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The vibrational energy relaxation from the first excited ND-stretching mode of NH2D dissolved

in liquid NH3 is studied using molecular dynamics simulations. The rate constants for inter- and

intramolecular energy transfer are calculated in the framework of the quantum-classical

Landau–Teller theory. At 273 K and an ammonia density of 0.642 g cm�3 the calculated

ND-stretch lifetime of t = 9.1 ps is in good agreement with the experimental value of 8.6 ps.

The main relaxation channel accounting for 52% of the energy transfer involves an

intramolecular transition to the first excited state of the umbrella mode. The energy difference

between both states is taken up by the near-resonant bending vibrations of the solvent. Less

important for the ND-stretch lifetime are both the direct transition to the ground state and

intramolecular relaxation via the NH2D bending modes contributing 23% each. Our calculations

imply that the experimentally observed weak density dependence of t is caused by detuning the

resonance between the ND-stretch–umbrella energy gap and the solvent accepting modes which

counteracts the expected linear increase of the relaxation rate with density.

1 Introduction

Studies of vibrational energy relaxation (VER) in the liquid

phase can help to gain a better understanding of dynamic

interactions of solutes with surrounding bath molecules.1–3

Since these interactions play a central role in chemical reactions

in the condensed phase, it is of great significance to analyze such

processes in detail and quantify the contributions of different

relaxation pathways. Numerous studies of this kind have focused

on aqueous systems,4–20 recently, they have been expanded to

condensed ammonia.21 Like water, liquid ammonia is a well

studied ionizing solvent. Due to its potential to dissolve alkali

metals and to form solvated electrons, such solutions are used in

organic chemistry as reducing agents (e.g., Birch reaction).22–24

Although liquid ammonia is often cited in chemistry textbooks

as an example for associated liquids forming extended hydrogen

bond networks,25 neutron scattering experiments26,27 and computer

simulations based on Car–Parinello ab initiomolecular dynamics28

(MD) and mixed quantum/classical molecular dynamics29

show that, in contrast to water, hydrogen bonding is of

negligible importance. Consequently, the characteristics of

the dynamics of VER in ammonia over a wide thermodynamical

range differ from the well studied behavior of water. This was

recently demonstrated by pump–probe absorption spectroscopy

experiments, where the ND-stretching fundamental of NH2D in

NH3 was excited by a femtosecond pulse and the lifetime of the

stretching mode was observed over a wide range of temperature

and pressure (230–450 K, 10–1500 bar).21 At 273 K and a solvent

density of 0.642 g cm�3 the lifetime of the excited ND-stretch

vibration of NH2D was measured to be 8.6 ps which is much

larger than typical vibrational lifetimes of liquid water at

comparable conditions (about 1 ps).11,12

These experimental studies were supported by simple

theoretical calculations of the ND-stretch lifetime21 based on

the Landau–Teller (LT) approach. Here a breathing-sphere

model described the solute molecule, and solvent molecules

were modeled as point masses. This model describes the

temperature dependence but it cannot distinguish between

different relaxation pathways, since it does not take into account

rotations and intramolecular vibrations of the solvent. It is therefore

desirable to use the more sophisticated approach already applied

successfully to the water system such as advanced LT theory30–34

and non-equilibrium molecular dynamics simulations.35–40

In this work we use the Landau–Teller approach following

the lines developed by Rey and Hynes31 and Lawrence and

Skinner33 in order to study in detail the vibrational energy

relaxation pathways from the excited N–D stretching mode of
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NH2D in a NH3 solution. The results of the LT calculations

are then compared to the experimental measurements.21

2 Theoretical background

2.1 Landau–Teller approach

In the LT approach Fermi’s Golden Rule is used to calculate

the vibrational transition rates which are expressed in terms

of the time correlation function (TCF) of the system–bath

interaction potential.30 The full quantum-mechanical calculation

of a TCF is not feasible, therefore the part of the TCF related

to the bath degrees of freedom is calculated classically from

equilibrium molecular dynamics (MD) simulations and quantum

effects are taken into account by using a quantum correction

factor (QCF).

