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between two different symmetry breaking mechanisms in a pattern forming
system, namely inclined layer convection (ILC) with a spatially modulated
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1. Introduction

Out-of-equilibrium patterns, such as for example in fluids and biological systems, as well as
in social and economical contexts, often form by symmetry breaking bifurcations. While the
detailed pattern forming processes in these spatially extended dynamical systems differ greatly,
they often share generic underlying features that can be described by universal equations [1, 2].
For this reason, paradigm pattern forming systems, such as the thermal convection of a thin fluid
layer, have been extensively investigated and have contributed significantly to our understanding
(see e.g. [3]).

While most studies concern isotropic systems, naturally driven pattern forming systems
often contain additional, externally imposed symmetry breaking mechanisms that affect the
patterns and their dynamics. Frost heave phenomena leading to stone–soil separation in alpine
and polar regions [4] and banded vegetation in arid areas [5] are two examples, where
the strength of the anisotropy (i.e. the sloped ground) determines the observed patterns.
Atmospheric convection over topography [6] and fingerprint formation in the presence of
normal epidermic displacements [7] are other examples.

Spatially periodic forcing is well suited for exploring the interaction between externally
imposed symmetries and intrinsic symmetries preferred by the system. In the past, a variety
of one-dimensional spatial forcing techniques have been applied to different pattern forming
systems. Busse and Whitehead [8] used optically induced, spatially modulated heat deposition
in Rayleigh–Bénard convection of water and investigated the stability of convection rolls.
Lowe and Gollub [9] used a spatially modulated electrode in electro convection of nematic
liquid crystals and studied commensurate–incommensurate transitions. In recent experiments,
Mı́guez et al observed the effect of forcing on a two-dimensional (2D) Turing pattern [10].
They illuminated the chlorine dioxide–iodine–malonic acid reaction–diffusion system with a
translating quasi-1D-light pattern and observed a variety of steady and dynamical hexagonal
patterns as a function of the forcing parameters. Dolnik et al [11] used the same system but
applied a steady forcing in the form of a 2D hexagonal pattern. Depending on the forcing
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Figure 1. (a) Schematic diagram of forced ILC. Shown are the inclination angel θ
and the angle ϕ between the in-plane gravity component and the SU-8 ridges. (b)
Surface structure of the warm plate, as measured with white light interferometry.

wavenumber, their system adopted either the forcing pattern or a hexagonal superlattice
pattern [12]. McCoy et al [13] used 1D surface corrugations on the bottom plate to force a
Rayleigh–Bénard convection system. They found novel coherent phase-kink structures that still
await a theoretical explanation.

In this paper we report experiments on a quasi-1D, spatial periodically forced pattern
forming system that by itself has a broken rotational symmetry. The system is inclined layer
convection (ILC), where a thin fluid layer is heated on one side and cooled on the other and
which is inclined with respect to gravity [3, 14]. Microfabricated periodic surface corrugations
on the heated plate (see figure 1(b)) are used to break an additional symmetry [13, 15–17].
Some results were published earlier [16], and here we report a detailed study, for which both
the relative orientation and the relative strength of both symmetry breaking mechanisms were
systematically varied [17].

The paper is organized as follows. In section 2 we define the system and in section 3 we
describe the experimental setup. In section 4 we present measurements of the convection onset
in the unforced reference cell. In section 5 we show the phase diagrams for the three different
forcing cases and explain the general features of them. The observed patterns are discussed in
detail in section 6. We summarize and discuss our results in section 7.

2. Spatially forced inclined layer convection

Thermal convection in a thin horizontal fluid layer of thickness d confined by two parallel plates
is a generic and by now the most investigated isotropic pattern forming system [3]. If the driving
buoyancy due to the destabilizing temperature gradient is stronger than the damping effects by
viscosity and thermal diffusion, convection sets in and breaks the rotational symmetry of the
system. The degree to which the system is thermally driven, i.e. the ratio between the driving
and the damping forces, is given by the Rayleigh number: Ra = gα1T d3/κν. Here, 1T is the
temperature difference between the two plates, ν is the kinematic viscosity of the fluid and α and
κ are its thermal expansion coefficient and its thermal diffusivity. Above a critical temperature
difference (i.e. a critical Rayleigh number Rac) convection sets in as parallel rolls of arbitrary
lateral orientation. The other non-dimensional parameter, which measures the relative strength
of the nonlinearity in the momentum equation versus that of the heat equation, is the Prandtl
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number: Pr = ν/κ . Here we used compressed CO2 with Pr = 1.3, for which in the horizontal
case bistability between spiral defect chaos and straight ideal rolls was observed in the weakly
nonlinear regime [14].

When the fluid layer is inclined at an angle θ with respect to gravity (figure 1), a large-
scale shear flow (LSF) is created for any finite 1T with the warm (cold) fluid rising (falling) at
the heated (cooled) plate. This flow breaks the rotational symmetry by singling out the direction
along the in-plane gravity component. For fluids of Pr > 0.26 a codimension two point between
longitudinal and transverse rolls (TR) exists at an inclination angle θcd. For angles θ < θcd

convection sets in as longitudinal rolls (LR) aligned with their axis parallel to the inclination
direction [18]. By using only the component of gravity normal to the fluid layer one can define
a new Rayleigh number R̃a(θ)= Ra · cos θ . It was shown that with this rescaling the convection
onset for LR is independent of θ at R̃ac = 1708 for all θ < θcd (see, e.g., [19, 20]). Calculations
of the critical wave number at onset of LR yield a value qL

c = 3.117/d , which is also independent
of θ (see also figure 2 and the following section).

