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Fruit flies (Drosophila melanogaster ) rely on their olfactory system to process
environmental information. This information has to be transmitted without system-relevant
loss by the olfactory system to deeper brain areas for learning. Here we study the role
of several parameters of the fly’s olfactory system and the environment and how they
influence olfactory information transmission. We have designed an abstract model of
the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information
between the olfactory environment, simulated in terms of different odor concentrations,
and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to
quantify the efficiency of information transmission. With this method we study, on the one
hand, the effect of different connectivity rates between olfactory projection neurons and
firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition
on mutual information between environment and mushroom body. Our simulations show
an expected linear relation between the connectivity rate between the antennal lobe
and the mushroom body and firing threshold of the Kenyon cells to obtain maximum
mutual information for both low and high odor concentrations. However, contradicting
all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease
in mutual information for all connectivity rates compared to low concentration. But when
inhibition on the mushroom body is included, mutual information remains at high levels
independent of other system parameters. This finding points to a pivotal role of inhibition
in fly information processing without which the system efficiency will be substantially
reduced.
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1. INTRODUCTION
The olfactory system of insects is essential for their search for
food and mates. Structures and neuronal circuits have evolved
to detect, amplify and discriminate weak odor signals in fluctu-
ating sensory environments in which the animals receive much
higher odor concentrations at the odor source as compared to
the concentration present at initial odor detection. Due to this
complex situation, the structure and function of the olfactory sys-
tem of Drosophila melanogaster has been studied for many years
(Vosshall and Stocker, 2007; Wilson, 2013).

In the following we provide a brief overview about the basic
parts of Drosophila olfactory system (see also Figure 1). The olfac-
tory information about an odor can be characterized by quality
(chemical compounds in a given odor), quantity (concentration),
spatial distribution, and temporal fluctuation (Laurent, 2002). An
odorant in the environment binds to olfactory receptors present
on the membrane of olfactory receptor neurons (ORNs) which
are located on the third segments of the fly’s antenna and on the
maxillary palps (Vosshall and Stocker, 2007). Typically, each of

these ORNs expresses only one specific olfactory receptor. The
binding of odorants to receptors can lead to either excitation
or inhibition of the respective ORN. The ORNs axonal projec-
tions bundle together as tracts and transfer the information to
the antennal lobe, the primary olfactory neuropil of the insect
brain. The antennal lobe is composed of 50 discrete spherical neu-
ropil regions called glomeruli, where ORNs synapse onto either
local interneurons or olfactory projection neurons (OPNs). As a
principle, ORNs expressing the same specific olfactory receptor
project into the same glomeruli. As a result, odors are mapped in
the antennal lobe in terms of combinatorial patterns of glomeru-
lar activity (Fiala et al., 2002). The odor information is transmit-
ted from the antennal lobe to the mushroom body and the lateral
horn. In the mushroom body information is represented in a
sparse code (Honegger et al., 2011). Several parameters influence
this sparse code as, for instance, the connectivity rate between the
antennal lobe and the mushroom body or the firing threshold of
Kenyon cells (Turner et al., 2008; Luo et al., 2010; Caron et al.,
2013).
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FIGURE 1 | Schematic illustration of the Drosophila olfactory system.

Odor stimuli from the environment bind to the receptors located on the
antenna; each olfactory receptor neuron expresses one specific type of
receptor (illustrated by different colors). Olfactory receptor neurons of the
same class project to one glomeruli of the antennal lobe. Projection
neurons in the antennal lobe, in turn, activate Kenyon cells in the
mushroom body and lateral horn by cholinergic, excitatory synapses.
GABAergic, inhibitory neurons projecting from the lateral horn and from the
antennal lobes to the mushroom body calyx provide inhibitory effects on
activated Kenyon cells. The synapses between output neurons and Kenyon
cells is the area where learning takes place. Thus, for optimal learning this
area needs information transferred from the environment to this site.

