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Statistical ranking, filtering, adduct detection, isotope correction, and molecular formula calculation are essential tasks in
processing mass spectrometry data in metabolomics studies. In order to obtain high-quality data sets, a framework which
incorporates all these methods is required. We present the MarVis-Filter software, which provides well-established and specialized
methods for processing mass spectrometry data. For the task of ranking and filtering multivariate intensity profiles, MarVis-Filter
provides the ANOVA and Kruskal-Wallis tests with adjustment for multiple hypothesis testing. Adduct and isotope correction
are based on a novel algorithm which takes the similarity of intensity profiles into account and allows user-defined ionization
rules. The molecular formula calculation utilizes the results of the adduct and isotope correction. For a comprehensive analysis,
MarVis-Filter provides an interactive interface to combine data sets deriving from positive and negative ionization mode. The
software is exemplarily applied in a metabolic case study, where octadecanoids could be identified as markers for wounding in
plants.

1. Introduction

A central aim of untargeted Metabolomics and Metabo-
nomics studies is the identification of marker metabolites
which play a crucial role in the experimental context [1,
2]. Mass spectrometry combined with either gas chro-
matography (GC/MS) or liquid chromatography (LC/MS)
has become a key technology for metabolome analysis
under different experimental conditions [3, 4]. A typical
data set after peak detection and sample alignment [5–
7] consists of several thousand marker candidates which
are characterized by a retention time (RT), a mass-to-
charge value (m/z), and a multivariate intensity profile
of abundance levels per condition, respectively [8]. The

experimental conditions are represented by replicate samples
and may correspond to environmental disease or genetic
perturbations [9–11]. In order to obtain a high-quality data
set of experiment-related marker candidates, the raw data
set is usually ranked and filtered using supervised machine
learning techniques such as Random Forest classification
[12, 13] or statistical analysis based on ANOVA or Kruskal-
Wallis tests [14–16]. The filtered marker candidates are
then annotated according to known metabolites from public
biological and biomedical compound databases [17–21].
A central task of annotation is the calculation of actual
molecular masses corresponding to each marker candidate
by correcting the m/z ratios according to the ionization
mode, potential adduct formation, and included natural
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isotopes [22]. This problem can be addressed by applying
the ionization rules [xm + y]z[+/−] [23], where x denotes
the number of combined target molecules, y the mass of
attached molecules (adduct formation), and z the degree of
ionization (e.g., single or double). Additionally, the number
of included isotopes has to be estimated in order to query
databases which contain monoisotopic compound masses.
Based on a potential ionization rule with parameters x, y,
z and the number of included isotopes, the corresponding
compound mass can be calculated.

For the corrected masses which cannot be assigned to
particular compounds, the identification can be supported
by calculating possible molecular formulas. The number
of considered formulas can be significantly reduced by
incorporating information from preprocessing as well as
rules for heuristic filtering of molecular formulas [24],
respectively. A major step in this process is the estimation of
the number of included carbon atoms based on the intensity
profiles of previously detected isotopologues.

There are a great number of software packages available,
which provide tools for statistical analysis of multivariate
experimental data [25, 26]. A number of tools for peak detec-
tion and sample alignment of mass spectrometry data, such
as MetAlign or OpenMS, also support the deconvolution of
isotopologues and statistical analysis [27, 28]. For the XCMS
platform [7], a package for the annotation of LC/ESI-MS
mass signals based on adduct rules has been implemented
[23]. The calculation of possible ionization products and
the rule-based heuristic filtering of molecular formulas is
provided by several software packages [22, 24]. However,
to the best of our knowledge, there is no software available
which incorporates all of these methods in a single user-
friendly tool as offered by MarVis-Filter.

2. Materials and Methods

In the following sections, the algorithm for adduct/isotope
correction and the implementation of MarVis-Filter are
described in detail.

2.1. Algorithm for Adduct and Isotope Correction. The algo-
rithm is based on the input of the retention times, m/z ratios,
and raw intensity profiles of all marker candidates in a data
set and calculates as output the potential monoisotopic mass,
ionization rule, and number of included 13C-isotopes for
every candidate. The approach is based on a greedy strategy
which minimizes the number of potential molecular masses
and simultaneously maximizes the similarity of intensity
profiles between candidates with a similar retention time and
actual mass. This concept follows the paradigm that in mass
spectrometry analysis a metabolite is usually represented by
several marker candidates with a similar retention time and
intensity profile, but different m/z ratios according to the
various possibilities of ionization and number of included
isotopes. As parameters, the algorithm expects a list of
ionization/adduct rules sorted according to their relevance,
the assumed maximal number of 13C-isotopes per marker
candidate, a mass tolerance, an RT tolerance, and a minimal

cosine similarity of intensity profiles. The isotopologues
correction is restricted to the detection of 13C.