Above the inclination angle θcd, which strongly depends on Pr , TR set in at lower Rayleigh
numbers than LR and thus are the first instability. In contrast to the buoyancy driven LR, TR
are driven by the instability of the cubic shear flow velocity profile (i.e. the LSF) and occur
even when an inclined fluid layer is heated from above. The onset of TR cannot be calculated
analytically, but a numerical approach such as a Galerkin method [3] has to be used. The critical
wavenumber for TR depends on θ and for Pr = 1.3 at θ = θcd = 79.9◦ is qT

c = 2.817/d, which
is smaller than qL

c = 3.117/d (see figure 2(b)).
In our investigation, we applied a periodic surface modulation in the form of long

rectangular ridges to the heated plate. This modulation influences both the temperature and
the velocity field (through the boundary conditions) and thus forces the convection patterns.
The forcing can be characterized by three additional parameters: the forcing wave number qf,
the orientation of the modulation with respect to the inclination direction ϕ and the forcing
amplitude δ = a1 h/d [16, 21]. Here a1 is the coefficient of the leading Fourier mode in the
decomposition of the rectangular modulation profile and h is the height of the corrugation (see
figure 1). In the experiments presented here, both qf and δ were kept fixed; qf was chosen
in the vicinity of the critical wave number of longitudinal rolls qL

c . As shown in [16], the
approximation of the surface texture by only the first Fourier mode appears to be sufficient
if the convection strength is small, i.e. close to onset. We expect that with increasing convection
strength, this approximation is no longer valid and in a theoretical analysis higher order modes
have to be considered. It is thus very likely that for large convection strength the observed
pattern will depend to some extent on the exact shape of the surface modulation.

Forced ILC can serve as a paradigm for a pattern forming system for which two externally
broken symmetries can be independently tuned. The 3D parameter space is spanned by two
geometrical degrees of freedom, namely the inclination angle θ and the forcing angle ϕ, and
also by the reduced temperature difference, defined as ε =1T/1Tc(θ)− 1, where 1Tc(θ) is
the critical temperature difference at which convection sets in for unforced ILC.

In this paper we report experiments with forcing angles that correspond to the most generic
symmetries for lattice patterns: ϕ = 0◦ (parallel stripes), 60◦ (hexagons) and 90◦ (squares). In the
following, the corresponding forcing cases will also be referred to as the longitudinal, oblique
and transverse forcing cases.
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Figure 2. (a) Measured convection onset in the unforced reference cell as a
function of θ (red circles) and numerically calculated onset for rolls with angles
ψ = 0 (solid green curve), ψ = 90◦ (point-dashed blue curve) and ψ = 60◦

(dashed brown curve). ψ gives the angle of the roll axis with the in-plane
gravity component. The dotted vertical line at θ = 15◦ marks an arbitrary chosen
boundary between the low and moderate inclination regions as described in
the text. The second dotted vertical line at 79.9◦ marks the critical angle
θcd above which TR first become unstable. (b) Numerically calculated critical
wave numbers qc for rolls with angles ψ = 0 (solid green curve), ψ = 90◦

(point-dashed blue curve) and ψ = 60◦ (dashed brown curve). These plots are
for experimental conditions with Pr = 1.3. Similar curves for Pr = 1.0 have
already been published in [25].

3. The experimental setup

We used CO2 gas at (48.2 ± 0.07) bar as the convecting fluid. Compressed gases allow
investigation of shallow layers with large width to height ratios under Boussinesq conditions
and with time scales short enough for the investigation of non-transient states [3, 22]. The
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convection cell consisted of two 1 cm thick cylindrical plates of 10 cm diameter. The cold
plate was made of single crystalline sapphire and the warm plate was a single crystal of
silicon. Both plates had a thermal conductivity at least 1000 times higher than that of the
gas and can therefore be considered to be perfectly conducting. The transparent sapphire
(cooled) and the mirror finish silicon (heated) plate allowed investigation of the patterns
via shadowgraphy [23]. Both plates were aligned parallel to within 0.6µm, as measured by
interferometry. The distance between the plates was d = (540 ± 3) µm, as determined from the
onset of convection in an unforced reference cell. The cold plate was cooled by a temperature-
controlled water bath and the warm plate was heated with an electric film heater. A temperature
difference 1T was set between the plates, and the temperature of each plate was held constant
to within ±0.4 mK. In all experiments, the average temperature was set to Tav = (25.00 ±

0.01) ◦C, resulting in Pr = 1.30. The thermal vertical diffusion time under these conditions
is τκ = d2/κ = 2.8 s.

A quasi-1D periodic forcing was introduced by texturing the warm plate with
lithographically produced SU-8 ridges (see [15, 17]). The ridge height was (65 ± 3) µm and
the width was (100 ± 3) µm as measured with a white light interferometer. The periodicity was
λf = 2π/qf = 1 mm (figure 1(b)). For the cell heights used here the forcing wave number qf was
close to the critical wave number for LR qL

c = 3.117/d = 0.92 qf. An exact match of qf and qc

could not be easily achieved due to experimental constraints. The forcing with SU-8 had two
effects. On the one hand, this corrugation introduced a periodic height variation and, on the
other hand, it introduced a periodic horizontal temperature variation. In the case of a horizontal
fluid layer, Seiden et al [16] have shown that the effect of the SU-8 structure can be matched to
a periodic variation of the temperature of the warm plate.

The side walls were cut out of paper sheets in order to optimally match the thermal
properties of the gas and to avoid stationary as well as transient side wall forcing at the lateral
boundaries [24]. The paper sheets were of circular shape with a diameter of 10 cm in order
to fully cover the warm plate. Two square convection cells with a side length of L = 85d
and 35d were cut into the paper. The open space of the larger cell was placed above the
lithographically fabricated surface corrugations on the warm plate (figure 1(b)), while the
smaller one was positioned over the unstructured area of the warm plate and served as a
reference. In all experiments, the side walls were aligned so that one side was parallel to the
in-plane gravitational component, allowing a 1D LSF.

The shadowgraph technique (see [23]) was used to capture the 2D structure of the
temperature field. Cold areas of the fluid lead to a higher intensity and appear bright in
the images, while warm fluid areas appear dark. Images were recorded via a CCD camera
(QImaging®—QICam B) and image processed. For all convection patterns shown here, the
in-plane gravity component pointed downwards.

