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Differential reaction cross sections have been computed based on previous rotationally resolved

time-independent quantum-mechanical scattering calculations for the complex-forming SN2

reaction Cl� + CH3Br - ClCH3 + Br�. The results show almost isotropic cross sections for

reactant molecules with high rotational quantum numbers. Backward scattering is disfavoured for

reaction out of states with small rotational excitation, in particular the rovibrational ground state.

This is a quantum-mechanical effect (interference of partial waves) that can partly be rationalized

by simple classical arguments. In particular for higher vibrational excitations, an umbrella effect can

be observed that favours the backward direction. It can be explained by the strong enhancement of

the reactivity by opening a direct mechanism. The ion–dipole interaction exerts a torque onto the

molecule which carries out a rotation by about 901 and then completes the reaction.

I. Introduction

Quantum-state resolved differential reaction cross sections

provide angular distributions of the scattered products of a

reactive process and thus contain information on a chemical

reaction at a very detailed level. They provide the most

stringent test for a quantitatively accurate theoretical model

for elementary chemical reactions.1–6 Only a few reactive

systems could be studied with quantum-state resolution in

a scattering experiment. So far, experimental results are avail-

able for reactions involving molecular hydrogen: the substitu-

tion reactions between open-shell atoms and hydrogen

molecules H + H2, H + D2,
7,8 F + H2,

9–11 Cl + H2,
12 the

four-atom reaction H2 + OH13 and the insertion reactions of

electronically excited atoms C(1D), N(2D), O(1D) and S(1D)

into H2.
14 In these experiments, the flux of the reaction

products is measured that goes into different scattering angles

and final rovibrational states for different initial levels. The

differential cross section for a state-to-state reactive molecular

collision often exhibits a complicated interference pattern. An

important problem, which is discussed in recent reviews,1–5,15

is how to analyse this scattering pattern in order to obtain

sound information on the reaction dynamics.

Ion–molecule reactions can be studied experimentally by

employing crossed-beam imaging.15 Collisions between reac-

tants with well-defined linear momenta are prepared, and the

corresponding differential cross-sections are measured using

angle- and velocity(i.e. energy)-resolved detection schemes.

While this approach has been widely used for reactions

between neutral species,3,16 it has also become a powerful tool

for the investigation of reactions between neutrals and anions.

In contrast to conventional crossed-beam experiments

employing rotatable detectors, an imaging spectrometer allows

not only for higher angular resolution, but also for a faster

data acquisition. It can detect products within a 2 � 2p solid

angle of acceptance. The underlying technique is that of

velocity map imaging17 where ions with the same velocity

component parallel to the detector surface are projected

onto the same spot on the detector. The finite size of the

reaction volume avoids broadening of the product ion images.

Wester et al. have constructed a velocity map imaging spectro-

meter in conjunction with a low-energy ion source18 which has

also been used to study gas-phase SN2 reactions. Here, slow

ions (kinetic energy between 0.5 and 5 eV) collide with neutral

molecules in a supersonic molecular beam in the centre

of the velocity map imaging electrode stack. The electric field

of the imaging spectrometer is rapidly pulsed on and the

product ions are projected onto the position-sensitive imaging

detector. A CCD camera records ion impact positions,

which are proportional to the velocity components in the

scattering plane parallel to the detector surface. The imaging

data, i.e. the impact velocity vectors in the laboratory

frame, need only little data processing (transformation to the

centre-of-mass frame for each scattering event; correction

for the loss of products with high laboratory velocities

which leave the spectrometer volume that is imaged onto the

detector).15

In this paper, we report on a detailed theoretical study of the

effect of initial rotational excitation in a prototypical substitu-

tion reaction, Cl�+CH3Br- ClCH3 + Br�, at the quantum

state-to-state level.
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From a theoretical point of view, it is necessary to extract

converged complex S-matrix elements from a quantum scat-

tering calculation, not only the squared moduli where the

phase information is lost. While the latter are sufficient for the

calculation of integral scattering cross sections (and can be

obtained by averaging without taking into account the

phases), differential cross sections are computed by first sum-

ming up the S-matrix elements weighted by Legendre poly-

nomials and squaring the modulus of that sum afterwards. If

the asymptotic wave function is projected onto channel Jacobi

coordinates, the necessary complex S-matrix elements can be

obtained from the scattering wavefunction.