For storage of pairwise cosine similarities between candi-
date profiles, the algorithm utilizes a five-dimensional matrix
M. Each entry M(m,a1,i1,a2,i2) corresponds to the maximal
cosine similarity between the intensity profile of candidate
m, assuming ionization rule a1 and i1 13C-isotopes, and
another candidate, which has a similar retention time (within
tolerance) and corrected mass (within tolerance) assuming
ionization rule a2 and i2 13C-isotopes. For each candidate m,
the algorithm then chooses the ionization rule and number
of 13C-isotopes which is supported by the highest sum
of cosine similarities. In the following, the algorithm is
described in detail.

(1) Initialize M with zeros.

(2) Calculate all possible masses by applying all ion-
ization rules and number of 13C-isotopes to all
candidate m/z ratios.

(3) Consider all pairs of potential masses under the
following constraints and fill M with pairwise cosine
similarities of corresponding candidate profiles.

(i) Consider only pairs of different marker candi-
dates.

(ii) Consider only pairs within the mass and RT
tolerance.

(iii) Consider only pairs with at least the requested
cosine similarity.

(iv) Consider only pairs with different combina-
tions of adduct rules and number of isotopes.

(v) For each entry in M hold only the maximum
cosine similarity.

(4) Calculate the reduced three-dimensional matrix Mred

with summed entries:

Mred
(m,a1,i1) =

∑

a2,i2

M(m,a1,i1,a2,i2). (1)

(5) Choose for each candidate m: the adduct rule and
isotope number with the maximal sum of similarities
cmax = maxa1,i1 (Mred

(m,a1,i1)). If cmax = 0, use the first
ionization rule and zero 13C-isotopes as default.

(6) Calculate the masses according to chosen rules and
isotope numbers.

In order to avoid apparently false associations between
marker candidates, negative cosine similarities are disre-
garded. If for a given candidate different selections of the
ionization rule and the number of isotopes maximize the
sum of cosine similarities, the ionization rules with the
highest relevance and the minimal number of 13C-isotopes
are selected.

Following the annotation of the ionization rules and
13C-isotopes, the number of carbon atoms per candidate

is estimated by comparing the raw intensities of marker
candidates with zero predicted 13C-isotopes (IM) and the
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respective marker candidates including one 13C-isotope
(IM+1) according to the following formula:

nC = 98.9 IM+1

1.1 IM
, (2)

corresponding to the natural abundances of carbon isotopes.
Given a pair of candidates, annotated as isotopologues (M
and M + 1) and with the same ionization rule, a robust
estimation of the number of carbon atoms is obtained by
calculating the median nC over all samples included in both
intensity profiles.

2.2. Implementation. MarVis-Filter is implemented in the
Matlab and C programming language and has been compiled
together with the MarVis-Cluster tool [29] for Microsoft
Windows XP/Vista/7. Execution of the software requires
installation of the Matlab Compiler Runtime, which is
provided with the software. The installation packages, the
documentation, and example data sets can be downloaded
from the project home page http://marvis.gobics.de/.

For data import and export MarVis-Filter uses the CSV
(Comma Separated Values) file format, which can easily be
processed by statistical analysis software and spreadsheet
applications. MarVis-Filter also supports the direct import
of aligned mass spectrometry samples from MarkerLynx
Application Manager of MassLynx (Waters Corporation,
Milford). For interactive analysis, ranking and filtering of
multivariate intensity profiles MarVis-Filter provides the
well-known one-way ANOVA and Kruskal-Wallis tests [14]
combined with methods for P value adjustment for multiple-
hypothesis testing [30, 31]. Based on customizable lists
of ionization rules, the adduct/isotope correction can be
performed on raw or filtered data sets. The ionization rules
are imported as text files and can easily be adapted or
extended.

Figure 1 shows the main window of MarVis-Filter after
import and ranking. The “Ranking plot” (1) displays the
adjusted P values (y-axis) of all candidate intensity profiles
in the current data set sorted in ascending order. The data
set can interactively be filtered according to a user-defined
significance level by selecting a marker, sliding the red
separator line or jumping to a predefined level. The “Profile
plot” (2) shows the raw intensity profile of the currently
selected marker candidate. Intensity values of replicated
samples belonging to the same experimental conditions are
marked in the same color. The “Marker information box” (3)
displays information about all marker candidates of the data
set arranged according to the P values and characterized by
the m/z ratio, RT and additional user-defined scores, which
can be imported along with the data set. After adduct and
isotope correction, the additional annotations are displayed
in this listbox as well. The “Data set clipboard listbox” (4)
shows data sets which are currently held in the MarVis
clipboard. The current (filtered or unfiltered) data set can
simply be added or removed to/from this list. The data
set clipboard supports an adduct and isotope correction of
selected data sets in a batch mode. Data sets which were
corrected based on different sets of ionization rules (e.g.,

positive and negative ionization) may be combined into one
single data set.