During a typical experimental run, θ and ϕ were held constant and 1T was increased in
small steps. After each temperature change, sufficient time was given for the system to reach
a steady state (at least 100 thermal diffusion times) before images of the convection state were
taken. Typical temperature differences in the experiment ranged from 1T = 1.29 K for the
convection onset in the reference cell at θ = 0◦ to 1T = 9.0 K for θ = 85◦ where longitudinal
bursts (LB) start to appear. For the latter, the Busse parameter [3] was QBusse = 3.26, indicating
that the Boussinesq approximation may not be sufficient for describing this system.
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4. Convection onset in the unforced reference cell

Figure 2(a) shows the measured onset of convection in the unforced reference cell as a function
of the inclination angle θ . The experimental data are marked by red circles, the green solid
line is the theoretically predicted onset of LR, the blue dashed-point line of TR and the brown
dashed line of oblique rolls, i.e. rolls with an angle ψ = 60◦ to the in-plane gravity component.
The blue and the brown curves were calculated numerically for Pr = 1.30 by using a Galerkin
code provided by Werner Pesch of the University of Bayreuth, Germany [25]. Similar curves
for Pr = 1.0 were reported in [25].

The experimental data agree well with the Galerkin data; in particular, the experimentally
observed critical inclination angle θ exp

cd = (80.1 ± 0.4)◦ agrees well with the theoretical value
θ theo

cd = 79.9◦. In figure 2, one can roughly distinguish three different regions of inclination
angles (separated by vertical dotted lines): (i) a low inclination region (0◦ 6 θ . 15◦), where the
calculated onset for all three curves is close to R̃ac = 1708; (ii) a moderate inclination region,
where the calculated onset for rolls with ψ 6= 0 increases strongly, reaches a maximum and
decreases again; and (iii) a large inclination region for θ > θcd where TR are the linear instability
of the base state. We note that the value of θ for which these onset curves have a maximum is
smallest for transversal rolls (ψ = 90◦) and increases for decreasing ψ (see also [17, 25]).

The same three regions of inclination angles can also be seen in the phase diagrams
corresponding to the forced cell (figure 3). Therefore, section 5 is divided into subsections,
each describing a different θ region. Note that the exact θ range of each region varies with ϕ
and is therefore given by pattern boundaries rather than the exact vertical dotted lines in figure 2.

In order to better understand the observed patterns, we show in figure 2(b) the Galerkin-
calculated critical wave numbers for parallel rolls with ψ = 0 (solid green), 90◦ (point-dashed
blue) and 60◦ (dashed brown). The critical wave number of longitudinal rolls qL

c = 3.117 is
identical to qc of the horizontal configuration. The other qc-curves are lower than qL

c , but do
not show a monotonic decrease with θ . Instead, they show a sharp minimum and a smooth
maximum. It is interesting to note that the minima of the qc’s appear at inclination angles
at which R̃ac(θ) has its largest increase, while their maxima are when R̃ac is maximal. One
might speculate that the sharp minimum corresponds to a transition from a buoyancy-induced
instability to a shear-driven one.

5. General features of the phase diagrams for the forced cell

We now proceed to the exploration of the θ–ε-phase space for the three different forcing angles
ϕ. Note that the control parameter here is defined most conveniently as ε =1T/1Tc(θ)− 1,
where 1Tc(θ) is the temperature difference at convection onset in the reference cell. In the
horizontal case, the experimentally observed convection onset in the reference cell was at
1Tc = 1.29 K. This value increased with increasing inclination as shown in figure 2.

The phase diagrams for forced convection at ϕ = 0◦, ϕ = 60◦ and ϕ = 90◦ are shown
in figure 3. In all three cases a purely conducting state was not observed. Instead, steady
straight rolls occur at any positive 1T (ε >−1). The amplitude of these forced rolls grew with
increasing ε, following an imperfect bifurcation [16]. For all ϕ, the forced rolls were phase-
locked to the SU-8 structure and therefore had a wave vector q0 = qf, with qf being the wave
vector of the periodic SU-8 structure (see figure 3). The blue solid circles mark the region
beyond which forced rolls first became unstable. Note that the phase diagrams in figures 3(a)
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Figure 3. Phase diagrams for SU-8 ridges aligned parallel to gravity (a),
perpendicular to gravity (b) and with an angle of ϕ = 60◦ to gravity (c). Symbols
mark places where different patterns are observed. Solid lines are hand-drawn
instability lines that are a guide to the eyes. Straight roll patterns are marked in
each phase diagram with blue solidcircles. Images of these patterns are shown
next to each phase diagram. For small angles, several patterns coexist for ϕ = 0◦.
These patterns are all marked with red plusses. The dashed line in (a) marks the
calculated instability line for LR in the unforced ILC. The red dashed lines in
(b) and (c) mark the inclination angle at which the instability line of forced rolls
has its minimum. Note that in (c) the ε-axis is logarithmic for small inclination
angles (left part) but linear for large inclination angles (right part). Abbreviations
are explained in the text.
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and (b) have a logarithmic ordinate and thus show only positive values of ε. Therefore, the line
at which forced rolls became unstable is not shown for large θ , since the instability already
occurred for 1T .1Tc(θ). We now point out general features before we describe the patterns
of each phase diagram in detail.

For the longitudinal forcing case (ϕ = 0, figure 3(a)), the instability line that separates LR
at lower ε and undulations (UN; see [26]) at higher ε decreases monotonically with increasing
θ for θ < θcd. For comparison, the calculated instability of LR in unforced ILC is plotted as
a dashed line in figure 3(a). It is significantly lower, implying that forcing stabilizes LR and
suppresses the transition to UN in this θ range (see [26]).

For the transverse (ϕ = 90◦) and oblique (ϕ = 60◦) forcing cases (figures 3(b) and (c)),
the instability lines of forced rolls show the same behavior. They decrease with increasing θ
and reach a first minimum at inclination angles θ ∼= 30◦ and θ ∼= 35◦, respectively (red vertical
dashed lines in figures 3(b) and (c)). These minima correspond to the maxima of the onset
curves associated with transverse and oblique rolls in the unforced case (θ = 32◦ and θ = 42◦,
see figure 2). As in figure 2, we can distinguish three regions.

(i) At low inclination (θ . 15◦), the LSF is relatively weak since its strength is proportional
to tan(θ) [27]. The forced rolls become unstable at relatively high ε either to steady varicose
pattern (VP) and rhombic pattern (RP) or to localized dynamical structures (kinks).

(ii) At moderate inclination angles (15◦ . θ < θcd), forced rolls become unstable to patterns
that consist of not more than two modes in addition to q0. These are UN for ϕ = 0◦, hexarolls
(HR) and bimodals (BM) for ϕ = 90◦, as well as another oblique bimodal pattern (OB) for
ϕ = 60◦. All these patterns are steady at onset and show slow dynamics with increasing ε.