In a general SN2 reaction, X� + CH3Y - XCH3 + Y�

(X, Y: halogen atoms)19–25 several reaction mechanisms are

possible. First, the attacking nucleophile X� directly hits the

cone defined by the three hydrogen atoms and the central

carbon nucleus. It then forms the new X–C bond in a direct

collision while the other bond, C–Y, is broken. Second, a

relatively long-living resonance state can be formed by virtue

of intermolecular, i.e. long-range ion–dipole forces. This

complex can perform many rotations before it dissociates

back into the reactants or finally forms new products. It is

thus interesting to investigate the importance of the different

reaction channels. We have carried out comprehensive

quantum-mechanical studies on SN2 reactions26–31 where

reaction probabilities and total reaction cross section have

been calculated and discussed in detail. We refer to these

papers for details and extend our investigation towards differential

cross sections that can give even more insight, in particular

with respect to angular distributions and rotational-state-

selected reactivity.

The present paper is organized as follows: in Section II we

provide the particular theoretical background for the calculations

of the differential reaction cross sections, while Section III contains

the results and their discussion. Finally, Section IV presents our

conclusions. Throughout, all energies are quoted in cm�1.

II. Theory

A. Coordinate systems and Hamiltonians

We refer to our previous paper31 and treat the reaction as a

pseudo-triatomic system with the methyl group as united

atom, but with optimization of the internal geometry of this

group for each set of Jacobi coordinates R, r and g. In ref. 31,

we started with the (exact) Hamiltonian operator in Jacobi

coordinates:

Ĥ = T̂J=0 + T̂J + V̂, (1)

consisting of the potential V̂ and the following expression for

the kinetic energy32

T̂
J¼0 ¼ dj0 jdk0k �

�h2

2m1

@2

@R2
� �h2

2m2

@2

@r2
þ �h2

2
jðj þ 1Þ 1

m1R2
þ 1

m2r2

� �� �
;

ð2Þ

T̂
J ¼ dj0 jdk0k

�h2

2m1R2
½JðJ þ 1Þ � 2k2� � dj0jdk0k�1

�h2

2m1R2
C�JkC

�
jk;

ð3Þ

and

V̂ ¼ dk0khj0kjVðR; r; gÞjjkig; ð4Þ

where the coefficients C�jk are given by

C�jk = (j (j + 1)�k (k� 1))1/2.

Here, J denotes the conserved total angular momentum (J)

quantum number, while j = |k|,|k|+1,. . . is the angular

momentum quantum number of the rotating diatom and

k=� J,. . .,J indicates the quantum number of the J-projection

onto the body-fixed axis which is defined by the third atom

and the center of mass of the diatom. The set |jki denotes a

spherical harmonic function and h. . .ig indicates the integra-

tion over the Jacobi angle g.
In ref. 31, we considered only the (J = 0) part to compute

rotationally resolved S-matrices and therefrom reaction prob-

abilities. For differential reaction cross sections, however, we

need the S-matrices for nonvanishing total angular momenta

(J > 0). In the above Hamiltonian, we restrict ourselves to

vanishing helicity (k = 0) and consequently drop the Coriolis

coupling term (centrifugal sudden approximation33,34). This

approximation has been shown to yield acceptable results

when compared to the data from calculations employing the

full rotational Hamiltonian.35–38

The Hamiltonian for J > 0 used in the present work

then reads

ĤCS = T̂J=0 + T̂J
CS + V̂, (5)

with the influence of total angular momentum approximated

in T̂J
CS according to

T̂
J

CS ¼ dj0j
�h2

2m1R2
JðJ þ 1Þ: ð6Þ

In the framework of time-independent quantum scattering

theory as employed in ref. 31 we can therefore reuse the wave

functions and overlap matrices, respectively, computed for

J= 0 and add the above term as an energetic correction in the

propagation of the wavefunction along the hyperradius. An

additional approximation is required, however, when hyper-

spherical coordinates39–44 are used in the interaction region.

The full surface Hamiltonian reads31

Ĥsurf = T̂J=0
surf + T̂J

surf + V̂ (7)

with

T̂
J¼0
surf ¼ dj0 jdk0k �

�h2

2mr2
@2

@d2
þ �h2

2mr2
jðj þ 1Þ 1

cos2 d
þ 1

sin2 d

� �� �
;