In Drosophila, the mushroom body (Kenyon cells) receives
olfactory signals from the antennal lobe (OPNs) at the calyx, the
major dendritic input side of the mushroom body. The connectiv-
ity rate between OPNs and Kenyon cells, i.e., how many of about
150 OPNs synapse onto how many of the Kenyon cells, has been
estimated to be relatively low (about 0.3; Perez-Orive et al., 2002;
Honegger et al., 2011). A number of different mushroom body
neurons, the output neurons, are likely to be involved in olfactory
learning and memory. Therefore, the mushroom body is believed
to be critical for associative olfactory learning (Heisenberg, 2003;
Fiala, 2007). This implies that the olfactory information of the
environment has to be transmitted efficiently via the antenna
and antennal lobe to the mushroom body to guarantee adequate
learning.

In this work, the transmission efficiency is measured by an
information theoretic measure often used in neuroscience called
“mutual information” (Borst and Theunissen, 1999; Dimitrov
et al., 2011). This allows us to study the role of connectivity rate
and firing threshold under different environmental conditions.
Amongst others, we see a behaviorally unexpected result—with

higher odor concentration less information is transmitted to the
mushroom body.

However, work on larger insects (e.g., Locust) has revealed that
the mushroom body receives via lateral horn feed-forward inhi-
bition from the antennal lobe (Gupta and Stopfer, 2012) and,
furthermore, feedback inhibition from the mushroom body itself
(Gru, 1999). Thus, we extended our model by different strengths
of inhibition to analyze its influence on information transmis-
sion. This way we can show that for a broad regime of inhibitory
strengths the transmission efficiency becomes optimized for high
odor concentrations.

2. MATERIALS AND METHODS
In this work we analyze how much environmental informa-
tion the Drosophila olfactory system transmits to the mushroom
body and, hence, to the output neurons. Several physiological
parameters influence this transmission in different ways. Here, we
determine the influence of the connectivity rate between OPNs
and Kenyon cells and the firing threshold of the Kenyon cells.
Specifically, the impact of different strengths of inhibiting Kenyon
cells firing is assessed. To quantify the transmission efficiency,
we calculated the mutual information for the different condi-
tions between the environmental input and the mushroom body
output.

In the following, we present the structure of the model, the
implementation of inhibition, and the way of calculation mutual
information.

2.1. STRUCTURE OF THE MODEL
The simplified anatomical structure used in this model (Figure 2)
includes two neural circuits with the antenna and the anten-
nal lobe as one circuit and the mushroom body as the second
one. We combined the antenna and the antennal lobe in a
circuit because the ORNs, which express the same specific olfac-
tory receptors, send their axons to the same glomeruli, and
OPNs in each glomerulus receive information just from ORNs
of the same class. Reported exceptions from these rules, i.e.,
ORNs expressing more than one receptor, ORNs targeting more
than one glomerulus and multiglomerular OPNs receiving infor-
mation from many glomeruli, are disregarded for simplicity.
Furthermore, we assume that each of the 50 glomeruli (Caron
et al., 2013) consists of one OPN. Thus, in our model, an odor
k presented to the circuit reaches a subset of glomeruli or OPNs
as odors consists of several different chemicals. These diverse odor
structures yield different numbers of reached OPNs Nk

OPN . These
OPNs are the subgroup which can be activated by the odor k.
Their number is drawn from a Gaussian distribution with mean
μOPN = 35 and variance σ2

OPN = 8. This group of OPNs, in turn,
projects to a subgroup of Kenyon cells in the mushroom body. As
we show below, the exact number of Kenyon cells NKC does not
alter the results qualitatively.