(iii) At large inclination angles (θ > θcd), forced rolls become unstable at relatively low
ε to complex spatio-temporal states. These include localized transverse bursts (TB) and LB
for longitudinal forcing and superlattice patterns (scepter (SP), heart (HP) and pretzel (PZ)) for
transverse and oblique forcing. We note that localized TB and LB are also observed for unforced
ILC [18, 28].

6. Patterns

In sections 6.1–6.4, we review in detail the different states and the corresponding dynamics
observed in the horizontal case and the three inclination angle regimes.

6.1. The horizontal case (θ = 0◦)

Straight rolls became unstable to a steady varicose pattern (VP) when the control parameter was
increased above ε ≈ 2.4 (figure 4(a)). As shown in figure 4(d), VPs are forced rolls, periodically
phase modulated with the two symmetric modes: q1 = qf (0.5, 0.35) and q2 = qf(0.5,−0.35).
The modulation of adjacent rolls is thus 180◦ out of phase. Note that at this relatively large value
of ε, qf lies outside the (unforced) Busse balloon [29] and thus straight rolls with this wavelength
would be unstable in the unforced system. As shown in figure 4(d), the wave numbers form a
resonant triad with q0 = q1 + q2. Such triad conditions are common in pattern forming systems.
An example where these triad conditions were studied in detail is the case of Faraday waves
that are forced with multiple frequencies [30, 31].

A further increase in ε led to stronger phase modulation until, at approximately ε ≈ 2.7,
two adjacent rolls came sufficiently close to merging and produced a localized jump of 2π in
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Figure 4. Varicose patterns and their corresponding Fourier transform at θ = 0◦

and ε = 2.7 (a), (d). Spatio-temporal chaos at θ = 0◦ and ε = 2.66 and its
Fourier transform (b), (e). A single coherent kink line at θ = 5◦ and ε = 2.42
(c) and a cluster of kinks at θ = 0◦ and ε = 1.69 (f). The red lines at the top
of each image mark the location of SU-8 ridges. The red arrow in the Fourier
transforms marks the forcing wave vector q0, whereas the blue arrows stand
for the instability modes q1 and q2. See the movies of kinks (movie 1) and
spatio-temporal chaos (movie 2) in the supplementary material available from
stacks.iop.org/NJP/14/053010/mmedia

the phase of the roll pattern, a so-called kink defect (see also [13] and below for a more detailed
description). A single defect is not stable in this regime and the whole pattern turns abruptly
into a spatio-temporal chaotic state (figure 4(b)), similar to the one reported by McCoy [15]. It
is interesting that the Fourier transform of this state shows a diffuse ring with an average wave
number of roughly 0.5 qf (figure 4(e)).

We also wish to note that in this ε range, the system realized two stable states. Varicose
patterns only emerged when ε was increased from a state of straight rolls. On lowering ε below
2.7 from the state of spatio-temporal chaos, the system entered a state of crystalline kink chaos,
which has been reported by McCoy [15]. This state consists of kinks that travel along the SU-8
ridges and align to straight lines or kink clusters as shown in figures 4(c) and (f). The number of
kinks reduced continuously with decreasing ε and the system returned to perfect straight rolls
at ε ≈ 1.4. Even though McCoy used a very similar experimental setup, he observed VPs only
as a transient state [15] during a rapid increase of ε. We believe that this can be attributed to the
circular cell used in their experiment.
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6.2. Small inclination angles

Longitudinal forcing (ϕ = 0◦): When the cell is slightly inclined so that the SU-8 ridges are
parallel to the in-plane gravity component, both the LSF and the SU-8 corrugations select LR.
The instability line of LR decreases only slightly with increasing inclination angle θ . Up to an
inclination angle of θ = 28◦, the straight LR were unstable to the VP, as in the horizontal case
(θ = 0).

Whereas for small inclination angles (θ < 7◦) the VP were steady, as the underlying LSF
intensified due to an increasing inclination angle, an increasing uphill drift was observed. For
example, at θ = 10◦ and ε = 2.3, the VP drifted with a velocity of vd ≈ 0.5 d/τκ . It is worth
noting that at the same region of the ε–θ -phase diagram of the unforced ILC, subharmonic
oscillations were observed, consisting of the same modes as those building the VP, but with
different phase relations (see [18, 25, 27]). One might therefore interpret the VP state as a
stabilized version of subharmonic oscillations. In the following we will see other instances
where the forced system produces stabilized states that strongly resemble spatio-temporal
chaotic states found in the unforced ILC cell.

For inclination angles θ < 10◦, VPs were observed to coexist with coherent kink lines (KL;
figure 4(c)). A single kink can be viewed as a localized 2π phase jump [13]. With increasing ε,
at the onset of KL we observed only one such phase jump per roll. The kinks of different rolls
organized themselves to form a line of kinks obliquely across the entire cell (see movie 1 in the
supplementary material (available from stacks.iop.org/NJP/14/053010/mmedia)). These oblique
KL were mostly straight, but tended to bend towards the side walls. The KL drifted slowly
downhill with a drift velocity of vd ≈ 1.59 d/τκ (for θ = 5◦ and ε = 2.42). The drift velocity
increased with intensified LSF (increasing ε and/or θ ). As ε increased further, shorter KL
occurred that move independently across the cell. Several KL can move together and, depending
on their orientation, they either annihilate or cluster to form a crystalline structure (figure 4(f)).
This clustering phenomenon is similar to that reported by McCoy et al [13] for the horizontal
configuration.

Transverse forcing (ϕ = 90◦): In the transverse forcing case the two externally imposed
constraints have competing effects. Transverse rolls (TR), which are phase-locked with the SU-8
structure at small ε, are destabilized by the LSF. In the range 0◦< θ<10◦, TR are unstable to
a rhombic pattern (RP) (figure 5(a)) with the wave vectors q0 and q1. We note that q1 depends
on ε and changes from q1 = qf(0.78, 0.45) at ε = 0.25 to q1 = qf(0.83, 0.15) at ε = 0.5. In the
latter case, RP took the form of modulated straight rolls that were only 10◦ inclined to the in-
plane gravity component. This is an indication that the RP pattern is topologically very similar
to the bimodal pattern (BM) observed both for unforced ILC (close to θcd, see [18]) and in the
transverse forcing case for moderate inclination angles (see the following subsection). Both RP
and BM occurred when in the unforced system LR and TR have similar onsets. As shown in
figure 2, this is the case at very small θ and close to the codimension two point θcd.