The Hamiltonian of a solute NH2D in the bath of NH3

molecules can be written in the form

H = HS + HB + V, (1)

where HS is the vibrational Hamiltonian of NH2D, HB

describes the bath including the rotational and translational

degrees of freedom of the solute, and V stands for the coupling

between the molecular vibrational coordinates of the solute

NH2D and the surrounding bath molecules. Coriolis and

centrifugal couplings are assumed to play a minor role in the

VER processes,31 and consequently will be neglected. The

system–bath coupling operator V is expanded to first order

in the six NH2D dimensionless normal coordinates {qs}:

V ¼ �
X
s

qsFs; Fs ¼ �
@V

@qs

����
qs¼0

: ð2Þ

Hence the rate constant kij for a transition from the initial

vibrational state i to the final state j is given by the expression

kij ¼ QðoijÞ
Z 1
�1

dt eioij t
X
s;s0
hijqsjjihjjqs0 jiihFsFs0 ðtÞi; ð3Þ

where hFsFs0(t)i is the classical TCF of the normal forces

corresponding to the s and s0 normal coordinates, and Q(oij)

is the quantum correction factor depending on the vibrational

Bohr frequency oij. The matrix elements hi|qs|ji for the NH2D

vibrational degrees of freedom are calculated quantum-

mechanically from the anharmonic eigenfuntions |ii.

2.2 Matrix elements calculation

For the NH2D molecule we use the intramolecular potential

by Martin et al.41

UNH2D ¼
1

2

X
i;j

fijxixj þ L; ð4Þ

L ¼ 1

6

X
i;j;k

fijkxixjxk þ
1

24

X
i;j;k;‘

fijk‘xixjxkx‘; ð5Þ

where the internal coordinates

xi = {DrNH1
, DrNH2

, DrND, DfH1NH2
, DfH1ND, DfH2ND}

describe the deviations from the equilibrium bond length of

1.0141 Å and from the equilibrium valence angle of 105.641.

The term L contains the anharmonic contributions to the

intramolecular potential. The calculated frequencies for the

potential (4) together with their experimental values are listed

in Table 1 showing sufficient accuracy for our purposes. The

importance of anharmonicity is also demonstrated by comparison

with harmonic frequencies.

Standard methods43 were used to perform the normal mode

analysis of the solute molecule and to express the intra-

molecular potential energy UNH2D
in terms of the normal

mode coordinates qs up to fourth order.

To calculate the matrix elements of qs the first-order perturbation

theory expression44

hijqsjji ¼ hi0jqsjj0i þ
X
kai;j

Likhk0jqsjj0i
E
ð0Þ
i � E

ð0Þ
k

þ
X
kaj;i

Lkjhi0jqsjk0i
E
ð0Þ
j � E

ð0Þ
k

;

ð6Þ

was utilized where Lik are matrix elements of the anharmonic

potential energy operator (5) and the index ‘0’ refers to the six-

dimensional harmonic eigenfunction of the NH2D (ordered

according to their vibrational frequency):

|i0i = |n3bn3an1n4an4bn2i (7)

with ni denoting the quantum number of the ith mode.

Table 2 shows the values of the matrix elements for transitions

that contribute to the main VER pathways (see discussion

in Section 3.1). As expected, the matrix elements that do not

vanish in the harmonic approximation have the largest values

due to contributions from the undisturbed matrix elements

hi0|qs|j0i. Those matrix elements correspond to direct transitions

from the excited ND-stretch, symmetric and asymmetric bend,

and umbrella mode to the ground state (h001000|q1|000000i,

Table 1 Vibrational frequencies (in cm�1) of NH2D for the potential
UNH2D

from eqn (4) and experimental data

Vibration Harmonic Fundamental Measured42

n3b (asym. NH-stretch) 3597 3416 3439
n3a (sym. NH-stretch) 3517 3350 3366
n1 (ND-stretch) 2587 2491 2506
n4a (sym. bending) 1654 1604 1598
n4b (asym. bending) 1440 1403 1390
n2 (umbrella) 1022 962 886

Table 2 Largest values for the squared matrix elements defined by
eqn (6) for transitions that contribute to the main VER pathways. The
states are denoted following eqn (7)

h001000|q1|000000i2 0.488
h001000|q2|000100i2 1.96 � 10�3

h001000|q1|000001i2 1.94 � 10�3

h001000|q4b|000010i2 1.75 � 10�3

h001000|q4b|000002i2 1.7 � 10�4

h001000|q2|000101i2 8.3 � 10�6

h001000|q4b|000011i2 3.5 � 10�6

h001000|q4b|000110i2 9.9 � 10�7

h000100|q4a|000000i2 0.521
h000100|q2|000001i2 7.09 � 10�3

h000100|q4b|000010i2 1.27 � 10�3

h000010|q4b|000000i2 0.520
h000010|q3b|000001i2 7.38 � 10�4

h000001|q2|000000i2 0.541
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h000100|q4a|000000i, h000010|q4b|000000i and h000001|q2|000000i,
respectively).