As described before, each odor k presented to the system acti-
vates a subgroup of neurons in the antennal lobe. Each OPN j
can be either active χk

j = 1 or silent χk
j = 0. The number of acti-

vated OPNs depends on the concentration ck
odor of the odor. Low

concentrations (ck
odor ≈ 0) activate a few, high concentrations
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(ck
odor ≈ 1) activate nearly all reached OPNs. However, due to

noise, this number can vary over trials. Thus, the activation of
each reached OPN is probabilistic dependent on the following
equation:

pk
OPN = 1 − e−β·ck

odor . (1)

The parameter β determines the relation between odor concen-
tration and neuronal activity and, without loss of generality, is set
equal to 1.32. Thus, each odor is represented in the antennal lobe
as a state of 1s and 0s of length Nk

OPN . This state is transmitted
via the synapses in the calyx to the Kenyon cells. Thereby, each
OPN j connects to Kenyon cell i with probability r (drawn from
the interval from zero to one without boundaries) which defines
the connectivity rate. Thus, the connection ci,j is either zero or
one depending on r. All NKC Kenyon cells are modeled as sim-
ple integrate-and-fire neurons with firing threshold � (between 1
and 20):

ψk
i =

⎧⎨
⎩

1 if
∑Nk

OPN
j ci,j · χk

j > �

0 if
∑Nk

OPN
j ci,j · χk

j ≤ �.
(2)

Thus, each odor yields via the antenna and antennal lobe to a
specific firing pattern of Kenyon cells in the mushroom body.

2.2. INHIBITION
To assess the influence of different inhibitory strengths on mush-
room body, we introduce a probability pk

I that Kenyon cells firing

FIGURE 2 | Schematic illustration of the model structure. Odor
information in the environment is sent via the antenna to the antennal lobe
and subsequently to the mushroom body. Inhibitory neurons contribute to
the information processing. There are two known inhibitory connections to
the mushroom body calyx originating either from the lateral horn or from
the mushroom body itself. Mutual Information between environment and
Kenyon cells is measured for different activation threshold, connectivity
rates, and inhibition strengths.

can be inhibited. This probability depends on the average activity
in the mushroom body χ̃k without inhibition.

pk
I = e

− α

χ̃k (3)

The parameter α (between 0.05 and 1.75) determines the dif-
ferent strengths of inhibition (Figure 3). Thus, we first derive
the activity of the Kenyon cells as described before, calcu-
late the probability of inhibiting each Kenyon cell spike, and
derive the new Kenyon cell firing. This new state, dependent on
the inhibitory feedback, is the final output of the mushroom
body.

2.3. MUTUAL INFORMATION
From an information theoretic point of view the Drosophila
melongaster olfactory system can be considered as an “infor-
mation channel” which transmits environmental information
to the mushroom body. The efficiency of such a channel can
be characterized by “mutual information.” To calculate mutual
information between environment (odors) and mushroom body
(Kenyon cells) we need to assess the probability distribution of
Kenyon cells firing p(n). Each n represents one out of N = 2NKC

states of neuronal activity in the mushroom body. The distribu-
tion of Kenyon cells firing depends on the information from the
environment. This information is represented by the probability
distribution p(k) of K odors presented to the olfactory system. In
the following we assume that these odors are equiprobable. Thus,
the mutual information between environment and mushroom
body is

MI =
N∑

n = 1

K∑
k = 1

p(n, k) log

(
p(n, k)

p(n) p(k)

)
. (4)

p(n, k) is the joint probability distribution of Kenyon cells states
and presented odors. Note, to guarantee calculability we set
p(n) = 10−8 when state n does not occur.

2.4. EXPERIMENTAL PROCEDURE
In this study, we tested the efficiency of information trans-
mission dependent on several physiological and environmen-
tal parameters as average connectivity r between antennal lobe

FIGURE 3 | The relation between average Kenyon cells activity and

probability of feedback inhibition for different parameter values α.