ð8Þ

T̂
J

surf ¼ dj0jdk0k
�h2

2mr2 cos2 d
½JðJ þ 1Þ � 2k2�

� dj0jdk0k�1
�h2

2mr2 cos2 d
C�JkC

�
jk ð9Þ

and

V̂ ¼ dk0khj0kjVðd; g; rÞjjkig: ð10Þ
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In the centrifugal sudden approximation for k = 0, T̂J
surf

becomes

T̂
J

surf ;CS ¼ dj0 j
�h2

2mr2 cos2 d
½JðJ þ 1Þ�: ð11Þ

This expression still contains the internal hyperspherical

coordinate d. In the spirit of the rotating line approximation,45

we drop this dependency and obtain

T̂
J

surf;CS;RLA ¼ dj0 j
�h2

2mr2
½JðJ þ 1Þ�o T̂

J

surf;CS: ð12Þ

While this approximation will have a non-negligible quantitative

effect, the dynamics is still retained in its essential character-

istics, i.e. centrifugal barriers show up in the hyperspherical

adiabatic curves.

B. Reactive scattering formalism

The time-independent Schrödinger equation at fixed total

energy E and fixed J,

ĤcJ
n (R,x) = EcJ

n (R,x), (13)

is solved by employing an expansion of the wavefunction,

cJ
nðR; xÞ ¼

1

R

X1
m¼1

gJnmðRÞfJ
mðxÞ ð14Þ

where the gJnm(R) denote the translational functions, while

the fJ
m(x) are eigenfunctions of the surface Hamiltonian

depending on all other coordinates collectively denoted by x

(in this work: r and g).
Asymptotically, c represents an incoming free plain wave

(initial reactant states n) and a scattered spherical wave

(product states m), and we impose the boundary condition

gJnmðRÞ � dnme�iðknR�ðJþjnÞp=2Þ

� kn

km

� �1=2

SJ
nme

iðkmR�ðJþjmÞp=2Þ ð15Þ

for R - N, jn is the angular momentum quantum number of

the diatom for state n and total angular momentum J.

The (complex) S-matrix elements SJ
nm not only yield reac-

tion probabilities PJ
nm = |SJ

nm|
2, but also contain additional

information on time delays48 and differential cross sections.

Note that the phase factors e�iJp/2 in eqn (15) lead to alter-

nating signs of SJ
nm with increasing J and thus are important

when different J are involved in the calculation. The factors

e�ijnp/2 and eijmp/2 drop out in the computation of many real

quantities obtained from SJ
nm, like reaction probabilities and

cross sections.

The numerical solution of the scattering problem makes use

of the technique of R-matrix propagation46 (in what follows,

all matrices are J-dependent, but superscripts are suppressed

for clarity). From such an asymptotic matrix RN, we obtain

the S-matrix via

S = (RNÕ0 � Õ)�1(RNĨ0 � Ĩ), (16)

where Ĩ and Õ are diagonal matrices representing the incoming

and outgoing waves, respectively, according to eqn (15). For

the construction of Rasym, we start in the interaction region

with the hyperspherical reaction coordinate r being divided

into small sectors with midpoints ri.w For each ri, the wave-

function is expanded in a finite product basis similar to the

infinite expansion (14),

cnðr; riÞ ¼
1

r

XNch

m¼1
gnmðr; riÞfmðx; riÞ: ð17Þ

If the surface functions fm(x;ri) are chosen to be eigen-

functions of Ĥsurf(ri) with eigenvalues em(ri), insertion of the finite

expansion (17) into the Schrödinger equation yields decoupled

equations for the sector translational functions gnm(r;ri):

d2

dr2
~gnðr; riÞ þWðriÞ~gnðr; riÞ ¼ 0: ð18Þ

Here, the column vector g̃n contains the elements gnm/r and the

matrix W is given by

WmnðriÞ ¼
2m

�h2
E � enðriÞð Þ � 1

4r2i

� �
dmn: ð19Þ

Eqn (18) is easily solved to give a local R-matrix in each sector

and an assembled global R-matrix (cf. ref. 46). For that

purpose, the surface eigenfunctions fm(x;ri) for adjacent

sectors ri�1 and ri are mapped onto each other by virtue of

their energy-independent intersector overlap matrix elements

O(i�1,i)
mn ,

O(i�1,i)
mn = hfm(x;ri�1)|fn(x;ri)i (20)

which need to be computed only once for each J. For the

asymptotic region, we proceed in a similar manner, with

eqn (19) being replaced by

WmnðriÞ ¼
2m

�h2
ðE � enð ~RiÞÞ

� �
dmn: ð21Þ

C. Step size algorithm

In the different regions of the potential, the size of the sectors

needed to achieve convergence largely differs. In the inter-

action region, small sizes are necessary to account for the rapid

changes of the eigenfunctions; in the intermediate region, the

sector size is limited by the geometric changes in the hyper-

spherical coordinates whereas in the asymptotic region, large

sector sizes can be chosen. We used a step size algorithm

similar to ref. 46 to determine appropriate sector sizes during

runtime depending on the wave functions computed.

