour-
based image analyses (e.g., WinRhizo Pro, Regent
Instruments, Canada). Cahill et al. (2010) reported that
>90% of Abutilon theophrasti roots, growing under intra-
specific competition in pots, could be attributed to a plant
individual by either stain colour and/or visible connection
to other roots of known ownership. However, the method
seems to be limited to small plants growing in dry soil to
allow for sufficiently stained root systems.

Donaldson and Robinson (1971) and others applied
fluorescent dyes to soils where they were rapidly
absorbed and transported to aboveground organs. This
technique, similar to isotope tracer applications (see
below), could be a valuable tool to determine the affil-
iation of (partially) excavated roots, as are available in
studies using removable root windows or inflatable
minirhizotron tubes, to individual plants if applied di-
rectly to root segments. However, the potential range of
the technique is restricted, i.e. large scale mapping of
root system distribution is impossible, and the size of
eligible plants might be limited due to dilution effects.

Infrared spectroscopy and fluorescence

Infrared (IR) spectroscopy is a standard method in labs
for quantitative determination and identification of un-
known substances; the IR spectrum ranges between the
visible and microwave region. Traditionally, the unit
wavenumber (i.e. the inverse of the wavelength in cm)
is used to describe the spectrum. The IR region can be
divided into near (wavenumber 12,500–4,000 cm−1),
mid (4,000–400 cm−1), and far (400–5 cm−1) infrared.
The principle of IR spectroscopy is irradiating a sample
and recording the spectral patterns; the chemical com-
position of a sample determines the spectral print as a
function of wavenumber (Chalmers and Griffiths 2002;
Günzler and Gremlich 2002). Thus, the spectral pattern
reveals information about the chemical composition of a
sample, e.g. the presence of -OH, -CH, and -NH bonds.
Similarly, fluorescence spectroscopy uses a beam of
light, usually ultraviolet (UV) light (wavelength 230–
400 nm), that excites electrons in certain compounds
and causes them to emit light of a lower energy (Sharma
and Schulman 1999). The differences in the chemical
composition of roots (see also below), detected by ab-
sorption or transmission spectroscopy or fluorescence
intensity, can be utilized for taxa identification below
ground.

Near infrared reflectance spectroscopy

Near infrared reflectance spectroscopy (NIRS) is a
rapid and cost-effective tool in constituent analysis
and considered a valuable tool for ecological applica-
tions (Foley et al. 1998). In agricultural studies, NIRS
analysis has been used to determine the aboveground
proportion of legumes in legume-grass mixtures
(Shenk et al. 1979) and complex forage mixtures
(Coleman et al. 1985). For studying roots, NIRS was
applied first by Rumbaugh et al. (1988) to predict the
root biomass proportion of four grass species in binary
mixtures with Medicago sativa. Artificially prepared
Medicago-grass root mixtures with grass ratios from 0
to 100% were recorded by NIRS, and root spectra
were correlated to corresponding root proportion
(R200.92–0.99). Similar, Roumet et al. (2006) created
artificial root mixtures with combinations of two or
three species from greenhouses (Festuca arundinacea,
Holcus lanatus, Lolium perenne) or from species col-
lected in an old-field (Brachypodium phoenicoides,
Bromus erectus, Picris hieracioides). These mixtures
were used to calibrate a NIRS model to predict species
proportion (R00.97–0.99). Recently, the prediction of
the species ratio in woody fine-root mixtures (Fagus
sylvatica, Quercus petraea, Picea abies, Pseudotsuga
menziesii – with two, three, or four tree species plus
herbal roots) was successfully demonstrated by Lei
and Bauhus (2010). Even in samples with low root
abundance (<15%) of a specific species, NIRS models
presented reasonable approximations of the biomass
abundance.

Mid-infrared spectroscopy

Mid-infrared spectroscopy (MIRS) with an attenuated
total reflection (ATR) device can penetrate samples to
a depth of a few μm, compared to NIRS with pene-
tration depths of approximately 27–180 μm (Clarke et
al. 2002). One advantage of MIRS-ATR, compared
with NIRS, is the more structural spectra and display
of the “fingerprint region” (1,500–600 cm−1) which is
highly characteristic for specific substances and, con-
sequently, beneficial for taxa identification (Skrabal
2009). Today, Fourier transform infrared (FT IR) spec-
troscopy is commonly used, replacing grating disper-
sion IR spectrometers. FT IR spectroscopy offers
many advantages, such as short measuring times and
high signal-to-noise ratios. Methodologically, FT IR

170 Plant Soil (2012) 359:165–182



spectroscopy records an interferogram (result of the
reflected wave trains) which is converted by Fourier
transformation into an absorption or transmission
spectrum (Fig. 5).