Note, a higher value of α induces less inhibition.
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and mushroom body, firing threshold � of Kenyon cells,
inhibition (parameter α), number of Kenyon cells NKC , and
odor concentration codor . As the actual connectivity is cre-
ated probabilistically (see before), we tested 20 different sys-
tems (“flies”) with each having another connectivity for one
set of �, r, α, codor , and NKC . Each system was tested in
100 trials with 100 different odors of same concentration.
The odors are specified by the number of OPNs reached. In
every trial a different subset of the reached OPNs becomes
active.

Since the 100 trials do not provide sufficient statistics to assess
the joint probability distribution p(n, k) (how often which state n
occurs given odor k) and the probability distribution of Kenyon
cells firing p(n) (how often each state n occurs in total) we used
the “Quadratic Extrapolation procedure” to correct for the sam-
pling bias problem (Panzeri et al., 2007). This procedure assumes
that the biased mutual information MIuncorrected can be approxi-
mated as second order expansion in 1

N , where N is the number of
trials. That is

MIcorrected = MIuncorrected −
(

a

N
+ b

N2

)
(5)

where a, b are free parameters that are estimated from frac-
tions ( N

2 and N
4 ) of the data and MIcorrected is the true calculated

mutual information. Then, for each “fly” we calculate the mutual
information and average over them.

3. RESULTS
3.1. INFORMATION TRANSMISSION UNDER VARIOUS CONDITIONS

WITHOUT INHIBITION
In the following we will show the results without inhibition on
Kenyon cells and mainly demonstrate that this leads to undesired
and unrealistic characteristics. The value of the firing threshold
of Kenyon cells in real cells is unknown. Therefore, all possible
thresholds from 1 to 20 were studied. Similarly, little informa-
tion about the exact connectivity between OPNs and Kenyon
cells exists but studies have shown that this connectivity is small
(Perez-Orive et al., 2002; Honegger et al., 2011). Thus, we also
tested the system with different connectivity rates. Hence, mutual
information between environment and 10 or 20 Kenyon cells,
respectively, was measured for all combinations of connectivity
rate and firing threshold at low (clow

odor = 0.15) as well as high

(c
high
odor = 0.75) odor concentrations. First, for all results in this sec-

tion it is assumed that there is no inhibition on the Kenyon cells.
In the next section we investigate the inhibitory influences, too.

Figures 4A,B shows the dependency of mutual information for
10 as well as 20 Kenyon cells on the threshold and connectivity
rate at low odor concentration (ck

odor = clow
odor for all odors k). For

each threshold there is one unique connectivity that corresponds

A B

C D

FIGURE 4 | Mutual information between environment (here 5 odors) and

Kenyon cells for different firing thresholds of Kenyon cells and

connectivity rate between the antennal lobe and the mushroom body in

absence of inhibition on mushroom body. For each connectivity rate there
is one unique threshold that corresponds to maximum mutual information.
Moreover, increasing the threshold requires a higher connectivity rate to
obtain maximum mutual information (thresholds between 1 and 20). The

number of Kenyon cells does not alter the results qualitatively. (A,B) Low
odor concentration (clow

odor = 0.15). (C,D) High odor concentration

(chigh
odor = 0.75): for each connectivity rate and threshold of firing, mutual

information is decreased compared to low odor concentration. Parameters:
(A) NKC = 10, clow

odor = 0.15 (B) NKC = 20, clow
odor = 0.15 (C) NKC = 10,

chigh
odor = 0.75 (D) NKC = 20, chigh

odor = 0.75. The horizontal lines indicate the
connectivity rate equal to 0.3 (shown in this figure).
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to maximum mutual information. Another observation is the
presence of an almost linear relation between connectivity rate
and threshold for the maximal mutual information. Comparing
the results for 10 and 20 Kenyon cells shows that the number
of Kenyon cells does not qualitatively alter the results. A quali-
tatively similar behavior is observed for high odor concentration

(ck
odor = c

high
odor). Hence, for each connectivity rate there is a shift

to the right of the firing threshold that corresponds to maximum
mutual information (Figures 4C,D).