To be more specific, if ri is the hyperradius for sector i and
Dri its size, the hyperradius ri+1 for sector i + 1 is chosen to

obtain a sufficiently good overlap of the vector spaces spanned

by the surface functions in both sectors. This, in turn, is

anticipated by the deviation from unitarity of the overlap

matrix for sector i, O(i�1,i): let Nsec = min(Nsec
i�1,N

sec
i ) be the

minimum number of channels in sectors i � 1 and i. Then,

if Nsec
i > Nsec

i�1,

�q ¼ 1

Nsec

XNsec

n¼1

XNsec
i

j¼1
ðOði�1;iÞnj Þ2 ð22Þ

w This puts some restriction on the distribution of the ri values and the
equations should be rewritten if arbitrary ri are needed, e.g. when
avoided crossings are traced.
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and in the other case

�q ¼ 1

Nsec

XNsec

n¼1

XNsec
i�1

j¼1
ðOði�1;iÞjn Þ2: ð23Þ

The value ri+1 results from

ri+1 = ri + (ri � ri�1) %q, (24)

where we impose additional constraints to avoid a rapid

growth/shrinking:

�q � min
stpmax

ri � ri�1
; �qmax

� �
;

�q � max
stpmin

ri � ri�1
; �qmin

Dri
ri � ri�1

� �
:

The value %qmin needs to be chosen to be at least 0.5 to have

ri+1 outside of the outer boundary of sector i (note that Dri a
ri � ri�1 for varying sector sizes).

D. Wavefunction projection

In the asymptotic region of configuration space, we continue

the propagation of the wave function in the specific Jacobi

coordinates for reactant (a) and product (b) configurations.

For that purpose, the eigenfunctions need to be projected from

hyperspherical coordinates onto those in Jacobi coordinates;

following the approach described in ref. 47 we obtain the R-

matrix in Jacobi coordinates from the one in hyperspherical

coordinates by

Rja = (I(1)BM + I(2))(I(3)BM + I(4))�1, (25)

where BM describes the ‘‘propagation’’ of the hyperspherical

R-matrix Rhyp to the outer boundary r+M of the sector centered

at hyperradius rM,

BM = [t(1)(r+M) � Rhyp(t
(1))0(r+M)]�1[Rhyp(t

(2))0(r+M) � t(2)(r+M)]

(26)

with the diagonal matrices t(1) and t(2) defined by (t = 1,2)

t
ðtÞ
ij ðrÞ ¼

dij f opt kiðr� rMÞð Þ channel i open
dij f clt kiðr� rMÞð Þ channel i closed

�
ð27Þ

with f op1 : = sin, f cl1 : = sinh, f op2 : = cos and f cl2 : = cosh. Note

that eqn (26) contains a sign error in ref. 47.

The matrices (t(t))0 are the corresponding derivatives with

respect to r evaluated at r+M. As usual, the wavenumber ki is

given by

ki = �h�1(2m(E � ei))
1/2 (28)

for internal state i (with ei being the eigenvalue of the surface

Hamiltonian). The block-diagonal matrices I(n), n = 1,. . .,4,

I ðnÞ ¼
I ðnÞa 0

0 I
ðnÞ
b

 !
ð29Þ

with integrals (t = 1,2)

I ðtÞa

h i
ij
¼
Z 1
0

Z p

0

Fiðr; gÞr�1=2tðtÞjj ðrÞHjðd; gÞ sin gdgdr;

I ðtþ2Þa

h i
ij
¼
Z 1
0

Z p

0

Fiðr; gÞr�1=2 ðtðtÞjj Þ
0
ðrÞHjðd; gÞ cos d

�

�r�1tðtÞjj ðrÞ
@

@d
Hjðd; gÞ sin d

�
sin gdgdr

with analogous equations for the b channel give the overlap of

the hyperspherical, Fi(r,g), and Jacobi surface functions,

Hj(d,g). The integrals are calculated at a value RM obtained

from rM and an average value of d. Employing these equations

within the R-matrix propagation scheme is not straight-

forward as the integrations are energy dependent, thus

re-introducing all degrees of freedom considered to the other-

wise one-dimensional R-matrix propagation. Both functions

Hj(d,g) and @
@dHjðd; gÞ are expressed in the potential-optimized

discrete variable representation (PODVR) basis of the Jacobi

surface functions Fi(r,g). The computation of the integrals is

then reduced to matrix–matrix multiplications in that basis

(after multiplication with the additional factors in each of the

integrals).