It should be noted that small values of the other matrix

elements do not imply that the corresponding contribution to

the total rate coefficient are negligible, because each contribution

is given by a product of the matrix element and the spectral

density of external forces at the frequency of the energy gap oij

(see eqn (3)).

2.3 Force power spectrum

In the framework of the LT approach the force power

spectrum

Sss0 ðoijÞ ¼
Z1

�1

dt eioij thFsFs0 ðtÞi ð8Þ

is calculated from classical equilibrium MD simulations.

We performed those calculations for a system consisting of a

rigid NH2Dmolecule in its equilibrium geometry41 and 100 flexible

NH3 molecules in a cubic box with periodic boundary conditions.

The solvent intramolecular force field45

UNH3
¼ ks

2
ðDr2NH1

þ Dr2NH2
þ Dr2NH3

Þ

þ kb
2
ðDf2

H1NH2
þ Df2

H1NH3
þ Df2

H2NH3
Þ

ð9Þ

was used with force constants ks = 3824.0 kJ (mol Å2)�1 and

kb = 333.3 kJ mole�1 and the equilibrium valence bond length

r(eq)NH = 1.024 Å and valence angle f(eq)
HNH = 111.791. The

intermolecular interactions were modeled with a Lennard-Jones

potential applied only to the nitrogen atoms with parameters

e = 5.654 kJ mole�1, s = 3.385 Å and a Coulomb potential

with partial charges qH = 0.345 e and qN = �1.035 e.46

The simulations were performed using the modified Beeman

algorithm47 with Ewald summation handling the electrostatic

forces.48 Density and temperature were chosen to match the

experimental conditions (0.642 g cm�3 and 273 K). After

scaling the kinetic energy (100 ps) to the desired temperature

and equilibration of the system (50 ps) a long run of 1 ns in

timesteps of 0.1 fs was performed. Positions of the NH2D

atoms and the forces acting on them were saved in time

intervals of 4 fs.

The projections of forces on the NH2D vibrational normal

modes were calculated by means of the equation

FsðtÞ ¼
X
a

FaðtÞ � R̂ðtÞ � ‘s;a; ð10Þ

where R̂ is the rotation matrix from the laboratory frame to

the molecular body-fixed frame and ‘s;a is the sth normal mode

displacement vector for an atom a defined for the NH2D static

configuration. Finally, standard methods were used to calculate

the TCF and its Fourier transform.49

We used the Harmonic–Schofield QCF (b = (kBT)
�1)

QðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�ho

1� eb�ho eb�ho=2

r
ð11Þ

which was shown to be an adequate choice in different

studies.33,34,50

3 Results and discussion

3.1 Vibrational energy relaxation pathways

The ammonia molecule has six fundamental vibrations, where

due to its high symmetry (C3v) the asymmetric stretching and

asymmetric bending modes are both twofold degenerate.

Monodeuteration of the ammonia molecule leads to a

decrease of its symmetry and, hence, to a lifting of vibrational

degeneracies. The vibrational frequencies of the solute NH2D

and the solvent NH3 are shown for the gas phase as well as for

the liquid phase in Table 3.

All stretching vibrational frequencies of the liquid phase

are red-shifted relative to their gas phase values, while the

absorption bands of the bending modes show a blue shift.

These tendencies are similar to water, but less pronounced.11,12

Considering the possible relaxation pathways from the

initially excited ND-stretching mode (n1), it is obvious that

the NH-stretching vibrations (n3a and n3b) of NH2D play a

minor role, because their fundamental excitations are too high

in energy relative to the initially prepared ND-stretching

fundamental (Table 3). However, the first excited states of all

the other vibrations are below the ND-stretching fundamental

and can therefore be transiently populated during the course

of VER.