As a low connectivity rate between antennal lobe and mush-
room body (r ≈ 0.3; Butcher et al., 2012; Caron et al., 2013) is
assumed in flies, we show a cross-section of Figure 4 (Figure 5).
The results clearly show a decrease in mutual information for
high odor concentration and also a shift to higher thresh-
old to obtain maximum mutual information as the firing rate
becomes too high to enable a proper discrimination between
odors. All these observations are in conflict with behavioral exper-
iments where higher odor concentrations increase learning and
memory efficiency, suggesting highly efficient information pro-
cessing. Little is known with respect to plasticity of Kenyon
cells and, thus, effective connectivity in this system might not
change. The firing threshold, on the other hand, might well
be a controllable parameter helping the insect when it encoun-
ters environments with different odor concentrations. However,
such candidate mechanisms seems to be too slow (e.g., intrinsic
plasticity; Triesch, 2007; Turrigiano, 2011) compared to behav-
ioral time scales. Another option to control the efficiency of
information transmission in a fluctuating odor concentration
is the inhibition on Kenyon cells which will be investigated
next.

3.2. THE ROLE OF INHIBITION ON MUTUAL INFORMATION
In the previous section we showed that the efficiency of
information transmission depends critically on the odor con-
centration. However, the GABAergic inhibitory effect on
Kenyon cells seems to have a critical role in sparse cod-
ing (Assisi et al., 2007). As sparse coding is related to
mutual information, we next analyze the role of inhibition

A B

FIGURE 5 | Mutual information between the environment and (A)

10 Kenyon cells or (B) 20 Kenyon cells for different thresholds. The
connectivity rate set to 0.3 for both low and high odor concentrations. The
maximum mutual information is obtained at threshold equal to 7 for low
concentration and 8 when high odor concentration was presented to the
neural system. For both levels of concentrations mutual information is
decreased by increasing threshold. This clearly shows that an increase in
odor concentration in absence of inhibition to Kenyon cells leads to a
dramatic decrease in mutual information.

on Kenyon cells in conjunction with the information trans-
fer from the environment to the olfactory learning area in
Drosophila.

Inhibition leads to an entirely different picture (Figure 6):
Figure 6 illustrates the effect of inhibition on mutual information
for different connectivity rates and thresholds when high odor
concentration was presented to the system (NKC = 10). Different
strengths of inhibition (different α values) result to different levels
of mutual information for different connectivity rates and thresh-
olds. At connectivity rate equal to 0.3 (Figure 7), most of the cases
with inhibition are more effective in information transmission
(higher mutual information) than without inhibition (dashed
line). However, too strong inhibition leads to the effect that activ-
ities drop dramatically and, therefore, information transmission
is decreased.

Inhibition increases mutual information not only for one high
odor concentration value: Figure 8 shows the effect of inhibition
on information transmission over different odor concentrations
(averaged over all thresholds and r = 0.3). For all concentration
values the system with different inhibition strengths performs sig-
nificantly better than without inhibition. Furthermore, the system
does not show such a dramatic drop in information transmission
increasing odor concentration. Thus, the olfactory system with
feedback inhibition guarantees all the time an effective transmis-
sion of environmental information to the learning area when the
animal moves toward the source of odor.

4. DISCUSSION
Information theory has helped neuroscientists to study some
structural and functional parameters that are difficult to assess
by experiments and it offers some measures to evaluate infor-
mation transfer by neural systems (Borst and Theunissen, 1999;
Dimitrov et al., 2011). Furthermore, some tools from infor-
mation theory are used to measure how much information a
neural response contains about the stimulus in the environment
and the statistical significance of variation in neural response
for different stimulus intensities. The first attempts to apply
information theory in neuroscience were to measure neural infor-
mation flow in neural systems, as well as, the constraints that
information theory imposes on the capability of neural system
for communication. Thus, information theoretic measures have
been used to infer the functional connectivity in neural sys-
tems (Singh and Lesica, 2010; So et al., 2011). Another step
was to discuss information as a constraint on neural system
structure and function to optimize information transmission
(Attneave, 1954). This approach that the optimal information
transfer guides the neuronal structure is still a very active field
in neuroscience (Shlens et al., 2009; Vanni and Rosenström,
2011).