While handling the g coordinate is straightforward, the

transformation of the surface functions from d to r needs

more consideration. The underlying PODVR basis functions

in d can be expressed in the Jacobi coordinate r as

Fhyp
i ðrjÞ ¼

Dr
Dd

� �1=2XNd

k¼1
Fhyp

i ðdkÞsincðpðdðrjÞ � dkÞÞ ð30Þ

where rj = rmin + jDr and dk = dmin + kDd are the values of r
and d, respectively, corresponding to the sinc-DVR-basis. The

overlap matrix elements with the PODVR basis functions

Fi
ja(rj) in the Jacobi coordinate setting can then be computed

which in turn transform each Hj(d,g) and @
@dHjðd; gÞ to the

basis in which the Fi(r,g) are described. To compute the

derivate @
@dHjðd; gÞ we make use of the sinc-DVR-derivative

operator

Dij ¼
ð�1Þi�j
ði�jÞDd iaj

0 otherwise;

(
ð31Þ

which, after transformation into the PODVR-basis, can be

applied to each of the Hj(d,g) to yield @
@dHjðd; gÞ.

The projection onto Jacobi coordinates is very difficult at an

arbitrary value of the hyperradius r because the eigen-

functions in the two coordinate systems will deviate too much

for small values of r. The projection scheme presented above

requires the same number of surface functions in both

coordinate systems and the matrices I(n) close to their asymp-

totic values (I(1) - 0, I(2) - 1, I(3) - k, I(4) - 0, where 0 and

1 are the zero and unit matrix, respectively, and k is the

diagonal matrix with entries dij ki) to obtain a sufficiently

symmetric Rja. Apart from symmetrization of Rja, we need to

project at a sufficiently large value of r and, for that purpose,

check for overlap of the vector spaces spanned by the two sets

of surface functions: if

Qij ¼
Z 1
0

Z p

0

Fiðr; gÞHjðd; gÞ sin gdgdr ð32Þ

Pu
bl

is
he

d 
on

 1
7 

A
ug

us
t 2

01
2.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

G
oe

tti
ng

en
  o

n 
13

/0
6/

20
14

 0
8:

35
:3

2.
 

View Article Online

http://dx.doi.org/10.1039/c2cp41141e


12986 Phys. Chem. Chem. Phys., 2012, 14, 12982–12991 This journal is c the Owner Societies 2012

defines the intrasector overlap matrix, we demand

|R�1M (QQw)ii/(QQw)11 � 1| r ehypjac (33)

with R�1M accounting for the change of the integration variable

and (QQw)11 for a common offset. Jacobi eigenfunctions are

computed until the asymptotic configuration is reached. This

requires all states to be assigned a rotational quantum number j.

Surface functions are therefore computed until for each iZ 1
0

ðFiðr; jiÞÞ2dr � 1� easym ð34Þ

for a given rotational quantum number ji. Here, Fi(r,ji) denotes

the Jacobi surface function Fi(r,g) transformed into the varia-

tional basis representation (VBR) of the Legendre polynomials.

E. Differential reaction cross sections

Inserting eqn (12) in the propagation algorithm of the J = 0

wave functions and employing the proper (J-dependent)

boundary conditions, we finally obtain state resolved, energy-

and total angular momentum-dependent S-matrices SJ
nm(E).

State-resolved differential cross sections for vanishing helicity

can then be computed by the usual formula

dsnm
dO
ðE; yÞ ¼ 1

4k2n

X1
J¼0
ð2J þ 1ÞSJ

nmðEÞPJðcosðyÞÞ
�����

�����
2

; ð35Þ

with kn being the wavenumber of the initial state and PJ the

Legendre polynomial of order J. Here, y = 0 denotes forward

scattering, and y= p corresponds to backward scattering. In a

numerical calculation, this sum needs to be cut off at a value

Jmax which is chosen to be large enough to include all

significant contributions to this sum. In practice, we select

the total reaction probability PJ
tot(E) =

P
n,mP

J
nm(E) as a

reference and terminated the summation when PJ
tot(E)

dropped to a negligible value in comparison with the J = 0

total reaction probability:

Jmax = min{J: PJ
tot(E) r esumP

J=0
tot (E)}. (36)

F. Numerical parameters

We used the same parameters as employed in ref. 31. The cut-

off criterion for the summation of the total angular momenta

was set to esum = 10�8. State-resolved differential cross

sections have been computed at energies Edif = 350, 850,

1400 and 1900 cm�1; to smoothen the many fluctuations that

are characteristic for this type of reaction, for each energy Edif,

differential cross sections were actually computed at 21 equi-

distant values Edif� 1.0 cm�1, Edif� 0.9 cm�1,. . ., Edif+1.0 cm�1

and then averaged.