For selected candidate profiles, bar plots, standard error
plots, and boxplots can easily be inspected and exported in
various image formats. For detailed analysis, the user can
zoom into all plots. Additionally, MarVis-Filter provides a
convenient interface for quick candidate search based on the
ID, RT, m/z, or mass value.

MarVis-Filter also provides a molecular formula calcu-
lator, which is based on the Seven Golden Rules [24] and
utilizes the estimated number of carbon atoms per marker
candidate obtained after adduct and isotope correction.

MarVis-Filter and MarVis-Cluster [29] are combined in
the MarVis-Suite which features the direct data exchange
between preprocessing in MarVis-Filter and convenient
visualization of multivariate intensity profiles and high-level
cluster analysis in MarVis-Cluster.

3. Results and Discussion

The functionality of MarVis-Filter is demonstrated using two
data sets of a metabolomic case study for plant wounding
experiments [8]. The data sets are available on the project
homepage http://marvis.gobics.de/ together with a detailed
description of the extraction and UPLC-TOF method. Addi-
tionally, the data sets are available for import in MarVis-Filter
after installation of the MarVis-Suite (wound neg raw.csv
and wound pos raw.csv in the examples directory).

3.1. Case Study and Data Sets. The case study reflects a
wounding time course of Arabidopsis thaliana wild-type
(WT) plants as well as of mutant plants (dde 2-2), which
are deficient in the biosynthesis of the plant wound hormone
jasmonic acid and its derivatives [32]. The wounding time
course represents eight experimental conditions. The first
four conditions reflect the metabolic situation within a
wounding time course of wild-type (WT) plants, starting
with the unwounded control plants (abbreviation wt 0)
followed by the plants harvested 0.5 (wt 30), 2 (wt 2), and 5
hours past wounding (wt 5). The conditions 5 to 8 represent
the analogous time course for the jasmonate deficient mutant
plant dde 2-2 (aos 0, aos 30, aos 2, aos 5). Each condition
contains nine replicate samples.

3.2. Data Import and Analysis in MarVis-Filter. The two data
sets are imported sequentially in MarVis-Filter using the
“Import raw CSV data” entry in the “File” menu with the
following options: Delimiter: “,”; Start row: 5, Start column:
3; ID label: “id”; Generate IDs: activated; x column: 2; x
label: “rt”; y column: 3; y label: “m/z”; Condition identifiers:
“wt 0, wt 30, wt 2, wt 5, aos 0, aos 30, aos 2, aos 5”.

After data import, the marker candidates are sorted and
ranked according to the P values of a Kruskal-Wallis test and
the Bonferroni-Holm adjustment for multiple hypothesis
testing [30] by selecting the corresponding checkboxes in
the “Filter dialog” and the “Adjustment for multiple testing”
dialog.

Adduct and isotope correction are performed on the
full data sets separately using predefined sets of adduct
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Figure 1: The main window of MarVis-Filter after data import and ranking. The “Ranking plot” (1) displays the adjusted P values (y-axis)
of all candidate intensity profiles. The “Profile plot” (2) shows the raw intensity profile of the currently selected marker candidate. The
“Marker listbox” (3) displays information about the current marker candidate. The “Data set clipboard listbox” (4) shows data sets which
are currently held in the MarVis clipboard.

Table 1: Overview on data sets from the metabolomic case study
for plant wounding experiments. The columns “Candidates” and
“Filtered candidates” contain the number of marker candidates in
the raw data set and the number of significant candidates in the
filtered data set, respectively.