Kim et al. (2004) demonstrated that FT IR spec-
troscopy detects differences in the cell-wall composi-
tion of leaves, reflecting the phylogenetic relationship
between the tested plants. Zhao et al. (2004) were able
to identify wheat varieties using FT IR spectra. Lately,
a 100% correct discrimination of Pisum sativum and
Avena sativa roots was achieved by FT MIR-ATR
spectroscopy, independent of substrate, competitive
environment and root segment position (Naumann et
al. 2010). In a recent experiment, Beta vulgaris ssp.,
Brassica napus, Triticum aestivum, and Zea mays
were grown in a greenhouse for 6 weeks (C. Meinen,
unpublished). Root segments, taken from the middle
section of a rootlet, were dried, and spectra were
collected by FT MIR-ATR spectroscopy (Fig. 5). A
cluster analysis showed that the four species were
separated in four clusters (Fig. 6). The inter-specific
differences of the species were higher than the intra-
specific heterogeneity; as expected, the differences
between monocotyledons and dicotyledons were more
pronounced than within one group.

Up to now, IR spectroscopy is commonly used on
excavated, excised roots. Only drying and no/minimal
grinding is required for most IR spectroscopes without

an ATR device and makes the methods well suitable
for the analysis of large sample sizes. Because water
causes a strong absorbance which can cover the peaks
of other components, it was recommended to dry the
sample before recording FT IR-ATR spectra (Hsu
1997). However, although fingerprint regions are
more distinct with dry and ground roots, FT IR-ATR
allows for non-destructive measurements on fresh
roots (C. Meinen, unpublished). A non-destructive
approach was tested by Nakaji et al. (2008) on hybrid
poplar cuttings, using root windows in combination
with visible (VIS) and near-infrared (NIR) reflectance
images. While Nakaji et al. (2008) used the NIR
technique to discriminate soil, leaf mould, and dead
and living roots non-destructively, IR spectroscopy
techniques have the potential to discriminate taxa in
situ. Pierret (2008) suggested that multi-spectral im-
aging systems–as used by Nakaji et al. (2008)–should
be included in future minirhizotron systems to allow
for species-specific measurements of root dynamics in
plant mixtures. However, the main drawback of IR
spectrometry is the exact calibration series needed to
determine species ratios. To create artificial root mix-
tures, designated species should be grown in mono-
cultures to ensure root affiliation to target species. This
is laborious and time consuming, especially because
the chemical composition of roots can change during
ontogeny and under different abiotic and biotic

Fig. 5 Fourier transform
mid-infrared spectroscopy-
attenuated total reflection (FT
MIR-ATR) spectra of Beta
vulgaris ssp., Brassica napus,
Triticum aestivum and Zea
mays. The plants were grown
in a greenhouse for 6 weeks in
a sand-compost mixture;
samples were collected at the
middle section of a rootlet
(mean, n09; C. Meinen,
unpublished results)
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environments (e.g., by inoculation with rhizobacteria, El
Zemrany et al. 2007). Hence, quantitative IR spectros-
copy may be primarily applicable to studies where small
numbers of well-known species tend to be examined,
sufficient amounts of pure root material for calibration
can be accessed and environmental gradients during
measurements are rather moderate (e.g., agri- or silvi-
cultural ecosystems).

Fluorescence

Due to its sensitivity, simplicity and selectivity, UV-
light induced fluorescence has been broadly used for
chemical analyses of autofluorescing molecules
(Sharma and Schulman 1999). Goodwin and
Kavanagh (1948) tested plant roots to evaluate their
fluorescence ability; 135 plant species showed fluo-
rescence when irradiated with long-wave ultraviolet
light. However, in situ root observations of Glycine
max showed that nutrient absorption and root elonga-
tion rates were positively correlated to fluorescence

intensity (Dyer and Brown 1983) and that fluores-
cence can be influenced by microbial colonisation
(Gamalero et al. 2004). Thus, non-species-specific
influences undermine the applicability of UV-light-
induced autofluorescence to root classification.
However, more advanced fluorescence spectroscopy
approaches (Sharma and Schulman 1999) are envi-
sioned to lead to results as good as those gained
through IR spectroscopy techniques.