As in our previous work on rotational effects,31 we employ

the analytical potential energy surface proposed by Wang,

Zhu and Hase.49

III. Results and discussion

A. Differential reaction cross sections

In Fig. 1–4, the initial-state selected differential reaction cross

sections are graphically displayed. They are summed over all

product states for total energies Etot of 350, 850, 1400 and

1900 cm�1. Shown is sin(y)(ds/dO)(Etot) which is the integrand

for the total cross section stot(Etot). Thus, the contributions to

stot become visible. Consequently, the data for y = 0 and y =

1801 are exactly zero, as long as the differential cross section

remains finite. However this cannot be seen in the plots, first

because this occurs only at these two exact angles and second

because of data averaging. The data are smoothly averaged

over intervals of 51 (for Etot = 350 cm�1) and 101 (for all other

energies), each with the exception of 0 and 1801. Forward

scattering corresponds to y = 0, while backward scattering is

associated with y = 1801. The finer averaging intervals in the

case of 350 cm�1 are due to the fact that the cross sections are

very isotropic here.

Fig. 1 shows the differential reaction cross sections for a

total energy of 350 cm�1 and different initial rotational

excitations (v = 0; j = 0,. . .,4). At this small energy, it can

be seen clearly that (ds/dO)sin(y) increases with j and becomes

increasingly more isotropic. Many oscillations typical of

resonance features can be observed. Here, the increasing cross

sections with j can be traced back mainly to an energetic effect.

Rotationally excited initial states are higher in energy, and

Fig. 1 Differential reaction cross sections for the reaction Cl� +

CH3Br (v,j) - ClCH3 + Br�, for different initial rovibrational states

(v,j), summed over all product states, at total energy 350 cm�1.

Fig. 2 Differential reaction cross sections for the reaction Cl� +

CH3Br (v,j) - ClCH3 + Br�, for different initial rovibrational states

(v,j), summed over all product states, at total energy 850 cm�1.Pu
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thus have – at a given total energy – less translational energy

which, however, enters the equation for the calculation of the

cross section (see eqn (35)) in the denominator. Only for the

initial state (0, 0) and (0, 2), back scattering is slightly less

effective. A remarkable observation is that the differential

cross sections for (0, 2) are below that for (0, 1). This is the

result from two contrary effects, the increase of the reactivity

with the energy of the initial level and a decrease with

rotational excitation (see below). Note that the ordinate in

Fig. 1 starts at 3.0 a2 sterad�1.

In agreement with our previous results,30 the cross sections

are largest for small energies.30 At higher total energies

(850 cm�1, Fig. 2), the (0, 0) differential cross section shows

a similar behaviour (back scattering is slightly less probable),

and the average differential cross section has become smaller

by a factor roughly of two. Also, the oscillations in the

differential cross sections are less pronounced. For initial

rotational excitation (shown are angular momentum quantum

numbers j = 1, 2, 3, 10, 20, 30), the differential cross sections

decrease and become more isotropic, so that for the highest

j-states shown (20 and 30) almost no anisotropy can be

observed. Isotropic cross sections point to the existence of

long-living resonance states which cause that the correlation

with the initial angle disappears.

For even higher total energy (Fig. 3, top panel), 1400 cm�1,

a similar trend can be observed. However, the coarse oscillations

for (0, 0) are again more pronounced. Fig. 3 (bottom panel)

shows the same for additional initial vibrational excitation,

which is possible at this given total energy. The differential

cross sections increase as expected from our previous studies,30

while the behaviour with respect to angular excitation remains

as before (note the scaling). The dip for backward scattering

becomes more pronounced and the oscillations are coarser.

Fig. 3 Differential reaction cross sections for the reaction Cl� +

CH3Br (v,j) - ClCH3 + Br�, for different initial rovibrational states

(v,j), summed over all product states, at total energy 1400 cm�1. Top:

rotational excitation only; bottom: one quantum in the C–Br stretching

mode.