The transition from TR to RP as ε increased did not occur globally (everywhere at the
same time) but rather by domain spreading. Often, RP appeared first at the cell boundary or at
an imperfection of the SU-8 texture and then spread over the whole cell. An example is shown
in figure 5(b). Right at the domain boundary, the transition from TR to RP appeared in two
steps. At first, TR became unstable to VPs with wave vectors q1,2 ≈ qf(±0.5, 0.5) (figure 5(b)
at t = 0). This is very similar to the transients observed when LR were unstable to KL for
longitudinal forcing at small inclination angles. Here too, the VPs evolved into patches of
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Figure 5. (a) Typical RP and its Fourier transform (taken at θ = 10◦, ε = 0.23).
The red arrow marks q0 and the blue arrow marks q1. (b) Evolution of RP
with time at very small inclination angles. Images taken at θ = 5◦ and ε = 0.81.
The numbers in the corner of each image are the times in units of τκ at
which the image was taken. The state after 178 τκ is the final stable state of
the system. The red horizontal lines in the first images of (a) and (b) mark the
locations of the SU-8 stripes.

kink-clusters through the merging of adjacent modulated rolls (the second image in figure 5(b)).
In contrast to the relatively long-lived clusters observed for longitudinal forcing, here a ‘kink-
cluster’ became immediately unstable to an orientation transition, which resulted in the steady
RP pattern of figure 5(a).

Oblique forcing (ϕ = 60◦): For small ε, oblique rolls (OR) that were phase-locked with the
underlying SU-8 structure were observed. This steady pattern became unstable to KL, which
aggregated to form larger patches of kink clusters, similar to the longitudinal forcing case
(figure 6(a)). With further increase in ε the kink clusters aligned parallel to gravity, resulting in
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a b

Figure 6. Low inclination patterns due to oblique forcing (ϕ = 60◦). (a) Kinks at
θ = 10◦ and ε = 0.42. (b) MLR at θ = 10◦ and ε = 1.57. (c) Fourier transform
of (b) with arrows for the forcing mode q0 (red) and the largest side mode q1
(blue). The red lines in (a) and (b) mark the locations of the SU-8 ridges.

modulated LR (MLR) as shown in figure 6(b). The tendency of the system to form (modulated)
LR with increasing ε has already been reported earlier for RP. The MLR were slightly inclined
with respect to the in-plane gravity component as can also be seen in the corresponding Fourier
transform in figure 6(c). The Fourier mode q1 is not horizontal but has a small finite component
in the y-direction. Similar oblique rolls have also been observed in other anisotropic pattern
forming systems, for example in electroconvection [32, 33].

It is important to recall that for the oblique forcing the cell side walls were no longer
parallel and perpendicular to the SU-8 ridges, but rather have angles of 30◦ and 60◦ to them.
Since straight rolls tend to align perpendicular to the lateral side walls [3, 34–36], the side
wall destabilized the forced straight rolls (that have angles of 60◦ and 30◦ to them) and led to
phase defects of the straight roll pattern as was reported by McCoy et al [13]. As a result, kink
structures that were induced by the lateral boundaries were observed even in the horizontal case
instead of a VP. This is similar to the forced horizontal convection studied by McCoy et al
[13, 15].

6.3. Intermediate inclination angles

Longitudinal forcing (ϕ = 0◦): For inclination angles 28◦ < θ < 72◦, forced LR became unstable
to uniformly drifting undulations (UN) as shown in figure 7. This state, which was also observed
for unforced ILC [26], is characterized by the modes q1 = qf(1, sy) and q2 = qf(1,−sy), where
sy decreased with increasing inclination angle from sy = 0.47 for θ = 30◦ to sy = 0.25 for
θ = 65◦ (taken at undulation onset). While unforced UN were often defect turbulent (undulation
chaos) [18, 26], forced UN were mostly ordered and only rarely perturbed by fast traveling
defects. This fact, together with the previously mentioned shift of the instability line to higher
values of ε, (section 5) is a clear indication of the stabilizing effect of forcing.

Undulations slowly drifted in the uphill direction with increasing speed as the LSF
intensified (increasing θ and increasing ε). The drift velocity ranged from vdrift ≈ 0.13d/τκ
(at θ = 50◦ and ε = 0.1) to vdrift ≈ 0.74d/τκ (at θ = 65◦ and ε = 0.1). When ε increased,
dislocations started to occur. These dislocations gradually turned the UN state into a chaotic
state of crawling rolls (CR; figure 8(a)), similar to the one observed in the unforced cell [18].
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a b

Figure 7. Ordered UN (a) and the corresponding Fourier transform (b) taken at
θ = 55◦ and ε = 0.28. The red arrow in (b) marks the forced mode, while the two
side modes q1 and q2 are marked in blue. The short red lines mark the location
of the SU-8 ridges.

a b c

Figure 8. CR for longitudinal forcing (a) (at θ = 45◦, ε = 0.79) and similar states
for transverse forcing (b) (at θ = 30◦, ε = 0.69) and the oblique forcing case (c)
(at θ = 20◦, ε = 0.61). Red stripes mark the location of the SU-8 ridges. See also
movie 3 for (a) and movie 4 for (b) in the supplementary material (available from
stacks.iop.org/NJP/14/053010/mmedia).

CR were also observed at relatively high ε both for transverse forcing (figure 8(b)) and for
oblique forcing (figure 8(c)). Indeed, for high values of ε, the influence of the forcing weakened
and the states of unforced ILC were observed.