Fig. 1 shows the power spectra of external forces acting on

the six normal modes of NH2D calculated from the MD

simulations. They all are very similar in shape and characterized

by a strong decay with increasing frequency to which resonance

Table 3 Experimental vibrational frequencies (in cm�1) of NH2D
and NH3 in the liquid and in the gas phase. The degeneracy of n3 and
n4 in NH3 is lifted in NH2D

Vibration

NH2D NH3

Gas42 Liquid21 Gas51 Liquid52

n1 2506 2445 3336 3300
n2 886 933 1060
n3a 3366 3443 3381
n3b 3439
n4a 1598 1626 1630
n4b 1390

Fig. 1 Power spectra of forces acting on the six normal modes

of NH2D n1, n3b, n4a, n4b (solid), n2 (dashed), n3a (dotted) in NH3 at

273 K, 0.642 g cm�3.
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peaks of the solvent NH3 umbrella (about 1000 cm�1), bending

(about 1600 cm�1), and stretching (about 3300 cm�1) vibrations

are superimposed. As the relaxation rate is given by the product

of the force power spectrum and the squared matrix element

(eqn (3)), values of the latter multiplied by the QCF are shown

for the main transitions from the excited ND-stretch mode in

Fig. 1 as well (black bars, right ordinate). Compared to the

force power spectra the bars show an opposite trend: their

amplitudes increase with frequency. As a result the most

efficient relaxation transition appears at an intermediate

frequency, i.e. from the ND-stretch to the first excited state

of the umbrella mode of NH2D, n1 = 1 - n2 = 1, with a time

constant of 17.4 ps. The energy difference of 1530 cm�1 is

transferred to the almost resonant bending vibrations of the

NH3 solvent.

The relaxation times for all transitions depopulating the

ND-stretch n1 = 1 state are summarized in the upper part of

Table 4. The direct transition from the first excited ND-stretch

state to the ground state, n1(1 - 0), has the largest matrix

element, however, at that energy gap of 2491 cm�1 the

amplitude of the corresponding force spectrum is very low.

In other words, the NH3 bath can hardly provide an energy

accepting mode at that particular frequency. Consequently,

the relaxation time for that pathway is 40.1 ps. On the other

hand, for the intramolecular transitions to the excited bending

states n4a and n4b (82.6 ps and 74.5 ps, respectively) or even to

the almost isoenergetic n2 + n4a combination mode (877 ps)

the corresponding amplitude of the force power spectrum is

relatively high. But at the same time the matrix elements are so

small that these pathways become unimportant. From the

relaxation times for the individual channels the vibrational

lifetime of the n1 = 1 state can be calculated. We obtain

t = 9.1 ps which is in excellent agreement with the experi-

mentally observed value of 8.6 ps.21

In the lower part of Table 4 the relaxation times of the

excited bending modes n4a and n4b and the umbrella mode n2
are listed. All three vibrations have sub-picosecond lifetimes

and are dominated by direct one quantum transitions to the

ground state. The umbrella vibration is the lowest frequency

mode in the NH2D molecule. Furthermore, it is in close

resonance to the umbrella vibration of the NH3 solvent which

opens an effective relaxation pathway with a time constant of

t = 150 fs. In principle, for the bending modes also intra-

molecular relaxation channels are available. However, their

matrix elements are so small that they can be neglected. The

frequency of the symmetric bending mode n4a is closer in

resonance with the degenerate n4 vibration of NH3 than the

asymmetric bend n4b. Thus the lifetime of n4a is substantially

shorter (t = 140 fs) than the one of n4b (t = 570 fs). Since all

vibrational states of NH2D located below the n1 = 1 state

have subpicosecond lifetimes the depopulation of the initially

excited ND-stretch vibration determines the rate of the whole

relaxation process and no population can be accumulated in

the lower vibrational states.

In Fig. 2 the pathways depopulating the excited n1 = 1 state

are shown graphically using arrows whose thicknesses

are proportional to their contribution. The main relaxation

channel responsible for 52% of the energy dissipation is the

transition via the first excited state of the umbrella mode to the

ground state whereas the direct transition to the ground state

contributes with 23%. The pathways via the bending modes n4a
and n4b carry a relative weight of 11% and 12%, respectively.