Avoiding problems with non-species-specific influ-
ences on root fluorescence intensity, Faget et al.
(2010) used transgenic Zea mays, expressing green
fluorescent protein (GFP), in combination with either
its corresponding wild-type, Lolium multiflorum or
Glycine max. GFP expressing and non-GFP plants
can be easily distinguished by the strong, green fluo-
rescence of transgenic roots as compared with minor
autofluorescence in wild-type roots (Fig. 7). The iden-
tification of fluorescent roots on minirhizotron pic-
tures allows observations of species-specific root
distribution, root growth, and root system interaction

Fig. 6 Cluster analysis of FT MIR-ATR spectra (see Fig. 5)
recorded from rootlets of Beta vulgaris ssp. (Bv), Brassica
napus (Bn), Triticum aestivum (Ta) and Zea mays (Zm). The

root segments of nine individual plants (i.e. numbers behind
species abbreviation) were excised at the middle section of a
rootlet (C. Meinen, unpublished results)
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and interference in situ (Rewald and Ephrath 2012).
The ability to mark only certain plant individuals in a
monoculture would allow the use of the technique for
the determination of intra-specific interactions be-
tween plant individuals. While the method is projected
to be of interest to a broad range of root researchers,
GFP expression is most stable in model plants and the
transformation of a larger set of plant species is labo-
rious. Hence, GFP fluorescence may be most applica-
ble in studies where a low number of species tend to
be examined, e.g. in an agricultural context.

Chemical and biochemical analyses

Isotope discrimination and radioisotope labelling

Distinguishing root taxa by natural carbon isotope
discrimination relies on the biological principle that
C3 species discriminates more effectively than C4 spe-
cies against the relatively rare isotopic form (13C) of
CO2 (e.g., Farquhar et al. 1989). This results in differ-
ent 13C:12C isotope ratios (expressed as δ13C) in the
root tissues of C3 and C4 species, with C3 plants
having more negative δ13C values. Using stable iso-
tope discrimination is particularly useful for estimat-
ing the proportion of C3 and C4 species in excised
samples of visually indistinguishable, intermingled
root systems from intercropping systems or natural
plant communities (e.g., Ludlow et al. 1976; Svejcar
and Boutton 1985; Wong and Osmond 1991; Gealy
and Fischer 2010). For example, Eleki et al. (2005)

successfully segregated root systems of Zea mays and
Trifolium ambiguum; Zea-Trifolium root mixtures with
Zea mays proportions from 1 to 100% were recorded to
correlate δ13C values and the corresponding root pro-
portions (Fig. 8). R2 was usually very high between the
actual and the predicted root mass ratio, allowing for an
accurate determination of root biomass proportions in
C3-C4 mixtures. Aboveground, leaf δ13C values were
found to differ even between closely related C3 species
(e.g., Quercus spp., Williams and Ehleringer 2000). If
the same holds true for root δ13C values, this could be
utilized for root taxa identification in C3 mixtures in the
future. However, tissue δ13C varies strongly under dif-
ferent environments, especially under different water
availability, and responses can differ by species and
under competition (Rice et al. 1993; Kloeppel et al.
1998), highlighting the need for costly δ13C standard
curves for different study years and species.

Differences between legumes and non-N-fixing
plants in the ratios of stable nitrogen isotopes 15N to
14N have been widely documented (e.g., Shearer et al.
1983). Furthermore, foliar δ15N ratios of herbaceous
and woody species are often not related to growth
form or phenology, but a strong relationship exists
between mycorrhizal status and plant δ15N. For exam-
ple, Schmidt and Stewart (2003) found that Australian
woody species with ectomycorrhizal fungi had the
lowest foliar δ15N, arbuscular species had intermediate
δ15N values, and non-mycorrhizal Proteaceae had the
highest 15N proportion; similar differences were ob-
served between AM and non-mycorrhizal herbaceous

Fig. 7 The roots of a genetically transformed Zea mays genotype
expressing green fluorescent protein (GFP); the dark non-
fluorescent root on the right side belongs to a non-GFP Zea mays
variety (Faget et al. 2009; image courtesy ofM. Faget,M. Liedgens,
P. Stamp, P. Flutsch and J.M. Herrera, ETH, Zurich, Switzerland)