Transverse forcing (ϕ = 90◦): In this case, similar to the low inclination regime, the forcing
enhanced the transverse modes, while the LSF supported the longitudinal modes. As a result,
when the LSF became sufficiently strong with increasing ε, forced TR became unstable either to
a hexaroll pattern (HR) when 10. θ . 30◦ or to a bimodal pattern (BM) when 30◦ . θ . 75◦

(figure 9). The HR pattern is named after a similar pattern found in centrifugal convection
([25, 37, 38]). In addition to the forcing wave vector q0, two other modes q1 = qf(sx , 0.5)
and q2 = qf(−sx , 0.5) appeared, with sx monotonically increasing from sx = 0.66 at ε = 0.038
(onset of HR) to sx = 0.80 at ε = 0.155 (onset of CR). All three wave vectors formed a resonant
triad q0 = q1 + q2.
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BMHR

Figure 9. Patterns due to a moderate inclination under transverse forcing and
their Fourier transform. Left: HR (at θ = 20◦, ε = 0.12). Right: BM pattern (at
θ = 60◦, ε = 0.20). Red stripes mark the SU-8 ridges.

BM patterns have the forcing wave vector q0 and an orthogonal mode q1 = qf(s, 0) with
s varying in the range 0.9< s < 1.2 for inclination angles 35◦ < θ < 75◦. For unforced ILC a
similar pattern occurred at a small strip in the direct vicinity of the codimension two point (θcd).
Here, however, BM was the dominating pattern over a large region in the θ–ε-phase space (see
figure 3(b)). It should also be noted that the BM state is rarely perturbed by localized amplitude
and phase modulations.

A qualitatively similar pattern was also found in thermal centrifugal convection, where
it was called the knot instability [25, 37, 38]. The similarity between thermal centrifugal
convection, on the one hand, where fluid motion between a cold inner and a warm outer
cylinder is driven by centrifugal forces rather than gravity, and transverse forced ILC, on
the other, is interesting. Both are anisotropic systems that develop LR with a preferred
orientation at convection onset (at least for sufficiently large anisotropy). In both systems, HR
and bimodal/knot patterns appear as an instability of these rolls when the Rayleigh number
(although slightly differently defined) is increased. The shape of the HR and the bimodal/knot
convection is in both cases influenced by a large-scale flow, which is caused by the inclination in
forced ILC and by Coriolis forces in the centrifugal convection. For example, in both cases, the
knots are not symmetric along the lines of cold down-flow or warm up-flow, but are shifted to an
asymmetric position, which is in contrast to the knots observed in planar RBC at large Prandtl
numbers [39]. It is furthermore, very interesting to note that HR and bimodal/knot patterns turn
into a state of phase turbulence (CR) when the Rayleigh number is increased further.

Oblique forcing (ϕ = 60◦): For inclination angles 10◦< θ< 53◦ stationary oblique rolls
with wave vector q0 = qf became unstable to an oblique bimodal pattern (OB). Here, the pattern
can be described by q0 and a second mode q1 which depends on the inclination angle. The plot in
figure 10(c) shows its modulus (|q1|; blue triangles, the left y-axis) and its angle α with respect
to q0 (green bullets, the right y-axis) as a function of θ . Both quantities grow from |q1| ≈ 0.8qf

and α ≈ 70◦ at θ = 15◦ to |q1| ≈ 1.1qf and α ≈ 120◦ at θ = 85◦. As shown in figure 10(d), for
large inclination angles a higher order mode q2 moves in such that q0 + q1 + q2 = 0. Therefore,
in particular in the range 60◦< θ< 75◦, the pattern is hexagonal.

Oblique BM drifted slowly along the SU-8 ridges in the downhill direction with typical
velocities of vd ≈ 0.5 − 0.9d/τκ . In addition, fast traveling phase and amplitude defects
occurred with growing ε. The dynamics of these defects increased with increasing ε, leading
to a local merging of adjacent structures and to a continuous transition to CR (figure 8(c)).
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Figure 10. Patterns due to a moderate inclination under oblique forcing (a), (b)
and their Fourier transform (c), (d). The left column (a), (c) shows OB at θ = 20◦

and ε = 0.15. The right column (b), (d) shows a similar pattern at θ = 70◦ and
ε = 0.08. Red stripes in (a) and (b) mark the location of the SU-8 ridges. The
red and blue arrows in (c) and (d) mark the forcing mode q0 and the mode q1,
respectively. A higher order mode q2 exists for small inclination angles (black
arrow) which turns for large inclination such that it forms with q0 and q1 a nearly
hexagonal symmetry. Panel (e) shows the development of the modulus |q1| (blue
triangles) and its angle α with respect to q0 (green bullets) as a function of the
inclination angle θ . Error bars are shown for the first and last points and give the
uncertainty of determining the exact position of q1.

6.4. Large inclination angles

For inclination angles close to θcd and larger, the forced straight rolls became unstable at low or
even negative ε and the patterns that occurred were highly dynamical.
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Figure 11. (a) Array of TB and its Fourier transform (TB, at θ = 80◦, ε = 0.17).
Red stripes show the SU-8 ridges. The red arrow in the Fourier transform marks
the forcing mode q0, the blue arrow the side mode q1 and the green arrow
the mode q2. (b) Fourier amplitudes of the three modes q0 (top), q1 (middle)
and q2 (bottom) as a function of time for three consecutive bursts. The time is
given in units of the vertical thermal diffusion time τκ . The dashed vertical lines
mark the time at which the snapshot in (a) was taken. The units of the y-axis
are arbitrary units. See movie 5 in the supplementary material (available from
stacks.iop.org/NJP/14/053010/mmedia).

Longitudinal forcing (ϕ = 0◦): In the longitudinal forcing case, we observed patterns
similar to those found in unforced ILC [18]. The dynamics and the extent of these
states in parameter space (figure 3) differed, however. For example, transverse bursts
(TB) (see figure 11 and movie 5 in the supplementary material (available from
stacks.iop.org/NJP/14/053010/mmedia)), which for unforced ILC occurred only in a small
region close to the codimension two point (θcd), were observed here for 72◦ < θ < 82◦.

As described elsewhere [28], TB occurred spontaneously as a periodic modulation of LR in
the y-direction as shown in figure 11(a). The spatial periodicity in the longitudinal direction was
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TR LB

Figure 12. Left: TR at θ = 85◦ and ε = 0.10. Middle: Fourier transform of TR.
Right: LB at θ = 85◦ and ε = 0.2. See movie 6 in the supplementary material
(available from stacks.iop.org/NJP/14/053010/mmedia).

about twice the forcing wave length (wave vector q1 = (0, 0.5)qf, blue arrow in figure 11(a)),
whereas the periodicity in the transverse direction is the forcing wave length (wave vector
q0 = (qf, 0), red arrow in figure 11(a)). These bursts were localized and appeared in small
regions with three to six modulation periods (2π/q1) in the x-direction and two to three periods
(2π/qf) in the y-direction. In addition to q0 and q1 there is also a third resonant mode q2 with
q2 = q0 + q1.