In the current study, we have analyzed with tools from infor-
mation theory the influence of olfactory system’s parameter on
information transmission between environment and mushroom
body. The abstract model proposed in this study is capable of
considering connectivity rate between antennal lobe and mush-
room body, threshold of firing of neurons in the mushroom body,
as well as the role of inhibition in different environmental situ-
ations that Drosophila melanogaster may encounter through its
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A B

C D

E F

FIGURE 6 | Mutual information between environment (5 odors) and 10

Kenyon cells with the effect of inhibition on Kenyon cells and high odor

concentration c
high

odor
= 0.75. The inhibition parameter α is equal to (A) 1.7,

(B) 1.3, (C) 0.9, (D) 0.7, (E) 0.4, and (F) 0.1. Different parameter values yield
different results on mutual information. The horizontal line shows the
connectivity rate equal to 0.3 (shown in Figure 7).

A B

FIGURE 7 | Mutual information between mushroom body and

environment for connectivity rate equal to 0.3 for high odor

concentration. (A) The mutual information is for most strengths of
inhibition larger than without inhibition (dashed line). (B) Comparing
the average mutual information with and without inhibition (black dot)
shows that for most α-values mutual information is higher than
mutual information without inhibition.

life time. For this purpose, we calculated mutual information
between the environment composed of a set of odors with differ-
ent levels of odor concentrations and a subpopulation of neurons
in the mushroom body. We found that a plain feed-forward
system produces undesirable effects, like a drop in mutual infor-
mation for increasing odor concentration. This is in contrast to
behavioral studies (Masek and Heisenberg, 2008; Yarali et al.,
2009) which have demonstrated that higher odor concentration
does not lead to a decrease in Drosophila efficiency for learn-
ing, memorizing, and discrimination of odors. Therefore, one
would expect that the measure mutual information used in this
study should be able to describe this phenomenon and, fur-
thermore, predict the conditions necessary to obtain highest
system efficiency. In absence of feedback inhibition, our simu-
lations clearly assign a remarkable decrease in system efficiency
for odors with high concentrations. However, feedback inhibition
of different strengths helps the system to obtain high system
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Odor concentration
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FIGURE 8 | Mutual information between mushroom body (NKC = 10)

and environment at connectivity rate equal to 0.3 and averaged over

thresholds (1–20). Different odor concentrations were presented to the
neural system with (α = 0.1 to 1.7) and without inhibition. Comparing
mutual information for different α parameter values demonstrate that
feedback inhibition increases mutual information for all concentrations.
Furthermore, for several α-values mutual information does not show such a
dramatic drop in performance for increasing odor concentration.

efficiency. Interestingly, a certain strength of inhibition (here
equals to 0.9) results to the best performance. This inhibition
strength guarantees a good system performance independent of
the odor concentration. Hence, a pharmacological manipulation
of this parameter in vivo should result to measurable changes in
fly’s behavior.

These findings support the idea of a key role of inhibi-
tion in keeping the system at or close to maximal mutual
information or information transfer for all Kenyon cells (with
varying connectivity rate) when the fly navigates in its natu-
ral environment, where odor concentration can very strongly
vary. For instance, sensing very low odor concentration from a
far distance navigating to it and eventually finding the source
of odor (food or mate, for example) where the concentration
has increased thousandfold. The importance of high and sta-
ble mutual information between a dynamic environment and
the Kenyon cells becomes even clearer if we consider that the
synapses between Kenyon cells and output neurons are very
likely the place of association based learning (Séjourné et al.,
2011).
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