Fig. 8 The relationship between δ13C and the proportion of Zea
mays roots in mixed samples containing known amounts of
excised Zea mays and Trifolium ambiguum roots (after Eleki et
al. 2005, modified)
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species. However, these differences, which result from
variations in the abundance of 15N between atmo-
spheric/soil pools of N, and the isotopic fractionation,
occurring during N uptake, have rarely been exploited
to distinguish roots. One of the few studies was con-
ducted by Corre-Hellou and Crozat (2005); they suc-
cessfully used the differences in 15N abundance and N
concentration between two legume species and
Hordeum vulgare to quantify root biomass propor-
tions. Problems can arise if, for example, the legume
and the non-fixing plant differ in root distribution,
temporal N uptake patterns, or preferences for soil
N-forms. While this approach assumes there is no
translocation of N between plants and that δ15N values
are homogeneously distributed within root systems, it
is envisioned to facilitate root identification on taxa- or
“mycorrhization type”-level in future studies. This
holds especially true if combined approaches, using
multiple stable isotopes, are used to separate the roots
of single species or of functional groups (Polley et al.
1992; Dawson et al. 2000). Polley and colleagues
(1992) were able to determine the root biomasses of
legumes and non-fixing C3 and C4 plants, in mixed
grass-scrubland communities, with differences in the
ratios of stable C and N isotopes, and C and N con-
centration. For the four species tested, R2 for the actual
and estimated root mass was 0.99, indicating that
combined stable isotope signatures provide an expensive
but reliable and relatively fast method for estimating root
biomass in mixed stands.

Besides using natural variances in isotope abundan-
ces, several researchers have used radioactive isotopes
to distinguish root species. Litav and Harper (1967)
labelled one of two plants grown in mixture with 14C
via leaf fumigation. After harvest, excised segments
were checked for 14C presence by autoradiography,
indicating the parental origin of the individual root.
Similarly, Baldwin and Tinker (1972) and Fußeder
(1986) used autoradiographic signatures of 32P, 33P,
and 35S. Bookman and Mack (1982) successfully ap-
plied a double-labelling approach using Cs and Rb to
determine the spatial distribution of the root systems
of Bromus tectorum and Poa pratensis. The uniform
distribution of isotopes in the root system is crucial for
all labelling methods and requires, for example,
knowledge about the movement of labels through soil,
plant metabolism and root activity, including root ex-
udation. The individual labelling of plants has advan-
tages, especially with regard to overcoming the rather

small differences in natural isotope ratios and in allow-
ing for intra-specific root distinguishing. However, the
clear disadvantages of the radioactive labelling tech-
nique include the hazardous potential and the inability
to use the method in situ or in large scale studies.

Biochemical markers

Various products of secondary plant metabolism have
been used extensively in botanical chemotaxonomic
studies. For example, plant wax alkanes and fatty
alcohols have been found to show differences among
individual species and have been used to determine
species and plant organ composition above ground
(Dove et al. 1996; Ali et al. 2005). Similarly, flavo-
noids have been shown to be useful chemotaxonomic
markers in certain plants, e.g. the Leguminosae; how-
ever, characteristic leaf flavonoids used for taxa deter-
mination are often absent or substituted in roots
(Seneviratne and Harborne 1992; Hegnauer and
Hegnauer 2001). In a fast and relatively simple ap-
proach, Caldwell et al. (1987, 1991) circumvented this
problem by using the fluorescence intensity of root
extracts under UV light to distinguish Artemisia triden-
tata and grass roots in soil cores (together with root
colour criteria, see above). However, chemotaxonomic
approaches often require knowledge of root-specific
marker molecules which may underlie the infrequent
use of this technique for root taxa determination.