Figure 11(b) shows the temporal evolution of the amplitudes of the forcing mode q0 (top
graph), the transverse mode q1 (middle graph) and q2 (bottom graph) for three consecutive
bursts.

At t = 0 LR were present so that the amplitude of q1 is nearly zero. The appearance of a
burst led first to an increase of the amplitude of q0 followed by an increase of the amplitude of
q1. The forced mode reached a maximal amplitude after about 0.50 tκ and started to decrease
from this point onwards. The amplitude of q1 continued to increase and reached a maximum at
t = 0.65 tκ before it also decayed. At this point, the whole flow pattern became unstable and was
temporarily destroyed, resulting in low Fourier amplitude of q0, q1 and q2. We wish to point
out here that the amplitude of q0 never reaches zero since a Fourier transform was applied to an
area that was not fully covered by bursts, but where also LR remained stable over the considered
time range (e.g. the bottom right corner of figure 11(a)). This behavior is very similar to that
observed in unforced ILC [28].

The three plots in figure 11(b) suggest a resonant coupling between q0, q1 and q2, such
that TB rely on an instability of LR. This three-mode resonance would also explain why in
the forced case the inclination range, for which TB were found, is large in comparison to the
unforced case, where TB were observed only close to θcd.

For even larger inclination angles (82◦ 6 θ 6 90◦), transverse rolls (TR) were found for
small ε. These rolls were modulated in the horizontal direction by the SU-8 texture. Hence,
in the Fourier transform (figure 12) the forced mode q0 (red arrow) and the transverse mode
q1 (blue arrow) are visible. The second mode has a modulus of |q1| ≈ 0.84qf = 2.86/d which
is close to the theoretically predicted value of TR in the unforced ILC qtheory ≈ 2.82/d (blue
dashed-dotted curve in figure 2(b)).

As ε increased, TR became locally unstable to longitudinal bursts (LB), similar to the
ones found in unforced ILC [18] (right image in figure 12 and movie 6 in the supplementary
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Figure 13. SP (a), HP (d) and PZ pattern (g), their corresponding Fourier spectra
(b), (e), (h) and the central section of the Fourier spectra (c), (f), (i). Here
the blue arrows mark the first order modes of the underlying lattice, the red
arrow is the forced mode and the green vector is a higher order mode. See
movie 7 for SP and movie 8 for HP in the supplementary material (available
from stacks.iop.org/NJP/14/053010/mmedia).

material (available from stacks.iop.org/NJP/14/053010/mmedia)). There, the amplitude of the
longitudinal modulation is increased locally, while the transverse amplitude is damped for a
short time. These bursts quickly extended in the longitudinal direction for a few wave lengths
and faded away again.

Transverse forcing (ϕ = 90◦): Whereas for small inclination angles (θ < 55◦) BM became
unstable to CR, for larger θ the fascinating scepter pattern (SP) was observed (shown in
figure 13). This pattern consisted of scepter-like structures located at the sites of a rectangular
lattice with side lengths λ f and 2λ f with λ f = 2π/qf.

The SP was highly dynamical (see movie 7 in the supplementary material). The head of
a scepter moved quickly to the right and to the left with a typical time scale of ≈ 0.18 tκ . In
addition, phase defects traveling through the cell transformed the SP temporally (for ≈ 4–5 tκ)
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back into BM. It is worth noting that in the same region of phase space, both in the unforced
and in the longitudinal forcing case, one observed turbulent TB. As shown in figure 11, TB are
characterized by exactly the same sub-harmonic transverse wave vector q1 = qf (0, 0.5) as the
underlying rectangular lattice of SP. Moreover, a close comparison between the bursts and the
‘scepters’ (figures 11 and 13(a)) shows a close resemblance of the two patterns. While TB was
a transient state with a characteristic time scale of less than 1 tκ , SP existed approximately 10
times longer until a defect temporarily destroyed it. Thus, one can interpret the SP state as a
stabilized version of the transverse bursts.

At inclination angles 80◦ < h< 90◦, the superlattice heart pattern (HP) was observed.
It consisted of small ‘heart’-shaped elements, which were located at the sites of a square
lattice (oriented at 45◦ with respect to the SU-8 stripes). The underlying Fourier lattice was
spanned by the wave vectors q1 = qf(0.5, 0.5) and q2 = qf(−0.5, 0.5), which together with the
forcing wave vector fulfill the resonant triad condition q0 = q1 + q2. The dynamics of HP is
slower than that of SP, and is characterized by patches of HP fading and reappearing with a
time scale of the order of 2–5 τκ (see movie 8 in the supplementary material (available from
stacks.iop.org/NJP/14/053010/mmedia)).

We can compare HP with the switching diamond panes (SDP) that were found in the
unforced ILC by Daniels et al [18]. These are spatio-temporal chaotic roll structures that consist
of large patches, aligned 45◦ and –45◦ to the direction of inclination. The patches are thin and
elongated and have rolls with a large amplitude, whereas, outside these patches, the amplitude is
reduced. Because of their similar shapes and dynamics, one can imagine that HP are stabilized
SDP.

Oblique forcing (ϕ = 60◦): A superlattice state was also found for the oblique forcing case.
Here, for inclination angles θ > 75◦, oblique HR became unstable at large values of ε to a pretzel
pattern (PZ), shown in figure 13(g). Small elements that are shaped like a pretzel are located
on a rhombic lattice. The corresponding reciprocal vectors are q1 = −0.5 qf(cos(60◦), sin(60◦))

(green arrow in figure 13(b)) and q2 = q0 + q1 (blue arrow in figure 13) as shown in the Fourier
transform.