Data set Ionization Candidates
Filtered

candidates
Samples per

condition

1 Negative 24796 1719 9

2 Positive 23325 1785 9

rules for the negative (Table 2) and positive ionization mode
(Table 3), an RT tolerance of 0.04 minutes, a mass tolerance
of 0.005 Da, a minimal cosine similarity of 0.75, and a
maximum number of two 13C-isotopes per candidate. The
adduct rules had been determined in previous targeted
UPLC-TOF-MS experiments. After correction, the data sets
are filtered according to a significance level for adjusted P
values of 0.01 (“Goto level” entry in “Selection” menu) and
added to the MarVis data set clipboard. Table 1 shows the
initial number of imported marker candidates and the num-
ber of high-quality marker candidates after filtering. Finally,
the two data sets in the MarVis clipboard are concatenated
using the “combine” button. The combined data set can
be sorted according to a user-defined method once again
and is then presented in a new MarVis-Filter window. After
selecting the whole data set, the combined subset of 3504
high-quality marker candidates can be exported as a CSV
file, and clustered as well as visualized using MarVis-Cluster
(“Goto MarVis-Cluster” entry in the “MarVis-Suite” menu).
Figure 2 shows the results from clustering of the filtered and
combined data in MarVis-Cluster.

Table 2: List of adduct rules for correction of data measured in
negative ionization mode.

Rule Description Rule

1 Deprotonation [m−H]−

2 Formate adduct [m + CH2O2−H]−

3 Formate adduct with sodium [m + CH2O2− 2H + Na]−

Table 3: List of adduct rules for correction of data measured in
positive ionization mode.

Rule Description Rule

1 Protonation [m + H]+

2 Ammonium adduct [m + NH4]+

3 Sodium adduct [m + Na]+

3.3. Identification of Metabolites. The corrected, filtered, and
combined data sets were used to identify metabolites which
show a significant change of abundance in the wound
time course in WT and/or jasmonate deficient mutant
plants. First, the corrected masses of marker candidates were
matched to molecular masses of all compounds recorded in
the KEGG [17] and AraCyc [18] database or literature [33]
based on a tolerance of 0.005 Da. The identity of marker
candidates was confirmed based on the isotopic pattern and
coelution with identical standards or MS/MS fragmentation
[34]. Thus, a number of oxylipins could be identified as
wound-induced metabolite markers (see Table 4). Oxylipins
are metabolites deriving from lipid peroxidation and are
involved in regulating developmental processes as well as
environmental responses, like the inflammatory or wound
response, in nearly every organism. Among these bioactive
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Table 4: Identified metabolites in the combined and filtered data set. The retention time is measured in minutes and the exact compound
mass is stated in Dalton. The columns “Negative” and “Positive” contain the number of associated marker candidates/ions obtained in the
negative or positive ionization mode. The column “Ions” contains the sum of associated marker candidates/ions per compound. The column
“P value” contains the minimal adjusted P value of the Kruskal-Wallis test over all associated marker candidates, respectively. The column
“Mass error” contains the absolute difference between the corrected mass of the marker candidate with the minimal adjusted P value and
the exact compound mass in Dalton.