In a study on several grass species, Dawson et al.
(2000) showed that n-alkanes (i.e. with different numb-
ers of C atoms in the chain) were present in both shoot
and root tissues. Using a canonical variance analysis, the
roots of all grass species could be separated using con-
centrations of C26, C31 and C33-alkanes. Roumet et al.
(2006) determined both n-alkanes and n-alcohol con-
centrations in roots of five Poaceae and one Asteraceae
species (Fig. 9). They found that n-alcohols predicted
root biomass more accurately than n-alkanes with only
marginal improvements by joint analysis (r00.89–
0.99). Similarly, n-alcohol signatures have been used
successfully to quantify the root mass fractions in binary
grass mixtures (Soussana et al. 2005). Species-
dependent analysis of either n-alkane or n-alcohol con-
centrations shows great potential in quantifying the spe-
cies composition of grass and herb root mixtures
(Dawson et al. 2000; Dove and Bolger 2005) although
its accuracy was found to be somewhat lower than the
use of NIR spectral analysis (see above; Roumet et al.
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2006). However, a disadvantage of the method, besides
requiring the appropriate analytical facilities, is in the
large amount of pure root material needed for calibra-
tion. According to Roumet and colleagues (2006), the
calibration of each species required the preparation of
>40 artificial mixtures in which the proportion of the
species considered varied continuously; the amount of
pure reference samples needed per species was approx-
imated as 15 g d.wt, which is difficult to harvest in situ.
As with other methods, problemsmay arise from chang-
ing chemical properties under different environmental
conditions (Soussana et al. 2005). However, the appli-
cation of chemotaxonomic criteria is promising, espe-
cially in plant communities with known species
composition. Future studies should evaluate if other
intrinsic secondary metabolites of roots, such as neutral
cumarins (Nordby and Nagy 1981) or anthraquinones
(Van Wyk et al. 1995), are similarly useful for reliable
root taxa and biomass determination in other genera.

Isozymes

Isozymes (or isoenzymes) are defined as the different
molecular forms in which proteins may exist. Isozymes
are a valuable tool for analysing gene variability, allow-
ing for comparative studies of taxa, and are commonly
used to identify cultivars of scions and rootstocks (e.g.,
Walker and Liu 1995). Evidence exists that isozymes
may even reflect specific root morphology (Lafitte et al.
2001). While isozymes extracted from root tissue have
rarely been used for taxonomical purpose (e.g., Button
et al. 1976) and nowadays molecular markers are more

popular (see below), isozymes are still an inexpensive
marker system to identify low levels of genetic variation
between taxa within one habitat; however, isozymes are
subject to changes under different environmental con-
ditions and are inapplicable for the quantification of
root systems or the determination of parental plant
individuals.

DNA-based techniques

Molecular methods, based on genomic differences
between species, circumvent the problem of changing
anatomical, morphological and biochemical properties
under different environmental conditions. Following
the pioneer work on the molecular identification of
woody roots (Jackson et al. 1999), several protocols to
identify and quantify the roots of species were devel-
oped in the past decade.

Techniques that allow taxa identification of root seg-
ments make use of species-specific DNA sequences by
1) sequencing the internal transcribed spacer (ITS) re-
gion of ribosomal RNA genes without (Jackson et al.
1999; Linder et al. 2000) or with species-specific primers
(McNickle et al. 2008;Mommer et al. 2008), 2) sequenc-
ing the large subunit of the ribulose-bisphosphate car-
boxylase gene (rbcL) or other marker regions such as
intergenic spacers (Kesanakurti et al. 2011; Jones et al.
2011), or 3) analysing several marker regions (most
commonly trnL) using restriction fragment length poly-
morphisms (RFLP, Fig. 10; Bobowski et al. 1999;
Brunner et al. 2001; Moore and Fields 2005) or

Fig. 9 The concentration of n-fatty alcohols a and n-alkanes b in
the roots of container-grown Festuca arundinacea (open bars) and
Holcus lanatus (filled bars). The concentration is given relative to

organic matter (OM) content (mean + SE, n03; after Roumet et al.
2006, modified)
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fluorescent fragment length polymorphisms (FFLP,
Ridgway et al. 2003; Frank et al. 2010; Taggart et al.
2011). Some studies combined sequencing and restric-
tion digest approaches (e.g., Ridgway et al. 2003).

For all methods, DNA extraction and amplification
are crucial factors and often require modified extrac-
tion protocols, intensive purification approaches and/
or modified primer or polymerase volumes compared
to work on aboveground tissues, especially if polyphe-
nolic and secondary compounds are present (e.g.,
Brunner et al. 2001; Kesanakurti et al. 2011).
Moreover, DNA extraction protocols have been opti-
mized on the roots of dicotyledons but possibly need
to be adjusted to monocotyledon species, following
observations that they were less frequently detected in
mixed species samples (Taggart et al. 2011).
Alternatively, primers have to be adapted to increase
the successful amplification of monocot DNA in
mixed samples.