Fig. 4 Differential reaction cross sections for the reaction Cl� +

CH3Br (v,j) - ClCH3 + Br�, for different initial rovibrational states

(v,j), summed over all product states, at total energy 1900 cm�1. Top:

rotational excitation only; middle: one quantum in the C–Br stretching

mode; bottom: two quanta in the C–Br stretching mode.
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Again, for energies of 1900 cm�1 (Fig. 4), the differential

cross sections tend to be more isotropic for larger values of j.

The initial state (0, 0) becomes more and more interesting: the

peak for backward scattering (y = 1801) is only one-third as

high as the maximum value which found in the range between

100 and 1601. The features become even coarser and the

typical resonance structure is lost. Additional vibrational

excitation shifts this range to 90–1401 with backward

scattering less than one-third of the maximum cross section.

Two quanta in the vibrational mode cause a further shift down

to 80–1151.

The state-dependent peak relation ((ds/dO)(0)/(ds/dO)(p))
is shown in Fig. 5. The peaks for forward and back-

ward scattering are not contained in the data sets presented

above because sin(0) = 0 = sin(p). A general slight pre-

ference for forward scattering can be observed. Initial states

with small j show a considerably larger forward peak. The

other oscillations are due to nearly closed channels, i.e. small

translational energies. Other reaction channels show up

at higher energies, in agreement with recent results by

Wester et al.24

How can the calculated behaviour of the differential reaction

cross sections be explained? The isotropy for large j-values can

be rationalized by a simple classical-mechanical argument. If

the target molecule is fastly rotating, all directions for dis-

sociation of the intermediate complex are possible and equally

probable. If the lifetime of the complex is long enough (i.e. if

the resonance is narrow), it can carry out several rotations

before the products break apart, and no direction is favoured.

The smaller cross sections for backward scattering, however,

need to be considered separately. In our previous collinear

studies,28–30 backward scattering was the only possible event.

The chloride anion hits the centre of the methyl group, forms a

bond to the carbon atom, and after the umbrella flip of the

hydrogen atoms the CH3Cl moiety bounces back to the

direction where the chloride ion came from. This direction is

disfavoured in the full three-dimensional picture. Here, the

chlorine anion approaches the CH3Br molecule off from the

collinear axis. Due to the strong ion–dipole interaction a

torque is exerted onto the molecule, and it begins to carry

out a rotation. However, due to the potential, no full rota-

tional cycle is performed, and an angle of about 901 seems

most probable. This explains why exact backward scattering is

such a disfavoured event, the strong electrostatic forces are

responsible for the differential cross sections in the cases

without initial rotational excitation.

B. Product distributions

To display the product distribution for a given initial rovibra-

tional state it appears to be convenient to use velocity maps

that come out of an experiment,24 so that our results can

thus directly be compared to the results of dynamical

measurements.

In Fig. 6 and 7 the velocity of the product bromide anions in

the centre-of-mass system is graphically displayed. The centre

of each image denotes zero velocity in the centre-of-mass

frame. The circles represent constant product velocities with

the largest circle showing the maximum possible product

velocity based on the known total energy in the reaction

system. Thus, each concentric circle corresponds to a product

quantum state with a well-defined energy. The translational

energy and the speed are constant on each circle. Along the

circles, the colours indicate the percentage amount (with

respect to the total cross section at the respective initial state),

with a threshold value of 10�5 (ref. 24). The diagrams are

symmetric with respect to the axis vy = 0. Forward scattering

corresponds to the left-hand side, backward scattering to the

right-hand side of the diagrams.

In Fig. 6, the initial state (0, 0) is considered at total energies

of E = 350 cm�1 (A), E = 850 cm�1 (B) and E = 1400 cm�1

(C). In case (A) one state close to the energetic limit is

populated, corresponding to the small circle (low translational

energy). For the higher energy (B), the radii of the circles

become larger because more translational energy is available.

The final states are energetically close to the reactant state, in

agreement with our previous findings; thus, no further inner

circles show up. When the total energy is increased, the circles

are narrowing, showing that less energy is transferred to

rotational excitation. In panel (D), the initial state is vibra-

tionally excited, (1, 0), at E = 1400 cm�1. Two circles (i.e.,

different vibrational product states) display a significant

anisotropy in the differential cross section (cf. Fig. 4), corres-

ponding to the overall anisotropic cross section. It is remark-

able that the two product vibrational states show a different

forward scattering behaviour.