RT Exact mass Mass error Name Formula Ions Negative Positive P value

0.73 210.1256 0.0015 Jasmonic acid C12H18O3 5 5 0 6.67e-8

2.08 292.2038 0.0021 OPDA C18H28O3 8 4 4 3.41e-8

1.85 310.2144 0.0016 13-HPOT C18H30O4 1 1 0 2.04e-4

2.49 292.2038 0.0027 13-KOT C18H28O3 4 4 0 1.70e-7

1.33 264.1725 0.0037 dn-OPDA C16H24O3 5 3 2 7.65e-8

0.5 226.1205 0.0009 11/12-Hydroxy jasmonic acid C12H18O4 4 4 0 2.87e-8

0.51 339.2046 0.0008 12-Hydroxy jasmonoyl isoleucine C18H29NO5 1 1 0 3.44e-5

0.51 353.1838 0.001 12-Carboxy jasmonoyl isoleucine C18H27NO6 1 1 0 2.20e-5

4.02 760.4762 0.005 18 : 3/dn-OPDA-MGDG C43H68O11 4 0 4 1.96e-6

2.85 774.4554 0.0022 OPDA/dn-OPDA-MGDG C43H66O12 8 0 8 1.93e-7

3.26 802.4867 0.0034 OPDA/OPDA-MGDG C45H70O12 7 0 7 1.79e-7

4.59 1048.6487 0.0033 OPDA/dn-OPDA-MGDG-OPDA C61H92O14 9 0 9 1.48e-6

4.89 1076.68 0.002 OPDA/OPDA-MGDG-OPDA C63H96O14 8 0 8 2.13e-6

2.36 936.5083 0.0023 OPDA/dn-OPDA-DGDG C49H76O17 4 0 4 1.86e-6

2.76 964.5396 0.0021 OPDA/OPDA-DGDG C51H80O17 6 0 6 1.98e-7

The identified oxylipins are found in literature under the following synonyms: Jasmonic acid (3-Oxo-2R-(2Z)2-penten-1R-yl-cyclopentaneacetic
acid), OPDA (12-Oxo-10,15(Z)-phytodienoic acid or 4-Oxo-5α-(2(Z)-pentenyl)-2-cyclopentene-1α-octanoic acid), 13-HPOT (13-Hydroperoxy-octadeca-
9(Z),11(Z),15(Z)-trienoic acid), 13-KOT (13-Keto-octadeca-9(Z),11(Z),15(Z)-trienoic acid), dn-OPDA (4-Oxo-5S-(2Z)-2-penten-1-yl-2-cyclopentene-1S-
hexanoic acid), 18 : 3/dn-OPDA-MGDG (Arabidopside F, Monogalactosyldiacylglycerol), OPDA/dn-OPDA-MGDG (Arabidopside A, Monogalactosyldiacyl-
glycerol), OPDA/OPDA-MGDG (Arabidopside B, Monogalactosyldiacylglycerol), OPDA/dn-OPDA-MGDG-OPDA (Arabidopside E, Acylated Monogalac-
tosyldiacylglycerol), OPDA/OPDA-MGDG-OPDA (Arabidopside G, Acylated Monogalactosyldiacylglycerol), OPDA/dn-OPDA-DGDG (Arabidopside C,
Digalactosyldiacylglycerol), and OPDA/OPDA-DGDG (Arabidopside D, Digalactosyldiacylglycerol).

2
4
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1
0.8
0.6
0.4
0.2
0

Figure 2: Prototype plot of the filtered and combined data in
MarVis-Cluster using 30 prototypes for clustering. Every column
represents the average intensity profile (prototype) of associated
marker candidates. The prototypes are ordered according to sim-
ilarity based on a one-dimensional self-organizing map. The first
prototypes represent marker candidates in a WT-specific wound
time course (high intensities in the first four conditions and almost
no intensities in the last four conditions).

lipids, the mammalian and plant oxylipins are the best
characterized ones. Mammals use predominantly C20 fatty
acids (eicosanoids), while in plants C18 fatty acids are most
abundantly used for the biosynthesis of oxylipins or so-called
octadecanoids [35]. The identified oxylipins (see Table 4) are
part of the α-linolenic acid metabolism or members of the
compound class of mono- and digalactosyldiacylglycerols.
They are described in the context of plant wounding [33, 34,
36]. Thirteen of the fifteen identified oxylipins could only
be detected in either the negative or the positive ionization
mode. On average, five ions/marker candidates could be

assigned per compound. The findings are supported by very
low adjusted P values from the Kruskal-Wallis test of the
intensity profiles (see previous section and Table 4).

4. Conclusions

MarVis-Filter combines essential preprocessing tools for
mass spectrometry data analysis within a single user-friendly
tool. Large data sets from the negative and positive ioniza-
tion mode can easily be imported, corrected, filtered, and
combined. Lists of ionization rules for adduct correction can
be customized, extended, and commented in a convenient
way using a standard text editor. Within the MarVis-Suite
filtered and combined data sets can directly be clustered,
visualized, and analyzed in detail using the MarVis-Cluster
tool. In a case study 75 high-quality marker candidates could
be clearly assigned to fifteen compounds of the oxylipin class
based on the adduct and isotope correction in MarVis-Filter.
The combination of data sets deriving from the negative and
positive ionization mode is an important step for further
data analysis. In the case study, most of the identified
metabolites could only be detected in either the negative or
the positive mode. The significance of the selected wound
markers is supported by a high number of annotated and
assigned ions/marker candidates and by very low adjusted P
values from the Kruskal-Wallis test. The statistical filtering of
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marker candidates reduced the complexity of the data sets
from about 48000 to 3500 significant candidates (about 7
percent).
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P. Meinicke, “MarVis: a tool for clustering and visualization
of metabolic biomarkers,” BMC Bioinformatics, vol. 10, article
92, 2009.



Journal of Biomedicine and Biotechnology 7

[30] S. Holm, “A simple sequentially rejective multiple test proce-
dure,” Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–
70, 1979.

[31] Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: a practical and powerful approach to multiple testing,”
Journal of the Royal Statistical Society. Series B, vol. 57, pp. 289–
300, 1995.

[32] B. Von Malek, E. Van Der Graaff, K. Schneitz, and B. Keller,
“The Arabidopsis male-sterile mutant dde2-2 is defective in
the ALLENE OXIDE SYNTHASE gene encoding one of the key
enzymes of the jasmonic acid biosynthesis pathway,” Planta,
vol. 216, no. 1, pp. 187–192, 2002.
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