Beside this, the various qualitative approaches have
different strengths and limitations. For example, ITS
sequences may vary within species or individuals
(Moore and Fields 2005 and references within), requir-
ing a reference database of locally occurring species.
Intraspecific polymorphisms and hybridization canmake
species-level identification using ITS sequencing simi-
larities impossible (Linder et al. 2000); they might also
affect RFLP analyses, although RFLP seems less vul-
nerable than ITS-based techniques (Brunner et al. 2001).
The FFLP approach by Taggart et al. (2011) and others
tried to circumvent these problems by using standardized
sequence-basedmarkers from the plastid genome, whose
homology is explicit-a process known as plant “DNA
barcoding” (CBOL Plant Working Group 2009).

Applying their approach to root samples of a highly
diverse, fescue grassland community, Taggart et al.
(2011) were able to identify 80% of 95 species present
(97% of 77 genera). Because the homology of fragment
length-based markers was suggested to be harder to
determine, especially for distantly related taxa,
Kesanakurti et al. (2011) sequenced the single-loci bar-
code rcbL using standard primers on randomly chosen
root fragments from an old-field. Interestingly, their ap-
proach discovered 19 out of 39 species detected above-
ground and reported that ten additional taxa detected
below ground were not observed in the aboveground
plots. These results emphasise that using the global
species pool as a reference risks higher rates of false
positives; however, if unknown root samples are com-
pared only to species found above ground, as suggested
by Taggart and co-workers (2011), cryptic species will
be missed. Hence, the selection of the reference sequence
database highly influences the recovered species below
ground. The accuracy of barcoding approaches can be
increased, and the risk of false positives decreased, by
using multiple barcode regions simultaneously (Kress et
al. 2009). Recently, Jones et al. (2011) applied a multi-
loci barcoding approach on single root segments of a
hyper-diverse lowland tropical moist forest. In their
study, Jones et al. (2011) recovered 33 species (14% of
woody species detected aboveground) from 12 soil
cores, with an average of 4.6 species per soil core, by
sequencing trnH-psba and rcbLa regions. However,
while analysing multi-loci barcodes is highly accurate,
it is also of limited use if highly diverse ecosystems are
studied and species information is not yet available in
public gene databases or local DNA sequence reference
libraries as available on Barro Colorado Island (Jones et
al. 2011). However, with commercial sequencing facili-
ties becoming broadly available, throughput is increased
and costs are reduced constantly (Hudson 2008). Thus,
when global DNA barcode libraries are available for a
wide range of plant species, barcoding techniques will
become a widely applied method for high throughput
root identification, especially applicable on studies on
root system distribution.

Most techniques used to date analyse root segments
separately by manual, randomized subsampling from
root mixtures; this not only requires an additional sort-
ing step and means analysing huge sample numbers but
also increases the risk to lose species present in low root
densities. Moore and Field (2005) were the first to
successfully developed a technique for identifying

Fig. 10 The agarose gel shows the separation of TaqI restriction
fragments of the PCR-amplified plastid trnL-introns of Fagus
sylvatica (Fs); Acer pseudoplatanus (Ap); Fraxinus excelsior
(Fe); Picea abies (Pa); Abies alba (Aa) by electrophoresis (M,
DNA marker bands; Brunner et al. 2001; image reproduced with
friendly permission of John Wiley & Sons Publisher, New York)
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species presence or absence in multi-species root sam-
ples; digested ITS regions were shorter in Poaceae than
in Asteraceae, so size differences were sufficient to
distinguish these taxonomic groups in mixtures.
Applied to modern barcoding approaches, for example,
this means that root identification by Sanger sequencing
of individual root fragments needs to be replaced by
parallel, “next-generation” sequencing (Hudson 2008)
of mixed root samples in the future to exploit its full
potential.

Using qualitative presence–absence scores of species
to estimate relative species proportions in mixed root
samples by DNA-based approaches would require the
analysis of a very large number of single root segments.
Thus, Mommer et al. (2008) developed a real-time PCR
method to quantify the relative contribution of two
grasses and two forbs to root biomass in rinsed, mixed
samples. Mommer and colleagues designed species-
specific primers, obtained from intersimple sequence
repeat (ISSR) analyses, to develop a quantitative RT–
PCR protocol; the relationship between the percentage
of fresh weight per species present and the estimated
percentage using their qPCR method was strong and
reproducible (R00.92–0.95; Fig. 11). However, individ-
ual estimates had a relatively high confidence limit
(approx. 10–15% deviation from the mean) for a given