7. Discussion and conclusion

Motivated by the fact that naturally driven pattern forming systems often consist of intrinsic and
externally imposed symmetry breaking mechanisms, we have investigated experimentally the
combined effect of two independent symmetry breaking mechanisms on an otherwise isotropic
system. Thermal convection of a thin fluid layer heated on one side and cooled on the other
was chosen as a model system. The externally imposed symmetry breaking mechanisms were
a unidirectional shear flow, caused by inclining the fluid layer, and lithographically fabricated,
periodic surface corrugations of the warm plate. The latter breaks both the rotational invariance
and the translational symmetry. In our investigation, the relative strength and the relative
orientation of both symmetry breaking mechanisms were tuned, thus allowing for a broad
variety of 2D forcing scenarios.

Our exploration focused on selected θ–ε phase diagrams in the θ–ε–ϕ parameter space.
Specifically, we chose forcing angles that correspond to the most generic symmetries for lattice
patterns: ϕ = 0◦ (parallel stripes), 60◦ (hexagons), and 90◦ (squares). In all three phase diagrams
we could distinguish three different θ -regions. For small θ , straight rolls became unstable at
rather large ε. As a result, we observed VP and kinks for longitudinal forcing, RP for transverse
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forcing as well as oblique kinks and modulated LR for oblique forcing. For moderate θ , straight
rolls became unstable to simple slowly drifting patterns that consisted of only two or three
different modes. These were UN for longitudinal forcing, HR and BP for transverse forcing and
OB for oblique forcing. All these patterns turned continuously into CR when ε was increased.
For large θ (close to and larger than θcd) straight rolls became unstable at rather small ε. The
instability resulted in highly dynamical transverse bursts or TR for longitudinal forcing, SP and
HP for transverse forcing and PZ pattern for oblique forcing.

In general, we observed a strong stabilizing effect due to spatial periodic forcing. As an
example, for longitudinal forcing the region in the phase diagram where steady convection rolls
are stable was extended in comparison with the unforced ILC. Also, a noticeable reduction of
spatio-temporal chaos in dynamical states was found. Examples of the latter are the VP (forced
ILC), which can be considered as a stabilized version of subharmonic oscillations (unforced
ILC), ordered UN (forced ILC) in contrast to undulation chaos (unforced ILC), SP (forced
ILC) as stabilized transverse bursts (unforced ILC and ϕ = 0 forcing) or HP (forced ILC) that
can be associated with SDP (unforced ILC). Furthermore, the number of defects that occurred
in the UN was reduced in the forced case in comparison with the unforced case (see also [26]).
Since the degree of stabilization depends on the forcing amplitude δ one can speculate that an
increase of δ would further reduce the number of defects and thus might also shift the onset for
CR to larger ε.

This is just one example of how the shape of the phase diagram depends on δ. Indeed,
all three phase diagrams have to converge for δ → 0 towards the unforced ILC-phase diagram
(figure 4 of [18]). Therefore, for small and intermediate inclination angles, an increase of δ
would also stabilize forced rolls and shift their instability lines towards larger ε. But we have
also seen in the case of TB that the forcing can actually destabilize the roll solution due to a
resonant coupling of longitudinal and transverse modes when θ is close to θcd. In this range,
increasing δ might therefore lead to reduced stability of straight rolls. We also wish to point
out that speculations on how much the phase diagrams depend on δ are only valid when the
forced wavelength is sufficiently close to the critical wavelength of the system. It was shown in
simulations of horizontal forced convection [40] that for certain ratios qf/qc < 0.75 an increase
of δ can lead to reduced stability of the forced rolls (see, e.g., figure 5 of [40]).

We have also observed the tendency that forcing has a significant effect on patterns that
occur at small values of the control parameter ε, while for larger ε the observed patterns were
similar to that observed in unforced ILC. While at small ε the occurring straight rolls were
all phase-locked with the forcing profile, the patterns at larger ε became more similar to that
observed in the unforced system such as LR for small inclination angles and CR for larger ones.
In these examples the shape and dynamics of the patterns depended at most only weakly on the
specific forcing case, i.e. the specific ϕ.

The patterns that occurred due to forcing for small ε and θ < 70◦ consisted of modes that
continuously grew out of a steady roll pattern, following a supercritical (forward) bifurcation
(VP, UN, HR, BM, OB, OX). These patterns show very weak dynamics. In contrast to this
observation, it was shown that breaking the symmetry in a pattern forming system can have a
more dramatic effect if some of the solutions of the symmetric system undergo a subcritical
(backward) bifurcation (see e.g. [41, 42]). In a system with broken D4-symmetry, for example,
the interaction of two modes can lead to heteroclinic cycles with some of the fixed points having
infinite amplitudes. In general, the occurrence of periodic and chaotic bursts can be explained by
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such a mechanism. However, this mechanism needs to be modified to allow for the description
of spatially localized bursts as reported here (TB, LB).

A question one might ask is whether the exact shape of the surface profile of the warm
plate has a significant influence on the patterns or the shape of the phase diagrams. For small
ε when the horizontal variation of the temperature and flow field can be sufficiently described
by only a very few Fourier modes, it was shown that an approximation of the surface profile of
the warm plate by its first Fourier mode (resulting in a single forcing parameter δ) is sufficient
to calculate correctly the convection amplitude of straight forced rolls [16, 21]. For larger ε,
higher Fourier modes of the flow and temperature field become important and are most likely
influenced by the higher modes of the forcing texture. Therefore it is likely that at larger ε
the exact shape of the forcing pattern, i.e. the surface corrugation of the warm plate, becomes
important. However, more theoretical and experimental investigations are necessary to answer
this question quantitatively.

Since the up–down symmetry (‘Boussinesq symmetry’) with respect to reflection at the
midplane of the convection layer was broken (only the warm plate was structured), most
of the patterns did not show a symmetry regarding inversion of the cold and warm regions.
Furthermore, many of these patterns consisted of three modes that built a resonant triad, where
often the ‘natural’ selected wave vectors and the externally imposed periodicity were both
represented in the patterns. Examples include VP, HR and HP. The existence of these triads
allows for quadratic interactions in the amplitude equations for the Fourier modes.

The large variety of different patterns presented in this paper demonstrates the
complex interaction between only two symmetry breaking mechanisms in a rather simple
hydrodynamical system. The underlying processes and mode interactions that lead to this variety
are far from understood and demand further experimental and theoretical investigation.
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