It is worth mentioning that the choice of the QCF has a

strong impact on the calculated vibrational energy relaxation

lifetimes and pathways. In particular for high frequency modes

the QCFs differ considerably. Consequently, the ND-stretch

vibrational lifetimes presented in Table 5 are mainly influenced

by various contributions of the direct transition to the ground

state |001000i- |000000i. The choice of using the Harmonic–

Schofield QCF mainly rests on the observation that both the

Harmonic and the Standard factor distinctly underestimate

measured relaxation rates.53,54 This is consistent with our

Table 4 Transition frequencies and relaxation times from excited
NH2D vibrational states

Transition oij/cm
�1 t/ps

Relaxation from ND-stretch
|001000i-
|000001i 1530 17.4
|000000i 2491 40.1
|000010i 1089 74.5
|000100i 888 82.6
|000101i �64 877
|000002i 639 1205
|000011i 139 7000
|000110i �506 202 000

Total 9.1
Relaxation from symmetric bend
|000100i-
|000000i 1604 0.14
|000001i 642 17.9
|000010i 201 34.3

Total 0.14
Relaxation from asymmetric bend
|000010i-
|000000i 1403 0.57
|000001i 441 323.7

Total 0.57
Relaxation from umbrella
|000001i-
|000000i 962 0.15

Fig. 2 Vibrational energy relaxation pathways for the excited

ND-stretching vibration. The thickness of the arrow represents the

contribution of a given transition calculated from the last column of

Table 4.
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studies justifying the choice of the Harmonic–Schofield QCF

factor.

3.2 Density dependence of VER

The experimental data on the VER of the ND-stretch vibration

of NH2D in supercritical NH3 showed an amazingly weak

dependence of relaxation rate on the solvent density,21 e.g. at

452 K the relaxation rate constant increased by only 30% when

the NH3 density was doubled. It was suggested that this effect is

caused by detuning effects, i.e. energetic shifts of the vibrational

states responsible for vibration to vibration (V–V) energy

transfer. Our calculations allow for testing this conjecture in

more detail.

Table 3 shows a comparison of the experimental vibrational

frequencies of NH2D and NH3 for the gas and liquid phase,

respectively. At first, we analyze the shift of the energy gap for

the most important relaxation channel n1 = 1- n2 = 1 in the

NH2D molecule. Upon passing from the gas to the liquid

phase the ND-stretch mode shifts to lower frequencies whereas

the umbrella mode shows the opposite trend (the latter has not

been measured directly for the NH2D molecule but for NH3).

This implies that the ND stretch-to-umbrella energy gap

decreases when the solvent density is increased. At the same

time the frequency of the energy accepting (degenerate) bending

modes n4 of NH3 is almost density independent. The consequences

of these effects are presented in Fig. 3 where the power spectrum of

normal forces acting on the umbrella mode of NH2D at the

frequency of the n1= 1- n2= 1 transition is shown. One can see

that the transition energy appears at the low frequency edge of the

resonance peak generated by the n4 bending vibration of NH3.

When the density increases the power spectral density will

increase as well with no shift of the peak position since the

frequency of the n4 mode is almost density independent.

However, at the same time the energy gap of the n1 = 1 -

n2 = 1 transition will shift to lower frequency such that the

acceleration of the relaxation rate is less than expected from

the pure density change of the solvent.

4 Conclusion

We examined the lifetime of the ND-stretching vibration of

NH2D in NH3 using a Landau–Teller approach along the lines

developed by Rey and Hynes31 and Lawrence and Skinner.33

The computed value of 9.1 ps is in excellent agreement with the

experimental value of 8.6 ps. The main ND-stretch relaxation

pathways are the transition to the umbrella mode (52%)

and the direct transition to the ground state (23%). In the

preceding experimental work21 a weak density dependence of

the ND-stretch lifetime was observed. The results of this

theoretical study strongly suggest that with decreasing solvent

density the intermolecular acceptor modes become increasingly

resonant with the ND-stretching to umbrella transition. This

leads to a more effective vibrational energy transfer that causes

a shorter lifetime at low densities than expected from the

stretched exponential decay of the force power spectrum.

The analysis of the density dependence of the rate constant

is qualitative and schematic, since gas phase potentials were

used to calculate the matrix elements of normal coordinates

listed in Table 2. MD simulations with more realistic potentials

therefore would be desirable for a more complete insight into

the ammonia vibrational relaxation process. Further the choice

of the adequate QCF is still a challenge in this kind of

calculations.53,54 We chose the Harmonic–Schofield QCF, since

it was successfully used for similar systems.33,34,50
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