Fig. 7 contains velocity maps at a total energy of E =

1900 cm�1, for the initial ground state (0, 0) (E) and two

vibrationally excited states, (1, 0) (F) and (2, 0) (G). Moreover,

Fig. 7 contains – at the same total energy – two rotationally

excited states, (0, 3) (H) and (0, 65) (I), as well as one highly

rovibrationally excited state (2, 25) (J). Again, when the

reactants are not rotationally excited, the products are close

to their rotational ground state (narrow circles) and display a

remarkable anisotropy. Initial rotational excitation, in con-

trast, leads to a broad distribution of angular momenta in the

products (broad circles) and isotropic scattering. These

findings agree well with the considerations from the previous

section: with high initial rotational excitation, long-lived
Fig. 5 Quantum-state dependent relation between forward (y = 0)

and backward (y = 1801) scattering.
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intermediate complexes lead to the final direction of the

products being almost independent from the initial direction.

When the reactants are not rotationally excited, the chlorine

anion exerts a torque on the CH3Br molecule, causing a partial

rotation and favouring scattering angles from 1001 to 1601.

For a comparison, in Fig. 8(A) the corresponding most

pronounced circles resulting out of the initial ground state

(0,0) are displayed separately. At the two lowest energies, 350

and 850 cm�1, strong oscillations are observed, while no clear

trend is seen. For E = 1400 cm�1 a weak decrease towards

backward scattering is discernible, while for E= 1900 cm�1 we

find a strongly favoured scattering into the backward direction.

Fig. 8(B) shows the same results for vibrationally excited initial

states, (1, 0) at 1400 and 1900 cm�1 and (2, 0) at 1900 cm�1.

With their ion-molecule crossed-beam imaging spectrometer

Wester et al. studied the SN2-reaction of Cl� + CH3I at

relative scattering energies between 0.4 and 2 eV24 and

obtained cross-sections in the centre-of-mass frame for various

relative energies. At 0.39 eV, isotropic scattering of the I�

product ions is observed, which indicates an indirect reaction

involving long-living complexes. Much of the available energy

is used to excite internal modes of the CH3Cl product. This is

in good agreement with our computational results. In contrast,

at 1.9 eV the I� ions are scattered preferentially backward with

respect to the incoming CH3I, with a velocity close to the

maximum possible value.24 This can be rationalized by a fast

and direct reaction mechanism where the I� ion leaves the

reaction approximately collinearly with the incoming Cl�

anion. While most of the flux indicates this direct scattering

with large product velocities, also small product velocities

both forward and backward scattered are observed which

are explained by an indirect ’roundabout’ mechanism. Wester

et al. could explain this behaviour by means of classical

trajectory calculations.24

The aim of our future theoretical studies is to extend the

underlying potential surfaces and perform quantum scattering

calculations that take into account both the direct mechanism

at higher energies as well as the postulated roundabout

Fig. 6 Velocity maps for the Br� product ion in the reaction Cl�+CH3Br (v,j)- ClCH3 + Br� at different total energies and for selected initial

rovibrational states (v,j). Colours indicate the relative amount in the differential cross sections. A: E = 350 cm�1, (0,0); B: E = 850 cm�1, (0,0);

C: E = 1400 cm�1, (0,0); D: E = 1400 cm�1, (1,0).
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Fig. 7 Velocity maps for the Br� product ion in the reaction Cl�+CH3Br (v,j)- ClCH3 + Br� at different total energies and for selected initial

rovibrational states (v,j). Colours indicate the relative amount in the differential cross sections. E: E = 1900 cm�1, (0,0); F: E = 1900 cm�1, (1,0);

G: E = 1900 cm�1, (2,0); H: E = 1900 cm�1, (0,3); I: E = 1900 cm�1, (0,65); J: E = 1900 cm�1, (2,25).
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pathway. Another promising experimental approach could be

to use molecular traps, allowing for the study of chemical

reactions at ultracold temperatures.50

IV. Conclusions

We have calculated quantum-mechanical differential reaction

cross sections for the nucleophilic bimolecular reaction Cl�+

CH3Br - ClCH3 + Br�. The results show almost isotropic

cross sections for high rotational quantum numbers of the

reactant molecule. Backward scattering is disfavoured for

reaction out of the rovibrational ground state and out of

states with small rotational excitation. This is a quantum-

mechanical effect (interference of partial waves) that can partly

be rationalized by simple classical-mechanical arguments. In

particular for higher vibrational excitations, an umbrella effect

can be observed, that favours the backward direction. It can

be explained by the strong enhancement of the reaction by

opening up a direct mechanism. The ion–dipole interaction

exerts a torque onto the molecule which rotates it by about 901

and then completes the reaction.
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