species and relative fresh weight in mixture. Because
roots of different species / genotypes, size, or viability
(by age or stress) produce variable amounts of (extract-
able) DNA independent of biomass, the estimation of
relative root abundance can be biased (Mommer et al.
2008; Fisk et al. 2010; Haling et al. 2011). For example,
Riley et al. (2010) found higher DNA amounts in young
roots, suggesting that DNA assays reflect root function
rather than root dry weight. To determine more exact
root biomasses from amounts of absolute root DNA,
additional calibration is required by quantifying root
mass after “traditional” root rinsing (Haling et al.
2011). Mommer et al. (2008) suggested using relative
DNA abundances rather than absolute concentration
readings. This also requires an accurate (multi-)species
reference series similar to the calibration of quantitative
IR spectroscopy (see above); however, under the as-
sumption that the DNA of each species in a sample is
extracted with the same efficiency in root mixtures as in
monoculture (i.e. reference) samples, the absence of a
truly quantitative DNA extraction is no longer a prob-
lem. If additional internal standards are used to account
for the variability between DNA extraction methods and
DNA quality after storage (i.e. refrigerated, dried, etc.),
the quantification of root proportions with qPCR meth-
ods is envisioned to become a standard method, replac-
ing manual sorting approaches especially in low
diversity or well-known ecosystems which allow for
the establishment of sufficient calibration curves.

To date, DNA is most commonly extracted from
rinsed root systems; while the subsampling of root
segments can lead to an underestimation of species
richness if not enough root fragments are sampled,
rinsing of soil samples causes the potential loss of root
segments, especially of thin, less sturdy roots. Riley et
al. (2010) developed a method to quantify roots of
various grasses, legumes and some forbs directly from
soil using qPCR with species-specific TaqMan®
probes designed across the ITS region, avoiding pos-
sible loss of (fine) root material by the rinsing process.
For lyophilised roots of two Lolium spp., close corre-
lations (R200.99) were found between root biomass
and DNA amounts at low root densities ex situ (up to
1.6 g roots kg soil−1). DNA of dead roots was found to
degrade within days, but seed banks were found to
lead to DNA detection in the absence of living roots
(Riley et al. 2010). Thus, in the case of DNA extrac-
tion from soil, the background DNA concentration, as
well as the influence of soil type on DNA extraction,

Fig. 11 Estimated percentage presence of Festuca rubra roots
in mixed samples by qPCR vs. actual percentage presence (fresh
weight). Festuca roots are in mixtures with Anthoxanthum odor-
atum, Leucanthemum vulgare and Plantago lanceolata roots
(after Mommer et al. 2008, modified)
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needs to be determined in addition to the abovemen-
tioned calibration series (Haling et al. 2011).

In summary, DNA-based approaches provide valuable
tools for species identification and quantification as
results obtained with molecular techniques are not de-
pendent on the environment or the trained eye of the
researcher. Multi-loci DNA barcoding approaches are
the most promising techniques to date for species identi-
fication in diverse ecosystems. However, uncertainties
still remain in respect of false positives or missing spe-
cies; hence, until DNA barcode libraries are available for
a broad range of species, many molecular techniques
may be more applicable to studies where a rather small
number of species will be examined. Quantification of
root proportions or root biomass by qPCR will replace
manual root sorting in ecosystems with limited amounts
of species, allowing for extensive calibration series on
monocultures and artificial root mixtures.

Conclusion

The available techniques for determining root species
identity differ broadly in their applicability to distin-
guish and to quantify the root systems of functional
groups, plant taxa and individual plants (Table 2).
Because many root traits may vary with environmental
parameters, it seems likely that the search for the “holy
grail” of an anatomy, morphology or secondary
compound-based root system taxonomy will remain
unsuccessful. IR spectroscopy is the most promising
method for non-destructive root species identification
and quantification, in combination with (mini-)rhizo-
tron analyses, in the future. Among the destructive
approaches, multi-loci “barcode” sequencing is the
most promising technique to determine species identi-
ties, especially after reference libraries become broad-
ly available, and qPCR approaches will ease root
quantification in ecosystems which allow for the
establishment of extensive reference curves. The in-
creasing interest in belowground research is envi-
sioned to bring these techniques from niche existence
to broad application. However, “classical” determina-
tion criteria, such as exodermis morphology, will re-
main important for now because they are not
consumptive and allow for “secondary” analyses (e.g.,
determination of root branching structure, specific root
area, anatomy, etc.) of the same segment. Further efforts
are needed to facilitate the use and the development of

fast and reliable methods and to standardize protocols
and key criteria to enable easy comparisons between
studies.
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